
Oracle® Database
SQL Language Reference

21c
F31301-11
January 2023

Oracle Database SQL Language Reference, 21c

F31301-11

Copyright © 1996, 2023, Oracle and/or its affiliates.

Primary Author: Usha Krishnamurthy

Contributors: Mary Beth Roeser, Drew Adams, Lance Ashdown, Thomas Baby, Hermann Baer, Yasin
Baskan, Nigel Bayliss, Shuo Chen, Eric Belden, Atif Chaudhry, Dinesh Das, Mark Dilman, Yanfei Fan,
Zhenqiang Fan , Mahesh Girkar, Naveen Gopal, Beda Hammerschmidt, Patricia Huey, Peter Knaggs, Sriram
Krishnamurthy, Praveen Kumar, Hariharan Lakshmanan, Bill Lee, Huagang Li , Yunrui Li, Roger MacNicol,
David Mcdermid, Dan Melinger, Jan Michels, Cesar Miramontes, Rahil Mir, Gopal Mulagund, Abhishek
Munnolimath , Ian Neall, Padmaja Potineni, Giridhar Ravipati, Alfonso Colunga Sosa , Josh Spiegel, James
Stamos, Srikrishnan Suresh , Nirav Vyas, Alan Williams, Andy Witkowski, Sergiusz Wolicki, Weiran Zhang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxvii

