Oracle® Database
SQL Language Reference

21c
F31301-11
January 2023

ORACLE"

Oracle Database SQL Language Reference, 21c
F31301-11

Copyright © 1996, 2023, Oracle and/or its affiliates.
Primary Author: Usha Krishnamurthy

Contributors: Mary Beth Roeser, Drew Adams, Lance Ashdown, Thomas Baby, Hermann Baer, Yasin
Baskan, Nigel Bayliss, Shuo Chen, Eric Belden, Atif Chaudhry, Dinesh Das, Mark Dilman, Yanfei Fan,
Zhengiang Fan , Mahesh Girkar, Naveen Gopal, Beda Hammerschmidt, Patricia Huey, Peter Knaggs, Sriram
Krishnamurthy, Praveen Kumar, Hariharan Lakshmanan, Bill Lee, Huagang Li, Yunrui Li, Roger MacNicol,
David Mcdermid, Dan Melinger, Jan Michels, Cesar Miramontes, Rahil Mir, Gopal Mulagund, Abhishek
Munnolimath , lan Neall, Padmaja Potineni, Giridhar Ravipati, Alfonso Colunga Sosa , Josh Spiegel, James
Stamos, Srikrishnan Suresh , Nirav Vyas, Alan Williams, Andy Witkowski, Sergiusz Wolicki, Weiran Zhang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XXVil
Documentation Accessibility XXVii
Related Documents XXVil
Conventions XXVili

Changes in This Release for Oracle Database SQL Language
Reference

Changes in Oracle Database Release 21c XXiX

1 Introduction to Oracle SQL

History of SQL 1-1
SQL Standards 1-1

How SQL Works 1-2

Common Language for All Relational Databases 1-2
Using Enterprise Manager 1-2
Lexical Conventions 1-3
Tools Support 1-3

2 Basic Elements of Oracle SQL

Data Types 2-1
Oracle Built-in Data Types 2-5
Character Data Types 2-8
Numeric Data Types 2-13

LONG Data Type 2-17
Datetime and Interval Data Types 2-19

RAW and LONG RAW Data Types 2-27

Large Object (LOB) Data Types 2-28

JSON Data Type 2-31
Extended Data Types 2-32

ORACLE iii

Rowid Data Types 2-33

ROWID Data Type 2-33
UROWID Data Type 2-34
ANSI, DB2, and SQL/DS Data Types 2-34
User-Defined Types 2-36
Object Types 2-36
REF Data Types 2-37
Varrays 2-37
Nested Tables 2-37
Oracle-Supplied Types 2-38
Any Types 2-38
ANYTYPE 2-38
ANYDATA 2-38
ANYDATASET 2-38
XML Types 2-39
XMLType 2-39
URI Data Types 2-39
URIFactory Package 2-40
Spatial Types 2-41
SDO_GEOMETRY 2-41
SDO_TOPO_GEOMETRY 2-41
SDO_GEORASTER 2-42
Data Type Comparison Rules 2-42
Numeric Values 2-42
Datetime Values 2-42
Binary Values 2-43
Character Values 2-43
Object Values 2-46
Varrays and Nested Tables 2-46
Data Type Precedence 2-47
Data Conversion 2-47
Implicit and Explicit Data Conversion 2-47
Implicit Data Conversion 2-47
Implicit Data Conversion Examples 2-50
Explicit Data Conversion 2-50
Security Considerations for Data Conversion 2-52
Literals 2-53
Text Literals 2-54
Numeric Literals 2-55
Integer Literals 2-55
NUMBER and Floating-Point Literals 2-56

ORACLE iv

Datetime Literals

Interval Literals

INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

Format Models

Number Format Models

Number Format Elements

Datetime Format Models

Datetime Format Elements

Datetime Format Elements and Globalization Support

ISO Standard Date Format Elements
The RR Datetime Format Element
Datetime Format Element Suffixes

Format Model Modifiers

Format Model Examples

String-to-Date Conversion Rules
XML Format Model

Nulls

Nulls in SQL Functions
Nulls with Comparison Conditions

Nulls in Conditions

Comments
Comments Within SQL Statements
Comments on Schema and Nonschema Objects
Hints
Alphabetical Listing of Hints

ORACLE

ALL_ROWS Hint

APPEND Hint

APPEND_VALUES Hint

CACHE Hint
CHANGE_DUPKEY_ERROR_INDEX Hint
CLUSTER Hint

CLUSTERING Hint

CONTAINERS Hint
CURSOR_SHARING_EXACT Hint
DISABLE_PARALLEL_DML Hint
DRIVING_SITE Hint
DYNAMIC_SAMPLING Hint
ENABLE_PARALLEL_DML Hint
FACT Hint

FIRST_ROWS Hint

2-58
2-62
2-62
2-64
2-65
2-66
2-67
2-69
2-70
2-75
2-75
2-76
2-77
2-77
2-78
2-80
2-81
2-82
2-83
2-83
2-83
2-84
2-84
2-85
2-85
2-91
2-92
2-92
2-93
2-93
2-94
2-94
2-95
2-95
2-96
2-96
2-96
2-97
2-98
2-98
2-98

ORACLE

FRESH_MV Hint

FULL Hint
GATHER_OPTIMIZER_STATISTICS Hint
GROUPING Hint

HASH Hint
IGNORE_ROW_ON_DUPKEY_INDEX Hint
INDEX Hint

INDEX_ASC Hint

INDEX_COMBINE Hint
INDEX_DESC Hint

INDEX_FFS Hint

INDEX_JOIN Hint

INDEX_SS Hint

INDEX_SS_ASC Hint
INDEX_SS_DESC Hint

INMEMORY Hint
INMEMORY_PRUNING Hint
LEADING Hint

MERGE Hint
MODEL_MIN_ANALYSIS Hint
MONITOR Hint
NATIVE_FULL_OUTER_JOIN Hint
NOAPPEND Hint

NOCACHE Hint

NO_CLUSTERING Hint
NO_EXPAND Hint

NO_FACT Hint
NO_GATHER_OPTIMIZER_STATISTICS Hint
NO_INDEX Hint

NO_INDEX_FFS Hint

NO_INDEX_SS Hint

NO_INMEMORY Hint
NO_INMEMORY_PRUNING Hint
NO_MERGE Hint

NO_MONITOR Hint
NO_NATIVE_FULL_OUTER_JOIN Hint
NO_PARALLEL Hint

NOPARALLEL Hint
NO_PARALLEL_INDEX Hint
NOPARALLEL_INDEX Hint
NO_PQ_CONCURRENT_UNION Hint

Vi

2-99

2-99
2-100
2-100
2-101
2-101
2-102
2-102
2-103
2-103
2-104
2-104
2-104
2-105
2-105
2-106
2-106
2-106
2-107
2-107
2-108
2-108
2-108
2-109
2-109
2-109
2-110
2-110
2-110
2-111
2-111
2-112
2-112
2-112
2-113
2-113
2-113
2-114
2-114
2-114
2-114

ORACLE

NO_PQ_SKEW Hint
NO_PUSH_PRED Hint
NO_PUSH_SUBQ Hint
NO_PX_JOIN_FILTER Hint
NO_QUERY_TRANSFORMATION Hint
NO_RESULT_CACHE Hint
NO_REWRITE Hint

NOREWRITE Hint
NO_STAR_TRANSFORMATION Hint
NO_STATEMENT_QUEUING Hint
NO_UNNEST Hint
NO_USE_BAND Hint
NO_USE_CUBE Hint
NO_USE_HASH Hint
NO_USE_MERGE Hint
NO_USE_NL Hint
NO_XML_QUERY_REWRITE Hint
NO_XMLINDEX_REWRITE Hint
NO_ZONEMAP Hint
OPTIMIZER_FEATURES_ENABLE Hint
OPT_PARAM Hint

ORDERED Hint

PARALLEL Hint
PARALLEL_INDEX Hint
PQ_CONCURRENT_UNION Hint
PQ_DISTRIBUTE Hint
PQ_FILTER Hint

PQ_SKEW Hint

PUSH_PRED Hint

PUSH_SUBQ Hint
PX_JOIN_FILTER Hint

QB_NAME Hint

RESULT_CACHE Hint
RETRY_ON_ROW_CHANGE Hint
REWRITE Hint
STAR_TRANSFORMATION Hint
STATEMENT_QUEUING Hint
UNNEST Hint

USE_BAND Hint

USE_CONCAT Hint

USE_CUBE Hint

2-115
2-115
2-115
2-116
2-116
2-116
2-116
2-117
2-117
2-117
2-118
2-118
2-118
2-118
2-119
2-119
2-119
2-120
2-120
2-121
2-121
2-121
2-122
2-124
2-125
2-125
2-128
2-128
2-128
2-129
2-129
2-129
2-130
2-130
2-131
2-131
2-132
2-133
2-133
2-133
2-134

Vii

USE_HASH Hint 2-134
USE_MERGE Hint 2-134
USE_NL Hint 2-135
USE_NL_WITH_INDEX Hint 2-135
Database Objects 2-136
Schema Objects 2-136
Nonschema Objects 2-137
Database Object Names and Qualifiers 2-137
Database Object Naming Rules 2-138
Schema Object Naming Examples 2-142
Schema Object Naming Guidelines 2-142
Syntax for Schema Objects and Parts in SQL Statements 2-143
How Oracle Database Resolves Schema Object References 2-144
References to Objects in Other Schemas 2-145
References to Objects in Remote Databases 2-145
Creating Database Links 2-145
References to Database Links 2-146
References to Partitioned Tables and Indexes 2-147
References to Object Type Attributes and Methods 2-150
3 Pseudocolumns

Hierarchical Query Pseudocolumns 3-1
CONNECT_BY_ISCYCLE Pseudocolumn 3-1
CONNECT_BY_ISLEAF Pseudocolumn 3-2
LEVEL Pseudocolumn 3-2
Sequence Pseudocolumns 3-3
Where to Use Sequence Values 3-4
How to Use Sequence Values 34
Version Query Pseudocolumns 3-6
COLUMN_VALUE Pseudocolumn 3-7
OBJECT _ID Pseudocolumn 3-8
OBJECT_VALUE Pseudocolumn 3-8
ORA_ROWSCN Pseudocolumn 3-9
ORA_SHARDSPACE_NAME Pseudocolumn 3-10
ROWID Pseudocolumn 3-10
ROWNUM Pseudocolumn 3-11
XMLDATA Pseudocolumn 3-13

ORACLE

viii

4 Operators

About SQL Operators 4-1
Unary and Binary Operators 4-1
Operator Precedence 4-2

Arithmetic Operators 4-2

COLLATE Operator 4-3

Concatenation Operator 4-4

Hierarchical Query Operators 4-5
PRIOR 4-5
CONNECT_BY_ROOT 4-6

Set Operators 4-6

Multiset Operators 4-7
MULTISET EXCEPT 4-7
MULTISET INTERSECT 4-8
MULTISET UNION 4-9

SHARD_CHUNK_ID Operator 4-10

User-Defined Operators 4-11

5 Expressions

About SQL Expressions 5-1

Simple Expressions 5-3

Analytic View Expressions 5-4
Examples of Analytic View Expressions 5-16

Compound Expressions 5-19

CASE Expressions 5-20

Column Expressions 5-22

CURSOR Expressions 5-22

Datetime Expressions 5-24

Function Expressions 5-26

Interval Expressions 5-26

JSON Object Access Expressions 5-27

Model Expressions 5-30

Object Access Expressions 5-32

Placeholder Expressions 5-32

Scalar Subquery Expressions 5-33

Type Constructor Expressions 5-33

Expression Lists 5-35

ORACLE iX

6 Conditions

About SQL Conditions 6-1
Condition Precedence 6-3
Comparison Conditions 6-4
Simple Comparison Conditions 6-5
Group Comparison Conditions 6-7
Floating-Point Conditions 6-8
Logical Conditions 6-9
Model Conditions 6-10
IS ANY Condition 6-10
IS PRESENT Condition 6-11
Multiset Conditions 6-12
IS A SET Condition 6-12
IS EMPTY Condition 6-13
MEMBER Condition 6-14
SUBMULTISET Condition 6-14
Pattern-matching Conditions 6-15
LIKE Condition 6-15
REGEXP_LIKE Condition 6-19
Null Conditions 6-21
XML Conditions 6-22
EQUALS_PATH Condition 6-22
UNDER_PATH Condition 6-23
SQL For JSON Conditions 6-23
IS JSON Condition 6-24
JSON_EQUAL Condition 6-26
JSON_EXISTS Condition 6-27
JSON_TEXTCONTAINS Condition 6-31
Compound Conditions 6-33
BETWEEN Condition 6-34
EXISTS Condition 6-35
IN Condition 6-35
IS OF type Condition 6-38
7 Functions
About SQL Functions 7-2
Single-Row Functions 7-4
Numeric Functions 7-4
Character Functions Returning Character Values 7-5
Character Functions Returning Number Values 7-5

ORACLE X

Character Set Functions 7-6

Collation Functions 7-6
Datetime Functions 7-6
General Comparison Functions 7-7
Conversion Functions 7-7
Large Object Functions 7-8
Collection Functions 7-8
Hierarchical Functions 7-8
Oracle Machine Learning for SQL Functions 7-9
XML Functions 7-9
JSON Functions 7-10
Encoding and Decoding Functions 7-11
NULL-Related Functions 7-11
Environment and Identifier Functions 7-11
Aggregate Functions 7-12
Analytic Functions 7-14
Object Reference Functions 7-22
Model Functions 7-23
OLAP Functions 7-23
Data Cartridge Functions 7-23
ABS 7-23
ACOS 7-24
ADD_MONTHS 7-24
ANY_VALUE 7-25
APPROX_COUNT 7-26
APPROX_COUNT_DISTINCT 7-27
APPROX_COUNT _DISTINCT_AGG 7-28
APPROX_COUNT_DISTINCT_DETAIL 7-29
APPROX_MEDIAN 7-32
APPROX_PERCENTILE 7-35
APPROX_PERCENTILE_AGG 7-38
APPROX_PERCENTILE_DETAIL 7-39
APPROX_RANK 7-43
APPROX_SUM 7-44
ASCII 7-44
ASCIISTR 7-45
ASIN 7-46
ATAN 7-47
ATAN2 7-47
AVG 7-48
BFILENAME 7-49

ORACLE Xi

BIN_TO_NUM 7-50

BITAND 7-52
BIT_AND_AGG 7-53
BITMAP_BIT_POSITION 7-54
BITMAP_BUCKET_NUMBER 7-55
BITMAP_CONSTRUCT_AGG 7-55
BITMAP_COUNT 7-56
BITMAP_OR_AGG 7-57
BIT_OR_AGG 7-57
BIT_XOR_AGG 7-58
CARDINALITY 7-59
CAST 7-59
CEIL 7-64
CHARTOROWID 7-65
CHECKSUM 7-66
CHR 7-66
CLUSTER_DETAILS 7-68
CLUSTER_DISTANCE 7-72
CLUSTER_ID 7-74
CLUSTER_PROBABILITY 7-77
CLUSTER_SET 7-79
COALESCE 7-82
COLLATION 7-83
COLLECT 7-84
COMPOSE 7-85
CON_DBID_TO_ID 7-87
CON_GUID_TO_ID 7-87
CON_ID_TO_CON_NAME 7-88
CON_ID_TO_DBID 7-89
CON_ID_TO_GUID 7-89
CON_ID_TO_UID 7-90
CON_NAME_TO_ID 7-91
CON_UID_TO_ID 7-91
CONCAT 7-92
CONVERT 7-93
CORR 7-95
CORR_* 7-97

CORR_S 7-98

CORR_K 7-98
COSs 7-99
COSH 7-99

ORACLE Xii

COUNT 7-100

COVAR_POP 7-102
COVAR_SAMP 7-104
CUBE_TABLE 7-105
CUME_DIST 7-107
CURRENT_DATE 7-109
CURRENT_TIMESTAMP 7-109
Ccv 7-110
DATAOBJ_TO_MAT_PARTITION 7-112
DATAOBJ_TO_PARTITION 7-112
DBTIMEZONE 7-113
DECODE 7-114
DECOMPOSE 7-115
DENSE_RANK 7-117
DEPTH 7-118
DEREF 7-119
DUMP 7-120
EMPTY_BLOB, EMPTY_CLOB 7-122
EXISTSNODE 7-123
EXP 7-124
EXTRACT (datetime) 7-125
EXTRACT (XML) 7-127
EXTRACTVALUE 7-128
FEATURE_COMPARE 7-129
FEATURE_DETAILS 7-132
FEATURE_ID 7-135
FEATURE_SET 7-137
FEATURE_VALUE 7-140
FIRST 7-143
FIRST_VALUE 7-145
FLOOR 7-147
FROM_TZ 7-148
GREATEST 7-149
GROUP_ID 7-150
GROUPING 7-151
GROUPING_ID 7-152
HEXTORAW 7-153
INITCAP 7-153
INSTR 7-154
ITERATION_NUMBER 7-156
JSON_ARRAY 7-157

ORACLE Xiii

JSON_ARRAYAGG 7-160

JSON_DATAGUIDE 7-162
JSON_MERGEPATCH 7-164
JSON_OBJECT 7-165
JSON_OBJECTAGG 7-171
JSON_QUERY 7-173
JSON_SCALAR 7-179
JSON_SERIALIZE 7-180
JSON_TABLE 7-182
JSON_TRANSFORM 7-193
JSON_VALUE 7-197
JSON Type Constructor 7-204
KURTOSIS_POP 7-205
KURTOSIS_SAMP 7-205
LAG 7-206
LAST 7-207
LAST_DAY 7-208
LAST_VALUE 7-209
LEAD 7-212
LEAST 7-213
LENGTH 7-214
LISTAGG 7-215
LN 7-219
LNNVL 7-220
LOCALTIMESTAMP 7-221
LOG 7-222
LOWER 7-222
LPAD 7-223
LTRIM 7-224
MAKE_REF 7-225
MAX 7-226
MEDIAN 7-227
MIN 7-230
MOD 7-231
MONTHS_BETWEEN 7-232
NANVL 7-233
NCHR 7-234
NEW_TIME 7-234
NEXT_DAY 7-235
NLS_CHARSET _DECL_LEN 7-236
NLS_CHARSET_ID 7-236

ORACLE Xiv

NLS_CHARSET_NAME 7-237

NLS_COLLATION_ID 7-238
NLS_COLLATION_NAME 7-238
NLS_INITCAP 7-240
NLS_LOWER 7-241
NLS_UPPER 7-241
NLSSORT 7-242
NTH_VALUE 7-245
NTILE 7-247
NULLIF 7-248
NUMTODSINTERVAL 7-249
NUMTOYMINTERVAL 7-250
NVL 7-251
NVL2 7-252
ORA_DM_PARTITION_NAME 7-253
ORA_DST_AFFECTED 7-255
ORA_DST_CONVERT 7-255
ORA_DST_ERROR 7-256
ORA_HASH 7-257
ORA_INVOKING_USER 7-258
ORA_INVOKING_USERID 7-258
PATH 7-259
PERCENT_RANK 7-260
PERCENTILE_CONT 7-262
PERCENTILE_DISC 7-264
POWER 7-266
POWERMULTISET 7-267
POWERMULTISET_BY_CARDINALITY 7-268
PREDICTION 7-269
PREDICTION_BOUNDS 7-274
PREDICTION_COST 7-275
PREDICTION_DETAILS 7-279
PREDICTION_PROBABILITY 7-284
PREDICTION_SET 7-288
PRESENTNNV 7-291
PRESENTV 7-293
PREVIOUS 7-294
RANK 7-295
RATIO_TO_REPORT 7-297
RAWTOHEX 7-297
RAWTONHEX 7-298

ORACLE XV

REF 7-299

REFTOHEX 7-300
REGEXP_COUNT 7-301
REGEXP_INSTR 7-306
REGEXP_REPLACE 7-309
REGEXP_SUBSTR 7-314
REGR_ (Linear Regression) Functions 7-318
REMAINDER 7-323
REPLACE 7-324
ROUND (date) 7-325
ROUND (number) 7-326
ROUND_TIES_TO_EVEN (number) 7-327
ROW_NUMBER 7-328
ROWIDTOCHAR 7-329
ROWIDTONCHAR 7-330
RPAD 7-331
RTRIM 7-332
SCN_TO_TIMESTAMP 7-333
SESSIONTIMEZONE 7-334
SET 7-335
SIGN 7-335
SIN 7-336
SINH 7-337
SKEWNESS_POP 7-337
SKEWNESS_SAMP 7-338
SOUNDEX 7-338
SQRT 7-339
STANDARD_HASH 7-340
STATS_BINOMIAL_TEST 7-341
STATS_CROSSTAB 7-342
STATS_F_TEST 7-344
STATS_KS_TEST 7-345
STATS_MODE 7-346
STATS_MW_TEST 7-347
STATS_ONE_WAY_ANOVA 7-349
STATS_T_TEST_* 7-350

STATS_T_TEST_ONE 7-352

STATS_T_TEST_PAIRED 7-352

STATS_T_TEST_INDEP and STATS_T_TEST_INDEPU 7-352
STATS_WSR_TEST 7-354
STDDEV 7-355

ORACLE XVi

STDDEV_POP 7-356

STDDEV_SAMP 7-357
SUBSTR 7-359
SUM 7-360
SYS_CONNECT_BY_PATH 7-362
SYS_CONTEXT 7-363
SYS_DBURIGEN 7-371
SYS_EXTRACT_UTC 7-372
SYS_GUID 7-372
SYS_OP_ZONE_ID 7-373
SYS_TYPEID 7-375
SYS_XMLAGG 7-376
SYS_XMLGEN 7-377
SYSDATE 7-378
SYSTIMESTAMP 7-378
TAN 7-379
TANH 7-380
TIMESTAMP_TO_SCN 7-380
TO_APPROX_COUNT_DISTINCT 7-381
TO_APPROX_PERCENTILE 7-382
TO_BINARY_DOUBLE 7-383
TO_BINARY_FLOAT 7-385
TO_BLOB (bfile) 7-387
TO_BLOB (raw) 7-387
TO_CHAR (bfile|blob) 7-388
TO_CHAR (character) 7-388
TO_CHAR (datetime) 7-390
TO_CHAR (number) 7-395
TO_CLOB (bfile|blob) 7-398
TO_CLOB (character) 7-399
TO_DATE 7-400
TO_DSINTERVAL 7-402
TO_LOB 7-404
TO_MULTI_BYTE 7-405
TO_NCHAR (character) 7-405
TO_NCHAR (datetime) 7-406
TO_NCHAR (number) 7-407
TO_NCLOB 7-408
TO_NUMBER 7-409
TO_SINGLE_BYTE 7-410
TO_TIMESTAMP 7-411

ORACLE XVii

TO_TIMESTAMP_TZ 7-412

TO_UTC_TIMESTAMP_TZ 7-414
TO_YMINTERVAL 7-416
TRANSLATE 7-417
TRANSLATE ... USING 7-418
TREAT 7-420
TRIM 7-421
TRUNC (date) 7-422
TRUNC (number) 7-424
TZ_OFFSET 7-425
uiD 7-426
UNISTR 7-426
UPPER 7-427
USER 7-428
USERENV 7-428
VALIDATE_CONVERSION 7-430
VALUE 7-432
VAR_POP 7-433
VAR_SAMP 7-435
VARIANCE 7-436
VSIZE 7-437
WIDTH_BUCKET 7-438
XMLAGG 7-439
XMLCAST 7-441
XMLCDATA 7-441
XMLCOLATTVAL 7-442
XMLCOMMENT 7-443
XMLCONCAT 7-444
XMLDIFF 7-445
XMLELEMENT 7-446
XMLEXISTS 7-449
XMLFOREST 7-450
XMLISVALID 7-451
XMLPARSE 7-451
XMLPATCH 7-452
XMLPI 7-453
XMLQUERY 7-454
XMLSEQUENCE 7-456
XMLSERIALIZE 7-457
XMLTABLE 7-459
XMLTRANSFORM 7-462

ORACLE Xviii

ROUND and TRUNC Date Functions 7-463

About User-Defined Functions 7-464
Prerequisites 7-465
Name Precedence 7-466

Naming Conventions 7-466

8 Common SQL DDL Clauses

allocate_extent_clause 8-1
constraint 8-3
deallocate_unused_clause 8-32
file_specification 8-33
logging_clause 8-42
parallel_clause 8-45
physical_attributes_clause 8-48
size_clause 8-51
storage_clause 8-52

O SQL Queries and Subqueries

About Queries and Subqueries 9-1
Creating Simple Queries 9-2
Hierarchical Queries 9-2
Hierarchical Query Examples 9-5
The Set Operators 9-8
Sorting Query Results 9-12
Joins 9-12
Join Conditions 9-13
Equijoins 9-13
Band Joins 9-13
Self Joins 9-14
Cartesian Products 9-14
Inner Joins 9-14
Outer Joins 9-14
Antijoins 9-16
Semijoins 9-16
Using Subqueries 9-17
Unnesting of Nested Subqueries 9-18
Selecting from the DUAL Table 9-19
Distributed Queries 9-20

ORACLE XixX

10 SQL Statements: ADMINISTER KEY MANAGEMENT to ALTER JAVA

Types of SQL Statements 10-1
Data Definition Language (DDL) Statements 10-2
Data Manipulation Language (DML) Statements 10-3
Transaction Control Statements 10-3
Session Control Statements 10-4
System Control Statement 10-4
Embedded SQL Statements 10-4

How the SQL Statement Chapters are Organized 10-4

ADMINISTER KEY MANAGEMENT 10-5

ALTER ANALYTIC VIEW 10-34

ALTER ATTRIBUTE DIMENSION 10-36

ALTER AUDIT POLICY (Unified Auditing) 10-37

ALTER CLUSTER 10-42

ALTER DATABASE 10-47

ALTER DATABASE DICTIONARY 10-105

ALTER DATABASE LINK 10-106

ALTER DIMENSION 10-108

ALTER DISKGROUP 10-111

ALTER FLASHBACK ARCHIVE 10-145

ALTER FUNCTION 10-148

ALTER HIERARCHY 10-149

ALTER INDEX 10-150

ALTER INDEXTYPE 10-175

ALTER INMEMORY JOIN GROUP 10-177

ALTER JAVA 10-179

11 SQL Statements: ALTER LIBRARY to ALTER SESSION

ALTER LIBRARY 11-1
ALTER LOCKDOWN PROFILE 11-2
ALTER MATERIALIZED VIEW 11-16
ALTER MATERIALIZED VIEW LOG 11-37
ALTER MATERIALIZED ZONEMAP 11-46
ALTER OPERATOR 11-50
ALTER OUTLINE 11-53
ALTER PACKAGE 11-54
ALTER PLUGGABLE DATABASE 11-56
ALTER PMEM FILESTORE 11-83
ALTER PROCEDURE 11-85
ALTER PROFILE 11-86

ORACLE XX

ALTER RESOURCE COST 11-90

ALTER ROLE 11-92
ALTER ROLLBACK SEGMENT 11-94
ALTER SEQUENCE 11-97
ALTER SESSION 11-100
Initialization Parameters and ALTER SESSION 11-109
Session Parameters and ALTER SESSION 11-109

12 SQL Statements: ALTER SYNONYM to COMMENT

ALTER SYNONYM 12-1
ALTER SYSTEM 12-3
ALTER TABLE 12-31
ALTER TABLESPACE 12-180
ALTER TABLESPACE SET 12-198
ALTER TRIGGER 12-201
ALTER TYPE 12-203
ALTER USER 12-204
ALTER VIEW 12-218
ANALYZE 12-220
ASSOCIATE STATISTICS 12-229
AUDIT (Traditional Auditing) 12-233
AUDIT (Unified Auditing) 12-250
CALL 12-255
COMMENT 12-259

13 SQL Statements: COMMIT to CREATE JAVA

COMMIT 13-1
CREATE ANALYTIC VIEW 13-6
CREATE ATTRIBUTE DIMENSION 13-15
CREATE AUDIT POLICY (Unified Auditing) 13-26
CREATE CLUSTER 13-36
CREATE CONTEXT 13-47
CREATE CONTROLFILE 13-50
CREATE DATABASE 13-57
CREATE DATABASE LINK 13-75
CREATE DIMENSION 13-81
CREATE DIRECTORY 13-87
CREATE DISKGROUP 13-90
CREATE EDITION 13-99

ORACLE XXi

CREATE FLASHBACK ARCHIVE 13-102

CREATE FUNCTION 13-106
CREATE HIERARCHY 13-108
CREATE INDEX 13-111
CREATE INDEXTYPE 13-150
CREATE INMEMORY JOIN GROUP 13-154
CREATE JAVA 13-156

14 SQL Statements: CREATE LIBRARY to CREATE SCHEMA

CREATE LIBRARY 14-1
CREATE LOCKDOWN PROFILE 14-3
CREATE MATERIALIZED VIEW 14-5
CREATE MATERIALIZED VIEW LOG 14-38
CREATE MATERIALIZED ZONEMAP 14-50
CREATE OPERATOR 14-59
CREATE OUTLINE 14-63
CREATE PACKAGE 14-67
CREATE PACKAGE BODY 14-68
CREATE PFILE 14-70
CREATE PLUGGABLE DATABASE 14-72
CREATE PMEM FILESTORE 14-98
CREATE PROCEDURE 14-99
CREATE PROFILE 14-101
CREATE RESTORE POINT 14-111
CREATE ROLE 14-116
CREATE ROLLBACK SEGMENT 14-120
CREATE SCHEMA 14-123

15 SQL Statements: CREATE SEQUENCE to DROP CLUSTER

CREATE SEQUENCE 15-1
CREATE SPFILE 15-8
CREATE SYNONYM 15-12
CREATE TABLE 15-17
CREATE TABLESPACE 15-152
CREATE TABLESPACE SET 15-174
CREATE TRIGGER 15-176
CREATE TYPE 15-178
CREATE TYPE BODY 15-180
CREATE USER 15-182

ORACLE XXii

CREATE VIEW 15-192

DELETE 15-209
DISASSOCIATE STATISTICS 15-220
DROP ANALYTIC VIEW 15-221
DROP ATTRIBUTE DIMENSION 15-222
DROP AUDIT POLICY (Unified Auditing) 15-223
DROP CLUSTER 15-224

16 SQL Statements: DROP CONTEXT to DROP JAVA

DROP CONTEXT 16-1
DROP DATABASE 16-2
DROP DATABASE LINK 16-3
DROP DIMENSION 16-4
DROP DIRECTORY 16-5
DROP DISKGROUP 16-6
DROP EDITION 16-8
DROP FLASHBACK ARCHIVE 16-9
DROP FUNCTION 16-10
DROP HIERARCHY 16-11
DROP INDEX 16-12
DROP INDEXTYPE 16-14
DROP INMEMORY JOIN GROUP 16-15
DROP JAVA 16-16

17 SQL Statements: DROP LIBRARY to DROP SYNONYM

DROP LIBRARY 17-1
DROP LOCKDOWN PROFILE 17-2
DROP MATERIALIZED VIEW 17-3
DROP MATERIALIZED VIEW LOG 17-5
DROP MATERIALIZED ZONEMAP 17-7
DROP OPERATOR 17-8
DROP OUTLINE 17-9
DROP PACKAGE 17-10
DROP PLUGGABLE DATABASE 17-11
DROP PMEM FILESTORE 17-13
DROP PROCEDURE 17-14
DROP PROFILE 17-15
DROP RESTORE POINT 17-16
DROP ROLE 17-17

ORACLE XXiii

18

19

DROP ROLLBACK SEGMENT

17-18

DROP SEQUENCE 17-19
DROP SYNONYM 17-20
SQL Statements: DROP TABLE to LOCK TABLE

DROP TABLE 18-1
DROP TABLESPACE 18-5
DROP TABLESPACE SET 18-9
DROP TRIGGER 18-10
DROP TYPE 18-11
DROP TYPE BODY 18-13
DROP USER 18-14
DROP VIEW 18-16
EXPLAIN PLAN 18-17
FLASHBACK DATABASE 18-20
FLASHBACK TABLE 18-24
GRANT 18-30
INSERT 18-62
LOCK TABLE 18-84
SQL Statements: MERGE to UPDATE

MERGE 19-1
NOAUDIT (Traditional Auditing) 19-10
NOAUDIT (Unified Auditing) 19-15
PURGE 19-20
RENAME 19-22
REVOKE 19-24
ROLLBACK 19-36
SAVEPOINT 19-38
SELECT 19-39
SET CONSTRAINT[S] 19-136
SET ROLE 19-138
SET TRANSACTION 19-140
TRUNCATE CLUSTER 19-143
TRUNCATE TABLE 19-145
UPDATE 19-149
How to Read Syntax Diagrams

Graphic Syntax Diagrams A-1

ORACLE

XXIV

Required Keywords and Parameters A-2

Optional Keywords and Parameters A-3
Syntax Loops A-4
Multipart Diagrams A-4
Backus-Naur Form Syntax A-5

B Automatic and Manual Locking Mechanisms During SQL Operations

List of Nonblocking DDLs B-1
Automatic Locks in DML Operations B-2
Automatic Locks in DDL Operations B-6
Exclusive DDL Locks B-6
Share DDL Locks B-6
Breakable Parse Locks B-6
Manual Data Locking B-7

C Oracle and Standard SQL

ANSI Standards C-1
ISO Standards C-2
Oracle Compliance to Core SQL C-3
Oracle Support for Optional Features of SQL/Foundation C-8
Oracle Compliance with SQL/CLI C-26
Oracle Compliance with SQL/PSM C-26
Oracle Compliance with SQL/MED C-26
Oracle Compliance with SQL/OLB C-26
Oracle Compliance with SQL/JRT C-26
Oracle Compliance with SQL/XML C-26
Oracle Compliance with FIPS 127-2 C-32
Oracle Extensions to Standard SQL C-33
Oracle Compliance with Older Standards C-33
Character Set Support C-34

D Oracle Regular Expression Support

Multilingual Regular Expression Syntax D-1
Regular Expression Operator Multilingual Enhancements D-2
Perl-influenced Extensions in Oracle Regular Expressions D-3

E Oracle SQL Reserved Words and Keywords

Oracle SQL Reserved Words E-1

ORACLE' v

Oracle SQL Keywords E-4
F Extended Examples
Using Extensible Indexing F-1
Using XML in SQL Statements F-8
Index
ORACLE XXVi

Preface

Audience

This reference contains a complete description of the Structured Query Language (SQL)
used to manage information in an Oracle Database. Oracle SQL is a superset of the
American National Standards Institute (ANSI) and the International Organization for
Standardization (ISO) SQL standard.

This Preface contains these topics:

e Audience
e Documentation Accessibility
e Related Documents

e Conventions

The Oracle Database SQL Language Reference is intended for all users of Oracle SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

ORACLE

For more information, see these Oracle resources:

e Oracle Database PL/SQL Language Reference for information on PL/SQL, the
procedural language extension to Oracle SQL

e Pro*C/C++ Programmer's Guide and Pro*COBOL Programmer's Guide for detailed
descriptions of Oracle embedded SQL

Many of the examples in this book use the sample schemas, which are installed by default
when you select the Basic Installation option with an Oracle Database installation. Refer to
Oracle Database Sample Schemas for information on how these schemas were created and
how you can use them yourself.

XXVii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE XXViii

Changes in This Release for Oracle Database
SQL Language Reference

This preface contains:

e Changes in Oracle Database Release 21c

Changes in Oracle Database Release 21c

Changes in Oracle Database 21c:

New Features

ORACLE

The following features are new in Release 21c:

ALTER TABLE MOVE for Partitioned and Subpartitioned Heap-Organized Tables

You can move all the partitions and subpartitions of a partitioned heap-organized table with a
single ALTER TABLE MOVE statement.

SecureFiles Defragmentation

With release 21c, you can use the shrink clause of the ALTER TABLE statement to modify
SecureFile LOB segments.

Standby CDB continuity

You can use the pdb_managed recovery clause of the ALTER PLUGGABLE DATABASE statement
to recover a PDB in instances where the PDB is within a physical standby CDB.

Auditing for Oracle XML DB HTTP and FTP Services

You can use the PROTOCOL component of CREATE AUDIT POLICY to audit FTP and HTTP
messages.

Unified Audit Policies Enforced on the Current User

The unified audit policy created with CREATE AUDIT POLICY becomes active immediately for
the current session and subsequent sessions as soon as the AUDIT POLICY statement is
executed.

New DIRECTORY_DATASTORE Data Store Type for Oracle Text

You can use a new data store type called DIRECTORY DATASTORE instead of the
FILE DATASTORE data type. DIRECTORY DATASTORE provides greater security because it
enables file access to be based on directory objects.

XXiX

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

FILE DATASTORE is deprecated.

New NETWORK_DATASTORE Data Store Type for Oracle Text

You can use a new data store type called NETWORK DATASTORE instead of the
URL DATASTORE data type. NETWORK DATASTORE provides greater security because it
enables file access to be based on directory objects.

URL_DATASTORE is deprecated.

Automatic In-Memory Management Enhancements

Automatic In-Memory Management enables, populates, evicts, and recompresses
segments without user intervention.

Specify MEMCOMPRESS AUTO in the inmemory memcompress clause to instruct the
database to manage the segment.

Oracle Blockchain Table

Blockchain tables enable you to implement a centralized ledger model where all
participants in the blockchain network have access to the same tamper-resistant
ledger. You can create blockchain tables with the CREATE TABLE statement.

Active Data Guard - Standby Result Cache

The result cache in an Active Data Guard standby database is utilized to cache results
of queries that were run on the physical standby database. You can enable STANDBY in
the result cache clause.

In-Memory Full Text Columns

You can apply the INMEMORY TEXT clause to non-scalar columns in an In-Memory table.
This clause enables fast In-Memory searching of text, XML, or JSON documents using
the CONTAINS () OrJSON_TEXTCONTAINS () operators .

SQL Macros

You can create SQL Macros (SQM) to factor out common SQL expressions and
statements into reusable, parameterized constructs that can be used in other SQL
statements. SQL macros can either be scalar expressions, typically used in SELECT
lists, WHERE, GROUPBY and HAVING clauses, to encapsulate calculations and business
logic or can be table expressions, typically used in a FROM clause.

SQL macros increase developer productivity, simplify collaborative development, and
improve code quality.

Unicode 12.1 Support

Oracle Database 21c complies with version 12.1 of the Unicode Standard.

Bitwise Aggregate Functions

The new aggregate functions BIT AND AGG, BIT OR AGG, and BIT XOR ADD enable
bitwise aggregation of integer columns and columns that can be converted or rounded
to integer values.

XXX

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

New Analytical and Statistical Aggregate Functions
New analytical and statistical aggregate functions are available in SQL:
e CHECKSUM computes the checksum of the input values or expression.

* KURTOSIS functions KURTOSIS POP and KURTOSIS SAMP, measure the tailedness of a data
set where a higher value means more of the variance within the data set is the result of
infrequent extreme deviations as opposed to frequent modestly sized deviations. Note
that a normal distribution has a kurtosis of zero.

* SKEWNESS functions SKEWNESS POP and SKEWNESS SAMP, are measures of asymmetry in
data. A positive skewness is means the data skews to the right of the center point. A
negative skewness means the data skews to the left.

All of these new aggregate functions support the keywords ALL, DISTINCT, and UNIQUE.

ANY VALUE, a function to simplify and optimize the performance of GROUP BY statements,
returns a random value in a group and is optimized to return the first value in the group. It
ensures that there are no comparisons for any incoming row and eliminates the necessity to
specify every column as part of the GROUP BY clause.

With these additional SQL aggregation functions, you can write more efficient code and
benefit from faster in-database processing.

PREDICTION Function Syntax

These PREDICTION functions have a new ordered syntax for scoring a model that requires
ordered data, such as a Multivariate State Estimation Technique - Sequential Probability
Ratio Test (MSET-SPRT) model:

e PREDICTION

° PREDICTION COST

°* PREDICTION DETAILS

° PREDICTION PROBABILITY

° PREDICTION SET

Enhanced SQL Set Operators

The SQL set operators now support all keywords as defined in ANSI SQL. The new operator
EXCEPT [ALL] is functionally equivalent to MINUS [ALL]. The operators MINUS and INTERSECT
now support the keyword ALL.

Database In-Memory External Table Enhancements

The INMEMORY clause is supported at the table level and partition level of a partitioned
external table or hybrid external table. For hybrid tables, the table-level INMEMORY attribute
applies to all partitions, whether internal or external.

New JSON data type

JSON is a new SQL and PL/SQL data type for JSON data. It provides a substantial increase in
guery and update performance compared to textual JSON.

XXXi

ORACLE

Changes in This Release for Oracle Database SQL Language Reference

JSON Scalar Allowed at Top Level of JSON Document (RFC 8259 Support)

JSON documents in Oracle Database can now have a top-level JSON scalar value.
Previously they had to have a JSON object or array value.

New Oracle SQL Function JSON_TRANSFORM

You can use SQL function JSON_TRANSFORM to update parts of a JSON document
without having to parse and rebuild it.

Enhanced Analytic Functions

Analytical window functions now supports the EXCLUDE options of the SQL standard
window frame clause. The query block clause of the SELECT statement now supports
the window clause, which implements the window clause of the SQL standard table
expression as defined in the SQL:2011 standard.

Enhanced Database Availability with Zero Downtime to Switch Over to an
Updated PKCS#11 Library

Starting with this release, Oracle Database can switch over to an updated PKCS#11
library without incurring any system downtime.

You can use the new ADMINISTER KEY MANAGEMENT SWITCHOVER LIBRARY FOR ALL
CONTAINERS statement to enable an Oracle database to switch over from the PKCS#11
library that it is currently using to the updated PKCS#11 library.

Enhanced Double Parity Protection for Flex and Extended Disk Groups

You can use double parity protection for write-once files in a Oracle ASM Flex Disk
Group which provides greater protection against multiple hardware failures.

Oracle ASM Flex Disk Group Support for Cloning a PDB in one CDB to a New
PDB in a Different CDB

You can clone a PDB in a CDB to a new PDB in a different CDB using the
prepare clause of ALTER PLUGGABLE DATABASE.

File Group Templates

With file group templates you can customize and set default file group properties for
automatically created file groups, enabling you to customize file group properties that
are inherited by a number of databases.

Specify the TEMPLATE option of the add filegroup clause of ALTER DISKGROUP.

Automatic Index Optimization

You can enable Automatic Data Optimization (ADO) functionality to provide
compression and optimization capability on indexes using the index ilm clause of
CREATE INDEX and ALTER INDEX.

Gradual Database Password Change for Applications

Starting with Release 21c, an application can change its database passwords without
an administrator having to schedule downtime.

XXX

Changes in This Release for Oracle Database SQL Language Reference

You can enable gradual database password rollover period by setting a non-zero value to the
PASSWORD ROLLOVER TIME user profile parameter using CREATE PROFILE or ALTER PROFILE.

After you set the time for the gradual password rollover period, you can use the ALTER USER
statement to change the user's password and propagate the new password to all clients
before the PASSWORD ROLLOVER_TIME ends.

Minimum Password Length Enforcement for All PDBs

Starting with this release, you can enforce a minimum password length on all PDBs by setting
a mandatory profile in the CDB root using CREATE PROFILE.

Deprecated Features

The following features are deprecated in Release 21c, and may be desupported in a future
release:

e Traditional auditing is deprecated in Oracle Database 21c. Oracle recommends that you
use unified auditing, which enables selective and more effective auditing inside Oracle
Database.

* The Oracle Text type URL_DATASTORE is deprecated. Oracle recommeds that you replace
URL_DATASTORE with NETWORK DATASTORE, which uses ACLs to control access to specific
servers.

* The Oracle Text type FILE DATASTORE is deprecated. Oracle recommends that you
replace FILE DATASTORE indexes with the DIRECTORY DATASTORE index type, which is
available starting with Oracle Database 21c. DIRECTORY DATASTORE provides greater
security because it enables file access to be based on directory objects.

» Starting with Oracle Database 21c, older encryption and hashing algorithms contained
within DBMS CRYPTO are deprecated. These are MD4, MD5, and RC4. To meet your security
requirements, Oracle recommends that you use more modern cryptography algorithms.

Desupported Features

The following features are desupported in Oracle Database Release 21c:

* Oracle Database 21c uses a multitenant architecture. Starting in this release, you can no
longer create or upgrade to non-CDBs. The word "database" now means either a CDB or
PDB.

» Starting with Oracle Database 21c, several XML Database (XDB) features are
desupported. The Oracle SQL function XMLRoot is desupported. Use SQL/XML function
XMLSerialize() with a version number instead.

For a full list of desupported features for Release 21c, please see the Oracle Database
Upgrade Guide.

Introduction to Oracle SQL

Structured Query Language (SQL) is the set of statements with which all programs and users
access data in an Oracle Database. Application programs and Oracle tools often allow users
access to the database without using SQL directly, but these applications in turn must use
SQL when executing the user's request. This chapter provides background information on
SQL as used by most database systems.

This chapter contains these topics:
e History of SQL

* SQL Standards

* Lexical Conventions

e Tools Support

History of SQL

Dr. E. F. Codd published the paper, "A Relational Model of Data for Large Shared Data
Banks", in June 1970 in the Association of Computer Machinery (ACM) journal,
Communications of the ACM. Codd's model is now accepted as the definitive model for
relational database management systems (RDBMS). The language, Structured English
Query Language (SEQUEL) was developed by IBM Corporation, Inc., to use Codd's model.
SEQUEL later became SQL (still pronounced "sequel”). In 1979, Relational Software, Inc.
(now Oracle) introduced the first commercially available implementation of SQL. Today, SQL
is accepted as the standard RDBMS language.

SQL Standards

ORACLE

Oracle strives to comply with industry-accepted standards and participates actively in SQL
standards committees. Industry-accepted committees are the American National Standards
Institute (ANSI) and the International Organization for Standardization (ISO), which is
affiliated with the International Electrotechnical Commission (IEC). Both ANSI and the
ISO/IEC have accepted SQL as the standard language for relational databases. When a new
SQL standard is simultaneously published by these organizations, the names of the
standards conform to conventions used by the organization, but the standards are technically
identical.

See Also:

Oracle and Standard SQL for a detailed description of Oracle Database
conformance to the SQL standard

1-1

Chapter 1
Using Enterprise Manager

How SQL Works

The strengths of SQL provide benefits for all types of users, including application
programmers, database administrators, managers, and end users. Technically
speaking, SQL is a data sublanguage. The purpose of SQL is to provide an interface
to a relational database such as Oracle Database, and all SQL statements are
instructions to the database. In this SQL differs from general-purpose programming
languages like C and BASIC. Among the features of SQL are the following:

* It processes sets of data as groups rather than as individual units.
» It provides automatic navigation to the data.

* It uses statements that are complex and powerful individually, and that therefore
stand alone. Flow-control statements, such as begin-end, if-then-else, loops, and
exception condition handling, were initially not part of SQL and the SQL standard,
but they can now be found in ISO/IEC 9075-4 - Persistent Stored Modules (SQL/
PSM). The PL/SQL extension to Oracle SQL is similar to PSM.

SQL lets you work with data at the logical level. You need to be concerned with the
implementation details only when you want to manipulate the data. For example, to
retrieve a set of rows from a table, you define a condition used to filter the rows. All
rows satisfying the condition are retrieved in a single step and can be passed as a unit
to the user, to another SQL statement, or to an application. You need not deal with the
rows one by one, nor do you have to worry about how they are physically stored or
retrieved. All SQL statements use the optimizer, a part of Oracle Database that
determines the most efficient means of accessing the specified data. Oracle also
provides techniques that you can use to make the optimizer perform its job better.

SQL provides statements for a variety of tasks, including:
* Querying data

* Inserting, updating, and deleting rows in a table

» Creating, replacing, altering, and dropping objects

» Controlling access to the database and its objects

* Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language.

Common Language for All Relational Databases

All major relational database management systems support SQL, so you can transfer
all skills you have gained with SQL from one database to another. In addition, all
programs written in SQL are portable. They can often be moved from one database to
another with very little modification.

Using Enterprise Manager

ORACLE

Many of the operations you can accomplish using SQL syntax can be done much
more easily using Enterprise Manager. For more information, see the Oracle
Enterprise Manager documentation set, Oracle Database 2 Day DBA, or any of the
Oracle Database 2 Day + books.

1-2

Chapter 1
Lexical Conventions

Lexical Conventions

The following lexical conventions for issuing SQL statements apply specifically to the Oracle
Database implementation of SQL, but are generally acceptable in other SQL
implementations.

When you issue a SQL statement, you can include one or more tabs, carriage returns,
spaces, or comments anywhere a space occurs within the definition of the statement. Thus,
Oracle Database evaluates the following two statements in the same manner:

SELECT lastiname,salary*lZ,MONTHSiBETWEEN(SYSDATE,hireidate)
FROM employees
WHERE department id = 30
ORDER BY last name;

SELECT last name,
salary * 12,
MONTHS BETWEEN (SYSDATE, hire date)
FROM employees
WHERE department id=30
ORDER BY last name;

Case is insignificant in reserved words, keywords, identifiers, and parameters. However, case
is significant in text literals and quoted names. Refer to Text Literals for a syntax description
of text literals.

< Note:

SQL statements are terminated differently in different programming environments.
This documentation set uses the default SQL*Plus character, the semicolon ;).

Tools Support

ORACLE

Oracle provides a number of utilities to facilitate your SQL development process:

e Oracle SQL Developer is a graphical tool that lets you browse, create, edit, and delete
(drop) database objects, edit and debug PL/SQL code, run SQL statements and scripts,
manipulate and export data, and create and view reports.

Using SQL Developer, you can connect to any target Oracle Database schema using
standard Oracle Database authentication. DBAs can also use SQL Developer to
administer and monitor their database, with interfaces for Data Pump, RMAN, and
Auditing also included.

Once connected, you can perform operations on objects in the database. You can also
connect to schemas for selected databases, such as MySQL, Microsoft SQL Server, and
Amazon Redshift, view metadata and data in these databases, and migrate these
databases to Oracle Database.

* Oracle SQL Developer Command Line (SQLcl) is a free command line interface for
Oracle Database. It allows you to interactively or batch execute SQL and PL/SQL.

SQLcl offers integrated Oracle Cloud (OCI) support, client side scripting with JavaScript,
custom commands, and updated SQL*Plus commands (INFO vs DESC). Additionally,

1-3

Chapter 1
Tools Support

SQLcl provides native vi or Emacs editing, statement completion, and persistent
command recall for a feature-rich experience, all while supporting your previously
written SQL*Plus scripts.

» Database Actions delivers your favorite Oracle Database desktop tool's features
and experience to your web browser. Delivered as a single-page web application,
Database Actions is powered by Oracle REST Data Services (ORDS).

Database Actions offers a worksheet for running queries and scripts, the ability to
manage and browse your data dictionary, a REST development environment for
your REST APIs and AUTOREST enabled objects, an interface for Oracle’s JSON
Document Store (SODA), a DBA console for managing the database, a data
model reporting solution, and access to PerfHub. Database Actions is also
available automatically for any Oracle Autonomous Database OCI Service.

* SQL*Plus is an interactive and batch query tool that is installed with every Oracle
Database server or client installation. It has a command-line user interface.

" See Also:

SQL*Plus User's Guide and Reference and Oracle Application Express App
Builder User’s Guide for more information on these products

The Oracle Call Interface and Oracle precompilers let you embed standard SQL
statements within a procedure programming language.

* The Oracle Call Interface (OCI) lets you embed SQL statements in C programs.

e The Oracle precompilers, Pro*C/C++ and Pro*COBOL, interpret embedded SQL
statements and translate them into statements that can be understood by C/C++
and COBOL compilers, respectively.

¢ See Also:

Oracle C++ Call Interface Programmer's Guide, Pro*COBOL Programmer's
Guide, and Oracle Call Interface Programmer's Guide for additional
information on the embedded SQL statements allowed in each product

Most (but not all) Oracle tools also support all features of Oracle SQL. This reference
describes the complete functionality of SQL. If the Oracle tool that you are using does
not support this complete functionality, then you can find a discussion of the
restrictions in the manual describing the tool, such as SQL*Plus User's Guide and
Reference.

ORACLE 1-4

Basic Elements of Oracle SQL

This chapter contains reference information on the basic elements of Oracle SQL. These
elements are the simplest building blocks of SQL statements. Therefore, before using the
SQL statements described in this book, you should familiarize yourself with the concepts
covered in this chapter.

This chapter contains these sections:

e Data Types

» Data Type Comparison Rules

» Literals

* Format Models

* Nulls

 Comments

* Database Objects

» Database Object Names and Qualifiers

* Syntax for Schema Objects and Parts in SQL Statements

Data Types

ORACLE

Each value manipulated by Oracle Database has a data type. The data type of a value
associates a fixed set of properties with the value. These properties cause Oracle to treat
values of one data type differently from values of another. For example, you can add values
of NUMBER data type, but not values of RaW data type.

When you create a table or cluster, you must specify a data type for each of its columns.
When you create a procedure or stored function, you must specify a data type for each of its
arguments. These data types define the domain of values that each column can contain or
each argument can have. For example, DATE columns cannot accept the value February 29
(except for a leap year) or the values 2 or 'SHOE'. Each value subsequently placed in a
column assumes the data type of the column. For example, if you insert '01-JAN-98" into a
DATE column, then Oracle treats the '01-JAN-98' character string as a DATE value after
verifying that it translates to a valid date.

Oracle Database provides a number of built-in data types as well as several categories for
user-defined types that can be used as data types. The syntax of Oracle data types appears
in the diagrams that follow. The text of this section is divided into the following sections:

e Oracle Built-in Data Types

 ANSI, DB2, and SQL/DS Data Types
e User-Defined Types

e Oracle-Supplied Types

o Data Type Comparison Rules

2-1

Chapter 2
Data Types

 Data Conversion

A data type is either scalar or nonscalar. A scalar type contains an atomic value,
whereas a nonscalar (sometimes called a "collection”) contains a set of values. A large
object (LOB) is a special form of scalar data type representing a large scalar value of
binary or character data. LOBs are subject to some restrictions that do not affect other
scalar types because of their size. Those restrictions are documented in the context of
the relevant SQL syntax.

See Also:

Restrictions on LOB Columns

The Oracle precompilers recognize other data types in embedded SQL programs.
These data types are called external data types and are associated with host
variables. Do not confuse built-in data types and user-defined types with external data
types. For information on external data types, including how Oracle converts between
them and built-in data types or user-defined types, see Pro*COBOL Programmer's
Guide, and Pro*C/C++ Programmer's Guide.

datatypes::=

Oracle_built_in_datatypes

ANSI_supported_datatypes

user_defined_types

i

Oracle_supplied_types

The Oracle built-in data types appear in the figures that follows. For descriptions, refer
to Oracle Built-in Data Types.

Oracle_built_in_datatypes::=

character_datatypes

number_datatypes
—Clong_and_raw_datatypes)—

datetime_datatypes
large_object_datatypes

rowid_datatypes

ORACLE 2-2

Chapter 2
Data Types

character_datatypes::=

l'
—lc oN
CHAR
l'
-CHAF{
—- (O(size 0)
—| NCHAR

number_datatypes::=

NUMBER

“ precision 0

BINARY_FLOAT

BINARY_DOUBLE

long_and_raw_datatypes::=

o .
FHO@O

datetime_datatypes::=

f| DATE
LOCAL

f9®—>(fractional_seconds_precisionm WITH [— TIME [5{ ZONE
—|TIMESTAMP

® 0
-| INTERVAL |->| YEAR } TO H MONTH

“ a ﬁ@a(fractional_seconds_precisionm
INTERVAL +§ DAY TO H SECOND

ORACLE 2-3

large_object_datatypes::=

rowid_datatypes::=

ROWID

D@0 [

UROWID

Chapter 2
Data Types

The ANSI-supported data types appear in the figure that follows. ANSI, DB2, and
SQL/DS Data Types discusses the mapping of ANSI-supported data types to Oracle

built-in data types.

ANSI_supported_datatypes::=

.-VARYlNG
,| CHARACTER
CHAR
el D@

Hl

NCHAR
®

scale
—— DECIMAL

DEC

— INT

L

|

-| DOUBLE |_>| PRECISION }

\| REAL

ORACLE

2-4

Chapter 2
Data Types

For descriptions of user-defined types, refer to User-Defined Types .

The Oracle-supplied data types appear in the figures that follows. For descriptions, refer to
Oracle-Supplied Types .

Oracle_supplied_types::=

De
' XML_types '
spatial_types

any_types::=

SYS.AnyData
l SYS.AnyType .
l SYS.AnyDataSet '

For descriptions of the Any types, refer to Any Types .

XML _types::=

i)
For descriptions of the XML types, refer to XML Types .

spatial_types::=

SDO_Geometry

SDO_Topo_Geometry

SDO_GeoRaster

For descriptions of the spatial types, refer to Spatial Types .

Oracle Built-in Data Types

The Built-In Data Type Summary table lists the built-in data types available. Oracle
Database uses a code to identify the data type internally. This is the number in the Code
column of the Built-In Data Type Summary table. You can verify the codes in the table using
the pumMP function.

ORACLE 2-5

Table 2-1 Built-In Data Type Summary

Chapter 2
Data Types

In addition to the built-in data types listed in the Built-In Data Type Summary table,
Oracle Database uses many data types internally that are visible via the DUMP function.

Code

Data Type

Description

1

VARCHAR2(size [BYTE | CHAR])

Variable-length character string having maximum length size

bytes or characters. You must specify size for VARCHARZ.

Minimum size is 1 byte or 1 character. Maximum size is:

e 32767 bytes or characters if MAX STRING SIZE =
EXTENDED

= 4000 bytes or characters if MAX STRING SIZE = STANDARD

Refer to Extended Data Types for more information on the

MAX STRING SIZE initialization parameter.

BYTE indicates that the column will have byte length semantics.

CHAR indicates that the column will have character semantics.

NVARCHAR2(s1ze)

Variable-length Unicode character string having maximum length
size characters. You must specify size for NVARCHAR2. The
number of bytes can be up to two times size for AL16UTF16
encoding and three times size for UTF8 encoding. Maximum
sizeis determined by the national character set definition, with
an upper limit of:

e 32767 bytes if MAX STRING SIZE = EXTENDED
e 4000 bytes if MAX STRING SIZE = STANDARD

Refer to Extended Data Types for more information on the
MAX STRING SIZE initialization parameter.

NUMBER [(p[, s)]

Number having precision p and scale s. The precision p can
range from 1 to 38. The scale s can range from -84 to 127. Both
precision and scale are in decimal digits. A NUMBER value
requires from 1 to 22 bytes.

FLOAT [(p)]

A subtype of the NUMBER data type having precision p. A FLOAT
value is represented internally as NUMBER. The precision p can
range from 1 to 126 binary digits. A FLOAT value requires from 1
to 22 bytes.

LONG

Character data of variable length up to 2 gigabytes, or 231 -1
bytes. Provided for backward compatibility.

12

DATE

Valid date range from January 1, 4712 BC, to December 31,
9999 AD. The default format is determined explicitly by the

NLS DATE FORMAT parameter or implicitly by the

NLS TERRITORY parameter. The size is fixed at 7 bytes. This
data type contains the datetime fields YEAR, MONTH, DAY, HOUR,
MINUTE, and SECOND. It does not have fractional seconds or a
time zone.

100

BINARY FLOAT

32-bit floating point number. This data type requires 4 bytes.

101

BINARY DOUBLE

64-bit floating point number. This data type requires 8 bytes.

ORACLE

2-6

Chapter 2
Data Types

Table 2-1 (Cont.) Built-In Data Type Summary

Code Data Type

Description

180 TIMESTAMP
[(fractional seconds precision

)]

Year, month, and day values of date, as well as hour, minute, and
second values of time, where

fractional seconds precisionisthe number of digits in the
fractional part of the SECOND datetime field. Accepted values of
fractional seconds precisionare 0 to 9. The defaultis 6.
The default format is determined explicitly by the

NLS TIMESTAMP FORMAT parameter or implicitly by the

NLS TERRITORY parameter. The size is 7 or 11 bytes, depending
on the precision. This data type contains the datetime fields
YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND. It contains
fractional seconds but does not have a time zone.

181 TIMESTAMP
[(fractional seconds precision
)] WITH TIME ZONE

All values of TIMESTAMP as well as time zone displacement
value, where fractional seconds precisionis the number
of digits in the fractional part of the SECOND datetime field.
Accepted values are 0 to 9. The default is 6. The default date
format for the TIMESTAMP WITH TIME ZONE data type is
determined by the NLS TIMESTAMP TZ FORMAT initialization
parameter. The size is fixed at 13 bytes. This data type contains
the datetime fields YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
TIMEZONE HOUR, and TIMEZONE MINUTE. It has fractional
seconds and an explicit time zone.

231 TIMESTAMP
[(fractional seconds precision
)] WITH LOCAL TIME ZONE

All values of TIMESTAMP WITH TIME ZONE, with the following

exceptions:

e Datais normalized to the database time zone when it is
stored in the database.

« When the data is retrieved, users see the data in the session
time zone.

The default format is determined explicitly by the

NLS TIMESTAMP FORMAT parameter or implicitly by the

NLS TERRITORY parameter. The size is 7 or 11 bytes, depending

on the precision.

182 INTERVAL YEAR [(year precision)]
TO MONTH

Stores a period of time in years and months, where

yvear precisionisthe number of digits in the YEAR datetime
field. Accepted values are 0 to 9. The default is 2. The size is
fixed at 5 bytes.

183 INTERVAL DAY [(day precision)]
TO SECOND
[(fractional seconds precision

)]

Stores a period of time in days, hours, minutes, and seconds,

where

e day precisionisthe maximum number of digits in the DAY
datetime field. Accepted values are 0 to 9. The default is 2.

e fractional seconds precision is the number of digits
in the fractional part of the SECOND field. Accepted values
are 0 to 9. The default is 6.

The size is fixed at 11 bytes.

23 RAW(size)

Raw binary data of length size bytes. You must specify size
for a RAW value. Maximum sizeis:

. 32767 bytes if MAX STRING SIZE = EXTENDED

o 2000 bytes if MAX STRING SIZE = STANDARD

Refer to Extended Data Types for more information on the
MAX STRING SIZE initialization parameter.

ORACLE

2-7

Chapter 2
Data Types

Table 2-1 (Cont.) Built-In Data Type Summary

Code

Data Type

Description

24

LONG RAW

Raw binary data of variable length up to 2 gigabytes.

69

ROWID

Base 64 string representing the unique address of a row in its
table. This data type is primarily for values returned by the ROWID
pseudocolumn.

208

UROWID [(size)]

Base 64 string representing the logical address of a row of an
index-organized table. The optional size is the size of a column
of type UROWID. The maximum size and default is 4000 bytes.

96

CHAR [(size [BYTE | CHAR])]

Fixed-length character data of length size bytes or characters.
Maximum size is 2000 bytes or characters. Default and
minimum sizeis 1 byte.

BYTE and CHAR have the same semantics as for VARCHARZ.

96

NCHAR[(s1ize)]

Fixed-length character data of length size characters. The
number of bytes can be up to two times size for AL16UTF16
encoding and three times size for UTF8 encoding. Maximum
sizeis determined by the national character set definition, with
an upper limit of 2000 bytes. Default and minimum sizeis 1
character.

112

CLOB

A character large object containing single-byte or multibyte
characters. Both fixed-width and variable-width character sets
are supported, both using the database character set. Maximum
size is (4 gigabytes - 1) * (database block size).

112

NCLOB

A character large object containing Unicode characters. Both
fixed-width and variable-width character sets are supported, both
using the database national character set. Maximum size is (4
gigabytes - 1) * (database block size). Stores national character
set data.

113

BLOB

A binary large object. Maximum size is (4 gigabytes - 1) *
(database block size).

114

BFILE

Contains a locator to a large binary file stored outside the
database. Enables byte stream 1/O access to external LOBs
residing on the database server. Maximum size is 4 gigabytes.

119

JSON

Maximum size is 32 megabytes.

The sections that follow describe the Oracle data types as they are stored in Oracle
Database. For information on specifying these data types as literals, refer to Literals .

Character Data Types

Character data types store character (alphanumeric) data, which are words and free-
form text, in the database character set or national character set. They are less
restrictive than other data types and consequently have fewer properties. For example,
character columns can store all alphanumeric values, but NUMBER columns can store

only numeric values.

Character data is stored in strings with byte values corresponding to one of the
character sets, such as 7-bit ASCIl or EBCDIC, specified when the database was
created. Oracle Database supports both single-byte and multibyte character sets.

ORACLE

2-8

Chapter 2
Data Types

These data types are used for character data:

* CHAR Data Type

* NCHAR Data Type

* VARCHAR2 Data Type

* NVARCHAR2 Data Type

For information on specifying character data types as literals, refer to Text Literals .

CHAR Data Type

The CHAR data type specifies a fixed-length character string in the database character set.
You specify the database character set when you create your database.

When you create a table with a CHAR column, you specify the column length as size
optionally followed by a length qualifier. The qualifier BYTE denotes byte length semantics
while the qualifier CHAR denotes character length semantics. In the byte length semantics,
size is the number of bytes to store in the column. In the character length semantics, sizeis
the number of code points in the database character set to store in the column. A code point
may have from 1 to 4 bytes depending on the database character set and the particular
character encoded by the code point. Oracle recommends that you specify one of the length
qualifiers to explicitly document the desired length semantics of the column. If you do not
specify a qualifier, the value of the NLS LENGTH SEMANTICS parameter of the session creating
the column defines the length semantics, unless the table belongs to the schema sys, in
which case the default semantics is BYTE.

Oracle ensures that all values stored in a CHAR column have the length specified by size in
the selected length semantics. If you insert a value that is shorter than the column length,
then Oracle blank-pads the value to column length. If you try to insert a value that is too long
for the column, then Oracle returns an error. Note that if the column length is expressed in
characters (code points), blank-padding does not guarantee that all column values have the
same byte length.

You can omit size from the column definition. The default value is 1.

The maximum value of size is 2000, which means 2000 bytes or characters (code points),
depending on the selected length semantics. However, independently, the absolute maximum
length of any character value that can be stored into a CHAR column is 2000 bytes. For
example, even if you define the column length to be 2000 characters, Oracle returns an error
if you try to insert a 2000-character value in which one or more code points are wider than 1
byte. The value of size in characters is a length constraint, not guaranteed capacity. If you
want a CHAR column to be always able to store size characters in any database character set,
use a value of size that is less than or equal to 500.

To ensure proper data conversion between databases and clients with different character
sets, you must ensure that CHAR data consists of well-formed strings.

¢ See Also:

Oracle Database Globalization Support Guide for more information on character set
support and Data Type Comparison Rules for information on comparison semantics

ORACLE 2-9

Chapter 2
Data Types

NCHAR Data Type

The NCHAR data type specifies a fixed-length character string in the national character
set. You specify the national character set as either ALI6UTF16 or UTF8 when you
create your database. AL16UTF16 and UTF8 are two encoding forms of the Unicode
character set (UTF-16 and CESU-8, correspondingly) and hence NCH2R is a Unicode-
only data type.

When you create a table with an NCHAR column, you specify the column length as size
characters, or more precisely, code points in the national character set. One code point
has always 2 bytes in ALI6UTF16 and from 1 to 3 bytes in UTF8, depending on the
particular character encoded by the code point.

Oracle ensures that all values stored in an NCHAR column have the length of size
characters. If you insert a value that is shorter than the column length, then Oracle
blank-pads the value to the column length. If you try to insert a value that is too long
for the column, then Oracle returns an error. Note that if the national character set is
UTF8, blank-padding does not guarantee that all column values have the same byte
length.

You can omit size from the column definition. The default value is 1.

The maximum value of size is 1000 characters when the national character set is
AL16UTF16, and 2000 characters when the national character set is UTF8. However,
independently, the absolute maximum length of any character value that can be stored
into an NCHAR column is 2000 bytes. For example, even if you define the column length
to be 1000 characters, Oracle returns an error if you try to insert a 1000-character
value but the national character set is UTF8 and all code points are 3 bytes wide. The
value of size is a length constraint, not guaranteed capacity. If you want an NCHAR
column to be always able to store size characters in both national character sets, use
a value of size that is less than or equal to 666.

To ensure proper data conversion between databases and clients with different
character sets, you must ensure that NCHAR data consists of well-formed strings.