Documentation Accessibility xxvii

Related Documents xxvii

Conventions xxviii

 Changes in This Release for Oracle Database SQL Language
Reference

Changes in Oracle Database Release 21c xxix

1 Introduction to Oracle SQL

History of SQL 1-1

SQL Standards 1-1

How SQL Works 1-2

Common Language for All Relational Databases 1-2

Using Enterprise Manager 1-2

Lexical Conventions 1-3

Tools Support 1-3

2 Basic Elements of Oracle SQL

Data Types 2-1

Oracle Built-in Data Types 2-5

Character Data Types 2-8

Numeric Data Types 2-13

LONG Data Type 2-17

Datetime and Interval Data Types 2-19

RAW and LONG RAW Data Types 2-27

Large Object (LOB) Data Types 2-28

JSON Data Type 2-31

Extended Data Types 2-32

iii

Rowid Data Types 2-33

ROWID Data Type 2-33

UROWID Data Type 2-34

ANSI, DB2, and SQL/DS Data Types 2-34

User-Defined Types 2-36

Object Types 2-36

REF Data Types 2-37

Varrays 2-37

Nested Tables 2-37

Oracle-Supplied Types 2-38

Any Types 2-38

ANYTYPE 2-38

ANYDATA 2-38

ANYDATASET 2-38

XML Types 2-39

XMLType 2-39

URI Data Types 2-39

URIFactory Package 2-40

Spatial Types 2-41

SDO_GEOMETRY 2-41

SDO_TOPO_GEOMETRY 2-41

SDO_GEORASTER 2-42

Data Type Comparison Rules 2-42

Numeric Values 2-42

Datetime Values 2-42

Binary Values 2-43

Character Values 2-43

Object Values 2-46

Varrays and Nested Tables 2-46

Data Type Precedence 2-47

Data Conversion 2-47

Implicit and Explicit Data Conversion 2-47

Implicit Data Conversion 2-47

Implicit Data Conversion Examples 2-50

Explicit Data Conversion 2-50

Security Considerations for Data Conversion 2-52

Literals 2-53

Text Literals 2-54

Numeric Literals 2-55

Integer Literals 2-55

NUMBER and Floating-Point Literals 2-56

iv

Datetime Literals 2-58

Interval Literals 2-62

INTERVAL YEAR TO MONTH 2-62

INTERVAL DAY TO SECOND 2-64

Format Models 2-65

Number Format Models 2-66

Number Format Elements 2-67

Datetime Format Models 2-69

Datetime Format Elements 2-70

Datetime Format Elements and Globalization Support 2-75

ISO Standard Date Format Elements 2-75

The RR Datetime Format Element 2-76

Datetime Format Element Suffixes 2-77

Format Model Modifiers 2-77

Format Model Examples 2-78

String-to-Date Conversion Rules 2-80

XML Format Model 2-81

Nulls 2-82

Nulls in SQL Functions 2-83

Nulls with Comparison Conditions 2-83

Nulls in Conditions 2-83

Comments 2-84

Comments Within SQL Statements 2-84

Comments on Schema and Nonschema Objects 2-85

Hints 2-85

Alphabetical Listing of Hints 2-91

ALL_ROWS Hint 2-92

APPEND Hint 2-92

APPEND_VALUES Hint 2-93

CACHE Hint 2-93

CHANGE_DUPKEY_ERROR_INDEX Hint 2-94

CLUSTER Hint 2-94

CLUSTERING Hint 2-95

CONTAINERS Hint 2-95

CURSOR_SHARING_EXACT Hint 2-96

DISABLE_PARALLEL_DML Hint 2-96

DRIVING_SITE Hint 2-96

DYNAMIC_SAMPLING Hint 2-97

ENABLE_PARALLEL_DML Hint 2-98

FACT Hint 2-98

FIRST_ROWS Hint 2-98

v

FRESH_MV Hint 2-99

FULL Hint 2-99

GATHER_OPTIMIZER_STATISTICS Hint 2-100

GROUPING Hint 2-100

HASH Hint 2-101

IGNORE_ROW_ON_DUPKEY_INDEX Hint 2-101

INDEX Hint 2-102

INDEX_ASC Hint 2-102

INDEX_COMBINE Hint 2-103

INDEX_DESC Hint 2-103

INDEX_FFS Hint 2-104

INDEX_JOIN Hint 2-104

INDEX_SS Hint 2-104

INDEX_SS_ASC Hint 2-105

INDEX_SS_DESC Hint 2-105

INMEMORY Hint 2-106

INMEMORY_PRUNING Hint 2-106

LEADING Hint 2-106

MERGE Hint 2-107

MODEL_MIN_ANALYSIS Hint 2-107

MONITOR Hint 2-108

NATIVE_FULL_OUTER_JOIN Hint 2-108

NOAPPEND Hint 2-108

NOCACHE Hint 2-109

NO_CLUSTERING Hint 2-109

NO_EXPAND Hint 2-109

NO_FACT Hint 2-110

NO_GATHER_OPTIMIZER_STATISTICS Hint 2-110

NO_INDEX Hint 2-110

NO_INDEX_FFS Hint 2-111

NO_INDEX_SS Hint 2-111

NO_INMEMORY Hint 2-112

NO_INMEMORY_PRUNING Hint 2-112

NO_MERGE Hint 2-112

NO_MONITOR Hint 2-113

NO_NATIVE_FULL_OUTER_JOIN Hint 2-113

NO_PARALLEL Hint 2-113

NOPARALLEL Hint 2-114

NO_PARALLEL_INDEX Hint 2-114

NOPARALLEL_INDEX Hint 2-114

NO_PQ_CONCURRENT_UNION Hint 2-114

vi

NO_PQ_SKEW Hint 2-115

NO_PUSH_PRED Hint 2-115

NO_PUSH_SUBQ Hint 2-115

NO_PX_JOIN_FILTER Hint 2-116

NO_QUERY_TRANSFORMATION Hint 2-116

NO_RESULT_CACHE Hint 2-116

NO_REWRITE Hint 2-116

NOREWRITE Hint 2-117

NO_STAR_TRANSFORMATION Hint 2-117

NO_STATEMENT_QUEUING Hint 2-117

NO_UNNEST Hint 2-118

NO_USE_BAND Hint 2-118

NO_USE_CUBE Hint 2-118

NO_USE_HASH Hint 2-118

NO_USE_MERGE Hint 2-119

NO_USE_NL Hint 2-119

NO_XML_QUERY_REWRITE Hint 2-119

NO_XMLINDEX_REWRITE Hint 2-120

NO_ZONEMAP Hint 2-120

OPTIMIZER_FEATURES_ENABLE Hint 2-121

OPT_PARAM Hint 2-121

ORDERED Hint 2-121

PARALLEL Hint 2-122

PARALLEL_INDEX Hint 2-124

PQ_CONCURRENT_UNION Hint 2-125

PQ_DISTRIBUTE Hint 2-125

PQ_FILTER Hint 2-128

PQ_SKEW Hint 2-128

PUSH_PRED Hint 2-128

PUSH_SUBQ Hint 2-129

PX_JOIN_FILTER Hint 2-129

QB_NAME Hint 2-129

RESULT_CACHE Hint 2-130

RETRY_ON_ROW_CHANGE Hint 2-130

REWRITE Hint 2-131

STAR_TRANSFORMATION Hint 2-131

STATEMENT_QUEUING Hint 2-132

UNNEST Hint 2-133

USE_BAND Hint 2-133

USE_CONCAT Hint 2-133

USE_CUBE Hint 2-134

vii

USE_HASH Hint 2-134

USE_MERGE Hint 2-134

USE_NL Hint 2-135

USE_NL_WITH_INDEX Hint 2-135

Database Objects 2-136

Schema Objects 2-136

Nonschema Objects 2-137

Database Object Names and Qualifiers 2-137

Database Object Naming Rules 2-138

Schema Object Naming Examples 2-142

Schema Object Naming Guidelines 2-142

Syntax for Schema Objects and Parts in SQL Statements 2-143

How Oracle Database Resolves Schema Object References 2-144

References to Objects in Other Schemas 2-145

References to Objects in Remote Databases 2-145

Creating Database Links 2-145

References to Database Links 2-146

References to Partitioned Tables and Indexes 2-147

References to Object Type Attributes and Methods 2-150

3 Pseudocolumns

Hierarchical Query Pseudocolumns 3-1

CONNECT_BY_ISCYCLE Pseudocolumn 3-1

CONNECT_BY_ISLEAF Pseudocolumn 3-2

LEVEL Pseudocolumn 3-2

Sequence Pseudocolumns 3-3

Where to Use Sequence Values 3-4

How to Use Sequence Values 3-4

Version Query Pseudocolumns 3-6

COLUMN_VALUE Pseudocolumn 3-7

OBJECT_ID Pseudocolumn 3-8

OBJECT_VALUE Pseudocolumn 3-8

ORA_ROWSCN Pseudocolumn 3-9

ORA_SHARDSPACE_NAME Pseudocolumn 3-10

ROWID Pseudocolumn 3-10

ROWNUM Pseudocolumn 3-11

XMLDATA Pseudocolumn 3-13

viii

4 Operators

About SQL Operators 4-1

Unary and Binary Operators 4-1

Operator Precedence 4-2

Arithmetic Operators 4-2

COLLATE Operator 4-3

Concatenation Operator 4-4

Hierarchical Query Operators 4-5

PRIOR 4-5

CONNECT_BY_ROOT 4-6

Set Operators 4-6

Multiset Operators 4-7

MULTISET EXCEPT 4-7

MULTISET INTERSECT 4-8

MULTISET UNION 4-9

SHARD_CHUNK_ID Operator 4-10

User-Defined Operators 4-11

5 Expressions

About SQL Expressions 5-1

Simple Expressions 5-3

Analytic View Expressions 5-4

Examples of Analytic View Expressions 5-16

Compound Expressions 5-19

CASE Expressions 5-20

Column Expressions 5-22

CURSOR Expressions 5-22

Datetime Expressions 5-24

Function Expressions 5-26

Interval Expressions 5-26

JSON Object Access Expressions 5-27

Model Expressions 5-30

Object Access Expressions 5-32

Placeholder Expressions 5-32

Scalar Subquery Expressions 5-33

Type Constructor Expressions 5-33

Expression Lists 5-35

ix

6 Conditions

About SQL Conditions 6-1

Condition Precedence 6-3

Comparison Conditions 6-4

Simple Comparison Conditions 6-5

Group Comparison Conditions 6-7

Floating-Point Conditions 6-8

Logical Conditions 6-9

Model Conditions 6-10

IS ANY Condition 6-10

IS PRESENT Condition 6-11

Multiset Conditions 6-12

IS A SET Condition 6-12

IS EMPTY Condition 6-13

MEMBER Condition 6-14

SUBMULTISET Condition 6-14

Pattern-matching Conditions 6-15

LIKE Condition 6-15

REGEXP_LIKE Condition 6-19

Null Conditions 6-21

XML Conditions 6-22

EQUALS_PATH Condition 6-22

UNDER_PATH Condition 6-23

SQL For JSON Conditions 6-23

IS JSON Condition 6-24

JSON_EQUAL Condition 6-26

JSON_EXISTS Condition 6-27

JSON_TEXTCONTAINS Condition 6-31

Compound Conditions 6-33

BETWEEN Condition 6-34

EXISTS Condition 6-35

IN Condition 6-35

IS OF type Condition 6-38

7 Functions

About SQL Functions 7-2

Single-Row Functions 7-4

Numeric Functions 7-4

Character Functions Returning Character Values 7-5

Character Functions Returning Number Values 7-5

x

Character Set Functions 7-6

Collation Functions 7-6

Datetime Functions 7-6

General Comparison Functions 7-7

Conversion Functions 7-7

Large Object Functions 7-8

Collection Functions 7-8

Hierarchical Functions 7-8

Oracle Machine Learning for SQL Functions 7-9

XML Functions 7-9

JSON Functions 7-10

Encoding and Decoding Functions 7-11

NULL-Related Functions 7-11

Environment and Identifier Functions 7-11

Aggregate Functions 7-12

Analytic Functions 7-14

Object Reference Functions 7-22

Model Functions 7-23

OLAP Functions 7-23

Data Cartridge Functions 7-23

ABS 7-23

ACOS 7-24

ADD_MONTHS 7-24

ANY_VALUE 7-25

APPROX_COUNT 7-26

APPROX_COUNT_DISTINCT 7-27

APPROX_COUNT_DISTINCT_AGG 7-28

APPROX_COUNT_DISTINCT_DETAIL 7-29

APPROX_MEDIAN 7-32

APPROX_PERCENTILE 7-35

APPROX_PERCENTILE_AGG 7-38

APPROX_PERCENTILE_DETAIL 7-39

APPROX_RANK 7-43

APPROX_SUM 7-44

ASCII 7-44

ASCIISTR 7-45

ASIN 7-46

ATAN 7-47

ATAN2 7-47

AVG 7-48

BFILENAME 7-49

xi

BIN_TO_NUM 7-50

BITAND 7-52

BIT_AND_AGG 7-53

BITMAP_BIT_POSITION 7-54

BITMAP_BUCKET_NUMBER 7-55

BITMAP_CONSTRUCT_AGG 7-55

BITMAP_COUNT 7-56

BITMAP_OR_AGG 7-57

BIT_OR_AGG 7-57

BIT_XOR_AGG 7-58

CARDINALITY 7-59

CAST 7-59

CEIL 7-64

CHARTOROWID 7-65

CHECKSUM 7-66

CHR 7-66

CLUSTER_DETAILS 7-68

CLUSTER_DISTANCE 7-72

CLUSTER_ID 7-74

CLUSTER_PROBABILITY 7-77

CLUSTER_SET 7-79

COALESCE 7-82

COLLATION 7-83

COLLECT 7-84

COMPOSE 7-85

CON_DBID_TO_ID 7-87

CON_GUID_TO_ID 7-87

CON_ID_TO_CON_NAME 7-88

CON_ID_TO_DBID 7-89

CON_ID_TO_GUID 7-89

CON_ID_TO_UID 7-90

CON_NAME_TO_ID 7-91

CON_UID_TO_ID 7-91

CONCAT 7-92

CONVERT 7-93

CORR 7-95

CORR_* 7-97

CORR_S 7-98

CORR_K 7-98

COS 7-99

COSH 7-99

xii

COUNT 7-100

COVAR_POP 7-102

COVAR_SAMP 7-104

CUBE_TABLE 7-105

CUME_DIST 7-107

CURRENT_DATE 7-109

CURRENT_TIMESTAMP 7-109

CV 7-110

DATAOBJ_TO_MAT_PARTITION 7-112

DATAOBJ_TO_PARTITION 7-112

DBTIMEZONE 7-113

DECODE 7-114

DECOMPOSE 7-115

DENSE_RANK 7-117

DEPTH 7-118

DEREF 7-119

DUMP 7-120

EMPTY_BLOB, EMPTY_CLOB 7-122

EXISTSNODE 7-123

EXP 7-124

EXTRACT (datetime) 7-125

EXTRACT (XML) 7-127

EXTRACTVALUE 7-128

FEATURE_COMPARE 7-129

FEATURE_DETAILS 7-132

FEATURE_ID 7-135

FEATURE_SET 7-137

FEATURE_VALUE 7-140

FIRST 7-143

FIRST_VALUE 7-145

FLOOR 7-147

FROM_TZ 7-148

GREATEST 7-149

GROUP_ID 7-150

GROUPING 7-151

GROUPING_ID 7-152

HEXTORAW 7-153

INITCAP 7-153

INSTR 7-154

ITERATION_NUMBER 7-156

JSON_ARRAY 7-157

xiii

JSON_ARRAYAGG 7-160

JSON_DATAGUIDE 7-162

JSON_MERGEPATCH 7-164

JSON_OBJECT 7-165

JSON_OBJECTAGG 7-171

JSON_QUERY 7-173

JSON_SCALAR 7-179

JSON_SERIALIZE 7-180

JSON_TABLE 7-182

JSON_TRANSFORM 7-193

JSON_VALUE 7-197

JSON Type Constructor 7-204

KURTOSIS_POP 7-205

KURTOSIS_SAMP 7-205

LAG 7-206

LAST 7-207

LAST_DAY 7-208

LAST_VALUE 7-209

LEAD 7-212

LEAST 7-213

LENGTH 7-214

LISTAGG 7-215

LN 7-219

LNNVL 7-220

LOCALTIMESTAMP 7-221

LOG 7-222

LOWER 7-222

LPAD 7-223

LTRIM 7-224

MAKE_REF 7-225

MAX 7-226

MEDIAN 7-227

MIN 7-230

MOD 7-231

MONTHS_BETWEEN 7-232

NANVL 7-233

NCHR 7-234

NEW_TIME 7-234

NEXT_DAY 7-235

NLS_CHARSET_DECL_LEN 7-236

NLS_CHARSET_ID 7-236

xiv

NLS_CHARSET_NAME 7-237

NLS_COLLATION_ID 7-238

NLS_COLLATION_NAME 7-238

NLS_INITCAP 7-240

NLS_LOWER 7-241

NLS_UPPER 7-241

NLSSORT 7-242

NTH_VALUE 7-245

NTILE 7-247

NULLIF 7-248

NUMTODSINTERVAL 7-249

NUMTOYMINTERVAL 7-250

NVL 7-251

NVL2 7-252

ORA_DM_PARTITION_NAME 7-253

ORA_DST_AFFECTED 7-255

ORA_DST_CONVERT 7-255

ORA_DST_ERROR 7-256

ORA_HASH 7-257

ORA_INVOKING_USER 7-258

ORA_INVOKING_USERID 7-258

PATH 7-259

PERCENT_RANK 7-260

PERCENTILE_CONT 7-262

PERCENTILE_DISC 7-264

POWER 7-266

POWERMULTISET 7-267

POWERMULTISET_BY_CARDINALITY 7-268

PREDICTION 7-269

PREDICTION_BOUNDS 7-274

PREDICTION_COST 7-275

PREDICTION_DETAILS 7-279

PREDICTION_PROBABILITY 7-284

PREDICTION_SET 7-288

PRESENTNNV 7-291

PRESENTV 7-293

PREVIOUS 7-294

RANK 7-295

RATIO_TO_REPORT 7-297

RAWTOHEX 7-297

RAWTONHEX 7-298

xv

REF 7-299

REFTOHEX 7-300

REGEXP_COUNT 7-301

REGEXP_INSTR 7-306

REGEXP_REPLACE 7-309

REGEXP_SUBSTR 7-314

REGR_ (Linear Regression) Functions 7-318

REMAINDER 7-323

REPLACE 7-324

ROUND (date) 7-325

ROUND (number) 7-326

ROUND_TIES_TO_EVEN (number) 7-327

ROW_NUMBER 7-328

ROWIDTOCHAR 7-329

ROWIDTONCHAR 7-330

RPAD 7-331

RTRIM 7-332

SCN_TO_TIMESTAMP 7-333

SESSIONTIMEZONE 7-334

SET 7-335

SIGN 7-335

SIN 7-336

SINH 7-337

SKEWNESS_POP 7-337

SKEWNESS_SAMP 7-338

SOUNDEX 7-338

SQRT 7-339

STANDARD_HASH 7-340

STATS_BINOMIAL_TEST 7-341

STATS_CROSSTAB 7-342

STATS_F_TEST 7-344

STATS_KS_TEST 7-345

STATS_MODE 7-346

STATS_MW_TEST 7-347

STATS_ONE_WAY_ANOVA 7-349

STATS_T_TEST_* 7-350

STATS_T_TEST_ONE 7-352

STATS_T_TEST_PAIRED 7-352

STATS_T_TEST_INDEP and STATS_T_TEST_INDEPU 7-352

STATS_WSR_TEST 7-354

STDDEV 7-355

xvi

STDDEV_POP 7-356

STDDEV_SAMP 7-357

SUBSTR 7-359

SUM 7-360

SYS_CONNECT_BY_PATH 7-362

SYS_CONTEXT 7-363

SYS_DBURIGEN 7-371

SYS_EXTRACT_UTC 7-372

SYS_GUID 7-372

SYS_OP_ZONE_ID 7-373

SYS_TYPEID 7-375

SYS_XMLAGG 7-376

SYS_XMLGEN 7-377

SYSDATE 7-378

SYSTIMESTAMP 7-378

TAN 7-379

TANH 7-380

TIMESTAMP_TO_SCN 7-380

TO_APPROX_COUNT_DISTINCT 7-381

TO_APPROX_PERCENTILE 7-382

TO_BINARY_DOUBLE 7-383

TO_BINARY_FLOAT 7-385

TO_BLOB (bfile) 7-387

TO_BLOB (raw) 7-387

TO_CHAR (bfile|blob) 7-388

TO_CHAR (character) 7-388

TO_CHAR (datetime) 7-390

TO_CHAR (number) 7-395

TO_CLOB (bfile|blob) 7-398

TO_CLOB (character) 7-399

TO_DATE 7-400

TO_DSINTERVAL 7-402

TO_LOB 7-404

TO_MULTI_BYTE 7-405

TO_NCHAR (character) 7-405

TO_NCHAR (datetime) 7-406

TO_NCHAR (number) 7-407

TO_NCLOB 7-408

TO_NUMBER 7-409

TO_SINGLE_BYTE 7-410

TO_TIMESTAMP 7-411

xvii

TO_TIMESTAMP_TZ 7-412

TO_UTC_TIMESTAMP_TZ 7-414

TO_YMINTERVAL 7-416

TRANSLATE 7-417

TRANSLATE ... USING 7-418

TREAT 7-420

TRIM 7-421

TRUNC (date) 7-422

TRUNC (number) 7-424

TZ_OFFSET 7-425

UID 7-426

UNISTR 7-426

UPPER 7-427

USER 7-428

USERENV 7-428

VALIDATE_CONVERSION 7-430

VALUE 7-432

VAR_POP 7-433

VAR_SAMP 7-435

VARIANCE 7-436

VSIZE 7-437

WIDTH_BUCKET 7-438

XMLAGG 7-439

XMLCAST 7-441

XMLCDATA 7-441

XMLCOLATTVAL 7-442

XMLCOMMENT 7-443

XMLCONCAT 7-444

XMLDIFF 7-445

XMLELEMENT 7-446

XMLEXISTS 7-449

XMLFOREST 7-450

XMLISVALID 7-451

XMLPARSE 7-451

XMLPATCH 7-452

XMLPI 7-453

XMLQUERY 7-454

XMLSEQUENCE 7-456

XMLSERIALIZE 7-457

XMLTABLE 7-459

XMLTRANSFORM 7-462

xviii

ROUND and TRUNC Date Functions 7-463

About User-Defined Functions 7-464

Prerequisites 7-465

Name Precedence 7-466

Naming Conventions 7-466

8 Common SQL DDL Clauses

allocate_extent_clause 8-1

constraint 8-3

deallocate_unused_clause 8-32

file_specification 8-33

logging_clause 8-42

parallel_clause 8-45

physical_attributes_clause 8-48

size_clause 8-51

storage_clause 8-52

9 SQL Queries and Subqueries

About Queries and Subqueries 9-1

Creating Simple Queries 9-2

Hierarchical Queries 9-2

Hierarchical Query Examples 9-5

The Set Operators 9-8

Sorting Query Results 9-12

Joins 9-12

Join Conditions 9-13

Equijoins 9-13

Band Joins 9-13

Self Joins 9-14

Cartesian Products 9-14

Inner Joins 9-14

Outer Joins 9-14

Antijoins 9-16

Semijoins 9-16

Using Subqueries 9-17

Unnesting of Nested Subqueries 9-18

Selecting from the DUAL Table 9-19

Distributed Queries 9-20

xix

10

SQL Statements: ADMINISTER KEY MANAGEMENT to ALTER JAVA

Types of SQL Statements 10-1

Data Definition Language (DDL) Statements 10-2

Data Manipulation Language (DML) Statements 10-3

Transaction Control Statements 10-3

Session Control Statements 10-4

System Control Statement 10-4

Embedded SQL Statements 10-4

How the SQL Statement Chapters are Organized 10-4

ADMINISTER KEY MANAGEMENT 10-5

ALTER ANALYTIC VIEW 10-34

ALTER ATTRIBUTE DIMENSION 10-36

ALTER AUDIT POLICY (Unified Auditing) 10-37

ALTER CLUSTER 10-42

ALTER DATABASE 10-47

ALTER DATABASE DICTIONARY 10-105

ALTER DATABASE LINK 10-106

ALTER DIMENSION 10-108

ALTER DISKGROUP 10-111

ALTER FLASHBACK ARCHIVE 10-145

ALTER FUNCTION 10-148

ALTER HIERARCHY 10-149

ALTER INDEX 10-150

ALTER INDEXTYPE 10-175

ALTER INMEMORY JOIN GROUP 10-177

ALTER JAVA 10-179

11

SQL Statements: ALTER LIBRARY to ALTER SESSION

ALTER LIBRARY 11-1

ALTER LOCKDOWN PROFILE 11-2

ALTER MATERIALIZED VIEW 11-16

ALTER MATERIALIZED VIEW LOG 11-37

ALTER MATERIALIZED ZONEMAP 11-46

ALTER OPERATOR 11-50

ALTER OUTLINE 11-53

ALTER PACKAGE 11-54

ALTER PLUGGABLE DATABASE 11-56

ALTER PMEM FILESTORE 11-83

ALTER PROCEDURE 11-85

ALTER PROFILE 11-86

xx

ALTER RESOURCE COST 11-90

ALTER ROLE 11-92

ALTER ROLLBACK SEGMENT 11-94

ALTER SEQUENCE 11-97

ALTER SESSION 11-100

Initialization Parameters and ALTER SESSION 11-109

Session Parameters and ALTER SESSION 11-109

12

SQL Statements: ALTER SYNONYM to COMMENT

ALTER SYNONYM 12-1

ALTER SYSTEM 12-3

ALTER TABLE 12-31

ALTER TABLESPACE 12-180

ALTER TABLESPACE SET 12-198

ALTER TRIGGER 12-201

ALTER TYPE 12-203

ALTER USER 12-204

ALTER VIEW 12-218

ANALYZE 12-220

ASSOCIATE STATISTICS 12-229

AUDIT (Traditional Auditing) 12-233

AUDIT (Unified Auditing) 12-250

CALL 12-255

COMMENT 12-259

13

SQL Statements: COMMIT to CREATE JAVA

COMMIT 13-1

CREATE ANALYTIC VIEW 13-6

CREATE ATTRIBUTE DIMENSION 13-15

CREATE AUDIT POLICY (Unified Auditing) 13-26

CREATE CLUSTER 13-36

CREATE CONTEXT 13-47

CREATE CONTROLFILE 13-50

CREATE DATABASE 13-57

CREATE DATABASE LINK 13-75

CREATE DIMENSION 13-81

CREATE DIRECTORY 13-87

CREATE DISKGROUP 13-90

CREATE EDITION 13-99

xxi

CREATE FLASHBACK ARCHIVE 13-102

CREATE FUNCTION 13-106

CREATE HIERARCHY 13-108

CREATE INDEX 13-111

CREATE INDEXTYPE 13-150

CREATE INMEMORY JOIN GROUP 13-154

CREATE JAVA 13-156

14

SQL Statements: CREATE LIBRARY to CREATE SCHEMA

CREATE LIBRARY 14-1

CREATE LOCKDOWN PROFILE 14-3

CREATE MATERIALIZED VIEW 14-5

CREATE MATERIALIZED VIEW LOG 14-38

CREATE MATERIALIZED ZONEMAP 14-50

CREATE OPERATOR 14-59

CREATE OUTLINE 14-63

CREATE PACKAGE 14-67

CREATE PACKAGE BODY 14-68

CREATE PFILE 14-70

CREATE PLUGGABLE DATABASE 14-72

CREATE PMEM FILESTORE 14-98

CREATE PROCEDURE 14-99

CREATE PROFILE 14-101

CREATE RESTORE POINT 14-111

CREATE ROLE 14-116

CREATE ROLLBACK SEGMENT 14-120

CREATE SCHEMA 14-123

15

SQL Statements: CREATE SEQUENCE to DROP CLUSTER

CREATE SEQUENCE 15-1

CREATE SPFILE 15-8

CREATE SYNONYM 15-12

CREATE TABLE 15-17

CREATE TABLESPACE 15-152

CREATE TABLESPACE SET 15-174

CREATE TRIGGER 15-176

CREATE TYPE 15-178

CREATE TYPE BODY 15-180

CREATE USER 15-182

xxii

CREATE VIEW 15-192

DELETE 15-209

DISASSOCIATE STATISTICS 15-220

DROP ANALYTIC VIEW 15-221

DROP ATTRIBUTE DIMENSION 15-222

DROP AUDIT POLICY (Unified Auditing) 15-223

DROP CLUSTER 15-224

16

SQL Statements: DROP CONTEXT to DROP JAVA

DROP CONTEXT 16-1

DROP DATABASE 16-2

DROP DATABASE LINK 16-3

DROP DIMENSION 16-4

DROP DIRECTORY 16-5

DROP DISKGROUP 16-6

DROP EDITION 16-8

DROP FLASHBACK ARCHIVE 16-9

DROP FUNCTION 16-10

DROP HIERARCHY 16-11

DROP INDEX 16-12

DROP INDEXTYPE 16-14

DROP INMEMORY JOIN GROUP 16-15

DROP JAVA 16-16

17

SQL Statements: DROP LIBRARY to DROP SYNONYM

DROP LIBRARY 17-1

DROP LOCKDOWN PROFILE 17-2

DROP MATERIALIZED VIEW 17-3

DROP MATERIALIZED VIEW LOG 17-5

DROP MATERIALIZED ZONEMAP 17-7

DROP OPERATOR 17-8

DROP OUTLINE 17-9

DROP PACKAGE 17-10

DROP PLUGGABLE DATABASE 17-11

DROP PMEM FILESTORE 17-13

DROP PROCEDURE 17-14

DROP PROFILE 17-15

DROP RESTORE POINT 17-16

DROP ROLE 17-17

xxiii

DROP ROLLBACK SEGMENT 17-18

DROP SEQUENCE 17-19

DROP SYNONYM 17-20

18

SQL Statements: DROP TABLE to LOCK TABLE

DROP TABLE 18-1

DROP TABLESPACE 18-5

DROP TABLESPACE SET 18-9

DROP TRIGGER 18-10

DROP TYPE 18-11

DROP TYPE BODY 18-13

DROP USER 18-14

DROP VIEW 18-16

EXPLAIN PLAN 18-17

FLASHBACK DATABASE 18-20

FLASHBACK TABLE 18-24

GRANT 18-30

INSERT 18-62

LOCK TABLE 18-84

19

SQL Statements: MERGE to UPDATE

MERGE 19-1

NOAUDIT (Traditional Auditing) 19-10

NOAUDIT (Unified Auditing) 19-15

PURGE 19-20

RENAME 19-22

REVOKE 19-24

ROLLBACK 19-36

SAVEPOINT 19-38

SELECT 19-39

SET CONSTRAINT[S] 19-136

SET ROLE 19-138

SET TRANSACTION 19-140

TRUNCATE CLUSTER 19-143

TRUNCATE TABLE 19-145

UPDATE 19-149

A How to Read Syntax Diagrams

Graphic Syntax Diagrams A-1

xxiv

Required Keywords and Parameters A-2

Optional Keywords and Parameters A-3

Syntax Loops A-4

Multipart Diagrams A-4

Backus-Naur Form Syntax A-5

B Automatic and Manual Locking Mechanisms During SQL Operations

List of Nonblocking DDLs B-1

Automatic Locks in DML Operations B-2

Automatic Locks in DDL Operations B-6

Exclusive DDL Locks B-6

Share DDL Locks B-6

Breakable Parse Locks B-6

Manual Data Locking B-7

C Oracle and Standard SQL

ANSI Standards C-1

ISO Standards C-2

Oracle Compliance to Core SQL C-3

Oracle Support for Optional Features of SQL/Foundation C-8

Oracle Compliance with SQL/CLI C-26

Oracle Compliance with SQL/PSM C-26

Oracle Compliance with SQL/MED C-26

Oracle Compliance with SQL/OLB C-26

Oracle Compliance with SQL/JRT C-26

Oracle Compliance with SQL/XML C-26

Oracle Compliance with FIPS 127-2 C-32

Oracle Extensions to Standard SQL C-33

Oracle Compliance with Older Standards C-33

Character Set Support C-34

D Oracle Regular Expression Support

Multilingual Regular Expression Syntax D-1

Regular Expression Operator Multilingual Enhancements D-2

Perl-influenced Extensions in Oracle Regular Expressions D-3

E Oracle SQL Reserved Words and Keywords

Oracle SQL Reserved Words E-1

xxv

Oracle SQL Keywords E-4

F Extended Examples

Using Extensible Indexing F-1

Using XML in SQL Statements F-8

Index

xxvi

Preface

This reference contains a complete description of the Structured Query Language (SQL)
used to manage information in an Oracle Database. Oracle SQL is a superset of the
American National Standards Institute (ANSI) and the International Organization for
Standardization (ISO) SQL standard.