If you assign a CHAR value to an NCHAR column, the value is implicitly converted from
the database character set to the national character set. If you assign an NCHAR value
to a CHAR column, the value is implicitly converted from the national character set to
the database character set. If some of the characters from the NCHAR value cannot be
represented in the database character set, then if the value of the session parameter
NLS NCHAR CONV_EXCP is TRUE, then Oracle reports an error. If the value of the
parameter is FALSE, non-representable characters are replaced with the default
replacement character of the database character set, which is usually the question
mark '?' or the inverted question mark '¢,".

¢ See Also:

Oracle Database Globalization Support Guide for information on Unicode
data type support

ORACLE 2-10

Chapter 2
Data Types

VARCHAR?2 Data Type

ORACLE

The VARCHAR? data type specifies a variable-length character string in the database character
set. You specify the database character set when you create your database.

When you create a table with a VARCHAR2 column, you must specify the column length as
size optionally followed by a length qualifier. The qualifier BYTE denotes byte length
semantics while the qualifier CHAR denotes character length semantics. In the byte length
semantics, size is the maximum number of bytes that can be stored in the column. In the
character length semantics, size is the maximum number of code points in the database
character set that can be stored in the column. A code point may have from 1 to 4 bytes
depending on the database character set and the particular character encoded by the code
point. Oracle recommends that you specify one of the length qualifiers to explicitly document
the desired length semantics of the column. If you do not specify a qualifier, the value of the
NLS LENGTH SEMANTICS parameter of the session creating the column defines the length
semantics, unless the table belongs to the schema sys, in which case the default semantics
iS BYTE.

Oracle stores a character value in a VARCHAR2 column exactly as you specify it, without any
blank-padding, provided the value does not exceed the length of the column. If you try to
insert a value that exceeds the specified length, then Oracle returns an error.

The minimum value of sizeis 1. The maximum value is:

* 32767 bytes if MAX STRING SIZE = EXTENDED
* 4000 bytes if MAX STRING SIZE = STANDARD

Refer to Extended Data Types for more information on the MAX STRING SIZE initialization
parameter and the internal storage mechanisms for extended data types.

While size may be expressed in bytes or characters (code points) the independent absolute
maximum length of any character value that can be stored into a VARCHAR2 column is 32767
or 4000 bytes, depending on MAX STRING SIZE. For example, even if you define the column
length to be 32767 characters, Oracle returns an error if you try to insert a 32767-character
value in which one or more code points are wider than 1 byte. The value of size in characters
is a length constraint, not guaranteed capacity. If you want a VARCHAR2 column to be always
able to store size characters in any database character set, use a value of size thatis less
than or equal to 8191, if MAX STRING SIZE = EXTENDED, or 1000, if MAX STRING SIZE =
STANDARD.

Oracle compares VARCHAR?2 values using non-padded comparison semantics.

To ensure proper data conversion between databases with different character sets, you must
ensure that VARCHAR?2 data consists of well-formed strings. See Oracle Database
Globalization Support Guide for more information on character set support.

See Also:

Data Type Comparison Rules for information on comparison semantics

2-11

Chapter 2
Data Types

VARCHAR Data Type

Do not use the VARCHAR data type. Use the VARCHAR? data type instead. Although the
VARCHAR data type is currently synonymous with VARCHAR?, the VARCHAR data type is
scheduled to be redefined as a separate data type used for variable-length character
strings compared with different comparison semantics.

NVARCHAR? Data Type

ORACLE

The NVARCHAR? data type specifies a variable-length character string in the national
character set. You specify the national character set as either ALL6UTF16 or UTF8
when you create your database. ALI6UTF16 and UTF8 are two encoding forms of the
Unicode character set (UTF-16 and CESU-8, correspondingly) and hence NVARCHAR?
is a Unicode-only data type.

When you create a table with an NVARCHAR2 column, you must specify the column
length as size characters, or more precisely, code points in the national character set.
One code point has always 2 bytes in ALI6UTF16 and from 1 to 3 bytes in UTFS8,
depending on the particular character encoded by the code point.

Oracle stores a character value in an NVARCHAR2 column exactly as you specify it,
without any blank-padding, provided the value does not exceed the length of the
column. If you try to insert a value that exceeds the specified length, then Oracle
returns an error.

The minimum value of sizeis 1. The maximum value is:

» 16383 if MAX STRING SIZE = EXTENDED and the national character set is
AL16UTF16

e 32767 if MAX STRING SIZE = EXTENDED and the national character set is UTF8
e 2000 if MAX STRING SIZE = STANDARD and the national character set is ALL6UTF16
* 4000 if MAX STRING SIZE = STANDARD and the national character set is UTF8

Refer to Extended Data Types for more information on the MAX STRING SIZE
initialization parameter and the internal storage mechanisms for extended data types.

Independently of the maximum column length in characters, the absolute maximum
length of any value that can be stored into an NVARCHAR2 column is 32767 or 4000
bytes, depending on MAX STRING SIZE. For example, even if you define the column
length to be 16383 characters, Oracle returns an error if you try to insert a 16383-
character value but the national character set is UTF8 and all code points are 3 bytes
wide. The value of size is a length constraint, not guaranteed capacity. If you want an
NVARCHAR2 column to be always able to store size characters in both national
character sets, use a value of size that is less than or equal to 10922, if

MAX STRING SIZE = EXTENDED, or 1333, if MAX STRING SIZE = STANDARD.

Oracle compares NVARCHAR? values using non-padded comparison semantics.

To ensure proper data conversion between databases and clients with different
character sets, you must ensure that NVARCHAR?2 data consists of well-formed strings.

If you assign a VARCHAR? value to an NVARCHAR2 column, the value is implicitly
converted from the database character set to the national character set. If you assign
an NVARCHAR? value to a VARCHAR2 column, the value is implicitly converted from the

2-12

Chapter 2
Data Types

national character set to the database character set. If some of the characters from the
NVARCHAR? value cannot be represented in the database character set, then if the value of the
session parameter NLS_NCHAR CONV_EXCP is TRUE, then Oracle reports an error. If the value of
the parameter is FALSE, hon-representable characters are replaced with the default
replacement character of the database character set, which is usually the question mark '?' or
the inverted question mark '¢'".

¢ See Also:

Oracle Database Globalization Support Guide for information on Unicode data type
support.

Numeric Data Types

The Oracle Database numeric data types store positive and negative fixed and floating-point
numbers, zero, infinity, and values that are the undefined result of an operation—"not a
number" or NAN. For information on specifying numeric data types as literals, refer to Numeric
Literals .

NUMBER Data Type

ORACLE

The NUMBER data type stores zero as well as positive and negative fixed numbers with
absolute values from 1.0 x 10130 to but not including 1.0 x 10125, If you specify an arithmetic
expression whose value has an absolute value greater than or equal to 1.0 x 10126, then
Oracle returns an error. Each NUMBER value requires from 1 to 22 bytes.

Specify a fixed-point number using the following form:

NUMBER (p, s)

where:

e pisthe precision, or the maximum number of significant decimal digits, where the most
significant digit is the left-most nonzero digit, and the least significant digit is the right-
most known digit. Oracle guarantees the portability of numbers with precision of up to 20
base-100 digits, which is equivalent to 39 or 40 decimal digits depending on the position
of the decimal point.

* sisthe scale, or the number of digits from the decimal point to the least significant digit.
The scale can range from -84 to 127.

— Positive scale is the number of significant digits to the right of the decimal point to
and including the least significant digit.

— Negative scale is the number of significant digits to the left of the decimal point, to but
not including the least significant digit. For negative scale the least significant digit is
on the left side of the decimal point, because the actual data is rounded to the
specified number of places to the left of the decimal point. For example, a
specification of (10,-2) means to round to hundreds.

Scale can be greater than precision, most commonly when e notation is used. When scale is

greater than precision, the precision specifies the maximum number of significant digits to the
right of the decimal point. For example, a column defined as NUMBER (4, 5) requires a zero for

the first digit after the decimal point and rounds all values past the fifth digit after the decimal

point.

2-13

Chapter 2
Data Types

It is good practice to specify the scale and precision of a fixed-point number column for
extra integrity checking on input. Specifying scale and precision does not force all
values to a fixed length. If a value exceeds the precision, then Oracle returns an error.
If a value exceeds the scale, then Oracle rounds it.

Specify an integer using the following form:

NUMBER (p)

This represents a fixed-point number with precision p and scale 0 and is equivalent to
NUMBER (p, 0) .

Specify a floating-point number using the following form:

NUMBER

The absence of precision and scale designators specifies the maximum range and
precision for an Oracle number.

¢ See Also:

Floating-Point Numbers

Table 2-2 show how Oracle stores data using different precisions and scales.

Table 2-2 Storage of Scale and Precision

Actual Data Specified As Stored As
123.89 NUMBER 123.89
123.89 NUMBER (3) 124
123.89 NUMBER (3, 2) exceeds precision
123.89 NUMBER (4, 2) exceeds precision
123.89 NUMBER (5, 2) 123.89
123.89 NUMBER (6, 1) 123.9
123.89 NUMBER (6, -2) 100
.01234 NUMBER (4, 5) .01234
.00012 NUMBER (4, 5) .00012
.000127 NUMBER (4, 5) .00013
.0000012 NUMBER (2, 7) .0000012
.00000123 NUMBER (2, 7) .0000012
1.2e-4 NUMBER (2, 5) 0.00012
1.2e-5 NUMBER (2, 5) 0.00001
FLOAT Data Type

The FLOAT data type is a subtype of NUMBER. It can be specified with or without
precision, which has the same definition it has for NUMBER and can range from 1 to 126.

ORACLE

2-14

Chapter 2
Data Types

Scale cannot be specified, but is interpreted from the data. Each FLOAT value requires from 1
to 22 bytes.

To convert from binary to decimal precision, multiply n by 0.30103. To convert from decimal to
binary precision, multiply the decimal precision by 3.32193. The maximum of 126 digits of
binary precision is roughly equivalent to 38 digits of decimal precision.

The difference between NUMBER and FLOAT is best illustrated by example. In the following
example the same values are inserted into NUMBER and FLOAT columns:

CREATE TABLE test (coll NUMBER(5,2), col2 FLOAT(5));

INSERT INTO test VALUES (1.23, 1.23);
INSERT INTO test VALUES (7.89, 7.89);
INSERT INTO test VALUES (12.79, 12.79);
INSERT INTO test VALUES (123.45, 123.45);

SELECT * FROM test;

COL1 COL2
1.23 1.2
7.89 7.9
12.79 13
123.45 120

In this example, the FLOAT value returned cannot exceed 5 binary digits. The largest decimal
number that can be represented by 5 binary digits is 31. The last row contains decimal values
that exceed 31. Therefore, the FLOAT value must be truncated so that its significant digits do
not require more than 5 binary digits. Thus 123.45 is rounded to 120, which has only two
significant decimal digits, requiring only 4 binary digits.

Oracle Database uses the Oracle FLOAT data type internally when converting ANSI FLOAT
data. Oracle FLOAT is available for you to use, but Oracle recommends that you use the
BINARY FLOAT and BINARY DOUBLE data types instead, as they are more robust. Refer to
Floating-Point Numbers for more information.

Floating-Point Numbers

ORACLE

Floating-point numbers can have a decimal point anywhere from the first to the last digit or
can have no decimal point at all. An exponent may optionally be used following the number to
increase the range, for example, 1.777 €29, A scale value is not applicable to floating-point
numbers, because the number of digits that can appear after the decimal point is not
restricted.

Binary floating-point numbers differ from NUMBER in the way the values are stored internally by
Oracle Database. Values are stored using decimal precision for NUMBER. All literals that are
within the range and precision supported by NUMBER are stored exactly as NUMBER. Literals are
stored exactly because literals are expressed using decimal precision (the digits 0 through 9).
Binary floating-point numbers are stored using binary precision (the digits 0 and 1). Such a
storage scheme cannot represent all values using decimal precision exactly. Frequently, the
error that occurs when converting a value from decimal to binary precision is undone when
the value is converted back from binary to decimal precision. The literal 0.1 is such an
example.

Oracle Database provides two numeric data types exclusively for floating-point numbers:

2-15

Chapter 2
Data Types

BINARY_FLOAT

BINARY FLOAT is a 32-bit, single-precision floating-point number data type. Each
BINARY FLOAT value requires 4 bytes.

BINARY_DOUBLE

BINARY DOUBLE is a 64-bit, double-precision floating-point number data type. Each
BINARY DOUBLE value requires 8 bytes.

In a NUMBER column, floating point numbers have decimal precision. In a BINARY FLOAT
or BINARY DOUBLE column, floating-point numbers have binary precision. The binary
floating-point numbers support the special values infinity and NaN (not a number).

You can specify floating-point numbers within the limits listed in Table 2-3. The format
for specifying floating-point numbers is defined in Numeric Literals .

Table 2-3 Floating Point Number Limits

Value BINARY_FLOAT BINARY_DOUBLE
Maximum positive finite value 3.40282E+38F 1.79769313486231E+308
Minimum positive finite value 1.17549E-38F 2.22507485850720E-308

IEEE754 Conformance

ORACLE

The Oracle implementation of floating-point data types conforms substantially with the
Institute of Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-
Point Arithmetic, IEEE Standard 754-1985 (IEEE754). The floating-point data types
conform to IEEE754 in the following areas:

e The SQL function SQRT implements square root. See SQRT .
* The SQL function REMAINDER implements remainder. See REMAINDER .
* Arithmetic operators conform. See Arithmetic Operators .

e Comparison operators conform, except for comparisons with NaN. Oracle orders
NaN greatest with respect to all other values, and evaluates NaN equal to NaN. See
Floating-Point Conditions .

e Conversion operators conform. See Conversion Functions .
e The default rounding mode is supported.
e The default exception handling mode is supported.

e The special values INF, -INF, and NaN are supported. See Floating-Point
Conditions .

* Rounding of BINARY FLOAT and BINARY DOUBLE values to integer-valued
BINARY FLOAT and BINARY DOUBLE values is provided by the SQL functions ROUND,
TRUNC, CEIL, and FLOOR.

* Rounding of BINARY FLOAT/BINARY DOUBLE to decimal and decimal to
BINARY FLOAT/BINARY DOUBLE is provided by the SQL functions TO CHAR,
TO NUMBER, TO NCHAR, TO BINARY FLOAT, TO BINARY DOUBLE, and CAST.

The floating-point data types do not conform to IEEE754 in the following areas:

2-16

Chapter 2
Data Types

e -0is coerced to +0.

e Comparison with NaN is not supported.

» AllNaN values are coerced to either BINARY FLOAT NAN Or BINARY DOUBLE NAN.
* Non-default rounding modes are not supported.

* Non-default exception handling mode are not supported.

Numeric Precedence

Numeric precedence determines, for operations that support numeric data types, the data
type Oracle uses if the arguments to the operation have different data types. BINARY DOUBLE
has the highest numeric precedence, followed by BINARY FLOAT, and finally by NUMBER.
Therefore, in any operation on multiple numeric values:

« If any of the operands is BINARY DOUBLE, then Oracle attempts to convert all the operands
implicitly to BINARY DOUBLE before performing the operation.

» If none of the operands is BINARY DOUBLE but any of the operands is BINARY FLOAT, then
Oracle attempts to convert all the operands implicitly to BINARY FLOAT before performing
the operation.

e Otherwise, Oracle attempts to convert all the operands to NUMBER before performing the
operation.

If any implicit conversion is needed and fails, then the operation fails. Refer to Table 2-8 for
more information on implicit conversion.

In the context of other data types, numeric data types have lower precedence than the
datetime/interval data types and higher precedence than character and all other data types.

LONG Data Type

ORACLE

Do not create tables with LoNG columns. Use LOB columns (CLOB, NCLOB, BLOB) instead. LONG
columns are supported only for backward compatibility.

LONG columns store variable-length character strings containing up to 2 gigabytes -1, or 231-1
bytes. LONG columns have many of the characteristics of VARCHAR2 columns. You can use
LONG columns to store long text strings. The length of LONG values may be limited by the
memory available on your computer. LONG literals are formed as described for Text Literals .

Oracle also recommends that you convert existing LONG columns to LOB columns. LOB
columns are subject to far fewer restrictions than LONG columns. Further, LOB functionality is
enhanced in every release, whereas LONG functionality has been static for several releases.
See the modify col properties clause of ALTER TABLE and TO_LOB for more information
on converting LONG columns to LOB.

You can reference LONG columns in SQL statements in these places:

e SELECT lists
e SET clauses of UPDATE statements
e VALUES clauses of INSERT statements

The use of LONG values is subject to these restrictions:

* Atable can contain only one LONG column.

2-17

Chapter 2
Data Types

You cannot create an object type with a LONG attribute.

LONG columns cannot appear in WHERE clauses or in integrity constraints (except
that they can appear in NULL and NOT NULL constraints).

LONG columns cannot be indexed.
LONG data cannot be specified in regular expressions.
A stored function cannot return a LONG value.

You can declare a variable or argument of a PL/SQL program unit using the LONG
data type. However, you cannot then call the program unit from SQL.

Within a single SQL statement, all LONG columns, updated tables, and locked
tables must be located on the same database.

LONG and LONG RAW columns cannot be used in distributed SQL statements and
cannot be replicated.

If a table has both 1.oNG and LOB columns, then you cannot bind more than 4000
bytes of data to both the LONG and LOB columns in the same SQL statement.
However, you can bind more than 4000 bytes of data to either the LONG or the LOB
column.

In addition, LONG columns cannot appear in these parts of SQL statements:

GROUP BY clauses, ORDER BY clauses, or CONNECT BY clauses or with the DISTINCT
operator in SELECT statements

The UNIQUE operator of a SELECT statement

The column list of a CREATE CLUSTER Statement

The CLUSTER clause of a CREATE MATERIALIZED VIEW Statement
SQL built-in functions, expressions, or conditions

SELECT lists of queries containing GROUP BY clauses

SELECT lists of subqueries or queries combined by the UNION, INTERSECT, Or MINUS
set operators

SELECT lists of CREATE TABLE ... AS SELECT statements
ALTER TABLE ... MOVE Statements

SELECT lists in subqueries in INSERT statements

Triggers can use the LONG data type in the following manner:

A SQL statement within a trigger can insert data into a LONG column.

If data from a LONG column can be converted to a constrained data type (such as
CHAR and VARCHAR?), then a LONG column can be referenced in a SQL statement
within a trigger.

Variables in triggers cannot be declared using the LONG data type.

:NEW and :0LD cannot be used with LONG columns.

You can use Oracle Call Interface functions to retrieve a portion of a LONG value from
the database.

ORACLE

2-18

Chapter 2
Data Types

¢ See Also:

Oracle Call Interface Programmer's Guide

Datetime and Interval Data Types

The datetime data types are DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP
WITH LOCAL TIME ZONE. Values of datetime data types are sometimes called datetimes. The
interval data types are INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND. Values of
interval data types are sometimes called intervals. For information on expressing datetime
and interval values as literals, refer to Datetime Literals and Interval Literals.

Both datetimes and intervals are made up of fields. The values of these fields determine the
value of the data type. Table 2-4 lists the datetime fields and their possible values for
datetimes and intervals.

To avoid unexpected results in your DML operations on datetime data, you can verify the
database and session time zones by querying the built-in SQL functions DBTIMEZONE and
SESSIONTIMEZONE. If the time zones have not been set manually, then Oracle Database uses
the operating system time zone by default. If the operating system time zone is not a valid
Oracle time zone, then Oracle uses UTC as the default value.

Table 2-4 Datetime Fields and Values

Datetime Field Valid Values for Datetime Valid Values for INTERVAL
YEAR -4712 to 9999 (excluding year 0) Any positive or negative
integer

MONTH 01lto 12 Oto11

DAY 01 to 31 (limited by the values of MONTH and YEAR, Any positive or negative
according to the rules of the current NLS calendar integer
parameter)

HOUR 00 to 23 0to 23

MINUTE 00 to 59 0to 59

SECOND 00 to 59.9(n), where 9(n) is the precision of time 0 to 59.9(n), where 9(n) is the
fractional seconds. The 9(n) portion is not applicable precision of interval fractional
for DATE. seconds

TIMEZONE HOUR

-12 to 14 (This range accommodates daylight saving Not applicable
time changes.) Not applicable for DATE or

TIMESTAMP.
TIMEZONE MINUTE 00 to 59. Not applicable for DATE or TIMESTAMP. Not applicable
(See note at end of table)
TIMEZONE REGION Query the TZNAME column of the Not applicable

VSTIMEZONE NAMES data dictionary view. Not
applicable for DATE or TIMESTAMP. For a complete
listing of all time zone region names, refer to Oracle
Database Globalization Support Guide.

ORACLE

2-19

Chapter 2
Data Types

Table 2-4 (Cont.) Datetime Fields and Values
]

Datetime Field

Valid Values for Datetime Valid Values for INTERVAL

TIMEZONE ABBR

Query the TZABBREV column of the Not applicable
VSTIMEZONE NAMES data dictionary view. Not
applicable for DATE or TIMESTAMP.

Note:

TIMEZONE HOUR and TIMEZONE MINUTE are specified together and interpreted
as an entity in the format +|- hh:mi, with values ranging from -12:59 to
+14.00. Refer to Oracle Data Provider for .NET Developer's Guide for
Microsoft Windows for information on specifying time zone values for that
API.

DATE Data Type

The DATE data type stores date and time information. Although date and time
information can be represented in both character and number data types, the DATE
data type has special associated properties. For each DATE value, Oracle stores the
following information: year, month, day, hour, minute, and second.

You can specify a DATE value as a literal, or you can convert a character or numeric
value to a date value with the T0 DATE function. For examples of expressing DATE
values in both these ways, refer to Datetime Literals .

Using Julian Days

ORACLE

A Julian day number is the number of days since January 1, 4712 BC. Julian days
allow continuous dating from a common reference. You can use the date format model
"J" with date functions TO DATE and TO CHAR to convert between Oracle DATE values
and their Julian equivalents.

Note:

Oracle Database uses the astronomical system of calculating Julian days, in
which the year 4713 BC is specified as -4712. The historical system of
calculating Julian days, in contrast, specifies 4713 BC as -4713. If you are
comparing Oracle Julian days with values calculated using the historical
system, then take care to allow for the 365-day difference in BC dates. For
more information, see http://aa.usno.navy.mil/faq/docs/
millennium.php.

The default date values are determined as follows:

e The year is the current year, as returned by SYSDATE.

e The month is the current month, as returned by SYSDATE.

2-20

http://aa.usno.navy.mil/faq/docs/millennium.php
http://aa.usno.navy.mil/faq/docs/millennium.php

Chapter 2
Data Types

* The day is 01 (the first day of the month).
e The hour, minute, and second are all 0.

These default values are used in a query that requests date values where the date itself is
not specified, as in the following example, which is issued in the month of May:

SELECT TO _DATE('2009', 'YYYY')
FROM DUAL;

TO_DATE ('

01-MAY-09

Example

This statement returns the Julian equivalent of January 1, 2009:

SELECT TO CHAR(TO DATE('01-01-2009', 'MM-DD-YYYY'),'J')
FROM DUAL;

TO_CHAR

2454833

" See Also:

Selecting from the DUAL Table for a description of the DUAL table

TIMESTAMP Data Type

The TIMESTAMP data type is an extension of the DATE data type. It stores the year, month, and
day of the DATE data type, plus hour, minute, and second values. This data type is useful for
storing precise time values and for collecting and evaluating date information across
geographic regions. Specify the TIMESTAMP data type as follows:

TIMESTAMP [(fractional seconds precision)]

where fractional seconds precision optionally specifies the number of digits Oracle
stores in the fractional part of the SECOND datetime field. When you create a column of this
data type, the value can be a humber in the range 0 to 9. The default is 6.

¢ See Also:

TO_TIMESTAMP for information on converting character data to TIMESTAMP data

TIMESTAMP WITH TIME ZONE Data Type

ORACLE

TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that includes a time zone region name
or a time zone offset in its value. The time zone offset is the difference (in hours and
minutes) between local time and UTC (Coordinated Universal Time—formerly Greenwich
Mean Time). This data type is useful for preserving local time zone information.

2-21

Chapter 2
Data Types

Specify the TIMESTAMP WITH TIME ZONE data type as follows:

TIMESTAMP [(fractional seconds precision)] WITH TIME ZONE

where fractional seconds precision optionally specifies the number of digits
Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this data type, the value can be a number in the range 0 to 9. The default is
6.

Oracle time zone data is derived from the public domain information available at
http://www.lana.org/time-zones/. Oracle time zone data may not reflect the most
recent data available at this site.

¢ See Also:

e Oracle Database Globalization Support Guide for more information on
Oracle time zone data

e Support for Daylight Saving Times and Table 2-19 for information on
daylight saving support

e TO_TIMESTAMP_TZ for information on converting character data to
TIMESTAMP WITH TIME ZONE data

* ALTER SESSION for information on the ERROR_ON OVERLAP TIME
session parameter

TIMESTAMP WITH LOCAL TIME ZONE Data Type

TIMESTAMP WITH LOCAL TIME ZONE iS another variant of TIMESTAMP that is sensitive to
time zone information. It differs from TIMESTAMP WITH TIME ZONE in that data stored in
the database is normalized to the database time zone, and the time zone information
is not stored as part of the column data. When a user retrieves the data, Oracle
returns it in the user's local session time zone. This data type is useful for date
information that is always to be displayed in the time zone of the client system in a
two-tier application.

Specify the TIMESTAMP WITH LOCAL TIME ZONE data type as follows:

TIMESTAMP [(fractional seconds precision)] WITH LOCAL TIME ZONE

where fractional seconds_precision optionally specifies the number of digits
Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this data type, the value can be a number in the range 0 to 9. The default is
6.

Oracle time zone data is derived from the public domain information available at
http://www.lana.org/time-zones/. Oracle time zone data may not reflect the most
recent data available at this site.

ORACLE 2-22

http://www.iana.org/time-zones/
http://www.iana.org/time-zones/

Chapter 2
Data Types

¢ See Also:

e Oracle Database Globalization Support Guide for more information on Oracle
time zone data

e Oracle Database Development Guide for examples of using this data type and
CAST for information on converting character data to TIMESTAMP WITH LOCAL
TIME ZONE

INTERVAL YEAR TO MONTH Data Type

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime fields.
This data type is useful for representing the difference between two datetime values when
only the year and month values are significant.

Specify INTERVAL YEAR TO MONTH as follows:

INTERVAL YEAR [(year precision)] TO MONTH

where year precisionis the number of digits in the YEAR datetime field. The default value of
year precisionis 2.

You have a great deal of flexibility when specifying interval values as literals. Refer to Interval
Literals for detailed information on specifying interval values as literals. Also see Datetime
and Interval Examples for an example using intervals.

INTERVAL DAY TO SECOND Data Type

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and
seconds. This data type is useful for representing the precise difference between two
datetime values.

Specify this data type as follows:

INTERVAL DAY [(day precision)]
TO SECOND [(fractional seconds precision)]

where

* day precisionis the number of digits in the DAY datetime field. Accepted values are O to
9. The default is 2.

* fractional seconds precision is the number of digits in the fractional part of the
SECOND datetime field. Accepted values are 0 to 9. The default is 6.

You have a great deal of flexibility when specifying interval values as literals. Refer to Interval
Literals for detailed information on specify interval values as literals. Also see Datetime and
Interval Examples for an example using intervals.

Datetime/Interval Arithmetic

ORACLE

You can perform a number of arithmetic operations on date (DATE), timestamp (TIMESTAMP,
TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE) and interval (INTERVAL DAY
TO SECOND and INTERVAL YEAR TO MONTH) data. Oracle calculates the results based on the
following rules:

2-23

ORACLE

Chapter 2
Data Types

You can use NUMBER constants in arithmetic operations on date and timestamp
values, but not interval values. Oracle internally converts timestamp values to date
values and interprets NUMBER constants in arithmetic datetime and interval
expressions as numbers of days. For example, SYSDATE + 1 is tomorrow. SYSDATE -
7 is one week ago. SYSDATE + (10/1440) is ten minutes from now. Subtracting the
hire date column of the sample table employees from SYSDATE returns the
number of days since each employee was hired. You cannot multiply or divide date
or timestamp values.

Oracle implicitly converts BINARY FLOAT and BINARY DOUBLE operands to NUMBER.

Each DATE value contains a time component, and the result of many date
operations include a fraction. This fraction means a portion of one day. For
example, 1.5 days is 36 hours. These fractions are also returned by Oracle built-in
functions for common operations on DATE data. For example, the MONTHS BETWEEN
function returns the number of months between two dates. The fractional portion of
the result represents that portion of a 31-day month.

If one operand is a DATE value or a numeric value, neither of which contains time
zone or fractional seconds components, then:

— Oracle implicitly converts the other operand to DATE data. The exception is
multiplication of a numeric value times an interval, which returns an interval.

— If the other operand has a time zone value, then Oracle uses the session time
zone in the returned value.

— If the other operand has a fractional seconds value, then the fractional
seconds value is lost.

When you pass a timestamp, interval, or numeric value to a built-in function that
was designed only for the DATE data type, Oracle implicitly converts the non-DATE
value to a DATE value. Refer to Datetime Functions for information on which
functions cause implicit conversion to DATE.

When interval calculations return a datetime value, the result must be an actual
datetime value or the database returns an error. For example, the next two
statements return errors:

SELECT TO DATE ('31-AUG-2004"', 'DD-MON-YYYY') + TO YMINTERVAL('0-1"')
FROM DUAL;

SELECT TO DATE('29-FEB-2004', 'DD-MON-YYYY') + TO YMINTERVAL('1-0')
FROM DUAL;

The first fails because adding one month to a 31-day month would result in
September 31, which is not a valid date. The second fails because adding one
year to a date that exists only every four years is not valid. However, the next
statement succeeds, because adding four years to a February 29 date is valid:

SELECT TO DATE('29-FEB-2004', 'DD-MON-YYYY') + TO YMINTERVAL('4-0"')
FROM DUAL;

TO_DATE ('

29-FEB-08

Oracle performs all timestamp arithmetic in UTC time. For TIMESTAMP WITH LOCAL
TIME ZONE, Oracle converts the datetime value from the database time zone to
UTC and converts back to the database time zone after performing the arithmetic.

2-24

Chapter 2
Data Types

For TIMESTAMP WITH TIME ZONE, the datetime value is always in UTC, so no conversion is
necessary.

Table 2-5 is a matrix of datetime arithmetic operations. Dashes represent operations that are
not supported.

Table 2-5 Matrix of Datetime Arithmetic
|

Operand & Operator DATE TIMESTAMP INTERVAL Numeric
DATE

+ - - DATE DATE

- NUMBER INTERVAL DATE DATE

* — — — —

/ — — — —
TIMESTAMP

+ - - TIMESTAMP DATE

- INTERVAL INTERVAL TIMESTAMP DATE

* — — — —

/ — — — —
INTERVAL

+ DATE TIMESTAMP INTERVAL —

- - - INTERVAL -

* - - - INTERVAL
/ - - - INTERVAL
Numeric

+ DATE DATE - NA

- - - - NA

* - - INTERVAL NA

/ - - - NA
Examples

You can add an interval value expression to a start time. Consider the sample table
oe.orders with a column order date. The following statement adds 30 days to the value of
the order date column:

SELECT order id, order date + INTERVAL '30' DAY AS "Due Date"
FROM orders
ORDER BY order id, "Due Date";

Support for Daylight Saving Times

ORACLE

Oracle Database automatically determines, for any given time zone region, whether daylight
saving is in effect and returns local time values accordingly. The datetime value is sufficient
for Oracle to determine whether daylight saving time is in effect for a given region in all cases
except boundary cases. A boundary case occurs during the period when daylight saving
goes into or comes out of effect. For example, in the US-Pacific region, when daylight saving

2-25

Chapter 2
Data Types

goes into effect, the time changes from 2:00 a.m. to 3:00 a.m. The one hour interval
between 2 and 3 a.m. does not exist. When daylight saving goes out of effect, the time
changes from 2:00 a.m. back to 1:00 a.m., and the one-hour interval between 1 and 2
a.m. is repeated.

To resolve these boundary cases, Oracle uses the Tzr and TzD format elements, as
described in Table 2-19. TZR represents the time zone region name in datetime input
strings. Examples are 'Australia/North', 'UTC', and 'Singapore'. TZD represents an
abbreviated form of the time zone region name with daylight saving information.
Examples are 'psT' for US/Pacific standard time and 'pDT' for US/Pacific daylight time.
To see a listing of valid values for the TzR and TzD format elements, query the TZNAME
and TZABBREV columns of the V$TIMEZONE NAMES dynamic performance view.

" Note:

Time zone region names are needed by the daylight saving feature. These
names are stored in two types of time zone files: one large and one small.
One of these files is the default file, depending on your environment and the
release of Oracle Database you are using. For more information regarding
time zone files and names, see Oracle Database Globalization Support
Guide.

For a complete listing of the time zone region names in both files, refer to Oracle
Database Globalization Support Guide.

Oracle time zone data is derived from the public domain information available at
http://www.iana.org/time-zones/. Oracle time zone data may not reflect the most
recent data available at this site.

¢ See Also:

« Datetime Format Models for information on the format elements and the
session parameter ERROR_ON_OVERLAP_TIME .

e Oracle Database Globalization Support Guide for more information on
Oracle time zone data

e Oracle Database Reference for information on the dynamic performance
views

Datetime and Interval Examples

ORACLE

The following example shows how to specify some datetime and interval data types.

CREATE TABLE time table
(start time TIMESTAMP,
duration 1 INTERVAL DAY (6) TO SECOND (5),
duration 2 INTERVAL YEAR TO MONTH) ;

The start time column is of type TIMESTAMP. The implicit fractional seconds precision
of TIMESTAMP is 6.

2-26

http://www.iana.org/time-zones/

Chapter 2
Data Types

The duration 1 column is of type INTERVAL DAY TO SECOND. The maximum number of digits in
field DAY is 6 and the maximum number of digits in the fractional second is 5. The maximum
number of digits in all other datetime fields is 2.

The duration 2 column is of type INTERVAL YEAR TO MONTH. The maximum number of digits of
the value in each field (YEAR and MONTH) is 2.

Interval data types do not have format models. Therefore, to adjust their presentation, you
must combine character functions such as EXTRACT and concatenate the components. For
example, the following examples query the hr.employees and oe.orders tables, respectively,
and change interval output from the form "yy-mm" to "yy years mm months" and from "dd-hh"
to "dddd days hh hours":

SELECT last name, EXTRACT(YEAR FROM (SYSDATE - hire date) YEAR TO MONTH)

|| ' years '
|| EXTRACT (MONTH FROM (SYSDATE - hire date) YEAR TO MONTH)
[l " months' "Interval"

FROM employees;

LAST NAME Interval

OConnell 2 years 3 months
Grant 1 years 9 months
Whalen 6 years 1 months
Hartstein 5 years 8 months
Fay 4 years 2 months
Mavris 7 years 4 months
Baer 7 years 4 months
Higgins 7 years 4 months
Gietz 7 years 4 months

SELECT order_id, EXTRACT (DAY FROM (SYSDATE - order_date) DAY TO SECOND)
[| ' days '
|| EXTRACT (HOUR FROM (SYSDATE - order_date) DAY TO SECOND)
[l " hours' "Interval"
FROM orders;

ORDER_ID Interval

2440 765 days 17 hours
2357 1365 days 16 hours
2394 602 days 15 hours
2435 763 days 15 hours

RAW and LONG RAW Data Types

ORACLE

The RAW and LONG RAW data types store data that is not to be explicitly converted by Oracle
Database when moving data between different systems. These data types are intended for
binary data or byte strings. For example, you can use LONG RAW to store graphics, sound,
documents, or arrays of binary data, for which the interpretation is dependent on the use.

2-27

Chapter 2
Data Types

Oracle strongly recommends that you convert LONG RAW columns to binary LOB (BLOB)
columns. LOB columns are subject to far fewer restrictions than L.ONG columns. See
TO_LOB for more information.

RAW is a variable-length data type like VARCHAR2, except that Oracle Net (which
connects client software to a database or one database to another) and the Oracle
import and export utilities do not perform character conversion when transmitting RAW
or LONG RAW data. In contrast, Oracle Net and the Oracle import and export utilities
automatically convert CHAR, VARCHAR?2, and LONG data between different database
character sets, if data is transported between databases, or between the database
character set and the client character set, if data is transported between a database
and a client. The client character set is determined by the type of the client interface,
such as OCI or JDBC, and the client configuration (for example, the NLS LANG
environment variable).

When Oracle implicitly converts RAW or LONG RAW data to character data, the resulting
character value contains a hexadecimal representation of the binary input, where each
character is a hexadecimal digit (0-9, A-F) representing four consecutive bits of RAW
data. For example, one byte of RaW data with bits 11001011 becomes the value CB.

When Oracle implicitly converts character data to RAW or LONG RAW, it interprets each
consecutive input character as a hexadecimal representation of four consecutive bits
of binary data and builds the resulting RAW or LONG RAW value by concatenating those
bits. If any of the input characters is not a hexadecimal digit (0-9, 2A-F, a-f), then an
error is reported. If the number of characters is odd, then the result is undefined.

The SQL functions RAWTOHEX and HEXTORAW perform explicit conversions that are
equivalent to the above implicit conversions. Other types of conversions between RaW
and character data are possible with functions in the Oracle-supplied PL/SQL
packages UTL RAW and UTL II18N.

Large Object (LOB) Data Types

ORACLE

The built-in LOB data types BLOB, CLOB, and NCLOB (stored internally) and BFILE (stored
externally) can store large and unstructured data such as text, image, video, and
spatial data. The size of BLOB, CLOB, and NCLOB data can be up to (232-1 bytes) * (the
value of the CHUNK parameter of LOB storage). If the tablespaces in your database are
of standard block size, and if you have used the default value of the CHUNK parameter
of LOB storage when creating a LOB column, then this is equivalent to (232-1 bytes) *
(database block size). BFILE data can be up to 2%4-1 bytes, although your operating
system may impose restrictions on this maximum.

When creating a table, you can optionally specify different tablespace and storage
characteristics for LOB columns or LOB object attributes from those specified for the
table.

CLOB, NCLOB, and BLOB values up to approximately 4000 bytes are stored inline if you
enable storage in row at the time the LOB column is created. LOBs greater than 4000
bytes are always stored externally. Refer to ENABLE STORAGE IN ROW for more
information.

LOB columns contain LOB locators that can refer to internal (in the database) or
external (outside the database) LOB values. Selecting a LOB from a table actually
returns the LOB locator and not the entire LOB value. The DBMS LOB package and
Oracle Call Interface (OCI) operations on LOBs are performed through these locators.

2-28

Chapter 2
Data Types

LOBs are similar to LONG and LONG RAW types, but differ in the following ways:

» LOBs can be attributes of an object type (user-defined data type).

The LOB locator is stored in the table column, either with or without the actual LOB value.
BLOB, NCLOB, and CLOB values can be stored in separate tablespaces. BFILE data is stored
in an external file on the server.

e When you access a LOB column, the locator is returned.

« A LOB can be up to (232-1 bytes)*(database block size) in size. BFILE data can be up to
264-1 bytes, although your operating system may impose restrictions on this maximum.

* LOBs permit efficient, random, piece-wise access to and manipulation of data.

* You can define more than one LOB column in a table.

* With the exception of NCLOB, you can define one or more LOB attributes in an object.
* You can declare LOB bind variables.

* You can select LOB columns and LOB attributes.

* You can insert a new row or update an existing row that contains one or more LOB
columns or an object with one or more LOB attributes. In update operations, you can set
the internal LOB value to NULL, empty, or replace the entire LOB with data. You can set
the BFILE to NULL or make it point to a different file.

* You can update a LOB row-column intersection or a LOB attribute with another LOB row-
column intersection or LOB attribute.

* You can delete a row containing a LOB column or LOB attribute and thereby also delete
the LOB value. For BFILEs, the actual operating system file is not deleted.

You can access and populate rows of an inline LOB column (a LOB column stored in the
database) or a LOB attribute (an attribute of an object type column stored in the database)
simply by issuing an INSERT or UPDATE Statement.

Restrictions on LOB Columns

LOB columns are subject to a number of rules and restrictions. See Oracle Database
SecureFiles and Large Objects Developer's Guide for a complete listing.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference and Oracle Call
Interface Programmer's Guide for more information about these interfaces and
LOBs

* the modify col properties clause of ALTER TABLE and TO_LOB for more
information on converting LONG columns to LOB columns

BFILE Data Type

The BFILE data type enables access to binary file LOBs that are stored in file systems outside
Oracle Database. A BFILE column or attribute stores a BFILE locator, which serves as a
pointer to a binary file on the server file system. The locator maintains the directory name and
the filename.

ORACLE 2-29

Chapter 2
Data Types

You can change the filename and path of a BFILE without affecting the base table by
using the BFILENAME function. Refer to BFILENAME for more information on this built-
in SQL function.

Binary file LOBs do not participate in transactions and are not recoverable. Rather, the
underlying operating system provides file integrity and durability. BFILE data can be up
to 264-1 bytes, although your operating system may impose restrictions on this
maximum.

The database administrator must ensure that the external file exists and that Oracle
processes have operating system read permissions on the file.

The BFILE data type enables read-only support of large binary files. You cannot modify
or replicate such a file. Oracle provides APIs to access file data. The primary
interfaces that you use to access file data are the DBMS LOB package and Oracle Call
Interface (OCI).

¢ See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide and
Oracle Call Interface Programmer's Guide for more information about LOBs
and CREATE DIRECTORY

BLOB Data Type

The BLOB data type stores unstructured binary large objects. BLOB objects can be
thought of as bitstreams with no character set semantics. BLOB objects can store
binary data up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage).
If the tablespaces in your database are of standard block size, and if you have used
the default value of the CHUNK parameter of LOB storage when creating a LOB column,
then this is equivalent to (4 gigabytes - 1) * (database block size).

BLOB objects have full transactional support. Changes made through SQL, the
DBMS_LOB package, or Oracle Call Interface (OCI) participate fully in the transaction.
BLOB value manipulations can be committed and rolled back. However, you cannot
save a BLOB locator in a PL/SQL or OCI variable in one transaction and then use it in
another transaction or session.

CLOB Data Type

ORACLE

The CLOB data type stores single-byte and multibyte character data. Both fixed-width
and variable-width character sets are supported, and both use the database character
set. CLOB objects can store up to (4 gigabytes -1) * (the value of the CHUNK parameter
of LOB storage) of character data. If the tablespaces in your database are of standard
block size, and if you have used the default value of the CHUNK parameter of LOB
storage when creating a LOB column, then this is equivalent to (4 gigabytes - 1) *
(database block size).

CLOB objects have full transactional support. Changes made through SQL, the

DBMS LOB package, or Oracle Call Interface (OCI) participate fully in the transaction.
CLOB value manipulations can be committed and rolled back. However, you cannot
save a CLOB locator in a PL/SQL or OCI variable in one transaction and then use it in
another transaction or session.

2-30

Chapter 2
Data Types

NCLOB Data Type

The NCLOB data type stores Unicode data. Both fixed-width and variable-width character sets
are supported, and both use the national character set. NCLOB objects can store up to (4
gigabytes -1) * (the value of the CHUNK parameter of LOB storage) of character text data. If the
tablespaces in your database are of standard block size, and if you have used the default
value of the CHUNK parameter of LOB storage when creating a LOB column, then this is
equivalent to (4 gigabytes - 1) * (database block size).

NCLOB objects have full transactional support. Changes made through SQL, the DBMS LOB
package, or OCI participate fully in the transaction. NCLOB value manipulations can be
committed and rolled back. However, you cannot save an NCLOB locator in a PL/SQL or OCI
variable in one transaction and then use it in another transaction or session.

¢ See Also:

Oracle Database Globalization Support Guide for information on Unicode data type
support

JSON Data Type

ORACLE

Release 21c introduces a dedicated JSON data type.

You can use the JSON data type to store JSON data natively in binary format. This improves
guery performance because textual JSON data no longer needs to be parsed. You can create
JSON type instances from other SQL data, and conversely.

You must set the database initialization parameter compatible to 20 in order to use the new
JSON data type.

The other SQL data types that support JSON data, besides JsSON type, are VARCHAR2, CLOB,
and BLOB. Non-JSON type data is called textual, or serialized, JSON data. It is unparsed
character data.

You can use the JSON constructor function to convert textual JSON data to JSON type data.
To convert JSON type data to textual data, you can use the JSON_SERIALIZE function.

You can create complex JSON type data from non-JSoN type data using the JSON generation
functions: JSON_OBJECT, JSON_ARRAY, JSON_OBJECTAGG, and JSON_ARRAYAGG.

You can create a JSON type instance with a scalar JSON value using the function
JSON_SCALAR .

In the other direction, you can use the function JSON_VALUE to query JSON type data and
return an instance of a SQL object type or collection type.

¢ See Also:

¢ Overview of JSON in Oracle Database

2-31

Chapter 2
Data Types

Extended Data Types

ORACLE

Beginning with Oracle Database 12c¢, you can specify a maximum size of 32767 bytes
for the VARCHAR2, NVARCHARZ, and RAW data types. You can control whether your
database supports this new maximum size by setting the initialization parameter

MAX STRING SIZE as follows:

* If MAX STRING SIZE = STANDARD, then the size limits for releases prior to Oracle
Database 12c apply: 4000 bytes for the VARCHAR2 and NVARCHAR?2 data types, and
2000 bytes for the RAW data type. This is the default.

» If MAX STRING SIZE = EXTENDED, then the size limit is 32767 bytes for the VARCHAR2,
NVARCHAR?2, and RAW data types.

¢ See Also:

Setting MAX STRING SIZE = EXTENDED may update database objects and
possibly invalidate them. Refer to Oracle Database Reference for complete
information on the implications of this parameter and how to set and enable
this new functionality.

A VARCHAR?2 Or NVARCHAR? data type with a declared size of greater than 4000 bytes, or
a RAW data type with a declared size of greater than 2000 bytes, is an extended data
type. Extended data type columns are stored out-of-line, leveraging Oracle's LOB
technology. The LOB storage is always aligned with the table. In tablespaces managed
with Automatic Segment Space Management (ASSM), extended data type columns
are stored as SecureFiles LOBs. Otherwise, they are stored as BasicFiles LOBs. The
use of LOBs as a storage mechanism is internal only. Therefore, you cannot
manipulate these LOBs using the DBMS LOB package.

" Note:

e Oracle strongly discourages the use of BasicFiles LOBs as a storage
mechanism. BasicFiles LOBs not only impose restrictions on the
capabilities of extended data type columns, but the BasicFiles data type
is planned to be deprecated in a future release.

* Extended data types are subject to the same rules and restrictions as
LOBs. Refer to Oracle Database SecureFiles and Large Objects
Developer's Guide for more information.

Note that, although you must set MAX STRING SIZE = EXTENDED in order to set the size
of a RAW data type to greater than 2000 bytes, a RAW data type is stored as an out-of-
line LOB only if it has a size of greater than 4000 bytes. For example, you must set
MAX STRING SIZE = EXTENDED in order to declare a RAW (3000) data type. However, the
column is stored inline.

You can use extended data types just as you would standard data types, with the
following considerations:

2-32

Chapter 2
Data Types

» For special considerations when creating an index on an extended data type column, or
when requiring an index to enforce a primary key or unique constraint, see Creating an
Index on an Extended Data Type Column.

» If the partitioning key column for a list partition is an extended data type column, then the
list of values that you want to specify for a partition may exceed the 4K byte limit for the
partition bounds. See the list_partitions clause of CREATE TABLE for information on how to
work around this issue.

» The value of the initialization parameter MAX STRING SIZE affects the following:
— The maximum length of a text literal. See Text Literals for more information.

— The size limit for concatenating two character strings. See Concatenation Operator
for more information.

— The length of the collation key returned by the NLSSORT function. See NLSSORT .

— The size of some of the attributes of the xMLFormat object. See XML Format Model
for more information.

— The size of some expressions in the following XML functions: XMLCOLATTVAL ,
XMLELEMENT , XMLFOREST , XMLPI , and XMLTABLE .

Rowid Data Types

Each row in the database has an address. The sections that follow describe the two forms of
row address in an Oracle Database.

ROWID Data Type

ORACLE

The rows in heap-organized tables that are native to Oracle Database have row addresses
called rowids. You can examine a rowid row address by querying the pseudocolumn ROWID.
Values of this pseudocolumn are strings representing the address of each row. These strings
have the data type ROWID. You can also create tables and clusters that contain actual
columns having the ROWID data type. Oracle Database does not guarantee that the values of
such columns are valid rowids. Refer to Pseudocolumns for more information on the ROWID
pseudocolumn.

Rowids contain the following information:

* The data block of the data file containing the row. The length of this string depends on
your operating system.

The row in the data block.

* The database file containing the row. The first data file has the number 1. The length of
this string depends on your operating system.

* The data object nhumber, which is an identification number assigned to every database
segment. You can retrieve the data object number from the data dictionary views
USER OBJECTS, DBA OBJECTS, and ALL OBJECTS. Objects that share the same segment
(clustered tables in the same cluster, for example) have the same object number.

Rowids are stored as base 64 values that can contain the characters A-Z, a-z, 0-9, and the
plus sign (+) and forward slash (/). Rowids are not available directly. You can use the supplied
package DBMS ROWID to interpret rowid contents. The package functions extract and provide
information on the four rowid elements listed above.

2-33

Chapter 2
Data Types

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for information on
the functions available with the DBMS ROWID package and how to use them

UROWID Data Type

ANSI, DB2,

ORACLE

The rows of some tables have addresses that are not physical or permanent or were
not generated by Oracle Database. For example, the row addresses of index-
organized tables are stored in index leaves, which can move. Rowids of foreign tables
(such as DB2 tables accessed through a gateway) are not standard Oracle rowids.

Oracle uses universal rowids (urowids) to store the addresses of index-organized and
foreign tables. Index-organized tables have logical urowids and foreign tables have
foreign urowids. Both types of urowid are stored in the ROWID pseudocolumn (as are
the physical rowids of heap-organized tables).

Oracle creates logical rowids based on the primary key of the table. The logical rowids
do not change as long as the primary key does not change. The ROWID pseudocolumn
of an index-organized table has a data type of UROWID. You can access this
pseudocolumn as you would the ROWID pseudocolumn of a heap-organized table
(using a SELECT ... ROWID statement). If you want to store the rowids of an index-
organized table, then you can define a column of type UROWID for the table and retrieve
the value of the ROWID pseudocolumn into that column.

and SQL/DS Data Types

SQL statements that create tables and clusters can also use ANSI data types and data
types from the IBM products SQL/DS and DB2. Oracle recognizes the ANSI or IBM
data type name that differs from the Oracle Database data type name. It converts the
data type to the equivalent Oracle data type, records the Oracle data type as the name
of the column data type, and stores the column data in the Oracle data type based on
the conversions shown in the tables that follow.

Table 2-6 ANSI Data Types Converted to Oracle Data Types

ANSI SQL Data Type Oracle Data Type
CHARACTER (n) CHAR (n)

CHAR (n)

CHARACTER VARYING (n) VARCHAR2Z (n)

CHAR VARYING (n)

NATIONAL CHARACTER (n) NCHAR (n)
NATIONAL CHAR (n)

NCHAR (n)

NATIONAL CHARACTER VARYING (n) NVARCHAR? (n)

NATIONAL CHAR VARYING (n)
NCHAR VARYING (n)

2-34

ORACLE

Chapter 2
Data Types

Table 2-6 (Cont.) ANSI Data Types Converted to Oracle Data Types

ANSI SQL Data Type Oracle Data Type
NUMERIC[(p,s)] NUMBER (p, s)
DECIMALI (p,s)] (Note 1)

INTEGER NUMBER (38)

INT

SMALLINT

FLOAT (Note 2) FLOAT (126)
DOUBLE PRECISION (Note 3) FLOAT (126)
REAL (Note 4) FLOAT (63)
Notes:

1. The NUMERIC and DECIMAL data types can specify only fixed-point numbers. For those
data types, the scale (s) defaults to O.

2. The FLOAT data type is a floating-point number with a binary precision b. The default
precision for this data type is 126 binary, or 38 decimal.

3. The DOUBLE PRECISION data type is a floating-point number with binary precision 126.
4. The REAL data type is a floating-point number with a binary precision of 63, or 18 decimal.

Do not define columns with the following SQL/DS and DB2 data types, because they have no
corresponding Oracle data type:

e GRAPHIC

e LONG VARGRAPHIC
e VARGRAPHIC

e TIME

Note that data of type TIME can also be expressed as Oracle datetime data.

¢ See Also:

Datetime and Interval Data Types

Table 2-7 SQL/DS and DB2 Data Types Converted to Oracle Data Types

SQLI/DS or DB2 Data Type Oracle Data Type
CHARACTER (n) CHAR (n)
VARCHAR (n) VARCHAR (n)
LONG VARCHAR LONG

DECIMAL (p,s) (Note 1) NUMBER (p, s)

2-35

Chapter 2
Data Types

Table 2-7 (Cont.) SQL/DS and DB2 Data Types Converted to Oracle Data Types

SQLI/DS or DB2 Data Type Oracle Data Type
INTEGER NUMBER (p, 0)
SMALLINT

FLOAT (Note 2) NUMBER
Notes:

1. The DECIMAL data type can specify only fixed-point numbers. For this data type, s
defaults to 0.

2. The FLOAT data type is a floating-point number with a binary precision b. The
default precision for this data type is 126 binary or 38 decimal.

User-Defined Types

User-defined data types use Oracle built-in data types and other user-defined data
types as the building blocks of object types that model the structure and behavior of
data in applications. The sections that follow describe the various categories of user-
defined types.

See Also:

e Oracle Database Concepts for information about Oracle built-in data
types

e CREATE TYPE and the CREATE TYPE BODY for information about
creating user-defined types

e Oracle Database Object-Relational Developer's Guide for information
about using user-defined types

Object Types

Object types are abstractions of the real-world entities, such as purchase orders, that
application programs deal with. An object type is a schema object with three kinds of
components:

* A name, which identifies the object type uniquely within that schema.

» Attributes, which are built-in types or other user-defined types. Attributes model
the structure of the real-world entity.

* Methods, which are functions or procedures written in PL/SQL and stored in the
database, or written in a language like C or Java and stored externally. Methods
implement operations the application can perform on the real-world entity.

ORACLE 2-36

Chapter 2
Data Types

REF Data Types

An object identifier (represented by the keyword 01D) uniquely identifies an object and
enables you to reference the object from other objects or from relational tables. A data type
category called REF represents such references. A REF data type is a container for an object
identifier. REF values are pointers to objects.

When a REF value points to a nonexistent object, the REF is said to be "dangling”. A dangling
REF is different from a null REF. To determine whether a REF is dangling or not, use the
condition IS [NOT] DANGLING. For example, given object view oc_orders in the sample schema
oe, the column customer ref is of type REF to type customer typ, which has an attribute
cust email:

SELECT o.customer ref.cust email
FROM oc orders o
WHERE o.customer_ref IS NOT DANGLING;

Varrays
An array is an ordered set of data elements. All elements of a given array are of the same
data type. Each element has an index, which is a number corresponding to the position of
the element in the array.
The number of elements in an array is the size of the array. Oracle arrays are of variable size,
which is why they are called varrays. You must specify a maximum size when you declare
the varray.
When you declare a varray, it does not allocate space. It defines a type, which you can use
as:
* The data type of a column of a relational table
* An object type attribute
* A PL/SQL variable, parameter, or function return type
Oracle normally stores an array object either in line (as part of the row data) or out of line (in
a LOB), depending on its size. However, if you specify separate storage characteristics for a
varray, then Oracle stores it out of line, regardless of its size. Refer to the
varray_col_properties of CREATE TABLE for more information about varray storage.
Nested Tables
A nested table type models an unordered set of elements. The elements may be built-in
types or user-defined types. You can view a nested table as a single-column table or, if the
nested table is an object type, as a multicolumn table, with a column for each attribute of the
object type.
A nested table definition does not allocate space. It defines a type, which you can use to
declare:
e The data type of a column of a relational table
e An object type attribute
e A PL/SQL variable, parameter, or function return type
ORACLE

2-37

Chapter 2
Data Types

When a nested table appears as the type of a column in a relational table or as an
attribute of the underlying object type of an object table, Oracle stores all of the nested
table data in a single table, which it associates with the enclosing relational or object
table.

Oracle-Supplied Types

Any Types

ANYTYPE

ANYDATA

Oracle provides SQL-based interfaces for defining new types when the built-in or
ANSI-supported types are not sufficient. The behavior for these types can be
implemented in C/C++, Java, or PL/ SQL. Oracle Database automatically provides the
low-level infrastructure services needed for input-output, heterogeneous client-side
access for new data types, and optimizations for data transfers between the
application and the database.

These interfaces can be used to build user-defined (or object) types and are also used
by Oracle to create some commonly useful data types. Several such data types are
supplied with the server, and they serve both broad horizontal application areas (for
example, the Any types) and specific vertical ones (for example, the spatial types).

The Oracle-supplied types, along with cross-references to the documentation of their
implementation and use, are described in the following sections:

* Any Types
XML Types
e Spatial Types

The Any types provide highly flexible modeling of procedure parameters and table
columns where the actual type is not known. These data types let you dynamically
encapsulate and access type descriptions, data instances, and sets of data instances
of any other SQL type. These types have OCI and PL/SQL interfaces for construction
and access.

This type can contain a type description of any named SQL type or unnamed transient
type.

This type contains an instance of a given type, with data, plus a description of the type.
ANYDATA can be used as a table column data type and lets you store heterogeneous
values in a single column. The values can be of SQL built-in types as well as user-
defined types.

ANYDATASET

ORACLE

This type contains a description of a given type plus a set of data instances of that
type. ANYDATASET can be used as a procedure parameter data type where such
flexibility is needed. The values of the data instances can be of SQL built-in types as
well as user-defined types.

2-38

XML Types

XMLType

Chapter 2
Data Types

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for information on the
ANYTYPE, ANYDATA, and ANYDATASET types

Extensible Markup Language (XML) is a standard format developed by the World Wide Web
Consortium (W3C) for representing structured and unstructured data on the World Wide Web.
Universal resource identifiers (URIS) identify resources such as Web pages anywhere on the
Web. Oracle provides types to handle XML and URI data, as well as a class of URIs called
DBURIRef types to access data stored within the database itself. It also provides a set of types
to store and access both external and internal URIs from within the database.

This Oracle-supplied type can be used to store and query XML data in the database. XMLType
has member functions you can use to access, extract, and query the XML data using XPath
expressions. XPath is another standard developed by the W3C committee to traverse XML
documents. Oracle xMLType functions support many W3C XPath expressions. Oracle also
provides a set of SQL functions and PL/SQL packages to create xMLType values from existing
relational or object-relational data.

XMLType iS a system-defined type, so you can use it as an argument of a function or as the
data type of a table or view column. You can also create tables and views of XMLType. When
you create an XMLType column in a table, you can choose to store the XML data in a CLOB
column, as binary XML (stored internally as a CLOB), or object relationally.

You can also register the schema (using the DBMS XMLSCHEMA package) and create a table or
column conforming to the registered schema. In this case Oracle stores the XML data in
underlying object-relational columns by default, but you can specify storage in a CLOB or
binary XML column even for schema-based data.

Queries and DML on xMLType columns operate the same regardless of the storage
mechanism.

See Also:

Oracle XML DB Developer’s Guidefor information about using XMLType columns

URI Data Types

ORACLE

Oracle supplies a family of URI types—URIType, DBURIType, XDBURIType, and HTTPURIType—
which are related by an inheritance hierarchy. URIType is an object type and the others are
subtypes of URIType. Since URIType is the supertype, you can create columns of this type
and store DBURIType Or HTTPURIType type instances in this column.

2-39

Chapter 2
Data Types

HTTPURIType

You can use HTTPURIType to store URLSs to external Web pages or to files. Oracle
accesses these files using HTTP (Hypertext Transfer Protocol).

XDBURIType

You can use XDBURIType to expose documents in the XML database hierarchy as URIs
that can be embedded in any URIType column in a table. The XDBURIType consists of a
URL, which comprises the hierarchical name of the XML document to which it refers
and an optional fragment representing the XPath syntax. The fragment is separated
from the URL part by a pound sign (#). The following lines are examples of
XDBURIType:

/home/oe/docl.xml
/home/oe/docl.xml#/orders/order_item

DBURIType

DBURIType can be used to store DBURIRef values, which reference data inside the
database. Storing DBURIRef values lets you reference data stored inside or outside the
database and access the data consistently.

DBURIRef values use an XPath-like representation to reference data inside the
database. If you imagine the database as an XML tree, then you would see the tables,
rows, and columns as elements in the XML document. For example, the sample
human resources user hr would see the following XML tree:

<HR>
<EMPLOYEES>
<ROW>
<EMPLOYEE ID>205</EMPLOYEE ID>
<LAST NAME>Higgins</LAST NAME>
<SALARY>12008</SALARY>

. <!-- other columns -->
</ROW>
. <!-- other rows -->
</EMPLOYEES>
<!-- other tables..-->
</HR>
<!-- other user schemas on which you have some privilege on..-->

The DBURIRef is an XPath expression over this virtual XML document. So to reference
the SALARY value in the EMPLOYEES table for the employee with employee number 205,
you can write a DBURIRef as,

/HR/EMPLOYEES/ROW [EMPLOYEE ID=205]/SALARY

Using this model, you can reference data stored in CLOB columns or other columns and
expose them as URLSs to the external world.

URIFactory Package

ORACLE

Oracle also provides the URIFactory package, which can create and return instances
of the various subtypes of the URITypes. The package analyzes the URL string,
identifies the type of URL (HTTP, DBURI, and so on), and creates an instance of the
subtype. To create a DBURI instance, the URL must begin with the prefix /oradb. For

2-40

Chapter 2
Data Types

example, URIFactory.getURI (' /oradb/HR/EMPLOYEES') would create a DBURIType instance
and URIFactory.getUri ('/sys/schema') would create an XDBURIType instance.

¢ See Also:

e Oracle Database Object-Relational Developer's Guide for general information
on object types and type inheritance

e Oracle XML DB Developer’s Guide for more information about these supplied
types and their implementation

e Oracle Database Advanced Queuing User's Guide for information about using
XMLType with Oracle Advanced Queuing

Spatial Types

Oracle Spatial and Graph is designed to make spatial data management easier and more
natural to users of location-enabled applications, geographic information system (GIS)
applications, and geoimaging applications. After the spatial data is stored in an Oracle
Database, you can easily manipulate, retrieve, and relate it to all the other data stored in the
database. The following data types are available only if you have installed Oracle Spatial and
Graph.

SDO_GEOMETRY

The geometric description of a spatial object is stored in a single row, in a single column of
object type SDO_GEOMETRY in a user-defined table. Any table that has a column of type
SDO_GEOMETRY must have another column, or set of columns, that defines a unique primary
key for that table. Tables of this sort are sometimes called geometry tables.

The SDO_GEOMETRY object type has the following definition:

CREATE TYPE SDO GEOMETRY AS OBJECT

(sgo_gtype NUMBER,
sdo_srid NUMBER,
sdo_point SDO_POINT TYPE,

sdo elem info SDO_ELEM INFO ARRAY,
sdo ordinates SDO_ORDINATE ARRAY);

SDO_TOPO_GEOMETRY

ORACLE

This type describes a topology geometry, which is stored in a single row, in a single column of
object type SDO_TOPO GEOMETRY in a user-defined table.

The SDO_TOPO_GEOMETRY object type has the following definition:

CREATE TYPE SDO TOPO GEOMETRY AS OBJECT
(tg _type NUMBER,
tgfid NUMBER,
tg layer id NUMBER,
topology id NUMBER) ;
/

2-41

Chapter 2
Data Type Comparison Rules

SDO_GEORASTER

In the GeoRaster object-relational model, a raster grid or image object is stored in a
single row, in a single column of object type SDO_GEORASTER in a user-defined table.
Tables of this sort are called GeoRaster tables.

The SDO_GEORASTER object type has the following definition:

CREATE TYPE SDO_GEORASTER AS OBJECT

(rasterType NUMBER,
spatialExtent SDO_GEOMETRY,
rasterDataTable VARCHAR2 (32),
rasterID NUMBER,
metadata XMLType) ;

/
See Also:

Oracle Spatial and Graph Developer's Guide, Oracle Spatial and Graph
Topology Data Model and Network Data Model Graph Developer's Guide,
and Oracle Spatial and Graph GeoRaster Developer's Guide for information
on the full implementation of the spatial data types and guidelines for using
them

Data Type Comparison Rules

This section describes how Oracle Database compares values of each data type.

Numeric Values

A larger value is considered greater than a smaller one. All negative numbers are less
than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

The floating-point value NaN (not a number) is greater than any other numeric value
and is equal to itself.

" See Also:

Numeric Precedence and Floating-Point Numbers for more information on
comparison semantics

Datetime Values

ORACLE

A later date or timestamp is considered greater than an earlier one. For example, the
date equivalent of '29-MAR-2005' is less than that of '05-JAN-2006' and the timestamp
equivalent of '05-JAN-2006 1:35pm' is greater than that of '05-JAN-2005 10:09am'.

When two timestamps with time zone are compared, they are first normalized to UTC,
that is, to the timezone offset '+00:00'. For example, the timestamp with time zone

2-42

Chapter 2
Data Type Comparison Rules

equivalent of '16-OCT-2016 05:59am Europe/Warsaw' is equal to that of '15-OCT-2016
08:59pm US/Pacific’. Both represent the same absolute point in time, which represented in
UTC is October 16th, 2016, 03:59am.

Binary Values

A binary value of the data type RAW or BLOB is a sequence of bytes. When two binary values
are compared, the corresponding, consecutive bytes of the two byte sequences are
compared in turn. If the first bytes of both compared values are different, the binary value that
contains the byte with the lower numeric value is considered smaller. If the first bytes are
equal, second bytes are compared analogously, and so on, until either the compared bytes
differ or the comparison process reaches the end of one of the values. In the latter case, the
value that is shorter is considered smaller.

Binary values of the data type BLOB cannot be compared directly in comparison conditions.
However, they can be compared with the PL/SQL function DBMS LOB.COMPARE.

" See Also:

Oracle Database PL/SQL Packages and Types Reference for more information on
the DBMS_LOB.COMPARE function

Character Values

Character values are compared on the basis of two measures:

e Binary or linguistic collation
e Blank-padded or nonpadded comparison semantics

The following subsections describe the two measures.

Binary and Linguistic Collation

In binary collation, which is the default, Oracle compares character values like binary values.
Two sequences of bytes that form the encodings of two character values in their storage
character set are treated as binary values and compared as described in Binary Values . The
result of this comparison is returned as the result of the binary comparison of the source
character values.

" See Also:

Oracle Database Globalization Support Guide for more information on character
sets

For many languages, the binary collation can yield a linguistically incorrect ordering of
character values. For example, in most common character sets, all the uppercase Latin

ORACLE 2-43

ORACLE

Chapter 2
Data Type Comparison Rules

letters have character codes with lower values than all the lowercase Latin letters.
Hence, the binary collation yields the following order:

MacDonald
MacIntosh
Macdonald
Macintosh

However, most users expect these four values to be presented in the order:

MacDonald
Macdonald
MacIntosh
Macintosh

This shows that binary collation may not be suitable even for English character values.

Oracle Database supports linguistic collations that order strings according to rules of
various spoken languages. It also supports collation variants that match character
values case- and accent-insensitively. Linguistic collations are more expensive but
they provide superior user experience.

See Also:

Oracle Database Globalization Support Guide for more information about
linguistic sorting

Restrictions for Linguistic Collations

Comparison conditions, ORDER BY, GROUP BY and MATCH RECOGNIZE query clauses,
COUNT (DISTINCT) and statistical aggregate functions, LIKE conditions, and ORDER BY
and PARTITION BY analytic clauses generate collation keys when using linguistic
collations. The collation keys are the same values that are returned by the function
NLSSORT and are subject to the same restrictions that are described in NLSSORT .

Blank-Padded and Nonpadded Comparison Semantics

With blank-padded semantics, if the two values have different lengths, then Oracle first
adds blanks to the end of the shorter one so their lengths are equal. Oracle then
compares the values character by character up to the first character that differs. The
value with the greater character in the first differing position is considered greater. If
two values have no differing characters, then they are considered equal. This rule
means that two values are equal if they differ only in the number of trailing blanks.
Oracle uses blank-padded comparison semantics only when both values in the
comparison are either expressions of data type CHAR, NCHAR, text literals, or values
returned by the USER function.

With nonpadded semantics, Oracle compares two values character by character up to
the first character that differs. The value with the greater character in that position is
considered greater. If two values of different length are identical up to the end of the
shorter one, then the longer value is considered greater. If two values of equal length
have no differing characters, then the values are considered equal. Oracle uses

2-44

ORACLE

Chapter 2
Data Type Comparison Rules

nonpadded comparison semantics whenever one or both values in the comparison have the
data type VARCHAR2 Or NVARCHAR?.

The results of comparing two character values using different comparison semantics may
vary. The table that follows shows the results of comparing five pairs of character values
using each comparison semantic. Usually, the results of blank-padded and nonpadded
comparisons are the same. The last comparison in the table illustrates the differences
between the blank-padded and nonpadded comparison semantics.

Blank-Padded Nonpadded
'ac' > 'ab' 'ac' > 'ab'
'ab' > 'a ! tab' > 'a !
'ab' > 'a' 'ab' > 'a'
'ab' = 'ab' 'ab' = 'ab'
'a ' = 'a' 'a ' > 'a'

Data-Bound Collation

Starting with Oracle Database 12¢ Release 2 (12.2), the collation to use when comparing or
matching a given character value is associated with the value itself. It is called the data-
bound collation. The data-bound collation can be viewed as an attribute of the data type of
the value.

In previous Oracle Database releases, the session parameters NLS_COMP and NLS_SORT
coarsely determined the collation for all collation-sensitive SQL operations in a database
session. The data-bound collation architecture enables applications to consistently apply
language-specific comparison rules to exactly the data that needs these rules.

Oracle Database 12c Release 2 (12.2) allows you to declare a collation for a table column.
When a column is passed as an argument to a collation-sensitive SQL operation, the SQL
operation uses the column's declared collation to process the column's values. If the SQL
operation has multiple character arguments that are compared to each other, the collation
determination rules determine the collation to use.

There are two types of data-bound collations:

* Named Collation: This collation is a particular set of collating rules specified by a collation
name. Named collations are the same collations that are specified as values for the
NLS_SORT parameter. A named collation can be either a binary collation or a linguistic
collation.

e Pseudo-collation: This collation does not directly specify the collating rules for a SQL
operation. Instead, it instructs the operation to check the values of the session
parameters NLS_SORT and NLS_COMP for the actual named collation to use. Pseudo-
collations are the bridge between the new declarative method of specifying collations and
the old method that uses session parameters. In particular, the pseudo-collation
USING NLS COMP directs a SQL operation to behave exactly as it used to behave before
Oracle Database 12c Release 2.

When you declare a named collation for a column, you statically determine how the column
values are compared. When you declare a pseudo-collation, you can dynamically control
comparison behavior with the session parameter NLS_COMP and NLS_SORT. However, static
objects, such as indexes and constraints, defined on a column declared with a pseudo-
collation, fall back to using a binary collation. Dynamically settable collating rules cannot be
used to compare values for a static object.

2-45

Chapter 2
Data Type Comparison Rules

The collation for a character literal or bind variable that is used in an expression is
derived from the default collation of the database object containing the expression,
such as a view or materialized view query, a PL/SQL stored unit code, a user-defined
type method code, or a standalone DML or query statement. In Oracle Database 12¢
Release 2, the default collation of PL/SQL stored units, user-defined type methods,
and standalone SQL statements is always the pseudo-collation USING NLS_COMP. The
default collation of views and materialized views can be specified in the DEFAULT
COLLATION clause of the CREATE VIEW and CREATE MATERIALIZED VIEW statements.

If a SQL operation returns character values, the collation derivation rules determine
the derived collation for the result, so that its collation is known, when the result is
passed as an argument to another collation-sensitive SQL operation in the expression
tree or to a top-level consumer, such as an SQL statement clause in a SELECT
statement. If a SQL operation operates on character argument values, then the
derived collation of its character result is based on the collations of the arguments.
Otherwise, the derivation rules are the same as for a character literal.

You can override the derived collation of an expression node, such as a simple
expression or an operator result, by using the COLLATE operator.

Oracle Database allows you to declare a case-insensitive collation for a column, table
or schema, so that the column or all character columns in a table or a schema can be
always compared in a case-insensitive way.

¢ See Also:

e Oracle Database Globalization Support Guide for more information on
data-bound collation architecture, including the detailed collation
derivation and determination rules

* COLLATE Operator

Object Values

Object values are compared using one of two comparison functions: MAP and ORDER.
Both functions compare object type instances, but they are quite different from one
another. These functions must be specified as part of any object type that will be
compared with other object types.

See Also:

CREATE TYPE for a description of MAP and ORDER methods and the values
they return

Varrays and Nested Tables

Comparison of nested tables is described in Comparison Conditions .

ORACLE 2-46

Chapter 2
Data Type Comparison Rules

Data Type Precedence

Oracle uses data type precedence to determine implicit data type conversion, which is
discussed in the section that follows. Oracle data types take the following precedence:

Datetime and interval data types
BINARY DOUBLE

BINARY FLOAT

NUMBER

Character data types

All other built-in data types

Data Conversion

Generally an expression cannot contain values of different data types. For example, an
expression cannot multiply 5 by 10 and then add 'JAMES'. However, Oracle supports both
implicit and explicit conversion of values from one data type to another.

Implicit and Explicit Data Conversion

Oracle recommends that you specify explicit conversions, rather than rely on implicit or
automatic conversions, for these reasons:

SQL statements are easier to understand when you use explicit data type conversion
functions.

Implicit data type conversion can have a negative impact on performance, especially if
the data type of a column value is converted to that of a constant rather than the other
way around.

Implicit conversion depends on the context in which it occurs and may not work the same
way in every case. For example, implicit conversion from a datetime value to a VARCHAR?2
value may return an unexpected year depending on the value of the NLS DATE FORMAT
parameter.

Algorithms for implicit conversion are subject to change across software releases and
among Oracle products. Behavior of explicit conversions is more predictable.

If implicit data type conversion occurs in an index expression, then Oracle Database
might not use the index because it is defined for the pre-conversion data type. This can
have a negative impact on performance.

Implicit Data Conversion

ORACLE

Oracle Database automatically converts a value from one data type to another when such a
conversion makes sense.

Table 2-8 is a matrix of Oracle implicit conversions. The table shows all possible conversions,
without regard to the direction of the conversion or the context in which it is made.

An 'X"in a cell indicates implicit conversion of the data types named in the named in the first
column and the header row.

2-47

Table 2-8

Implicit Type Conversion Matrix

Chapter 2

Data Type Comparison Rules

Data
Type R

CHA AR

R2

CHA VAR NCH NVA DAT

RCH E
AR2

DAT NUM BIN
ETIM BER ARY
E/ _FL _DO
INTE OAT UBL
RVA E

L

WID B

B

BIN LON RAW RO CLO BLO NCL
ARY G

oB

CHAR -

VARCHAR X
2

NCHAR

NVARCHA X
R2

DATE

DATETIM X
E/
INTERVA

L

x

NUMBER

BINARY_ X
FLOAT

BINARY_ X
DOUBLE

LONG

RAW

ROWID

CLOB

X | X| X[X

X | X| X[X

X | X| X| X

BLOB --

NCLOB X

x

JSON --

L You cannot convert LONG to INTERVAL directly, but you can convert LONG to VARCHAR?Z using TO_CHAR(interval), and
then convert the resulting VARCHARZ value to INTERVAL.

ORACLE

Implicit Data Type Conversion Rules

During INSERT and UPDATE operations, Oracle converts the value to the data type
of the affected column.

During SELECT FROM operations, Oracle converts the data from the column to the
type of the target variable.

When manipulating numeric values, Oracle usually adjusts precision and scale to
allow for maximum capacity. In such cases, the numeric data type resulting from
such operations can differ from the numeric data type found in the underlying

tables.

2-48

Chapter 2
Data Type Comparison Rules

* When comparing a character value with a numeric value, Oracle converts the character
data to a numeric value.

» Conversions between character values or NUMBER values and floating-point number
values can be inexact, because the character types and NUMBER use decimal precision to
represent the numeric value, and the floating-point numbers use binary precision.

* When converting a CLOB value into a character data type such as VARCHAR?2, or converting
BLOB to RAW data, if the data to be converted is larger than the target data type, then the
database returns an error.

e During conversion from a timestamp value to a DATE value, the fractional seconds portion
of the timestamp value is truncated. This behavior differs from earlier releases of Oracle
Database, when the fractional seconds portion of the timestamp value was rounded.

« Conversions from BINARY FLOAT to BINARY DOUBLE are exact.

» Conversions from BINARY DOUBLE to BINARY FLOAT are inexact if the BINARY DOUBLE
value uses more bits of precision that supported by the BINARY FLOAT.

* When comparing a character value with a DATE value, Oracle converts the character data
to DATE.

e When you use a SQL function or operator with an argument of a data type other than the
one it accepts, Oracle converts the argument to the accepted data type.

e When making assignments, Oracle converts the value on the right side of the equal sign
(=) to the data type of the target of the assignment on the left side.

e During concatenation operations, Oracle converts from noncharacter data types to CHAR
Or NCHAR.

» During arithmetic operations on and comparisons between character and noncharacter
data types, Oracle converts from any character data type to a humeric, date, or rowid, as
appropriate. In arithmetic operations between CHAR/VARCHAR2 and NCHAR/NVARCHAR?Z,
Oracle converts to a NUMBER.

* Most SQL character functions are enabled to accept CLOBS as parameters, and Oracle
performs implicit conversions between CL0B and character types. Therefore, functions
that are not yet enabled for CLOBs can accept CLOBs through implicit conversion. In such
cases, Oracle converts the CLOBS to CHAR or VARCHAR2 before the function is invoked. If
the CLOB is larger than 4000 bytes, then Oracle converts only the first 4000 bytes to CHAR.

* When converting RAW or LONG RAW data to or from character data, the binary data is
represented in hexadecimal form, with one hexadecimal character representing every
four bits of RaW data. Refer to "RAW and LONG RAW Data Types " for more information.

e Comparisons between CHAR and VARCHAR2 and between NCHAR and NVARCHAR2 types may
entail different character sets. The default direction of conversion in such cases is from
the database character set to the national character set. Table 2-9 shows the direction of
implicit conversions between different character types.

Table 2-9 Conversion Direction of Different Character Types
]

Source to CHAR to VARCHAR2 to NCHAR to NVARCHAR2
Data Type
from CHAR -- VARCHAR? NCHAR NVARCHAR?

ORACLE 2-49

Chapter 2
Data Type Comparison Rules

Table 2-9 (Cont.) Conversion Direction of Different Character Types
]

Source to CHAR to VARCHAR2 to NCHAR to NVARCHAR2
Data Type

from VARCHAR2 -- NVARCHAR2 NVARCHAR2
VARCHAR2

from NCHAR NCHAR NCHAR - NVARCHAR2
from NVARCHAR2 NVARCHAR2 NVARCHAR2 --

NVARCHAR2

User-defined types such as collections cannot be implicitly converted, but must be
explicitly converted using CAST ... MULTISET.

Implicit Data Conversion Examples

Text Literal Example

The text literal '10' has data type CHAR. Oracle implicitly converts it to the NUMBER data
type if it appears in a numeric expression as in the following statement:

SELECT salary + '10'
FROM employees;

Character and Number Values Example

When a condition compares a character value and a NUMBER value, Oracle implicitly
converts the character value to a NUMBER value, rather than converting the NUMBER
value to a character value. In the following statement, Oracle implicitly converts '200'
to 200:

SELECT last name
FROM employees
WHERE employee id = '200';

Date Example

In the following statement, Oracle implicitly converts '24-JUN-06' to a DATE value using
the default date format 'DD-MON-YY":

SELECT last name
FROM employees
WHERE hire date = '24-JUN-06';

Explicit Data Conversion

You can explicitly specify data type conversions using SQL conversion functions.
Table 2-10 shows SQL functions that explicitly convert a value from one data type to
another.

You cannot specify LONG and LONG RAW values in cases in which Oracle can perform
implicit data type conversion. For example, LONG and LONG RAW values cannot appear in
expressions with functions or operators. Refer to LONG Data Type for information on
the limitations on LONG and LONG RAW data types.

ORACLE 2-50

Table 2-10 Explicit Type Conversions

Chapter 2

Data Type Comparison Rules

Source to CHAR, to to Datetime/ to RAW to to to CLOB, to to
Data Type VARCHAR2, NUMB Interval ROWID LO NCLOB, BINARY BINARY
NCHAR, ER NG, BLOB _FLOAT _DOUB
NVARCHAR LO LE
2 NG
RA
w
from TO_CHAR TO_NUM TO DATE HEXTORAW CHARTO -- TO CLOB TO BINA TO BINA
VARCHAR2 1(NCHAR p - T LE
» NCHAR, (char.) TO TIMESTAM
NVARCHAR -
” P TZ
TO_YMINTERV
AL
TO_DSINTERV
AL
from TO_CHAR -- TO_DATE - - -— - TO BINA TO BINA
TO_NCHAR INTERVAL T LE
(number) NUMTODS-
INTERVAL
from TO_CHAR -- -- -- -- - - -- --
Datetime (date)
/ TO_NCHAR
Interval (datetime)
from RAW RAWTOHEX -- -- -- -- -- TO BLOB -- -
RAWTONHEX
from ROWIDTOCHA -- -- -- -- - - -- --
ROWID R
from -- -- -- - - -- TO LOB -- --
LONG /
LONG RAW
from TO_CHAR -- -- -- -- -- TO CLOB -- --
CLOB, TO NCHAR TO NCLOB
NCLOB,
BLOB
from TO CHAR -- -- -- -- -- TO CLOB -- --
CLOB, TO NCHAR TO NCLOB
NCLOB,
BLOB
from TO_CHAR TO _NUM -- -- -- - -- TO BINA TO BINA
BINARY F (char.) BER RY FLOA RY DOUB
LOAT TO_NCHAR T LE
(char.)
ORACLE’ 2.51

Chapter 2
Data Type Comparison Rules

Table 2-10 (Cont.) Explicit Type Conversions

Source to CHAR, to to Datetime/ to RAW to to to CLOB, to to
Data Type VARCHAR2, NUMB Interval ROWID LO NCLOB, BINARY BINARY
NCHAR, ER NG, BLOB _FLOAT _DOUB
NVARCHAR LO LE
2 NG
RA
w
from TO CHAR TO NUM -- -- - - - TO BINA TO BINA
BINARY_D (char.) BER RY FLOA RY DOUB
OUBLE TO NCHAR T LE
(char.)
¢ See Also:

Conversion Functions for details on all of the explicit conversion functions

Security Considerations for Data Conversion

ORACLE

When a datetime value is converted to text, either by implicit conversion or by explicit
conversion that does not specify a format model, the format model is defined by one of
the globalization session parameters. Depending on the source data type, the
parameter name is NLS_DATE FORMAT, NLS TIMESTAMP FORMAT, Of

NLS TIMESTAMP Tz FORMAT. The values of these parameters can be specified in the
client environment or in an ALTER SESSION statement.

The dependency of format models on session parameters can have a negative impact
on database security when conversion without an explicit format model is applied to a
datetime value that is being concatenated to text of a dynamic SQL statement.
Dynamic SQL statements are those statements whose text is concatenated from
fragments before being passed to a database for execution. Dynamic SQL is
frequently associated with the built-in PL/SQL package DBMS SQL or with the PL/SQL
statement EXECUTE IMMEDIATE, but these are not the only places where dynamically
constructed SQL text may be passed as argument. For example:

EXECUTE IMMEDIATE

'SELECT last name FROM employees WHERE hire date > ''' || start date |

T,
’

where start date has the data type DATE.

In the above example, the value of start date is converted to text using a format
model specified in the session parameter NLS_DATE FORMAT. The result is
concatenated into SQL text. A datetime format model can consist simply of literal text
enclosed in double quotation marks. Therefore, any user who can explicitly set
globalization parameters for a session can decide what text is produced by the above
conversion. If the SQL statement is executed by a PL/SQL procedure, the procedure
becomes vulnerable to SQL injection through the session parameter. If the procedure
runs with definer's rights, with higher privileges than the session itself, the user can
gain unauthorized access to sensitive data.

2-52

Literals

ORACLE

Chapter 2
Literals

¢ See Also:

Oracle Database PL/SQL Language Reference for further examples and for
recommendations on avoiding this security risk

Note:

This security risk also applies to middle-tier applications that construct SQL text
from datetime values converted to text by the database or by OCI datetime
functions. Those applications are vulnerable if session globalization parameters are
obtained from a user preference.

Implicit and explicit conversion for numeric values may also suffer from the analogous
problem, as the conversion result may depend on the session parameter
NLS_NUMERIC CHARACTERS. This parameter defines the decimal and group separator
characters. If the decimal separator is defined to be the quotation mark or the double
guotation mark, some potential for SQL injection emerges.

¢ See Also:

e Oracle Database Globalization Support Guide for detailed descriptions of the
session globalization parameters

* Format Models for information on the format models

The terms literal and constant value are synonymous and refer to a fixed data value. For
example, 'JACK', 'BLUE ISLAND', and '101' are all character literals; 5001 is a numeric literal.
Character literals are enclosed in single quotation marks so that Oracle can distinguish them
from schema object names.

This section contains these topics:
e Text Literals

* Numeric Literals

e Datetime Literals

* Interval Literals

Many SQL statements and functions require you to specify character and numeric literal
values. You can also specify literals as part of expressions and conditions. You can specify
character literals with the 'text' notation, national character literals with the N'text ' notation,
and numeric literals with the integer, or number notation, depending on the context of the
literal. The syntactic forms of these notations appear in the sections that follow.

2-53

Chapter 2
Literals

To specify a datetime or interval data type as a literal, you must take into account any
optional precisions included in the data types. Examples of specifying datetime and
interval data types as literals are provided in the relevant sections of Data Types .

Text Literals

ORACLE

Use the text literal notation to specify values whenever string appears in the syntax of
expressions, conditions, SQL functions, and SQL statements in other parts of this
reference. This reference uses the terms text literal, character literal, and string
interchangeably. Text, character, and string literals are always surrounded by single
guotation marks. If the syntax uses the term char, then you can specify either a text
literal or another expression that resolves to character data — for example, the
last_name column of the hr.employees table. When char appears in the syntax, the
single quotation marks are not used.

The syntax of text literals or strings follows:

string::=

quote_delimiter

where N or n specifies the literal using the national character set (NCHAR or NVARCHAR?2
data). By default, text entered using this notation is translated into the national
character set by way of the database character set when used by the server. To avoid
potential loss of data during the text literal conversion to the database character set,
set the environment variable ORA NCHAR LITERAL REPLACE to TRUE. Doing so
transparently replaces the n' internally and preserves the text literal for SQL
processing.

¢ See Also:

Oracle Database Globalization Support Guide for more information about N-
quoted literals

In the top branch of the syntax:

* ¢ is any member of the user's character set. A single quotation mark (') within the
literal must be preceded by an escape character. To represent one single
guotation mark within a literal, enter two single quotation marks.

e ''are two single quotation marks that begin and end text literals.

In the bottom branch of the syntax:

* Qor gindicates that the alternative quoting mechanism will be used. This
mechanism allows a wide range of delimiters for the text string.

2-54

Chapter 2
Literals

* The outermost ' ' are two single quotation marks that precede and follow, respectively,
the opening and closing quote delimiter.

e cis any member of the user's character set. You can include quotation marks (") in the
text literal made up of ¢ characters. You can also include the quote delimiter, as long
as it is not immediately followed by a single quotation mark.

* quote delimiter is any single- or multibyte character except space, tab, and return. The
quote delimiter can be a single quotation mark. However, if the quote delimiter
appears in the text literal itself, ensure that it is not immediately followed by a single
guotation mark.

If the opening quote delimiterisone of [, {, <, or (, then the closing quote delimiter
must be the corresponding 1, }, >, or). In all other cases, the opening and closing
quote delimiter must be the same character.

Text literals have properties of both the CHAR and VARCHAR? data types:

* Within expressions and conditions, Oracle treats text literals as though they have the
data type CHAR by comparing them using blank-padded comparison semantics.

* Atext literal can have a maximum length of 4000 bytes if the initialization parameter
MAX STRING SIZE = STANDARD, and 32767 bytes if MAX STRING SIZE = EXTENDED. See
Extended Data Types for more information.

Here are some valid text literals:

'Hello'

'ORACLE.dbs"

'Jackie''s raincoat'

'09-MAR-98"'

N'nchar literal'

Here are some valid text literals using the alternative quoting mechanism:
q'!name LIKE '%DBMS %%'!'

q'<'So,"' she said, 'It's finished.'>'

q'{SELECT * FROM employees WHERE last name = 'Smith';}'
ng'i ¥1234 i

q'"name like '['"'

See Also:

Blank-Padded and Nonpadded Comparison Semantics

Numeric Literals

Use numeric literal notation to specify fixed and floating-point numbers.

Integer Literals

You must use the integer notation to specify an integer whenever integer appears in
expressions, conditions, SQL functions, and SQL statements described in other parts of this
reference.

The syntax of integer follows:

ORACLE 2-55

Chapter 2
Literals

integer::=

where digitisoneof0, 1, 2, 3,4,5,6, 7, 8, 9.

An integer can store a maximum of 38 digits of precision.

Here are some valid integers:

7
+255

NUMBER and Floating-Point Literals

ORACLE

You must use the number or floating-point notation to specify values whenever number
or n appears in expressions, conditions, SQL functions, and SQL statements in other
parts of this reference.

The syntax of number follows:

number::=

.00 (@]
= —

where

e+ or-indicates a positive or negative value. If you omit the sign, then a positive
value is the default.

e digitisoneof0,1,2,3,4,5,6,7,80r9.

* e or E indicates that the number is specified in scientific notation. The digits after
the E specify the exponent. The exponent can range from -130 to 125.

« forF indicates that the number is a 32-bit binary floating point number of type
BINARY FLOAT.

2-56

ORACLE

Chapter 2
Literals

» dor D indicates that the number is a 64-bit binary floating point number of type
BINARY DOUBLE.

If you omit f or F and d or D, then the number is of type NUMBER.

The suffixes f (F) and d (D) are supported only in floating-point number literals, not in
character strings that are to be converted to NUMBER. For example, if Oracle is expecting a
NUMBER and it encounters the string ' 9", then it converts the string to the number 9.
However, if Oracle encounters the string '9f', then conversion fails and an error is
returned.

A number of type NUMBER can store a maximum of 38 digits of precision. If the literal requires
more precision than provided by NUMBER, BINARY FLOAT, or BINARY DOUBLE, then Oracle
truncates the value. If the range of the literal exceeds the range supported by NUMBER,
BINARY FLOAT, Or BINARY DOUBLE, then Oracle raises an error.

Numeric literals are SQL syntax elements, which are not sensitive to NLS settings. The
decimal separator character in numeric literals is always the period (.). However, if a text
literal is specified where a numeric value is expected, then the text literal is implicitly
converted to a number in an NLS-sensitive way. The decimal separator contained in the text
literal must be the one established with the initialization parameter NLS NUMERIC CHARACTERS.
Oracle recommends that you use numeric literals in SQL scripts to make them work
independently of the NLS environment.

The following examples illustrate the behavior of decimal separators in numeric literals and
text literals. These examples assume that you have established the comma (,) as the NLS
decimal separator for the current session with the following statement:

ALTER SESSION SET NLS NUMERIC CHARACTERS=',.';

The previous statement also establishes the period (.) as the NLS group separator, but that is
irrelevant for these examples.

This example uses the required decimal separator (.) in the numeric literal 1.23 and the
established NLS decimal separator (,) in the text literal '2, 34'. The text literal is converted to
the numeric value 2.34, and the output is displayed using commas for the decimal
separators.

SELECT 2 * 1.23, 3 * '2,34' FROM DUAL;

2*1.23 3%'2,34"

The next example shows that a comma is not treated as part of a numeric literal. Rather, the
comma is treated as the delimiter in a list of two numeric expressions: 2*1 and 23.

SELECT 2 * 1,23 FROM DUAL;

The next example shows that the decimal separator in a text literal must match the NLS
decimal separator in order for implicit text-to-number conversion to succeed. The following
statement fails because the decimal separator (.) does not match the established NLS
decimal separator (,):

SELECT 3 * '2.34' FROM DUAL;

*

2-57

Chapter 2
Literals

ERROR at line 1:
ORA-01722: invalid number

¢ See Also:

ALTER SESSION and Oracle Database Reference

Here are some valid NUMBER literals:

25
+6.34
0.5
25e-03
-1

Here are some valid floating-point number literals:

25f
+6.34F
0.5d
-1D

You can also use the following supplied floating-point literals in situations where a
value cannot be expressed as a humeric literal:

Table 2-11 Floating-Point Literals

]
Literal Meaning Example

binary float nan A value of type
BINARY_FLOATfor
which the condition

SELECT COUNT (*)

FROM employees
_ WHERE TO BINARY FLOAT (commission pct)
1S NAN Is true I= BINARY FLOAT NAN; -

binary float infin Single-precision

AR SELECT COUNT (*)
ity positive infinity

FROM employees
WHERE salary < BINARY FLOAT INFINITY;

binary double nan A value of type
BINARY_DOUBLEfor
which the condition

SELECT COUNT (*)

FROM employees
_ WHERE TO BINARY FLOAT (commission pct)
1S NAN Is true I= BINARY FLOAT NAN; -

binary double infi Double-precision

. e SELECT COUNT (*)
nity positive infinity

FROM employees
WHERE salary <
BINARY DOUBLE INFINITY;

Datetime Literals

Oracle Database supports four datetime data types: DATE, TIMESTAMP, TIMESTAMP WITH
TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE.

ORACLE 2-58

ORACLE

Chapter 2
Literals

Date Literals

You can specify a DATE value as a string literal, or you can convert a character or numeric
value to a date value with the TO DATE function. DATE literals are the only case in which
Oracle Database accepts a TO_DATE expression in place of a string literal.

To specify a DATE value as a literal, you must use the Gregorian calendar. You can specify an
ANSI literal, as shown in this example:

DATE '1998-12-25"

The ANSI date literal contains no time portion, and must be specified in the format 'YYyYy-MM-
DD'. Alternatively you can specify an Oracle date value, as in the following example:

TO DATE ('98-DEC-25 17:30','YY-MON-DD HH24:MI')

The default date format for an Oracle DATE value is specified by the initialization parameter
NLS DATE FORMAT. This example date format includes a two-digit number for the day of the
month, an abbreviation of the month name, the last two digits of the year, and a 24-hour time
designation.

Oracle automatically converts character values that are in the default date format into date
values when they are used in date expressions.

If you specify a date value without a time component, then the default time is midnight
(00:00:00 or 12:00:00 for 24-hour and 12-hour clock time, respectively). If you specify a date
value without a date, then the default date is the first day of the current month.

Oracle DATE columns always contain both the date and time fields. Therefore, if you query a
DATE column, then you must either specify the time field in your query or ensure that the time
fields in the DATE column are set to midnight. Otherwise, Oracle may not return the query
results you expect. You can use the TRUNC date function to set the time field to midnight, or
you can include a greater-than or less-than condition in the query instead of an equality or
inequality condition.

Here are some examples that assume a table my table with a number column row num and a
DATE column datecol:

INSERT INTO my table VALUES (1, SYSDATE);
INSERT INTO my table VALUES (2, TRUNC (SYSDATE));

SELECT *
FROM my table;

ROW_NUM DATECOL

1 03-0CT-02
2 03-0CT-02

SELECT *
FROM my table
WHERE datecol > TO DATE('02-0CT-02', 'DD-MON-YY');

ROW_NUM DATECOL

1 03-0CT-02
2 03-0CT-02

SELECT *

2-59

ORACLE

Chapter 2
Literals

FROM my table
WHERE datecol = TO DATE('03-0CT-02', 'DD-MON-YY');

ROW_NUM DATECOL

2 03-0CT-02

If you know that the time fields of your DATE column are set to midnight, then you can
query your DATE column as shown in the immediately preceding example, or by using
the DATE literal:

SELECT *
FROM my table
WHERE datecol = DATE '2002-10-03';

ROW_NUM DATECOL

2 03-0CT-02

However, if the DATE column contains values other than midnight, then you must filter
out the time fields in the query to get the correct result. For example:

SELECT *
FROM my table
WHERE TRUNC (datecol) = DATE '2002-10-03';

ROW_NUM DATECOL

1 03-0CT-02
2 03-0CT-02

Oracle applies the TRUNC function to each row in the query, so performance is better if
you ensure the midnight value of the time fields in your data. To ensure that the time
fields are set to midnight, use one of the following methods during inserts and updates:

* Use the TO DATE function to mask out the time fields:

INSERT INTO my table
VALUES (3, TO DATE('3-0CT-2002','DD-MON-YYYY'));

e Use the DATE literal:

INSERT INTO my table
VALUES (4, '03-0CT-02');

* Use the TRUNC function:

INSERT INTO my table
VALUES (5, TRUNC(SYSDATE));

The date function SYSDATE returns the current system date and time. The function
CURRENT DATE returns the current session date. For information on SYSDATE, the TO_*
datetime functions, and the default date format, see Datetime Functions .

TIMESTAMP Literals

The TIMESTAMP data type stores year, month, day, hour, minute, and second, and
fractional second values. When you specify TIMESTAMP as a literal, the
fractional seconds precision value can be any number of digits up to 9, as follows:

2-60

ORACLE

Chapter 2
Literals

TIMESTAMP '1997-01-31 09:26:50.124"

TIMESTAMP WITH TIME ZONE Literals

The TIMESTAMP WITH TIME ZONE data type is a variant of TIMESTAMP that includes a time zone
region name or time zone offset. When you specify TIMESTAMP WITH TIME ZONE as a literal, the
fractional seconds precision value can be any number of digits up to 9. For example:

TIMESTAMP '1997-01-31 09:26:56.66 +02:00'
Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent the same
instant in UTC, regardless of the TIME ZONE offsets stored in the data. For example,

TIMESTAMP '1999-04-15 8:00:00 -8:00"

is the same as

TIMESTAMP '1999-04-15 11:00:00 -5:00"

8:00 a.m. Pacific Standard Time is the same as 11:00 a.m. Eastern Standard Time.

You can replace the UTC offset with the TzR (time zone region name) format element. For
example, the following example has the same value as the preceding example:

TIMESTAMP '1999-04-15 8:00:00 US/Pacific’

To eliminate the ambiguity of boundary cases when the daylight saving time switches, use
both the TzR and a corresponding TzD format element. The following example ensures that
the preceding example will return a daylight saving time value:

TIMESTAMP '1999-10-29 01:30:00 US/Pacific PDT'

You can also express the time zone offset using a datetime expression:

SELECT TIMESTAMP '2009-10-29 01:30:00' AT TIME ZONE 'US/Pacific'
FROM DUAL;

¢ See Also:

Datetime Expressions for more information

If you do not add the TzD format element, and the datetime value is ambiguous, then Oracle
returns an error if you have the ERROR ON OVERLAP TIME session parameter set to TRUE. If
that parameter is set to FALSE, then Oracle interprets the ambiguous datetime as standard
time in the specified region.

TIMESTAMP WITH LOCAL TIME ZONE Literals

The TIMESTAMP WITH LOCAL TIME ZONE data type differs from TIMESTAMP WITH TIME ZONE in that
data stored in the database is normalized to the database time zone. The time zone offset is
not stored as part of the column data. There is no literal for TIMESTAMP WITH LOCAL TIME ZONE.
Rather, you represent values of this data type using any of the other valid datetime literals.
The table that follows shows some of the formats you can use to insert a value into a
TIMESTAMP WITH LOCAL TIME ZONE column, along with the corresponding value returned by a

query.

2-61

Chapter 2
Literals

Table 2-12 TIMESTAMP WITH LOCAL TIME ZONE Literals

Value Specified in INSERT Statement Value Returned by Query

'19-FEB-2004"' 19-FEB-2004.00.00.000000
AM

SYSTIMESTAMP 19-FEB-04 02.54.36.497659
PM

TO_TIMESTAMP (' 19-FEB-2004"', 'DD-MON-YYYY') 19-FEB-04 12.00.00.000000
AM

SYSDATE 19-FEB-04 02.55.29.000000
PM

TO DATE('19-FEB-2004', 'DD-MON-YYYY') 19-FEB-04 12.00.00.000000
AM

TIMESTAMP'2004-02-19 8:00:00 US/Pacific’ 19-FEB-04 08.00.00.000000
AM

Notice that if the value specified does not include a time component (either explicitly or
implicitly), then the value returned defaults to midnight.

Interval Literals

An interval literal specifies a period of time. You can specify these differences in terms
of years and months, or in terms of days, hours, minutes, and seconds. Oracle
Database supports two types of interval literals, YEAR TO MONTH and DAY TO SECOND.
Each type contains a leading field and may contain a trailing field. The leading field
defines the basic unit of date or time being measured. The trailing field defines the
smallest increment of the basic unit being considered. For example, a YEAR TO MONTH
interval considers an interval of years to the nearest month. A DAY TO MINUTE interval
considers an interval of days to the nearest minute.

If you have date data in numeric form, then you can use the NUMTOYMINTERVAL Or
NUMTODSINTERVAL conversion function to convert the numeric data into interval values.

Interval literals are used primarily with analytic functions.

¢ See Also:

Analytic Functions , NUMTODSINTERVAL , and NUMTOYMINTERVAL

INTERVAL YEAR TO MONTH

Specify YEAR TO MONTH interval literals using the following syntax:

ORACLE 2-62

ORACLE

Chapter 2
Literals

interval_year to_month::=

.integer
—f INTERVAL |->O{imeger) O O»

0lC=DY0

where

e 'integer [-integer]' specifies integer values for the leading and optional trailing field
of the literal. If the leading field is YEAR and the trailing field is MONTH, then the range of
integer values for the month field is 0 to 11.

e precision is the maximum number of digits in the leading field. The valid range of the
leading field precision is 0 to 9 and its default value is 2.

Restriction on the Leading Field

If you specify a trailing field, then it must be less significant than the leading field. For
example, INTERVAL '0-1' MONTH TO YEAR is not valid.

The following INTERVAL YEAR TO MONTH literal indicates an interval of 123 years, 2 months:

INTERVAL '123-2' YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated versions:

Table 2-13 Forms of INTERVAL YEAR TO MONTH Literals

. ___|
Form of Interval Literal Interpretation

INTERVAL '123-2' YEAR(3) TO MONTH An interval of 123 years, 2 months. You must
specify the leading field precision if it is greater
than the default of 2 digits.

INTERVAL '123' YEAR(3) An interval of 123 years 0 months.

INTERVAL '300' MONTH (3) An interval of 300 months.

INTERVAL '4' YEAR Maps to INTERVAL '4-0' YEAR TO MONTH and
indicates 4 years.

INTERVAL '50' MONTH Maps to INTERVAL '4-2' YEAR TO MONTH and

indicates 50 months or 4 years 2 months.

INTERVAL '123' YEAR Returns an error, because the default precision is
2, and '123' has 3 digits.

You can add or subtract one INTERVAL YEAR TO MONTH literal to or from another to yield another
INTERVAL YEAR TO MONTH literal. For example:

INTERVAL '5-3' YEAR TO MONTH + INTERVAL'20' MONTH =
INTERVAL '6-11' YEAR TO MONTH

2-63

Chapter 2
Literals

INTERVAL DAY TO SECOND

ORACLE

Specify DAY TO SECOND interval literals using the following syntax:

interval_day_to_second::=

o)

ﬁ@-)(fractional,seconds,precisionh
A }(leading_precision) %

SECOND

MINUTE

fe®—>(fractional_seconds_precisionm

SECOND

where

* integer specifies the number of days. If this value contains more digits than the
number specified by the leading precision, then Oracle returns an error.

* time expr specifies a time in the format HH[:MI[:SS[.n]]] or MI[:SS[.n]] oOr
SS[.n], where n specifies the fractional part of a second. If n contains more digits
than the number specified by fractional seconds precision, then nis rounded
to the number of digits specified by the fractional seconds precision value.
You can specify time expr following an integer and a space only if the leading
field is DAY.

* leading precision is the number of digits in the leading field. Accepted values
are 0t0 9. The default is 2.

* fractional seconds precision is the number of digits in the fractional part of the
SECOND datetime field. Accepted values are 1 to 9. The default is 6.

Restriction on the Leading Field:

If you specify a trailing field, then it must be less significant than the leading field. For
example, INTERVAL MINUTE TO DAY is not valid. As a result of this restriction, if SECOND is
the leading field, the interval literal cannot have any trailing field.

The valid range of values for the trailing field are as follows:

2-64

Chapter 2
Format Models

e HOUR:0to 23
e MINUTE: Oto 59
e SECOND: 0 to 59.999999999

Examples of the various forms of INTERVAL DAY TO SECOND literals follow, including some
abbreviated versions:

Table 2-14 Forms of INTERVAL DAY TO SECOND Literals
|

Form of Interval Literal Interpretation

INTERVAL '4 5:12:10.222' DAY TO 4 days, 5 hours, 12 minutes, 10 seconds, and 222
SECOND (3) thousandths of a second.

INTERVAL '4 5:12' DAY TO MINUTE 4 days, 5 hours and 12 minutes.

INTERVAL '400 5" DAY (3) TO HOUR 400 days 5 hours.

INTERVAL '400' DAY (3) 400 days.

INTERVAL '11:12:10.2222222"' HOUR TO 11 hours, 12 minutes, and 10.2222222 seconds.
SECOND (7)

INTERVAL '11:20' HOUR TO MINUTE 11 hours and 20 minutes.

INTERVAL '10' HOUR 10 hours.

INTERVAL '10:22' MINUTE TO SECOND 10 minutes 22 seconds.

INTERVAL '10' MINUTE 10 minutes.

INTERVAL '4' DAY 4 days.

INTERVAL '25' HOUR 25 hours.

INTERVAL '40' MINUTE 40 minutes.

INTERVAL '120' HOUR(3) 120 hours.

INTERVAL '30.12345' SECOND(2,4) 30.1235 seconds. The fractional second '12345' is

rounded to '1235' because the precision is 4.

You can add or subtract one DAY TO SECOND interval literal from another DAY TO SECOND literal.
For example.

INTERVAL'20' DAY - INTERVAL'240' HOUR = INTERVAL'10-0' DAY TO SECOND

Format Models

ORACLE

A format model is a character literal that describes the format of datetime or numeric data
stored in a character string. A format model does not change the internal representation of
the value in the database. When you convert a character string into a date or number, a
format model determines how Oracle Database interprets the string. In SQL statements, you
can use a format model as an argument of the TO CHAR and TO DATE functions to specify:

* The format for Oracle to use to return a value from the database

e The format for a value you have specified for Oracle to store in the database
For example:

e The datetime format model for the string '17:45:29' is '"HH24 :MI:SS".

* The datetime format model for the string '11-Nov-1999'is 'DD-Mon-YYYY'.

2-65

Chapter 2
Format Models

e The number format model for the string '$2,304.25"is '$9,999.99".

For lists of number and datetime format model elements, see Table 2-15 and
Table 2-17.

The values of some formats are determined by the value of initialization parameters.
For such formats, you can specify the characters returned by these format elements
implicitly using the initialization parameter NLS_TERRITORY. You can change the default
date format for your session with the ALTER SESSION statement.

" See Also:

 ALTER SESSION for information on changing the values of these
parameters and Format Model Examples for examples of using format
models

e TO_CHAR (datetime) , TO_CHAR (number) , and TO_DATE

e Oracle Database Reference and Oracle Database Globalization Support
Guide for information on these parameters

This remainder of this section describes how to use the following format models:
* Number Format Models
* Datetime Format Models

Format Model Modifiers

Number Format Models

ORACLE

You can use number format models in the following functions:

* Inthe TO CHAR function to translate a value of NUMBER, BINARY FLOAT, of
BINARY DOUBLE data type to VARCHAR?2 data type

* Inthe TO NUMBER function to translate a value of CHAR or VARCHAR?Z data type to
NUMBER data type

e Inthe TO BINARY FLOAT and TO BINARY DOUBLE functions to translate CHAR and
VARCHARZ2 expressions to BINARY FLOAT or BINARY DOUBLE values

All number format models cause the number to be rounded to the specified number of
significant digits. If a value has more significant digits to the left of the decimal place
than are specified in the format, then pound signs (#) replace the value. This event
typically occurs when you are using TO_CHAR with a restrictive number format string,
causing a rounding operation.

e If a positive NUMBER value is extremely large and cannot be represented in the
specified format, then the infinity sign (~) replaces the value. Likewise, if a
negative NUMBER value is extremely small and cannot be represented by the
specified format, then the negative infinity sign replaces the value (-~).

* If a BINARY FLOAT or BINARY DOUBLE value is converted to CHAR or NCHAR, and the
input is either infinity or NaN (not a number), then Oracle always returns the pound

2-66

Chapter 2
Format Models

signs to replace the value. However, if you omit the format model, then Oracle returns
either Inf or Nan as a string.

Number Format Elements

A number format model is composed of one or more number format elements. The tables
that follow list the elements of a number format model and provide some examples.

Negative return values automatically contain a leading negative sign and positive values
automatically contain a leading space unless the format model contains the M1, S, or PR
format element.

Table 2-15 Number Format Elements

Element Example

Description

, (comma) 9,999

Returns a comma in the specified position. You can specify multiple commas in a
number format model.

Restrictions:

A comma element cannot begin a number format model.

* A comma cannot appear to the right of a decimal character or period in a
number format model.

. (period) 99.99

Returns a decimal point, which is a period (.) in the specified position.
Restriction: You can specify only one period in a number format model.

$ $9999 Returns value with a leading dollar sign.
0999 Returns leading zeros.
9990 Returns trailing zeros.

9 9999 Returns value with the specified number of digits with a leading space if positive or
with a leading minus if negative. Leading zeros are blank, except for a zero value,
which returns a zero for the integer part of the fixed-point number.

B B9999 Returns blanks for the integer part of a fixed-point number when the integer part is
zero (regardless of zeros in the format model).

C €999 Returns in the specified position the ISO currency symbol (the current value of the
NLS ISO CURRENCY parameter).

D 99D99 Returns in the specified position the decimal character, which is the current value of
the NLS_NUMERIC CHARACTER parameter. The default is a period (.).

Restriction: You can specify only one decimal character in a number format model.

EEEE 9.9EEEE Returns a value using in scientific notation.

G 9G999 Returns in the specified position the group separator (the current value of the
NLS NUMERIC CHARACTER parameter). You can specify multiple group separators in
a number format model.

Restriction: A group separator cannot appear to the right of a decimal character or
period in a number format model.

L L1999 Returns in the specified position the local currency symbol (the current value of the
NLS CURRENCY parameter).

Ml 9999MI Returns negative value with a trailing minus sign (-).

Returns positive value with a trailing blank.
Restriction: The MI format element can appear only in the last position of a number
format model.

ORACLE

2-67

Chapter 2
Format Models

Table 2-15 (Cont.) Number Format Elements
]

Element

Example

Description

PR

9999PR

Returns negative value in <angle brackets>.
Returns positive value with a leading and trailing blank.

Restriction: The PR format element can appear only in the last position of a
number format model.

RN
m

RN

rn

Returns a value as Roman numerals in uppercase.
Returns a value as Roman numerals in lowercase.
Value can be an integer between 1 and 3999.

59999
9999s

Returns negative value with a leading minus sign (-).
Returns positive value with a leading plus sign (+).
Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing plus sign (+).

Restriction: The S format element can appear only in the first or last position of a
number format model.

™

™

The text minimum number format model returns (in decimal output) the smallest
number of characters possible. This element is case insensitive.

The default is TM9, which returns the number in fixed notation unless the output

exceeds 64 characters. If the output exceeds 64 characters, then Oracle Database

automatically returns the number in scientific notation.

Restrictions:

* You cannot precede this element with any other element.

* You can follow this element only with one 9 or one E (or €), but not with any
combination of these. The following statement returns an error:

SELECT TO CHAR(1234, 'TM9e') FROM DUAL;

U9999

Returns in the specified position the Euro (or other) dual currency symbol,
determined by the current value of the NS DUAL CURRENCY parameter.

999v99

Returns a value multiplied by 10" (and if necessary, round it up), where n is the
number of 9's after the V.

XXXX

XXXX

Returns the hexadecimal value of the specified number of digits. If the specified

number is not an integer, then Oracle Database rounds it to an integer.

Restrictions:

e This element accepts only positive values or 0. Negative values return an error.

* You can precede this element only with O (which returns leading zeroes) or FM.
Any other elements return an error. If you specify neither 0 nor FM with X, then
the return always has one leading blank. Refer to the format model modifier FM
for more information.

ORACLE

Table 2-16 shows the results of the following query for different values of number and

'fmt':

SELECT TO CHAR (number, 'fmt')
FROM DUAL;

Table 2-16 Results of Number Conversions

number

‘fmt’ Result

-1234567890 99999999995 '1234567890-"

2-68

Datetime Format Models

ORACLE

Table 2-16 (Cont.) Results of Number Conversions

Chapter 2
Format Models

number ‘fmt’ Result

0 99.99 ' .00
+0.1 99.99 'oL10!
-0.2 99.99 ' -.20"

0 90.99 ' 0.00'
+0.1 90.99 ' 0.10"
-0.2 90.99 ' -0.20"

0 9999 o

1 9999 'l

0 B9999 vt

1 B9999 'l

0 B90.99 v
+123.456 999.999 ' 123.456"
-123.456 999.999 '-123.456"
+123.456 FM999.009 '123.456"
+123.456 9.9EEEE ' 1.2E+02"
+1E+123 9.9EEEE ' 1.0E+123"
+123.456 FM9. 9EEEE '1.2E+02"
+123.45 FM999.009 '123.45"
+123.0 FM999.009 '123.00"
+123.45 1999.99 ' $123.45"
+123.45 FML999.99 '$123.45"
+1234567890 9999999999S 11234567890+

You can use datetime format models in the following functions:

* Inthe TO_* datetime functions to translate a character value that is in a format other than
the default format into a datetime value. (The T0O_* datetime functions are TO_DATE,
TO_TIMESTAMP, and TO TIMESTAMP TZ.)

» Inthe TO CHAR function to translate a datetime value into a character value that is in a
format other than the default format (for example, to print the date from an application)

The total length of a datetime format model cannot exceed 22 characters.

The default datetime formats are specified either explicitly with the NLS session parameters
NLS_DATE FORMAT, NLS TIMESTAMP FORMAT, and NLS TIMESTAMP T7 FORMAT, or implicitly with
the NLS session parameter NLS TERRITORY. You can change the default datetime formats for

your session with the ALTER SESSION statement.

2-69

Chapter 2
Format Models

¢ See Also:

ALTER SESSION and Oracle Database Globalization Support Guide for
information on the NLS parameters

Datetime Format Elements

A datetime format model is composed of one or more datetime format elements as
listed in Table 2-17.

» For input format models, format items cannot appear twice, and format items that
represent similar information cannot be combined. For example, you cannot use
'SYYYY"and 'BC' in the same format string.

* The second column indicates whether the format element can be used in the TO *
datetime functions. All format elements can be used in the TO CHAR function.

e The following datetime format elements can be used in timestamp and interval
format models, but not in the original DATE format model: FF, TzD, TZH, TzM, and
TZR.

* Many datetime format elements are padded with blanks or leading zeroes to a
specific length. Refer to the format model modifier FM for more information.

¢ Note:

Oracle recommends that you use the 4-digit year element (YYYY) instead of
the shorter year elements for these reasons:

e The 4-digit year element eliminates ambiguity.

e The shorter year elements may affect query optimization because the
year is not known at query compile time and can only be determined at
run time.

Uppercase Letters in Date Format Elements

Capitalization in a spelled-out word, abbreviation, or Roman numeral follows
capitalization in the corresponding format element. For example, the date format
model 'DAY' produces capitalized words like 'MONDAY'; 'Day' produces ‘Monday'; and
'day' produces 'monday'.

Punctuation and Character Literals in Datetime Format Models

ORACLE

You can include these characters in a date format model:
* Punctuation such as hyphens, slashes, commas, periods, and colons
* Character literals, enclosed in double quotation marks

These characters appear in the return value in the same location as they appear in the
format model.

2-70

Chapter 2
Format Models

Table 2-17 Datetime Format Elements
]

Element TO_* Description
datetime
functions?
B Yes Punctuation and quoted text is reproduced in the result.
/
lltextll
AD Yes AD indicator with or without periods.
A.D.
AM Yes Meridian indicator with or without periods.
A.M.
BC Yes BC indicator with or without periods.
B.C.
cc Century.
sce « Ifthe last 2 digits of a 4-digit year are between 01 and 99 (inclusive), then the

century is one greater than the first 2 digits of that year.

« Ifthe last 2 digits of a 4-digit year are 00, then the century is the same as the
first 2 digits of that year.

For example, 2002 returns 21; 2000 returns 20.

> Yes Day of week (1-7). This element depends on the NLS territory of the session.
DAY Yes Name of day.

D Yes Day of month (1-31).

oD Yes Day of year (1-366).

DL Yes Returns a value in the long date format, which is an extension of the Oracle

Database DATE format, determined by the current value of the NLS DATE FORMAT
parameter. Makes the appearance of the date components (day name, month
number, and so forth) depend on the NLS TERRITORY and NLS LANGUAGE
parameters. For example, in the AMERICAN AMERICA locale, this is equivalent to
specifying the format ' fmDay, Month dd, yyyy'. Inthe GERMAN GERMANY locale, it
is equivalent to specifying the format 'fmDay, dd. Month yyyy'"

Restriction: You can specify this format only with the TS element, separated by
white space.

ORACLE 2-71

Chapter 2
Format Models

Table 2-17 (Cont.) Datetime Format Elements

Element TO_* Description

datetime
functions?

DS Yes Returns a value in the short date format. Makes the appearance of the date
components (day name, month number, and so forth) depend on the
NLS TERRITORY and NLS LANGUAGE parameters. For example, in the
AMERICAN AMERICA locale, this is equivalent to specifying the format 'MM/DD/RRRR'.
In the ENGLISH UNITED KINGDOM locale, it is equivalent to specifying the format
'DD/MM/RRRR'.

Restriction: You can specify this format only with the TS element, separated by
white space.

DY Yes Abbreviated name of day.

£ Yes Abbreviated era name (Japanese Imperial, ROC Official, and Thai Buddha
calendars).

°E Yes Full era name (Japanese Imperial, ROC Official, and Thai Buddha calendars).

FF [1..9] Yes Fractional seconds; no radix character is printed. Use the X format element to add
the radix character. Use the numbers 1 to 9 after FF to specify the number of digits
in the fractional second portion of the datetime value returned. If you do not specify
a digit, then Oracle Database uses the precision specified for the datetime data type
or the data type's default precision. Valid in timestamp and interval formats, but not
in DATE formats.

Examples: "HH:MI:SS.FF'

SELECT TO_CHAR(SYSTIMESTAMP, 'SS.FF3') from DUAL;
M Yes Returns a value with no leading or trailing blanks.

See Also: FM

X Yes Requires exact matching between the character data and the format model.
See Also: FX

HH Yes Hour of day (1-12).

HH12

HH24 Yes Hour of day (0-23).

W Calendar week of year (1-52 or 1-53), as defined by the ISO 8601 standard.

e A calendar week starts on Monday.

e The first calendar week of the year includes January 4.

* The first calendar week of the year may include December 29, 30 and 31.
e The last calendar week of the year may include January 1, 2, and 3.

IYYY 4-digit year of the year containing the calendar week, as defined by the 1ISO 8601
standard.

vy Last 3, 2, or 1 digit(s) of the year containing the calendar week, as defined by the

1Y ISO 8601 standard.

I

ORACLE 2-72

Chapter 2
Format Models

Table 2-17 (Cont.) Datetime Format Elements

Element TO_* Description
datetime
functions?

J Yes Julian day; the number of days since January 1, 4712 BC. Number specified with J
must be integers.

MI Yes Minute (0-59).

MM Yes Month (01-12; January = 01).

MON Yes Abbreviated name of month.

MONTH Yes Name of month.

PM Yes Meridian indicator with or without periods.

P.M.

0 Quarter of year (1, 2, 3, 4; January - March = 1).

RM Yes Roman numeral month (I-XII; January = I).

RR Yes Lets you store 20th century dates in the 21st century using only two digits.
See Also: The RR Datetime Format Element

RRRR Yes Round year. Accepts either 4-digit or 2-digit input. If 2-digit, provides the same return
as RR. If you do not want this functionality, then enter the 4-digit year.

ss Yes Second (0-59).

53553 Yes Seconds past midnight (0-86399).

g Yes Returns a value in the short time format. Makes the appearance of the time
components (hour, minutes, and so forth) depend on the NLS TERRITORY and
NLS LANGUAGE initialization parameters.
Restriction: You can specify this format only with the DL or DS element, separated
by white space.

77D Yes Daylight saving information. The TZD value is an abbreviated time zone string with
daylight saving information. It must correspond with the region specified in TZR.
Valid in timestamp and interval formats, but not in DATE formats.
Example: PST (for US/Pacific standard time); PDT (for US/Pacific daylight time).

T7H Yes Time zone hour. (See TzM format element.) Valid in timestamp and interval formats,
but not in DATE formats.
Example: "HH:MI:SS.FFTZH:TZM'.

P7M Yes Time zone minute. (See TZH format element.) Valid in timestamp and interval

formats, but not in DATE formats.
Example: "HH:MI:SS.FFTZH:TZM'.

ORACLE 2-73

Chapter 2
Format Models

Table 2-17 (Cont.) Datetime Format Elements

Element TO_* Description
datetime
functions?
77R Yes Time zone region information. The value must be one of the time zone region names
supported in the database. Valid in timestamp and interval formats, but not in DATE
formats.
Example: US/Pacific
- Week of year (1-53) where week 1 starts on the first day of the year and continues to
the seventh day of the year.
W Week of month (1-5) where week 1 starts on the first day of the month and ends on
the seventh.
X Yes Local radix character.
Example: '"HH:MI:SSXFF'.
v, YYY Yes Year with comma in this position.
YEAR Year, spelled out; S prefixes BC dates with a minus sign (-).
SYEAR
YYYY Yes 4-digit year; S prefixes BC dates with a minus sign.
SYYYY
vYY Yes Last 3, 2, or 1 digit(s) of year.
Yy
Y
Oracle Database converts strings to dates with some flexibility. For example, when the
TO_DATE function is used, a format model containing punctuation characters matches
an input string lacking some or all of these characters, provided each numerical
element in the input string contains the maximum allowed number of digits—for
example, two digits '05' for '"MM' or four digits '2007' for 'YYYY". The following
statement does not return an error:
SELECT TO CHAR(TO DATE('0207','MM/YY'), 'MM/YY') FROM DUAL;
TO CH
02/07
However, the following format string does return an error, because the FX (format
exact) format modifier requires an exact match of the expression and the format string:
SELECT TO_CHAR(TO DATE('0207', 'fxmm/yy'), 'mm/yy') FROM DUAL;
SELECT TO_CHAR(TO DATE('0207', 'fxmm/yy'), 'mm/yy') FROM DUAL;
*
ERROR at line 1:
ORA-01861: literal does not match format string
ORACLE 2.74

Chapter 2
Format Models

Any non-alphanumeric character is allowed to match the punctuation characters in the format
model. For example, the following statement does not return an error:

SELECT TO CHAR (TO_DATE('02#07', 'MM/YY'), 'MM/YY') FROM DUAL;

¢ See Also:

Format Model Modifiers and String-to-Date Conversion Rules for more information

Datetime Format Elements and Globalization Support

The functionality of some datetime format elements depends on the country and language in
which you are using Oracle Database. For example, these datetime format elements return
spelled values:

+ MONTH
 MON

« DAY

- DY

e BCorADorB.C.orAD.
« AMor PMor AM or P.M.

The language in which these values are returned is specified either explicitly with the
initialization parameter NLS DATE LANGUAGE or implicitly with the initialization parameter
NLS LANGUAGE. The values returned by the YEAR and SYEAR datetime format elements are
always in English.

The datetime format element D returns the number of the day of the week (1-7). The day of
the week that is numbered 1 is specified implicitly by the initialization parameter
NLS TERRITORY.

See Also:

Oracle Database Reference and Oracle Database Globalization Support Guide for
information on globalization support initialization parameters

|ISO Standard Date Format Elements

ORACLE

Oracle calculates the values returned by the datetime format elements IYYY, IYY, 1Y, I, and
IW according to the ISO standard. For information on the differences between these values
and those returned by the datetime format elements YYYY, YYY, YY, Y, and WW, see the
discussion of globalization support in Oracle Database Globalization Support Guide.

2-75

Chapter 2
Format Models

The RR Datetime Format Element

The RR datetime format element is similar to the Yy datetime format element, but it
provides additional flexibility for storing date values in other centuries. The RR datetime
format element lets you store 20th century dates in the 21st century by specifying only
the last two digits of the year.

If you use the TO DATE function with the Yy datetime format element, then the year
returned always has the same first 2 digits as the current year. If you use the RR
datetime format element instead, then the century of the return value varies according
to the specified two-digit year and the last two digits of the current year.

That is:

e If the specified two-digit year is 00 to 49, then

— If the last two digits of the current year are 00 to 49, then the returned year has
the same first two digits as the current year.

— If the last two digits of the current year are 50 to 99, then the first 2 digits of the
returned year are 1 greater than the first 2 digits of the current year.

e If the specified two-digit year is 50 to 99, then

— If the last two digits of the current year are 00 to 49, then the first 2 digits of the
returned year are 1 less than the first 2 digits of the current year.

— If the last two digits of the current year are 50 to 99, then the returned year has
the same first two digits as the current year.

The following examples demonstrate the behavior of the RR datetime format element.

RR Datetime Format Examples

ORACLE

Assume these queries are issued between 1950 and 1999:

SELECT TO_CHAR(TO DATE('27-0CT-98', 'DD-MON-RR'), 'YYYY') "Year" FROM DUAL;
Year
1998
SELECT TO_CHAR(TO DATE('27-0CT-17', 'DD-MON-RR'), 'YYYY') "Year" FROM DUAL;
Year

2017

Now assume these queries are issued between 2000 and 2049:

SELECT TO_CHAR(TO DATE('27-0CT-98', 'DD-MON-RR'), 'YYYY') "Year" FROM DUAL;
Year
1998
SELECT TO_CHAR(TO DATE('27-0CT-17', 'DD-MON-RR'), 'YYYY') "Year" FROM DUAL;
Year

2-76

Chapter 2
Format Models

2017

Note that the queries return the same values regardless of whether they are issued before or
after the year 2000. The RR datetime format element lets you write SQL statements that will
return the same values from years whose first two digits are different.

Datetime Format Element Suffixes

Table 2-18 lists suffixes that can be added to datetime format elements:

Table 2-18 Date Format Element Suffixes

Suffix Meaning Example Element Example Value
TH Ordinal Number DDTH 4TH

SP Spelled Number DDSP FOUR

SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

Notes on date format element suffixes:

e When you add one of these suffixes to a datetime format element, the return value is
always in English.

« Datetime suffixes are valid only to format output. You cannot use them to insert a date
into the database.

Format Model Modifiers

ORACLE

The FM and FX modifiers, used in format models in the TO CHAR function, control blank
padding and exact format checking.

A modifier can appear in a format model more than once. In such a case, each subsequent
occurrence toggles the effects of the modifier. Its effects are enabled for the portion of the
model following its first occurrence, and then disabled for the portion following its second, and
then reenabled for the portion following its third, and so on.

FM

Fill mode. Oracle uses trailing blank characters and leading zeroes to fill format elements to a
constant width. The width is equal to the display width of the largest element for the relevant
format model:

* Numeric elements are padded with leading zeros to the width of the maximum value
allowed for the element. For example, the YYYY element is padded to four digits (the
length of '9999"), HH24 to two digits (the length of '23"), and DDD to three digits (the length
of '366").

e The character elements MONTH, MON, DAY, and DY are padded with trailing blanks to the
width of the longest full month name, the longest abbreviated month name, the longest
full date name, or the longest abbreviated day name, respectively, among valid names
determined by the values of NLS DATE LANGUAGE and NLS CALENDAR parameters. For
example, when NLS DATE LANGUAGE is AMERICAN and NLS CALENDAR iS GREGORIAN (the
default), the largest element for MONTH is SEPTEMBER, so all values of the MONTH format
element are padded to nine display characters. The values of the NLS DATE LANGUAGE

2-77

Chapter 2
Format Models

and NLS_CALENDAR parameters are specified in the third argument to T0 CHAR and
TO_* datetime functions or they are retrieved from the NLS environment of the
current session.

* The character element RM is padded with trailing blanks to the length of 4, which
is the length of ‘viii'.

e Other character elements and spelled-out numbers (SP, SPTH, and THSP suffixes)
are not padded.

The FM modifier suppresses the above padding in the return value of the TO_CHAR
function.

FX

Format exact. This modifier specifies exact matching for the character argument and
datetime format model of a TO DATE function:

* Punctuation and quoted text in the character argument must exactly match (except
for case) the corresponding parts of the format model.

e The character argument cannot have extra blanks. Without FX, Oracle ignores
extra blanks.

* Numeric data in the character argument must have the same number of digits as
the corresponding element in the format model. Without FX, numbers in the
character argument can omit leading zeros.

When rX is enabled, you can disable this check for leading zeros by using the FM
modifier as well.

If any portion of the character argument violates any of these conditions, then Oracle
returns an error message.

Format Model Examples

ORACLE

The following statement uses a date format model to return a character expression:

SELECT TO CHAR(SYSDATE, 'fmDDTH') || ' of ' [|
TO _CHAR(SYSDATE, 'fmMonth') [[', ' []|
TO_CHAR(SYSDATE, 'YYYY') "Ides"

FROM DUAL;

3RD of April, 2008

The preceding statement also uses the FM modifier. If FM is omitted, then the month is
blank-padded to nine characters:

SELECT TO CHAR(SYSDATE, 'DDTH') || ' of ' []|
TO_CHAR(SYSDATE, 'Month') || ', ' ||
TO CHAR(SYSDATE, 'YYYY') "Ides"
FROM DUAL;

03RD of April , 2008

The following statement places a single quotation mark in the return value by using a
date format model that includes two consecutive single quotation marks:

2-78

ORACLE

Chapter 2
Format Models

SELECT TO CHAR(SYSDATE, 'fmDay') || '''s Special' "Menu"
FROM DUAL;

Tuesday's Special

Two consecutive single quotation marks can be used for the same purpose within a character
literal in a format model.

Table 2-19 shows whether the following statement meets the matching conditions for different
values of char and 'fmt' using FX (the table named table has a column date column of data
type DATE):
UPDATE table

SET date column = TO DATE (char, 'fmt');

Table 2-19 Matching Character Data and Format Models with the FX Format Model
Modifier

char ‘fmt’ Match or Error?
'15/ JAN /1998' 'DD-MON-YYYY' Match
' 15! JAN % /1998 'DD-MON-YYYY' Error
'15/JAN/1998" ' FXDD-MON-YYYY' Error
'15-JAN-1998" 'FXDD-MON-YYYY' Match
'1-JAN-1998" 'FXDD-MON-YYYY' Error
"01-JAN-1998" 'FXDD-MON-YYYY' Match
'1-JAN-1998" ' FXEMDD-MON-YYYY' Match

Format of Return Values: Examples

You can use a format model to specify the format for Oracle to use to return values from the
database to you.

The following statement selects the salaries of the employees in Department 80 and uses the
TO_CHAR function to convert these salaries into character values with the format specified by
the number format model '$99, 990.99":

SELECT last name employee, TO CHAR(salary, '$99,990.99")
FROM employees
WHERE department id = 80;

Because of this format model, Oracle returns salaries with leading dollar signs, commas
every three digits, and two decimal places.

The following statement selects the date on which each employee from Department 20 was
hired and uses the TO CHAR function to convert these dates to character strings with the
format specified by the date format model 'fmMonth DD, YYYY"

SELECT last name employee, TO CHAR(hire date,'fmMonth DD, YYYY') hiredate
FROM employees
WHERE department id = 20;

With this format model, Oracle returns the hire dates without blank padding (as specified by
fm), two digits for the day, and the century included in the year.

2-79

Chapter 2
Format Models

¢ See Also:

Format Model Modifiers for a description of the fm format element

Supplying the Correct Format Model: Examples

When you insert or update a column value, the data type of the value that you specify
must correspond to the column data type of the column. You can use format models to
specify the format of a value that you are converting from one data type to another
data type required for a column.

For example, a value that you insert into a DATE column must be a value of the DATE
data type or a character string in the default date format (Oracle implicitly converts
character strings in the default date format to the DATE data type). If the value is in
another format, then you must use the TO_DATE function to convert the value to the
DATE data type. You must also use a format model to specify the format of the
character string.

The following statement updates Hunold's hire date using the TO DATE function with
the format mask 'YYYY MM DD' to convert the character string ‘2008 05 20' to a DATE
value:

UPDATE employees
SET hire date = TO DATE('2008 05 20','YYYY MM DD')
WHERE last name = 'Hunold';

String-to-Date Conversion Rules

The following additional formatting rules apply when converting string values to date
values (unless you have used the Fx or FxFM modifiers in the format model to control
exact format checking):

e You can omit punctuation included in the format string from the date string if all the
digits of the numerical format elements, including leading zeros, are specified. For
example, specify 02 and not 2 for two-digit format elements such as MM, DD, and
YY.

e You can omit time fields found at the end of a format string from the date string.

* You can use any non-alphanumeric character in the date string to match the
punctuation symbol in the format string.

e If a match fails between a datetime format element and the corresponding
characters in the date string, then Oracle attempts alternative format elements, as
shown in Table 2-20.

Table 2-20 Oracle Format Matching

___|
Original Format Element Additional Format Elements to Try in Place of the Original

'"MON' and 'MONTH'

|Wl
'MON '"MONTH'
'MONTH' 'MON'

ORACLE 2-80

Chapter 2
Format Models

Table 2-20 (Cont.) Oracle Format Matching

___|
Original Format Element Additional Format Elements to Try in Place of the Original

'yy! 'YYyy'

'RR' 'RRRR'

XML Format Model

The sYs_XMLAgg and SYS_XMLGen (deprecated) functions return an instance of type XMLType
containing an XML document. Oracle provides the XMLFormat object, which lets you format
the output of these functions.

Table 2-21 lists and describes the attributes of the xMLFormat object. The function that
implements this type follows the table.

See Also:

* SYS_XMLAGG for information on the sYS XMLAgg function
* SYS_XMLGEN for information on the SYS XMLGen function

e QOracle XML DB Developer’s Guide for more information on the implementation
of the XMLFormat object and its use

Table 2-21 Attributes of the XMLFormat Object
|

Attribute Data Type Purpose
enclTag VARCHAR2 (4000) or The name of the enclosing tag for the result of the SYS XMLAgg or
VARCHAR2 (32767)1 SYS XMLGen (deprecated) function.
SYS XMLAgg: The default is ROWSET.
SYS XMLGen: If the input to the function is a column name, then
the default is the column name. Otherwise the default is ROW.
When schemaType is set to USE_GIVEN SCHEMA, this attribute
also gives the name of the XMLSchema element.
schemaType VARCHAR2 (100) The type of schema generation for the output document. Valid
values are 'NO_SCHEMA' and 'USE_GIVEN SCHEMA'. The default is
'NO_SCHEMA'.
schemaName VARCHAR?Z (4000) or The name of the target schema Oracle uses if the value of the
VARCHAR? (32767)1 schemaType is 'USE_GIVEN SCHEMA' If you specify schemaName,
then Oracle uses the enclosing tag as the element name.
targetNameSpace VARCHAR2 (4000) or The target namespace if the schema is specified (that is,
VARCHARZ2 (32767) 1 schemaType is GEN_SCHEMA *, or USE_GIVEN_SCHEMA)
dburlPrefix VARCHAR2 (4000) or The URL to the database to use if WITH SCHEMA is specified. If
VARCHAR? (32767) % this attribute is not specified, then Oracle declares the URL to the
types as a relative URL reference.
processinglIns VARCHAR?Z (4000) or User-provided processing instructions, which are appended to the
VARCHAR? (32767)1 top of the function output before the element.
ORACLE 2-81

Chapter 2
Nulls

1 The data type for this attribute is VARCHAR2 (4000) if the initialization parameter MAX STRING SIZE = STANDARD, and
VARCHARZ (32767) ifMAX STRING SIZE = EXTENDED. See Extended Data Types for more information.