This Preface contains these topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
The Oracle Database SQL Language Reference is intended for all users of Oracle SQL.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• Oracle Database PL/SQL Language Reference for information on PL/SQL, the
procedural language extension to Oracle SQL

• Pro*C/C++ Programmer's Guide and Pro*COBOL Programmer's Guide for detailed
descriptions of Oracle embedded SQL

Many of the examples in this book use the sample schemas, which are installed by default
when you select the Basic Installation option with an Oracle Database installation. Refer to
Oracle Database Sample Schemas for information on how these schemas were created and
how you can use them yourself.

xxvii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xxviii

Changes in This Release for Oracle Database
SQL Language Reference

This preface contains:

• Changes in Oracle Database Release 21c

Changes in Oracle Database Release 21c
Changes in Oracle Database 21c:

New Features
The following features are new in Release 21c:

ALTER TABLE MOVE for Partitioned and Subpartitioned Heap-Organized Tables

You can move all the partitions and subpartitions of a partitioned heap-organized table with a
single ALTER TABLE MOVE statement.

SecureFiles Defragmentation

With release 21c, you can use the shrink_clause of the ALTER TABLE statement to modify
SecureFile LOB segments.

Standby CDB continuity

You can use the pdb_managed_recovery clause of the ALTER PLUGGABLE DATABASE statement
to recover a PDB in instances where the PDB is within a physical standby CDB.

Auditing for Oracle XML DB HTTP and FTP Services

You can use the PROTOCOL component of CREATE AUDIT POLICY to audit FTP and HTTP
messages.

Unified Audit Policies Enforced on the Current User

The unified audit policy created with CREATE AUDIT POLICY becomes active immediately for
the current session and subsequent sessions as soon as the AUDIT POLICY statement is
executed.

New DIRECTORY_DATASTORE Data Store Type for Oracle Text

You can use a new data store type called DIRECTORY_DATASTORE instead of the
FILE_DATASTORE data type. DIRECTORY_DATASTORE provides greater security because it
enables file access to be based on directory objects.

xxix

FILE_DATASTORE is deprecated.

New NETWORK_DATASTORE Data Store Type for Oracle Text

You can use a new data store type called NETWORK_DATASTORE instead of the
URL_DATASTORE data type. NETWORK_DATASTORE provides greater security because it
enables file access to be based on directory objects.

URL_DATASTORE is deprecated.

Automatic In-Memory Management Enhancements

Automatic In-Memory Management enables, populates, evicts, and recompresses
segments without user intervention.

Specify MEMCOMPRESS AUTO in the inmemory_memcompress clause to instruct the
database to manage the segment.

Oracle Blockchain Table

Blockchain tables enable you to implement a centralized ledger model where all
participants in the blockchain network have access to the same tamper-resistant
ledger. You can create blockchain tables with the CREATE TABLE statement.

Active Data Guard - Standby Result Cache

The result cache in an Active Data Guard standby database is utilized to cache results
of queries that were run on the physical standby database. You can enable STANDBY in
the result_cache_clause .

In-Memory Full Text Columns

You can apply the INMEMORY TEXT clause to non-scalar columns in an In-Memory table.
This clause enables fast In-Memory searching of text, XML, or JSON documents using
the CONTAINS() orJSON_TEXTCONTAINS () operators .

SQL Macros

You can create SQL Macros (SQM) to factor out common SQL expressions and
statements into reusable, parameterized constructs that can be used in other SQL
statements. SQL macros can either be scalar expressions, typically used in SELECT
lists, WHERE, GROUPBY and HAVING clauses, to encapsulate calculations and business
logic or can be table expressions, typically used in a FROM clause.

SQL macros increase developer productivity, simplify collaborative development, and
improve code quality.

Unicode 12.1 Support

Oracle Database 21c complies with version 12.1 of the Unicode Standard.

Bitwise Aggregate Functions

The new aggregate functions BIT_AND_AGG, BIT_OR_AGG, and BIT_XOR_ADD enable
bitwise aggregation of integer columns and columns that can be converted or rounded
to integer values.

Changes in This Release for Oracle Database SQL Language Reference

xxx

New Analytical and Statistical Aggregate Functions

New analytical and statistical aggregate functions are available in SQL:

• CHECKSUM computes the checksum of the input values or expression.

• KURTOSIS functions KURTOSIS_POP and KURTOSIS_SAMP, measure the tailedness of a data
set where a higher value means more of the variance within the data set is the result of
infrequent extreme deviations as opposed to frequent modestly sized deviations. Note
that a normal distribution has a kurtosis of zero.

• SKEWNESS functions SKEWNESS_POP and SKEWNESS_SAMP, are measures of asymmetry in
data. A positive skewness is means the data skews to the right of the center point. A
negative skewness means the data skews to the left.

All of these new aggregate functions support the keywords ALL, DISTINCT, and UNIQUE.

ANY_VALUE, a function to simplify and optimize the performance of GROUP BY statements,
returns a random value in a group and is optimized to return the first value in the group. It
ensures that there are no comparisons for any incoming row and eliminates the necessity to
specify every column as part of the GROUP BY clause.

With these additional SQL aggregation functions, you can write more efficient code and
benefit from faster in-database processing.

PREDICTION Function Syntax

These PREDICTION functions have a new _ordered syntax for scoring a model that requires
ordered data, such as a Multivariate State Estimation Technique - Sequential Probability
Ratio Test (MSET-SPRT) model:

• PREDICTION
• PREDICTION_COST
• PREDICTION_DETAILS
• PREDICTION_PROBABILITY
• PREDICTION_SET

Enhanced SQL Set Operators

The SQL set operators now support all keywords as defined in ANSI SQL. The new operator
EXCEPT [ALL] is functionally equivalent to MINUS [ALL]. The operators MINUS and INTERSECT
now support the keyword ALL.

Database In-Memory External Table Enhancements

The INMEMORY clause is supported at the table level and partition level of a partitioned
external table or hybrid external table. For hybrid tables, the table-level INMEMORY attribute
applies to all partitions, whether internal or external.

New JSON data type

JSON is a new SQL and PL/SQL data type for JSON data. It provides a substantial increase in
query and update performance compared to textual JSON.

Changes in This Release for Oracle Database SQL Language Reference

xxxi

JSON Scalar Allowed at Top Level of JSON Document (RFC 8259 Support)

JSON documents in Oracle Database can now have a top-level JSON scalar value.
Previously they had to have a JSON object or array value.

New Oracle SQL Function JSON_TRANSFORM

You can use SQL function JSON_TRANSFORM to update parts of a JSON document
without having to parse and rebuild it.

Enhanced Analytic Functions

Analytical window functions now supports the EXCLUDE options of the SQL standard
window frame clause. The query_block clause of the SELECT statement now supports
the window_clause, which implements the window clause of the SQL standard table
expression as defined in the SQL:2011 standard.

Enhanced Database Availability with Zero Downtime to Switch Over to an
Updated PKCS#11 Library

Starting with this release, Oracle Database can switch over to an updated PKCS#11
library without incurring any system downtime.

You can use the new ADMINISTER KEY MANAGEMENT SWITCHOVER LIBRARY FOR ALL
CONTAINERS statement to enable an Oracle database to switch over from the PKCS#11
library that it is currently using to the updated PKCS#11 library.

Enhanced Double Parity Protection for Flex and Extended Disk Groups

You can use double parity protection for write-once files in a Oracle ASM Flex Disk
Group which provides greater protection against multiple hardware failures.

Oracle ASM Flex Disk Group Support for Cloning a PDB in one CDB to a New
PDB in a Different CDB

You can clone a PDB in a CDB to a new PDB in a different CDB using the
prepare_clause of ALTER PLUGGABLE DATABASE.

File Group Templates

With file group templates you can customize and set default file group properties for
automatically created file groups, enabling you to customize file group properties that
are inherited by a number of databases.

Specify the TEMPLATE option of the add_filegroup_clause of ALTER DISKGROUP.

Automatic Index Optimization

You can enable Automatic Data Optimization (ADO) functionality to provide
compression and optimization capability on indexes using the index_ilm_clause of
CREATE INDEX and ALTER INDEX.

Gradual Database Password Change for Applications

Starting with Release 21c, an application can change its database passwords without
an administrator having to schedule downtime.

Changes in This Release for Oracle Database SQL Language Reference

xxxii

You can enable gradual database password rollover period by setting a non-zero value to the
PASSWORD_ROLLOVER_TIME user profile parameter using CREATE PROFILE or ALTER PROFILE.

After you set the time for the gradual password rollover period, you can use the ALTER USER
statement to change the user's password and propagate the new password to all clients
before the PASSWORD_ROLLOVER_TIME ends.

Minimum Password Length Enforcement for All PDBs

Starting with this release, you can enforce a minimum password length on all PDBs by setting
a mandatory profile in the CDB root using CREATE PROFILE.

Deprecated Features
The following features are deprecated in Release 21c, and may be desupported in a future
release:

• Traditional auditing is deprecated in Oracle Database 21c. Oracle recommends that you
use unified auditing, which enables selective and more effective auditing inside Oracle
Database.

• The Oracle Text type URL_DATASTORE is deprecated. Oracle recommeds that you replace
URL_DATASTORE with NETWORK_DATASTORE, which uses ACLs to control access to specific
servers.

• The Oracle Text type FILE_DATASTORE is deprecated. Oracle recommends that you
replace FILE_DATASTORE indexes with the DIRECTORY_DATASTORE index type, which is
available starting with Oracle Database 21c. DIRECTORY_DATASTORE provides greater
security because it enables file access to be based on directory objects.