Nulls

ORACLE

The function that implements the xMLFormat object follows:

STATIC FUNCTION createFormat (

enclTag IN varchar?2 := 'ROWSET',

schemaType IN varchar2 := 'NO SCHEMA',

schemaName IN varchar? := null,

targetNameSpace IN varchar2 := null,

dburlPrefix IN varchar?2 := null,

processingIns IN varchar2 := null) RETURN XMLGenFormatType
deterministic parallel enable,

MEMBER PROCEDURE genSchema (spec IN varchar2),

MEMBER PROCEDURE setSchemaName (schemaName IN varchar2),

MEMBER PROCEDURE setTargetNameSpace (targetNameSpace IN varchar?),
MEMBER PROCEDURE setEnclosingElementName (enclTag IN varchar?),
MEMBER PROCEDURE setDbUrlPrefix(prefix IN varchar?),

MEMBER PROCEDURE setProcessingIns(pi IN varchar2),

CONSTRUCTOR FUNCTION XMLGenFormatType (

enclTag IN varchar?2 := 'ROWSET',

schemaType IN varchar2 := 'NO SCHEMA',

schemaName IN varchar? := null,

targetNameSpace IN varchar2 := null,

dbUrlPrefix IN varchar?2 := null,

processingIns IN varchar2 := null) RETURN SELF AS RESULT
deterministic parallel enable,

STATIC function createFormat2 (

enclTag in varchar?2 := 'ROWSET',
flags in raw) return sys.xmlgenformattype
deterministic parallel enable

If a column in a row has no value, then the column is said to be null, or to contain null.
Nulls can appear in columns of any data type that are not restricted by NOT NULL or
PRIMARY KEY integrity constraints. Use a null when the actual value is not known or
when a value would not be meaningful.

Oracle Database treats a character value with a length of zero as null. However, do
not use null to represent a numeric value of zero, because they are not equivalent.

Note:

Oracle Database currently treats a character value with a length of zero as
null. However, this may not continue to be true in future releases, and Oracle
recommends that you do not treat empty strings the same as nulls.

Any arithmetic expression containing a null always evaluates to null. For example, null
added to 10 is null. In fact, all operators (except concatenation) return null when given
a null operand.

2-82

Chapter 2
Nulls

Nulls in SQL Functions

For information on null handling in SQL functions, see Nulls in SQL Functions .

Nulls with Comparison Conditions

To test for nulls, use only the comparison conditions IS NULL and IS NOT NULL. If you use any
other condition with nulls and the result depends on the value of the null, then the result is
UNKNOWN. Because null represents a lack of data, a null cannot be equal or unequal to any
value or to another null. However, Oracle considers two nulls to be equal when evaluating a
DECODE function. Refer to DECODE for syntax and additional information.

Oracle also considers two nulls to be equal if they appear in compound keys. That is, Oracle
considers identical two compound keys containing nulls if all the non-null components of the
keys are equal.

Nulls in Conditions

A condition that evaluates to UNKNOWN acts almost like FALSE. For example, a SELECT
statement with a condition in the WHERE clause that evaluates to UNKNOWN returns no rows.
However, a condition evaluating to UNKNOWN differs from FALSE in that further operations on an
UNKNOWN condition evaluation will evaluate to UNKNOWN. Thus, NOT FALSE evaluates to TRUE, but
NOT UNKNOWN evaluates to UNKNOWN.

Table 2-22 shows examples of various evaluations involving nulls in conditions. If the
conditions evaluating to UNKNOWN were used in a WHERE clause of a SELECT statement, then no
rows would be returned for that query.

Table 2-22 Conditions Containing Nulls
]

Condition Value of A Evaluation
a IS NULL 10 FALSE

a IS NOT NULL 10 TRUE

a IS NULL NULL TRUE

a IS NOT NULL NULL FALSE

a = NULL 10 UNKNOWN
a != NULL 10 UNKNOWN
a = NULL NULL UNKNOWN
a != NULL NULL UNKNOWN
a =10 NULL UNKNOWN
a !'=10 NULL UNKNOWN

For the truth tables showing the results of logical conditions containing nulls, see Table 6-5,
Table 6-6, and Table 6-7.

ORACLE 2-83

Chapter 2
Comments

Comments

You can create two types of comments:

« Comments within SQL statements are stored as part of the application code that
executes the SQL statements.

* Comments associated with individual schema or nonschema objects are stored in
the data dictionary along with metadata on the objects themselves.

Comments Within SQL Statements

ORACLE

Comments can make your application easier for you to read and maintain. For
example, you can include a comment in a statement that describes the purpose of the
statement within your application. With the exception of hints, comments within SQL
statements do not affect the statement execution. Refer to Hints on using this
particular form of comment.

A comment can appear between any keywords, parameters, or punctuation marks in a
statement. You can include a comment in a statement in two ways:

* Begin the comment with a slash and an asterisk (/*). Proceed with the text of the
comment. This text can span multiple lines. End the comment with an asterisk and
a slash (*/). The opening and terminating characters need not be separated from
the text by a space or a line break.

* Begin the comment with -- (two hyphens). Proceed with the text of the comment.
This text cannot extend to a new line. End the comment with a line break.

Some of the tools used to enter SQL have additional restrictions. For example, if you
are using SQL*Plus, by default you cannot have a blank line inside a multiline
comment. For more information, refer to the documentation for the tool you use as an
interface to the database.

A SQL statement can contain multiple comments of both styles. The text of a comment
can contain any printable characters in your database character set.

Example

These statements contain many comments:

SELECT last name, employee id, salary + NVL(commission pct, 0),
job _id, e.department id
/* Select all employees whose compensation is
greater than that of Pataballa.*/
FROM employees e, departments d
/*The DEPARTMENTS table is used to get the department name.*/
WHERE e.department id = d.department id
AND salary + NVL(commission pct,0) > /* Subquery: */
(SELECT salary + NVL(commission pct,0)
/* total compensation is salary + commission pct */
FROM employees
WHERE last name = 'Pataballa')
ORDER BY last name, employee id;

SELECT last name, -- select the name
employee id -- employee id
salary + NVL(commission pct, 0), -- total compensation

2-84

Chapter 2
Comments

job_id, -- job
e.department id -- and department
FROM employees e, -- of all employees

departments d
WHERE e.department id = d.department id

AND salary + NVL(commission pct, 0) > -- whose compensation
-- 1s greater than
(SELECT salary + NVL(commission pct,0) -- the compensation
FROM employees
WHERE last name = 'Pataballa') -- of Pataballa
ORDER BY last name -- and order by last name
employee id -- and employee id.

Comments on Schema and Nonschema Objects

Hints

ORACLE

You can use the COMMENT command to associate a comment with a schema object (table,
view, materialized view, operator, indextype, mining model) or a honschema object (edition)
using the COMMENT command. You can also create a comment on a column, which is part of a
table schema object. Comments associated with schema and nonschema objects are stored
in the data dictionary. Refer to COMMENT for a description of this form of comment.

Hints are comments in a SQL statement that pass instructions to the Oracle Database
optimizer. The optimizer uses these hints to choose an execution plan for the statement,
unless some condition exists that prevents the optimizer from doing so.

Hints were introduced in Oracle7, when users had little recourse if the optimizer generated
suboptimal plans. Now Oracle provides a number of tools, including the SQL Tuning Advisor,
SQL plan management, and SQL Performance Analyzer, to help you address performance
problems that are not solved by the optimizer. Oracle strongly recommends that you use
those tools rather than hints. The tools are far superior to hints, because when used on an
ongoing basis, they provide fresh solutions as your data and database environment change.

Hints should be used sparingly, and only after you have collected statistics on the relevant
tables and evaluated the optimizer plan without hints using the EXPLAIN PLAN Statement.
Changing database conditions as well as query performance enhancements in subsequent
releases can have significant impact on how hints in your code affect performance.

The remainder of this section provides information on some commonly used hints. If you
decide to use hints rather than the more advanced tuning tools, be aware that any short-term
benefit resulting from the use of hints may not continue to result in improved performance
over the long term.

Using Hints

A statement block can have only one comment containing hints, and that comment must
follow the SELECT, UPDATE, INSERT, MERGE, Or DELETE keyword.

The following syntax diagram shows hints contained in both styles of comments that Oracle
supports within a statement block. The hint syntax must follow immediately after an INSERT,
UPDATE, DELETE, SELECT, or MERGE keyword that begins the statement block.

2-85

ORACLE

Chapter 2
Comments

hint::=
'.string I
*/
|
e hint
where:

* The plus sign (+) causes Oracle to interpret the comment as a list of hints. The
plus sign must follow immediately after the comment delimiter. No space is
permitted.

e hintis one of the hints discussed in this section. The space between the plus sign
and the hint is optional. If the comment contains multiple hints, then separate the
hints by at least one space.

* stringis other commenting text that can be interspersed with the hints.

The --+ syntax requires that the entire comment be on a single line.

Oracle Database ignores hints and does not return an error under the following
circumstances:

e The hint contains misspellings or syntax errors. However, the database does
consider other correctly specified hints in the same comment.

* The comment containing the hint does not follow a DELETE, INSERT, MERGE, SELECT,
or UPDATE keyword.

e A combination of hints conflict with each other. However, the database does
consider other hints in the same comment.

e The database environment uses PL/SQL version 1, such as Forms version 3
triggers, Oracle Forms 4.5, and Oracle Reports 2.5.

e A global hint refers to multiple query blocks. Refer to Specifying Multiple Query
Blocks in a Global Hint for more information.

With 19¢ you can use DBMS XPLAN to find out whether a hint is used or not used. For
more information, see the Database SQL Tuning Guide.

Specifying a Query Block in a Hint

You can specify an optional query block name in many hints to specify the query block
to which the hint applies. This syntax lets you specify in the outer query a hint that
applies to an inline view.

The syntax of the query block argument is of the form @queryblock, where queryblock
is an identifier that specifies a query block in the query. The queryblock identifier can
either be system-generated or user-specified. When you specify a hint in the query
block itself to which the hint applies, you omit the @queryblock syntax.

* The system-generated identifier can be obtained by using EXPLAIN PLAN for the
guery. Pretransformation query block nhames can be determined by running

2-86

ORACLE

Chapter 2
Comments

EXPLAIN PLAN for the query using the NO QUERY TRANSFORMATION hint. See
NO_QUERY_TRANSFORMATION Hint .

* The user-specified name can be set with the 0B NAME hint. See QB_NAME Hint .

Specifying Global Hints

Many hints can apply both to specific tables or indexes and more globally to tables within a
view or to columns that are part of indexes. The syntactic elements tablespec and indexspec
define these global hints.

tablespec::=

Ve

You must specify the table to be accessed exactly as it appears in the statement. If the
statement uses an alias for the table, then use the alias rather than the table name in the hint.
However, do not include the schema name with the table name within the hint, even if the
schema name appears in the statement.

" Note:

Specifying a global hint using the tablespec clause does not work for queries that
use ANSI joins, because the optimizer generates additional views during parsing.
Instead, specify @queryblock to indicate the query block to which the hint applies.

indexspec::=

index

|
(column

When tablespec is followed by indexspec in the specification of a hint, a comma separating
the table name and index name is permitted but not required. Commas are also permitted,
but not required, to separate multiple occurrences of indexspec.

Specifying Multiple Query Blocks in a Global Hint

Oracle Database ignores global hints that refer to multiple query blocks. To avoid this issue,
Oracle recommends that you specify the object alias in the hint instead of using tablespec
and indexspec.

For example, consider the following view v and table t:

CREATE VIEW v AS
SELECT e.last name, e.department id, d.location id
FROM employees e, departments d

2-87

ORACLE

Chapter 2
Comments

WHERE e.department id = d.department id;

CREATE TABLE t AS
SELECT * from employees
WHERE employee id < 200;

Note:

The following examples use the EXPLAIN PLAN statement, which enables you
to display the execution plan and determine if a hint is honored or ignored.
Refer to EXPLAIN PLAN for more information.

The LEADING hint is ignored in the following query because it refers to multiple query
blocks, that is, the main query block containing table t and the view query block v:

EXPLAIN PLAN
SET STATEMENT ID = 'Test 1°'
INTO plan table FOR
(SELECT /*+ LEADING(v.e v.d t) */ *
FROM t, v
WHERE t.department id = v.department id);

The following SELECT statement returns the execution plan, which shows that the
LEADING hint was ignored:

SELECT id, LPAD(' ',2*(LEVEL-1)) ||operation operation, options, object name,
object alias

FROM plan_ table

START WITH id = 0 AND statement id = 'Test 1'

CONNECT BY PRIOR id = parent id AND statement id = 'Test 1'

ORDER BY id;

ID OPERATION OPTIONS OBJECT NAME OBJECT_ALIAS
0 SELECT STATEMENT

1 HASH JOIN

2 HASH JOIN

3 TABLE ACCESS FULL DEPARTMENTS D@SEL$2

4 TABLE ACCESS FULL EMPLOYEES E@SEL$2

5 TABLE ACCESS FULL T TRSEL$1

The LEADING hint is honored in the following query because it refers to object aliases,
which can be found in the execution plan that was returned by the previous query:

EXPLAIN PLAN
SET STATEMENT ID = 'Test 2'
INTO plan table FOR
(SELECT /*+ LEADING(EQSEL$2 DQRSEL$2 TQRSEL$1) */ *
FROM t, v
WHERE t.department id = v.department id);

The following SELECT statement returns the execution plan, which shows that the
LEADING hint was honored:

SELECT id, LPAD(' ',2*(LEVEL-1))||operation operation, options,

object name, object alias
FROM plan table

2-88

ORACLE

START WITH id = 0 AND statement id = 'Test 2'
CONNECT BY PRIOR id = parent id AND statement id = 'Test 2'

ORDER BY id;
ID OPERATION
SELECT STATEMENT

HASH JOIN
HASH JOIN

s w NN PO

TABLE ACCESS

See Also:

TABLE ACCESS
TABLE ACCESS

OPTIONS OBJECT NAME OBJECT ALIAS

FULL EMPLOYEES EQSEL$2
FULL DEPARTMENTS D@SEL$2
FULL T TQRSEL$1

Chapter 2
Comments

The Oracle Database SQL Tuning Guide describes hints and the EXPLAIN PLAN .

Hints by Functional Category

Table 2-23 lists the hints by functional category and contains cross-references to the syntax

and semantics for each hint. An alphabetical reference of the hints follows the table.

Table 2-23 Hints by Functional Category

Hint

Link to Syntax and Semantics

Optimization Goals and
Approaches

ALL_ROWS Hint
FIRST_ROWS Hint

Access Path Hints

CLUSTER Hint

CLUSTERING Hint
NO_CLUSTERING Hint

FULL Hint

HASH Hint

INDEX Hint
NO_INDEX Hint

INDEX_ASC Hint
INDEX_DESC Hint

INDEX_COMBINE Hint

INDEX_JOIN Hint

INDEX_FFS Hint

INDEX_SS Hint

INDEX_SS_ASC Hint

INDEX_SS_DESC Hint

NATIVE_FULL_OUTER_JOIN Hint
NO_NATIVE_FULL_OUTER_JOIN Hint

NO_INDEX_FFS Hint

NO_INDEX_SS Hint

2-89

Chapter 2
Comments

Table 2-23 (Cont.) Hints by Functional Category
]

Hint Link to Syntax and Semantics
-- NO_ZONEMAP Hint
In-Memory Column Store INMEMORY Hint

Hints NO_INMEMORY Hint

-- INMEMORY_PRUNING Hint
NO_INMEMORY_PRUNING Hint

Join Order Hints ORDERED Hint
- LEADING Hint
Join Operation Hints USE_BAND Hint

NO_USE_BAND Hint

- USE_CUBE Hint
NO_USE_CUBE Hint

- USE_HASH Hint
NO_USE_HASH Hint

- USE_MERGE Hint
NO_USE_MERGE Hint

- USE_NL Hint
USE_NL_WITH_INDEX Hint
NO_USE_NL Hint

Parallel Execution Hints ENABLE_PARALLEL_DML Hint
DISABLE_PARALLEL_DML Hint

- PARALLEL Hint
NO_PARALLEL Hint

-- PARALLEL_INDEX Hint
NO_PARALLEL_INDEX Hint

- PQ_CONCURRENT_UNION Hint
NO_PQ_CONCURRENT_UNION Hint

- PQ_DISTRIBUTE Hint
- PQ_FILTER Hint

- PQ_SKEW Hint
NO_PQ_SKEW Hint

Online Application Upgrade CHANGE_DUPKEY_ERROR_INDEX Hint
Hints

- IGNORE_ROW_ON_DUPKEY_INDEX Hint
- RETRY_ON_ROW_CHANGE Hint

Query Transformation Hints FACT Hint
NO_FACT Hint

- MERGE Hint
NO_MERGE Hint

-- NO_EXPAND Hint
USE_CONCAT Hint

ORACLE 2-90

Chapter 2
Comments

Table 2-23 (Cont.) Hints by Functional Category

___|
Hint Link to Syntax and Semantics

-- REWRITE Hint
NO_REWRITE Hint

-- UNNEST Hint
NO_UNNEST Hint

-- STAR_TRANSFORMATION Hint
NO_STAR_TRANSFORMATION Hint

-- NO_QUERY_TRANSFORMATION Hint

XML Hints NO_XMLINDEX_REWRITE Hint
- NO_XML_QUERY_REWRITE Hint
Other Hints APPEND Hint

APPEND_VALUES Hint
NOAPPEND Hint

-- CACHE Hint
NOCACHE Hint

-- CONTAINERS Hint
-- CURSOR_SHARING_EXACT Hint
-- DRIVING_SITE Hint

-- DYNAMIC_SAMPLING Hint
FRESH_MV Hint

-- GATHER_OPTIMIZER_STATISTICS Hint
NO_GATHER_OPTIMIZER_STATISTICS Hint

GROUPING Hint
-- MODEL_MIN_ANALYSIS Hint
-- MONITOR Hint
-- NO_MONITOR Hint
-- OPT_PARAM Hint

- PUSH_PRED Hint
NO_PUSH_PRED Hint

- PUSH_SUBQ Hint
NO_PUSH_SUBQ Hint

- PX_JOIN_FILTER Hint
NO_PX_JOIN_FILTER Hint

- QB_NAME Hint

Alphabetical Listing of Hints

This section provides syntax and semantics for all hints in alphabetical order.

ORACLE 2-91

Chapter 2
Comments

ALL_ROWS Hint

PR (D)

The ALL_ROWS hint instructs the optimizer to optimize a statement block with a goal of
best throughput, which is minimum total resource consumption. For example, the
optimizer uses the query optimization approach to optimize this statement for best
throughput:

SELECT /*+ ALL ROWS */ employee id, last name, salary, job id
FROM employees
WHERE employee id = 107;

If you specify either the ALL_ROWS or the FIRST ROWS hint in a SQL statement, and if the
data dictionary does not have statistics about tables accessed by the statement, then
the optimizer uses default statistical values, such as allocated storage for such tables,
to estimate the missing statistics and to subsequently choose an execution plan.
These estimates might not be as accurate as those gathered by the DBMS STATS
package, so you should use the DBMS_STATS package to gather statistics.

If you specify hints for access paths or join operations along with either the ALL_ROWS
or FIRST ROWS hint, then the optimizer gives precedence to the access paths and join
operations specified by the hints.

APPEND Hint

ORACLE

OILEDO

The APPEND hint instructs the optimizer to use direct-path INSERT with the subquery
syntax of the INSERT statement.

* Conventional INSERT is the default in serial mode. In serial mode, direct path can
be used only if you include the APPEND hint.

» Direct-path INSERT is the default in parallel mode. In parallel mode, conventional
insert can be used only if you specify the NOAPPEND hint.

The decision whether the INSERT will go parallel or not is independent of the APPEND
hint.

In direct-path INSERT, data is appended to the end of the table, rather than using
existing space currently allocated to the table. As a result, direct-path INSERT can be
considerably faster than conventional INSERT.

The APPEND hint is only supported with the subquery syntax of the INSERT statement,
not the VALUES clause. If you specify the APPEND hint with the VALUES clause, it is
ignored and conventional insert will be used. To use direct-path INSERT with the VALUES
clause, refer to "APPEND_VALUES Hint ".

2-92

Chapter 2
Comments

¢ See Also:

NOAPPEND Hint for information on that hint and Oracle Database Administrator’s
Guide for information on direct-path inserts

APPEND_VALUES Hint

CACHE Hint

ORACLE

(P FPPeVALIES ()

The APPEND VALUES hint instructs the optimizer to use direct-path INSERT with the VALUES
clause. If you do not specify this hint, then conventional INSERT is used.

In direct-path INSERT, data is appended to the end of the table, rather than using existing
space currently allocated to the table. As a result, direct-path INSERT can be considerably
faster than conventional INSERT.

The APPEND VALUES hint can be used to greatly enhance performance. Some examples of its
uses are:

* Inan Oracle Call Interface (OCI) program, when using large array binds or array binds
with row callbacks

* In PL/SQL, when loading a large number of rows with a FORALL loop that has an INSERT
statement with a VALUES clause

The APPEND VALUES hint is only supported with the VALUES clause of the INSERT statement. If
you specify the APPEND VALUES hint with the subquery syntax of the INSERT statement, it is
ignored and conventional insert will be used. To use direct-path INSERT with a subquery, refer
to "APPEND Hint ".

¢ See Also:

Oracle Database Administrator’s Guide for information on direct-path inserts

queryblock
- R0 P @ o0

(See Specifying a Query Block in a Hint , tablespec::=)

The CACHE hint instructs the optimizer to place the blocks retrieved for the table at the most
recently used end of the LRU list in the buffer cache when a full table scan is performed. This
hint is useful for small lookup tables.

2-93

Chapter 2
Comments

In the following example, the CACHE hint overrides the default caching specification of
the table:

SELECT /*+ FULL (hr emp) CACHE (hr emp) */ last name
FROM employees hr emp;

The CACHE and NOCACHE hints affect system statistics table scans (long tables) and
table scans (short tables), as shown in the Vv$SYSSTAT data dictionary view.

CHANGE_DUPKEY_ERROR_INDEX Hint

—>@a| CHANGE_DUPKEY_ERROR_INDEX ()

< Note:

The CHANGE DUPKEY FRROR INDEX, IGNORE ROW ON DUPKEY INDEX, and
RETRY ON ROW_ CHANGE hints are unlike other hints in that they have a
semantic effect. The general philosophy explained in Hints does not apply for
these three hints.

The CHANGE DUPKEY ERROR INDEX hint provides a mechanism to unambiguously
identify a unique key violation for a specified set of columns or for a specified index.
When a unique key violation occurs for the specified index, an ORA-38911 error is
reported instead of an ORA-001.

This hint applies to INSERT, UPDATE operations. If you specify an index, then the index
must exist and be unique. If you specify a column list instead of an index, then a
unigue index whose columns match the specified columns in number and order must
exist.

This use of this hint results in error messages if specific rules are violated. Refer to
IGNORE_ROW_ON_DUPKEY_INDEX Hint for details.

" Note:

This hint disables both APPEND mode and parallel DML.

CLUSTER Hint

queryblock
- EEEO-L YN o0

ORACLE 2-94

Chapter 2
Comments

(See Specifying a Query Block in a Hint , tablespec::=)

The CLUSTER hint instructs the optimizer to use a cluster scan to access the specified table.
This hint applies only to tables in an indexed cluster.

CLUSTERING Hint

(P a0STERRE (D)

This hint is valid only for INSERT and MERGE operations on tables that are enabled for attribute
clustering. The CLUSTERING hint enables attribute clustering for direct-path inserts (serial or
parallel). This results in partially-clustered data, that is, data that is clustered per each insert
or merge operation. This hint overrides a NO ON LOAD setting in the DDL that created or altered
the table. This hint has no effect on tables that are not enabled for attribute clustering.

¢ See Also:

e clustering_when clause of CREATE TABLE for more information on the NO ON LOAD
setting

* NO_CLUSTERING Hint

CONTAINERS Hint

ORACLE

@ CONTAINERS F®->| DEFAULT_PDB_HINT |(=)5(" Jo(hint)s(" () (1)

The CONTAINERS hint is useful in a multitenant container database (CDB). You can specify this
hint in a SELECT statement that contains the CONTAINERS () clause. Such a statement lets you
guery data in the specified table or view across all containers in a CDB or application
container.

* To query data in a CDB, you must be a common user connected to the CDB root, and the
table or view must exist in the root and all PDBs. The query returns all rows from the
table or view in the CDB root and in all open PDBs.

* To query data in an application container, you must be a common user connected to the
application root, and the table or view must exist in the application root and all PDBs in
the application container. The query returns all rows from the table or view in the
application root and in all open PDBs in the application container.

Statements that contain the CONTAINERS () clause generate and execute recursive SQL
statements in each queried PDB. You can use the CONTAINERS hint to pass a default PDB hint
to each recursive SQL statement. For hint, you can specify any SQL hint that is appropriate
for the SELECT statement.

2-95

Chapter 2
Comments

In the following example, the NO PARALLEL hint is passed to each recursive SQL
statement that is executed as part of the evaluation of the CONTAINERS () clause:

SELECT /*+ CONTAINERS(DEFAULT_PDB_HINT:'NO_PARALLEL') */
(CASE WHEN COUNT (*) < 10000
THEN 'Less than 10,000
ELSE '10,000 or more' END) "Number of Tables"
FROM CONTAINERS (DBA_TABLES) ;

" See Also:

containers_clause for more information on the CONTAINERS () clause

CURSOR_SHARING_EXACT Hint

—(7"+)| CURSOR_SHARING_EXACT |("/)>

Oracle can replace literals in SQL statements with bind variables, when it is safe to do
s0. This replacement is controlled with the CURSOR _SHARING initialization parameter.
The CURSOR SHARING EXACT hint instructs the optimizer to switch this behavior off.
When you specify this hint, Oracle executes the SQL statement without any attempt to
replace literals with bind variables.

DISABLE_PARALLEL_DML Hint

—(7"+){ DISABLE_PARALLEL DML |5("/)>

The DISABLE PARALLEL DML hint disables parallel DML for DELETE, INSERT, MERGE, and
UPDATE statements. You can use this hint to disable parallel DML for an individual
statement when parallel DML is enabled for the session with the ALTER SESSTON
ENABLE PARALLEL DML Statement.

DRIVING_SITE Hint

ORACLE

@ queryblock
(7+){ DRIVING SITE |x({(tablespec)5() (1)

(See Specifying a Query Block in a Hint , tablespec::=)

The DRIVING SITE hint instructs the optimizer to execute the query at a different site
than that selected by the database. This hint is useful if you are using distributed query
optimization.

2-96

Chapter 2
Comments

For example:

SELECT /*+ DRIVING SITE (departments) */ *
FROM employees, departments@rsite
WHERE employees.department id = departments.department id;

If this query is executed without the hint, then rows from departments are sent to the local
site, and the join is executed there. With the hint, the rows from employees are sent to the
remote site, and the query is executed there and the result set is returned to the local site.

DYNAMIC_SAMPLING Hint

—>@a| DYNAMIC_SAMPLING @ @@@

(See Specifying a Query Block in a Hint , tablespec::=)

The DYNAMIC SAMPLING hint instructs the optimizer how to control dynamic sampling to
improve server performance by determining more accurate predicate selectivity and statistics
for tables and indexes.

You can set the value of DYNAMIC SAMPLING to a value from O to 10. The higher the level, the
more effort the compiler puts into dynamic sampling and the more broadly it is applied.
Sampling defaults to cursor level unless you specify tablespec.

The integer value is 0 to 10, indicating the degree of sampling.

If a cardinality statistic already exists for the table, then the optimizer uses it. Otherwise, the
optimizer enables dynamic sampling to estimate the cardinality statistic.

If you specify tablespec and the cardinality statistic already exists, then:

« If there is no single-table predicate (a WHERE clause that evaluates only one table), then
the optimizer trusts the existing statistics and ignores this hint. For example, the following
qguery will not result in any dynamic sampling if employees is analyzed:

SELECT /*+ DYNAMIC SAMPLING(e 1) */ count (*)
FROM employees e;

* If there is a single-table predicate, then the optimizer uses the existing cardinality statistic
and estimates the selectivity of the predicate using the existing statistics.

To apply dynamic sampling to a specific table, use the following form of the hint:

SELECT /*+ DYNAMIC SAMPLING (employees 1) */ *
FROM employees
WHERE ...

¢ See Also:

Oracle Database SQL Tuning Guide for information about dynamic sampling and
the sampling levels that you can set

ORACLE 2-97

Chapter 2
Comments

ENABLE_PARALLEL_DML Hint

FACT Hint

—(7"+)| ENABLE_PARALLEL DML (*/)»

The ENABLE PARALLEL DML hint enables parallel DML for DELETE, INSERT, MERGE, and
UPDATE statements. You can use this hint to enable parallel DML for an individual
statement, rather than enabling parallel DML for the session with the ALTER SESSION
ENABLE PARALLEL DML Statement.

¢ See Also:

Oracle Database VLDB and Partitioning Guide for information about enabling
parallel DML

queryblock
- OO P N o 00

(See Specifying a Query Block in a Hint , tablespec::=)

The FACT hint is used in the context of the star transformation. It instructs the optimizer
that the table specified in tablespec should be considered as a fact table.

FIRST_ROWS Hint

ORACLE

—(P) FIRST_RoWs b(Op(integer () (1)

The FIRST ROWS hint instructs Oracle to optimize an individual SQL statement for fast
response, choosing the plan that returns the first n rows most efficiently. For integer,
specify the number of rows to return.

For example, the optimizer uses the query optimization approach to optimize the
following statement for best response time:

SELECT /*+ FIRST ROWS(10) */ employee id, last name, salary, job id
FROM employees
WHERE department id = 20;

In this example each department contains many employees. The user wants the first
10 employees of department 20 to be displayed as quickly as possible.

The optimizer ignores this hint in DELETE and UPDATE statement blocks and in SELECT
statement blocks that include any blocking operations, such as sorts or groupings.

2-98

Chapter 2
Comments

Such statements cannot be optimized for best response time, because Oracle Database
must retrieve all rows accessed by the statement before returning the first row. If you specify
this hint in any such statement, then the database optimizes for best throughput.

See Also:

ALL_ROWS Hint for additional information on the FIRST ROWS hint and statistics

FRESH_MV Hint

FULL Hint

ORACLE

PR (D)

The FRESH MV hint applies when querying a real-time materialized view. This hint instructs the
optimizer to use on-query computation to fetch up-to-date data from the materialized view,
even if the materialized view is stale.

The optimizer ignores this hint in SELECT statement blocks that query an object that is not a
real-time materialized view, and in all UPDATE, INSERT, MERGE, and DELETE statement blocks.

See Also:

The { ENABLE | DISABLE } ON QUERY COMPUTATION clause of CREATE
MATERIALIZED VIEW for more information on real-time materialized views

queryblock
e @00

(See Specifying a Query Block in a Hint , tablespec::=)

The FULL hint instructs the optimizer to perform a full table scan for the specified table. For
example:

SELECT /*+ FULL(e) */ employee id, last name
FROM hr.employees e
WHERE last name LIKE :bl;

Oracle Database performs a full table scan on the employees table to execute this statement,
even if there is an index on the last name column that is made available by the condition in
the WHERE clause.

The employees table has alias e in the FROM clause, so the hint must refer to the table by its
alias rather than by its name. Do not specify schema names in the hint even if they are
specified in the FROM clause.

2-99

Chapter 2
Comments

GATHER_OPTIMIZER_STATISTICS Hint

—(7"+)| GATHER_OPTIMIZER_STATISTICS |(*/)>

The GATHER OPTIMIZER STATISTICS hintinstructs the optimizer to enable statistics
gathering during the following types of bulk loads:

e CREATE TABLE ... AS SELECT

e INSERT INTO ... SELECT into an empty table using a direct-path insert

¢ See Also:

Oracle Database SQL Tuning Guide for more information on statistics
gathering for bulk loads

GROUPING Hint

ORACLE

(P eromPa (D

The GROUPING hint applies to data mining scoring functions when scoring partitioned
models. This hint results in partitioning the input data set into distinct data slices so
that each partition is scored in its entirety before advancing to the next partition;
however, parallelism by partition is still available. Data slices are determined by the
partitioning key columns that were used when the model was built. This method can
be used with any data mining function against a partitioned model. The hint may yield
a query performance gain when scoring large data that is associated with many
partitions, but may negatively impact performance when scoring large data with few
partitions on large systems. Typically, there is no performance gain if you use this hint
for single row queries.

In the following example, the GROUPING hint is used in the PREDICTION function.

SELECT PREDICTION (/*+ GROUPING */my_model USING *) pred FROM <input
table>;

¢ See Also:

Oracle Machine Learning for SQL Functions

2-100

HASH Hint

Chapter 2
Comments

queryblock
O 2N @00

(See Specifying a Query Block in a Hint , tablespec::=)

The HASH hint instructs the optimizer to use a hash scan to access the specified table. This
hint applies only to tables in a hash cluster.

IGNORE_ROW_ON_DUPKEY_INDEX Hint

ORACLE

@ IGNORE_ROW_ON_DUPKEY_INDEX |5(()

" Note:

The CHANGE DUPKEY FRROR INDEX, IGNORE ROW ON DUPKEY INDEX, and
RETRY ON ROW CHANGE hints are unlike other hints in that they have a semantic
effect. The general philosophy explained in Hints does not apply for these three
hints.

The IGNORE ROW ON DUPKEY INDEX hint applies only to single-table INSERT operations. It is
not supported for UPDATE, DELETE, MERGE, or multitable insert operations.

IGNORE ROW ON DUPKEY INDEX causes the statement to ignore a unique key violation for a
specified set of columns or for a specified index. When a unique key violation is encountered,
a row-level rollback occurs and execution resumes with the next input row. If you specify this
hint when inserting data with DML error logging enabled, then the unique key violation is not
logged and does not cause statement termination.

The semantic effect of this hint results in error messages if specific rules are violated:

e If you specify index, then the index must exist and be unique. Otherwise, the statement
causes ORA-38913.

e You must specify exactly one index. If you specify no index, then the statement causes
ORA-38912. If you specify more than one index, then the statement causes ORA-38915.

* You can specify either a CHANGE DUPKEY ERROR INDEX OF IGNORE ROW ON DUPKEY INDEX
hint in an INSERT statement, but not both. If you specify both, then the statement causes
ORA-38915.

As with all hints, a syntax error in the hint causes it to be silently ignored. The result will be
that ORA-00001 will be caused, just as if no hint were used.

2-101

Chapter 2
Comments

< Note:

This hint disables both APPEND mode and parallel DML.

¢ See Also:

CHANGE_DUPKEY_ERROR_INDEX Hint

INDEX Hint

®)
tablspec) O

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX hint instructs the optimizer to use an index scan for the specified table. You
can use the INDEX hint for function-based, domain, B-tree, bitmap, and bitmap join
indexes.

The behavior of the hint depends on the indexspec specification:

» If the INDEX hint specifies a single available index, then the database performs a
scan on this index. The optimizer does not consider a full table scan or a scan of
another index on the table.

* For a hint on a combination of multiple indexes, Oracle recommends using
INDEX COMBINE rather than INDEX, because it is a more versatile hint. If the INDEX
hint specifies a list of available indexes, then the optimizer considers the cost of a
scan on each index in the list and then performs the index scan with the lowest
cost. The database can also choose to scan multiple indexes from this list and
merge the results, if such an access path has the lowest cost. The database does
not consider a full table scan or a scan on an index not listed in the hint.

e If the INDEX hint specifies no indexes, then the optimizer considers the cost of a
scan on each available index on the table and then performs the index scan with
the lowest cost. The database can also choose to scan multiple indexes and
merge the results, if such an access path has the lowest cost. The optimizer does
not consider a full table scan.

For example:
SELECT /*+ INDEX (employees emp department ix)*/ employee id, department id

FROM employees
WHERE department id > 50;

INDEX_ASC Hint

queryblock ﬁw\
N oL 5,0,

ORACLE 2-102

Chapter 2
Comments

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX ASC hint instructs the optimizer to use an index scan for the specified table. If the
statement uses an index range scan, then Oracle Database scans the index entries in
ascending order of their indexed values. Each parameter serves the same purpose as in
INDEX Hint .

The default behavior for a range scan is to scan index entries in ascending order of their
indexed values, or in descending order for a descending index. This hint does not change the
default order of the index, and therefore does not specify anything more than the INDEX hint.
However, you can use the INDEX ASC hint to specify ascending range scans explicitly should
the default behavior change.

INDEX_COMBINE Hint

®)
INDEX_COMBINE |(((tablespec))
\2bespee)

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX COMBINE hint can use any type of index: bitmap, b-tree, or domain. If you do not
specify indexspec in the INDEX COMBINE hint, the optimizer implicitly applies theINDEX hint to
all indexes, using as many indexes as possible. If you specify indexspec, then the optimizer
uses all the hinted indexes that are legal and valid to use, regardless of cost. Each parameter
serves the same purpose as in INDEX Hint . For example:

SELECT /*+ INDEX COMBINE (e emp manager ix emp department ix) */ *
FROM employees e
WHERE manager id = 108
OR department id = 110;

INDEX_DESC Hint

ORACLE

®)

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX DESC hint instructs the optimizer to use a descending index scan for the specified
table. If the statement uses an index range scan and the index is ascending, then Oracle
scans the index entries in descending order of their indexed values. In a partitioned index, the
results are in descending order within each partition. For a descending index, this hint
effectively cancels out the descending order, resulting in a scan of the index entries in
ascending order. Each parameter serves the same purpose as in INDEX Hint . For example:

SELECT /*+ INDEX DESC(e emp name ix) */ *
FROM employees e;

2-103

Chapter 2
Comments

¢ See Also:

Oracle Database SQL Tuning Guide for information on full scans

INDEX_FFS Hint

queryblock /”W\
N oL 5,0

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX FFS hint instructs the optimizer to perform a fast full index scan rather than
a full table scan.

Each parameter serves the same purpose as in INDEX Hint . For example:

SELECT /*+ INDEX FFS(e emp_name ix) */ first name
FROM employees e;

INDEX_JOIN Hint

-queryblock r—).—\ .M'
S () (003

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX JOIN hint instructs the optimizer to use an index join as an access path. For
the hint to have a positive effect, a sufficiently small number of indexes must exist that
contain all the columns required to resolve the query.

Each parameter serves the same purpose as in INDEX Hint . For example, the
following query uses an index join to access the manager id and department id
columns, both of which are indexed in the employees table.

SELECT /*+ INDEX JOIN(e emp manager ix emp department ix) */ department id
FROM employees e
WHERE manager id < 110
AND department id < 50;

INDEX_SS Hint

queryblock ﬁw\
AN @ L2 50

ORACLE 2-104

Chapter 2
Comments

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX SS hint instructs the optimizer to perform an index skip scan for the specified
table. If the statement uses an index range scan, then Oracle scans the index entries in
ascending order of their indexed values. In a partitioned index, the results are in ascending
order within each patrtition.

Each parameter serves the same purpose as in INDEX Hint . For example:

SELECT /*+ INDEX SS(e emp name ix) */ last name
FROM employees e
WHERE first name = 'Steven';

¢ See Also:

Oracle Database SQL Tuning Guide for information on index skip scans

INDEX_SS_ASC Hint

® o)

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX SS ASC hint instructs the optimizer to perform an index skip scan for the specified
table. If the statement uses an index range scan, then Oracle Database scans the index
entries in ascending order of their indexed values. In a partitioned index, the results are in
ascending order within each partition. Each parameter serves the same purpose as in INDEX
Hint .

The default behavior for a range scan is to scan index entries in ascending order of their
indexed values, or in descending order for a descending index. This hint does not change the
default order of the index, and therefore does not specify anything more than the INDEX SS
hint. However, you can use the INDEX SS ASC hint to specify ascending range scans explicitly
should the default behavior change.

¢ See Also:

Oracle Database SQL Tuning Guide for information on index skip scans

INDEX_SS_DESC Hint

® @)

ORACLE 2-105

Chapter 2
Comments

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX SS DESC hint instructs the optimizer to perform an index skip scan for the
specified table. If the statement uses an index range scan and the index is ascending,
then Oracle scans the index entries in descending order of their indexed values. In a
partitioned index, the results are in descending order within each partition. For a
descending index, this hint effectively cancels out the descending order, resulting in a
scan of the index entries in ascending order.

Each parameter serves the same purpose as in the INDEX Hint . For example:

SELECT /*+ INDEX SS DESC(e emp name ix) */ last name
FROM employees e
WHERE first name = 'Steven';

¢ See Also:

Oracle Database SQL Tuning Guide for information on index skip scans

INMEMORY Hint

-queryblock
O 0o

(See Specifying a Query Block in a Hint , tablespec::=)
The INMEMORY hint enables In-Memory queries.

This hint does not instruct the optimizer to perform a full table scan. If a full table scan
is desired, then also specify the FULL Hint .

INMEMORY_PRUNING Hint

—>@9| INVEMORY_PRUNING @ @@@

(See Specifying a Query Block in a Hint , tablespec::=)

The INMEMORY PRUNING hint enables pruning of In-Memory queries.

LEADING Hint

queryblock
- @mEE 0 LN G 00

(See Specifying a Query Block in a Hint , tablespec::=)

ORACLE 2-106

Chapter 2
Comments

The LEADING hint is a multitable hint that can specify more than one table or view. LEADING
instructs the optimizer to use the specified set of tables as the prefix in the execution plan.
The first table specified is used to start the join.

This hint is more versatile than the ORDERED hint. For example:

SELECT /*+ LEADING(e j) */ *
FROM employees e, departments d, job history j
WHERE e.department id = d.department id
AND e.hire date = j.start date;

The LEADING hint is ignored if the tables specified cannot be joined first in the order specified
because of dependencies in the join graph. If you specify two or more conflicting LEADING
hints, then all of them are ignored. If you specify the ORDERED hint, it overrides all LEADING
hints.

MERGE Hint

(o)

tablespec

(See Specifying a Query Block in a Hint , tablespec::=)
The MERGE hint lets you merge views in a query.

If a view's query block contains a GROUP BY clause or DISTINCT operator in the SELECT list,
then the optimizer can merge the view into the accessing statement only if complex view
merging is enabled. Complex merging can also be used to merge an IN subquery into the
accessing statement if the subquery is uncorrelated.

For example:

SELECT /*+ MERGE(v) */ el.last name, el.salary, v.avg salary
FROM employees el,
(SELECT department id, avg(salary) avg salary
FROM employees e2
GROUP BY department id) v
WHERE el.department id = v.department id
AND el.salary > v.avg salary
ORDER BY el.last name;

When the MERGE hint is used without an argument, it should be placed in the view query block.
When MERGE is used with the view name as an argument, it should be placed in the
surrounding query.

MODEL_MIN_ANALYSIS Hint
—(7+)| MODEL_MIN_ANALYSIS |(*/)

The MODEL MIN ANALYSIS hint instructs the optimizer to omit some compile-time optimizations
of spreadsheet rules—primarily detailed dependency graph analysis. Other spreadsheet

ORACLE 2-107

Chapter 2
Comments

optimizations, such as creating filters to selectively populate spreadsheet access
structures and limited rule pruning, are still used by the optimizer.

This hint reduces compilation time because spreadsheet analysis can be lengthy if the
number of spreadsheet rules is more than several hundreds.

MONITOR Hint

(P oNToR (D

The MONITOR hint forces real-time SQL monitoring for the query, even if the statement
is not long running. This hint is valid only when the parameter
CONTROL MANAGEMENT PACK ACCESS is set to DIAGNOSTIC+TUNING.

See Also:

Oracle Database SQL Tuning Guide for more information about real-time
SQL monitoring

NATIVE_FULL_OUTER_JOIN Hint

—(7"+)3{ NATIVE_FULL_OUTER_JOIN |5(*/)>

The NATIVE FULL OUTER JOIN hint instructs the optimizer to use native full outer join,
which is a native execution method based on a hash join.

¢ See Also:

« NO_NATIVE_FULL_OUTER_JOIN Hint

e Oracle Database SQL Tuning Guide for more information about native
full outer joins

NOAPPEND Hint

ORACLE

(FO{oRPPENs J:(7)

The NOAPPEND hint instructs the optimizer to use conventional INSERT by disabling
parallel mode for the duration of the INSERT statement. Conventional INSERT is the
default in serial mode, and direct-path INSERT is the default in parallel mode.

2-108

Chapter 2
Comments

NOCACHE Hint

queryblock
P =z O SACAC RN Vo 1)

(See Specifying a Query Block in a Hint , tablespec::=)

The NOCACHE hint instructs the optimizer to place the blocks retrieved for the table at the least
recently used end of the LRU list in the buffer cache when a full table scan is performed. This
is the normal behavior of blocks in the buffer cache. For example:

SELECT /*+ FULL (hr _emp) NOCACHE (hr emp) x/ last name
FROM employees hr emp;

The CACHE and NOCACHE hints affect system statistics table scans (long tables) and table
scans (short tables), as shown in the VSSYSSTAT view.

NO_CLUSTERING Hint

(PO SSTERG J:(7)

This hint is valid only for INSERT and MERGE operations on tables that are enabled for attribute
clustering. The NO_CLUSTERING hint disables attribute clustering for direct-path inserts (serial
or parallel). This hint overrides a YES ON LOAD setting in the DDL that created or altered the
table. This hint has no effect on tables that are not enabled for attribute clustering.

¢ See Also:

e clustering_when clause of CREATE TABLE for more information on the YES ON
LOAD setting

* CLUSTERING Hint

NO_EXPAND Hint

ORACLE

ololCEDY0

(See Specifying a Query Block in a Hint)

The NO_EXPAND hint instructs the optimizer not to consider OR-expansion for queries having ORr
conditions or IN-lists in the WHERE clause. Usually, the optimizer considers using OR expansion
and uses this method if it decides that the cost is lower than not using it. For example:

2-109

Chapter 2
Comments

SELECT /*+ NO_EXPAND */ *
FROM employees e, departments d
WHERE e.manager id = 108
OR d.department id = 110;

¢ See Also:

The USE_CONCAT Hint , which is the opposite of this hint

NO_FACT Hint

-queryblock
O D00

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_FACT hint is used in the context of the star transformation. It instruct the
optimizer that the queried table should not be considered as a fact table.

NO_GATHER_OPTIMIZER_STATISTICS Hint

—(7"+)| NO_GATHER_OPTIMIZER_STATISTICS |5(*/)>

The NO_GATHER OPTIMIZER STATISTICS hint instructs the optimizer to disable statistics
gathering during the following types of bulk loads:

e CREATE TABLE AS SELECT
e INSERT INTO ... SELECT into an empty table using a direct path insert

The NO_GATHER OPTIMIZER STATISTICS hint is applicable to a conventional load. If this
hint is specified in the conventional insert statement, Oracle will obey the hint and not
collect real-time statistics.

See Also:

Oracle Database SQL Tuning Guide for more information on online statistics
gathering for conventional loads.

NO_INDEX Hint

queryblock ﬁW_\
DN G- L\ (0

ORACLE 2-110

Chapter 2
Comments

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The NO_INDEX hint instructs the optimizer not to use one or more indexes for the specified
table. For example:

SELECT /*+ NO_INDEX (employees emp empid) */ employee id
FROM employees
WHERE employee id > 200;

Each parameter serves the same purpose as in INDEX Hint with the following modifications:

» If this hint specifies a single available index, then the optimizer does not consider a scan
on this index. Other indexes not specified are still considered.

* If this hint specifies a list of available indexes, then the optimizer does not consider a
scan on any of the specified indexes. Other indexes not specified in the list are still
considered.

» If this hint specifies no indexes, then the optimizer does not consider a scan on any index
on the table. This behavior is the same as a NO_INDEX hint that specifies a list of all
available indexes for the table.

The NO_INDEX hint applies to function-based, B-tree, bitmap, cluster, or domain indexes. If a
NO_INDEX hint and an index hint (INDEX, INDEX ASC, INDEX DESC, INDEX COMBINE, Or

INDEX FFS) both specify the same indexes, then the database ignores both the NO INDEX hint
and the index hint for the specified indexes and considers those indexes for use during
execution of the statement.

NO_INDEX_FFS Hint

@)

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The NO_INDEX FFS hint instructs the optimizer to exclude a fast full index scan of the specified
indexes on the specified table. Each parameter serves the same purpose as in the
NO_INDEX Hint . For example:

SELECT /*+ NO_INDEX FFS(items item order ix) */ order id
FROM order items items;

NO_INDEX_SS Hint

ORACLE

A=)

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The NO_INDEX SS hint instructs the optimizer to exclude a skip scan of the specified indexes
on the specified table. Each parameter serves the same purpose as in the NO_INDEX Hint .

2-111

Chapter 2
Comments

¢ See Also:

Oracle Database SQL Tuning Guide for information on index skip scans

NO_INMEMORY Hint

@ queryblock
({0 HEwoRY @) DD

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_INMEMORY hint disables In-Memory queries.

NO_INMEMORY_PRUNING Hint

@ queryblock

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_INMEMORY PRUNING hint disables pruning of In-Memory queries.

NO_MERGE Hint

©
tablespec

queryblock

NO_MERGE

OF

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_MERGE hint instructs the optimizer not to combine the outer query and any inline
view queries into a single query.

This hint lets you have more influence over the way in which the view is accessed. For
example, the following statement causes view seattle dept not to be merged:

SELECT /*+ NO MERGE (seattle dept) */ el.last name, seattle dept.department name
FROM employees el,
(SELECT location id, department id, department name
FROM departments
WHERE location id = 1700) seattle dept
WHERE el.department id = seattle dept.department id;

ORACLE 2-112

Chapter 2
Comments

When you use the NO MERGE hint in the view query block, specify it without an argument.
When you specify NO_MERGE in the surrounding query, specify it with the view name as an
argument.

NO_MONITOR Hint

(P momoNToR {7

The NO_MONITOR hint disables real-time SQL monitoring for the query, even if the query is long
running.

NO_NATIVE_FULL_OUTER_JOIN Hint

—(7"+)5{ NO_NATIVE_FULL_OUTER_JON |5(*/)>

The NO NATIVE FULL OUTER JOIN hint instructs the optimizer to exclude the native execution

method when joining each specified table. Instead, the full outer join is executed as a union of
left outer join and anti-join.

¢ See Also:
NATIVE_FULL_OUTER_JOIN Hint

NO_PARALLEL Hint

@ queryblock
@ NO_PARALLEL |5((tablespec

(See Specifying a Query Block in a Hint , tablespec::=)

The NO PARALLEL hint instructs the optimizer to run the statement serially. This hint overrides
the value of the PARALLEL DEGREE POLICY initialization parameter. It also overrides a
PARALLEL parameter in the DDL that created or altered the table. For example, the following
SELECT statement will run serially:

ALTER TABLE employees PARALLEL 8;
SELECT /*+ NO_PARALLEL (hr emp) */ last name
FROM employees hr emp;

ORACLE 2-113

Chapter 2
Comments

¢ See Also:

* Note on Parallel Hints for more information on the parallel hints

e Oracle Database Reference for more information on the
PARALLEL DEGREE POLICY initialization parameter

NOPARALLEL Hint

The NOPARALLEL hint has been deprecated. Use the NO_PARALLEL hint instead.

NO_PARALLEL_INDEX Hint

® o)
—>@a| NO_PARALLEL_INDEX |->@ (tablespec) @@

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The NO_PARALLEL_INDEX hint overrides a PARALLEL parameter in the DDL that created
or altered the index, thus avoiding a parallel index scan operation.

¢ See Also:

Note on Parallel Hints for more information on the parallel hints

NOPARALLEL_INDEX Hint

The NOPARALLEL INDEX hint has been deprecated. Use the NO_PARALLEL INDEX hint
instead.

NO_PQ_CONCURRENT UNION Hint

ORACLE

O® O
—>®e| NO_PQ_CONCURRENT_UNION | @

(See Specifying a Query Block in a Hint)

The NO_PQ CONCURRENT UNION hint instructs the optimizer to disable concurrent
processing of UNION and UNION ALL operations.

2-114

Chapter 2
Comments

¢ See Also:

* PQ_CONCURRENT_UNION Hint

e Oracle Database VLDB and Partitioning Guide for information about using this
hint

NO_PQ_SKEW Hint

@ queryblock
@S IITEC @ DA

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_PQ SKEW hint advises the optimizer that the distribution of the values of the join keys
for a parallel join is not skewed—that is, a high percentage of rows do not have the same join
key values. The table specified in tablespec is the probe table of the hash join.

NO_PUSH_PRED Hint

(@)

tablespec

—(: }9| NO_PUSH_PRED

Dy

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_PUSH PRED hint instructs the optimizer not to push a join predicate into the view. For
example:

SELECT /*+ NO_MERGE (v) NO_PUSH PRED(v) */ *
FROM employees e,
(SELECT manager id
FROM employees) v
WHERE e.manager id = v.manager id(+)
AND e.employee id = 100;

NO_PUSH_SUBQ Hint

O® O
—(:H NO_PUSH_SUBQ @

(See Specifying a Query Block in a Hint)

ORACLE 2-115

Chapter 2
Comments

The NO PUSH SUBQ hint instructs the optimizer to evaluate nonmerged subqueries as
the last step in the execution plan. Doing so can improve performance if the subquery
is relatively expensive or does not reduce the number of rows significantly.

NO_PX_JOIN_FILTER Hint

—>@»| NO_PX_JOIN_FILTER tabIespec}a@—)@»

This hint prevents the optimizer from using parallel join bitmap filtering.

NO_QUERY_TRANSFORMATION Hint

—>@a| NO_QUERY_TRANSFORMATION |->@

The NO_QUERY TRANSFORMATION hint instructs the optimizer to skip all query
transformations, including but not limited to OrR-expansion, view merging, subquery
unnesting, star transformation, and materialized view rewrite. For example:

SELECT /*+ NO_QUERY TRANSFORMATION */ employee id, last name
FROM (SELECT * FROM employees e) v
WHERE v.last name = 'Smith';

NO_RESULT CACHE Hint

—(7+)A{ NO_RESULT_CACHE |(*/)>

The optimizer caches query results in the result cache if the RESULT CACHE MODE
initialization parameter is set to FORCE. In this case, the NO_RESULT CACHE hint disables
such caching for the current query.

If the query is executed from OCI client and OCI client result cache is enabled, then
the NO RESULT CACHE hint disables caching for the current query.

NO_REWRITE Hint

ORACLE

ololczDT0

(See Specifying a Query Block in a Hint)

The NO_REWRITE hint instructs the optimizer to disable query rewrite for the query
block, overriding the setting of the parameter QUERY REWRITE ENABLED. For example:

SELECT /*+ NO_REWRITE */ sum(s.amount sold) AS dollars
FROM sales s, times t

2-116

Chapter 2
Comments

WHERE s.time id = t.time id
GROUP BY t.calendar month desc;

NOREWRITE Hint

The NOREWRITE hint has been deprecated. Use the NO_REWRITE hint instead.

NO_STAR_TRANSFORMATION Hint

D@ ®
@ NO_STAR_TRANSFORMATION | @->

(See Specifying a Query Block in a Hint)

The NO_STAR TRANSFORMATION hint instructs the optimizer not to perform star query
transformation.

NO_STATEMENT_QUEUING Hint

ORACLE

—("+) NO_STATEMENT_QUEUING (")

The NO_STATEMENT QUEUING hint influences whether or not a statement is queued with parallel
statement queuing.

When PARALLEL DEGREE POLICY is set to AUTO, this hint enables a statement to bypass the
parallel statement queue. However, a statement that bypasses the statement queue can
potentially cause the system to exceed the maximum number of parallel execution servers
defined by the value of the PARALLEL SERVERS TARGET initialization parameter, which
determines the limit at which parallel statement queuing is initiated.

There is no guarantee that the statement that bypasses the parallel statement queue
receives the number of parallel execution servers requested because only the number of
parallel execution servers available on the system, up to the value of the
PARALLEL MAX SERVERS initialization parameter, can be allocated.

For example:

SELECT /*+ NO_STATEMENT QUEUING */ emp.last name, dpt.department name
FROM employees emp, departments dpt
WHERE emp.department id = dpt.department id;

¢ See Also:
STATEMENT_QUEUING Hint

2-117

Chapter 2
Comments

NO_UNNEST Hint

ololCEDY0

(See Specifying a Query Block in a Hint)

Use of the NO_UNNEST hint turns off unnesting .

NO_USE_BAND Hint

@ queryblock
@ XIIC (@ -

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_USE_BAND hint instructs the optimizer to exclude band joins when joining each
specified table to another row source. For example:

SELECT /*+ NO USE BAND (el e2) */
el.last name
|| " has salary between 100 less and 100 more than '
|| e2.last name AS "SALARY COMPARISON"
FROM employees el, employees e2
WHERE el.salary BETWEEN e2.salary - 100 AND e2.salary + 100;

NO_USE_CUBE Hint

@ queryblock
(BT E (@ -

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_USE_CUBE hint instructs the optimizer to exclude cube joins when joining each
specified table to another row source using the specified table as the inner table.

NO_USE_HASH Hint

@ queryblock
@EEE ¢ (@) DD

(See Specifying a Query Block in a Hint , tablespec::=)

ORACLE 2-118

Chapter 2
Comments

The NO USE HASH hint instructs the optimizer to exclude hash joins when joining each

specified table to another row source using the specified table as the inner table. For
example:

SELECT /*+ NO USE HASH(e d) */ *
FROM employees e, departments d
WHERE e.department id = d.department id;

NO_USE_MERGE Hint

@ queryblock
@R I (@ - DD

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_USE MERGE hint instructs the optimizer to exclude sort-merge joins when joining each

specified table to another row source using the specified table as the inner table. For
example:

SELECT /*+ NO USE MERGE (e d) */ *
FROM employees e, departments d
WHERE e.department id = d.department id
ORDER BY d.department id;

NO_USE_NL Hint

queryblock
N (G O

(See Specifying a Query Block in a Hint , tablespec::=)

The NO _USE NL hint instructs the optimizer to exclude nested loops joins when joining each

specified table to another row source using the specified table as the inner table. For
example:

SELECT /*+ NO USE NL(l h) */ *
FROM orders h, order items 1
WHERE l.order id = h.order id

AND l.order id > 2400;

When this hint is specified, only hash join and sort-merge joins are considered for the

specified tables. However, in some cases tables can be joined only by using nested loops. In
such cases, the optimizer ignores the hint for those tables.

NO_XML_QUERY_REWRITE Hint

—(+)H{ No_xML_QUERY_REWRITE |x(*/)>

ORACLE 2-119

Chapter 2
Comments

The NO_XML QUERY REWRITE hint instructs the optimizer to prohibit the rewriting of
XPath expressions in SQL statements. By prohibiting the rewriting of XPath

expressions, this hint also prohibits the use of any XMLIndexes for the current query.
For example:

SELECT /*+NO XML QUERY REWRITE*/ XMLQUERY ('<A/>' RETURNING CONTENT)
FROM DUAL;

¢ See Also:

NO_XMLINDEX_REWRITE Hint

NO_XMLINDEX_REWRITE Hint

—(7"+)3{ NO_XMLINDEX_REWRITE |5(*/)>

The NO_XMLINDEX REWRITE hint instructs the optimizer not to use any XMLIndex
indexes for the current query. For example:

SELECT /*+N07XMLINDEX7REWRITE*/ count (*)
FROM warehouses
WHERE existsNode (warehouse spec, '/Warehouse/Building') = 1;

¢ See Also:

NO_XML_QUERY_REWRITE Hint for another way to disable the use of
XMLIndexes

NO_ZONEMAP Hint

ORACLE

@ queryblock
@ NO_ZONEMAP |5(Qablespec

PARTITION

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_ZONEMAP hint disables the use of a zone map for different types of pruning. This
hint overrides an ENABLE PRUNING setting in the DDL that created or altered the zone
map.

Specify one of the following options:

e SCAN - Disables the use of a zone map for scan pruning.

2-120

Chapter 2
Comments

* JOIN - Disables the use of a zone map for join pruning.

° PARTITION - Disables the use of a zone map for partition pruning.

¢ See Also:

 ENABLE | DISABLE PRUNING clause of CREATE MATERIALIZED ZONEMAP

e Oracle Database Data Warehousing Guide for more information on pruning with
zone maps

OPTIMIZER_FEATURES_ENABLE Hint

This hint is fully documented in the Database Reference book.

Please see Database Reference for details.

OPT_PARAM Hint

—>@—>| OPT_PARAM |—>®{parameter7name & a a

The OPT_PARAM hint lets you set an initialization parameter for the duration of the current
query only. This hint is valid only for the following parameters: APPROX FOR AGGREGATION,
APPROX FOR COUNT DISTINCT, APPROX FOR PERCENTILE, OPTIMIZER DYNAMIC SAMPLING,
OPTIMIZER INDEX CACHING, OPTIMIZER INDEX COST ADJ, OPTIMIZER SECURE VIEW MERGING,
and STAR TRANSFORMATION ENABLED.

For example, the following hint sets the parameter STAR TRANSFORMATION ENABLED t0 TRUE for
the statement to which it is added:

SELECT /*+ OPT PARAM('star transformation enabled' 'true') */ *
FROM ... ;

Parameter values that are strings are enclosed in single quotation marks. Numeric parameter
values are specified without quotation marks.

ORDERED Hint

ORACLE

(F{oRERES J:(7)

The ORDERED hint instructs Oracle to join tables in the order in which they appear in the FROM
clause. Oracle recommends that you use the LEADING hint, which is more versatile than the
ORDERED hint.

When you omit the ORDERED hint from a SQL statement requiring a join, the optimizer chooses
the order in which to join the tables. You might want to use the ORDERED hint to specify a join
order if you know something that the optimizer does not know about the number of rows

2-121

Chapter 2
Comments

selected from each table. Such information lets you choose an inner and outer table
better than the optimizer could.

The following query is an example of the use of the ORDERED hint:

SELECT /*+ ORDERED */ o.order id, c.customer id, l.unit price * l.quantity
FROM customers c, order items 1, orders o
WHERE c.cust last name = 'Taylor'
AND o.customer id = c.customer id
AND o.order id = l.order id;

PARALLEL Hint

ORACLE

Note on Parallel Hints

Beginning with Oracle Database 11g Release 2, the PARALLEL and NO_PARALLEL hints
are statement-level hints and supersede the earlier object-level hints: PARALLEL INDEX,
NO_PARALLEL INDEX, and previously specified PARALLEL and NO PARALLEL hints. For
PARALLEL, if you specify integer, then that degree of parallelism will be used for the
statement. If you omit integer, then the database computes the degree of parallelism.
All the access paths that can use parallelism will use the specified or computed degree
of parallelism.

In the syntax diagrams below, parallel hint statement shows the syntax for
statement-level hints, and parallel hint object shows the syntax for object-level
hints. Object-level hints are supported for backward compatibility, and are superseded
by statement-level hints.

parallel_hint_statement::=

DEFAULT

PARALLEL

parallel_hint_object::=

@
-queryblock -DEFAULT
@ (@ (tablespec }

O

(See Specifying a Query Block in a Hint , tablespec::=)

The PARALLEL hint instructs the optimizer to use the specified number of concurrent
servers for a parallel operation. This hint overrides the value of the

PARALLEL DEGREE POLICY initialization parameter. It applies to the SELECT, INSERT,
MERGE, UPDATE, and DELETE portions of a statement, as well as to the table scan
portion. If any parallel restrictions are violated, then the hint is ignored.

2-122

ORACLE

Chapter 2
Comments

< Note:

The number of servers that can be used is twice the value in the PARALLEL hint, if
sorting or grouping operations also take place.

For a statement-level PARALLEL hint:

° PARALLEL: The statement results in a degree of parallelism equal to or greater than the
computed degree of parallelism, except when parallelism is not feasible for the lowest
cost plan. When parallelism is is not feasible, the statement runs serially.

° PARALLEL (DEFAULT): The optimizer calculates a degree of parallelism equal to the number
of CPUs available on all participating instances times the value of the
PARALLEL THREADS PER CPU initialization parameter.

e PARALLEL (AUTO): The statement results in a degree of parallelism that is equal to or
greater than the computed degree of parallelism, except when parallelism is not feasible
for the lowest cost plan. When parallelism is is not feasible, the statement runs serially.

° PARALLEL (MANUAL): The optimizer is forced to use the parallel settings of the objects in
the statement.

° PARALLEL (integer): The optimizer uses the degree of parallelism specified by integer.

In the following example, the optimizer calculates the degree of parallelism. The statement
always runs in parallel.

SELECT /*+ PARALLEL */ last name
FROM employees;

In the following example, the optimizer calculates the degree of parallelism, but that degree
may be 1, in which case the statement will run serially.

SELECT /*+ PARALLEL (AUTO) */ last name
FROM employees;

In the following example, the PARALLEL hint advises the optimizer to use the degree of
parallelism currently in effect for the table itself, which is 5:

CREATE TABLE parallel table (coll number, col2 VARCHAR2 (10)) PARALLEL 5;

SELECT /*+ PARALLEL (MANUAL) */ col2
FROM parallel table;

For an object-level PARALLEL hint:

e PARALLEL: The query coordinator should examine the settings of the initialization
parameters to determine the default degree of parallelism.

e PARALLEL (integer): The optimizer uses the degree of parallelism specified by integer.

° PARALLEL (DEFAULT): The optimizer calculates a degree of parallelism equal to the number
of CPUs available on all participating instances times the value of the
PARALLEL THREADS PER CPU initialization parameter.

In the following example, the PARALLEL hint overrides the degree of parallelism specified in
the employees table definition:

2-123

Chapter 2
Comments

SELECT /*+ FULL(hr emp) PARALLEL(hr emp, 5) */ last name
FROM employees hr emp;

In the next example, the PARALLEL hint overrides the degree of parallelism specified in
the employees table definition and instructs the optimizer to calculate a degree of
parallelism equal to the number of CPUs available on all participating instances times
the value of the PARALLEL THREADS PER CPU initialization parameter.

SELECT /*+ FULL (hr emp) PARALLEL (hr emp, DEFAULT) */ last name
FROM employees hr emp;

Refer to CREATE TABLE and Oracle Database Concepts for more information on
parallel execution.

" See Also:

e CREATE TABLE and Oracle Database Concepts for more information on
parallel execution.

e Oracle Database PL/SQL Packages and Types Reference for
information on the DBMS PARALLEL EXECUTE package, which provides
methods to apply table changes in chunks of rows. Changes to each
chunk are independently committed when there are no errors.

* Oracle Database Reference for more information on the
PARALLEL DEGREE POLICY initialization parameter

* NO_PARALLEL Hint

PARALLEL_INDEX Hint

ORACLE

® Ao

)

O

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The PARALLEL INDEX hint instructs the optimizer to use the specified number of
concurrent servers to parallelize index range scans, full scans, and fast full scans for
partitioned indexes.

The integer value indicates the degree of parallelism for the specified index.
Specifying DEFAULT or no value signifies that the query coordinator should examine the
settings of the initialization parameters to determine the default degree of parallelism.
For example, the following hint indicates three parallel execution processes are to be
used:

SELECT /*+ PARALLEL INDEX(tablel, indexl, 3) */

2-124

Chapter 2
Comments

¢ See Also:

Note on Parallel Hints for more information on the parallel hints

PQ_CONCURRENT_UNION Hint

O® ®
—>@e| PQ_CONCURRENT_UNION | @

(See Specifying a Query Block in a Hint)

The PQ_CONCURRENT UNION hint instructs the optimizer to enable concurrent processing of
UNION and UNION ALL operations.

See Also:

- NO_PQ_CONCURRENT_UNION Hint

e Oracle Database VLDB and Partitioning Guide for information about using this
hint

PQ_DISTRIBUTE Hint

(@)»(queryblock distribution
@ PQ_DISTRIBUTE [(tablespec
outer_distribution)s(inner_distribution

(See Specifying a Query Block in a Hint , tablespec::=)

The PQ DISTRIBUTE hint instructs the optimizer how to distribute rows among producer and
consumer query servers. You can control the distribution of rows for either joins or for load.

Control of Distribution for Load

You can control the distribution of rows for parallel INSERT ... SELECT and parallel CREATE
TABLE ... AS SELECT statements to direct how rows should be distributed between the producer
(query) and the consumer (load) servers. Use the upper branch of the syntax by specifying a
single distribution method. The values of the distribution methods and their semantics are
described in Table 2-24.