• Starting with Oracle Database 21c, older encryption and hashing algorithms contained
within DBMS_CRYPTO are deprecated. These are MD4, MD5, and RC4. To meet your security
requirements, Oracle recommends that you use more modern cryptography algorithms.

Desupported Features
The following features are desupported in Oracle Database Release 21c:

• Oracle Database 21c uses a multitenant architecture. Starting in this release, you can no
longer create or upgrade to non-CDBs. The word "database" now means either a CDB or
PDB.

• Starting with Oracle Database 21c, several XML Database (XDB) features are
desupported. The Oracle SQL function XMLRoot is desupported. Use SQL/XML function
XMLSerialize() with a version number instead.

For a full list of desupported features for Release 21c, please see the Oracle Database
Upgrade Guide.

Changes in This Release for Oracle Database SQL Language Reference

xxxiii

1
Introduction to Oracle SQL

Structured Query Language (SQL) is the set of statements with which all programs and users
access data in an Oracle Database. Application programs and Oracle tools often allow users
access to the database without using SQL directly, but these applications in turn must use
SQL when executing the user's request. This chapter provides background information on
SQL as used by most database systems.

This chapter contains these topics:

• History of SQL

• SQL Standards

• Lexical Conventions

• Tools Support

History of SQL
Dr. E. F. Codd published the paper, "A Relational Model of Data for Large Shared Data
Banks", in June 1970 in the Association of Computer Machinery (ACM) journal,
Communications of the ACM. Codd's model is now accepted as the definitive model for
relational database management systems (RDBMS). The language, Structured English
Query Language (SEQUEL) was developed by IBM Corporation, Inc., to use Codd's model.
SEQUEL later became SQL (still pronounced "sequel"). In 1979, Relational Software, Inc.
(now Oracle) introduced the first commercially available implementation of SQL. Today, SQL
is accepted as the standard RDBMS language.

SQL Standards
Oracle strives to comply with industry-accepted standards and participates actively in SQL
standards committees. Industry-accepted committees are the American National Standards
Institute (ANSI) and the International Organization for Standardization (ISO), which is
affiliated with the International Electrotechnical Commission (IEC). Both ANSI and the
ISO/IEC have accepted SQL as the standard language for relational databases. When a new
SQL standard is simultaneously published by these organizations, the names of the
standards conform to conventions used by the organization, but the standards are technically
identical.

See Also:

Oracle and Standard SQL for a detailed description of Oracle Database
conformance to the SQL standard

1-1

How SQL Works
The strengths of SQL provide benefits for all types of users, including application
programmers, database administrators, managers, and end users. Technically
speaking, SQL is a data sublanguage. The purpose of SQL is to provide an interface
to a relational database such as Oracle Database, and all SQL statements are
instructions to the database. In this SQL differs from general-purpose programming
languages like C and BASIC. Among the features of SQL are the following:

• It processes sets of data as groups rather than as individual units.

• It provides automatic navigation to the data.

• It uses statements that are complex and powerful individually, and that therefore
stand alone. Flow-control statements, such as begin-end, if-then-else, loops, and
exception condition handling, were initially not part of SQL and the SQL standard,
but they can now be found in ISO/IEC 9075-4 - Persistent Stored Modules (SQL/
PSM). The PL/SQL extension to Oracle SQL is similar to PSM.

SQL lets you work with data at the logical level. You need to be concerned with the
implementation details only when you want to manipulate the data. For example, to
retrieve a set of rows from a table, you define a condition used to filter the rows. All
rows satisfying the condition are retrieved in a single step and can be passed as a unit
to the user, to another SQL statement, or to an application. You need not deal with the
rows one by one, nor do you have to worry about how they are physically stored or
retrieved. All SQL statements use the optimizer, a part of Oracle Database that
determines the most efficient means of accessing the specified data. Oracle also
provides techniques that you can use to make the optimizer perform its job better.

SQL provides statements for a variety of tasks, including:

• Querying data

• Inserting, updating, and deleting rows in a table

• Creating, replacing, altering, and dropping objects

• Controlling access to the database and its objects

• Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language.

Common Language for All Relational Databases
All major relational database management systems support SQL, so you can transfer
all skills you have gained with SQL from one database to another. In addition, all
programs written in SQL are portable. They can often be moved from one database to
another with very little modification.

Using Enterprise Manager
Many of the operations you can accomplish using SQL syntax can be done much
more easily using Enterprise Manager. For more information, see the Oracle
Enterprise Manager documentation set, Oracle Database 2 Day DBA, or any of the
Oracle Database 2 Day + books.

Chapter 1
Using Enterprise Manager

1-2

Lexical Conventions
The following lexical conventions for issuing SQL statements apply specifically to the Oracle
Database implementation of SQL, but are generally acceptable in other SQL
implementations.

When you issue a SQL statement, you can include one or more tabs, carriage returns,
spaces, or comments anywhere a space occurs within the definition of the statement. Thus,
Oracle Database evaluates the following two statements in the same manner:

SELECT last_name,salary*12,MONTHS_BETWEEN(SYSDATE,hire_date)
 FROM employees
 WHERE department_id = 30
 ORDER BY last_name;

SELECT last_name,
 salary * 12,
 MONTHS_BETWEEN(SYSDATE, hire_date)
FROM employees
WHERE department_id=30
ORDER BY last_name;

Case is insignificant in reserved words, keywords, identifiers, and parameters. However, case
is significant in text literals and quoted names. Refer to Text Literals for a syntax description
of text literals.

Note:

SQL statements are terminated differently in different programming environments.
This documentation set uses the default SQL*Plus character, the semicolon (;).

Tools Support
Oracle provides a number of utilities to facilitate your SQL development process:

• Oracle SQL Developer is a graphical tool that lets you browse, create, edit, and delete
(drop) database objects, edit and debug PL/SQL code, run SQL statements and scripts,
manipulate and export data, and create and view reports.

Using SQL Developer, you can connect to any target Oracle Database schema using
standard Oracle Database authentication. DBAs can also use SQL Developer to
administer and monitor their database, with interfaces for Data Pump, RMAN, and
Auditing also included.

Once connected, you can perform operations on objects in the database. You can also
connect to schemas for selected databases, such as MySQL, Microsoft SQL Server, and
Amazon Redshift, view metadata and data in these databases, and migrate these
databases to Oracle Database.

• Oracle SQL Developer Command Line (SQLcl) is a free command line interface for
Oracle Database. It allows you to interactively or batch execute SQL and PL/SQL.

SQLcl offers integrated Oracle Cloud (OCI) support, client side scripting with JavaScript,
custom commands, and updated SQL*Plus commands (INFO vs DESC). Additionally,

Chapter 1
Lexical Conventions

1-3

SQLcl provides native vi or Emacs editing, statement completion, and persistent
command recall for a feature-rich experience, all while supporting your previously
written SQL*Plus scripts.

• Database Actions delivers your favorite Oracle Database desktop tool’s features
and experience to your web browser. Delivered as a single-page web application,
Database Actions is powered by Oracle REST Data Services (ORDS).

Database Actions offers a worksheet for running queries and scripts, the ability to
manage and browse your data dictionary, a REST development environment for
your REST APIs and AUTOREST enabled objects, an interface for Oracle’s JSON
Document Store (SODA), a DBA console for managing the database, a data
model reporting solution, and access to PerfHub. Database Actions is also
available automatically for any Oracle Autonomous Database OCI Service.

• SQL*Plus is an interactive and batch query tool that is installed with every Oracle
Database server or client installation. It has a command-line user interface.

See Also:

SQL*Plus User's Guide and Reference and Oracle Application Express App
Builder User’s Guide for more information on these products

The Oracle Call Interface and Oracle precompilers let you embed standard SQL
statements within a procedure programming language.

• The Oracle Call Interface (OCI) lets you embed SQL statements in C programs.

• The Oracle precompilers, Pro*C/C++ and Pro*COBOL, interpret embedded SQL
statements and translate them into statements that can be understood by C/C++
and COBOL compilers, respectively.

See Also:

Oracle C++ Call Interface Programmer's Guide, Pro*COBOL Programmer's
Guide, and Oracle Call Interface Programmer's Guide for additional
information on the embedded SQL statements allowed in each product

Most (but not all) Oracle tools also support all features of Oracle SQL. This reference
describes the complete functionality of SQL. If the Oracle tool that you are using does
not support this complete functionality, then you can find a discussion of the
restrictions in the manual describing the tool, such as SQL*Plus User's Guide and
Reference.

Chapter 1
Tools Support

1-4

2
Basic Elements of Oracle SQL

This chapter contains reference information on the basic elements of Oracle SQL. These
elements are the simplest building blocks of SQL statements. Therefore, before using the
SQL statements described in this book, you should familiarize yourself with the concepts
covered in this chapter.

This chapter contains these sections:

• Data Types

• Data Type Comparison Rules

• Literals

• Format Models

• Nulls

• Comments

• Database Objects

• Database Object Names and Qualifiers

• Syntax for Schema Objects and Parts in SQL Statements

Data Types
Each value manipulated by Oracle Database has a data type. The data type of a value
associates a fixed set of properties with the value. These properties cause Oracle to treat
values of one data type differently from values of another. For example, you can add values
of NUMBER data type, but not values of RAW data type.

When you create a table or cluster, you must specify a data type for each of its columns.
When you create a procedure or stored function, you must specify a data type for each of its
arguments. These data types define the domain of values that each column can contain or
each argument can have. For example, DATE columns cannot accept the value February 29
(except for a leap year) or the values 2 or 'SHOE'. Each value subsequently placed in a
column assumes the data type of the column. For example, if you insert '01-JAN-98' into a
DATE column, then Oracle treats the '01-JAN-98' character string as a DATE value after
verifying that it translates to a valid date.

Oracle Database provides a number of built-in data types as well as several categories for
user-defined types that can be used as data types. The syntax of Oracle data types appears
in the diagrams that follow. The text of this section is divided into the following sections:

• Oracle Built-in Data Types

• ANSI, DB2, and SQL/DS Data Types

• User-Defined Types

• Oracle-Supplied Types

• Data Type Comparison Rules

2-1

• Data Conversion

A data type is either scalar or nonscalar. A scalar type contains an atomic value,
whereas a nonscalar (sometimes called a "collection") contains a set of values. A large
object (LOB) is a special form of scalar data type representing a large scalar value of
binary or character data. LOBs are subject to some restrictions that do not affect other
scalar types because of their size. Those restrictions are documented in the context of
the relevant SQL syntax.

See Also:

Restrictions on LOB Columns

The Oracle precompilers recognize other data types in embedded SQL programs.
These data types are called external data types and are associated with host
variables. Do not confuse built-in data types and user-defined types with external data
types. For information on external data types, including how Oracle converts between
them and built-in data types or user-defined types, see Pro*COBOL Programmer's
Guide, and Pro*C/C++ Programmer's Guide.

datatypes::=

Oracle_built_in_datatypes

ANSI_supported_datatypes

user_defined_types

Oracle_supplied_types

The Oracle built-in data types appear in the figures that follows. For descriptions, refer
to Oracle Built-in Data Types.