ORACLE 2-125

ORACLE

Chapter 2
Comments

Table 2-24 Distribution Values for Load

__|
Distribution Description

NONE No distribution. That is the query and load operation are
combined into each query server. All servers will load all
partitions. This lack of distribution is useful to avoid the overhead
of distributing rows where there is no skew. Skew can occur due
to empty segments or to a predicate in the statement that filters
out all rows evaluated by the query. If skew occurs due to using
this method, then use either RANDOM or RANDOM LOCAL
distribution instead.

Note: Use this distribution with care. Each partition loaded
requires a minimum of 512 KB per process of PGA memory. If
you also use compression, then approximately 1.5 MB of PGA
memory is consumer per server.

PARTITION This method uses the partitioning information of tablespec to
distribute the rows from the query servers to the load servers.
Use this distribution method when it is not possible or desirable
to combine the query and load operations, when the number of
partitions being loaded is greater than or equal to the number of
load servers, and the input data will be evenly distributed across
the partitions being loaded—that is, there is no skew.

RANDOM This method distributes the rows from the producers in a round-
robin fashion to the consumers. Use this distribution method
when the input data is highly skewed.

RANDOM LOCAL This method distributes the rows from the producers to a set of
servers that are responsible for maintaining a given set of
partitions. Two or more servers can be loading the same
partition, but no servers are loading all partitions. Use this
distribution method when the input data is skewed and
combining query and load operations is not possible due to
memory constraints.

For example, in the following direct-path insert operation, the query and load portions
of the operation are combined into each query server:

INSERT /*+ APPEND PARALLEL (target table, 16) PQ DISTRIBUTE (target table, NONE) */
INTO target table
SELECT * FROM source table;

In the following table creation example, the optimizer uses the partitioning of
target_table to distribute the rows:

CREATE /*+ PQ DISTRIBUTE (target table, PARTITION) */ TABLE target table
NOLOGGING PARALLEL 16
PARTITION BY HASH (1_orderkey) PARTITIONS 512
AS SELECT * FROM source table;

Control of Distribution for Joins

You control the distribution method for joins by specifying two distribution methods, as
shown in the lower branch of the syntax diagram, one distribution for the outer table
and one distribution for the inner table.

* outer distributionis the distribution for the outer table.

2-126

ORACLE

Chapter 2
Comments

e inner distributionis the distribution for the inner table.

The values of the distributions are HASH, BROADCAST, PARTITION, and NONE. Only six
combinations table distributions are valid, as described in Table 2-25:

Table 2-25 Distribution Values for Joins

|
Distribution Description

HASH, HASH The rows of each table are mapped to consumer query servers, using
a hash function on the join keys. When mapping is complete, each
query server performs the join between a pair of resulting partitions.
This distribution is recommended when the tables are comparable in
size and the join operation is implemented by hash-join or sort merge
join.

BROADCAST, NONE All rows of the outer table are broadcast to each query server. The
inner table rows are randomly partitioned. This distribution is
recommended when the outer table is very small compared with the
inner table. As a general rule, use this distribution when the inner
table size multiplied by the number of query servers is greater than
the outer table size.

NONE, BROADCAST All rows of the inner table are broadcast to each consumer query
server. The outer table rows are randomly partitioned. This distribution
is recommended when the inner table is very small compared with the
outer table. As a general rule, use this distribution when the inner
table size multiplied by the number of query servers is less than the
outer table size.

PARTITION, NONE The rows of the outer table are mapped using the partitioning of the
inner table. The inner table must be partitioned on the join keys. This
distribution is recommended when the number of partitions of the
outer table is equal to or nearly equal to a multiple of the number of
query servers; for example, 14 partitions and 15 query servers.

Note: The optimizer ignores this hint if the inner table is not
partitioned or not equijoined on the partitioning key.

NONE, PARTITION The rows of the inner table are mapped using the partitioning of the
outer table. The outer table must be partitioned on the join keys. This
distribution is recommended when the number of partitions of the
outer table is equal to or nearly equal to a multiple of the number of
query servers; for example, 14 partitions and 15 query servers.

Note: The optimizer ignores this hint if the outer table is not
partitioned or not equijoined on the partitioning key.

NONE, NONE Each query server performs the join operation between a pair of
matching partitions, one from each table. Both tables must be
equipartitioned on the join keys.

For example, given two tables r and s that are joined using a hash join, the following query
contains a hint to use hash distribution:

SELECT /*+ORDERED PQ DISTRIBUTE (s HASH, HASH) USE HASH (s)*/ column list
FROM r, s
WHERE r.c=s.c;

To broadcast the outer table r, the query is:

SELECT /*+ORDERED PQ DISTRIBUTE (s BROADCAST, NONE) USE HASH (s) */ column list
FROM r, s
WHERE r.c=s.c;

2-127

Chapter 2
Comments

PQ_FILTER Hint

o

PQ_FILTER
[P FiLTER
)

The PQ_FILTER hint instructs the optimizer on how to process rows when filtering
correlated subqueries.

* SERIAL: Process rows serially on the left and right sides of the filter. Use this option
when the overhead of parallelization is too high for the query, for example, when
the left side has very few rows.

* NONE: Process rows in parallel on the left and right sides of the filter. Use this
option when there is no skew in the distribution of the data on the left side of the
filter and you would like to avoid distribution of the left side, for example, due to the
large size of the left side.

* HAsSH: Process rows in parallel on the left side of the filter using a hash distribution.
Process rows serially on the right side of the filter. Use this option when there is no
skew in the distribution of data on the left side of the filter.

e RANDOM: Process rows in parallel on the left side of the filter using a random
distribution. Process rows serially on the right side of the filter. Use this option
when there is skew in the distribution of data on the left side of the filter.

PQ_SKEW Hint

-queryblock
LOCEN GO0

(See Specifying a Query Block in a Hint , tablespec::=)

The pQ SKEW hint advises the optimizer that the distribution of the values of the join
keys for a parallel join is highly skewed—that is, a high percentage of rows have the
same join key values. The table specified in tablespec is the probe table of the hash
join.

PUSH_PRED Hint

(@) miod)

tablespec

PUSH_PRED (P

ORACLE 2-128

Chapter 2
Comments

(See Specifying a Query Block in a Hint , tablespec::=)
The PUSH PRED hint instructs the optimizer to push a join predicate into the view. For example:

SELECT /*+ NO_MERGE(V) PUSH_PRED(V) */
FROM employees e,
(SELECT manager id
FROM employees) v
WHERE e.manager id = v.manager id(+)
AND e.employee id = 100;

PUSH_SUBQ Hint

ololCEDT0

(See Specifying a Query Block in a Hint)

The PUSH SUBQ hint instructs the optimizer to evaluate nonmerged subqueries at the earliest
possible step in the execution plan. Generally, subqueries that are not merged are executed
as the last step in the execution plan. If the subquery is relatively inexpensive and reduces
the number of rows significantly, then evaluating the subquery earlier can improve
performance.

This hint has no effect if the subquery is applied to a remote table or one that is joined using a
merge join.

PX_JOIN_FILTER Hint

_>@»| PX_JOIN_FILTER tablespec}s@»@»

This hint forces the optimizer to use parallel join bitmap filtering.

QB_NAME Hint

ORACLE

()] 0BNANE (O(auenblodk)s() (1)

(See Specifying a Query Block in a Hint)

Use the 0B NAME hint to define a name for a query block. This name can then be used in a
hint in the outer query or even in a hint in an inline view to affect query execution on the
tables appearing in the named query block.

If two or more query blocks have the same name, or if the same query block is hinted twice
with different names, then the optimizer ignores all the names and the hints referencing that
guery block. Query blocks that are not named using this hint have unique system-generated
names. These names can be displayed in the plan table and can also be used in hints within
the query block, or in query block hints. For example:

2-129

Chapter 2
Comments

SELECT /*+ QB NAME (gb) FULL(@qgb e) */ employee id, last name
FROM employees e
WHERE last name = 'Smith';

RESULT_CACHE Hint

—(: }9| RESULT_CACHE

The RESULT CACHE hint instructs the database to cache the results of the current query
or query fragment in memory and then to use the cached results in future executions
of the query or query fragment. The hint is recognized in the top-level query, the
subquery factoring clause, or FROM clause inline view. The cached results reside in
the result cache memory portion of the shared pool.

A cached result is automatically invalidated whenever a database object used in its
creation is successfully modified.

If TEMP has a value of TRUE , then the query will be allowed to spill to disk and allocate
space in the temporary tablespace, if needed.

If TEMP has a value of FALSE , then the query will not be allowed to spill to disk and use
the temporary tablespace for caching the result.

Both values TRUE and FALSE override the value of the RESULT CACHE MODE initialization
parameter.

If you do not specify TEMP, then the value of RESULT CACHE MODE holds.

The query is eligible for result caching only if all functions entailed in the query—for
example, built-in or user-defined functions or virtual columns—are deterministic.

If the query is executed from an OCI client and the OCI client result cache is enabled,
then the RESULT CACHE hint enables client caching for the current query.

¢ See Also:

Oracle Database Performance Tuning Guide for information about using this
hint, Oracle Database Reference for information about the

RESULT CACHE MODE initialization parameter, and Oracle Call Interface
Programmer's Guide for more information about the OCI result cache and
usage guidelines

RETRY_ON_ROW_CHANGE Hint

—(7"+)| RETRY_ON_ROW_CHANGE |(*/)>

ORACLE 2-130

Chapter 2
Comments

< Note:

The CHANGE DUPKEY ERROR INDEX, IGNORE ROW ON DUPKEY INDEX, and
RETRY ON ROW CHANGE hints are unlike other hints in that they have a semantic
effect. The general philosophy explained in Hints does not apply for these three
hints.

This hint is valid only for UPDATE and DELETE operations. It is not supported for INSERT or
MERGE operations. When you specify this hint, the operation is retried when the ORA ROWSCN
for one or more rows in the set has changed from the time the set of rows to be modified is
determined to the time the block is actually modified.

¢ See Also:

IGNORE_ROW_ON_DUPKEY_INDEX Hint and
CHANGE_DUPKEY_ERROR_INDEX Hint

REWRITE Hint

< (G-
@0 O

(See Specifying a Query Block in a Hint)

The REWRITE hint instructs the optimizer to rewrite a query in terms of materialized views,
when possible, without cost consideration. Use the REWRITE hint with or without a view list. If
you use REWRITE with a view list and the list contains an eligible materialized view, then
Oracle uses that view regardless of its cost.

Oracle does not consider views outside of the list. If you do not specify a view list, then
Oracle searches for an eligible materialized view and always uses it regardless of the cost of
the final plan.

¢ See Also:

e Oracle Database Concepts for more information on materialized views

e Oracle Database Data Warehousing Guide for more information on using
REWRITE with materialized views

STAR_TRANSFORMATION Hint
—{(I"+)| STAR_TRANSFORMATION | O O Chy

ORACLE 2-131

Chapter 2
Comments

(See Specifying a Query Block in a Hint)

The STAR TRANSFORMATION hint instructs the optimizer to use the best plan in which the
transformation has been used. Without the hint, the optimizer could make a query
optimization decision to use the best plan generated without the transformation,
instead of the best plan for the transformed query. For example:

SELECT /*+ STAR TRANSFORMATION */ s.time id, s.prod id, s.channel id
FROM sales s, times t, products p, channels c
WHERE s.time id = t.time id
AND s.prod id = p.prod id
AND s.channel id = c.channel id
AND c.channel desc = 'Tele Sales';

Even if the hint is specified, there is no guarantee that the transformation will take
place. The optimizer generates the subqueries only if it seems reasonable to do so. If
no subqueries are generated, then there is no transformed query, and the best plan for
the untransformed query is used, regardless of the hint.

" See Also:

e Oracle Database Data Warehousing Guide for a full discussion of star
transformation.

e QOracle Database Reference for more information on the
STAR TRANSFORMATION ENABLED initialization parameter.

STATEMENT_QUEUING Hint

ORACLE

—(7"+)| STATEMENT_QUEUNG |(*/)>

The NO_STATEMENT QUEUING hint influences whether or not a statement is queued with
parallel statement queuing.

When PARALLEL DEGREE_POLICY is not set to AUTO, this hint enables a statement to be
considered for parallel statement queuing, but to run only when enough parallel
processes are available to run at the requested DOP. The number of available parallel
execution servers, before queuing is enabled, is equal to the difference between the
number of parallel execution servers in use and the maximum number allowed in the
system, which is defined by the PARALLEL SERVERS TARGET initialization parameter.

For example:

SELECT /*+ STATEMENT QUEUING */ emp.last name, dpt.department name
FROM employees emp, departments dpt
WHERE emp.department id = dpt.department id;

¢ See Also:

NO_STATEMENT_QUEUING Hint

2-132

Chapter 2
Comments

UNNEST Hint

00D

(See Specifying a Query Block in a Hint)

The UNNEST hint instructs the optimizer to unnest and merge the body of the subquery into the
body of the query block that contains it, allowing the optimizer to consider them together
when evaluating access paths and joins.

Before a subquery is unnested, the optimizer first verifies whether the statement is valid. The
statement must then pass heuristic and query optimization tests. The UNNEST hint instructs the
optimizer to check the subquery block for validity only. If the subquery block is valid, then
subquery unnesting is enabled without checking the heuristics or costs.

¢ See Also:

e Collection Unnesting: Examples for more information on unnesting nested
subqueries and the conditions that make a subquery block valid

e Oracle Database SQL Tuning Guide for additional information on subquery
unnesting

USE_BAND Hint

queryblock
- eEo PN (G oo

(See Specifying a Query Block in a Hint , tablespec::=)

The USE_BAND hint instructs the optimizer to join each specified table with another row source
using a band join. For example:

SELECT /*+ USE_BAND (el e2) */
el.last name
|| ' has salary between 100 less and 100 more than '
|| e2.last name AS "SALARY COMPARISON"
FROM employees el, employees e2
WHERE el.salary BETWEEN e2.salary - 100 AND e2.salary + 100;

USE_CONCAT Hint

clolcEio

ORACLE 2-133

Chapter 2
Comments

(See Specifying a Query Block in a Hint)

The USE_CONCAT hint instructs the optimizer to transform combined ORr-conditions in the
WHERE clause of a query into a compound query using the UNION ALL set operator.
Without this hint, this transformation occurs only if the cost of the query using the
concatenations is cheaper than the cost without them. The USE_CONCAT hint overrides
the cost consideration. For example:

SELECT /*+ USE_CONCAT */ *
FROM employees e
WHERE manager id = 108
OR department id = 110;

¢ See Also:

The NO_EXPAND Hint , which is the opposite of this hint

USE_CUBE Hint

queryblock
- EERO PN (G oo

(See Specifying a Query Block in a Hint , tablespec::=)

When the right-hand side of the join is a cube, the USE_CUBE hint instructs the optimizer
to join each specified table with another row source using a cube join. If the optimizer
decides not to use the cube join based on statistical analysis, then you can use
USE_CUBE to override that decision.

USE_HASH Hint

queryblock
- @EEo PN (G oo

(See Specifying a Query Block in a Hint , tablespec::=)

The USE_HASH hint instructs the optimizer to join each specified table with another row
source using a hash join. For example:

SELECT /*+ USE HASH(l h) */ *
FROM orders h, order items 1
WHERE l.order id = h.order id

AND l.order id > 2400;

USE_MERGE Hint

@ queryblock
TRl (@ -

ORACLE 2-134

Chapter 2
Comments

(See Specifying a Query Block in a Hint , tablespec::=)

The USE_MERGE hint instructs the optimizer to join each specified table with another row
source using a sort-merge join. For example:

SELECT /*+ USE_MERGE (employees departments) */ *
FROM employees, departments
WHERE employees.department id = departments.department id;

Use of the USE_NL and USE_MERGE hints is recommended with the LEADING and ORDERED hints.
The optimizer uses those hints when the referenced table is forced to be the inner table of a
join. The hints are ignored if the referenced table is the outer table.

USE_NL Hint

The USE_NL hint instructs the optimizer to join each specified table to another row source with
a nested loops join, using the specified table as the inner table.

queryblock
- eERo YN () 00

(See Specifying a Query Block in a Hint , tablespec::=)

The USE_NL hint instructs the optimizer to join each specified table to another row source with
a nested loops join, using the specified table as the inner table.

Use of the USE_NL and USE_MERGE hints is recommended with the LEADING and ORDERED hints.
The optimizer uses those hints when the referenced table is forced to be the inner table of a
join. The hints are ignored if the referenced table is the outer table.

In the following example, where a nested loop is forced through a hint, orders is accessed
through a full table scan and the filter condition 1.order id = h.order idis applied to every
row. For every row that meets the filter condition, order items is accessed through the index
order id.

SELECT /*+ USE NL(1 h) */ h.customer id, l.unit price * l.quantity
FROM orders h, order items 1
WHERE l.order id = h.order id;

Adding an INDEX hint to the query could avoid the full table scan on orders, resulting in an
execution plan similar to one used on larger systems, even though it might not be particularly
efficient here.

USE_NL_WITH_INDEX Hint

ORACLE

1@@”@@@’;)/%‘HHHHHHDF\\
—>@a| USE_NL_WITH_INDEX |_>@ © (tablespec) @@

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The USE_NL WITH INDEX hint instructs the optimizer to join the specified table to another row
source with a nested loops join using the specified table as the inner table. For example:

2-135

Chapter 2
Database Objects

SELECT /*+ USE NL WITH INDEX(l item product ix) */ *
FROM orders h, order items 1
WHERE l.order id = h.order id
AND l.order_id > 2400;

The following conditions apply:

* If no index is specified, then the optimizer must be able to use some index with at
least one join predicate as the index key.

* If anindex is specified, then the optimizer must be able to use that index with at
least one join predicate as the index key.

Database Objects

Oracle Database recognizes objects that are associated with a particular schema and
objects that are not associated with any particular schema, as described in the
sections that follow.

Schema Objects

ORACLE

A schema is a collection of logical structures of data, or schema objects. A schema is
owned by a database user and has the same name as that user. Each user owns a
single schema. Schema objects can be created and manipulated with SQL and include
the following types of objects:

Analytic views
Attribute dimensions
Clusters

Constraints

Database links
Database triggers
Dimensions

External procedure libraries
Hierarchies
Index-organized tables
Indexes

Indextypes

Java classes

Java resources

Java sources

Join groups
Materialized views
Materialized view logs
Mining models

Object tables

Object types

Object views
Operators

Packages

Sequences

Stored functions

2-136

Chapter 2
Database Object Names and Qualifiers

Stored procedures
Synonyms

Tables

Views

Zone maps

Nonschema Objects

Other types of objects are also stored in the database and can be created and manipulated
with SQL but are not contained in a schema:

Contexts
Directories
Editions

Flashback archives
Lockdown profiles
Profiles

Restore points
Roles

Rollback segments
Tablespaces
Tablespace sets
Unified audit policies
Users

In this reference, each type of object is described in the section devoted to the statement that
creates the database object. These statements begin with the keyword CREATE. For example,
for the definition of a cluster, see CREATE CLUSTER .

¢ See Also:

Oracle Database Concepts for an overview of database objects

You must provide names for most types of database objects when you create them. These
names must follow the rules listed in the sections that follow.

Database Object Names and Qualifiers

ORACLE

Some database objects are made up of parts that you can or must name, such as the
columns in a table or view, index and table partitions and subpartitions, integrity constraints
on a table, and objects that are stored within a package, including procedures and stored
functions. This section provides:

* Rules for naming database objects and database object location qualifiers

* Guidelines for naming database objects and qualifiers

2-137

Chapter 2
Database Object Names and Qualifiers

< Note:

Oracle uses system-generated names beginning with "sys_" for implicitly
generated database objects and subobjects, and hames beginning with
"ORA " for some Oracle-supplied objects. Oracle discourages you from using
these prefixes in the names you explicitly provide to your database objects
and subobjects to avoid possible conflict in name resolution.

Database Object Naming Rules

ORACLE

Every database object has a name. In a SQL statement, you represent the name of an
object with a quoted identifier or a nonquoted identifier.

e A quoted identifier begins and ends with double quotation marks ("). If you name a
schema object using a quoted identifier, then you must use the double quotation
marks whenever you refer to that object.

e A nonguoted identifier is not surrounded by any punctuation.

You can use either quoted or nonquoted identifiers to name any database object.
However, database names, global database names, database link names, disk group
names, and pluggable database (PDB) names are always case insensitive and are
stored as uppercase. If you specify such names as quoted identifiers, then the
guotation marks are silently ignored.

¢ See Also:

CREATE USER for additional rules for naming users and passwords

" Note:

Oracle does not recommend using quoted identifiers for database object
names. These quoted identifiers are accepted by SQL*Plus, but they may
not be valid when using other tools that manage database objects.

The following list of rules applies to both quoted and nonguoted identifiers unless
otherwise indicated:

1. The maximum length of identifier names depends on the value of the COMPATIBLE
initialization parameter.

* If COMPATIBLE is set to a value of 12.2 or higher, then names must be
from 1 to 128 bytes long with these exceptions:

— Names of databases are limited to 8 bytes.

— Names of disk groups, pluggable databases (PDBs), rollback segments,
tablespaces, and tablespace sets are limited to 30 bytes.

2-138

ORACLE

Chapter 2
Database Object Names and Qualifiers

— From Release 21c onwards names of pluggable databases are limited to 64
bytes.

If an identifier includes multiple parts separated by periods, then each attribute can
be up to 128 bytes long. Each period separator, as well as any surrounding double
guotation marks, counts as one byte. For example, suppose you identify a column
like this:

"schema"."table"."column"

The schema name can be 128 bytes, the table name can be 128 bytes, and the
column name can be 128 bytes. Each of the quotation marks and periods is a single-
byte character, so the total length of the identifier in this example can be up to 392
bytes.

* If COMPATIBLE is set to a value lower than 12.2, then names must be from 1 to

30 bytes long with these exceptions:
— Names of databases are limited to 8 bytes.
— Names of database links can be as long as 128 bytes.

If an identifier includes multiple parts separated by periods, then each attribute can
be up to 30 bytes long. Each period separator, as well as any surrounding double
guotation marks, counts as one byte. For example, suppose you identify a column
like this:

"schema"."table"."column"
The schema name can be 30 bytes, the table name can be 30 bytes, and the column

name can be 30 bytes. Each of the quotation marks and periods is a single-byte
character, so the total length of the identifier in this example can be up to 98 bytes.

Nonquoted identifiers cannot be Oracle SQL reserved words. Quoted identifiers can be
reserved words, although this is not recommended.

Depending on the Oracle product you plan to use to access a database object, names
might be further restricted by other product-specific reserved words.

¢ Note:

The reserved word ROWID is an exception to this rule. You cannot use the
uppercase word ROWID, either quoted or nonquoted, as a column name.
However, you can use the uppercase word as a quoted identifier that is not a
column name, and you can use the word with one or more lowercase letters (for
example, "Rowid" or "rowid") as any quoted identifier, including a column name.

See Also:

e Oracle SQL Reserved Words for a listing of all Oracle SQL reserved words

e The manual for a specific product, such as Oracle Database PL/SQL
Language Reference, for a list of the reserved words of that product

2-139

ORACLE

Chapter 2
Database Object Names and Qualifiers

The Oracle SQL language contains other words that have special meanings.
These words include data types, schema names, function names, the dummy
system table DUAL, and keywords (the uppercase words in SQL statements, such
as DIMENSION, SEGMENT, ALLOCATE, DISABLE, and so forth). These words are not
reserved. However, Oracle uses them internally in specific ways. Therefore, if you
use these words as names for objects and object parts, then your SQL statements
may be more difficult to read and may lead to unpredictable results.

In particular, do not use words beginning with SYS_or OR2 as schema object
names, and do not use the names of SQL built-in functions for the names of
schema objects or user-defined functions.

¢ See Also:

e Oracle SQL Keywords for information how to obtain a list of
keywords

e Data Types , About SQL Functions , and Selecting from the DUAL
Table

You should use characters from the ASCII repertoire in database names, global
database names, and database link names, because these characters provide
optimal compatibility across different platforms and operating systems. You must
use only characters from the ASCII repertoire in the names of common users,
common roles, and common profiles in a multitenant container database (CDB).

You can include multibyte characters in passwords.

Nonquoted identifiers must begin with an alphabetic character from your database
character set. Quoted identifiers can begin with any character.

Nonquoted identifiers can only contain alphanumeric characters from your
database character set and the underscore (_), dollar sign ($), and pound sign (#).
Database links can also contain periods (.) and "at" signs (@). Oracle strongly
discourages you from using $ and # in nonquoted identifiers.

Quoted identifiers can contain any characters and punctuations marks as well as
spaces. However, neither quoted nor nonquoted identifiers can contain double
quotation marks or the null character (\0).

Within a namespace, no two objects can have the same name.
The following schema objects share one namespace:

» Packages

* Private synonyms

* Sequences

e Stand-alone procedures

» Stand-alone stored functions

* Tables

* User-defined operators

* User-defined types

* Views

2-140

ORACLE

10.

Chapter 2
Database Object Names and Qualifiers

Each of the following schema objects has its own namespace:
* Clusters

* Constraints

» Database triggers

* Dimensions

* Indexes

* Materialized views (When you create a materialized view, the database creates an
internal table of the same name. This table has the same namespace as the other
tables in the schema. Therefore, a schema cannot contain a table and a materialized
view of the same name.)

e Private database links

Because tables and sequences are in the same namespace, a table and a sequence in
the same schema cannot have the same name. However, tables and indexes are in
different namespaces. Therefore, a table and an index in the same schema can have the
same name.

Each schema in the database has its own namespaces for the objects it contains. This
means, for example, that two tables in different schemas are in different namespaces and
can have the same name.

Each of the following nonschema objects also has its own namespace:
» Editions

* Parameter files (PFILES) and server parameter files (SPFILES)

* Profiles

* Public database links

e Public synonyms

e Tablespaces

* Userroles

Because the objects in these nhamespaces are not contained in schemas, these
namespaces span the entire database.

Nonquoted identifiers are not case sensitive. Oracle interprets them as uppercase.
Quoted identifiers are case sensitive.

By enclosing names in double quotation marks, you can give the following names to
different objects in the same namespace:

"employees"
"Employees"
"EMPLOYEES"

Note that Oracle interprets the following names the same, so they cannot be used for
different objects in the same namespace:

employees
EMPLOYEES
"EMPLOYEES"

When Oracle stores or compares identifiers in uppercase, the uppercase form of each
character in the identifiers is determined by applying the uppercasing rules of the
database character set. Language-specific rules determined by the session setting

2-141

Chapter 2
Database Object Names and Qualifiers

NLS SORT are not considered. This behavior corresponds to applying the SQL
function UPPER to the identifier rather than the function NLS UPPER.

The database character set uppercasing rules can yield results that are incorrect
when viewed as being in a certain natural language. For example, small letter
sharp s ("R"), used in German, does not have an uppercase form according to the
database character set uppercasing rules. It is not modified when an identifier is
converted into uppercase, while the expected uppercase form in German is the
sequence of two characters capital letter S ("SS"). Similarly, the uppercase form of
small letter i, according to the database character set uppercasing rules, is capital
letter I. However, the expected uppercase form in Turkish and Azerbaijani is
capital letter | with dot above.

The database character set uppercasing rules ensure that identifiers are
interpreted the same in any linguistic configuration of a session. If you want an
identifier to look correctly in a certain natural language, then you can quote it to
preserve the lowercase form or you can use the linguistically correct uppercase
form whenever you use that identifier.

11. Columns in the same table or view cannot have the same name. However,
columns in different tables or views can have the same name.

12. Procedures or functions contained in the same package can have the same name,
if their arguments are not of the same number and data types. Creating multiple
procedures or functions with the same name in the same package with different
arguments is called overloading the procedure or function.

13. Tablespace names are case sensitive, unlike other identifiers that are limited to 30
bytes.

Schema Object Naming Examples

The following examples are valid schema object names:

last name

horse

hr.hire date

"EVEN THIS & THAT!"

a very long and valid name

All of these examples adhere to the rules listed in Database Object Naming Rules .

Schema Object Naming Guidelines

ORACLE

Here are several helpful guidelines for naming objects and their parts:

» Use full, descriptive, pronounceable names (or well-known abbreviations).
* Use consistent naming rules.
* Use the same name to describe the same entity or attribute across tables.

When naming objects, balance the objective of keeping names short and easy to use
with the objective of making names as descriptive as possible. When in doubt, choose
the more descriptive name, because the objects in the database may be used by
many people over a period of time. Your counterpart ten years from now may have
difficulty understanding a table column with a name like pmdd instead of
payment due date.

2-142

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

Using consistent naming rules helps users understand the part that each table plays in your
application. One such rule might be to begin the names of all tables belonging to the FINANCE
application with fin .

Use the same names to describe the same things across tables. For example, the
department number columns of the sample employees and departments tables are both
named department id.

Syntax for Schema Objects and Parts in SQL Statements

ORACLE

This section tells you how to refer to schema objects and their parts in the context of a SQL
statement. This section shows you:

* The general syntax for referring to an object

* How Oracle resolves a reference to an object

* How to refer to objects in schemas other than your own

* How to refer to objects in remote databases

* How to refer to table and index partitions and subpartitions

The following diagram shows the general syntax for referring to an object or a part:

database_object_or_part::=

__
(object)

(dblink::=)
where:
* object is the name of the object.

* schema is the schema containing the object. The schema qualifier lets you refer to an
object in a schema other than your own. You must be granted privileges to refer to
objects in other schemas. If you omit schema, then Oracle assumes that you are referring
to an object in your own schema.

Only schema objects can be qualified with schema. Schema objects are shown with list
item 8. Nonschema objects, also shown with list item 8, cannot be qualified with schema
because they are not schema objects. An exception is public synonyms, which can
optionally be qualified with "PUBLIC". The quotation marks are required.

e partis a part of the object. This identifier lets you refer to a part of a schema object, such
as a column or a partition of a table. Not all types of objects have parts.

e dblink applies only when you are using the Oracle Database distributed functionality.
This is the name of the database containing the object. The dblink qualifier lets you refer
to an object in a database other than your local database. If you omit db1ink, then Oracle
assumes that you are referring to an object in your local database. Not all SQL
statements allow you to access objects on remote databases.

You can include spaces around the periods separating the components of the reference to
the object, but it is conventional to omit them.

2-143

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

How Oracle Database Resolves Schema Object References

ORACLE

When you refer to an object in a SQL statement, Oracle considers the context of the
SQL statement and locates the object in the appropriate namespace. After locating the
object, Oracle performs the operation specified by the statement on the object. If the
named object cannot be found in the appropriate namespace, then Oracle returns an
error.

The following example illustrates how Oracle resolves references to objects within
SQL statements. Consider this statement that adds a row of data to a table identified
by the name departments:

INSERT INTO departments
VALUES (280, 'ENTERTAINMENT_CLERK', 206, 1700);

Based on the context of the statement, Oracle determines that departments can be:

* Atable in your own schema

* Aview in your own schema

e A private synonym for a table or view
* A public synonym

Oracle always attempts to resolve an object reference within the namespaces in your
own schema before considering namespaces outside your schema. In this example,
Oracle attempts to resolve the name departments as follows:

1. First, Oracle attempts to locate the object in the namespace in your own schema
containing tables, views, and private synonyms. If the object is a private synonym,
then Oracle locates the object for which the synonym stands. This object could be
in your own schema, another schema, or on another database. The object could
also be another synonym, in which case Oracle locates the object for which this
synonym stands.

2. If the object is in the namespace, then Oracle attempts to perform the statement
on the object. In this example, Oracle attempts to add the row of data to
departments. If the object is not of the correct type for the statement, then Oracle
returns an error. In this example, departments must be a table, view, or a private
synonym resolving to a table or view. If departments is a sequence, then Oracle
returns an error.

3. If the object is not in any namespace searched in thus far, then Oracle searches
the namespace containing public synonyms. If the object is in that namespace,
then Oracle attempts to perform the statement on it. If the object is not of the
correct type for the statement, then Oracle returns an error. In this example, if
departments is a public synonym for a sequence, then Oracle returns an error.

If a public synonym has any dependent tables or user-defined types, then you cannot
create an object with the same name as the synonym in the same schema as the
dependent objects.

If a synonym does not have any dependent tables or user-defined types, then you can
create an object with the same name in the same schema as the dependent objects.
Oracle invalidates any dependent objects and attempts to revalidate them when they
are next accessed.

2-144

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

¢ See Also:

Oracle Database PL/SQL Language Reference for information about how PL/SQL
resolves identifier names

References to Objects in Other Schemas

To refer to objects in schemas other than your own, prefix the object name with the schema
name:

schema.object

For example, this statement drops the employees table in the sample schema hr:

DROP TABLE hr.employees;

References to Objects in Remote Databases

To refer to objects in databases other than your local database, follow the object name with
the name of the database link to that database. A database link is a schema object that
causes Oracle to connect to a remote database to access an object there. This section tells
you:

* How to create database links

* How to use database links in your SQL statements

Creating Database Links

You create a database link with the statement CREATE DATABASE LINK . The statement
lets you specify this information about the database link:

* The name of the database link
* The database connect string to access the remote database
e The username and password to connect to the remote database

Oracle stores this information in the data dictionary.

Database Link Names

ORACLE

When you create a database link, you must specify its name. Database link names are
different from names of other types of objects. They can be as long as 128 bytes and can
contain periods (.) and the "at" sign (@).

The name that you give to a database link must correspond to the name of the database to
which the database link refers and the location of that database in the hierarchy of database
names. The following syntax diagram shows the form of the name of a database link:

dblink::=

[PO | A ormecon e
—(database)}

2-145

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

where:

database should specify the name portion of the global name of the remote
database to which the database link connects. This global name is stored in the
data dictionary of the remote database. You can see this name in the GLOBAL NAME
data dictionary view.

domain should specify the domain portion of the global name of the remote
database to which the database link connects. If you omit domain from the name of
a database link, then Oracle qualifies the database link name with the domain of
your local database as it currently exists in the data dictionary.

connection qualifier lets you further qualify a database link. Using connection
qualifiers, you can create multiple database links to the same database. For
example, you can use connection qualifiers to create multiple database links to
different instances of the Oracle Real Application Clusters that access the same
database.

See Also:

Oracle Database Administrator’s Guidefor more information on
connection qualifiers

The combination database.domain is sometimes called the service name.

¢ See Also:

Oracle Database Net Services Administrator's Guide

Username and Password

Oracle uses the username and password to connect to the remote database. The
username and password for a database link are optional.

Database Connect String

The database connect string is the specification used by Oracle Net to access the
remote database. For information on writing database connect strings, see the Oracle
Net documentation for your specific network protocol. The database connect string for
a database link is optional.

References to Database Links

ORACLE

Database links are available only if you are using Oracle distributed functionality.
When you issue a SQL statement that contains a database link, you can specify the
database link name in one of these forms:

The complete database link name as stored in the data dictionary, including the
database, domain, and optional connection qualifier components.

The partial database link name is the database and optional
connection qualifier components, but not the domain component.

2-146

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

Oracle performs these tasks before connecting to the remote database:

1. If the database link name specified in the statement is partial, then Oracle expands the
name to contain the domain of the local database as found in the global database name
stored in the data dictionary. (You can see the current global database name in the
GLOBAL NAME data dictionary view.)

2. Oracle first searches for a private database link in your own schema with the same name
as the database link in the statement. Then, if necessary, it searches for a public
database link with the same name.

e Oracle always determines the username and password from the first matching
database link (either private or public). If the first matching database link has an
associated username and password, then Oracle uses it. If it does not have an
associated username and password, then Oracle uses your current username and
password.

« If the first matching database link has an associated database string, then Oracle
uses it. Otherwise Oracle searches for the next matching (public) database link. If no
matching database link is found, or if no matching link has an associated database
string, then Oracle returns an error.

3. Oracle uses the database string to access the remote database. After accessing the
remote database, if the value of the GLOBAL NAMES parameter is true, then Oracle verifies
that the database.domain portion of the database link name matches the complete global
name of the remote database. If this condition is true, then Oracle proceeds with the
connection, using the username and password chosen in Step 2. If not, Oracle returns an
error.

4. If the connection using the database string, username, and password is successful, then
Oracle attempts to access the specified object on the remote database using the rules for
resolving object references and referring to objects in other schemas discussed earlier in
this section.

You can disable the requirement that the database.domain portion of the database link name
must match the complete global name of the remote database by setting to FALSE the
initialization parameter GLOBAL NAMES or the GLOBAL NAMES parameter of the ALTER SYSTEM or
ALTER SESSION statement.

¢ See Also:

Oracle Database Administrator’s Guide for more information on remote name
resolution

References to Partitioned Tables and Indexes

ORACLE

Tables and indexes can be partitioned. When partitioned, these schema objects consist of a

number of parts called partitions, all of which have the same logical attributes. For example,
all partitions in a table share the same column and constraint definitions, and all partitions in

an index share the same index columns.

Partition-extended and subpatrtition-extended names let you perform some patrtition-level and
subpartition-level operations, such as deleting all rows from a partition or subpartition, on only
one partition or subpartition. Without extended names, such operations would require that

you specify a predicate (WHERE clause). For range- and list-partitioned tables, trying to phrase

2-147

ORACLE

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

a partition-level operation with a predicate can be cumbersome, especially when the
range partitioning key uses more than one column. For hash partitions and
subpartitions, using a predicate is more difficult still, because these partitions and
subpartitions are based on a system-defined hash function.

Partition-extended names let you use partitions as if they were tables. An advantage of
this method, which is most useful for range-partitioned tables, is that you can build
partition-level access control mechanisms by granting (or revoking) privileges on these
views to (or from) other users or roles. To use a patrtition as a table, create a view by
selecting data from a single partition, and then use the view as a table.

Syntax

You can specify partition-extended or subpartition-extended table names in any SQL
statement in which the partition extended name Or subpartition extended name
element appears in the syntax.

partition_extended_name::=

PARTITION |{pamtion)

PARTITION H FOR artition_key_value

p

subpartition_extended _name::=

SUBPARTITION |-><subpanition)

(X

S
subpartition_key_value

SUBPARTITION |—>| FOR

The DML statements INSERT, UPDATE, and DELETE and the ANALYZE statement require
parentheses around the partition or subpartition name. This small distinction is
reflected in the partition extension clause:

partition_extension_clause::=

PARTITION

SUBPARTITION

M)
FOR }a@-)—[(subpartition_key_value

In partition extended name, subpartition extended name, and
partition extension clause, the PARTITION FOR and SUBPARTITION FOR clauses let

2-148

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

you refer to a partition without using its name. They are valid with any type of partitioning and
are especially useful for interval partitions. Interval partitions are created automatically as
needed when data is inserted into a table.

For the respective partition key value Or subpartition key value, specify one value for
each partitioning key column. For multicolumn partitioning keys, specify one value for each
partitioning key. For composite partitions, specify one value for each partitioning key, followed
by one value for each subpartitioning key. All partitioning key values are comma separated.
For interval partitions, you can specify only one partition key value, and it must be a valid
NUMBER or datetime value. Your SQL statement will operate on the partition or subpartitions
that contain the values you specify.

" See Also:

The CREATE TABLE INTERVAL Clause for more information on interval partitions

Restrictions on Extended Names

Currently, the use of partition-extended and subpatrtition-extended table names has the
following restrictions:

* No remote tables: A partition-extended or subpartition-extended table name cannot
contain a database link (dblink) or a synonym that translates to a table with a dblink. To
use remote partitions and subpatrtitions, create a view at the remote site that uses the
extended table name syntax and then refer to the remote view.

e No synonyms: A partition or subpartition extension must be specified with a base table.
You cannot use synonyms, views, or any other objects.

e The PARTITION FOR and SUBPARTITION FOR clauses are not valid for DDL operations on
views.

* Inthe PARTITION FOR and SUBPARTITION FOR clauses, you cannot specify the keywords
DEFAULT or MAXVALUE or a bind variable for the partition key value or
subpartition key value.

e Inthe PARTITION and SUBPARTITION clauses, you cannot specify a bind variable for the
partition or subpartition name.

Example

In the following statement, sales is a partitioned table with partition sales g1 2000. You can
create a view of the single partition sales gl 2000, and then use it as if it were a table. This
example deletes rows from the partition.

CREATE VIEW Q1 2000 sales AS
SELECT *
FROM sales PARTITION (SALES Q1 2000);

DELETE FROM Q1 2000 sales
WHERE amount sold < 0;

ORACLE 2-149

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

References to Object Type Attributes and Methods

ORACLE

To refer to object type attributes or methods in a SQL statement, you must fully qualify
the reference with a table alias. Consider the following example from the sample
schema oe, which contains a type cust_address_typ and a table customers with a
cust_address column based on the cust address_typ:

CREATE TYPE cust address typ
OID '82A4AF6A4CD1656DE034080020E0EE3D'
AS OBJECT

(street address VARCHARZ (40),
postal code VARCHARZ (10),
city VARCHAR? (30),
state province VARCHAR2 (10),
country id CHAR(2));

/

CREATE TABLE customers

(customer id NUMBER (6) ,

cust first name
cust last name
cust address

VARCHARZ (20) CONSTRAINT cust fname nn NOT NULL,
VARCHARZ (20) CONSTRAINT cust lname nn NOT NULL,
cust address_typ,

In a SQL statement, reference to the postal code attribute must be fully qualified
using a table alias, as illustrated in the following example:

SELECT c.cust address.postal code
FROM customers c;

UPDATE customers c
SET c.cust address.postal code = '14621-2604"
WHERE c.cust address.city = 'Rochester'
AND c.cust address.state province = 'NY';

To reference a member method that does not accept arguments, you must provide
empty parentheses. For example, the sample schema oe contains an object table
categories tab, based on catalog typ, which contains the member function
getCatalogName. In order to call this method in a SQL statement, you must provide
empty parentheses as shown in this example:

SELECT TREAT (VALUE (c) AS catalog typ).getCatalogName () "Catalog Type"
FROM categories tab c
WHERE category id = 90;

Catalog Type

online catalog

2-150

Pseudocolumns

A pseudocolumn behaves like a table column, but is not actually stored in the table. You can
select from pseudocolumns, but you cannot insert, update, or delete their values. A
pseudocolumn is also similar to a function without arguments (refer to Functions). However,
functions without arguments typically return the same value for every row in the result set,
whereas pseudocolumns typically return a different value for each row.

This chapter contains the following sections:

* Hierarchical Query Pseudocolumns
e Sequence Pseudocolumns

* Version Query Pseudocolumns

e COLUMN_VALUE Pseudocolumn
e OBJECT_ID Pseudocolumn

e OBJECT_VALUE Pseudocolumn

* ORA_ROWSCN Pseudocolumn

* ROWID Pseudocolumn

* ROWNUM Pseudocolumn

* XMLDATA Pseudocolumn

Hierarchical Query Pseudocolumns

The hierarchical query pseudocolumns are valid only in hierarchical queries. The hierarchical
guery pseudocolumns are:

e CONNECT_BY_ISCYCLE Pseudocolumn
e CONNECT_BY_ISLEAF Pseudocolumn
* LEVEL Pseudocolumn

To define a hierarchical relationship in a query, you must use the CONNECT BY clause.

CONNECT _BY_ISCYCLE Pseudocolumn

ORACLE

The CONNECT BY ISCYCLE pseudocolumn returns 1 if the current row has a child which is also
its ancestor. Otherwise it returns 0.

You can specify CONNECT BY ISCYCLE only if you have specified the NOCYCLE parameter of the
CONNECT BY clause. NOCYCLE enables Oracle to return the results of a query that would
otherwise fail because of a CONNECT BY loop in the data.

3-1

Chapter 3
Hierarchical Query Pseudocolumns

¢ See Also:

Hierarchical Queries for more information about the NOCYCLE parameter and
Hierarchical Query Examples for an example that uses the
CONNECT BY ISCYCLE pseudocolumn

CONNECT _BY_ISLEAF Pseudocolumn

The CONNECT BY ISLEAF pseudocolumn returns 1 if the current row is a leaf of the tree
defined by the CONNECT BY condition. Otherwise it returns 0. This information indicates
whether a given row can be further expanded to show more of the hierarchy.

CONNECT_BY_ISLEAF Example

The following example shows the first three levels of the hr.employees table,
indicating for each row whether it is a leaf row (indicated by 1 in the IsLeaf column) or
whether it has child rows (indicated by 0 in the IsLeaf column):

SELECT last name "Employee", CONNECT BY ISLEAF "IsLeaf",
LEVEL, SYS CONNECT BY PATH(last name, '/') "Path"
FROM employees
WHERE LEVEL <= 3 AND department id = 80
START WITH employee id = 100
CONNECT BY PRIOR employee id = manager id AND LEVEL <= 4
ORDER BY "Employee", "IsLeaf";

Employee IsLeaf LEVEL Path
Abel 1 3 /King/Zlotkey/Rbel
Ande 1 3 /King/Errazuriz/Ande
Banda 1 3 /King/Errazuriz/Banda
Bates 1 3 /King/Cambrault/Bates
Bernstein 1 3 /King/Russell/Bernstein
Bloom 1 3 /King/Cambrault/Bloom
Cambrault 0 2 /King/Cambrault
Cambrault 1 3 /King/Russell/Cambrault
Doran 1 3 /King/Partners/Doran
Errazuriz 0 2 /King/Errazuriz
Fox 1 3 /King/Cambrault/Fox

¢ See Also:

Hierarchical Queries and SYS _CONNECT_BY_PATH

LEVEL Pseudocolumn

For each row returned by a hierarchical query, the LEVEL pseudocolumn returns 1 for a
root row, 2 for a child of a root, and so on. A root row is the highest row within an
inverted tree. A child row is any nonroot row. A parent row is any row that has

ORACLE 3-2

Chapter 3
Sequence Pseudocolumns

children. A leaf row is any row without children. Figure 3-1 shows the nodes of an inverted
tree with their LEVEL values.

Figure 3-1 Hierarchical Tree

child/
leaf

arent/
Pama

child/
leaf

child/
leaf

parent/
child

child/
leaf

child/
leaf

Level 1
Level 2
Level 3
Level 4

¢ See Also:

Hierarchical Queries for information on hierarchical queries in general and IN
Condition for restrictions on using the LEVEL pseudocolumn

Sequence Pseudocolumns

ORACLE

A sequence is a schema object that can generate unique sequential values. These values
are often used for primary and unique keys. You can refer to sequence values in SQL
statements with these pseudocolumns:

° CURRVAL: Returns the current value of a sequence
e NEXTVAL: Increments the sequence and returns the next value

You must qualify CURRVAL and NEXTVAL with the name of the sequence:

sequence.CURRVAL
sequence.NEXTVAL

To refer to the current or next value of a sequence in the schema of another user, you must
have been granted either SELECT object privilege on the sequence or SELECT ANY SEQUENCE
system privilege, and you must qualify the sequence with the schema containing it:

schema. sequence.CURRVAL
schema. sequence .NEXTVAL

To refer to the value of a sequence on a remote database, you must qualify the sequence
with a complete or partial name of a database link:

schema. sequence.CURRVAL@db1ink
schema. sequence .NEXTVAL@dblink

A sequence can be accessed by many users concurrently with no waiting or locking.

3-3

Chapter 3
Sequence Pseudocolumns

¢ See Also:

References to Objects in Remote Databases for more information on
referring to database links

Where to Use Sequence Values

You can use CURRVAL and NEXTVAL in the following locations:

e The select list of a SELECT statement that is not contained in a subquery,
materialized view, or view

e The select list of a subquery in an INSERT statement
e The VALUES clause of an INSERT statement

e The SET clause of an UPDATE statement

Restrictions on Sequence Values
You cannot use CURRVAL and NEXTVAL in the following constructs:

e Asubquery in a DELETE, SELECT, or UPDATE statement

* A query of a view or of a materialized view

* A SELECT statement with the DISTINCT operator

* A SELECT statement with a GROUP BY clause or ORDER BY clause

A SELECT statement that is combined with another SELECT statement with the
UNION, INTERSECT, or MINUS set operator

e The WHERE clause of a SELECT statement
* The condition of a CHECK constraint

Within a single SQL statement that uses CURRVAL or NEXTVAL, all referenced LONG
columns, updated tables, and locked tables must be located on the same database.

How to Use Sequence Values

ORACLE

When you create a sequence, you can define its initial value and the increment
between its values. The first reference to NEXTVAL returns the initial value of the
sequence. Subsequent references to NEXTVAL increment the sequence value by the
defined increment and return the new value. Any reference to CURRVAL always returns

the current value of the sequence, which is the value returned by the last reference to
NEXTVAL.

Before you use CURRVAL for a sequence in your session, you must first initialize the
sequence with NEXTVAL. Refer to CREATE SEQUENCE for information on sequences.

Within a single SQL statement containing a reference to NEXTVAL, Oracle increments
the sequence once:

» For each row returned by the outer query block of a SELECT statement. Such a
guery block can appear in the following places:

3-4

Chapter 3
Sequence Pseudocolumns

— Atop-level SELECT statement

— An INSERT ... SELECT statement (either single-table or multitable). For a multitable
insert, the reference to NEXTVAL must appear in the VALUES clause, and the sequence
is updated once for each row returned by the subquery, even though NEXTVAL may be
referenced in multiple branches of the multitable insert.

— A CREATE TABLE ... AS SELECT statement

— A CREATE MATERIALIZED VIEW ... AS SELECT statement
* For each row updated in an UPDATE statement
* For each INSERT statement containing a VALUES clause

e For each INSERT ... [ALL | FIRST] statement (multitable insert). A multitable insert is
considered a single SQL statement. Therefore, a reference to the NEXTVAL of a sequence
will increase the sequence only once for each input record coming from the SELECT
portion of the statement. If NEXTVAL is specified more than once in any part of the
INSERT ... [ALL | FIRST] statement, then the value will be the same for all insert branches,
regardless of how often a given record might be inserted.

* For each row merged by a MERGE statement. The reference to NEXTVAL can appear in the
merge insert clause oOf the merge update clause or both. The NEXTVALUE value is
incremented for each row updated and for each row inserted, even if the sequence
number is not actually used in the update or insert operation. If NEXTVAL is specified more
than once in any of these locations, then the sequence is incremented once for each row
and returns the same value for all occurrences of NEXTVAL for that row.

* For each input row in a multitable INSERT ALL Statement. NEXTVAL is incremented once for
each row returned by the subquery, regardless of how many occurrences of the
insert into_clause map to each row.

If any of these locations contains more than one reference to NEXTVAL, then Oracle
increments the sequence once and returns the same value for all occurrences of NEXTVAL.

If any of these locations contains references to both CURRVAL and NEXTVAL, then Oracle
increments the sequence and returns the same value for both CURRVAL and NEXTVAL.

Finding the next value of a sequence: Example
This example selects the next value of the employee sequence in the sample schema hr:

SELECT employees seq.nextval
FROM DUAL;

Inserting sequence values into a table: Example

This example increments the employee sequence and uses its value for a new employee
inserted into the sample table hr.employees:

INSERT INTO employees

VALUES (employees seq.nextval, 'John', 'Doe', 'jdoe', '555-1212',
TO_DATE (SYSDATE), 'PU CLERK', 2500, null, null, 30);

Reusing the current value of a sequence: Example

This example adds a new order with the next order number to the master order table. It then
adds suborders with this number to the detail order table:

ORACLE 3-5

Chapter 3
Version Query Pseudocolumns

INSERT INTO orders (order id, order date, customer id)
VALUES (orders seq.nextval, TO DATE (SYSDATE), 106);

INSERT INTO order items (order id, line item id, product id)
VALUES (orders seq.currval, 1, 2359);

INSERT INTO order items (order id, line item id, product id)
VALUES (orders seq.currval, 2, 3290);

INSERT INTO order items (order id, line item id, product id)
VALUES (orders seq.currval, 3, 2381);

Version Query Pseudocolumns

The version query pseudocolumns are valid only in Oracle Flashback Version Query,
which is a form of Oracle Flashback Query. The version query pseudocolumns are:

e VERSIONS STARTSCN and VERSIONS STARTTIME: Starting System Change Number
(SCN) or TIMESTAMP When the row version was created. This pseudocolumn
identifies the time when the data first had the values reflected in the row version.
Use this pseudocolumn to identify the past target time for Oracle Flashback Table
or Oracle Flashback Query. If this pseudocolumn is NULL, then the row version was
created before start.

* VERSIONS ENDSCN and VERSIONS ENDTIME: SCN or TIMESTAMP when the row
version expired. If the pseudocolumn is NULL, then either the row version was
current at the time of the query or the row corresponds to a DELETE operation.

* VERSIONS XID: Identifier (a Raw number) of the transaction that created the row
version.

* VERSIONS OPERATION: Operation performed by the transaction: I for insertion, D for
deletion, or U for update. The version is that of the row that was inserted, deleted,
or updated; that is, the row after an INSERT operation, the row before a DELETE
operation, or the row affected by an UPDATE operation.

For user updates of an index key, Oracle Flashback Version Query might treat an
UPDATE operation as two operations, DELETE plus INSERT, represented as two
version rows with a D followed by an I VERSIONS OPERATION.

¢ See Also:

e flashback_query_clause for more information on version queries

e Oracle Database Development Guide for more information on using
Oracle Flashback Version Query

e Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules for values of the VERSIONS OPERATION
pseudocolumn

ORACLE 3-6

Chapter 3
COLUMN_VALUE Pseudocolumn

COLUMN_VALUE Pseudocolumn

When you refer to an XMLTable construct without the COLUMNS clause, or when you use the
TABLE collection expression to refer to a scalar nested table type, the database returns a
virtual table with a single column. This name of this pseudocolumn is COLUMN VALUE.

In the context of XMLTable, the value returned is of data type XMLType. For example, the
following two statements are equivalent, and the output for both shows COLUMN VALUE as the
name of the column being returned:

SELECT *
FROM XMLTABLE ('<a>123");

COLUMN VALUE

<a>123

SELECT COLUMN VALUE
FROM (XMLTable ('<a>123"));

COLUMN VALUE

<a>123

In the context of a TABLE collection expression, the value returned is the data type of the
collection element. The following statements create the two levels of nested tables illustrated
in Creating a Table: Multilevel Collection Example to show the uses of COLUMN VALUE in this
context:

CREATE TYPE phone AS TABLE OF NUMBER;

/

CREATE TYPE phone list AS TABLE OF phone;
/

The next statement uses COLUMN VALUE to select from the phone type:

SELECT t.COLUMN7VALUE
FROM TABLE (phone (1,2,3)) t;

COLUMN VALUE

In a nested type, you can use the COLUMN VALUE pseudocolumn in both the select list and the
TABLE collection expression:

SELECT t.COLUMN VALUE
FROM TABLE (phone list (phone(1,2,3))) p, TABLE (p.COLUMN VALUE) t;

COLUMN VALUE

ORACLE 3.7

Chapter 3
OBJECT _ID Pseudocolumn

The keyword COLUMN VALUE is also the name that Oracle Database generates for the

scalar value of an inner nested table without a column or attribute name, as shown in
the example that follows. In this context, COLUMN VALUE is not a pseudocolumn, but an
actual column name.

CREATE TABLE my customers (
cust_id NUMBER,
name VARCHARZ (25),
phone numbers phone list,
credit limit NUMBER)
NESTED TABLE phone numbers STORE AS outer ntab
(NESTED TABLE COLUMN VALUE STORE AS inner ntab);

" See Also:

« XMLTABLE for information on that function

e table_collection_expression::= for information on the TABLE collection
expression

e ALTER TABLE examples in Nested Tables: Examples

e Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules for values of the COLUMN VALUE pseudocolumn

OBJECT _ID Pseudocolumn

The OBJECT ID pseudocolumn returns the object identifier of a column of an object
table or view. Oracle uses this pseudocolumn as the primary key of an object table.
OBJECT 1D is useful in INSTEAD OF triggers on views and for identifying the ID of a
substitutable row in an object table.

Note:

In earlier releases, this pseudocolumn was called sYS NC_0ID$. That name is
still supported for backward compatibility. However, Oracle recommends that
you use the more intuitive name OBJECT ID.

¢ See Also:

Oracle Database Object-Relational Developer's Guide for examples of the
use of this pseudocolumn

OBJECT_VALUE Pseudocolumn

The OBJECT VALUE pseudocolumn returns system-generated names for the columns of
an object table, xMLType table, object view, or XMLType view. This pseudocolumn is

ORACLE 3-8

Chapter 3
ORA_ROWSCN Pseudocolumn

useful for identifying the value of a substitutable row in an object table and for creating object
views with the WITH OBJECT IDENTIFIER clause.

" Note:

In earlier releases, this pseudocolumn was called SYs NC ROWINFOS. That name is
still supported for backward compatibility. However, Oracle recommends that you
use the more intuitive name OBJECT VALUE.

¢ See Also:

e object table and object_view_clause for more information on the use of this
pseudocolumn

e Oracle Database Object-Relational Developer's Guide for examples of the use
of this pseudocolumn

ORA_ROWSCN Pseudocolumn

ORACLE

ORA_ROWSCN reflects the system change-number (SCN) of the most recent change to a row.
This change can be at the level of a block (coarse) or at the level of a row (fine-grained). The
latter is provided by row-level dependency tracking. Refer to CREATE TABLE ...
NOROWDEPENDENCIES | ROWDEPENDENCIES for more information on row-level
dependency tracking. In the absence of row-level dependencies, ORA ROWSCN reflects block-
level dependencies.

Whether at the block level or at the row level, the ORA ROWSCN should not be considered to be
an exact SCN. For example, if a transaction changed row R in a block and committed at SCN
10, it is not always true that the ORA_ROWSCN for the row would return 10. While a value less
than 10 would never be returned, any value greater than or equal to 10 could be returned.
That is, the ORA ROWSCN of a row is not always guaranteed to be the exact commit SCN of the
transaction that last modified that row. However, with fine-grained ORA ROWSCN, if two
transactions T1 and T2 modified the same row R, one after another, and committed, a query
on the ORA ROWSCN of row R after the commit of T1 will return a value lower than the value
returned after the commit of T2. If a block is queried twice, then it is possible for the value of
ORA ROWSCN to change between the queries even though rows have not been updated in the
time between the queries. The only guarantee is that the value of ORA ROWSCN in both queries
is greater than the commit SCN of the transaction that last modified that row.

You cannot use the ORA ROWSCN pseudocolumn in a query to a view. However, you can use it
to refer to the underlying table when creating a view. You can also use this pseudocolumn in
the WHERE clause of an UPDATE or DELETE Statement.

ORA_ROWSCN is not supported for Flashback Query. Instead, use the version query
pseudocolumns, which are provided explicitly for Flashback Query. Refer to the SELECT ...
flashback_query_clause for information on Flashback Query and Version Query
Pseudocolumns for additional information on those pseudocolumns.

Restriction on ORA_ROWSCN: This pseudocolumn is not supported for external tables.

3-9

Chapter 3
ORA_SHARDSPACE_NAME Pseudocolumn

Example

The first statement below uses the ORA_ROWSCN pseudocolumn to get the system
change number of the last operation on the employees table. The second statement
uses the pseudocolumn with the SCN_TO TIMESTAMP function to determine the
timestamp of the operation:

SELECT ORA ROWSCN, last name
FROM employees
WHERE employee id = 188;

SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN), last_name
FROM employees
WHERE employee id = 188;

See Also:
SCN_TO_TIMESTAMP

ORA SHARDSPACE_NAME Pseudocolumn

You can use the ORA SHARDSPACE NAME pseudocolumn to run queries across shards
instead of a sharding key.

Before you can run cross-shard queries from the catalog, you must create users in the
catalog with shared DDL enabled. Then you must grant these users access to the
privately sharded tables.

The queries referencing the privately sharded tables will run across the shards in the
catalog using the pseudocolumn ORA SHARDSPACE NAME associated to them. To run a
cross shard query on a given shard, you must filter the query with the predicate

ORA SHARDSPACE NAME = <shardspace name belonging to name>

Examples

SELECT CUST NAME, CUST ID FROM CUSTOMER WHERE ORA SHARDSPACE NAME = 'EUROPE'

This query will run on one of the shards belonging to the shardspace named Europe.
The query will run on the primary shard of the sharspace Europe or on one of its
standbys, depending on the value of the parameter
MULTISHARD QUERY DATA CONSISTENCY.

A query like:

SELECT CUST NAME, CUST ID FROM CUSTOMER

where the table CUSTOMER is marked as privately sharded, will run on all shards.

ROWID Pseudocolumn

For each row in the database, the ROWID pseudocolumn returns the address of the row.
Oracle Database rowid values contain information necessary to locate a row:

ORACLE 3-10

Chapter 3
ROWNUM Pseudocolumn

* The data object number of the object
* The data block in the data file in which the row resides
* The position of the row in the data block (first row is 0)

* The data file in which the row resides (first file is 1). The file number is relative to the
tablespace.

Usually, a rowid value uniquely identifies a row in the database. However, rows in different
tables that are stored together in the same cluster can have the same rowid.

Values of the ROWID pseudocolumn have the data type ROWID or UROWID. Refer to Rowid Data
Types and UROWID Data Type for more information.

Rowid values have several important uses:

* They are the fastest way to access a single row.
e They can show you how the rows in a table are stored.
e They are unique identifiers for rows in a table.

You should not use ROWID as the primary key of a table. If you delete and reinsert a row with
the Import and Export utilities, for example, then its rowid may change. If you delete a row,
then Oracle may reassign its rowid to a new row inserted later.

Although you can use the ROWID pseudocolumn in the SELECT and WHERE clause of a query,
these pseudocolumn values are not actually stored in the database. You cannot insert,
update, or delete a value of the ROWID pseudocolumn.

Example

This statement selects the address of all rows that contain data for employees in department
20:

SELECT ROWID, last name
FROM employees
WHERE department id = 20;

ROWNUM Pseudocolumn

ORACLE

< Note:

e The ROW_NUMBER built-in SQL function provides superior support for ordering the
results of a query. Refer to ROW_NUMBER for more information.

* The row limiting clause of the SELECT statement provides superior support
for limiting the number of rows returned by a query. Refer to
row_limiting_clause for more information.

For each row returned by a query, the ROWNUM pseudocolumn returns a number indicating the
order in which Oracle selects the row from a table or set of joined rows. The first row selected
has a ROWNUM of 1, the second has 2, and so on.

You can use ROWNUM to limit the number of rows returned by a query, as in this example:

3-11

ORACLE

Chapter 3
ROWNUM Pseudocolumn

SELECT *
FROM employees
WHERE ROWNUM < 11;

If an ORDER BY clause follows ROWNUM in the same query, then the rows will be reordered
by the ORDER BY clause. The results can vary depending on the way the rows are
accessed. For example, if the ORDER BY clause causes Oracle to use an index to
access the data, then Oracle may retrieve the rows in a different order than without the
index. Therefore, the following statement does not necessarily return the same rows
as the preceding example:

SELECT *
FROM employees
WHERE ROWNUM < 11
ORDER BY last name;

If you embed the ORDER BY clause in a subquery and place the ROWNUM condition in the
top-level query, then you can force the ROWNUM condition to be applied after the
ordering of the rows. For example, the following query returns the employees with the
10 smallest employee numbers. This is sometimes referred to as top-N reporting:

SELECT *
FROM (SELECT * FROM employees ORDER BY employee id)
WHERE ROWNUM < 11;

In the preceding example, the ROWNUM values are those of the top-level SELECT
statement, so they are generated after the rows have already been ordered by
employee id in the subquery.

Conditions testing for ROWNUM values greater than a positive integer are always false.
For example, this query returns no rows:

SELECT *
FROM employees
WHERE ROWNUM > 1;

The first row fetched is assigned a RoWwNUM of 1 and makes the condition false. The
second row to be fetched is now the first row and is also assigned a ROWNUM of 1 and
makes the condition false. All rows subsequently fail to satisfy the condition, so no
rows are returned.

You can also use ROWNUM to assign unique values to each row of a table, as in this
example:

UPDATE my table
SET columnl = ROWNUM;

Refer to the function ROW_NUMBER for an alternative method of assigning unique
numbers to rows.

Note:

Using ROWNUM in a query can affect view optimization.

3-12

Chapter 3
XMLDATA Pseudocolumn

XMLDATA Pseudocolumn

ORACLE

Oracle stores xMLType data either in LOB or object-relational columns, based on XMLSchema
information and how you specify the storage clause. The xMLDATA pseudocolumn lets you
access the underlying LOB or object relational column to specify additional storage clause
parameters, constraints, indexes, and so forth.

Example

The following statements illustrate the use of this pseudocolumn. Suppose you create a
simple table of XMLType with one CLOB column:

CREATE TABLE xml lob tab of XMLTYPE
XMLTYPE STORE AS CLOB;

To change the storage characteristics of the underlying LOB column, you can use the
following statement:

ALTER TABLE xml lob tab
MODIFY LOB (XMLDATA) (STORAGE (MAXSIZE 2G) CACHE);

Now suppose you have created an XMLSchema-based table like the xwarehouses table
created in Using XML in SQL Statements . You could then use the XMLDATA column to set the
properties of the underlying columns, as shown in the following statement:

ALTER TABLE xwarehouses
ADD (UNIQUE (XMLDATA."WarehouseId"));

3-13

Operators

An operator manipulates data items and returns a result. Syntactically, an operator appears
before or after an operand or between two operands.

This chapter contains these sections:

e About SQL Operators

e Arithmetic Operators

e COLLATE Operator

* Concatenation Operator

e Hierarchical Query Operators
e Set Operators

e Multiset Operators

e User-Defined Operators

This chapter discusses nonlogical (non-Boolean) operators. These operators cannot by
themselves serve as the condition of a WHERE or HAVING clause in queries or subqueries. For
information on logical operators, which serve as conditions, refer to Conditions.

About SQL Operators

Operators manipulate individual data items called operands or arguments. Operators are
represented by special characters or by keywords. For example, the multiplication operator is
represented by an asterisk (*).

If you have installed Oracle Text, then you can use the SCORE operator, which is part of that
product, in Oracle Text queries. You can also create conditions with the built-in Text
operators, including CONTAINS, CATSEARCH, and MATCHES. For more information on these
Oracle Text elements, refer to Oracle Text Reference.

Unary and Binary Operators

ORACLE

The two general classes of operators are:

* unary: A unary operator operates on only one operand. A unary operator typically
appears with its operand in this format:

operator operand

* binary: A binary operator operates on two operands. A binary operator appears with its
operands in this format:

operandl operator operandZ?

Other operators with special formats accept more than two operands. If an operator is given a
null operand, then the result is always null. The only operator that does not follow this rule is
concatenation (]|).

4-1

Chapter 4
Arithmetic Operators

Operator Precedence

Precedence is the order in which Oracle Database evaluates different operators in the
same expression. When evaluating an expression containing multiple operators,
Oracle evaluates operators with higher precedence before evaluating those with lower
precedence. Oracle evaluates operators with equal precedence from left to right within
an expression.

Table 4-1 lists the levels of precedence among SQL operators from high to low.
Operators listed on the same line have the same precedence.

Table 4-1 SQL Operator Precedence
|

Operator Operation

+, - (as unary operators), PRIOR, Identity, negation, location in hierarchy
CONNECT BY ROOT, COLLATE

*x, Multiplication, division

+, - (as binary operators), || Addition, subtraction, concatenation
SQL conditions are evaluated after SQL See "Condition Precedence"
operators

Precedence Example

In the following expression, multiplication has a higher precedence than addition, so
Oracle first multiplies 2 by 3 and then adds the result to 1.

1+2*3

You can use parentheses in an expression to override operator precedence. Oracle
evaluates expressions inside parentheses before evaluating those outside.

SQL also supports set operators (UNION, UNION ALL, INTERSECT, and MINUS), which
combine sets of rows returned by queries, rather than individual data items. All set
operators have equal precedence.

¢ See Also:

Hierarchical Query Operators and Hierarchical Queries for information on the
PRIOR operator, which is used only in hierarchical queries

Arithmetic Operators

ORACLE

You can use an arithmetic operator with one or two arguments to negate, add,
subtract, multiply, and divide numeric values. Some of these operators are also used in
datetime and interval arithmetic. The arguments to the operator must resolve to
numeric data types or to any data type that can be implicitly converted to a numeric
data type.