Oracle_built_in_datatypes::=

character_datatypes

number_datatypes

long_and_raw_datatypes

datetime_datatypes

large_object_datatypes

rowid_datatypes

Chapter 2
Data Types

2-2

character_datatypes::=

CHAR

(size

BYTE

CHAR

)

VARCHAR2 (size

BYTE

CHAR

)

NCHAR

(size)

NVARCHAR2 (size)

number_datatypes::=

NUMBER

(precision

, scale

)

FLOAT

(precision)

BINARY_FLOAT

BINARY_DOUBLE

long_and_raw_datatypes::=

LONG

LONG RAW

RAW (size)

datetime_datatypes::=

DATE

TIMESTAMP

(fractional_seconds_precision) WITH

LOCAL

TIME ZONE

INTERVAL YEAR

(year_precision)

TO MONTH

INTERVAL DAY

(day_precision)

TO SECOND

(fractional_seconds_precision)

Chapter 2
Data Types

2-3

large_object_datatypes::=

BLOB

CLOB

NCLOB

BFILE

rowid_datatypes::=

ROWID

UROWID

(size)

The ANSI-supported data types appear in the figure that follows. ANSI, DB2, and
SQL/DS Data Types discusses the mapping of ANSI-supported data types to Oracle
built-in data types.

ANSI_supported_datatypes::=

CHARACTER

VARYING

(size)

CHAR

NCHAR
VARYING (size)

VARCHAR (size)

NATIONAL
CHARACTER

CHAR

VARYING

(size)

NUMERIC

DECIMAL

DEC

(precision

, scale

)

INTEGER

INT

SMALLINT

FLOAT

(size)

DOUBLE PRECISION

REAL

Chapter 2
Data Types

2-4

For descriptions of user-defined types, refer to User-Defined Types .

The Oracle-supplied data types appear in the figures that follows. For descriptions, refer to
Oracle-Supplied Types .

Oracle_supplied_types::=

any_types

XML_types

spatial_types

any_types::=

SYS.AnyData

SYS.AnyType

SYS.AnyDataSet

For descriptions of the Any types, refer to Any Types .

XML_types::=

XMLType

URIType

For descriptions of the XML types, refer to XML Types .

spatial_types::=

SDO_Geometry

SDO_Topo_Geometry

SDO_GeoRaster

For descriptions of the spatial types, refer to Spatial Types .

Oracle Built-in Data Types
The Built-In Data Type Summary table lists the built-in data types available. Oracle
Database uses a code to identify the data type internally. This is the number in the Code
column of the Built-In Data Type Summary table. You can verify the codes in the table using
the DUMP function.

Chapter 2
Data Types

2-5

In addition to the built-in data types listed in the Built-In Data Type Summary table,
Oracle Database uses many data types internally that are visible via the DUMP function.

Table 2-1 Built-In Data Type Summary

Code Data Type Description

1 VARCHAR2(size [BYTE | CHAR]) Variable-length character string having maximum length size
bytes or characters. You must specify size for VARCHAR2.
Minimum size is 1 byte or 1 character. Maximum size is:

• 32767 bytes or characters if MAX_STRING_SIZE =
EXTENDED

• 4000 bytes or characters if MAX_STRING_SIZE = STANDARD
Refer to Extended Data Types for more information on the
MAX_STRING_SIZE initialization parameter.

BYTE indicates that the column will have byte length semantics.
CHAR indicates that the column will have character semantics.

1 NVARCHAR2(size) Variable-length Unicode character string having maximum length
size characters. You must specify size for NVARCHAR2. The
number of bytes can be up to two times size for AL16UTF16
encoding and three times size for UTF8 encoding. Maximum
size is determined by the national character set definition, with
an upper limit of:

• 32767 bytes if MAX_STRING_SIZE = EXTENDED
• 4000 bytes if MAX_STRING_SIZE = STANDARD
Refer to Extended Data Types for more information on the
MAX_STRING_SIZE initialization parameter.

2 NUMBER [(p [, s])] Number having precision p and scale s. The precision p can
range from 1 to 38. The scale s can range from -84 to 127. Both
precision and scale are in decimal digits. A NUMBER value
requires from 1 to 22 bytes.

2 FLOAT [(p)] A subtype of the NUMBER data type having precision p. A FLOAT
value is represented internally as NUMBER. The precision p can
range from 1 to 126 binary digits. A FLOAT value requires from 1
to 22 bytes.

8 LONG Character data of variable length up to 2 gigabytes, or 231 -1
bytes. Provided for backward compatibility.

12 DATE Valid date range from January 1, 4712 BC, to December 31,
9999 AD. The default format is determined explicitly by the
NLS_DATE_FORMAT parameter or implicitly by the
NLS_TERRITORY parameter. The size is fixed at 7 bytes. This
data type contains the datetime fields YEAR, MONTH, DAY, HOUR,
MINUTE, and SECOND. It does not have fractional seconds or a
time zone.

100 BINARY_FLOAT 32-bit floating point number. This data type requires 4 bytes.

101 BINARY_DOUBLE 64-bit floating point number. This data type requires 8 bytes.

Chapter 2
Data Types

2-6

Table 2-1 (Cont.) Built-In Data Type Summary

Code Data Type Description

180 TIMESTAMP
[(fractional_seconds_precision
)]

Year, month, and day values of date, as well as hour, minute, and
second values of time, where
fractional_seconds_precision is the number of digits in the
fractional part of the SECOND datetime field. Accepted values of
fractional_seconds_precision are 0 to 9. The default is 6.
The default format is determined explicitly by the
NLS_TIMESTAMP_FORMAT parameter or implicitly by the
NLS_TERRITORY parameter. The size is 7 or 11 bytes, depending
on the precision. This data type contains the datetime fields
YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND. It contains
fractional seconds but does not have a time zone.

181 TIMESTAMP
[(fractional_seconds_precision
)] WITH TIME ZONE

All values of TIMESTAMP as well as time zone displacement
value, where fractional_seconds_precision is the number
of digits in the fractional part of the SECOND datetime field.
Accepted values are 0 to 9. The default is 6. The default date
format for the TIMESTAMP WITH TIME ZONE data type is
determined by the NLS_TIMESTAMP_TZ_FORMAT initialization
parameter. The size is fixed at 13 bytes. This data type contains
the datetime fields YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
TIMEZONE_HOUR, and TIMEZONE_MINUTE. It has fractional
seconds and an explicit time zone.

231 TIMESTAMP
[(fractional_seconds_precision
)] WITH LOCAL TIME ZONE

All values of TIMESTAMP WITH TIME ZONE, with the following
exceptions:

• Data is normalized to the database time zone when it is
stored in the database.

• When the data is retrieved, users see the data in the session
time zone.

The default format is determined explicitly by the
NLS_TIMESTAMP_FORMAT parameter or implicitly by the
NLS_TERRITORY parameter. The size is 7 or 11 bytes, depending
on the precision.

182 INTERVAL YEAR [(year_precision)]
TO MONTH

Stores a period of time in years and months, where
year_precision is the number of digits in the YEAR datetime
field. Accepted values are 0 to 9. The default is 2. The size is
fixed at 5 bytes.

183 INTERVAL DAY [(day_precision)]
TO SECOND
[(fractional_seconds_precision
)]

Stores a period of time in days, hours, minutes, and seconds,
where

• day_precision is the maximum number of digits in the DAY
datetime field. Accepted values are 0 to 9. The default is 2.

• fractional_seconds_precision is the number of digits
in the fractional part of the SECOND field. Accepted values
are 0 to 9. The default is 6.

The size is fixed at 11 bytes.

23 RAW(size) Raw binary data of length size bytes. You must specify size
for a RAW value. Maximum size is:

• 32767 bytes if MAX_STRING_SIZE = EXTENDED
• 2000 bytes if MAX_STRING_SIZE = STANDARD
Refer to Extended Data Types for more information on the
MAX_STRING_SIZE initialization parameter.

Chapter 2
Data Types

2-7

Table 2-1 (Cont.) Built-In Data Type Summary

Code Data Type Description

24 LONG RAW Raw binary data of variable length up to 2 gigabytes.

69 ROWID Base 64 string representing the unique address of a row in its
table. This data type is primarily for values returned by the ROWID
pseudocolumn.

208 UROWID [(size)] Base 64 string representing the logical address of a row of an
index-organized table. The optional size is the size of a column
of type UROWID. The maximum size and default is 4000 bytes.

96 CHAR [(size [BYTE | CHAR])] Fixed-length character data of length size bytes or characters.
Maximum size is 2000 bytes or characters. Default and
minimum size is 1 byte.

BYTE and CHAR have the same semantics as for VARCHAR2.

96 NCHAR[(size)] Fixed-length character data of length size characters. The
number of bytes can be up to two times size for AL16UTF16
encoding and three times size for UTF8 encoding. Maximum
size is determined by the national character set definition, with
an upper limit of 2000 bytes. Default and minimum size is 1
character.

112 CLOB A character large object containing single-byte or multibyte
characters. Both fixed-width and variable-width character sets
are supported, both using the database character set. Maximum
size is (4 gigabytes - 1) * (database block size).

112 NCLOB A character large object containing Unicode characters. Both
fixed-width and variable-width character sets are supported, both
using the database national character set. Maximum size is (4
gigabytes - 1) * (database block size). Stores national character
set data.

113 BLOB A binary large object. Maximum size is (4 gigabytes - 1) *
(database block size).

114 BFILE Contains a locator to a large binary file stored outside the
database. Enables byte stream I/O access to external LOBs
residing on the database server. Maximum size is 4 gigabytes.

119 JSON Maximum size is 32 megabytes.

The sections that follow describe the Oracle data types as they are stored in Oracle
Database. For information on specifying these data types as literals, refer to Literals .

Character Data Types
Character data types store character (alphanumeric) data, which are words and free-
form text, in the database character set or national character set. They are less
restrictive than other data types and consequently have fewer properties. For example,
character columns can store all alphanumeric values, but NUMBER columns can store
only numeric values.

Character data is stored in strings with byte values corresponding to one of the
character sets, such as 7-bit ASCII or EBCDIC, specified when the database was
created. Oracle Database supports both single-byte and multibyte character sets.

Chapter 2
Data Types

2-8

These data types are used for character data:

• CHAR Data Type

• NCHAR Data Type

• VARCHAR2 Data Type

• NVARCHAR2 Data Type

For information on specifying character data types as literals, refer to Text Literals .

CHAR Data Type
The CHAR data type specifies a fixed-length character string in the database character set.
You specify the database character set when you create your database.

When you create a table with a CHAR column, you specify the column length as size
optionally followed by a length qualifier. The qualifier BYTE denotes byte length semantics
while the qualifier CHAR denotes character length semantics. In the byte length semantics,
size is the number of bytes to store in the column. In the character length semantics, size is
the number of code points in the database character set to store in the column. A code point
may have from 1 to 4 bytes depending on the database character set and the particular
character encoded by the code point. Oracle recommends that you specify one of the length
qualifiers to explicitly document the desired length semantics of the column. If you do not
specify a qualifier, the value of the NLS_LENGTH_SEMANTICS parameter of the session creating
the column defines the length semantics, unless the table belongs to the schema SYS, in
which case the default semantics is BYTE.

Oracle ensures that all values stored in a CHAR column have the length specified by size in
the selected length semantics. If you insert a value that is shorter than the column length,
then Oracle blank-pads the value to column length. If you try to insert a value that is too long
for the column, then Oracle returns an error. Note that if the column length is expressed in
characters (code points), blank-padding does not guarantee that all column values have the
same byte length.

You can omit size from the column definition. The default value is 1.

The maximum value of size is 2000, which means 2000 bytes or characters (code points),
depending on the selected length semantics. However, independently, the absolute maximum
length of any character value that can be stored into a CHAR column is 2000 bytes. For
example, even if you define the column length to be 2000 characters, Oracle returns an error
if you try to insert a 2000-character value in which one or more code points are wider than 1
byte. The value of size in characters is a length constraint, not guaranteed capacity. If you
want a CHAR column to be always able to store size characters in any database character set,
use a value of size that is less than or equal to 500.

To ensure proper data conversion between databases and clients with different character
sets, you must ensure that CHAR data consists of well-formed strings.

See Also:

Oracle Database Globalization Support Guide for more information on character set
support and Data Type Comparison Rules for information on comparison semantics

Chapter 2
Data Types

2-9

NCHAR Data Type
The NCHAR data type specifies a fixed-length character string in the national character
set. You specify the national character set as either AL16UTF16 or UTF8 when you
create your database. AL16UTF16 and UTF8 are two encoding forms of the Unicode
character set (UTF-16 and CESU-8, correspondingly) and hence NCHAR is a Unicode-
only data type.

When you create a table with an NCHAR column, you specify the column length as size
characters, or more precisely, code points in the national character set. One code point
has always 2 bytes in AL16UTF16 and from 1 to 3 bytes in UTF8, depending on the
particular character encoded by the code point.

Oracle ensures that all values stored in an NCHAR column have the length of size
characters. If you insert a value that is shorter than the column length, then Oracle
blank-pads the value to the column length. If you try to insert a value that is too long
for the column, then Oracle returns an error. Note that if the national character set is
UTF8, blank-padding does not guarantee that all column values have the same byte
length.

You can omit size from the column definition. The default value is 1.

The maximum value of size is 1000 characters when the national character set is
AL16UTF16, and 2000 characters when the national character set is UTF8. However,
independently, the absolute maximum length of any character value that can be stored
into an NCHAR column is 2000 bytes. For example, even if you define the column length
to be 1000 characters, Oracle returns an error if you try to insert a 1000-character
value but the national character set is UTF8 and all code points are 3 bytes wide. The
value of size is a length constraint, not guaranteed capacity. If you want an NCHAR
column to be always able to store size characters in both national character sets, use
a value of size that is less than or equal to 666.

To ensure proper data conversion between databases and clients with different
character sets, you must ensure that NCHAR data consists of well-formed strings.

If you assign a CHAR value to an NCHAR column, the value is implicitly converted from
the database character set to the national character set. If you assign an NCHAR value
to a CHAR column, the value is implicitly converted from the national character set to
the database character set. If some of the characters from the NCHAR value cannot be
represented in the database character set, then if the value of the session parameter
NLS_NCHAR_CONV_EXCP is TRUE, then Oracle reports an error. If the value of the
parameter is FALSE, non-representable characters are replaced with the default
replacement character of the database character set, which is usually the question
mark '?' or the inverted question mark '¿'.

See Also:

Oracle Database Globalization Support Guide for information on Unicode
data type support

Chapter 2
Data Types

2-10

VARCHAR2 Data Type
The VARCHAR2 data type specifies a variable-length character string in the database character
set. You specify the database character set when you create your database.

When you create a table with a VARCHAR2 column, you must specify the column length as
size optionally followed by a length qualifier. The qualifier BYTE denotes byte length
semantics while the qualifier CHAR denotes character length semantics. In the byte length
semantics, size is the maximum number of bytes that can be stored in the column. In the
character length semantics, size is the maximum number of code points in the database
character set that can be stored in the column. A code point may have from 1 to 4 bytes
depending on the database character set and the particular character encoded by the code
point. Oracle recommends that you specify one of the length qualifiers to explicitly document
the desired length semantics of the column. If you do not specify a qualifier, the value of the
NLS_LENGTH_SEMANTICS parameter of the session creating the column defines the length
semantics, unless the table belongs to the schema SYS, in which case the default semantics
is BYTE.

Oracle stores a character value in a VARCHAR2 column exactly as you specify it, without any
blank-padding, provided the value does not exceed the length of the column. If you try to
insert a value that exceeds the specified length, then Oracle returns an error.

The minimum value of size is 1. The maximum value is:

• 32767 bytes if MAX_STRING_SIZE = EXTENDED
• 4000 bytes if MAX_STRING_SIZE = STANDARD
Refer to Extended Data Types for more information on the MAX_STRING_SIZE initialization
parameter and the internal storage mechanisms for extended data types.

While size may be expressed in bytes or characters (code points) the independent absolute
maximum length of any character value that can be stored into a VARCHAR2 column is 32767
or 4000 bytes, depending on MAX_STRING_SIZE. For example, even if you define the column
length to be 32767 characters, Oracle returns an error if you try to insert a 32767-character
value in which one or more code points are wider than 1 byte. The value of size in characters
is a length constraint, not guaranteed capacity. If you want a VARCHAR2 column to be always
able to store size characters in any database character set, use a value of size that is less
than or equal to 8191, if MAX_STRING_SIZE = EXTENDED, or 1000, if MAX_STRING_SIZE =
STANDARD.

Oracle compares VARCHAR2 values using non-padded comparison semantics.

To ensure proper data conversion between databases with different character sets, you must
ensure that VARCHAR2 data consists of well-formed strings. See Oracle Database
Globalization Support Guide for more information on character set support.

See Also:

Data Type Comparison Rules for information on comparison semantics

Chapter 2
Data Types

2-11

VARCHAR Data Type
Do not use the VARCHAR data type. Use the VARCHAR2 data type instead. Although the
VARCHAR data type is currently synonymous with VARCHAR2, the VARCHAR data type is
scheduled to be redefined as a separate data type used for variable-length character
strings compared with different comparison semantics.

NVARCHAR2 Data Type
The NVARCHAR2 data type specifies a variable-length character string in the national
character set. You specify the national character set as either AL16UTF16 or UTF8
when you create your database. AL16UTF16 and UTF8 are two encoding forms of the
Unicode character set (UTF-16 and CESU-8, correspondingly) and hence NVARCHAR2
is a Unicode-only data type.

When you create a table with an NVARCHAR2 column, you must specify the column
length as size characters, or more precisely, code points in the national character set.
One code point has always 2 bytes in AL16UTF16 and from 1 to 3 bytes in UTF8,
depending on the particular character encoded by the code point.

Oracle stores a character value in an NVARCHAR2 column exactly as you specify it,
without any blank-padding, provided the value does not exceed the length of the
column. If you try to insert a value that exceeds the specified length, then Oracle
returns an error.

The minimum value of size is 1. The maximum value is:

• 16383 if MAX_STRING_SIZE = EXTENDED and the national character set is
AL16UTF16

• 32767 if MAX_STRING_SIZE = EXTENDED and the national character set is UTF8

• 2000 if MAX_STRING_SIZE = STANDARD and the national character set is AL16UTF16

• 4000 if MAX_STRING_SIZE = STANDARD and the national character set is UTF8

Refer to Extended Data Types for more information on the MAX_STRING_SIZE
initialization parameter and the internal storage mechanisms for extended data types.

Independently of the maximum column length in characters, the absolute maximum
length of any value that can be stored into an NVARCHAR2 column is 32767 or 4000
bytes, depending on MAX_STRING_SIZE. For example, even if you define the column
length to be 16383 characters, Oracle returns an error if you try to insert a 16383-
character value but the national character set is UTF8 and all code points are 3 bytes
wide. The value of size is a length constraint, not guaranteed capacity. If you want an
NVARCHAR2 column to be always able to store size characters in both national
character sets, use a value of size that is less than or equal to 10922, if
MAX_STRING_SIZE = EXTENDED, or 1333, if MAX_STRING_SIZE = STANDARD.

Oracle compares NVARCHAR2 values using non-padded comparison semantics.

To ensure proper data conversion between databases and clients with different
character sets, you must ensure that NVARCHAR2 data consists of well-formed strings.

If you assign a VARCHAR2 value to an NVARCHAR2 column, the value is implicitly
converted from the database character set to the national character set. If you assign
an NVARCHAR2 value to a VARCHAR2 column, the value is implicitly converted from the

Chapter 2
Data Types

2-12

national character set to the database character set. If some of the characters from the
NVARCHAR2 value cannot be represented in the database character set, then if the value of the
session parameter NLS_NCHAR_CONV_EXCP is TRUE, then Oracle reports an error. If the value of
the parameter is FALSE, non-representable characters are replaced with the default
replacement character of the database character set, which is usually the question mark '?' or
the inverted question mark '¿'.

See Also:

Oracle Database Globalization Support Guide for information on Unicode data type
support.

Numeric Data Types
The Oracle Database numeric data types store positive and negative fixed and floating-point
numbers, zero, infinity, and values that are the undefined result of an operation—"not a
number" or NAN. For information on specifying numeric data types as literals, refer to Numeric
Literals .

NUMBER Data Type
The NUMBER data type stores zero as well as positive and negative fixed numbers with
absolute values from 1.0 x 10-130 to but not including 1.0 x 10126. If you specify an arithmetic
expression whose value has an absolute value greater than or equal to 1.0 x 10126, then
Oracle returns an error. Each NUMBER value requires from 1 to 22 bytes.

Specify a fixed-point number using the following form:

NUMBER(p,s)

where:

• p is the precision, or the maximum number of significant decimal digits, where the most
significant digit is the left-most nonzero digit, and the least significant digit is the right-
most known digit. Oracle guarantees the portability of numbers with precision of up to 20
base-100 digits, which is equivalent to 39 or 40 decimal digits depending on the position
of the decimal point.

• s is the scale, or the number of digits from the decimal point to the least significant digit.
The scale can range from -84 to 127.

– Positive scale is the number of significant digits to the right of the decimal point to
and including the least significant digit.

– Negative scale is the number of significant digits to the left of the decimal point, to but
not including the least significant digit. For negative scale the least significant digit is
on the left side of the decimal point, because the actual data is rounded to the
specified number of places to the left of the decimal point. For example, a
specification of (10,-2) means to round to hundreds.

Scale can be greater than precision, most commonly when e notation is used. When scale is
greater than precision, the precision specifies the maximum number of significant digits to the
right of the decimal point. For example, a column defined as NUMBER(4,5) requires a zero for
the first digit after the decimal point and rounds all values past the fifth digit after the decimal
point.