4-2

Chapter 4
COLLATE Operator

Unary arithmetic operators return the same data type as the numeric data type of the
argument. For binary arithmetic operators, Oracle determines the argument with the highest
numeric precedence, implicitly converts the remaining arguments to that data type, and
returns that data type. Table 4-2 lists arithmetic operators.

¢ See Also:

Table 2-8 for more information on implicit conversion, Numeric Precedence for
information on numeric precedence, and Datetime/Interval Arithmetic

Table 4-2 Arithmetic Operators

]
Operator Purpose Example

+ - When these denote a positive or negative

. SELECT *
expression, they are unary operators.

FROM order items
WHERE quantity = -1
ORDER BY order id,
line item id, product id;

SELECT *
FROM employees
WHERE -salary < 0
ORDER BY employee id;

+- When they add or subtract, they are binary SELECT hire date

operators. FROM employees
WHERE SYSDATE - hire_date > 365
ORDER BY hire date;
*/ Multiply, divide. These are binary UPDATE employees
operators.

SET salary = salary * 1.1;

Do not use two consecutive minus signs (--) in arithmetic expressions to indicate double
negation or the subtraction of a negative value. The characters -- are used to begin
comments within SQL statements. You should separate consecutive minus signs with a
space or parentheses. Refer to Comments for more information on comments within SQL
statements.

COLLATE Operator

ORACLE

The COLLATE operator determines the collation for an expression. This operator enables you
to override the collation that the database would have derived for the expression using
standard collation derivation rules.

COLLATE is a postfix unary operator. It has the same precedence as other unary operators, but
it is evaluated after all prefix unary operators have been evaluated.

You can apply this operator to expressions of type VARCHAR2, CHAR, LONG, NVARCHAR, Or NCHAR.

4-3

Chapter 4
Concatenation Operator

The COLLATE operator takes one argument, collation name, for which you can specify
a named collation or pseudo-collation. If the collation name contains a space, then you
must enclose the name in double quotation marks.

Table 4-3 describes the COLLATE operator.

Table 4-3 COLLATE Operator

Operator

Purpose Example

COLLATE collation name Determines the collation

SELECT last name
FROM employees
ORDER BY last_name COLLATE GENERIC_M;

for an expression

" See Also:

e Compound Expressions for information on using the COLLATE operator in
a compound expression

e Oracle Database Globalization Support Guide for more information on
the COLLATE operator

Concatenation Operator

ORACLE

The concatenation operator manipulates character strings and CLOB data. Table 4-4
describes the concatenation operator.

Table 4-4 Concatenation Operator

Operator Purpose Example

Il Concatenates character strings

SELECT 'Name is ' || last name
and CLOB data. -

FROM employees
ORDER BY last name;

The result of concatenating two character strings is another character string. If both
character strings are of data type CHAR, then the result has data type CHAR and is
limited to 2000 characters. If either string is of data type VARCHAR?2, then the result has
data type VARCHAR2 and is limited to 32767 characters if the initialization parameter
MAX STRING SIZE = EXTENDED and 4000 characters if MAX STRING SIZE = STANDARD.
Refer to Extended Data Types for more information. If either argument is a CLOB, the
result is a temporary CLOB. Trailing blanks in character strings are preserved by
concatenation, regardless of the data types of the string or CLOB.

On most platforms, the concatenation operator is two solid vertical bars, as shown in
Table 4-4. However, some IBM platforms use broken vertical bars for this operator.

When moving SQL script files between systems having different character sets, such
as between ASCII and EBCDIC, vertical bars might not be translated into the vertical
bar required by the target Oracle Database environment. Oracle provides the CONCAT

4-4

Chapter 4
Hierarchical Query Operators

character function as an alternative to the vertical bar operator for cases when it is difficult or
impossible to control translation performed by operating system or network utilities. Use this
function in applications that will be moved between environments with differing character
sets.

Although Oracle treats zero-length character strings as nulls, concatenating a zero-length
character string with another operand always results in the other operand, so null can result
only from the concatenation of two null strings. However, this may not continue to be true in
future versions of Oracle Database. To concatenate an expression that might be null, use the
NVL function to explicitly convert the expression to a zero-length string.

¢ See Also:

e Character Data Types for more information on the differences between the CHAR
and VARCHAR? data types

e The functions CONCAT and NVL

e Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about CLOBS

e Oracle Database Globalization Support Guide for the collation derivation rules
for the concatenation operator

Concatenation Example

This example creates a table with both CHAR and VARCHAR2 columns, inserts values both with
and without trailing blanks, and then selects these values and concatenates them. Note that
for both CHAR and VARCHAR2 columns, the trailing blanks are preserved.

CREATE TABLE tabl (coll VARCHARZ2 (6), col2 CHAR(6),
col3 VARCHARZ2 (6), cold4 CHAR(6));

INSERT INTO tabl (coll, <col2, col3, cold)
VALUES ('abc', 'def ', 'ghi ', Y9kl
SELECT coll || col2 || col3 || cold "Concatenation"
FROM tabl;
Concatenation

abcdef ghi jkl

Hierarchical Query Operators

PRIOR

ORACLE

Two operators, PRIOR and CONNECT BY ROOT, are valid only in hierarchical queries.

In a hierarchical query, one expression in the CONNECT BY condition must be qualified by the
PRIOR operator. If the CONNECT BY condition is compound, then only one condition requires
the PRIOR operator, although you can have multiple PRIOR conditions. PRIOR evaluates the
immediately following expression for the parent row of the current row in a hierarchical query.

4-5

Chapter 4
Set Operators

PRIOR is most commonly used when comparing column values with the equality
operator. (The PRIOR keyword can be on either side of the operator.) PRIOR causes
Oracle to use the value of the parent row in the column. Operators other than the
equal sign (=) are theoretically possible in CONNECT BY clauses. However, the
conditions created by these other operators can result in an infinite loop through the
possible combinations. In this case Oracle detects the loop at run time and returns an
error. Refer to Hierarchical Queries for more information on this operator, including
examples.

CONNECT_BY_ROOT

CONNECT BY ROOT is a unary operator that is valid only in hierarchical queries. When
you qualify a column with this operator, Oracle returns the column value using data
from the root row. This operator extends the functionality of the CONNECT BY [PRIOR]
condition of hierarchical queries.

Restriction on CONNECT_BY_ROOT

You cannot specify this operator in the START WITH condition or the CONNECT BY
condition.

¢ See Also:
CONNECT_BY_ROOT Examples

Set Operators

ORACLE

Set operators combine the results of two component queries into a single result.
Queries containing set operators are called compound queries. Table 4-5 lists the SQL
set operators. They are fully described with examples in The Set Operators.

Table 4-5 Set Operators
|

Operator Returns

UNION All distinct rows selected by either query

UNION ALL All rows selected by either query, including duplicates

INTERSECT All distinct rows selected by both queries

INTERSECT ALL All rows selected by both queries including duplicates

MINUS All distinct rows selected by the first query but not the second

MINUS ALL All rows selected by the first query but not the second including
duplicates

EXCEPT All distinct rows selected by the first query but not the second

EXCEPT ALL All rows selected by the first query but not the second including
duplicates

4-6

Chapter 4
Multiset Operators

Multiset Operators

MULTISET

ORACLE

Multiset operators combine the results of two nested tables into a single nested table.

The examples related to multiset operators require that two nested tables be created and
loaded with data as follows:

First, make a copy of the oe.customers table called customers demo:

CREATE TABLE customers demo AS
SELECT * FROM customers;

Next, create a table type called cust_address_tab_typ. This type will be used when creating
the nested table columns.

CREATE TYPE cust address tab typ AS
TABLE OF cust address_typ;
/

Now, create two nested table columns in the customers demo table:

ALTER TABLE customers demo
ADD (cust address ntab cust address tab typ,
cust address2 ntab cust address tab typ)
NESTED TABLE cust address ntab STORE AS cust address ntab store
NESTED TABLE cust address2 ntab STORE AS cust address2 ntab store;

Finally, load data into the two new nested table columns using data from the cust_address
column of the oe.customers table:

UPDATE customers demo cd
SET cust address ntab =
CAST (MULTISET (SELECT cust address
FROM customers c
WHERE c.customer id =
cd.customer id) as cust address tab typ):

UPDATE customers demo cd
SET cust address2 ntab =
CAST (MULTISET (SELECT cust address
FROM customers c
WHERE c.customer id =
cd.customer id) as cust address tab typ):

EXCEPT

MULTISET EXCEPT takes as arguments two nested tables and returns a nested table whose
elements are in the first nested table but not in the second nested table. The two input nested
tables must be of the same type, and the returned nested table is of the same type as well.

ALL

s

—>(nested,tab|e1)->| MULTISET |->| EXCEPT }

 nested_table2 }»

4-7

Chapter 4
Multiset Operators

The ALL keyword instructs Oracle to return all elements in nested tablel that are
not in nested table2. For example, if a particular element occurs m times in
nested tablel and ntimes in nested table2, then the result will have (m-n)
occurrences of the element if m >n and 0 occurrences if m<=n. ALL is the default.

The DISTINCT keyword instructs Oracle to eliminate any element in nested tablel
which is also in nested tablez, regardless of the number of occurrences.

The element types of the nested tables must be comparable. Refer to Comparison
Conditions for information on the comparability of nonscalar types.

Example

The following example compares two nested tables and returns a nested table of
those elements found in the first nested table but not in the second nested table:

SELECT customer_id, cust_address_ntab
MULTISET EXCEPT DISTINCT cust address2 ntab multiset except

FROM customers_demo
ORDER BY customer id;

CUSTOMER_ID MULTISET EXCEPT (STREET ADDRESS, POSTAL_CODE, CITY, STATE_ PROVINCE, COUNTRY_ID)

101 CUST ADDRESS TAB TYP(
102 CUST ADDRESS TAB TYP(
103 CUST_ADDRESS TAB TYP(
104 CUST ADDRESS TAB TYP(
105 CUST ADDRESS TAB TYP(

The preceding example requires the table customers demo and two nested table
columns containing data. Refer to Multiset Operators to create this table and nested
table columns.

MULTISET INTERSECT

ORACLE

MULTISET INTERSECT takes as arguments two nested tables and returns a nested table
whose values are common in the two input nested tables. The two input nested tables
must be of the same type, and the returned nested table is of the same type as well.

ALL

e

—>(nested,tab|e1)->| MULTISET |->| INTERSECT }

(nested_table2 }-»

The ALL keyword instructs Oracle to return all common occurrences of elements
that are in the two input nested tables, including duplicate common values and
duplicate common NULL occurrences. For example, if a particular value occurs m
times in nested tablel and ntimes in nested table2, then the result would
contain the element min (m, n) times. ALL is the default.

The DISTINCT keyword instructs Oracle to eliminate duplicates from the returned
nested table, including duplicates of NULL, if they exist.

The element types of the nested tables must be comparable. Refer to Comparison
Conditions for information on the comparability of nonscalar types.

4-8

Example

Chapter 4
Multiset Operators

The following example compares two nested tables and returns a nested table of those
elements found in both input nested tables:

SELECT customer_id, cust_address_ntab

MULTISET INTERSECT DISTINCT cust address2 ntab multiset intersect

FROM customers_demo
ORDER BY customer id;

CUSTOMER ID

CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP (
CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP (
CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP (
CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP (
CUST_ADDRESS_TAB_TYP (CUST_ADDRESS_TYP (

MULTISET INTERSECT (STREET ADDRESS, POSTAL CODE, CITY, STATE_ PROVINCE, COUNTRY_ ID

'514 W Superior St', '46901', 'Kokomo', 'IN', 'US'))

'2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'"))
'8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))
'6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'))
'4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'))

The preceding example requires the table customers demo and two nested table columns
containing data. Refer to Multiset Operators to create this table and nested table columns.

MULTISET UNION

MULTISET UNION takes as arguments two nested tables and returns a nested table whose
values are those of the two input nested tables. The two input nested tables must be of the
same type, and the returned nested table is of the same type as well.

ALL

()

—>(nested_tab|e1)->| MULTISET |->| UNION }

(' nested_table2)

The ALL keyword instructs Oracle to return all elements that are in the two input nested

tables, including duplicate values and duplicate NULL occurrences. This is the default.

The DISTINCT keyword instructs Oracle to eliminate duplicates from the returned nested

table, including duplicates of NULL, if they exist.

Conditions for information

Example

The element types of the nested tables must be comparable. Refer to Comparison

on the comparability of nonscalar types.

The following example compares two nested tables and returns a nested table of elements

from both input nested tables:

SELECT customer id, cust address ntab

MULTISET UNION cust address2 ntab multiset union

FROM customers demo
ORDER BY customer id;

CUSTOMER ID MULTISET UNION(STREET ADDRESS, POSTAL CODE, CITY, STATE PROVINCE, COUNTRY ID)

101 CUST ADDRESS TAB TYP(CUST ADDRESS TYP
CUST ADDRESS TYP
102 CUST ADDRESS TAB TYP(CUST ADDRESS TYP
CUST ADDRESS TYP
103 CUST ADDRESS TAB TYP(CUST ADDRESS TYP

(
(
(
(
(
CUST ADDRESS_TYP (

ORACLE

'514 W Superior St', '46901', 'Kokomo', 'IN', 'US'),

'514 W Superior St', '46901', 'Kokomo', 'IN', 'US'))

'2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'),
'2515 Bloyd Ave', '46218', 'Indianapolis', 'IN',6'US'))
'8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'),
'8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))

4-9

Chapter 4
SHARD_CHUNK_ID Operator

104 CUST ADDRESS TAB TYP(CUST ADDRESS TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN',

'us"),

CUST ADDRESS TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'))

105 CUST ADDRESS TAB TYP(CUST ADDRESS TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US')

’
CUST ADDRESS TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'))

The preceding example requires the table customers demo and two nested table
columns containing data. Refer to Multiset Operators to create this table and nested
table columns.

SHARD CHUNK_ID Operator

ORACLE

You can use the SQL operator SHARD CHUNK ID to get the chunk ID in a sharding
environment. You must provide the table family ID and the sharding key as input.

This operator can be used in all three sharding types: system, user-defined, and
composite. You can run the operator from the catalog and the shard.

Syntax

SELECT SHARD CHUNK ID(table family, sharding keyl [,
sharding key2 ...]) FROM table name ...

Semantics
table family
The first operand table family refers to the identifier of the table family. It can be:

* The table family id that can be queried from the
GSMADMIN INTERNAL.TABLE FAMILY table, or

* The name of the root table in the form of SCHEMA NAME.TABLE NAME .

If there is only one table family across the entire sharding environment, table family
can take NULL as input. This will default to the existing single table family.

sharding key

The second operand sharding key refers to a list of sharding keys. It can be a
constant value or column name.

You must order the list of sharding keys as follows:

1. List of super-sharding keys in the order they are defined.

2. List of sharding keys in the order they are defined. For this refer to
GSMADMIN INTERNAL.SHARDKEY COLUMNS .

In system and user-defined sharding environments, where super-sharding keys are
not used, you only need to supply sharding keys.

Example

Given the composite sharded table customers defined as follows:

CREATE SHARDED TABLE customers (
custno NUMBER NOT NULL,

4-10

Chapter 4
User-Defined Operators

name VARCHARZ (50) NOT NULL,
signup DATE DEFAULT NULL,
class VARCHAR2 (3) NOT NULL,

CONSTRAINT cust pk PRIMARY KEY (custno,name))
PARTITIONSET BY LIST (class)

PARTITION BY CONSISTENT HASH (custno,name)

PARTITIONS AUTO

(PARTITIONSET gold VALUES ('gld') TABLESPACE SET tbsl,
PARTITIONSET silver VALUES ('slv') TABLESPACE SET tbs2)

You can query it for the chunk ID with the following statement:

SELECT SHARD CHUNK ID(null, class, custno, name) FROM customers;

¢ See Also:

e Using Oracle Sharding

User-Defined Operators

ORACLE

Like built-in operators, user-defined operators take a set of operands as input and return a
result. However, you create them with the CREATE OPERATOR Statement, and they are identified
by user-defined names. They reside in the same namespace as tables, views, types, and
standalone functions.

After you have defined a new operator, you can use it in SQL statements like any other built-
in operator. For example, you can use user-defined operators in the select list of a SELECT
statement, the condition of a WHERE clause, or in ORDER BY clauses and GROUP BY clauses.
However, you must have EXECUTE privilege on the operator to do so, because it is a user-
defined object.

¢ See Also:

CREATE OPERATOR for an example of creating an operator and Oracle Database
Data Cartridge Developer's Guide for more information on user-defined operators

4-11

EXxpressions

This chapter describes how to combine values, operators, and functions into expressions.

This chapter includes these sections:

About SQL Expressions
Simple Expressions

Analytic View Expressions
Compound Expressions
CASE Expressions

Column Expressions
CURSOR Expressions
Datetime Expressions
Function Expressions

Interval Expressions

JSON Object Access Expressions
Model Expressions

Object Access Expressions
Placeholder Expressions
Scalar Subquery Expressions
Type Constructor Expressions

Expression Lists

About SQL Expressions

ORACLE

An expression is a combination of one or more values, operators, and SQL functions that
evaluates to a value. An expression generally assumes the data type of its components.

This simple expression evaluates to 4 and has data type NUMBER (the same data type as its
components):

2%2

The following expression is an example of a more complex expression that uses both

functions and operators. The expression adds seven days to the current date, removes the

time component from the sum, and converts the result to CHAR data type:

TO_CHAR (TRUNC (SYSDATE+7))

You can use expressions in:

The select list of the SELECT statement

5-1

ORACLE

Chapter 5
About SQL Expressions

e A condition of the WHERE clause and HAVING clause
e The CONNECT BY, START WITH, and ORDER BY clauses
e The VALUES clause of the INSERT statement

e The SET clause of the UPDATE statement

For example, you could use an expression in place of the quoted string 'Smith" in this
UPDATE Statement SET clause:

SET last name = 'Smith';

This SET clause has the expression INITCAP(last name) instead of the quoted string
'Smith":

SET last_name = INITCAP(last_name);

Expressions have several forms, as shown in the following syntax:

expr::=

simple_expression
compound_expression
calc_meas_expression
case_expression
Cursor_expression
datetime_expression

function_expression

it

interval_expression

-~
w
o
=
o
K=
[$°)
Q
QO
o
(@]
@D
w
wn
D
>
e}
\TJ

!

model_expression

—(object_access_expression)—

—Cscalar_subquery_expression)—

—(type_constructor_expression)—

|

variable_expression

Oracle Database does not accept all forms of expressions in all parts of all SQL
statements. Refer to the section devoted to a particular SQL statement in this book for
information on restrictions on the expressions in that statement.

You must use appropriate expression notation whenever expr appears in conditions,
SQL functions, or SQL statements in other parts of this reference. The sections that
follow describe and provide examples of the various forms of expressions.

5-2

Chapter 5
Simple Expressions

Simple Expressions

ORACLE

A simple expression specifies a column, pseudocolumn, constant, sequence number, or null.

simple_expression::=

query_name

<D h
schema
‘ (view)

\J .
materialized view
t_alias column

ROWNUM

—(string)
>-(number) —

CURRVAL
[CURRVAL
\| NULL

In addition to the schema of a user, schema can also be "PUBLIC" (double quotation marks
required), in which case it must qualify a public synonym for a table, view, or materialized
view. Qualifying a public synonym with "PUBLIC" is supported only in data manipulation
language (DML) statements, not data definition language (DDL) statements.

You can specify ROWID only with a table, not with a view or materialized view. NCHAR and
NVARCHAR? are not valid pseudocolumn data types.

¢ See Also:

Pseudocolumns for more information on pseudocolumns and
subquery_factoring_clause for information on query name

Some valid simple expressions are:

employees.last name

'this is a text string'

10

N'this is an NCHAR string'

5-3

Chapter 5
Analytic View Expressions

Analytic View Expressions

You can use analytic view expressions to create calculated measures within the
definition of an analytic view or in a query that selects from an analytic view.

Analytic view expressions differ from other types of expressions in that they reference
elements of hierarchies and analytic views rather than tables and columns.

An analytic view expression is one of the following:
* Anav meas expression, which is based on a measure in an analytic view
* Anav hier expression, which returns an attribute value of the related member

You use an analytic view expression as the calc meas expression parameterin a
calc measure clausein a CREATE ANALYTIC VIEW statement and in the WITH or FROM
clauses of a SELECT statement.

In defining a calculated measure, you may also use the following types of expression:
e Simple
 Case

e Compound

e Datetime
e Interval
Tip:

You can view and run SQL scripts that create analytic views with calculated
measures at the Oracle Live SQL website. The website has scripts and
tutorials that demonstrate the creation and use of analytic views.

Syntax

av_expression::=

av_meas_expression

!

av_hier_expression

av_meas_expression::=

H'I
rank_expression
H..

ORACLE 5-4

https://livesql.oracle.com/apex/livesql/file/index.html

ORACLE

Chapter 5
Analytic View Expressions

lead_lag_expression::=

—><Iead,|ag,function,name)»@{calc,meas,expression)»@% OVER F@»@ead,lag,clause)e@»

lead_lag_function_name::=

LAG

—| LAG_DIF_PERCENT |—

\| LEAD_DIFF_PERCENT |z

lead_lag_clause::=

—>| HIERARCHY |—>(hierarchy_ref>a| OFFSET Koﬁset_expr)»

WITHIN
Fwrn

BEGINNING

ﬁ POSITION H FROM
ACROSS |_>| ANCESTOR |->| AT |_>| LEVEL |—><Ieve|7ref)

hierarchy_ref::=

attr_dim_alias ‘
(hier_alias)»

av_window_expression::=

{aggregate_function>—>| OVER P@»Cav_window_clause)@»

5-5

ORACLE

Chapter 5
Analytic View Expressions

av_window_clause::=

—>| HIERARCHY |—>Chierarchy_ref)—>| BETWEEN

preceding_boundary
' following_boundary ‘

PARENT |

|
ANCESTOR |->| AT |->| LEVEL |{|eve|_ref)J ‘

WITHIN

preceding_boundary ::=

CURRENT |—>| MEMBER
| PRECEDING I
FOLLOWING

UNBOUNDED |—>| FOLLOWING

UNBOUNDED |—>| PRECEDING

AND offset_expr

offset_expr>—>| PRECEDING

following_boundary::=

CURRENT |_>| MEMBER oﬁsetﬁexpr>—>| FOLLOWING
AND
offset,expr)->| FOLLOWING UNBOUNDED |_>| FOLLOWING

rank_expression::=
OO LE Ol GETD 0}

rank_function_name::=

rank_clause::=

N\
—>| HIERARCHY |—>Chierarchy_ref>—>| ORDER H BY calc_meas_order_by_clause)L

PARENT |

|
ANCESTOR |_>| AT |->| LEVEL |{|eve|_ref)J ‘

WITHIN

5-6

ORACLE

Chapter 5
Analytic View Expressions

calc_meas_order_by_clause::=

ASC

=

—(calc_meas_expression)

share_of_expression::=

SHARE_OF a calc_meas_expression){share_clause)s@»

share_clause::=

PARENT

_>| HIERARCHY |—>(hierarchy7ref LEVEL |e(|eve|7ref

MEMBER |—>(member_expression

member_expression::=

level_member_literal

hier_navigation_expression)—

CURRENT |->| MEMBER |——>

level member literal::=

pos_member_keys
H
named_member_keys

pos_member_keys::=

' member_key_expr '

5-7

ORACLE

named_member_keys::=

(X
N\

‘ “ ‘ attr_name e member_key_expr ‘ 0 ‘

hier_navigation_expression::=

hier_ancestor_expression

hier_parent_expression

hier_lead_lag_expression

hier_ancestor_expression::=

level_ref

Chapter 5

Analytic View Expressions

—>| HIER_ANCESTOR @{member_expressionH AT

DEPTH |{depth_expression

hier_parent_expression::=

—] HIER_PARENT P@{member_expression)—)@»

hier_lead_lag_expression::=

HIER_LEAD
H hier_lead_lag_clause
HIER_LAG

hier_lead_lag_clause::=

{memberﬁexpression)al OFFSET Koffsetﬁexpr)»

ACROSS || ANCESTOR LEVEL Jx(level ref)

BEGINNING

5-8

ORACLE

Chapter 5
Analytic View Expressions

qdr_expression::=

—>| QUALIFY P@e(calc,meas,expression)»@{qualifier)@

qualifier::=

hierarchy_ref a member_expression

av_hier_expression::=
o member_expression)a| WITHIN |—>| HIERARCHY Khierarchy_ref)s@»

hier_function_name::=

HIER_CAPTION
HIER_DEPTH
-| HIER_DESCRIPTION |—

—>--| HIER_MEMBER_NAME l—e

—I HIER_MEMBER_UNIQUE_NAME

-| HIER_PARENT_LEVEL |—

-| HIER_PARENT_UNIQUE_NAME |-

\| HIER_CHILD_COUNT |—

Semantics

1T

av_meas_expression

An expression that performs hierarchical navigation to locate related measure values.

lead_lag_expression

An expression that specifies a lead or lag operation that locates a related measure value by
navigating forward or backward by some number of members within a hierarchy.

The calc meas expression parameter is evaluated in the new context created by the

lead lag expression. This context has the same members as the outer context, except that
the member of the specified hierarchy is changed to the related member specified by the lead
or lag operation. The lead or lag function is run over the hierarchy members specified by the
lead lag clause parameter.

lead_lag_function_name
The lead or lag function may be one of the following:

e LAG returns the measure value of an earlier member.

5-9

ORACLE

Chapter 5
Analytic View Expressions

LAG_DIFF returns the difference between the measure value of the current member
and the measure value of an earlier member.

LAG DIFF_PERCENT returns the percent difference between the measure value of
the current member and the measure value of an earlier member.

LEAD returns the measure value of a later member.

LEAD DIFF returns the difference between the measure value of the current
member and the measure value of a later member.

LEAD DIFF PERCENT returns the percent difference between the measure value of
the current member and the measure value of a later member.

lead_lag_clause

Specifies the hierarchy to evaluate and an offset value. The parameters of the
lead lag clause are the following:

HIERARCHY hierarchy ref specifies the alias of a hierarchy as defined in the
analytic view.

OFFSET offset expr specifies a calc meas expression that resolves to a number.
The number specifies how many members to move either forward or backward
from the current member. The ordering of members within a level is determined by
the definition of the attribute dimension used by the hierarchy.

WITHIN LEVEL specifies locating the related member by moving forward or
backward by the offset number of members within the members that have the
same level depth as the current member. The ordering of members within the level
is determined by the definition of the attribute dimension used by the hierarchy.

The WITHIN LEVEL operation is the default if neither the WITHIN LEVEL nor the
ACROSS ANCESTOR AT LEVEL keywords are specified.

WITHIN PARENT specifies locating the related member by moving forward or
backward by the offset number of members within the members that have the
same parent as the current member.

ACROSS ANCESTOR AT LEVEL level ref specifies locating the related member by
navigating up to the ancestor (or to the member itself if no ancestor exists) of the
current member at the level specified by level ref, and noting the position of
each ancestor member (including the member itself) within its parent. The

level ref parameter is the name of a level in the specified hierarchy.

Once the ancestor member is found, navigation moves either forward or backward
the offset number of members within the members that have the same depth as
the ancestor member. After locating the related ancestor, navigation proceeds
back down the hierarchy from this member, matching the position within the parent
as recorded on the way up (in reverse order). The position within the parent is
either an offset from the first child or the last child depending on whether POSITION
FROM BEGINNING or POSITION FROM END is specified. The default value is POSITION
FROM BEGINNING. The ordering of members within the level is determined by the
definition of the attribute dimension used by the hierarchy.

av_window_expression

An av_window expression selects the set of members that are in the specified range
starting from the current member and that are at the same depth as the current
member. You can further restrict the selection of members by specifying a hierarchical

5-10

ORACLE

Chapter 5
Analytic View Expressions

relationship using a WITHIN phrase. Aggregation is then performed over the selected
measure values to produce a single result for the expression.

The parameters for an av_window expression are the following:

* aggregate function is any existing SQL aggregate function except COLLECT, GROUP_ID,
GROUPING, GROUPING ID, SYS XMLAGG, XMLAGG, and any multi-argument function. A user
defined aggregate function is also allowed. The arguments to the aggregate function are
calc_meas_expression expressions. These expressions are evaluated using the outer
context, with the member of the specified hierarchy changed to each member in the
related range. Therefore, each expression argument is evaluated once per related
member. The results are then aggregated using the aggregate function.

* OVER (av_window clause) specifies the hierarchy to use and the boundaries of the
window to consider.

¢ See Also:

Aggregate Functions

av_window_clause

The av_window clause parameter selects a range of members related to the current member.
The range is between the members specified by the preceding boundary or

following boundary parameters. The range is always computed over members at the same
level as the current member.

The parameters for a av_window clause are the following:

* HIERARCHY hierarchy ref specifies the alias of the hierarchy as defined in the analytic
view.

* BETWEEN preceding boundary Of following boundary defines the set of members to
relate to the current member.

e WITHIN LEVEL selects the related members by applying the boundary clause to all
members of the current level. This is the default when the WITHIN keyword is not
specified.

° WITHIN PARENT selects the related members by applying the boundary clause to all
members that share a parent with the current member.

° WITHIN ANCESTOR AT LEVEL selects the related members by applying the boundary clause
to all members at the current depth that share an ancestor (or is the member itself) at the
specified level with the current member. The value of the window expression is NULL if the
current member is above the specified level. If the level is not in the specified hierarchy,
then an error occurs.

preceding_boundary

The preceding boundary parameter defines a range of members from the specified number
of members backward in the level from the current member and forward to the specified end
of the boundary. The following parameters specify the range:

* UNBOUNDED PRECEDING begins the range at the first member in the level.

5-11

Chapter 5
Analytic View Expressions

* offset expr PRECEDING begins the range at the offset expr number of members
backward from the current member. The offset expr expression is a
calc meas expression that resolves to a number. If the offset number is greater
than the number of members from the current member to the first member in the
level, than the first member is used as the start of the range.

° CURRENT MEMBER ends the range at the current member.

* offset expr PRECEDING ends the range at the member that is offset expr
backward from the current member.

* offset expr FOLLOWING ends the range at the member that is offset expr
forward from the current member.

* UNBOUNDED FOLLOWING ends the range at the last member in the level.

following_boundary

The following boundary parameter defines a range of members from the specified
number of members from the current member forward to the specified end of the
range. The following parameters specify the range:

e CURRENT MEMBER begins the range at the current member.

* offset expr FOLLOWING begins the range at the member that is offset expr
forward from the current member.

* offset expr FOLLOWING ends the range at the member that is offset expr
forward from the current member.

° UNBOUNDED FOLLOWING ends the range at the last member in the level.

hierarchy_ref

A reference to a hierarchy of an analytic view. The hier alias parameter specifies the
alias of a hierarchy in the definition of the analytic view. You may use double quotes to
escape special characters or preserve case, or both.

The optional attr dim alias parameter specifies the alias of an attribute dimension in
the definition of the analytic view. You may use the attr dim alias parameter to
resolve the ambiguity if the specified hierarchy alias conflicts with another hierarchy
alias in the analytic view or if an attribute dimension is used more than once in the
analytic view definition. You may use the attr dim alias parameter even when a
name conflict does not exist.

rank_expression

Hierarchical rank calculations rank the related members of the specified hierarchy
based on the order of the specified measure values and return the rank of the current
member within those results.

Hierarchical rank calculations locate a set of related members in the specified
hierarchy, rank all the related members based on the order of the specified measure
values, and then return the rank of the current member within those results. The
related members are a set of members at the same level as the current member. You
may optionally restrict the set by some hierarchical relationship, but the set always
includes the current member. The ordering of the measure values is determined by the
calc meas order by clause of the rank clause.

ORACLE 5-12

ORACLE

Chapter 5
Analytic View Expressions

rank_function_name

Each hierarchical ranking function assigns an order number to each related member based
onthe calc meas order by clause, starting at 1. The functions differ in the way they treat
measure values that are the same.

The functions and the differences between them are the following:

* RANK, which assigns the same rank to identical measure values. The rank after a set of
tied values is the number of tied values plus the tied order value; therefore, the ordering
may not be consecutive numbers.

* DENSE_RANK, which assigns the same minimum rank to identical measure values. The
rank after a set of tied values is always one more than the tied value; therefore, the
ordering always has consecutive numbers.

* AVERAGE RANK, assigns the same average rank to identical values. The next value after
the average rank value is the number of identical values plus 1, that sum divided by 2,
plus the average rank value. For example, for the series of five values 4, 5, 10, 5, 7,
AVERAGE RANK returns 1, 1.5, 1.5, 3, 4. For the series 2, 12, 10, 12, 17, 12, the returned
ranks are 1, 2, 3, 3, 3, 5.

* ROW_NUMBER, which assigns values that are unique and consecutive across the hierarchy
members. If the calc meas order by clause results in equal values then the results are
non-deterministic.

rank_clause

The rank clause locates a range of hierarchy members related to the current member. The
range is some subset of the members in the same level as the current member. The subset is
determined from the WITHIN clause.

Valid values for the WITHIN clause are:

° WITHIN LEVEL, which specifies that the related members are all the members of the
current level. This is the default subset if the WITHIN keyword is not specified.

° WITHIN PARENT, which specifies that the related members all share a parent with the
current member

° WITHIN ANCESTOR AT LEVEL, which specifies that the related members are all of the
members of the current level that share an ancestor (or self) at the specified level with
the current member.

share_of_expression

A share of expression expression calculates the ratio of an expression's value for the
current context over the expression's value at a related context. The expression is a
calc_meas_expression that is evaluated at the current context and the related context. The
share clause specification determines the related context to use.

share_clause

A share clause modifies the outer context by setting the member for the specified hierarchy
to a related member.

The parameters of the share clause are the following:

5-13

ORACLE

Chapter 5
Analytic View Expressions

* HIERARCHY hierarchy ref specifies the name of the hierarchy that is the outer
context for the share of expression calculations.

° PARENT specifies that the related member is the parent of the current member.

* LEVEL level ref specifies that the related member is the ancestor (or is the
member itself) of the current member at the specified level in the hierarchy. If the
current member is above the specified level, then NULL is returned for the share
expression. If the level is not in the hierarchy, then an error occurs.

e MEMBER member expression specifies that the related member is the member
returned after evaluating the member expression in the current context. If the
value of the specified member is NULL, then NULL is returned for the share
expression.

member_expression

A member expression evaluates to a member of the specified hierarchy. The hierarchy
can always be determined from the outer expression (enforced by the syntax). A
member expression can be one of the following:

* level member literalis an expression that evaluates to a hierarchy member.

* hier navigation expr is an expression that relates one member of the hierarchy
to another member.

° CURRENT MEMBER specifies the member of the hierarchy as determined by the outer
context.

e NULL is a way to specify a non-existent member.

e ALL specifies the single topmost member of every hierarchy.

level _member literal

A level member literalis an expression that resolves to a single member of the
hierarchy. The expression contains the name of the level and one or more member
keys. The member key or keys may be identified by position or by name. If the
specified level is not in the context hierarchy, then an error occurs.

pos_member_keys

The member key expr expression resolves to the key value for the member. When
specified by position, all components of the key must be given in the order found in the
ALL HIER LEVEL ID ATTRS dictionary view. For a hierarchy in which the specified level
is not determined by the child level, then all member key values of all such child levels
must be provided preceding the current level's member key or keys. Duplicate key
components are only specified the first time they appear.

The primary key is used when level member literal is specified using the
pos _member keys phrase. You can reference an alternate key by using the
named _member keys phrase.

named_member_keys

The member key expr expression resolves to the key value for the member. The
attr name parameter is an identifier for the name of the attribute. If all of the attribute
names do not make up a key or alternate key of the specified level, then an error
occurs.

5-14

ORACLE

Chapter 5
Analytic View Expressions

When specified by name, all components of the key must be given and all must use the
attribute name = value form, in any order. For a hierarchy in which the specified level is not
determined by the child level, then all member key values of all such child levels must be
provided, also using the named form. Duplicate key components are only specified once.

hier_navigation_expression

A hier navigation expression expression navigates from the specified member to a
different member in the hierarchy.

hier_ancestor_expression

Navigates from the specified member to the ancestor member (or to the member itself) at the
specified level or depth. The depth is specified as an expression that must resolve to a
number. If the member is at a level or depth above the specified member or the member is
NULL, then NULL is returned for the expression value. If the specified level is not in the context
hierarchy, then an error occurs.

hier_parent_expression

Navigates from the specified member to the parent member.

hier_lead_lag_expression

Navigates from the specified member to a related member by moving forward or backward
some number of members within the context hierarchy. The HIER LEAD keyword returns a
later member. The HIER LAG keyword returns an earlier member.

hier_lead_lag_clause

Navigates the offset expr number of members forward or backward from the specified
member. The ordering of members within a level is specified in the definition of the attribute
dimension.

The optional parameters of hier lead lag clause are the following:

* WITHIN LEVEL locates the related member by moving forward or backward offset expr
members within the members that have the same depth as the current member. The
ordering of members within the level is determined by the definition of the attribute
dimension. The WITHIN LEVEL operation is the default if neither the WITHIN nor the ACROSS
keywords are used.

* WITHIN PARENT locates the related member by moving forward or backward offset expr
members within the members that have the same depth as the current member, but only
considers members that share a parent with the current member. The ordering of
members within the level is determined by the definition of the attribute dimension.

e WITHIN ACROSS ANCESTOR AT LEVEL locates the related member by navigating up to the
ancestor of the current member (or to the member itself) at the specified level, noting the
position of each ancestor member (including the member itself) within its parent. Once
the ancestor member is found, navigation moves forward or backward offset expr
members within the members that have the same depth as the ancestor member.

After locating the related ancestor, navigation moves back down the hierarchy from that
member, matching the position within the parent as recorded on the way up (in reverse
order). The position within the parent is either an offset from the first child or the last child
depending on whether POSITION FROM BEGINNING or POSITION FROM END is specified,

5-15

Chapter 5
Analytic View Expressions

defaulting to POSITION FROM BEGINNING. The ordering of members within the level
is determined by the definition of the attribute dimension.

qdr_expression

A qdr expressionis a qualified data reference that evaluates the specified

calc meas expressionin anew context and sets the hierarchy member to the new
value.

qualifier

A qualifier modifies the outer context by setting the member for the specified hierarchy
to the member resulting from evaluating member expression. If member expressionis
NULL, then the result of the gdr expression selection is NULL.

av_hier_expression

An av_hier expression performs hierarchy navigation to locate an attribute value of
the related member. An av_hier expression may be a top-level expression, whereas
a hier navigation expression may only be used as a member expression argument.

For example, in the following query HIER MEMBER NAME iS an av_hier expression
and HIER PARENT iS @ hier navigation expression.

HIER_MEMBER_NAME(HIER_PARENT(CURRENT MEMBER) WITHIN HIERARCHY
product hier))

hier_function_name
The hier function name values are the following:

* HIER CAPTION, which returns the caption of the related member in the hierarchy.

* HIER DEPTH, which returns one less than the number of ancestors between the
related member and the ALL member in the hierarchy. The depth of the ALL
member is 0.

* HIER DESCRIPTION, which returns the description of the related member in the
hierarchy.

* HIER LEVEL, which returns as a string value the name of the level to which the
related member belongs in the hierarchy.

* HIER MEMBER NAME, which returns the member name of the related member in the
hierarchy.

* HIER MEMBER UNIQUE NAME, which returns the member unique name of the related
member in the hierarchy.

Examples of Analytic View Expressions

ORACLE

This topic contains examples that show calculated measures defined in the MEASURES
clause of an analytic view and in the ADD MEASURES clause of a SELECT statement.

The examples are the following:

* Examples of LAG Expressions

5-16

ORACLE

Chapter 5
Analytic View Expressions

» Example of a Window Expression

* Examples of SHARE OF Expressions

* Examples of QDR Expressions

* Example of an Added Measure Using the RANK Function

For more examples, see the tutorials on analytic views at the SQL Live website at https://

livesgl.oracle.com/apex/livesql/file/index.html.

Examples of LAG Expressions

These calculated measures different LAG operations.

-- These calculated measures are from the measures clause of the
-- sales_av analytic view.

MEASURES
(sales FACT sales, -- A base measure
units FACT units, -- A base measure
sales prior period AS -- Calculated measures

(LAG (sales) OVER (HIERARCHY time hier OFFSET 1)),
sales year ago AS
(LAG (sales) OVER (HIERARCHY time hier OFFSET 1
ACROSS ANCESTOR AT LEVEL year)),
chg sales year ago AS
(LAG_DIFF(Sales) OVER (HIERARCHY time_hier OFFSET 1
ACROSS ANCESTOR AT LEVEL year)),
pct chg sales year ago AS
(LAG_DIFF_PERCENT(SaleS) OVER (HIERARCHY time_hier OFFSET 1
ACROSS ANCESTOR AT LEVEL year)),
sales gtr ago AS
(LAG (sales) OVER (HIERARCHY time hier OFFSET 1
ACROSS ANCESTOR AT LEVEL quarter)),
chg sales gtr _ago AS
(LAG_DIFF(Sales) OVER (HIERARCHY time_hier OFFSET 1
ACROSS ANCESTOR AT LEVEL quarter)),
pct chg sales gtr ago AS
(LAG_DIFF_PERCENT(SaleS) OVER (HIERARCHY time_hier OFFSET 1
ACROSS ANCESTOR AT LEVEL quarter))

Example of a Window Expression

This calculated measure uses a window operation.

MEASURES

(sales FACT sales,

units FACT units,

sales gtd AS
(SUM(sales) OVER (HIERARCHY time hier
BETWEEN UNBOUNDED PRECEDING AND CURRENT MEMBER
WITHIN ANCESTOR AT LEVEL QUARTER)),

sales ytd AS
(SUM(sales) OVER (HIERARCHY time hier
BETWEEN UNBOUNDED PRECEDING AND CURRENT MEMBER

5-17

https://livesql.oracle.com/apex/livesql/file/index.html
https://livesql.oracle.com/apex/livesql/file/index.html

Chapter 5
Analytic View Expressions

WITHIN ANCESTOR AT LEVEL YEAR))

Examples of SHARE OF Expressions

These calculated measures use SHARE OF expressions.

MEASURES
(sales FACT sales,
units FACT units,
sales shr parent prod AS
(SHARE OF (sales HIERARCHY product hier PARENT)),
sales shr parent geog AS
(SHARE OF (sales HIERARCHY geography hier PARENT)),
sales_shr region AS
(SHARE OF (sales HIERARCHY geography hier LEVEL REGION))
)

Examples of QDR Expressions

These calculated measures use the QUALIFY keyword to specify qualified data
reference expressions.

MEASURES

(sales FACT sales,

units FACT units,

sales 2011 AS
(QUALIFY (sales, time hier = year['ll'])),

sales pct chg 2011 AS
((sales - (QUALIFY (sales, time hier = year['11']))) /
(QUALIFY (sales, time hier = year['ll'])))

Example of an Added Measure Using the RANK Function

In this example, the units_geog_rank_level measure uses the RANK function to rank
geography hierarchy members within a level based on units.

SELECT geography hier.member name AS "Region",
units AS "Units",
units geog rank level AS "Rank"
FROM ANALYTIC VIEW (
USING sales_av HIERARCHIES (geography hier)
ADD MEASURES (
units geog rank level AS (
RANK () OVER (
HIERARCHY geography hier
ORDER BY units desc nulls last
WITHIN LEVEL))

)

WHERE geography hier.level name IN ('REGION')
ORDER BY units geog rank level;

ORACLE 5-18

Chapter 5
Compound Expressions

The following is the result of the query.

Regions Units Rank
Asia 56017849 1
South America 23904155 2
North America 20523698 3
Africa 12608308 4
Europe 8666520 5
Oceania 4277664 6

Compound Expressions

A compound expression specifies a combination of other expressions.

compound_expression::=

®
- N expr)

OO0

COLLATE |—><collation_name>/

You can use any built-in function as an expression (Function Expressions). However, in a
compound expression, some combinations of functions are inappropriate and are rejected.
For example, the LENGTH function is inappropriate within an aggregate function.

The PRIOR operator is used in CONNECT BY clauses of hierarchical queries.

The COLLATE operator determines the collation for an expression. This operator overrides the
collation that the database would have derived for the expression using standard collation
derivation rules.

¢ See Also:

e Operator Precedence
e Hierarchical Queries
e COLLATE Operator

ORACLE 5-19

Chapter 5
CASE Expressions

Some valid compound expressions are:

("CLARK' || 'SMITH')

LENGTH ('MOOSE') * 57

SQRT (144) + 72

my fun(TO CHAR(sysdate, 'DD-MMM-YY'))
name COLLATE BINARY CI

CASE Expressions

ORACLE

CASE expressions let you use IF ... THEN ... ELSE logic in SQL statements without
having to invoke procedures. The syntax is:

simple_case_expressionh
CASE END |—>

searched_case_expression

simple_case_expression::=

WHEN |—><comparison_expr)—>| THEN |—><return_expr>)—>

searched_case_expression::=

—>L‘ WHEN Kcondition)—>| THEN |—>Creturn_expr>)—>

else clause::=

In a simple CASE expression, Oracle Database searches for the first WHEN ... THEN pair
for which expr is equal to comparison expr and returns return expr. If none of the
WHEN ... THEN pairs meet this condition, and an ELSE clause exists, then Oracle returns
else expr. Otherwise, Oracle returns null.

In a searched CASE expression, Oracle searches from left to right until it finds an
occurrence of condition that is true, and then returns return expr. If no conditionis
found to be true, and an ELSE clause exists, then Oracle returns else expr. Otherwise,
Oracle returns null.

Oracle Database uses short-circuit evaluation. For a simple CASE expression, the
database evaluates each comparison expr value only before comparing it to expr,
rather than evaluating all comparison expr values before comparing any of them with
expr. Consequently, Oracle never evaluates a comparison expr if a previous
comparison_expr is equal to expr. For a searched CASE expression, the database

5-20

ORACLE

Chapter 5
CASE Expressions

evaluates each condition to determine whether it is true, and never evaluates a condition if
the previous condition was true.

For a simple CASE expression, the expr and all comparison expr values must either have the
same data type (CHAR, VARCHAR?2, NCHAR, Of NVARCHAR2, NUMBER, BINARY FLOAT, Or

BINARY DOUBLE) or must all have a numeric data type. If all expressions have a numeric data
type, then Oracle determines the argument with the highest numeric precedence, implicitly
converts the remaining arguments to that data type, and returns that data type.

For both simple and searched CASE expressions, all of the return exprs must either have the
same data type (CHAR, VARCHAR?2, NCHAR, Of NVARCHAR2, NUMBER, BINARY FLOAT, Or

BINARY DOUBLE) or must all have a numeric data type. If all return expressions have a
numeric data type, then Oracle determines the argument with the highest numeric
precedence, implicitly converts the remaining arguments to that data type, and returns that
data type.

The maximum number of arguments in a CASE expression is 65535. All expressions count
toward this limit, including the initial expression of a simple CASE expression and the optional
ELSE expression. Each WHEN ... THEN pair counts as two arguments. To avoid exceeding this
limit, you can nest CASE expressions so that the return expr itself is a CASE expression.

The comparison performed by the simple CASE expression is collation-sensitive if the
compared arguments have a character data type (CHAR, VARCHAR?2, NCHAR, Or NVARCHAR?2). The
collation determination rules determine the collation to use.

¢ See Also:

e Table 2-8 for more information on implicit conversion

e Appendix C in Oracle Database Globalization Support Guide for the collation
derivation and determination rules for the CASE expression

e Numeric Precedence for information on numeric precedence
¢ COALESCE and NULLIF for alternative forms of CASE logic

* Oracle Database Data Warehousing Guide for examples using various forms of
the CASE expression

Simple CASE Example

For each customer in the sample oe. customers table, the following statement lists the credit
limit as "Low" if it equals $100, "High" if it equals $5000, and "Medium" if it equals anything
else.

SELECT cust last name,
CASE credit limit WHEN 100 THEN 'Low'
WHEN 5000 THEN 'High'
ELSE 'Medium' END AS credit
FROM customers
ORDER BY cust last name, credit;

CUST LAST NAME CREDIT
Adjani Medium
Adjani Medium

5-21

Chapter 5
Column Expressions

Alexander Medium
Alexander Medium
Altman High

Altman Medium

Searched CASE Example

The following statement finds the average salary of the employees in the sample table
oe.employees, using $2000 as the lowest salary possible:

SELECT AVG (CASE WHEN e.salary > 2000 THEN e.salary
ELSE 2000 END) "Average Salary" FROM employees e;

Average Salary

6461.68224

Column Expressions

A column expression, which is designated as column expression in subsequent
syntax diagrams, is a limited form of expr. A column expression can be a simple
expression, compound expression, function expression, or expression list, but it can
contain only the following forms of expression:

» Columns of the subject table — the table being created, altered, or indexed
e Constants (strings or numbers)
» Deterministic functions — either SQL built-in functions or user-defined functions

No other expression forms described in this chapter are valid. In addition, compound
expressions using the PRIOR keyword are not supported, nor are aggregate functions.

You can use a column expression for these purposes:

* To create a function-based index.

* To explicitly or implicitly define a virtual column. When you define a virtual column,
the defining column expression must refer only to columns of the subject table
that have already been defined, in the current statement or in a prior statement.

The combined components of a column expression must be deterministic. That is, the
same set of input values must return the same set of output values.

¢ See Also:

Simple Expressions , Compound Expressions , Function Expressions , and
Expression Lists for information on these forms of expr

CURSOR Expressions

A CURSOR expression returns a nested cursor. This form of expression is equivalent to
the PL/SQL REF CURSOR and can be passed as a REF CURSOR argument to a function.

ORACLE 5-22

ORACLE

Chapter 5
CURSOR Expressions

—>| CURSOR F@»{subquew}s@»

A nested cursor is implicitly opened when the cursor expression is evaluated. For example, if
the cursor expression appears in a select list, a nested cursor will be opened for each row
fetched by the query. The nested cursor is closed only when:

* The nested cursor is explicitly closed by the user
e The parent cursor is reexecuted

* The parent cursor is closed

e The parent cursor is cancelled

* An error arises during fetch on one of its parent cursors (it is closed as part of the clean-
up)

Restrictions on CURSOR Expressions
The following restrictions apply to CURSOR expressions:

« If the enclosing statement is not a SELECT statement, then nested cursors can appear
only as REF CURSOR arguments of a procedure.

e If the enclosing statement is a SELECT statement, then nested cursors can also appear in
the outermost select list of the query specification or in the outermost select list of
another nested cursor.

* Nested cursors cannot appear in views.

* You cannot perform BIND and EXECUTE operations on nested cursors.

Examples
The following example shows the use of a CURSOR expression in the select list of a query:

SELECT department name, CURSOR(SELECT salary, commission pct
FROM employees e
WHERE e.department id = d.department id)
FROM departments d
ORDER BY department name;

The next example shows the use of a CURSOR expression as a function argument. The
example begins by creating a function in the sample OE schema that can accept the REF
CURSOR argument. (The PL/SQL function body is shown in italics.)

CREATE FUNCTION f (cur SYS REFCURSCR, mgr_hiredate DATE)
RETURN NUMBER IS
emp hiredate DATE;
before number :=0;
after number:=0;
begin
Ioop
fetch cur into emp hiredate;
exit when cur$NOTFOUND;
if emp hiredate > mgr hiredate then
after:=after+1;
else
before:=before+l;
end 1f;

5-23

Chapter 5
Datetime Expressions

end loop;

close cur;

1f before > after then
return 1;

else
return 0;

end 1f;

end;

/

The function accepts a cursor and a date. The function expects the cursor to be a
guery returning a set of dates. The following query uses the function to find those
managers in the sample employees table, most of whose employees were hired before
the manager.

SELECT el.last name FROM employees el
WHERE £ (
CURSOR (SELECT e2.hire date FROM employees e2
WHERE el.employee id = e2.manager id),
el.hire date) =1
ORDER BY last name;

LAST NAME
Cambrault
Higgins
Hunold
Kochhar
Mourgos
Zlotkey

Datetime Expressions

ORACLE

A datetime expression yields a value of one of the datetime data types.

datetime_expression::=

% LOCAL

DBTIMEZONE

\| TIME |->| ZONE SESSIONTIMEZONE }

time_zone_name

The initial expr is any expression, except a scalar subquery expression, that evaluates
to a value of data type TIMESTAMP, TIMESTAMP WITH TIME ZONE, Or TIMESTAMP WITH
LOCAL TIME ZONE. The DATE data type is not supported. If this expr is itself a

datetime expression, then it must be enclosed in parentheses.

5-24

ORACLE

Chapter 5
Datetime Expressions

Datetimes and intervals can be combined according to the rules defined in Table 2-5. The
three combinations that yield datetime values are valid in a datetime expression.

If you specify AT LOCAL, then Oracle uses the current session time zone.
The settings for AT TIME ZONE are interpreted as follows:

e The string ' [+|-]hh:mi ' specifies a time zone as an offset from UTC. For hh, specify the
number of hours. For mi, specify the number of minutes.

e DBTIMEZONE: Oracle uses the database time zone established (explicitly or by default)
during database creation.

e SESSIONTIMEZONE: Oracle uses the session time zone established by default or in the
most recent ALTER SESSION statement.

* time zone name: Oracle returns the datetime value exprin the time zone indicated by
time zone name. For alisting of valid time zone region names, query the
VSTIMEZONE NAMES dynamic performance view.

Note:

Time zone region names are needed by the daylight saving feature. These
names are stored in two types of time zone files: one large and one small. One
of these files is the default file, depending on your environment and the release
of Oracle Database you are using. For more information regarding time zone
files and names, see Oracle Database Globalization Support Guide.

See Also:

e Oracle Database Globalization Support Guide for a complete listing of the time
zone region names in both files

e Oracle Database Reference for information on the dynamic performance views

e expr: If expr returns a character string with a valid time zone format, then Oracle returns
the input in that time zone. Otherwise, Oracle returns an error.

Example

The following example converts the datetime value of one time zone to another time zone:

SELECT FROM TZ (CAST(TO_DATE('1999-12-01 11:00:00',
'"YYYY-MM-DD HH:MI:SS') AS TIMESTAMP), 'America/New York')
AT TIME ZONE 'America/Los_Angeles' "West Coast Time"
FROM DUAL;

West Coast Time

01-DEC-99 08.00.00.000000 AM AMERICA/LOS_ANGELES

5-25

Chapter 5
Function Expressions

Function Expressions

You can use any built-in SQL function or user-defined function as an expression.
Some valid built-in function expressions are:

LENGTH ('BLAKE'")
ROUND (1234.567%43)
SYSDATE

¢ See Also:

About SQL Functions ' and Aggregate Functions for information on built-in
functions

A user-defined function expression specifies a call to:

e Afunction in an Oracle-supplied package (see Oracle Database PL/SQL
Packages and Types Reference)

e Afunction in a user-defined package or type or in a standalone user-defined
function (see About User-Defined Functions)

e A user-defined function or operator (see CREATE OPERATOR , CREATE
FUNCTION , and Oracle Database Data Cartridge Developer's Guide)

Some valid user-defined function expressions are:

circle area(radius)

payroll.tax rate (empno)
hr.employees.comm pct@remote (dependents, empno)
DBMS LOB.getlength (column name)

my function(a column)

In a user-defined function being used as an expression, positional, named, and mixed
notation are supported. For example, all of the following notations are correct:

CALL my function(argl => 3, arg2 => 4)
CALL my function(3, 4)
CALL my function(3, arg2 => 4)

Restriction on User-Defined Function Expressions

You cannot pass arguments of object type or XMLType to remote functions and
procedures.

Interval Expressions

An interval expression yields a value of INTERVAL YEAR TO MONTH Or INTERVAL DAY TO
SECOND.

ORACLE 5-26

Chapter 5
JSON Object Access Expressions

interval_expression::=

0lCDeCD0

Ieadmg f|e|d |_precision f—>®->(fractlonal second premmon%
H SECOND
Ieadmg fleld |_precision }*
YEAR >|| |—>| MONTH

The expressions exprl and expr2 can be any expressions that evaluate to values of data
type DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, Or TIMESTAMP WITH LOCAL TIME ZONE.

Datetimes and intervals can be combined according to the rules defined in Table 2-5. The six
combinations that yield interval values are valid in an interval expression.

Both leading field precisionand fractional second precision can be any integer from
0to 9. If you omit the Ieading field precision for either DAY or YEAR, then Oracle Database
uses the default value of 2. If you omit the fractional second precision for second, then
the database uses the default value of 6. If the value returned by a query contains more digits
that the default precision, then Oracle Database returns an error. Therefore, it is good
practice to specify a precision that you know will be at least as large as any value returned by
the query.

For example, the following statement subtracts the value of the order date column in the
sample table orders (a datetime value) from the system timestamp (another datetime value)
to yield an interval value expression. It is not known how many days ago the oldest order was
placed, so the maximum value of 9 for the DAY leading field precision is specified:

SELECT (SYSTIMESTAMP - order date) DAY (9) TO SECOND FROM orders
WHERE order id = 2458;

JSON Object Access Expressions

A JSON object access expression is used only when querying a column of JSON data. It
yields a character string that contains one or more JSON values found in that data. The
syntax for this type of expression is called dot-notation syntax.

JSON_object_access_expr::=

(@]
JSON_object_key

- ~\
—>Ctable_al|as>—>©->CJSON_column)

ORACLE 5-27

ORACLE

Chapter 5
JSON Object Access Expressions

array_step::=

(X
N\

integer

integer>e| TO |—><integer

For table alias, specify the alias for the table that contains the column of JSON
data. This table alias is required and must be assigned to the table elsewhere in
the SQL statement.

For JSON_column, specify the name of the column of JSON data. The column must
be of data type VARCHAR2, CLOB, BLOB, Or JSON.

Columns can have data of JSON data type if they are the result of JSON generation
functions, of JSON_QUERY, or TREAT .

To identify non JSON type data types you can define the IS JSON check constraint
on the column .

You can optionally specify one or more JSON object keys. The object keys allow
you to target specific JSON values in the JSON data. The first JSON object key
must be a case-sensitive match to the key (property) name of an object member in
the top level of the JSON data. If the value of that object member is another JSON
object, then you can specify a second JSON object key that matches the key
name of a member of that object, and so on. If a JSON array is encountered
during any of these iterations, and you do not specify an array step, then the
array is implicitly unwrapped and the elements of the array are evaluated using the
JSON object key.

If the JSON value is an array, then you can optionally specify one or more
array step clauses. This allows you to access specific elements of the JSON
array.

— Use integer to specify the element at index integer in a JSON array. Use
integer TO integer to specify the range of elements between the two index
integer values, inclusive. If the specified elements exist in the JSON array
being evaluated, then the array step results in a match to those elements.
Otherwise, the array step does not result in a match. The first element in a
JSON array has index 0.

— Use the asterisk wildcard symbol (*) to specify all elements in a JSON array. If
the JSON array being evaluated contains at least one element, then the array
step results in a match to all elements in the JSON array. Otherwise, the array
step does not result in a match.

A JSON object access expression yields a character string of data type
VARCHAR?2 (4000) , which contains the targeted JSON value(s) as follows:

For a single targeted value, the character string contains that value, whether it is a
JSON scalar value, object, or array.

For multiple targeted values, the character string contains a JSON array whose
elements are those values.

5-28

Chapter 5
JSON Object Access Expressions

If you omit JSON object key, then the expression yields a character string that contains the
JSON data in its entirety. In this case, the character string is of the same data type as the
column of JSON data being queried.

A JSON object access expression cannot return a value larger than 4K bytes. If the value
surpasses this limit, then the expression returns null. To obtain the actual value, instead use
the JSON_QUERY function or the JSON_VALUE function and specify an appropriate return
type with the RETURNING clause.

The collation derivation rules for the JSON object access expression are the same as for the
JSON QUERY function.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules for the JSON_QUERY function

Examples

The following examples use the j purchaseorder table, which is created in Creating a Table
That Contains a JSON Document: Example. This table contains a column of JSON data
called po_document. These examples return JSON values from column po document.

The following statement returns the value of the property with key name PONumber. The value
returned, 1600, is a SQL number.

SELECT po.po_document.PONumber.number ()
FROM j purchaseorder po;

PONumber

The following statement first targets the property with key name ShippingInstructions,
whose value is a JSON object. The statement then targets the property with key name Phone
within that object. The statement returns the value of Phone, which is a JSON array.

SELECT po.po_document.ShippingInstructions.Phone
FROM j purchaseorder po;

SHIPPINGINSTRUCTIONS

[{"type":"Office", "number":"909-555-7307"}, {"type":"Mobile", "number":"415-555-1234"}]

ORACLE

The following statement first targets the property with key name LineItems, whose value is a
JSON array. The expression implicitly unwraps the array and evaluates its elements, which
are JSON objects. Next, the statement targets the properties with key name part, within the
unwrapped objects, and finds two objects. The statement then targets the properties with key
name Description within those two objects and finds string values. Because more than one
value is returned, the values are returned as elements of a JSON array.

SELECT po.po_document.LineItems.Part.Description
FROM j purchaseorder po;

LINEITEMS

5-29

Chapter 5
Model Expressions

[One Magic Christmas,Lethal Weapon]

¢ See Also:

Oracle Database JSON Developer’s Guide for more information on querying
JSON data using dot-notation syntax

Model Expressions

ORACLE

A model expression is used only in the model clause of a SELECT statement and then
only on the right-hand side of a model rule. It yields a value for a cell in a measure
column previously defined in the model clause. For additional information, refer to
model_clause.

model_expression::=

O
@D

O
H..

measure_column

©

aggregate_function

single_column_for_loop
' multi_column_for_loop ‘

N analytic_function)

When you specify a measure column in a model expression, any conditions and
expressions you specify must resolve to single values.

When you specify an aggregate function in a model expression, the argument to the
function is a measure column that has been previously defined in the model clause.
An aggregate function can be used only on the right-hand side of a model rule.

Specifying an analytic function on the right-hand side of the model rule lets you
express complex calculations directly in the model clause. The following restrictions
apply when using an analytic function in a model expression:

* Analytic functions can be used only in an UPDATE rule.

* You cannot specify an analytic function on the right-hand side of the model rule if
the left-hand side of the rule contains a FOR loop or an ORDER BY clause.

e The arguments in the OVER clause of the analytic function cannot contain an
aggregate.

5-30

Chapter 5
Model Expressions

* The arguments before the OVER clause of the analytic function cannot contain a cell
reference.

¢ See Also:

The MODEL clause: Examples for an example of using an analytic function on the
right-hand side of a model rule

When expr is itself a model expression, it is referred to as a nested cell reference. The
following restrictions apply to nested cell references:

e Only one level of nesting is allowed.
e A nested cell reference must be a single-cell reference.

* When AUTOMATIC ORDER is specified in the model rules clause, a nested cell reference
can be used on the left-hand side of a model rule only if the measures used in the nested
cell reference remain static.

The model expressions shown below are based on the model clause of the following SELECT
statement:

SELECT country,prod,year,s
FROM sales view ref
MODEL
PARTITION BY (country)
DIMENSION BY (prod, year)
MEASURES (sale s)
IGNORE NAV
UNIQUE DIMENSION
RULES UPSERT SEQUENTIAL ORDER
(
s[prod='Mouse Pad', year=2000] =
s['Mouse Pad', 1998] + s['Mouse Pad', 1999],
s['Standard Mouse', 2001] = s['Standard Mouse', 2000]

)
ORDER BY country, prod, year;

The following model expression represents a single cell reference using symbolic notation. It
represents the sales of the Mouse Pad for the year 2000.

s [prod='Mouse Pad', year=2000]

The following model expression represents a multiple cell reference using positional notation,
using the cv function. It represents the sales of the current value of the dimension column
prod for the year 2001.

s[CV(prod), 2001]

The following model expression represents an aggregate function. It represents the sum of
sales of the Mouse Pad for the years between the current value of the dimension column
year less two and the current value of the dimension column year less one.

SUM(s) ['Mouse Pad',year BETWEEN CV()-2 AND CV()-1]

ORACLE 5-31

Chapter 5
Object Access Expressions

¢ See Also:

CV and model_clause

Object Access Expressions

An object access expression specifies attribute reference and method invocation.

object_access_expression::=

/Q‘HHHEHDF\
O

attribute

cEDYeICIDI0
I Yol
@O0

-argument
oS AV

The column parameter can be an object or REF column. If you specify expr, then it
must resolve to an object type.

When a type's member function is invoked in the context of a SQL statement, if the
SELF argument is null, Oracle returns null and the function is not invoked.

Examples

The following example creates a table based on the sample oe.order item typ object

type, and then shows how you would update and select from the object column
attributes.

CREATE TABLE short orders (
sales rep VARCHAR2 (25), item order item typ);

UPDATE short orders s SET sales rep = 'Unassigned';

SELECT o.item.line item id, o.item.quantity FROM short orders o;

Placeholder Expressions

A placeholder expression provides a location in a SQL statement for which a third-
generation language bind variable will provide a value. You can specify the
placeholder expression with an optional indicator variable. This form of expression can
appear only in embedded SQL statements or SQL statements processed in an Oracle
Call Interface (OCI) program.

ORACLE 5-32

Chapter 5
Scalar Subquery Expressions

placeholder_expression::=

INDICATOR
, :

Some valid placeholder expressions are:

:employee name INDICATOR :employee name indicator var
:department location

" See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules for the placeholder expression with a character data type

Scalar Subquery Expressions

A scalar subquery expression is a subquery that returns exactly one column value from one
row. The value of the scalar subquery expression is the value of the select list item of the
subquery. If the subquery returns 0 rows, then the value of the scalar subquery expression is
NULL. If the subquery returns more than one row, then Oracle returns an error.

You can use a scalar subquery expression in most syntax that calls for an expression (expr).
In all cases, a scalar subquery must be enclosed in its own parentheses, even if its syntactic
location already positions it within parentheses (for example, when the scalar subquery is
used as the argument to a built-in function).

Scalar subqueries are not valid expressions in the following places:
» As default values for columns

* As hash expressions for clusters

* Inthe RETURNING clause of DML statements

* As the basis of a function-based index

e In CHECK constraints

* In GROUP BY clauses

* In statements that are unrelated to queries, such as CREATE PROFILE

Type Constructor Expressions

A type constructor expression specifies a call to a constructor method. The argument to the
type constructor is any expression. Type constructors can be invoked anywhere functions are
invoked.

ORACLE 5-33

ORACLE

Chapter 5
Type Constructor Expressions

type_constructor_expression::=

NEW h
Y0 DR o

The NEW keyword applies to constructors for object types but not for collection types. It
instructs Oracle to construct a new object by invoking an appropriate constructor. The
use of the NEW keyword is optional, but it is good practice to specify it.

If type name is an object type, then the expressions must be an ordered list, where
the first argument_is a value whose type matches the first attribute of the object type,
the second argument is a value whose type matches the second attribute of the object
type, and so on. The total number of arguments to the constructor must match the total
number of attributes of the object type.

If type name is a varray or nested table type, then the expression list can contain
zero or more arguments. Zero arguments implies construction of an empty collection.
Otherwise, each argument corresponds to an element value whose type is the element
type of the collection type.

Restriction on Type Constructor Invocation

In an invocation of a type constructor method, the number of parameters (expr)
specified cannot exceed 999, even if the object type has more than 999 attributes.
This limitation applies only when the constructor is called from SQL. For calls from PL/
SQL, the PL/SQL limitations apply.

¢ See Also:

Oracle Database Object-Relational Developer's Guide for additional
information on constructor methods and Oracle Database PL/SQL Language
Reference for information on PL/SQL limitations on calls to type constructors

Expression Example

This example uses the cust_address_typ type in the sample oe schema to show the
use of an expression in the call to a constructor method (the PL/SQL is shown in
italics):

CREATE TYPE address book t AS TABLE OF cust address typ;
DECLARE
myaddr cust address typ := cust address typ(
'500 Oracle Parkway', 94065, 'Redwood Shores', 'CA','USA');
alladdr address book t := address book t();
BEGIN
INSERT INTO customers VALUES (
666999, 'Joe', 'Smith', myaddr, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL);
END;
/

5-34

Chapter 5
Expression Lists

Subquery Example

This example uses the warehouse_typ type in the sample schema oe to illustrate the use of a
subquery in the call to the constructor method.

CREATE TABLE warehouse tab OF warehouse typ;

INSERT INTO warehouse tab
VALUES (warehouse typ(101, 'new wh', 201));

CREATE TYPE facility typ AS OBJECT (
facility id NUMBER,
warehouse ref REF warehouse typ);

CREATE TABLE buildings (b_id NUMBER, building facility typ):;
INSERT INTO buildings VALUES (10, facility typ (102,
(SELECT REF (w) FROM warehouse tab w

WHERE warehouse name = 'new wh')));

SELECT b.b id, b.building.facility id "FAC ID",
DEREF (b.building.warehouse ref) "WH" FROM buildings b;

B ID FAC ID WH(WAREHOUSE ID, WAREHOUSE NAME, LOCATION ID)

Expression Lists

ORACLE

An expression list is a combination of other expressions.

expression_list::=

expr

AvaCall

Expression lists can appear in comparison and membership conditions and in GROUP BY
clauses of queries and subqueries. An expression lists in a comparision or membership
condition is sometimes referred to as a row value constructor or row constructor.

Comparison and membership conditions appear in the conditions of WHERE clauses. They can
contain either one or more comma-delimited expressions or one or more sets of expressions
where each set contains one or more comma-delimited expressions. In the latter case
(multiple sets of expressions):

» Each set is bounded by parentheses

» Each set must contain the same number of expressions

5-35

ORACLE

Chapter 5
Expression Lists

* The number of expressions in each set must match the number of expressions
before the operator in the comparison condition or before the 1N keyword in the
membership condition.

A comma-delimited list of expressions can contain no more than 1000 expressions. A
comma-delimited list of sets of expressions can contain any number of sets, but each
set can contain no more than 1000 expressions.

The following are some valid expression lists in conditions:

(10, 20, 40)
('"SCOTT', 'BLAKE', 'TAYLOR')
(('"Guy', 'Himuro', 'GHIMURO'), ('Karen', 'Colmenares', 'KCOLMENA'))

In the third example, the number of expressions in each set must equal the number of
expressions in the first part of the condition. For example:

SELECT * FROM employees
WHERE (first name, last_name, email) IN
(('Guy', 'Himuro', 'GHIMURO'), ('Karen', 'Colmenares',6 'KCOLMENA'))

¢ See Also:

Comparison Conditions and IN Condition conditions

In a simple GROUP BY clause, you can use either the upper or lower form of expression
list:

SELECT department id, MIN(salary) min, MAX(salary) max FROM employees
GROUP BY department id, salary
ORDER BY department id, min, max;

SELECT department id, MIN(salary) min, MAX(salary) max FROM employees
GROUP BY (department id, salary)
ORDER BY department id, min, max;

In ROLLUP, CUBE, and GROUPING SETS clauses of GROUP BY clauses, you can combine
individual expressions with sets of expressions in the same expression list. The
following example shows several valid grouping sets expression lists in one SQL
statement:

SELECT
prod category, prod subcategory, country id, cust city, count(¥)
FROM products, sales, customers
WHERE sales.prod id = products.prod id
AND sales.cust id=customers.cust id
AND sales.time id = 'Ol-oct-00'
AND customers.cust year of birth BETWEEN 1960 and 1970
GROUP BY GROUPING SETS
(
(prod_category, prod_subcategory, country id, cust_city),
(prod_category, prod_subcategory, country id),
(prod_category, prod_subcategory),
country id
)
ORDER BY prod category, prod subcategory, country id, cust city;

5-36

Chapter 5
Expression Lists

See Also:
SELECT

ORACLE 5-37

Conditions

A condition specifies a combination of one or more expressions and logical (Boolean)
operators and returns a value of TRUE, FALSE, or UNKNOWN.

This chapter contains the following sections:

e About SQL Conditions

e Comparison Conditions

* Floating-Point Conditions
* Logical Conditions

* Model Conditions

* Multiset Conditions

» Pattern-matching Conditions
* Null Conditions

* XML Conditions

e SQL For JSON Conditions
e Compound Conditions

* BETWEEN Condition

* EXISTS Condition

* IN Condition

* IS OF type Condition

About SQL Conditions

Conditions can have several forms, as shown in the following syntax.

ORACLE

Chapter 6
About SQL Conditions

condition::=

comparison_condition
floating_point_condition
logical_condition

model_condition

i

multiset_condition

(J\

pattern_matching_condition)—

range_condition
null_condition
XML_condition
JSON_condition
compound_condition
exists_condition

in_condition

is_of_type_condition

bl

If you have installed Oracle Text, then you can create conditions with the built-in
operators that are part of that product, including CONTAINS, CATSEARCH, and MATCHES.
For more information on these Oracle Text elements, refer to Oracle Text Reference.

The sections that follow describe the various forms of conditions. You must use
appropriate condition syntax whenever condition appears in SQL statements.

You can use a condition in the WHERE clause of these statements:

e DELETE
e SELECT
e UPDATE

You can use a condition in any of these clauses of the SELECT statement:
e WHERE

e START WITH

e CONNECT BY

e HAVING

A condition could be said to be of a logical data type, although Oracle Database does
not formally support such a data type.

The following simple condition always evaluates to TRUE:

1 =1

ORACLE 6-2

Chapter 6
About SQL Conditions

The following more complex condition adds the salary value to the commission pct value
(substituting the value 0 for null) and determines whether the sum is greater than the number
constant 25000:

NVL (salary, 0) + NVL(salary + (salary*commission pct, 0) > 25000)

Logical conditions can combine multiple conditions into a single condition. For example, you
can use the AND condition to combine two conditions:

(1 =1) AND (5 < 7)

Here are some valid conditions:

name = 'SMITH'

employees.department id = departments.department id
hire date > '01-JAN-08'

job_id IN ('SA MAN', 'SA REP')

salary BETWEEN 5000 AND 10000

commission pct IS NULL AND salary = 2100

Oracle Database does not accept all conditions in all parts of all SQL statements. Refer to the
section devoted to a particular SQL statement in this book for information on restrictions on
the conditions in that statement.

Condition Precedence

Precedence is the order in which Oracle Database evaluates different conditions in the same
expression. When evaluating an expression containing multiple conditions, Oracle evaluates
conditions with higher precedence before evaluating those with lower precedence. Oracle
evaluates conditions with equal precedence from left to right within an expression, with the
following exceptions:

e Left to right evaluation is not guaranteed for multiple conditions connected using AND
e Left to right evaluation is not guaranteed for multiple conditions connected using OR

Table 6-1 lists the levels of precedence among SQL condition from high to low. Conditions
listed on the same line have the same precedence. As the table indicates, Oracle evaluates
operators before conditions.

Table 6-1 SQL Condition Precedence

. __|
Type of Condition Purpose

SQL operators are evaluated before SQL conditions See Operator Precedence

=, 1=, < >, <=, >= comparison

IS [NOT] NULL, LIKE, [NOT] BETWEEN, comparison

[NOT] IN, EXISTS, IS OF type

NOT exponentiation, logical negation
AND conjunction

OR disjunction

ORACLE 6-3

Chapter 6
Comparison Conditions

Comparison Conditions

Comparison conditions compare one expression with another. The result of such a
comparison can be TRUE, FALSE, or UNKNOWN.

Large objects (LOBSs) are not supported in comparison conditions. However, you can
use PL/SQL programs for comparisons on CLOB data.

When comparing numeric expressions, Oracle uses numeric precedence to determine
whether the condition compares NUMBER, BINARY FLOAT, Or BINARY DOUBLE values.
Refer to Numeric Precedence for information on numeric precedence.

When comparing character expressions, Oracle uses the rules described in Data Type
Comparison Rules . The rules define how the character sets of the expressions are
aligned before the comparison, the use of binary or linguistic comparison (collation),
the use of blank-padded comparison semantics, and the restrictions resulting from
limits imposed on collation keys, including reporting of the error ORA-12742: unable to
create the collation key.

Two objects of nonscalar type are comparable if they are of the same named type and
there is a one-to-one correspondence between their elements. In addition, nested
tables of user-defined object types, even if their elements are comparable, must have
MAP methods defined on them to be used in equality or IN conditions.

¢ See Also:

Oracle Database Object-Relational Developer's Guide for information on
using MAP methods to compare objects

Table 6-2 lists comparison conditions.

Table 6-2 Comparison Conditions
|

Type of
Condition

Purpose Example

Equality test. SELECT *

FROM employees
WHERE salary = 2500
ORDER BY employee id;

Inequality test. SELECT *

FROM employees
WHERE salary != 2500
ORDER BY employee id;

ORACLE

6-4

Table 6-2 (Cont.) Comparison Conditions

Chapter 6

Comparison Conditions

Type of
Condition

Purpose

Example

>

<

Greater-than and less-than tests.

SELECT * FROM employees
WHERE salary > 2500
ORDER BY employee id;

SELECT * FROM employees
WHERE salary < 2500
ORDER BY employee id;

Greater-than-or-equal-to and less-than-or-equal-to
tests.

SELECT * FROM employees
WHERE salary >= 2500
ORDER BY employee id;

SELECT * FROM employees
WHERE salary <= 2500
ORDER BY employee id;

op ANY
op SOME

"op" must be one of =, I=, >, <, <=, or >=.

op ANY compares a value on the left side either to
each value in a list, or to each value returned by a
query, whichever is specified on the right side, using
the condition op.

If any of these comparisons returns TRUE, op ANY
returns TRUE.

If all of these comparisons return FALSE, or the
subquery on the right side returns no rows, op ANY
returns FALSE. Otherwise, the return value is
UNKNOWN.

op ANY and op SOME are synonymous.

SELECT * FROM employees
WHERE salary = ANY
(SELECT salary

FROM employees
WHERE department id =
ORDER BY employee id;

30)

op ALL

"op" must be one of =, 1=, >, <, <=, or >=.

op ALL compares a value on the left side either to
each value in a list, or to each value returned by a
subquery, whichever is specified on the right side,
using the condition op.

If any of these comparisons returns FALSE, op ANY
returns FALSE.

If all of these comparisons return TRUE, or the
subquery on the right side returns no rows, op ALL
returns TRUE . Otherwise, the return value is
UNKNOWN.

SELECT * FROM employees
WHERE salary >=
ALL (1400, 3000)
ORDER BY employee id;

Simple Comparison Conditions

A simple comparison condition specifies a comparison with expressions or subquery results.

ORACLE

6-5

Chapter 6
Comparison Conditions

simple_comparison_condition::=

ololelelofclele

G

expression_list::=

expr

AvaCZall

If you use the lower form of this condition with a single expression to the left of the
operator, then you can use the upper or lower form of expression list. If you use the
lower form of this condition with multiple expressions to the left of the operator, then
you must use the lower form of expression list. In either case, the expressions in
expression list must match in number and data type the expressions to the left of
the operator. If you specify subquery, then the values returned by the subquery must
match in number and data type the expressions to the left of the operator.

" See Also:

Expression Lists for more information about combining expressions and
SELECT for information about subqueries

ORACLE 6-6

Chapter 6
Comparison Conditions

Group Comparison Conditions

A group comparison condition specifies a comparison with any or all members in a list or
subquery.

group_comparison_condition::=

d
ololelelolelele

=)
D

If you use the upper form of this condition (with a single expression to the left of the operator),
then you must use the upper form of expression list. If you use the lower form of this
condition (with multiple expressions to the left of the operator), then you must use the lower
form of expression list, and the expressions in each expression list must match in
number and data type the expressions to the left of the operator. If you specify subquery,
then the values returned by the subquery must match in number and data type the
expressions to the left of the operator.

ORACLE 6-7

Chapter 6
Floating-Point Conditions

¢ See Also:

e Expression Lists
e SELECT

e Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules for comparison conditions

Floating-Point Conditions

ORACLE

The floating-point conditions let you determine whether an expression is infinite or is
the undefined result of an operation (is not a number or NaN).

floating_point_condition::=

NAN

)

In both forms of floating-point condition, expr must resolve to a numeric data type or to
any data type that can be implicitly converted to a numeric data type. Table 6-3
describes the floating-point conditions.

Table 6-3 Floating-Point Conditions

Type of Operation Example
Condition

IS [NOT] Returns TRUE if expr is the special gp;por counr (x) FROM employees

NAN value NaN when NOT is not . WHERE commission pct IS NOT NAN;
specified. Returns TRUE if expr is -

not the special value NaN when NOT

is specified.
IS [NOT] Returns TRUE if expr is the sp_eC|aI SELECT last name FROM employees
INFINITE value +INF or -INF when NOTiS N0t yupRp salary IS NOT INFINITE;
specified. Returns TRUE if expris
neither +INF nor -INF when NOT is
specified.
¢ See Also:

e Floating-Point Numbers for more information on the Oracle
implementation of floating-point numbers

e Implicit Data Conversion for more information on how Oracle converts
floating-point data types

6-8

Chapter 6
Logical Conditions

Logical Conditions

ORACLE

A logical condition combines the results of two component conditions to produce a single
result based on them or to invert the result of a single condition. Table 6-4 lists logical
conditions.

Table 6-4 Logical Conditions
]

Type of Operation Examples
Condition
NOT Returrlls T.RUE if the following SELECT *
F:c_mdmon is EALSE. Returns FAL_SE if FROM employees
it is TRUE. If it is UNKNOWN, then it WHERE NOT (job id IS NULL)
remains UNKNOWN. ORDER BY employee id;
SELECT *
FROM employees
WHERE NOT
(salary BETWEEN 1000 AND 2000)
ORDER BY employee id;
AND Returr)s TRUE if both component SELECT *
.COI’.ldItIOI:IS are TRUE. Retqrns FALSE FROM employees
if either is FALSE. Otherwise returns WHERE job id = 'PU CLERK'
UNKNOWN. AND department id = 30
ORDER BY employee id;
OR Returns TRUE if either component SELECT *

condition is TRUE. Returns FALSE if
both are FALSE. Otherwise returns
UNKNOWN.

FROM employees

WHERE job id = 'PU CLERK'
OR department id = 10
ORDER BY employee id;

Table 6-5 shows the result of applying the NOT condition to an expression.

Table 6-5 NOT Truth Table
|
- TRUE FALSE UNKNOWN

NOT FALSE TRUE UNKNOWN

Table 6-6 shows the results of combining the AND condition to two expressions.

Table 6-6 AND Truth Table
|
AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

6-9

Chapter 6
Model Conditions

For example, in the WHERE clause of the following SELECT statement, the AND logical
condition is used to ensure that only those hired before 2004 and earning more
than $2500 a month are returned:

SELECT * FROM employees

WHERE hire date < TO DATE('01-JAN-2004', 'DD-MON-YYYY')
AND salary > 2500
ORDER BY employee id;

Table 6-7 shows the results of applying OR to two expressions.

Table 6-7 OR Truth Table
]

OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

For example, the following query returns employees who have a 40% commission rate
or a salary greater than $20,000:

SELECT employee id FROM employees
WHERE commission pct = .4 OR salary > 20000
ORDER BY employee 1id;

Model Conditions

Model conditions can be used only in the MODEL clause of a SELECT statement.

IS ANY Condition

ORACLE

The Is ANY condition can be used only in the model clause of a SELECT Statement.
Use this condition to qualify all values of a dimension column, including NULL.

is_any_condition::=

dimension_column

ANY

The condition always returns a Boolean value of TRUE in order to qualify all values of
the column.

" See Also:

model_clause and Model Expressions for information

Example

The following example sets sales for each product for year 2000 to O:

6-10

ORACLE

SELECT country, prod, year, s

FROM sales view ref

MODEL
PARTITION

DIMENSION BY (prod, year)

BY (country)

MEASURES (sale s)
IGNORE NAV
UNIQUE DIMENSION

RULES UPSERT SEQUENTIAL ORDER

(

s[ANY, 2000] =0

)

ORDER BY country, prod, year;

COUNTRY

France

Germany
Germany
Germany
Germany
Germany
Germany
Germany
Germany

Mouse Pad
Standard Mouse
Standard Mouse
Standard Mouse
Standard Mouse
Mouse Pad
Mouse Pad
Mouse Pad
Mouse Pad
Standard Mouse
Standard Mouse
Standard Mouse
Standard Mouse

16 rows selected.

Chapter 6
Model Conditions

The preceding example requires the view sales view ref. Refer to The MODEL clause:
Examples to create this view.

IS PRESENT Condition

is_present_condition::=

The IS PRESENT condition can be used only in the model clause of a SELECT statement. Use
this condition to test whether the cell referenced is present prior to the execution of the

model clause.

The condition returns TRUE if the cell exists prior to the execution of the model clause and
FALSE if it does not.

¢ See Also:

model_clause and Model Expressions for information

6-11

Example

Chapter 6
Multiset Conditions

In the following example, if sales of the Mouse Pad for year 1999 exist, then sales of
the Mouse Pad for year 2000 is set to sales of the Mouse Pad for year 1999.
Otherwise, sales of the Mouse Pad for year 2000 is set to 0.

SELECT country, prod, year,

FROM sales

MODEL

PARTITION BY
DIMENSION BY

MEASURES

view ref

(country)
(prod, year
(sale s)

IGNORE NAV
UNIQUE DIMENSION

RULES UPSERT SEQUENTIAL ORDER

(

s['Mouse Pad',
CASE WHEN s|['Mouse Pad',
THEN s['Mouse Pad',

END
)

ORDER BY country, prod, year;

COUNTRY

Germany
Germany
Germany
Germany
Germany
Germany
Germany
Germany

2000] =

ELSE 0

S

)

1999]
1999]

IS PRESENT

Mouse Pad
Mouse Pad
Mouse Pad
Mouse Pad
Standard Mouse
Standard Mouse
Standard Mouse
Standard Mouse
Mouse Pad
Mouse Pad
Mouse Pad
Mouse Pad
Standard Mouse
Standard Mouse
Standard Mouse
Standard Mouse

16 rows selected.

The preceding example requires the view sales view ref. Refer to The MODEL
clause: Examples to create this view.

Multiset Conditions

Multiset conditions test various aspects of nested tables.

IS A SET Condition

Use IS A SET conditions to test whether a specified nested table is composed of unique
elements. The condition returns UNKNOWN if the nested table is NULL. Otherwise, it
returns TRUE if the nested table is a set, even if it is a nested table of length zero, and
FALSE otherwise.

ORACLE

6-12

Chapter 6
Multiset Conditions

is_a_set condition::=

NOT

CED S Y i

Example

The following example selects from the table customers demo those rows in which the
cust_address ntab nested table column contains unigue elements:

SELECT customer id, cust address ntab
FROM customers demo
WHERE cust_address_ntab IS A SET
ORDER BY customer id;

CUSTOMER ID CUST ADDRESS NTAB(STREET ADDRESS, POSTAL CODE, CITY, STATE PROVINCE, COUNTRY ID)

101
102
103
104
105

CUST ADDRESS TAB TYP(CUST ADDRESS TYP
CUST ADDRESS TAB TYP(CUST ADDRESS TYP

CUST ADDRESS TAB TYP(CUST ADDRESS TYP(

CUST ADDRESS TAB TYP(CUST ADDRESS TYP(

CUST ADDRESS TAB TYP(CUST ADDRESS TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))
(
(

'514 W Superior St', '46901', 'Kokomo', 'IN', 'US'))
'2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'))

'6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'))
'4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'))

The preceding example requires the table customers_demo and a nested table column
containing data. Refer to "Multiset Operators " to create this table and nested table column.

IS EMPTY Condition

ORACLE

Use the IS [NOT] EMPTY conditions to test whether a specified nested table is empty. A nested
table that consists of a single value, a NULL, is not considered an empty nested table.

is_empty_condition::=

NOT

CEED RN LT

The condition returns a Boolean value: TRUE for an 1S EMPTY condition if the collection is
empty, and TRUE for an IS NOT EMPTY condition if the collection is not empty. If you specify
NULL for the nested table or varray, then the result is NULL.

Example

The following example selects from the sample table pm.print media those rows in which
the ad textdocs ntab nested table column is not empty:

SELECT product id, TO CHAR(ad finaltext) AS text
FROM print media
WHERE ad textdocs ntab IS NOT EMPTY
ORDER BY product id, text;

6-13

Chapter 6
Multiset Conditions

MEMBER Condition

member_condition::=

-NOT OF
— skl

A member conditionis a membership condition that tests whether an element is a
member of a nested table. The return value is TRUE if expr is equal to a member of the
specified nested table or varray. The return value is NULL if expr is null or if the nested
table is empty.

e expr must be of the same type as the element type of the nested table.
* The oF keyword is optional and does not change the behavior of the condition.

* The NOT keyword reverses the Boolean output: Oracle returns FALSE if expris a
member of the specified nested table.

* The element types of the nested table must be comparable. Refer to Comparison
Conditions for information on the comparability of nonscalar types.

Example

The following example selects from the table customers demo those rows in which the
cust_address ntab nested table column contains the values specified in the WHERE
clause:

SELECT customer id, cust address ntab
FROM customers_ demo
WHERE cust_address_typ('8768 N State Rd 37', 47404,

'Bloomington', 'IN', 'US')

MEMBER OF cust address ntab
ORDER BY customer id;

CUSTOMER _ID CUST ADDRESS NTAB(STREET ADDRESS, POSTAL CODE, CITY, STATE PROVINCE, COUNTRY ID)

103 CUST ADDRESS TAB TYP(CUST ADDRESS TYP('8768 N State Rd 37', '47404', 'Bloomington', '"IN', 'US'))

The preceding example requires the table customers demo and a nested table column
containing data. Refer to Multiset Operators to create this table and nested table
column.

SUBMULTISET Condition

ORACLE

The SUBMULTISET condition tests whether a specified nested table is a submultiset of
another specified nested table.

The operator returns a Boolean value. TRUE is returned when nested tablel is a
submultiset of nested table2. nested tablel is a submultiset of nested table2 when
one of the following conditions occur:

* nested tablel is not null and contains no rows. TRUE is returned even if
nested_table2is null since an empty multiset is a submultiset of any non-null
replacement for nested table2.

6-14

Chapter 6
Pattern-matching Conditions

* nested tablel and nested table2 are not null, nested tablel does not contain a null
element, and there is a one-to-one mapping of each element in nested tablel to an
equal element in nested table’.

NULL is returned when one of the following conditions occurs:

* nested tablelis null.
* nested table2is null, and nested tablel is not null and not empty.

* nested tablel is a submultiset of nested table2 after modifying each null element of
nested tablel and nested table2 to some non-null value, enabling a one-to-one
mapping of each element in nested tablel to an equal element in nested tableZ.

If none of the above conditions occur, then FALSE is returned.

submultiset_condition::=

nested_table1 [T— SUBMULTISET [T\

* The oF keyword is optional and does not change the behavior of the operator.

* The NOT keyword reverses the Boolean output: Oracle returns FALSE if nested tablel is
a subset of nested tableZ.

e The element types of the nested table must be comparable. Refer to Comparison
Conditions for information on the comparability of nonscalar types.

Example

The following example selects from the customers demo table those rows in which the
cust_address_ntab nested table is a submultiset of the cust _address2 ntab nested table:

SELECT customer id, cust address ntab
FROM customers demo
WHERE cust address ntab SUBMULTISET OF cust address2 ntab
ORDER BY customer id;

The preceding example requires the table customers demo and two nested table columns
containing data. Refer to Multiset Operators to create this table and nested table columns.

Pattern-matching Conditions

The pattern-matching conditions compare character data.

LIKE Condition

ORACLE

The LIKE conditions specify a test involving pattern matching. Whereas the equality operator
(=) exactly matches one character value to another, the LIKE conditions match a portion of
one character value to another by searching the first value for the pattern specified by the
second. LIKE calculates strings using characters as defined by the input character set. LIKEC
uses Unicode complete characters. LIKE2 uses UCS2 code points. LIKE4 uses UCS4 code
points.

6-15

ORACLE

Chapter 6
Pattern-matching Conditions

like_condition::=

f—)| ESCAPE Kesc_chah

In this syntax:

* charl is a character expression, such as a character column, called the search
value.

* charZis a character expression, usually a literal, called the pattern.
* esc _charis a character expression, usually a literal, called the escape character.

The LIKE condition is the best choice in almost all situations. Use the following
guidelines to determine whether any of the variations would be helpful in your
environment:

e Use LIKE2 to process strings using UCS-2 semantics. LIKE2 treats a Unicode
supplementary character as two characters.

* Use LIKEA4 to process strings using UCS-4 semantics. LIKE4 treats a Unicode
supplementary character as one character.

* Use LIKEC to process strings using Unicode complete character semantics. LIKEC
treats a composite character as one character.

For more on character length see the following:

e Oracle Database Globalization Support Guide
e Oracle Database SecureFiles and Large Objects Developer's Guide

If esc_char is not specified, then there is no default escape character. If any of charl,
char2, or esc_char is null, then the result is unknown. Otherwise, the escape
character, if specified, must be a character string of length 1.

All of the character expressions (charl, char2, and esc_char) can be of any of the
data types CHAR, VARCHAR2, NCHAR, Oor NVARCHAR?. If they differ, then Oracle converts all
of them to the data type of charl.

The pattern can contain special pattern-matching characters:

* Anunderscore (_) in the pattern matches exactly one character (as opposed to
one byte in a multibyte character set) in the value.

* A percent sign (%) in the pattern can match zero or more characters (as opposed
to bytes in a multibyte character set) in the value. The pattern '%' cannot match a
null.

You can include the actual characters % or _in the pattern by using the ESCAPE clause,
which identifies the escape character. If the escape character precedes the character %
or _in the pattern, then Oracle interprets this character literally in the pattern rather
than as a special pattern-matching character. You can also search for the escape

6-16

ORACLE

Chapter 6
Pattern-matching Conditions

character itself by repeating it. For example, if @ is the escape character, then you can use
@@ to search for @.

Note:

Only ASCIll-equivalent underscore (_) and percent (%) characters are recognized
as pattern-matching characters. Their full-width variants, present in East Asian
character sets and in Unicode, are treated as normal characters.

Table 6-8 describes the LIKE conditions.

Table 6-8 LIKE Condition

Type of Operation Example

Condition

% [NOT] TRUE if x does [not] match the pattern y. SELECT last name

LIKE y Within y, the character $ matches any FROM employees

[ESCAPE 'z'] String of zero or more characters except WHERE last name
null. The character _matches any single LIKE '%A\ B%' ESCAPE '\’
character. Any character can follow ESCAPE ORDER BY last name;

except percent (%) and underbar (). A
wildcard character is treated as a literal if
preceded by the escape character.

To process the LIKE conditions, Oracle divides the pattern into subpatterns consisting of one
or two characters each. The two-character subpatterns begin with the escape character and
the other character is %, or _, or the escape character.

Let P4, Py, ..., P, be these subpatterns. The like condition is true if there is a way to partition
the search value into substrings Sq, S,, ..., Sy, so that for all i between 1 and n:

« If Pjis _, then S;is a single character.
e If Pjis %, then S; is any string.

» If P;is two characters beginning with an escape character, then S; is the second
character of P;.

e Otherwise, P; = S;.

With the LIKE conditions, you can compare a value to a pattern rather than to a constant. The
pattern must appear after the LIKE keyword. For example, you can issue the following query
to find the salaries of all employees with names beginning with R:

SELECT salary
FROM employees
WHERE last name LIKE 'R%'
ORDER BY salary;

The following query uses the = operator, rather than the LIKE condition, to find the salaries of
all employees with the name 'R%":

SELECT salary
FROM employees
WHERE last name = 'R%'
ORDER BY salary;

6-17

ORACLE

Chapter 6
Pattern-matching Conditions

The following query finds the salaries of all employees with the name 'SM%'. Oracle
interprets 'SM%' as a text literal, rather than as a pattern, because it precedes the
LIKE keyword:

SELECT salary
FROM employees
WHERE 'SM%' LIKE last name
ORDER BY salary;

Collation and Case Sensitivity

The LIKE condition is collation-sensitive. Oracle Database compares the subpattern Pi
to the substring Si in the processing algorithm above using the collation determined
from the derived collations of charl and char?2. If this collation is case-insensitive, the
pattern-matching is case-insensitive as well.

" See Also:

Oracle Database Globalization Support Guide for more information on case-
and accent-insensitive collations and on collation determination rules for the
LIKE condition

Pattern Matching on Indexed Columns

When you use LIKE to search an indexed column for a pattern, Oracle can use the
index to improve performance of a query if the leading character in the pattern is not %
or . In this case, Oracle can scan the index by this leading character. If the first
character in the pattern is ¢ or _, then the index cannot improve performance because
Oracle cannot scan the index.

LIKE Condition: General Examples
This condition is true for all 1ast _name values beginning with Ma:

last name LIKE 'Ma%'

All of these last name values make the condition true:

Mallin, Markle, Marlow, Marvins, Mavris, Matos

Case is significant, So last name values beginning with M, ma, and mA make the
condition false.

Consider this condition:

last name LIKE 'SMITH '

This condition is true for these last name values:

SMITHE, SMITHY, SMITHS

This condition is false for SMITH because the special underscore character (_) must
match exactly one character of the last name value.

6-18

Chapter 6
Pattern-matching Conditions

ESCAPE Clause Example
The following example searches for employees with the pattern 2 B in their name:

SELECT last name
FROM employees
WHERE last name LIKE '$A\ B%' ESCAPE '\'
ORDER BY last name;

The ESCAPE clause identifies the backslash (\) as the escape character. In the pattern, the
escape character precedes the underscore (). This causes Oracle to interpret the
underscore literally, rather than as a special pattern matching character.

Patterns Without % Example

If a pattern does not contain the % character, then the condition can be true only if both
operands have the same length. Consider the definition of this table and the values inserted
into it:

CREATE TABLE ducks (f CHAR(6), v VARCHAR2(6));

INSERT INTO ducks VALUES ('DUCK', 'DUCK');

SELECT '*'||f||'*"' "char",

"*U'|v||"'"*" "varchar"
FROM ducks;

*DUCK * *DUCK*

Because Oracle blank-pads CHAR values, the value of £ is blank-padded to 6 bytes. v is not
blank-padded and has length 4.

REGEXP_LIKE Condition

ORACLE

REGEXP_LIKE is similar to the LIKE condition, except REGEXP LIKE performs regular
expression matching instead of the simple pattern matching performed by LIKE. This
condition evaluates strings using characters as defined by the input character set.

This condition complies with the POSIX regular expression standard and the Unicode
Regular Expression Guidelines. For more information, refer to Oracle Regular Expression
Support.

regexp_like_condition::=

O
—J{ REGEXP_LIKE F@{source,char)»@@ @

* source charis a character expression that serves as the search value. It is commonly a
character column and can be of any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR?2,
CLOB, Or NCLOB.

* patternis the regular expression. It is usually a text literal and can be of any of the
data types CHAR, VARCHAR2, NCHAR, or NVARCHAR?2. It can contain up to 512 bytes. If the
data type of pattern is different from the data type of source char, Oracle converts

6-19

ORACLE

Chapter 6
Pattern-matching Conditions

pattern to the data type of source char. For a listing of the operators you can
specify in pattern, refer to Oracle Regular Expression Support.

match paramis a character expression of the data type VARCHAR2 or CHAR that lets
you change the default matching behavior of the condition.

The value of match param can include one or more of the following characters:

— 'i' specifies case-insensitive matching, even if the determined collation of the
condition is case-sensitive.

— 'c' specifies case-sensitive and accent-sensitive matching, even if the
determined collation of the condition is case-insensitive or accent-insensitive.

— 'n' allows the period (.), which is the match-any-character wildcard character,
to match the newline character. If you omit this parameter, then the period
does not match the newline character.

— 'm' treats the source string as multiple lines. Oracle interprets *~ and $ as the
start and end, respectively, of any line anywhere in the source string, rather
than only at the start or end of the entire source string. If you omit this
parameter, then Oracle treats the source string as a single line.

— 'x'ignores whitespace characters. By default, whitespace characters match
themselves.

If the value of match param contains multiple contradictory characters, then Oracle
uses the last character. For example, if you specify 'ic', then Oracle uses case-
sensitive and accent-sensitive matching. If the value contains a character other
than those shown above, then Oracle returns an error.

If you omit match param, then:

— The default case and accent sensitivity are determined by the determined
collation of the REGEXP_LIKE condition.

— A period (.) does not match the newline character.

— The source string is treated as a single line.

Similar to the LIKE condition, the REGEXP_LIKE condition is collation-sensitive.

¢ See Also:

* LIKE Condition

« REGEXP_INSTR , REGEXP_REPLACE , and REGEXP_SUBSTR for
functions that provide regular expression support

e Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules for the REGEXP_LIKE condition

Examples

The following query returns the first and last names for those employees with a first
name of Steven or Stephen (where first name begins with Ste and ends with en and
in between is either v or ph) :

6-20

Chapter 6
Null Conditions

SELECT first name, last name

FROM employees

WHERE REGEXP LIKE (first name, '“Ste(v|ph)en$')
ORDER BY first name, last name;

FIRST NAME LAST NAME
Steven King
Steven Markle
Stephen Stiles

The following query returns the last name for those employees with a double vowel in their
last name (where last name contains two adjacent occurrences of either a, e, i, o, or u,
regardless of case):

SELECT last name

FROM employees

WHERE REGEXP_LIKE (last name, '([aeiou])\l', 'i")
ORDER BY last name;

LAST NAME
De Haan
Greenberg
Khoo

Gee
Greene
Lee

Bloom
Feeney

Null Conditions

ORACLE

A NULL condition tests for nulls. This is the only condition that you should use to test for nulls.

null_condition::=

NOT

@ED{E =]

Table 6-9 lists the null conditions.

Table 6-9 Null Condition

Type of Operation Example

Condition

IS [NOT] Tests for nulls. SELECT last name

NULL See Also: Nulls FROM employees
WHERE commission pct
IS NULL

ORDER BY last name;

6-21

Chapter 6
XML Conditions

XML Conditions

XML conditions determine whether a specified XML resource can be found in a
specified path.

EQUALS_PATH Condition

ORACLE

The EQUALS PATH condition determines whether a resource in the Oracle XML
database can be found in the database at a specified path.

Use this condition in queries to RESOURCE_VIEW and PATH VIEW. These public views
provide a mechanism for SQL access to data stored in the XML database repository.
RESOURCE VIEW contains one row for each resource in the repository, and PATH VIEW
contains one row for each unique path in the repository.

equals_path_condition::=

O (oreion e
—% EQUALS_PATH P(:)e<?dumﬁ)e<:)e<pamgsnmg> (Z)»

This condition applies only to the path as specified. It is similar to but more restrictive
than UNDER_PATH.

For path_string, specify the (absolute) path name to resolve. This can contain
components that are hard or weak resource links.

The optional correlation integer argument correlates the EQUALS PATH condition
with its ancillary functions DEPTH and PATH.

¢ See Also:
UNDER_PATH Condition , DEPTH , and PATH

Example

The view RESOURCE VIEW computes the paths (in the any path column) that lead to alll
XML resources (in the res column) in the database repository. The following example
queries the RESOURCE_VIEW view to find the paths to the resources in the sample
schema oe. The EQUALS PATH condition causes the query to return only the specified
path:

SELECT ANY_PATH FROM RESOURCE_VIEW
WHERE EQUALS PATH(res, '/sys/schemas/OE/www.example.com')=1;

ANY PATH

/sys/schemas/OE/www.example.com

Compare this example with that for UNDER_PATH Condition .

6-22

Chapter 6
SQL For JSON Conditions

UNDER_PATH Condition

The UNDER PATH condition determines whether resources specified in a column can be found
under a particular path specified by path stringin the Oracle XML database repository. The
path information is computed by the RESOURCE VIEW view, which you query to use this
condition.

Use this condition in queries to RESOURCE_VIEW and PATH VIEW. These public views provide a
mechanism for SQL access to data stored in the XML database repository. RESOURCE VIEW
contains one row for each resource in the repository, and PATH VIEW contains one row for
each unique path in the repository.

under_path_condition::=

R OLCD
—{ UNDER_PATH |->®{co|umn) O ()(path_string) U ®->

The optional levels argument indicates the number of levels down from path string Oracle
should search. For Ievels, specify any nonnegative integer.

The optional correlation integer argument correlates the UNDER PATH condition with its
ancillary functions PATH and DEPTH.

¢ See Also:

The related condition EQUALS_PATH Condition and the ancillary functions DEPTH
and PATH

Example

The view RESOURCE VIEW computes the paths (in the any path column) that lead to all XML

resources (in the res column) in the database repository. The following example queries the
RESOURCE_VIEW view to find the paths to the resources in the sample schema oe. The query

returns the path of the XML schema that was created in XMLType Table Examples:

SELECT ANY PATH FROM RESOURCE VIEW
WHERE UNDER PATH(res, '/sys/schemas/OE/www.example.com')=1;

ANY PATH

/sys/schemas/OE/www.example.com/xwarehouses.xsd

SQL For JSON Conditions

SQL for JSON conditions allow you to test JavaScript Object Notation (JSON) data as
follows:

* IS JSON Condition lets you test whether an expression is syntactically correct JSON data

ORACLE 6-23

Chapter 6
SQL For JSON Conditions

* JSON_EXISTS Condition lets you test whether a specified JSON value exists in
JSON data

 JSON_TEXTCONTAINS Condition lets you test whether a specified character
string exists in JSON property values.

* JSON_EQUAL Condition tests whether two JSON values are the same.

JSON_condition::=

is_JSON_condition
' JSON_exists_condition -

JSON_textcontains_condition

IS JSON Condition

ORACLE

Use this SQL/JSON condition to test whether an expression is syntactically correct, or
well-formed, JSON data.

e If you specify 1S JSON, then this condition returns TRUE if the expression is well-
formed JSON data and FALSE if the expression is not well-formed JSON data.

* If you specify IS NOT JSON, then this condition returns TRUE if the expression is not
well-formed JSON data and FALSE if the expression is well-formed JSON data.

is JSON_condition::=

o, sy @

ALLOW WITH
|=q |=q

» Use expr to specify the JSON data to be evaluated. Specify an expression that
evaluates to a text literal. If expr is a column, then the column must be of data type
VARCHAR?2, CLOB, or BLOB. If expr evaluates to null or a text literal of length zero,
then this condition returns UNKNOWN.

* You must specify FORMAT JSON if expr is a column of data type BLOB.

* If you specify STRICT, then this condition considers only strict JSON syntax to be
well-formed JSON data. If you specify LAX, then this condition also considers lax
JSON syntax to be well-formed JSON data. The default is 1.2X. Refer to Oracle
Database JSON Developer’s Guide for more information on strict and lax JSON
syntax.

* If you specify WITH UNIQUE KEYS, then this condition considers JSON data to be
well-formed only if key names are unique within each object. If you specify

6-24

ORACLE

Chapter 6
SQL For JSON Conditions

WITHOUT UNIQUE KEYS, then this condition considers JSON data to be well-formed even if
duplicate key names occur within an object. A WITHOUT UNIQUE KEYS test performs faster
than a WITH UNIQUE KEYS test. The default is WITHOUT UNIQUE KEYS.

Examples

Testing for STRICT or LAX JSON Syntax: Example
The following statement creates table t with column col1:

CREATE TABLE t (coll VARCHARZ2 (100));

The following statements insert values into column col1 of table t:

INSERT INTO t VALUES ('["LIT192", "CS141", "HIS160" 1');
INSERT INTO t VALUES ('{ "Name": "John" }');
INSERT INTO t VALUES ('{ "Grade Values" : { A : 4.0, B : 3.0, C : 2.0} }");
INSERT INTO t VALUES ('{ "isEnrolled" : true }');
INSERT INTO t VALUES ('{ "isMatriculated" : False }');
INSERT INTO t VALUES (NULL);
t (

INSERT INTO VALUES ('This is not well-formed JSON data');

The following statement queries table t and returns coll values that are well-formed JSON
data. Because neither the STRICT nor LAX keyword is specified, this example uses the default
LAX setting. Therefore, this query returns values that use strict or lax JSON syntax.

SELECT coll
FROM t
WHERE coll IS JSON;

"LIT192", "Csl141", "HIS1leO0"]

[

{ "Name": "John" }

{ "Grade Values" : { A : 4.0, B : 3.0, C : 2.0} }
{ "isEnrolled" : true }

{ "isMatriculated" : False }

The following statement queries table t and returns coll values that are well-formed JSON
data. This example specifies the STRICT setting. Therefore, this query returns only values that
use strict JSON syntax.

SELECT coll
FROM t
WHERE coll IS JSON STRICT;

["LIT192", "CS141", "HIS160"]
{ "Name": "John" }
{ "isEnrolled" : true }

The following statement queries table t and returns coll values that use lax JSON syntax,
but omits coll values that use strict JSON syntax. Therefore, this query returns only values
that contain the exceptions allowed in lax JSON syntax.

SELECT coll
FROM t
WHERE coll IS NOT JSON STRICT AND coll IS JSON LAX;

6-25

Chapter 6
SQL For JSON Conditions

COL1
{ "Grade Values" : { A : 4.0, B : 3.0, C : 2.0} }
{ "isMatriculated" : False }

Testing for Unique Keys: Example
The following statement creates table t with column col1:

CREATE TABLE t (coll VARCHAR2(100));

The following statements insert values into column col1 of table t:

INSERT INTO t VALUES ('{a:100, b:200, c:300}");
INSERT INTO t VALUES ('{a:100, a:200, b:300}");
INSERT INTO t VALUES ('{a:100, b : {a:100, c:300}}");

The following statement queries table t and returns coll values that are well-formed
JSON data with unique key names within each object:

SELECT coll FROM t
WHERE coll IS JSON WITH UNIQUE KEYS;

{a:100, b:200, c:300}
{a:100, b : {a:100, c:300}}

The second row is returned because, while the key name a appears twice, it is in two

different objects.

The following statement queries table t and returns coll values that are well-formed
JSON data, regardless of whether there are unique key names within each object:

SELECT coll FROM t
WHERE coll IS JSON WITHOUT UNIQUE KEYS;

{a:100, b:200, c:300}
{a:100, a:200, b:300}
{a:100, b : {a:100, c:300}}

Using IS JSON as a Check Constraint: Example

The following statement creates table j purchaseorder, which will store JSON data in
column po_document. The statement uses the IS JSON condition as a check constraint
to ensure that only well-formed JSON is stored in column po_document.

CREATE TABLE j purchaseorder
(id RAW (16) NOT NULL,
date loaded TIMESTAMP(6) WITH TIME ZONE,
po_document CLOB CONSTRAINT ensure_json CHECK (po_document IS JSON));

JSON_EQUAL Condition

Syntax

| ssonEQUAL [O exer)o() @w)A)

ORACLE 6-26

Chapter 6
SQL For JSON Conditions

Purpose

The Oracle SQL condition JSON_EQUAL compares two JSON values and returns true if they are
equal. It returns false if the two values are not equal. The input values must be valid JSON
data.

The comparison ignores insignificant whitespace and insignificant object member order. For
example, JSON objects are equal, if they have the same members, regardless of their order.

If either of the two compared inputs has one or more duplicate fields, then the value returned
by JSON EQUAL is unspecified.

JSON_EQUAL supports ERROR ON ERROR, FALSE ON ERROR, and TRUE ON ERROR. The default is
FALSE ON ERROR. A typical example of an error is when the input expression is not valid JSON.

Examples

The following statements return TRUE:

JSON_EQUAL('{}', '{ }")
JSON_EQUAL('{a:1, b:2}', '{b:2 , a:l }")

The following statement return FALSE:

JSON_EQUAL('{a:"1"}', '{a:1 }'") -> FALSE

The following statement results in a ORA-40441 JSON syntax error

JSON_EQUAL('[1]', '[}' ERROR ON ERROR)

¢ See Also:

e Oracle Database JSON Developer’s Guide for more information.

JSON_EXISTS Condition

Use the SQL/JSON condition JSON_EXISTS to test whether a specified JSON value exists in
JSON data. This condition returns TRUE if the JSON value exists and FALSE if the JSON value
does not exist.

JSON _exists_condition::=

FORMAT 5 JSON
JSON_EXISTS o expr @{JSON_basic_path_expression)»

JSON_passing_clause I{JSON_exists_on_error_clauseh
[—(JSON_exists_on_empty_clauseh
Ok

ORACLE 6-27

ORACLE

Chapter 6
SQL For JSON Conditions

(JSON basic path expression: See Oracle Database JSON Developer’s Guide)

JSON_passing_clause::=

M)
N\

I

JSON _exists_on_error_clause::=

ON H ERROR |->

JSON_exists_on_empty_clause::=
w ON |4 EMPTY |>

expr

Use this clause to specify the JSON data to be evaluated. For expr, specify an
expression that evaluates to a text literal. If expr is a column, then the column must be
of data type VARCHAR2, CLOB, or BLOB. If expr evaluates to null or a text literal of length
zero, then the condition returns UNKNOWN.

If expr is not a text literal of well-formed JSON data using strict or lax syntax, then the
condition returns FALSE by default. You can use the JSON exists on error clause to
override this default behavior. Refer to the JSON_exists_on_error_clause.

FORMAT JSON

You must specify FORMAT JSON if expr is a column of data type BLOB.

JSON_basic_path_expression

Use this clause to specify a SQL/JSON path expression. The condition uses the path
expression to evaluate expr and determine if a JSON value that matches, or satisfies,
the path expression exists. The path expression must be a text literal, but it can
contain variables whose values are passed to the path expression by the

JSON passing clause. See Oracle Database JSON Developer’s Guide for the full
semantics of JSON basic path expression.

JSON_passing_clause

Use this clause to pass values to the path expression. For expr, specify a value of
data type VARCHAR2, NUMBER, BINARY DOUBLE, DATE, TIMESTAMP, Of TIMESTAMP WITH TIME
ZONE. The result of evaluating expr is bound to the corresponding identifier in the

JSON basic path expression.

6-28

ORACLE

Chapter 6
SQL For JSON Conditions

JSON_exists_on_error_clause

Use this clause to specify the value returned by this condition when expr is not well-formed
JSON data.

You can specify the following clauses:

* ERROR ON ERROR - Returns the appropriate Oracle error when expr is not well-formed
JSON data.

* TRUE ON ERROR - Returns TRUE when expr is not well-formed JSON data.

° FALSE ON ERROR - Returns FALSE when expr is not well-formed JSON data. This is the
default.

JSON_exists_on_empty_clause

Use this clause to specify the value returned by this function if no match is found when the
JSON data is evaluated using the SQL/JSON path expression. This clause allows you to
specify a different outcome for this type of error than the outcome specified with the

JSON exists on error clause.

You can specify the following clauses:
* NULL ON EMPTY - Returns null when no match is found.
° ERROR ON EMPTY - Returns the appropriate Oracle error when no match is found.

° DEFAULT literal ON EMPTY - Returns 1iteral when no match is found. The data type of
literal must match the data type of the value returned by this function.

If you omit this clause, then the JSON exists on error clause determines the value
returned when no match is found.

Examples
The following statement creates table t with column name:

CREATE TABLE t (name VARCHAR2 (100));

The following statements insert values into column name of table t:

INSERT INTO t VALUES ('[{first:"John"}, {middle:"Mark"}, {last:"Smith"}]');
INSERT INTO t VALUES ('[{first:"Mary"}, {last:"Jones"}]');

INSERT INTO t VALUES ('[{first:"Jeff"}, {last:"Williams"}]'");

INSERT INTO t VALUES ('[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]');
INSERT INTO t VALUES (NULL);

INSERT INTO t VALUES ('This is not well-formed JSON data');

The following statement queries column name in table t and returns JSON data that consists
of an array whose first element is an object with property name first. The ON ERROR clause is
not specified. Therefore, the JSON_EXISTS condition returns FALSE for values that are not well-
formed JSON data.

SELECT name FROM t
WHERE JSON_EXISTS (name, '$[0].first');

[{first:"John"}, {middle:"Mark"}, {last:"Smith"}]
[{first:"Mary"}, {last:"Jones"}]

6-29

ORACLE

Chapter 6
SQL For JSON Conditions

[{first:"Jeff"}, {last:"Williams"}]
[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]

The following statement queries column name in table t and returns JSON data that
consists of an array whose second element is an object with property name middle.
The ON ERROR clause is not specified. Therefore, the JSON_EXISTS condition returns

FALSE for values that are not well-formed JSON data.

SELECT name FROM t
WHERE JSON_EXISTS (name, '$[1].middle');

[{first:"John"}, {middle:"Mark"}, {last:"Smith"}]
[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]

The following statement is similar to the previous statement, except that the TRUE ON
ERROR clause is specified. Therefore, the JSON_EXISTS condition returns TRUE for values
that are not well-formed JSON data.

SELECT name FROM t
WHERE JSON_EXISTS (name, '$[1].middle' TRUE ON ERROR);

[{first:"John"}, {middle:"Mark"}, {last:"Smith"}]
[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]
This is not well-formed JSON data

The following statement queries column name in table t and returns JSON data that
consists of an array that contains an element that is an object with property name
last. The wildcard symbol (*) is specified for the array index. Therefore, the query
returns arrays that contain such an object, regardless of its index number in the array.

SELECT name FROM t
WHERE JSON_EXISTS (name, '$[*].last');

{first:"John"}, {middle:"Mark"}, {last:"Smith"}]
{first:"Mary"}, {last:"Jones"}]

{first:"Jeff"}, {last:"Williams"}]
{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]

The following statement performs a filter expression using the passing clause. The
SQL/JSON variable svarl in the comparison predicate (@.middle == $varl) getsits
value from the bind variable var1 of the PASSING clause.

Using bind variables for value comparisons avoids query re-compilation.

SELECT name FROM t
WHERE JSON_EXISTS (name, '$[1]?(@.middle == $varl)' PASSING 'Anne' as "varl");

NAME

[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]

6-30

Chapter 6
SQL For JSON Conditions

¢ See Also:
Condition JSON_Exists

JSON_TEXTCONTAINS Condition

ORACLE

Use the SQL/JSON condition JSON TEXTCONTAINS to test whether a specified character string
exists in JSON property values. You can use this condition to filter JSON data on a specific
word or number.

This condition takes the following arguments:

e A table or view column that contains JSON data. A JSON search index, which is an
Oracle Text index designed specifically for use with JSON data, must be defined on the
column. Each row of JSON data in the column is referred to as a JSON document.

A SQL/JSON path expression. The path expression is applied to each JSON document in
an attempt to match a specific JSON object within the document. The path expression
can contain only JSON object steps; it cannot contain JSON array steps.

* A character string. The condition searches for the character string in all of the string and
numeric property values in the matched JSON object, including array values. The string
must exist as a separate word in the property value. For example, if you search for ‘beth’,
then a match will be found for string property value "beth smith", but not for "elizabeth
smith". If you search for '10', then a match will be found for numeric property value 10 or
string property value "10 main street”, but a match will not be found for numeric property
value 110 or string property value "102 main street".

This condition returns TRUE if a match is found, and FALSE if a match is not found.

See Also:

JSON Full text search queries

JSON _textcontains_condition::=

—>| JSON_TEXTCONTAINS P@»Ccolumn)a@{JSON_basic_path_expression

(JSON basic path expression: See Oracle Database JSON Developer’s Guide)

column

Specify the name of the table or view column containing the JSON data to be tested. The
column must be of data type VARCHAR2, CLOB, or BLOB. A JSON search index, which is an
Oracle Text index designed specifically for use with JISON data, must be defined on the
column. If a column value is a null or a text literal of length zero, then the condition returns
UNKNOWN.

If a column value is not a text literal of well-formed JSON data using strict or lax syntax, then
the condition returns FALSE.

6-31

Chapter 6
SQL For JSON Conditions

JSON_basic_path_expression

Use this clause to specify a SQL/JSON path expression. The condition uses the path
expression to evaluate column and determine if a JSON value that matches, or
satisfies, the path expression exists. The path expression must be a text literal. See
Oracle Database JSON Developer’s Guide for the full semantics of

JSON basic path expression.

string

The condition searches for the character string specified by string. The string must be
enclosed in single quotation marks.

Examples

The following statement creates table families with column family doc:

CREATE TABLE families (family doc VARCHARZ2 (200));

The following statement creates a JSON search index on column family doc:

CREATE INDEX ix
ON families (family doc)
INDEXTYPE IS CTXSYS.CONTEXT
PARAMETERS ('SECTION GROUP CTXSYS.JSON SECTION GROUP SYNC (ON COMMIT)');

The following statements insert JSON documents that describe families into column
family doc:

INSERT INTO families
VALUES ('{family : {id:10, ages:[40,38,12], address : {street : "10 Main Street"}}}");

INSERT INTO families
VALUES ('{family : {id:11, ages:[42,40,10,5], address : {street : "200 East Street", apt :
2011") 7

INSERT INTO families
VALUES ('{family : {id:12, ages:[25,23], address : {street : "300 Oak Street", apt : 10}}}");

The following statement commits the transaction:

COMMIT;

The following query returns the JSON documents that contain 10 in any property value
in the document:

SELECT family doc FROM families
WHERE JSON TEXTCONTAINS (family doc, '$', '10');

FAMILY DOC

{family : {id:10, ages:[40,38,12], address : {street : "10 Main Street"}}}
{family : {id:11, ages:[42,40,10,5], address : {street : "200 East Street", apt : 20}}}
{family : {id:12, ages:[25,23], address : {street : "300 Oak Street", apt : 10}}}

The following query returns the JISON documents that contain 10 in the id property
value:

SELECT family doc FROM families
where json_textcontains(family doc, '$.family.id', '10");

ORACLE 6-32

Chapter 6
Compound Conditions

FAMILY DOC

{family : {id:10, ages:[40,38,12], address : {street : "10 Main Street"}}}

The following query returns the JSON documents that have a 10 in the array of values for the
ages property:

SELECT family doc FROM families
WHERE JSON_TEXTCONTAINS (family doc, '$.family.ages', '10'");

FAMILY DOC

{family : {id:11, ages:[42,40,10,5], address : {street : "200 East Street", apt : 20}}}

The following query returns the JSON documents that have a 10 in the address property
value:

SELECT family doc FROM families
WHERE JSON_TEXTCONTAINS (family doc, '$.family.address', '10');

FAMILY DOC

{family : {i1d:10, ages:[40,38,12], address : {street : "10 Main Street"}}}
{family : {id:12, ages:[25,23], address : {street : "300 Oak Street", apt : 10}}}

The following query returns the JISON documents that have a 10 in the apt property value:

SELECT family doc FROM families
WHERE JSON_TEXTCONTAINS (family doc, '$.family.address.apt', '10');

FAMILY DOC

{family : {id:12, ages:[25,23], address : {street : "300 Oak Street", apt : 10}}}

Compound Conditions

A compound condition specifies a combination of other conditions.

compound_condition::=

O

AND
h —

" See Also:

Logical Conditions for more information about NOT, AND, and OR conditions

ORACLE' 6-33

Chapter 6
BETWEEN Condition

BETWEEN Condition

ORACLE

A BETWEEN condition determines whether the value of one expression is in an interval
defined by two other expressions.

between_condition::=

INgil
@ty BemEen () {0 h(o99)

All three expressions must be numeric, character, or datetime expressions. In SQL, it
is possible that expr1 will be evaluated more than once. If the BETWEEN expression
appears in PL/SQL, exprl is guaranteed to be evaluated only once. If the expressions
are not all the same data type, then Oracle Database implicitly converts the
expressions to a common data type. If it cannot do so, then it returns an error.

¢ See Also:

Implicit Data Conversion for more information on SQL data type conversion

The value of

exprl NOT BETWEEN expr2 AND expr3

is the value of the expression

NOT (exprl BETWEEN expr2 AND expr3)

And the value of

exprl BETWEEN expr2 AND expr3

is the value of the boolean expression:

expr2 <= exprl AND exprl <= expr3

If expr3 < expr2, then the interval is empty. If exprl is NULL, then the result is NULL. If
exprl is not NULL, then the value is FALSE in the ordinary case and TRUE when the
keyword NOT is used.

The boolean operator AND may produce unexpected results. Specifically, in the
expression x AND y, the condition x IS NULL is not sufficient to determine the value of
the expression. The second operand still must be evaluated. The result is FALSE if the
second operand has the value FALSE and NULL otherwise. See Logical Conditions for
more information on AND.

6-34

Chapter 6
EXISTS Condition

Table 6-10 BETWEEN Condition

Type of Operation Example

Condition

(NOT] [NOT] (expr2 less than or equal to SELECT * FROM employees
BETWEEN x exprl AND exprl less than or equal WHERE salary

AND y to expr3) BETWEEN 2000 AND 3000

ORDER BY employee id;

EXISTS Condition

An EXISTS condition tests for existence of rows in a subquery.

—{ EXISTS @{subquery}@

Table 6-11 shows the EXISTS condition.

Table 6-11 EXISTS Condition

Type of Operation Example
Condition

TRUE if a subquery returns at
least one row.

EXISTS SELECT department id
FROM departments d
WHERE EXISTS
(SELECT * FROM employees e
WHERE d.department id
= e.department id)

ORDER BY department id;

IN Condition

An in conditionis a membership condition. It tests a value for membership in a list of
values or subquery

in_condition::=

=)
ol

ORACLE 6-35

ORACLE

Chapter 6
IN Condition

expression_list::=

expr

N

If you use the upper form of the in condition condition (with a single expression to
the left of the operator), then you must use the upper form of expression list. If you
use the lower form of this condition (with multiple expressions to the left of the
operator), then you must use the lower form of expression list, and the expressions
in each expression list must match in number and data type the expressions to the
left of the operator. You can specify up to 1000 expressions in expression list.

Oracle Database does not always evaluate the expressions in an expression listin
the order in which they appear in the IN list. However, expressions in the select list of a
subquery are evaluated in their specified order.

¢ See Also:

Expression Lists

Table 6-12 lists the form of IN condition.

Table 6-12 IN Condition

__|
Type of Condition Operation Example

Equal-to-any-member-of test.

IN .
Equivalent to =ANY.

SELECT * FROM employees
WHERE job_id IN
('PU_CLERK', 'SH CLERK'")
ORDER BY employee id;

SELECT * FROM employees
WHERE salary IN
(SELECT salary

FROM employees
WHERE department id =30)
ORDER BY employee id;

6-36

Chapter 6
IN Condition

Table 6-12 (Cont.) IN Condition

__|
Type of Condition Operation Example

Equivalent to I=ALL. Evaluates
to FALSE if any member of the

NOT IN SELECT * FROM employees
: WHERE salary NOT IN
setis NULL. (SELECT salary
FROM employees
WHERE department id = 30)
ORDER BY employee id;
SELECT * FROM employees
WHERE job id NOT IN
('PU_CLERK', 'SH CLERK')
ORDER BY employee id;

If any item in the list following a NOT IN operation evaluates to null, then all rows evaluate to
FALSE or UNKNOWN, and no rows are returned. For example, the following statement returns the
string 'True' for each row:

SELECT 'True' FROM employees
WHERE department id NOT IN (10, 20);

However, the following statement returns no rows:

SELECT 'True' FROM employees
WHERE department id NOT IN (10, 20, NULL);

The preceding example returns no rows because the WHERE clause condition evaluates to:
department id != 10 AND department id != 20 AND department id != null

Because the third condition compares department id with a null, it results in an UNKNOWN, So
the entire expression results in FALSE (for rows with department id equal to 10 or 20). This

behavior can easily be overlooked, especially when the NOT IN operator references a
subquery.

Moreover, if a NOT IN condition references a subquery that returns no rows at all, then all rows
will be returned, as shown in the following example:

SELECT 'True' FROM employees
WHERE departmentiid NOT IN (SELECT O FROM DUAL WHERE 1=2);

For character arguments, the 1IN condition is collation-sensitive. The collation determination
rules determine the collation to use.

" See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for the IN condition

ORACLE 6-37

Chapter 6
IS OF type Condition

Restriction on LEVEL in WHERE Clauses

In a [NOT] IN condition in a WHERE clause, if the right-hand side of the condition is a
subquery, you cannot use LEVEL on the left-hand side of the condition. However, you
can specify LEVEL in a subquery of the FROM clause to achieve the same result. For
example, the following statement is not valid:

SELECT employee id, last name FROM employees
WHERE (employee id, LEVEL)
IN (SELECT employee id, 2 FROM employees)
START WITH employee id = 2
CONNECT BY PRIOR employee id = manager id;

But the following statement is valid because it encapsulates the query containing the
LEVEL information in the FROM clause:

SELECT v.employee id, v.last name, v.lev FROM
(SELECT employee id, last name, LEVEL lev
FROM employees v
START WITH employee id = 100
CONNECT BY PRIOR employee id = manager id) v
WHERE (v.employee id, v.lev) IN
(SELECT employee id, 2 FROM employees);

IS OF type Condition

Use the IS OF type condition to test object instances based on their specific type
information.

is_of_type_condition::=

M)
N
[NOT | [TYPE | ‘ [oL | M (schema)
pEaklat;; 0 S ©L®

ORACLE

You must have EXECUTE privilege on all types referenced by type, and all types must
belong to the same type family.

This condition evaluates to null if expr is null. If expr is not null, then the condition
evaluates to true (or false if you specify the NOT keyword) under either of these
circumstances:

* The most specific type of expr is the subtype of one of the types specified in the
type list and you have not specified oNLY for the type, or

e The most specific type of expr is explicitly specified in the type list.

The expr frequently takes the form of the VALUE function with a correlation variable.

The following example uses the sample table oe.persons, which is built on a type
hierarchy in Substitutable Table and Column Examples. The example uses the 1S OF
type condition to restrict the query to specific subtypes:

SELECT * FROM persons p
WHERE VALUE (p) IS OF TYPE (employee t);

6-38

Chapter 6
IS OF type Condition

NAME SSN
Joe 32456
Tim 5678

SELECT * FROM persons p
WHERE VALUE (p) IS OF (ONLY part time emp t);

ORACLE" 6-39

Functions

Functions are similar to operators in that they manipulate data items and return a result.

Functions differ from operators in the format of their arguments. This format enables them to
operate on zero, one, two, or more arguments:

function(argument, argument, ...)

A function without any arguments is similar to a pseudocolumn (refer to Pseudocolumns).
However, a pseudocolumn typically returns a different value for each row in the result set,
whereas a function without any arguments typically returns the same value for each row.

This chapter contains these sections:

* About SQL Functions

* Single-Row Functions

Numeric Functions

Character Functions Returning Character Values

Character Functions Returning Number Values

Character Set Functions

Collation Functions

Datetime Functions

General Comparison Functions
Conversion Functions

Large Object Functions

Collection Functions

Hierarchical Functions

Oracle Machine Learning for SQL Functions
XML Functions

JSON Functions

Encoding and Decoding Functions
NULL-Related Functions

Environment and ldentifier Functions

* Aggregate Functions

* Analytic Functions

* Object Reference Functions

e Model Functions
e OLAP Functions

e Data Cartridge Functions

ORACLE

7-1

Chapter 7
About SQL Functions

e About User-Defined Functions

About SQL Functions

ORACLE

SQL functions are built into Oracle Database and are available for use in various
appropriate SQL statements. Do not confuse SQL functions with user-defined
functions written in PL/SQL.

If you call a SQL function with an argument of a data type other than the data type
expected by the SQL function, then Oracle attempts to convert the argument to the
expected data type before performing the SQL function.

¢ See Also:

About User-Defined Functions for information on user functions and Data
Conversion for implicit conversion of data types

Nulls in SQL Functions

Most scalar functions return null when given a null argument. You can use the NVL
function to return a value when a null occurs. For example, the expression

NVL (commission pct,0) returns O if commission pct is null or the value of
commission pct ifitis not null.

For information on how aggregate functions handle nulls, see Aggregate Functions .

Syntax for SQL Functions

In the syntax diagrams for SQL functions, arguments are indicated by their data types.
When the parameter function appears in SQL syntax, replace it with one of the
functions described in this section. Functions are grouped by the data types of their
arguments and their return values.

¢ Note:

When you apply SQL functions to LOB columns, Oracle Database creates
temporary LOBs during SQL and PL/SQL processing. You should ensure
that temporary tablespace quota is sufficient for storing these temporary
LOBs for your application.

A SQL function may be collation-sensitive, which means that character value
comparison or matching that it performs is controlled by a collation. The particular
collation to use by the function is determined from the collations of the function's
arguments.

If the result of a SQL function has a character data type, the collation derivation rules
define the collation to associate with the result.

7-2

Chapter 7
About SQL Functions

¢ See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation and determination rules for SQL functions

The syntax showing the categories of functions follows:

function::=

single_row_function
aggregate_function

analytic_function

i

)
R=x
@
Q.
-
@
@
4
@
=]
IS
@
.
IS
=]
Q
o
E1

}
I

model_function
OLAP_function

data_cartridge_function

user_defined_function

|

single_row_function::=

numeric_function
character_function
datetime_function
comparison_function
conversion_function
large_object_function
collection_function
hierarchical_function
data_mining_function

XML_function

s

JSON_function

7
=
(=]
o
=3
>
[(a]
o
()
(@]
o
=%
>
[(a]
-
| -
=
(o]
="
o
\?

NULL_related_function

\(environment_id_function

5

ORACLE a

Chapter 7
Single-Row Functions

The sections that follow list the built-in SQL functions in each of the groups illustrated
in the preceding diagrams except user-defined functions. All of the built-in SQL
functions are then described in alphabetical order.

See Also:

About User-Defined Functions and CREATE FUNCTION

Single-Row Functions

Single-row functions return a single result row for every row of a queried table or view.
These functions can appear in select lists, WHERE clauses, START WITH and CONNECT BY
clauses, and HAVING clauses.

Numeric Functions

ORACLE

Numeric functions accept numeric input and return numeric values. Most numeric
functions return NUMBER values that are accurate to 38 decimal digits. The
transcendental functions C0OS, COSH, EXP, LN, LOG, SIN, SINH, SQRT, TAN, and TANH are
accurate to 36 decimal digits. The transcendental functions AC0S, ASIN, ATAN, and
ATAN2 are accurate to 30 decimal digits. The numeric functions are:

ABS

ACOS

ASIN

ATAN

ATAN2

BITAND

CEIL

COSs

COSH

EXP

FLOOR

LN

LOG

MOD

NANVL

POWER
REMAINDER
ROUND (number)
SIGN

SIN

SINH

SQRT

TAN

TANH

TRUNC (number)
WIDTH_BUCKET

7-4

Chapter 7
Single-Row Functions

Character Functions Returning Character Values

Character functions that return character values return values of the following data types
unless otherwise documented:

e If the input argument is CHAR or VARCHAR?2, then the value returned is VARCHAR?.
e If the input argument is NCHAR or NVARCHAR?2, then the value returned is NVARCHAR2.

The length of the value returned by the function is limited by the maximum length of the data
type returned.

» For functions that return CHAR or VARCHAR?, if the length of the return value exceeds the
limit, then Oracle Database truncates it and returns the result without an error message.

» For functions that return CLOB values, if the length of the return values exceeds the limit,
then Oracle raises an error and returns no data.

The character functions that return character values are:

CHR

CONCAT

INITCAP

LOWER

LPAD

LTRIM

NCHR
NLS_INITCAP
NLS_LOWER
NLS_UPPER
NLSSORT
REGEXP_REPLACE
REGEXP_SUBSTR
REPLACE

RPAD

RTRIM

SOUNDEX
SUBSTR
TRANSLATE
TRANSLATE ... USING
TRIM

UPPER

Character Functions Returning Number Values

Character functions that return number values can take as their argument any character data
type. The character functions that return number values are:

ASCII

INSTR

LENGTH
REGEXP_COUNT
REGEXP_INSTR

ORACLE 7.5

Chapter 7
Single-Row Functions

Character Set Functions

The character set functions return information about the character set. The character
set functions are:

NLS_CHARSET DECL_LEN
NLS_CHARSET_ID
NLS_CHARSET_NAME

Collation Functions

The collation functions return information about collation settings. The collation
functions are:

COLLATION
NLS_COLLATION_ID
NLS_COLLATION_NAME

Datetime Functions

ORACLE

Datetime functions operate on date (DATE), timestamp (TIMESTAMP, TIMESTAMP WITH
TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE), and interval (INTERVAL DAY TO
SECOND, INTERVAL YEAR TO MONTH) values.

Some of the datetime functions were designed for the Oracle DATE data type
(ADD_MONTHS, CURRENT DATE, LAST DAY, NEW TIME, and NEXT DAY). If you provide a
timestamp value as their argument, then Oracle Database internally converts the input
type to a DATE value and returns a DATE value. The exceptions are the MONTHS BETWEEN
function, which returns a number, and the ROUND and TRUNC functions, which do not
accept timestamp or interval values at all.

The remaining datetime functions were designed to accept any of the three types of
data (date, timestamp, and interval) and to return a value of one of these types.

All of the datetime functions that return current system datetime information, such as
SYSDATE, SYSTIMESTAMP, CURRENT TIMESTAMP, and so forth, are evaluated once for
each SQL statement, regardless how many times they are referenced in that
statement.

The datetime functions are:

ADD_MONTHS
CURRENT_DATE
CURRENT_TIMESTAMP
DBTIMEZONE
EXTRACT (datetime)
FROM_TZ

LAST DAY
LOCALTIMESTAMP
MONTHS_BETWEEN
NEW_TIME
NEXT_DAY
NUMTODSINTERVAL

7-6

General Comparison Functions

The general comparison functions determine the greatest and or least value from a set of
values. The general comparison functions are:

NUMTOYMINTERVAL
ORA_DST_AFFECTED
ORA_DST_CONVERT
ORA_DST_ERROR
ROUND (date)
SESSIONTIMEZONE
SYS_EXTRACT_UTC
SYSDATE
SYSTIMESTAMP
TO_CHAR (datetime)
TO_DSINTERVAL
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TRUNC (date)
TZ_OFFSET

GREATEST
LEAST

Conversion Functions

ORACLE

ASCIISTR
BIN_TO_NUM

CAST
CHARTOROWID
COMPOSE

CONVERT
DECOMPOSE
HEXTORAW
NUMTODSINTERVAL
NUMTOYMINTERVAL
RAWTOHEX
RAWTONHEX
ROWIDTOCHAR
ROWIDTONCHAR
SCN_TO_TIMESTAMP
TIMESTAMP_TO_SCN
TO_BINARY_DOUBLE
TO_BINARY_FLOAT

Chapter 7
Single-Row Functions

Conversion functions convert a value from one data type to another. Generally, the form of
the function names follows the convention datatype TO datatype. The first data type is the
input data type. The second data type is the output data type. The SQL conversion functions
are:

7-7

TO_BLOB (bfile)
TO_BLOB (raw)
TO_CHAR (bfile|blob)
TO_CHAR (character)
TO_CHAR (datetime)
TO_CHAR (number)
TO_CLOB (bfile|blob)
TO_CLOB (character)
TO_DATE
TO_DSINTERVAL
TO_LOB
TO_MULTI_BYTE
TO_NCHAR (character)
TO_NCHAR (datetime)
TO_NCHAR (number)

TO_NCLOB
TO_NUMBER
TO_SINGLE_BYTE
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TREAT

UNISTR

VALIDATE_CONVERSION

Large Object Functions

The large object functions operate on LOBs. The large object functions are:

BFILENAME

EMPTY_BLOB, EMPTY_CLOB

Collection Functions

The collection functions operate on nested tables and varrays. The SQL collection

functions are:

CARDINALITY
COLLECT
POWERMULTISET

POWERMULTISET_BY_CARDINALITY

SET

Hierarchical Functions

Hierarchical functions applies hierarchical path information to a result set. The

ORACLE

hierarchical function is:

SYS_CONNECT_BY_PATH

Chapter 7
Single-Row Functions

7-8

Chapter 7
Single-Row Functions

Oracle Machine Learning for SQL Functions

The Oracle Machine Learning for SQL functions use analytics to score data. The functions
can apply a mining model schema object to the data, or they can dynamically mine the data
by executing an analytic clause. The OML4SQL functions can be applied to models built
using the native algorithms of Oracle, as well as those built using R through the extensibility
mechanism.

The Oracle Machine Learning for SQL functions are:

CLUSTER_DETAILS
CLUSTER_DISTANCE
CLUSTER_ID
CLUSTER_PROBABILITY
CLUSTER_SET
FEATURE_COMPARE
FEATURE_DETAILS
FEATURE_ID

FEATURE_SET
FEATURE_VALUE
ORA_DM_PARTITION_NAME
PREDICTION
PREDICTION_BOUNDS
PREDICTION_COST
PREDICTION_DETAILS
PREDICTION_PROBABILITY
PREDICTION_SET

" See Also:

e Oracle Machine Learning for SQL Concepts to learn about Oracle Machine
Learning for SQL

e Oracle Machine Learning for SQL User’s Guide for information about scoring

XML Functions

ORACLE

The XML functions operate on or return XML documents or fragments. These functions use
arguments that are not defined as part of the ANSI/ISO/IEC SQL Standard but are defined as
part of the World Wide Web Consortium (W3C) standards. The processing and operations
that the functions perform are defined by the relevant W3C standards. The table below
provides a link to the appropriate section of the W3C standard for the rules and guidelines
that apply to each of these XML-related arguments. A SQL statement that uses one of these
XML functions, where any of the arguments does not conform to the relevant W3C syntax,
will result in an error. Of special note is the fact that not every character that is allowed in the
value of a database column is considered legal in XML.

7-9

Chapter 7
Single-Row Functions

Syntax Element W3C Standard URL

value expr http://www.w3.0rg/TR/2006/REC-xm1-20060816
Xpath string http://www.w3.0rg/TR/1999/REC-xpath-19991116
XQuery string http://www.w3.0rg/TR/2007/REC-xquery-

semantics-20070123/
http://www.w3.0rg/TR/xquery-update-10/
namespace string http://www.w3.org/TR/2006/REC-xml-names-20060816/
identifier http://www.w3.0rg/TR/2006/REC-xm1-20060816/#NT-Nmtoken

For more information about selecting and querying XML data using these functions,
including information on formatting output, refer to Oracle XML DB Developer’s Guide

The SQL XML functions are:

DEPTH
EXISTSNODE
EXTRACT (XML)
EXTRACTVALUE
PATH
SYS_DBURIGEN
SYS_XMLAGG
SYS_XMLGEN
XMLAGG
XMLCAST
XMLCDATA
XMLCOLATTVAL
XMLCOMMENT
XMLCONCAT
XMLDIFF
XMLELEMENT
XMLEXISTS
XMLFOREST
XMLISVALID
XMLPARSE
XMLPATCH
XMLPI
XMLQUERY
XMLSEQUENCE
XMLSERIALIZE
XMLTABLE
XMLTRANSFORM

JSON Functions

JavaScript Object Notation (JSON) functions allow you to query and generate JSON
data.

The following SQL/JSON functions allow you to query JSON data:

ORACLE 7-10

http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2007/REC-xquery-semantics-20070123/
http://www.w3.org/TR/2007/REC-xquery-semantics-20070123/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/#NT-Nmtoken

Chapter 7
Single-Row Functions

JSON_QUERY
JSON_TABLE
JSON_VALUE

The following SQL/JSON functions allow you to generate JSON data:

JSON_ARRAY
JSON_ARRAYAGG
JSON_OBJECT
JSON_OBJECTAGG
JSON Type Constructor
JSON_SCALAR
JSON_SERIALIZE
JSON_TRANSFORM

The following Oracle SQL function creates a JSON data guide:

JSON_DATAGUIDE

Encoding and Decoding Functions

The encoding and decoding functions let you inspect and decode data in the database. The
encoding and decoding functions are:

DECODE

DUMP

ORA_HASH
STANDARD_HASH
VSIZE

NULL-Related Functions

The NULL-related functions facilitate null handling. The NULL-related functions are:

COALESCE
LNNVL
NANVL
NULLIF
NVL

NVL2

Environment and Identifier Functions

ORACLE

The environment and identifier functions provide information about the instance and session.
The environment and identifier functions are:

CON_DBID_TO_ID
CON_GUID_TO_ID
CON_NAME_TO_ID
CON_UID_TO_ID
ORA_INVOKING_USER
ORA_INVOKING_USERID
SYS_CONTEXT

7-11

Chapter 7
Aggregate Functions

SYS_GUID
SYS_TYPEID
uiD

USER
USERENV

Aggregate Functions

ORACLE

Aggregate functions return a single result row based on groups of rows, rather than on
single rows. Aggregate functions can appear in select lists and in ORDER BY and HAVING
clauses. They are commonly used with the GROUP BY clause in a SELECT statement,
where Oracle Database divides the rows of a queried table or view into groups. In a
guery containing a GROUP BY clause, the elements of the select list can be aggregate
functions, GROUP BY expressions, constants, or expressions involving one of these.
Oracle applies the aggregate functions to each group of rows and returns a single
result row for each group.

If you omit the GROUP BY clause, then Oracle applies aggregate functions in the select
list to all the rows in the queried table or view. You use aggregate functions in the
HAVING clause to eliminate groups from the output based on the results of the
aggregate functions, rather than on the values of the individual rows of the queried
table or view.

¢ See Also:

e Using the GROUP BY Clause: Examples and the HAVING Clause for
more information on the GROUP BY clause and HAVING clauses in queries
and subqueries

e Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules for expressions in the ORDER BY clause of an
aggregate function

Many (but not all) aggregate functions that take a single argument accept these
clauses:

e DISTINCT and UNIQUE, which are synonymous, cause an aggregate function to
consider only distinct values of the argument expression. The syntax diagrams for
aggregate functions in this chapter use the keyword DISTINCT for simplicity.

* ALL causes an aggregate function to consider all values, including all duplicates.

For example, the DISTINCT average of 1, 1, 1, and 3 is 2. The ALL average is 1.5. If
you specify neither, then the default is ALL.

Some aggregate functions allow the windowing clause, which is part of the syntax of
analytic functions. Refer to windowing_clause for information about this clause.

All aggregate functions except COUNT(*), GROUPING, and GROUPING ID ignore nulls. You
can use the NVL function in the argument to an aggregate function to substitute a value
for a null. COUNT and REGR_COUNT never return null, but return either a number or zero.
For all the remaining aggregate functions, if the data set contains no rows, or contains

7-12

ORACLE

Chapter 7
Aggregate Functions

only rows with nulls as arguments to the aggregate function, then the function returns null.

The aggregate functions MIN, MAX, SUM, AVG, COUNT, VARIANCE, and STDDEV, when followed by

the KEEP keyword, can be used in conjunction with the FIRST or LAST function to operate on a
set of values from a set of rows that rank as the FIRST or LAST with respect to a given sorting
specification. Refer to FIRST for more information.

You can nest aggregate functions. For example, the following example calculates the average
of the maximum salaries of all the departments in the sample schema hr:

SELECT AVG (MAX (salary))
FROM employees
GROUP BY department id;

AVG (MAX (SALARY))

10926.3333

This calculation evaluates the inner aggregate (MAX(salary)) for each group defined by the
GROUP BY clause (department id), and aggregates the results again.

ANY_VALUE
APPROX_COUNT
APPROX_COUNT _DISTINCT
APPROX_COUNT_DISTINCT_AGG
APPROX_COUNT_DISTINCT_DETAIL
APPROX_MEDIAN
APPROX_PERCENTILE
APPROX_PERCENTILE_AGG
APPROX_PERCENTILE_DETAIL
APPROX_RANK
APPROX_SUM

AVG

BIT_AND_AGG
BIT_OR_AGG
BIT_XOR_AGG

CHECKSUM

COLLECT

CORR

CORR_*

COUNT

COVAR_POP

COVAR_SAMP

CUME_DIST

DENSE_RANK

FIRST

GROUP_ID

GROUPING

GROUPING_ID
JSON_ARRAYAGG
JSON_OBJECTAGG
KURTOSIS_POP
KURTOSIS_SAMP

7-13

Chapter 7
Analytic Functions

LAST

LISTAGG

MAX

MEDIAN

MIN

PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_DISC

RANK

REGR_ (Linear Regression) Functions
SKEWNESS_POP
SKEWNESS_SAMP
STATS_BINOMIAL_TEST
STATS_CROSSTAB
STATS_F_TEST
STATS_KS_TEST
STATS_MODE
STATS_MW_TEST
STATS_ONE_WAY_ANOVA
STATS_T_TEST_*
STATS_WSR_TEST
STDDEV

STDDEV_POP
STDDEV_SAMP

SUM

SYS_OP_ZONE_ID
SYS_XMLAGG
TO_APPROX_COUNT_DISTINCT
TO_APPROX_PERCENTILE
VAR_POP

VAR_SAMP

VARIANCE

XMLAGG

Analytic Functions

ORACLE

Analytic functions compute an aggregate value based on a group of rows. They differ
from aggregate functions in that they return multiple rows for each group. The group of
rows is called a window and is defined by the analytic clause. For each row, a
sliding window of rows is defined. The window determines the range of rows used to
perform the calculations for the current row. Window sizes can be based on either a
physical number of rows or a logical interval such as time.

Analytic functions are the last set of operations performed in a query except for the
final ORDER BY clause. All joins and all WHERE, GROUP BY, and HAVING clauses are
completed before the analytic functions are processed. Therefore, analytic functions
can appear only in the select list or ORDER BY clause.

Analytic functions are commonly used to compute cumulative, moving, centered, and
reporting aggregates.

7-14

Chapter 7
Analytic Functions

analytic_function::=

analytic_function (

window_name
ll analytic_clause l'

analytic_clause::=

e
by
query_partition_clause ~—(order_by_clause } \

query_partition_clause::=

PARTITION

order_by clause::=

(M)
[\
SC

l‘
—>| ORDER @ (‘position)

ORACLE 7-15

=t
)

Chapter 7
Analytic Functions

windowing_clause::=

UNBOUNDED |—>| PRECEDING UNBOUNDED |—>| FOLLOWING

CURRENT |_>| ROW

PRECEDING
(m—
FOLLOWING

CURRENT |_>| ROW
PRECEDING

(em——
FOLLOWING

UNBOUNDED |->| PRECEDING h

CURRENT |->| ROW }

va|ue_expr)->| PRECEDING

CURRENT |->| ROW |\

ORACLE

The semantics of this syntax are discussed in the sections that follow.

analytic_function

Specify the name of an analytic function (see the listing of analytic functions following
this discussion of semantics).

arguments

Analytic functions take 0 to 3 arguments. The arguments can be any numeric data
type or any nonnumeric data type that can be implicitly converted to a numeric data
type. Oracle determines the argument with the highest numeric precedence and
implicitly converts the remaining arguments to that data type. The return type is also
that data type, unless otherwise noted for an individual function.

¢ See Also:

Numeric Precedence for information on numeric precedence and Table 2-8
for more information on implicit conversion

analytic_clause

Use OVER analytic clause to indicate that the function operates on a query result set.
This clause is computed after the FROM, WHERE, GROUP BY, and HAVING clauses. You can
specify analytic functions with this clause in the select list or ORDER BY clause. To filter
the results of a query based on an analytic function, nest these functions within the
parent query, and then filter the results of the nested subquery.

7-16

ORACLE

Chapter 7
Analytic Functions

Notes on the analytic_clause:
The following notes apply to the analytic clause:

e You cannot nest analytic functions by specifying any analytic function in any part of the
analytic clause. However, you can specify an analytic function in a subquery and
compute another analytic function over it.

* You can specify OVER analytic clause with user-defined analytic functions as well as
built-in analytic functions. See CREATE FUNCTION .

e The PARTITION BY and ORDER BY clauses in the analytic clause are collation-sensitive.

See Also:

e Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for the OVER (PARTITION BY ... ORDER BY ...) clause of an
analytic function

e window clause in the SELECT statement

query_partition_clause

Use the PARTITION BY clause to partition the query result set into groups based on one or
more value expr. If you omit this clause, then the function treats all rows of the query result
set as a single group.

To use the query partition clause in an analytic function, use the upper branch of the
syntax (without parentheses). To use this clause in a model query (in the

model column clauses) or a partitioned outer join (in the outer join clause), use the lower
branch of the syntax (with parentheses).

You can specify multiple analytic functions in the same query, each with the same or different
PARTITION BY keys.

If the objects being queried have the parallel attribute, and if you specify an analytic function
with the query partition clause, then the function computations are parallelized as well.

Valid values of value expr are constants, columns, nonanalytic functions, function
expressions, or expressions involving any of these.

order_by clause

Use the order by clause to specify how data is ordered within a partition. For all analytic
functions you can order the values in a partition on multiple keys, each defined by a
value expr and each qualified by an ordering sequence.

Within each function, you can specify multiple ordering expressions. Doing so is especially
useful when using functions that rank values, because the second expression can resolve
ties between identical values for the first expression.

Whenever the order by clause results in identical values for multiple rows, the function
behaves as follows:

7-17

Chapter 7
Analytic Functions

e CUME DIST, DENSE RANK, NTILE, PERCENT RANK, and RANK return the same result for
each of the rows.

* ROW_NUMBER assigns each row a distinct value even if there is a tie based on the
order by clause. The value is based on the order in which the row is processed,
which may be nondeterministic if the ORDER BY does not guarantee a total ordering.

e For all other analytic functions, the result depends on the window specification. If
you specify a logical window with the RANGE keyword, then the function returns the
same result for each of the rows. If you specify a physical window with the ROWS
keyword, then the result is nondeterministic.

Restrictions on the ORDER BY Clause
The following restrictions apply to the ORDER BY clause:

* When used in an analytic function, the order by clause must take an expression
(expr). The SIBLINGS keyword is not valid (it is relevant only in hierarchical
queries). Position (position) and column aliases (c_alias) are also invalid.
Otherwise this order by clause is the same as that used to order the overall
query or subquery.

* An analytic function that uses the RANGE keyword can use multiple sort keys in its
ORDER BY clause if it specifies any of the following windows:

— RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. The short form of this
iS RANGE UNBOUNDED PRECEDING.

— RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
— RANGE BETWEEN CURRENT ROW AND CURRENT ROW
— RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

Window boundaries other than these four can have only one sort key in the ORDER
BY clause of the analytic function. This restriction does not apply to window
boundaries specified by the rROW keyword.

ASC | DESC

Specify the ordering sequence (ascending or descending). AScC is the default.

NULLS FIRST | NULLS LAST

Specify whether returned rows containing nulls should appear first or last in the
ordering sequence.

NULLS LAST is the default for ascending order, and NULLS FIRST is the default for
descending order.

Analytic functions always operate on rows in the order specified in the
order by clause of the function. However, the order by clause of the function does
not guarantee the order of the result. Use the order by clause of the query to
guarantee the final result ordering.

ORACLE 7-18

ORACLE

Chapter 7
Analytic Functions

¢ See Also:

order_by clause of SELECT for more information on this clause

windowing_clause

Some analytic functions allow the windowing clause. In the listing of analytic functions at the
end of this section, the functions that allow the windowing clause are followed by an asterisk

(*):
ROWS | RANGE | GROUPS

The keywords ROWS, RANGE, and GROUPS are options to define a window frame unit used for
calculating the function result. The function is then applied to all the rows in the window. The
window moves through the query result set or partition from top to bottom.

* Use RoOWS to specify the window frame extent by counting rows forward or backward from
the current row. ROWS allows any number of sort keys, of any ordered data types.

* Use RANGE to specify the window frame extent as a logical offset. RANGE allows only one
sort key, and its declared data type must allow addition and subtraction operations, for
example they must be numeric, datetime, or interval data types.

» Use GrouUPS to specifiy the window frame extent with both Rows and RANGE characteristics.
Like rROWS a GROUPS window can have any number of sort keys, or any ordered types. Like
RANGE, a GROUPS window does not make cutoffs between adjacent rows with the same
values in the sort keys.

You cannot specify this clause unless you have specified the order by clause. Some
window boundaries defined by the RANGE clause let you specify only one expression in the
order by clause. Refer to Restrictions on the ORDER BY Clause.

The value returned by an analytic function with a logical offset is always deterministic.
However, the value returned by an analytic function with a physical offset may produce
nondeterministic results unless the ordering expression results in a unique ordering. You may
have to specify multiple columns in the order by clause to achieve this unique ordering.

BETWEEN ... AND

Use the BETWEEN ... AND clause to specify a start point and end point for the window. The first
expression (before AND) defines the start point and the second expression (after AND) defines
the end point.

If you omit BETWEEN and specify only one end point, then Oracle considers it the start point,
and the end point defaults to the current row.

UNBOUNDED PRECEDING

Specify UNBOUNDED PRECEDING to indicate that the window starts at the first row of the partition.
This is the start point specification and cannot be used as an end point specification.

UNBOUNDED FOLLOWING

Specify UNBOUNDED FOLLOWING to indicate that the window ends at the last row of the partition.
This is the end point specification and cannot be used as a start point specification.

7-19

Chapter 7
Analytic Functions

CURRENT ROW

As a start point, CURRENT ROW specifies that the window begins at the current row or
value (depending on whether you have specified ROW or RANGE, respectively). In this
case the end point cannot be value expr PRECEDING.

As an end point, CURRENT ROW specifies that the window ends at the current row or
value (depending on whether you have specified ROW or RANGE, respectively). In this
case the start point cannot be value expr FOLLOWING.

value_expr PRECEDING or value_expr FOLLOWING

For RANGE or ROW:

* If value expr FOLLOWING is the start point, then the end point must be value expr
FOLLOWING.

* If value expr PRECEDING is the end point, then the start point must be value expr
PRECEDING.

If you are defining a logical window defined by an interval of time in numeric format,
then you may need to use conversion functions.

¢ See Also:

NUMTOYMINTERVAL and NUMTODSINTERVAL for information on
converting numeric times into intervals

If you specified ROWS:

* value expris a physical offset. It must be a constant or expression and must
evaluate to a positive numeric value.

* If value expris part of the start point, then it must evaluate to a row before the
end point.

If you specified RANGE:

* value expris a logical offset. It must be a constant or expression that evaluates to
a positive numeric value or an interval literal. Refer to Literals for information on
interval literals.

* You can specify only one expression in the order by clause.

* If value expr evaluates to a numeric value, then the ORDER BY expr must be a
numeric or DATE data type.

* If value expr evaluates to an interval value, then the ORDER BY expr must be a
DATE data type.

If you omit the windowing clause entirely, then the default is RANGE BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW.

ORACLE 7-20

ORACLE

Chapter 7
Analytic Functions

EXCLUDE
You can remove rows, groups, and ties from the window frame with the EXCLUDE options:

e If you specify EXCLUDE CURRENT ROW, and the current row in in the window frame, then the
current row is removed from the window frame.

e If you specify EXCLUDE GROUP, then the current row and any peers of the current row are
removed from the window frame.

* If you specify EXCLUDE TIES, then the peers of the current row are removed from the
window frame. The current row is retained. Note, that if the current row is previously
removed from the window frame, it remains removed.

* If you specify EXCLUDE NO OTHERS, then no additional rows are removed from the window
frame. This is the default option.

Analytic functions are commonly used in data warehousing environments. In the list of
analytic functions that follows, functions followed by an asterisk (*) allow the full syntax,
including the windowing clause.

AVG *
BIT_AND_AGG*
BIT_OR_AGG*
BIT_XOR_AGG*
CHECKSUM*
CLUSTER_DETAILS
CLUSTER_DISTANCE
CLUSTER_ID
CLUSTER_PROBABILITY
CLUSTER_SET
CORR *

COUNT *
COVAR_POP *
COVAR_SAMP *
CUME_DIST
DENSE_RANK
FEATURE_DETAILS
FEATURE_ID
FEATURE_SET
FEATURE_VALUE
FIRST
FIRST_VALUE *
KURTOSIS_POP*
KURTOSIS_SAMP*
LAG

LAST

LAST VALUE *
LEAD

LISTAGG

MAX *

MIN *
NTH_VALUE *

7-21

NTILE
PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_DISC
PREDICTION
PREDICTION_COST
PREDICTION_DETAILS
PREDICTION_PROBABILITY
PREDICTION_SET
RANK
RATIO_TO_REPORT
REGR_ (Linear Regression) Functions *
ROW_NUMBER
STDDEV *
STDDEV_POP *
SKEWNESS_POP*
SKEWNESS_SAMP*
STDDEV_SAMP *

SUM *

VAR_POP *
VAR_SAMP *
VARIANCE *

¢ See Also:

Chapter 7
Object Reference Functions

Oracle Database Data Warehousing Guide for more information on these

functions and for scenarios illustrating their use

Object Reference Functions

ORACLE

DEREF
MAKE_REF
REF
REFTOHEX
VALUE

¢ See Also:

Object reference functions manipulate REF values, which are references to objects of
specified object types. The object reference functions are:

Oracle Database Object-Relational Developer's Guide for more information

about REF data types

7-22

Chapter 7
Model Functions

Model Functions

Model functions can be used only in the model clause of the SELECT statement. The model
functions are:

Cv
ITERATION_NUMBER
PRESENTNNV
PRESENTV
PREVIOUS

OLAP Functions

OLAP functions returns data from a dimensional object in two-dimension relational format.
The OLAP function is:

CUBE_TABLE

Data Cartridge Functions

Data Cartridge functions are useful for Data Cartridge developers. The Data Cartridge
functions are:

DATAOBJ_TO_MAT_PARTITION
DATAOBJ_TO_PARTITION

ABS

Syntax

520050

Purpose
ABS returns the absolute value of n.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type
as the numeric data type of the argument.

¢ See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns the absolute value of -15:

ORACLE' 7.23

Chapter 7
ACOS

SELECT ABS(-15) "Absolute"
FROM DUAL;

Absolute

ACOS

Syntax

| 2008 (O

Purpose

ACOS returns the arc cosine of n. The argument n must be in the range of -1 to 1, and
the function returns a value in the range of 0 to pi, expressed in radians.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. If the argument is
BINARY FLOAT, then the function returns BINARY DOUBLE. Otherwise the function
returns the same numeric data type as the argument.

" See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns the arc cosine of .3:

SELECT ACOS(.3)"Arc _Cosine"
FROM DUAL;

Arc Cosine

1.26610367

ADD_MONTHS

Syntax

0 CD 0G0

Purpose

ADD MONTHS returns the date date plus integer months. A month is defined by the
session parameter NLS_CALENDAR. The date argument can be a datetime value or any

ORACLE 7-24

Chapter 7
ANY_VALUE

value that can be implicitly converted to DATE. The integer argument can be an integer or
any value that can be implicitly converted to an integer. The return type is always DATE,
regardless of the data type of date. If date is the last day of the month or if the resulting
month has fewer days than the day component of date, then the result is the last day of the
resulting month. Otherwise, the result has the same day component as date.

" See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns the month after the hire date in the sample table employees:

SELECT TOfCHAR(ADDfMONTHS(hireidate, 1), 'DD-MON-YYYY') "Next month"
FROM employees
WHERE last name = 'Baer';

Next Month

07-JUL-2002

ANY_VALUE

ORACLE

Syntax

| DISTINCT I
ALL

ANY_VALUE (

Purpose

ANY VALUE returns a single non-deterministic value of expr. You can use it as an aggregate
function.

Use ANY VALUE to optimize a query that has a GROUP BY clause. ANY VALUE returns a value of
an expression in a group. It is optimized to return the first value.

It ensures that there are no comparisons for any incoming row and also eliminates the
necessity to specify every column as part of the GROUP BY clause. Because it does not
compare values, ANY VALUE returns a value more quickly than MIN or MAX in a GROUP BY query.

Semantics

ALL, DISTINCT: These keywords are supported by ANY VALUE although they have no effect on
the result of the query.

expr: The expression can be a column, constant, bind variable, or an expression involving
them.

NULL values in the expression are ignored.

Supports all of the data types, except for LONG, LOB, FILE, or COLLECTION.

7-25

If you use LONG, ORA-00997 is raised.
If you use 1.0B, FILE, or COLLECTION data types, ORA-00932 is raised.

ANY VALUE follows the same rules as MIN and MAX.

Chapter 7
APPROX_COUNT

Returns any value within each group based on the GROUP BY specification. Returns

NULL if all rows in the group have NULL expression values.
The result of ANY VALUE is not deterministic.

Restrictions

XMLType and ANYDATA are not supported.

Example 7-1 Using ANY_VALUE As an Aggregate Function

This example uses ANY VALUE as an aggregate function in a GROUP BY query of the SH

schema.

SELECT c.cust_id, ANY VALUE (cust last name), SUM(amount sold)

FROM customers c, sales s
WHERE s.cust _id = c.cust id
GROUP BY c.cust id;

In the following result of the query, only the first eleven rows are shown.

CUST _ID ANY VALUE (CUST LAST NAME) SUM(AMOUNT SOLD)

6950 Sandburg 78
17920 Oliver 3201
66800 Case 2024
37280 Edwards 2256

109850 Lindegreen 757

3910 Oddell 185
84700 Marker 164.4
26380 Remler 118
11600 Oppy 158
23030 Rothrock 533
42780 Zanis 182

630 rows selected.

APPROX_COUNT

Syntax

OO o ()

[FPPOK 0T (D) 0F

expr

ORACLE

7-26

Chapter 7
APPROX_COUNT _DISTINCT

Purpose

APPROX_COUNT returns the approximate count of an expression. If you supply MAX ERROR as
the second argument, then the function returns the maximum error between the actual and
approximate count.

You must use this function with a corresponding APPROX_RANK function in the HAVING clause. If
a query uses APPROX COUNT, APPROX SUM, or APPROX RANK, then the query must not use any
other aggregation functions.

Examples

The following query returns the 10 most common jobs within every department:

SELECT department id, job id,
APPROX_COUNT (*)
FROM employees
GROUP BY department id, job id
HAVING
APPROX RANK (
PARTITION BY department id
ORDER BY APPROX COUNT (*)
DESC) <= 10;

APPROX_COUNT_DISTINCT

Syntax

—J{ APPROX_COUNT DISTINCT

Purpose

APPROX_COUNT_DISTINCT returns the approximate number of rows that contain a distinct value
for expr.

This function provides an alternative to the COUNT (DISTINCT expr) function, which returns the
exact number of rows that contain distinct values of expr. APPROX COUNT DISTINCT processes
large amounts of data significantly faster than COUNT, with negligible deviation from the exact
result.

For expr, you can specify a column of any scalar data type other than BFILE, BLOB, CLOB,
LONG, LONG RAW, Or NCLOB.

APPROX_COUNT_DISTINCT ignores rows that contain a null value for expr. This function returns
a NUMBER.

ORACLE 7-27

Chapter 7
APPROX_COUNT _DISTINCT_AGG

¢ See Also:

e COUNT for more information on the COUNT (DISTINCT expr) function

e Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules, which define the collation
APPROX_COUNT DISTINCT uses to compare character values for expr

Examples

The following statement returns the approximate number of rows with distinct values
for manager id:

SELECT APPROX COUNT DISTINCT (manager id) AS "Active Managers"
FROM employees;

Active Managers

The following statement returns the approximate number of distinct customers for each
product:

SELECT prod id, APPROX COUNT DISTINCT (cust id) AS "Number of Customers"
FROM sales
GROUP BY prod id
ORDER BY prod id;

PROD ID Number of Customers

13 2516
14 2030
15 2105
16 2367
17 2093
18 2975
19 2630
20 3791

APPROX_COUNT _DISTINCT_AGG

ORACLE

Syntax

—J{ APPROX_COUNT DISTINCT_AGG

Purpose

APPROX_COUNT DISTINCT AGG takes as its input a column of details containing
information about approximate distinct value counts, and enables you to perform
aggregations of those counts.

7-28

Chapter 7
APPROX_COUNT _DISTINCT_DETAIL

For detail, specify a column of details created by the APPROX COUNT DISTINCT DETAIL
function or the APPROX COUNT DISTINCT AGG function. This column is of data type BLOB.

You can specify this function in a SELECT statement with a GROUP BY clause to aggregate the
information contained in the details within each group of rows and return a single detail for
each group.

This function returns a BLOB value, called a detail, which contains information about the count
aggregations in a special format. You can store details returned by this function in a table or
materialized view, and then again use the APPROX COUNT DISTINCT AGG function to further
aggregate those details, or use the TO APPROX COUNT DISTINCT function to convert the detail
values to human-readable NUMBER values.

" See Also:

* APPROX_COUNT_DISTINCT_DETAIL
* TO_APPROX_COUNT_DISTINCT

Examples

Refer to APPROX_COUNT_DISTINCT_AGG: Examples for examples of using the
APPROX_COUNT_DISTINCT AGG function in conjunction with the
APPROX COUNT DISTINCT DETAIL and TO APPROX COUNT DISTINCT functions.

APPROX_COUNT_DISTINCT_DETAIL

ORACLE

Syntax

—{ APPROX_COUNT DISTINCT DETAIL

Purpose

APPROX COUNT DISTINCT DETAIL calculates information about the approximate number of
rows that contain a distinct value for expr and returns a BLOB value, called a detail, which
contains that information in a special format.

For expr, you can specify a column of any scalar data type other than BFILE, BLOB, CLOB,
LONG, LONG RAW, or NCLOB. This function ignores rows for which the value of expr is null.

This function is commonly used with the GROUP BY clause in a SELECT statement. When used
in this way, it calculates approximate distinct value count information for expr within each
group of rows and returns a single detail for each group.

The details returned by APPROX COUNT DISTINCT DETAIL can be used as input to the
APPROX_COUNT DISTINCT AGG function, which enables you to perform aggregations of the
details, or the TO APPROX COUNT DISTINCT function, which converts a detail to a human-
readable distinct count value. You can use these three functions together to perform
resource-intensive approximate count calculations once, store the resulting details, and then
perform efficient aggregations and queries on those details. For example:

7-29

ORACLE

Chapter 7
APPROX_COUNT _DISTINCT_DETAIL

1. Use the APPROX COUNT DISTINCT DETAIL function to calculate approximate distinct
value count information and store the resulting details in a table or materialized
view. These could be highly-granular details, such as city demographic counts or
daily sales counts.

2. Use the APPROX_COUNT DISTINCT AGG function to aggregate the details obtained in
the previous step and store the resulting details in a table or materialized view.
These could be details of lower granularity, such as state demographic counts or
monthly sales counts.

3. Use the TO_APPROX COUNT DISTINCT function to convert the stored detail values to
human-readable NUMBER values. You can use the TO APPROX COUNT DISTINCT
function to query detail values created by the APPROX COUNT DISTINCT DETAIL
function or the APPROX_COUNT_DISTNCT AGG function.

See Also:

* APPROX_COUNT_DISTINCT_AGG
e TO_APPROX_COUNT_DISTINCT

Examples

The examples in this section demonstrate how to use the

APPROX COUNT DISTINCT DETAIL, APPROX COUNT DISTINCT AGG, and
TO_APPROX_COUNT DISTINCT functions together to perform resource-intensive
approximate count calculations once, store the resulting details, and then perform
efficient aggregations and queries on those details.

APPROX_COUNT_DISTINCT_DETAIL: Example

The following statement queries the tables sh.times and sh.sales for the approximate
number of distinct products sold each day. The APPROX COUNT DISTINCT DETAIL
function returns the information in a detail, called daily detail, for each day that
products were sold. The returned details are stored in a materialized view called
daily prod count mv.

CREATE MATERIALIZED VIEW daily prod count mv AS
SELECT t.calendar year year,
t.calendar month number month,
t.day number in month day,
APPROX COUNT DISTINCT DETAIL(s.prod id) daily detail
FROM times t, sales s
WHERE t.time id = s.time id
GROUP BY t.calendar year, t.calendar month number, t.day number in month;

APPROX_COUNT _DISTINCT_AGG: Examples

The following statement uses the APPROX COUNT DISTINCT AGG function to read the
daily details stored in daily prod count mv and create aggregated details that contain
the approximate number of distinct products sold each month. These aggregated
details are stored in a materialized view called monthly prod count mv.

CREATE MATERIALIZED VIEW monthly prod count mv AS
SELECT vyear,
month,

7-30

ORACLE

Chapter 7
APPROX_COUNT _DISTINCT_DETAIL

APPROX_COUNT DISTINCT AGG(daily detail) monthly detail
FROM daily prod count mv
GROUP BY year, month;

The following statement is similar to the previous statement, except it creates aggregated
details that contain the approximate number of distinct products sold each year. These
aggregated details are stored in a materialized view called annual prod count mv.

CREATE MATERIALIZED VIEW annual prod count mv AS
SELECT year,
APPROX COUNT DISTINCT AGG(daily detail) annual detail
FROM daily prod count mv
GROUP BY year;

TO_APPROX_COUNT _DISTINCT: Examples

The following statement uses the TO APPROX COUNT DISTINCT function to query the daily
detail information stored in daily prod count mv and return the approximate number of
distinct products sold each day:

SELECT year,
month,
day,
TO APPROX COUNT DISTINCT (daily detail) "NUM PRODUCTS"
FROM daily prod count mv
ORDER BY year, month, day;

YEAR MONTH DAY NUM PRODUCTS
1998 1 1 24
1998 1 2 25
1998 1 3 11
1998 1 4 34
1998 1 5 10
1998 1 6 8
1998 1 7 37
1998 1 8 26
1998 1 9 25
1998 1 10 38

The following statement uses the To_APPROX COUNT DISTINCT function to query the monthly
detail information stored in monthly prod count mv and return the approximate number of
distinct products sold each month:

SELECT year,
month,
TO APPROX COUNT DISTINCT (monthly detail) "NUM PRODUCTS"
FROM monthly prod count mv
ORDER BY year, month;

YEAR MONTH NUM PRODUCTS
1998 1 57
1998 56
1998 3 55

7-31

Chapter 7
APPROX_MEDIAN

1998 4 49
1998 5 49
1998 6 48
1998 7 54
1998 8 56
1998 9 55
1998 10 57

The following statement uses the TO APPROX COUNT DISTINCT function to query the
annual detail information stored in annual prod count mv and return the approximate
number of distinct products sold each year:

SELECT vyear,
TO APPROX COUNT DISTINCT (annual detail) "NUM PRODUCTS"
FROM annual prod count mv
ORDER BY year;

YEAR NUM PRODUCTS

1998 60
1999 72
2000 72
2001 71

APPROX_MEDIAN

ORACLE

Syntax

O Ewormwe JO)
O

DETERMINISTIC
APPROX_MEDIAN o expr

Purpose

APPROX MEDIAN is an approximate inverse distribution function that assumes a
continuous distribution model. It takes a numeric or datetime value and returns an
approximate middle value or an approximate interpolated value that would be the
middle value once the values are sorted. Nulls are ignored in the calculation.

This function provides an alternative to the MEDIAN function, which returns the exact
middle value or interpolated value. APPROX MEDIAN processes large amounts of data
significantly faster than MEDIAN, with negligible deviation from the exact result.

For expr, specify the expression for which the approximate median value is being
calculated. The acceptable data types for expr, and the return value data type for this
function, depend on the algorithm that you specify with the DETERMINISTIC clause.

DETERMINISTIC

This clause lets you specify the type of algorithm this function uses to calculate the
approximate median value.

7-32

ORACLE

Chapter 7
APPROX_MEDIAN

» If you specify DETERMINISTIC, then this function calculates a deterministic approximate
median value. In this case, expr must evaluate to a humeric value, or to a value that can
be implicitly converted to a numeric value. The function returns the same data type as the
numeric data type of its argument.

e If you omit DETERMINSTIC, then this function calculates a nondeterministic approximate
median value. In this case, expr must evaluate to a numeric or datetime value, or to a
value that can be implicitly converted to a numeric or datetime value. The function returns
the same data type as the numeric or datetime data type of its argument.

ERROR_RATE | CONFIDENCE

These clauses let you determine the accuracy of the value calculated by this function. If you
specify one of these clauses, then instead of returning the approximate median value for
expr, the function returns a decimal value from O to 1, inclusive, which represents one of the

following values:

» If you specify ERROR RATE, then the return value represents the error rate for the
approximate median value calculation for expr.

e If you specify CONFIDENCE, then the return value represents the confidence level for the
error rate that is returned when you specify ERROR RATE.

Examples

¢ See Also:

MEDIAN

APPROX_PERCENTILE which returns, for a given percentile, the approximate
value that corresponds to that percentile by way of interpolation. APPROX MEDIAN
is the specific case of APPROX PERCENTILE where the percentile value is 0.5.

The following query returns the deterministic approximate median salary for each department
in the hr.employees table:

SELECT department id "Department",
APPROX MEDIAN (salary DETERMINISTIC) "Median Salary"
FROM employees

GROUP BY
ORDER BY

Department
10
20
30
40
50
60
70
80
90

100
110

department id
department id;

Median Salary
4400
6000
2765
6500
3100
4800

10000
9003
17000
7739
8300
7000

7-33

Chapter 7
APPROX_MEDIAN

The following query returns the error rates for the approximate median salaries that
were returned by the previous query:

SELECT department id "Department",
APPROX MEDIAN (salary DETERMINISTIC, 'ERROR RATE') "Error Rate"
FROM employees
GROUP BY department id
ORDER BY department id;

Department Error Rate
10 .002718282
20 .021746255
30 .021746255
40 .002718282
50 .019027973
60 .019027973
70 .002718282
80 .021746255
90 .021746255

100 .019027973
110 .019027973
.002718282

The following query returns the confidence levels for the error rates that were returned
by the previous query:

SELECT department id "Department",
APPROX MEDIAN (salary DETERMINISTIC, 'CONFIDENCE') "Confidence Level"
FROM employees
GROUP BY department id
ORDER BY department id;

Department Confidence Level

10 .997281718

20 .999660215

30 .999660215

40 .997281718

50 .999611674

60 .999611674

70 .997281718

80 .999660215

90 .999660215

100 .999611674
110 .999611674
.997281718

The following query returns the nondeterministic approximate median hire date for
each department in the hr.employees table:

SELECT department id "Department",
APPROX MEDIAN (hire date) "Median Hire Date"
FROM employees
GROUP BY department id
ORDER BY department id;

Department Median Hire Date

10 17-SEP-03
20 17-FEB-04

ORACLE 7-34

Chapter 7
APPROX_PERCENTILE

30 24-JUL-05

40 07-JUN-02

50 15-MAR-06

60 05-FEB-06

70 07-JUN-02

80 23-MAR-06

90 17-JUN-03

100 28-SEP-05
110 07-JUN-02
24-MAY-07

APPROX_PERCENTILE

ORACLE

Syntax

O Eind’e
OO

DETERMINISTIC
—{ APPROX_PERCENTILE @@

=
[ASC |
—{ withiN | GrRoup |—>®a| ORDER 1 BY b(expr) @

Purpose

APPROX PERCENTILE is an approximate inverse distribution function. It takes a percentile value
and a sort specification, and returns the value that would fall into that percentile value with
respect to the sort specification. Nulls are ignored in the calculation

This function provides an alternative to the PERCENTILE CONT and PERCENTILE DISC functions,
which returns the exact results. APPROX PERCENTILE processes large amounts of data
significantly faster than PERCENTILE CONT and PERCENTILE DISC, with negligible deviation
from the exact result.

The first expr is the percentile value, which must evaluate to a numeric value between 0 and
1.

The second expr, which is part of the ORDER BY clause, is a single expression over which this
function calculates the result. The acceptable data types for expr, and the return value data
type for this function, depend on the algorithm that you specify with the DETERMINISTIC
clause.

DETERMINISTIC

This clause lets you specify the type of algorithm this function uses to calculate the return
value.

» If you specify DETERMINISTIC, then this function calculates a deterministic result. In this
case, the ORDER BY clause expression must evaluate to a numeric value, or to a value that
can be implicitly converted to a numeric value, in the range -2,147,483,648 through
2,147,483,647. The function rounds numeric input to the closest integer. The function
returns the same data type as the numeric data type of the ORDER BY clause expression.
The return value is not necessarily one of the values of expr

7-35

ORACLE

Chapter 7
APPROX_PERCENTILE

e If you omit DETERMINSTIC, then this function calculates a nondeterministic result. In
this case, the ORDER BY clause expression must evaluate to a numeric or datetime
value, or to a value that can be implicitly converted to a numeric or datetime value.
The function returns the same data type as the numeric or datetime data type of
the ORDER BY clause expression. The return value is one of the values of expr.

ERROR_RATE | CONFIDENCE

These clauses let you determine the accuracy of the result calculated by this function.
If you specify one of these clauses, then instead of returning the value that would fall
into the specified percentile value for expr, the function returns a decimal value from O
to 1, inclusive, which represents one of the following values:

» If you specify ERROR RATE, then the return value represents the error rate for
calculating the value that would fall into the specified percentile value forexpr.

e If you specify CONFIDENCE, then the return value represents the confidence level for
the error rate that is returned when you specify ERROR_RATE.

DESC | ASC

Specify the sort specification for the calculating the value that would fall into the
specified percentile value. Specify DESC to sort the ORDER BY clause expression values
in descending order, or ASC to sort the values in ascending order. AsC is the default.

¢ See Also:

¢ PERCENTILE_CONT and PERCENTILE_DISC

* APPROX_MEDIAN, which is the specific case of APPROX PERCENTILE
where the percentile value is 0.5

Examples

The following query returns the deterministic approximate 25th percentile, 50th
percentile, and 75th percentile salaries for each department in the hr.employees table.
The salaries are sorted in ascending order for the interpolation calculation.

SELECT department id "Department",
APPROX_PERCENTILE(O.25 DETERMINISTIC)
WITHIN GROUP (ORDER BY salary ASC) "25th Percentile Salary",
APPROX_PERCENTILE(O.5O DETERMINISTIC)
WITHIN GROUP (ORDER BY salary ASC) "50th Percentile Salary",
APPROX_PERCENTILE(O.75 DETERMINISTIC)
WITHIN GROUP (ORDER BY salary ASC) "75th Percentile Salary"
FROM employees
GROUP BY department id
ORDER BY department id;

Department 25th Percentile Salary 50th Percentile Salary 75th Percentile Salary

10 4400 4400 4400
20 6000 6000 13000
30 2633 2765 3100
40 6500 6500 6500
50 2600 3100 3599
60 4800 4800 6000
7-36

ORACLE

70
80
90
100
110

10000
7400
17000
7698
8300
7000

10000
9003
17000
7739
8300
7000

Chapter 7

APPROX_PERCENTILE

10000
10291
24000
8976
12006
7000

The following query returns the error rates for the approximate 25th percentile salaries that

were calculated in the previous query:

SELECT department id "Department",
APPROX PERCENTILE (0.25 DETERMINISTIC,

WITHIN GROUP
FROM employees

GROUP BY department id
ORDER BY department id;

Department
10
20
30
40
50
60
70
80
90

100
110

Error Rate
.002718282
.021746255
.021746255
.002718282
.019027973
.019027973
.002718282
.021746255
.021746255
.019027973
.019027973
.002718282

(ORDER BY salary ASC)

'"ERROR_RATE')
"Error Rate"

The following query returns the confidence levels for the error rates that were calculated in
the previous query:

SELECT department id "Department",
APPROXiPERCENTILE(O.25 DETERMINISTIC,

WITHIN GROUP
FROM employees

GROUP BY department id
ORDER BY department id;

Department
10
20
30
40
50
60
70
80
90

100
110

Confidence
.997281718
.999660215
.999660215
.997281718
.999611674
.999611674
.997281718
.999660215
.999660215
.999611674
.999611674
.997281718

(ORDER BY salary ASC)

'"CONFIDENCE"')
"Confidence"

The following query returns the nondeterministic approximate 25th percentile, 50th percentile,
and 75th percentile salaries for each department in the hr.employees table. The salaries are
sorted in ascending order for the interpolation calculation.

7-37

Chapter 7
APPROX_PERCENTILE_AGG

SELECT department id "Department",
APPROX PERCENTILE (0.25)
WITHIN GROUP (ORDER BY salary ASC) "25th Percentile Salary",
APPROX PERCENTILE (0.50)
WITHIN GROUP (ORDER BY salary ASC) "50th Percentile Salary",
APPROX PERCENTILE (0.75)
WITHIN GROUP (ORDER BY salary ASC) "75th Percentile Salary"
FROM employees
GROUP BY department id
ORDER BY department id;

Department 25th Percentile Salary 50th Percentile Salary 75th Percentile Salary

10 4400 4400 4400

20 6000 6000 13000

30 2600 2800 3100

40 6500 6500 6500

50 2600 3100 3600

60 4800 4800 6000

70 10000 10000 10000

80 7300 8800 10000

90 17000 17000 24000

100 7700 7800 9000
110 8300 8300 12008
7000 7000 7000

Syntax

—J{ APPROX_PERCENTILE AGG

Purpose

APPROX PERCENTILE AGG takes as its input a column of details containing approximate
percentile information, and enables you to perform aggregations of that information.

For detail, specify a column of details created by the APPROX PERCENT DETAIL
function or the APPROX_PERCENTILE AGG function. This column is of data type BLOB.

You can specify this function in a SELECT statement with a GROUP BY clause to
aggregate the information contained in the details within each group of rows and return
a single detail for each group.

This function returns a BLOB value, called a detail, which contains approximate
percentile information in a special format. You can store details returned by this
function in a table or materialized view, and then again use the

APPROX PERCENTILE AGG function to further aggregate those details, or use the

TO APPROX_ PERCENTILE function to convert the details to specified percentile values.

ORACLE 7-38

Chapter 7
APPROX_PERCENTILE_DETAIL

¢ See Also:

« APPROX_PERCENTILE_DETAIL
* TO_APPROX_PERCENTILE

Examples

Refer to APPROX_PERCENTILE_AGG: Examples for examples of using the
APPROX_PERCENTILE AGG function in conjunction with the APPROX PERCENTILE DETAIL and
TO APPROX PERCENTILE functions.

APPROX_PERCENTILE_DETAIL

ORACLE

Syntax

DETERMINISTIC
—{ APPROX_PERCENTILE DETAIL |->®@ @

Purpose

APPROX PERCENTILE DETAIL calculates approximate percentile information for the values of
expr and returns a BLOB value, called a detail, which contains that information in a special
format.

The acceptable data types for expr depend on the algorithm that you specify with the
DETERMINISTIC clause. Refer to the DETERMINISTIC clause for more information.

This function is commonly used with the GROUP BY clause in a SELECT statement. It calculates
approximate percentile information for expr within each group of rows and returns a single
detail for each group.

The details returned by APPROX PERCENTILE DETAIL can be used as input to the

APPROX PERCENTILE AGG function, which enables you to perform aggregations of the details,
or the TO_ APPROX PERCENTILE function, which converts a detail to a specified percentile value.
You can use these three functions together to perform resource-intensive approximate
percentile calculations once, store the resulting details, and then perform efficient
aggregations and queries on those details. For example:

1. Use the APPROX PERCENTILE DETAIL function to perform approximate percentile
calculations and store the resulting details in a table or materialized view. These could be
highly-granular percentile details, such as income percentile information for cities.

2. Use the APPROX PERCENTILE AGG function to aggregate the details obtained in the
previous step and store the resulting details in a table or materialized view. These could
be details of lower granularity, such as income percentile information for states.

3. Usethe TO APPROX PERCENTILE function to convert the stored detail values to percentile
values. You can use the TO APPROX PERCENTILE function to query detail values created
by the APPROX PERCENTILE DETAIL function or the APPROX PERCENTILE AGG function.

DETERMINISTIC

7-39

ORACLE

Chapter 7
APPROX_PERCENTILE_DETAIL

This clause lets you control the type of algorithm used to calculate the approximate
percentile values.

* If you specify DETERMINISTIC, then this function calculates deterministic
approximate percentile information. In this case, expr must evaluate to a numeric
value, or to a value that can be implicitly converted to a numeric value.

e If you omit DETERMINSTIC, then this function calculates nondeterministic
approximate percentile information. In this case, expr must evaluate to a numeric
or datetime value, or to a value that can be implicitly converted to a numeric or
datetime value.

" See Also:

* APPROX_PERCENTILE_AGG
e TO_APPROX_PERCENTILE

Examples

The examples in this section demonstrate how to use the APPROX PERCENTILE DETAIL,
APPROX PERCENTILE AGG, and TO APPROX PERCENTILE functions together to perform
resource-intensive approximate percentile calculations once, store the resulting
details, and then perform efficient aggregations and queries on those details.

APPROX_PERCENTILE_DETAIL: Example

The following statement queries the tables sh.customers and sh.sales for the
monetary amounts for products sold to each customer. The

APPROX PERCENTILE DETAIL function returns the information in a detail, called

city detail, for each city in which customers reside. The returned details are stored
in a materialized view called amt_sold by city mv.

CREATE MATERIALIZED VIEW amt_sold_by_city_mv
ENABLE QUERY REWRITE AS
SELECT c.country id country,
c.cust state province state,
c.cust city city,
APPROX PERCENTILE DETAIL(s.amount sold) city detail
FROM customers c, sales s
WHERE c.cust id = s.cust id
GROUP BY c.country id, c.cust state province, c.cust city;

APPROX_PERCENTILE_AGG: Examples

The following statement uses the APPROX PERCENTILE AGG function to read the details
stored in amt_sold by city mv and create aggregated details that contain the
monetary amounts for products sold to customers in each state. These aggregated
details are stored in a materialized view called ant_sold by state mv.

CREATE MATERIALIZED VIEW amt sold by state mv AS
SELECT country,

state,

APPROX PERCENTILE AGG(city detail) state detail
FROM amt sold by city mv
GROUP BY country, state;

7-40

Chapter 7
APPROX_PERCENTILE_DETAIL

The following statement is similar to the previous statement, except it creates aggregated
details that contain the approximate monetary amounts for products sold to customers in
each country. These aggregated details are stored in a materialized view called

amt sold by country mv.

CREATE MATERIALIZED VIEW amt sold by country mv AS
SELECT country,
APPROX PERCENTILE AGG(city detail) country detail
FROM amt sold by city mv
GROUP BY country;

TO_APPROX_PERCENTILE: Examples

The following statement uses the TO APPROX PERCENTILE function to query the details stored
inamt_sold by city mv and return approximate 25th percentile, 50th percentile, and 75th
percentile values for monetary amounts for products sold to customers in each city:

SELECT country,
state,
city,
TO_APPROX PERCENTILE (city detail, .25, 'NUMBER') "25th Percentile",
TO_APPROX PERCENTILE (city detail, .50, 'NUMBER') "50th Percentile",
TO_APPROX PERCENTILE (city detail, .75, 'NUMBER') "75th Percentile"
FROM amt sold by city mv
ORDER BY country, state, city;

COUNTRY STATE CITY 25th Percentile 50th Percentile 75th Percentile
52769 Kuala Lumpur Kuala Lumpur 19.29 38.1 53.84
52769 Penang Batu Ferringhi 21.51 42.09 57.26
52769 Penang Georgetown 19.15 33.25 56.12
52769 Selangor Klang 18.08 32.06 51.29
52769 Selangor Petaling Jaya 19.29 35.43 60.2

The following statement uses the To_APPROX PERCENTILE function to query the details stored
in amt_sold by state mv and return approximate 25th percentile, 50th percentile, and 75th
percentile values for monetary amounts for products sold to customers in each state:

SELECT country,
state,
TO_APPROX PERCENTILE (state detail, .25, 'NUMBER') "25th Percentile",
TO_APPROX PERCENTILE (state detail, .50, 'NUMBER') "50th Percentile",
TO_APPROX PERCENTILE (state detail, .75, 'NUMBER') "75th Percentile"
FROM amt sold by state mv
ORDER BY country, state;

COUNTRY STATE 25th Percentile 50th Percentile 75th Percentile
52769 Kuala Lumpur 19.29 38.1 53.84
52769 Penang 20.19 36.84 56.12
52769 Selangor 16.97 32.41 52.69
52770 Drenthe 16.76 31.7 53.89
52770 Flevopolder 20.38 39.73 61.81

The following statement uses the TO APPROX PERCENTILE function to query the details stored
in amt_sold by country mv and return approximate 25th percentile, 50th percentile, and
75th percentile values for monetary amounts for products sold to customers in each country:

ORACLE 7-41

ORACLE

Chapter 7
APPROX_PERCENTILE_DETAIL

SELECT country,
TO_APPROX PERCENTILE (country detail, .25, 'NUMBER') "25th Percentile",
TO_APPROX PERCENTILE (country detail, .50, 'NUMBER') "50th Percentile",
TO_APPROX PERCENTILE (country detail, .75, 'NUMBER') "75th Percentile"

FROM amt sold by country mv

ORDER BY country;

COUNTRY 25th Percentile 50th Percentile 75th Percentile

52769 19.1 35.43 52.78
52770 19.29 38.99 59.58
52771 11.99 44.99 561.47
52772 18.08 33.72 54.16
52773 15.67 29.61 50.65

APPROX PERCENTILE AGG takes as its input a column of details containing approximate
percentile information, and enables you to perform aggregations of that information.
The following statement demonstrates how approximate percentile details can
interpreted by APPROX PERCENTILE AGG to provide an input to the

TO _APPROX PERCENTILE function. Like the previous example, this query returns
approximate 25th percentile values for monetary amounts for products sold to
customers in each country. Note that the results are identical to those returned for the
25th percentile in the previous example.

SELECT country,
TO_APPROX_PERCENTILE(APPROX_PERCENTILE_AGG(city_detail), .25, 'NUMBER')
"25th Percentile"
FROM amt sold by city mv
GROUP BY country
ORDER BY country;

COUNTRY 25th Percentile

52769 19.1
52770 19.29
52771 11.99
52772 18.08
52773 15.67

Query Rewrite and Materialized Views Based on Approximate Queries: Example

In APPROX_PERCENTILE_DETAIL: Example, the ENABLE QUERY REWRITE clause is
specified when creating the materialized view amt_sold by city mv. This enables
queries that contain approximation functions, such as APPROX MEDIAN of

APPROX PERCENTILE, to be rewritten using the materialized view.

For example, ensure that query rewrite is enabled at either the database level or for
the current session, and run the following query:

SELECT c.country id country,
APPROX MEDIAN (s.amount sold) amount median
FROM customers c, sales s
WHERE c.cust id = s.cust_id
GROUP BY c.country id;

Explain the plan by querying DBMS XPLAN:

7-42

Chapter 7
APPROX_RANK

SET LINESIZE 300
SET PAGESIZE 0
COLUMN plan table output FORMAT A150

SELECT * FROM TABLE (DBMS XPLAN.DISPLAY CURSOR (format=>'BASIC'));

As shown in the following plan, the optimizer used the materialized view
amt_sold by city mv for the query:

EXPLAINED SQL STATEMENT:

SELECT c.country id country, APPROX MEDIAN (s.amount sold)
amount median FROM customers c, sales s WHERE c.cust id = s.cust id
GROUP BY c.country id

Plan hash value: 2232676046

0 |
| 1 | HASH GROUP BY APPROX | |
2| MAT VIEW REWRITE ACCESS FULL| AMT SOLD BY CITY MV |

APPROX_RANK

ORACLE

Syntax

PARTITION partition_by_clause ﬂ ORDER order_by_clause)al DESC h
APPROX_RANK | () expr @

Purpose
APPROX_RANK returns the approximate value in a group of values.

This function takes an optional PARTITION BY clause followed by a mandatory ORDER BY
DESC clause. The PARTITION BY key must be a subset of the GROUP BY key. The ORDER BY
clause must include either APPROX_COUNT or APPROX_SUM.

Examples

The query returns the jobs that are among the top 10 total salary per department. For each
job, the total salary and ranking is also given.

SELECT job id,
APPROX SUM(sal),
APPROX RANK (PARTITION BY department id ORDER BY APPROX SUM(salary)

DESC)
FROM employees
GROUP BY department id, job id
HAVING

APPROX RANK (

PARTITION BY department id

7-43

Chapter 7
APPROX_SUM

ORDER BY APPROX SUM (salary)
DESC) <= 10;

APPROX_SUM

ASCII

ORACLE

Syntax

O 2 40 Savot

Purpose

APPROX SUM returns the approximate sum of an expression. If you supply MAX ERROR as
the second argument, then the function returns the maximum error between the actual
and approximate sum.

You must use this function with a corresponding APPROX_RANK function in the HAVING
clause. If a query uses APPROX COUNT, APPROX SUM, or APPROX RANK, then the query
must not use any other aggregation functions.

Note that APPROX SUM returns an error when the input is a negative number.

Examples

The following query returns the 10 job types within every department that have the
highest aggregate salary:

SELECT department id, job_ id,
APPROX SUM (salary)
FROM employees
GROUP BY department id, job id
HAVING
APPROX RANK (
PARTITION BY department id
ORDER BY APPROX SUM(salary)
DESC) <= 10;

Syntax

E10lED10

Purpose

ASCII returns the decimal representation in the database character set of the first
character of char.

7-44

Chapter 7
ASCIISTR

char can be of data type CHAR, VARCHARZ, NCHAR, Or NVARCHAR2. The value returned is of data
type NUMBER. If your database character set is 7-bit ASCII, then this function returns an ASCII
value. If your database character set is EBCDIC Code, then this function returns an EBCDIC
value. There is no corresponding EBCDIC character function.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

" See Also:

Data Type Comparison Rules for more information

Examples

The following example returns employees whose last names begin with the letter L, whose
ASCII equivalent is 76:

SELECT last name
FROM employees
WHERE ASCII(SUBSTR(last name, 1, 1)) = 76
ORDER BY last name;

LAST NAME

Livingston
Lorentz

ASCIISTR

ORACLE

Syntax

= 0lCDI0

Purpose

ASCIISTR takes as its argument a string, or an expression that resolves to a string, in any
character set and returns an ASCII version of the string in the database character set. Non-
ASCII characters are converted to the form \xxxx, where xxxx represents a UTF-16 code
unit.

7-45

ASIN

ORACLE

Chapter 7
ASIN

¢ See Also:

e Oracle Database Globalization Support Guide for information on Unicode
character sets and character semantics

* Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of ASCIISTR

Examples
The following example returns the ASCII string equivalent of the text string "ABACDE":

SELECT ASCIISTR('ABACDE')
FROM DUAL;

ASCIISTR('

AB\0OOC4CDE

Syntax
0,00

Purpose

ASIN returns the arc sine of n. The argument n must be in the range of -1 to 1, and the
function returns a value in the range of -pi/2 to pi/2, expressed in radians.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. If the argument is
BINARY FLOAT, then the function returns BINARY DOUBLE. Otherwise the function
returns the same numeric data type as the argument.

¢ See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns the arc sine of .3:

SELECT ASIN(.3) "Arc Sine"
FROM DUAL;

.304692654

7-46

ATAN

ATANZ

ORACLE

Chapter 7
ATAN

Syntax

AN O

Purpose

ATAN returns the arc tangent of n. The argument n can be in an unbounded range and returns
a value in the range of -pi/2 to pil2, expressed in radians.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY FLOAT, then the
function returns BINARY DOUBLE. Otherwise the function returns the same numeric data type

as the argument.

¢ See Also:

ATANZ2 for information about the ATAN2 function and Table 2-8 for more information
on implicit conversion

Examples
The following example returns the arc tangent of .3:

SELECT ATAN(.3) "Arc Tangent"
FROM DUAL;

Arc_Tangent

.291456794

Syntax

ATAN B Op(nDA P2

Purpose

ATAN?2 returns the arc tangent of nI and n2. The argument n1 can be in an unbounded range
and returns a value in the range of -pi to pi, depending on the signs of n1 and n2, expressed
in radians.

This function takes as arguments any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If any argument is BINARY FLOAT oOf

7-47

AVG

ORACLE

Chapter 7
AVG

BINARY DOUBLE, then the function returns BINARY DOUBLE. Otherwise the function
returns NUMBER.

¢ See Also:

ATAN for information on the ATAN function and Table 2-8 for more information
on implicit conversion

Examples

The following example returns the arc tangent of .3 and .2:

SELECT ATAN2(.3, .2) "Arc Tangent2"
FROM DUAL;

Arc Tangent2

.982793723

Syntax

f—)| OVER P@e(analytic,clausem

AVG ((

See Also:

Analytic Functions for information on syntax, semantics, and restrictions

Purpose
AVG returns average value of expr.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. The function returns the
same data type as the numeric data type of the argument.

¢ See Also:

Table 2-8 for more information on implicit conversion

If you specify DISTINCT, then you can specify only the query partition clause of the
analytic clause. The order by clause and windowing clause are not allowed.

7-48

Chapter 7
BFILENAME

¢ See Also:

About SQL Expressions for information on valid forms of expr and Aggregate
Functions

Aggregate Example

The following example calculates the average salary of all employees in the hr.employees
table:

SELECT AVG(salary) "Average"
FROM employees;

Average

6461.83178

Analytic Example

The following example calculates, for each employee in the employees table, the average
salary of the employees reporting to the same manager who were hired in the range just
before through just after the employee:

SELECT manager id, last name, hire date, salary,
AVG(salary) OVER (PARTITION BY manager_id ORDER BY hire_date
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS c_mavg
FROM employees
ORDER BY manager id, hire date, salary;

MANAGER ID LAST NAME HIRE DATE SALARY C_MAVG
100 De Haan 13-JAN-01 17000 14000
100 Raphaely 07-DEC-02 11000 11966.6667
100 Kaufling 01-MAY-03 7900 10633.3333
100 Hartstein 17-FEB-04 13000 9633.33333
100 Weiss 18-JUL-04 8000 11666.6667
100 Russell 01-0CT-04 14000 11833.3333
100 Partners 05-JAN-05 13500 13166.6667
100 Errazuriz 10-MAR-05 12000 11233.3333

BFILENAME

Syntax

EERII010 G 01010 CED Y010

Purpose

BFILENAME returns a BFILE locator that is associated with a physical LOB binary file on the
server file system.

* 'directory'is a database object that serves as an alias for a full path name on the server
file system where the files are actually located.

ORACLE 7-49

Chapter 7
BIN_TO_NUM

e 'filename'is the name of the file in the server file system.

You must create the directory object and associate a BFILE value with a physical file
before you can use them as arguments to BFILENAME in a SQL or PL/SQL statement,
DBMS_LOB package, or OCI operation.

You can use this function in two ways:

* In a DML statement to initialize a BFILE column

* In a programmatic interface to access BFILE data by assigning a value to the
BFILE locator

The directory argument is case sensitive. You must ensure that you specify the
directory object name exactly as it exists in the data dictionary. For example, if an
"Admin" directory object was created using mixed case and a quoted identifier in the
CREATE DIRECTORY statement, then when using the BFILENAME function you must refer
to the directory object as 'Admin'. You must specify the filename argument according
to the case and punctuation conventions for your operating system.

¢ See Also:

e Oracle Database SecureFiles and Large Objects Developer's Guide and
Oracle Call Interface Programmer's Guide for more information on LOBs
and for examples of retrieving BFILE data

e CREATE DIRECTORY

Examples

The following example inserts a row into the sample table pm.print media. The
example uses the BFILENAME function to identify a binary file on the server file system
in the directory /demo/schema/product media. The example shows how the directory
database object media dir was created in the pm schema.

CREATE DIRECTORY media dir AS '/demo/schema/product media';

INSERT INTO print media (product id, ad id, ad graphic)
VALUES (3000, 31001, BFILENAME ('MEDIA DIR', 'modem comp ad.gif'));

BIN_TO_NUM

ORACLE

Syntax

[
EXITIIOSCH=O

Purpose

BIN TO NUM converts a bit vector to its equivalent number. Each argument to this
function represents a bit in the bit vector. This function takes as arguments any

7-50

ORACLE

Chapter 7
BIN_TO_NUM

numeric data type, or any nonnumeric data type that can be implicitly converted to NUMBER.
Each expr must evaluate to O or 1. This function returns Oracle NUMBER.

BIN TO NUM is useful in data warehousing applications for selecting groups of interest from a
materialized view using grouping sets.

See Also:

e group_by_clause for information on GROUPING SETS syntax
e Table 2-8 for more information on implicit conversion

e Oracle Database Data Warehousing Guide for information on data aggregation
in general

Examples

The following example converts a binary value to a number:

SELECT BIN TO NUM(1,0,1,0)
FROM DUAL;

BIN TO NUM(1,0,1,0)

The next example converts three values into a single binary value and uses BIN TO NUM to
convert that binary into a number. The example uses a PL/SQL declaration to specify the
original values. These would normally be derived from actual data sources.

SELECT order status
FROM orders
WHERE order id = 2441;

ORDER STATUS

DECLARE
warehouse NUMBER := 1;
ground NUMBER := 1;
insured NUMBER := 1;
result NUMBER;
BEGIN
SELECT BIN_TO_NUM(warehouse, ground, insured) INTO result FROM DUAL;
UPDATE orders SET order status = result WHERE order id = 2441;
END;
/
PL/SQL procedure successfully completed.

SELECT order status
FROM orders
WHERE order id = 2441;

ORDER STATUS

7-51

Chapter 7
BITAND

Refer to the examples for BITAND for information on reversing this process by
extracting multiple values from a single column value.

BITAND

Syntax

L0 C 0G0

Purpose

The BITAND function treats its inputs and its output as vectors of bits; the output is the
bitwise AND of the inputs.

The types of exprl and expr2 are NUMBER, and the result is of type NUMBER. If either
argument to BITAND iS NULL, the result is NULL.

The arguments must be in the range -(2(™1) .. (2(