Chapter 2
Data Types

2-13

It is good practice to specify the scale and precision of a fixed-point number column for
extra integrity checking on input. Specifying scale and precision does not force all
values to a fixed length. If a value exceeds the precision, then Oracle returns an error.
If a value exceeds the scale, then Oracle rounds it.

Specify an integer using the following form:

NUMBER(p)

This represents a fixed-point number with precision p and scale 0 and is equivalent to
NUMBER(p,0).

Specify a floating-point number using the following form:

NUMBER

The absence of precision and scale designators specifies the maximum range and
precision for an Oracle number.

See Also:

Floating-Point Numbers

Table 2-2 show how Oracle stores data using different precisions and scales.

Table 2-2 Storage of Scale and Precision

Actual Data Specified As Stored As

123.89 NUMBER 123.89

123.89 NUMBER(3) 124

123.89 NUMBER(3,2) exceeds precision

123.89 NUMBER(4,2) exceeds precision

123.89 NUMBER(5,2) 123.89

123.89 NUMBER(6,1) 123.9

123.89 NUMBER(6,-2) 100

.01234 NUMBER(4,5) .01234

.00012 NUMBER(4,5) .00012

.000127 NUMBER(4,5) .00013

.0000012 NUMBER(2,7) .0000012

.00000123 NUMBER(2,7) .0000012

1.2e-4 NUMBER(2,5) 0.00012

1.2e-5 NUMBER(2,5) 0.00001

FLOAT Data Type
The FLOAT data type is a subtype of NUMBER. It can be specified with or without
precision, which has the same definition it has for NUMBER and can range from 1 to 126.

Chapter 2
Data Types

2-14

Scale cannot be specified, but is interpreted from the data. Each FLOAT value requires from 1
to 22 bytes.

To convert from binary to decimal precision, multiply n by 0.30103. To convert from decimal to
binary precision, multiply the decimal precision by 3.32193. The maximum of 126 digits of
binary precision is roughly equivalent to 38 digits of decimal precision.

The difference between NUMBER and FLOAT is best illustrated by example. In the following
example the same values are inserted into NUMBER and FLOAT columns:

CREATE TABLE test (col1 NUMBER(5,2), col2 FLOAT(5));

INSERT INTO test VALUES (1.23, 1.23);
INSERT INTO test VALUES (7.89, 7.89);
INSERT INTO test VALUES (12.79, 12.79);
INSERT INTO test VALUES (123.45, 123.45);

SELECT * FROM test;

 COL1 COL2
---------- ----------
 1.23 1.2
 7.89 7.9
 12.79 13
 123.45 120

In this example, the FLOAT value returned cannot exceed 5 binary digits. The largest decimal
number that can be represented by 5 binary digits is 31. The last row contains decimal values
that exceed 31. Therefore, the FLOAT value must be truncated so that its significant digits do
not require more than 5 binary digits. Thus 123.45 is rounded to 120, which has only two
significant decimal digits, requiring only 4 binary digits.

Oracle Database uses the Oracle FLOAT data type internally when converting ANSI FLOAT
data. Oracle FLOAT is available for you to use, but Oracle recommends that you use the
BINARY_FLOAT and BINARY_DOUBLE data types instead, as they are more robust. Refer to
Floating-Point Numbers for more information.

Floating-Point Numbers
Floating-point numbers can have a decimal point anywhere from the first to the last digit or
can have no decimal point at all. An exponent may optionally be used following the number to
increase the range, for example, 1.777 e-20. A scale value is not applicable to floating-point
numbers, because the number of digits that can appear after the decimal point is not
restricted.

Binary floating-point numbers differ from NUMBER in the way the values are stored internally by
Oracle Database. Values are stored using decimal precision for NUMBER. All literals that are
within the range and precision supported by NUMBER are stored exactly as NUMBER. Literals are
stored exactly because literals are expressed using decimal precision (the digits 0 through 9).
Binary floating-point numbers are stored using binary precision (the digits 0 and 1). Such a
storage scheme cannot represent all values using decimal precision exactly. Frequently, the
error that occurs when converting a value from decimal to binary precision is undone when
the value is converted back from binary to decimal precision. The literal 0.1 is such an
example.

Oracle Database provides two numeric data types exclusively for floating-point numbers:

Chapter 2
Data Types

2-15

BINARY_FLOAT

BINARY_FLOAT is a 32-bit, single-precision floating-point number data type. Each
BINARY_FLOAT value requires 4 bytes.

BINARY_DOUBLE

BINARY_DOUBLE is a 64-bit, double-precision floating-point number data type. Each
BINARY_DOUBLE value requires 8 bytes.

In a NUMBER column, floating point numbers have decimal precision. In a BINARY_FLOAT
or BINARY_DOUBLE column, floating-point numbers have binary precision. The binary
floating-point numbers support the special values infinity and NaN (not a number).

You can specify floating-point numbers within the limits listed in Table 2-3. The format
for specifying floating-point numbers is defined in Numeric Literals .

Table 2-3 Floating Point Number Limits

Value BINARY_FLOAT BINARY_DOUBLE

Maximum positive finite value 3.40282E+38F 1.79769313486231E+308

Minimum positive finite value 1.17549E-38F 2.22507485850720E-308

IEEE754 Conformance

The Oracle implementation of floating-point data types conforms substantially with the
Institute of Electrical and Electronics Engineers (IEEE) Standard for Binary Floating-
Point Arithmetic, IEEE Standard 754-1985 (IEEE754). The floating-point data types
conform to IEEE754 in the following areas:

• The SQL function SQRT implements square root. See SQRT .

• The SQL function REMAINDER implements remainder. See REMAINDER .

• Arithmetic operators conform. See Arithmetic Operators .

• Comparison operators conform, except for comparisons with NaN. Oracle orders
NaN greatest with respect to all other values, and evaluates NaN equal to NaN. See
Floating-Point Conditions .

• Conversion operators conform. See Conversion Functions .

• The default rounding mode is supported.

• The default exception handling mode is supported.

• The special values INF, -INF, and NaN are supported. See Floating-Point
Conditions .

• Rounding of BINARY_FLOAT and BINARY_DOUBLE values to integer-valued
BINARY_FLOAT and BINARY_DOUBLE values is provided by the SQL functions ROUND,
TRUNC, CEIL, and FLOOR.

• Rounding of BINARY_FLOAT/BINARY_DOUBLE to decimal and decimal to
BINARY_FLOAT/BINARY_DOUBLE is provided by the SQL functions TO_CHAR,
TO_NUMBER, TO_NCHAR, TO_BINARY_FLOAT, TO_BINARY_DOUBLE, and CAST.

The floating-point data types do not conform to IEEE754 in the following areas:

Chapter 2
Data Types

2-16

• -0 is coerced to +0.

• Comparison with NaN is not supported.

• All NaN values are coerced to either BINARY_FLOAT_NAN or BINARY_DOUBLE_NAN.

• Non-default rounding modes are not supported.

• Non-default exception handling mode are not supported.

Numeric Precedence
Numeric precedence determines, for operations that support numeric data types, the data
type Oracle uses if the arguments to the operation have different data types. BINARY_DOUBLE
has the highest numeric precedence, followed by BINARY_FLOAT, and finally by NUMBER.
Therefore, in any operation on multiple numeric values:

• If any of the operands is BINARY_DOUBLE, then Oracle attempts to convert all the operands
implicitly to BINARY_DOUBLE before performing the operation.

• If none of the operands is BINARY_DOUBLE but any of the operands is BINARY_FLOAT, then
Oracle attempts to convert all the operands implicitly to BINARY_FLOAT before performing
the operation.

• Otherwise, Oracle attempts to convert all the operands to NUMBER before performing the
operation.

If any implicit conversion is needed and fails, then the operation fails. Refer to Table 2-8 for
more information on implicit conversion.

In the context of other data types, numeric data types have lower precedence than the
datetime/interval data types and higher precedence than character and all other data types.

LONG Data Type
Do not create tables with LONG columns. Use LOB columns (CLOB, NCLOB, BLOB) instead. LONG
columns are supported only for backward compatibility.

LONG columns store variable-length character strings containing up to 2 gigabytes -1, or 231-1
bytes. LONG columns have many of the characteristics of VARCHAR2 columns. You can use
LONG columns to store long text strings. The length of LONG values may be limited by the
memory available on your computer. LONG literals are formed as described for Text Literals .

Oracle also recommends that you convert existing LONG columns to LOB columns. LOB
columns are subject to far fewer restrictions than LONG columns. Further, LOB functionality is
enhanced in every release, whereas LONG functionality has been static for several releases.
See the modify_col_properties clause of ALTER TABLE and TO_LOB for more information
on converting LONG columns to LOB.

You can reference LONG columns in SQL statements in these places:

• SELECT lists

• SET clauses of UPDATE statements

• VALUES clauses of INSERT statements

The use of LONG values is subject to these restrictions:

• A table can contain only one LONG column.

Chapter 2
Data Types

2-17

• You cannot create an object type with a LONG attribute.

• LONG columns cannot appear in WHERE clauses or in integrity constraints (except
that they can appear in NULL and NOT NULL constraints).

• LONG columns cannot be indexed.

• LONG data cannot be specified in regular expressions.

• A stored function cannot return a LONG value.

• You can declare a variable or argument of a PL/SQL program unit using the LONG
data type. However, you cannot then call the program unit from SQL.

• Within a single SQL statement, all LONG columns, updated tables, and locked
tables must be located on the same database.

• LONG and LONG RAW columns cannot be used in distributed SQL statements and
cannot be replicated.

• If a table has both LONG and LOB columns, then you cannot bind more than 4000
bytes of data to both the LONG and LOB columns in the same SQL statement.
However, you can bind more than 4000 bytes of data to either the LONG or the LOB
column.

In addition, LONG columns cannot appear in these parts of SQL statements:

• GROUP BY clauses, ORDER BY clauses, or CONNECT BY clauses or with the DISTINCT
operator in SELECT statements

• The UNIQUE operator of a SELECT statement

• The column list of a CREATE CLUSTER statement

• The CLUSTER clause of a CREATE MATERIALIZED VIEW statement

• SQL built-in functions, expressions, or conditions

• SELECT lists of queries containing GROUP BY clauses

• SELECT lists of subqueries or queries combined by the UNION, INTERSECT, or MINUS
set operators

• SELECT lists of CREATE TABLE ... AS SELECT statements

• ALTER TABLE ... MOVE statements

• SELECT lists in subqueries in INSERT statements

Triggers can use the LONG data type in the following manner:

• A SQL statement within a trigger can insert data into a LONG column.

• If data from a LONG column can be converted to a constrained data type (such as
CHAR and VARCHAR2), then a LONG column can be referenced in a SQL statement
within a trigger.

• Variables in triggers cannot be declared using the LONG data type.

• :NEW and :OLD cannot be used with LONG columns.

You can use Oracle Call Interface functions to retrieve a portion of a LONG value from
the database.

Chapter 2
Data Types

2-18

See Also:

Oracle Call Interface Programmer's Guide

Datetime and Interval Data Types
The datetime data types are DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP
WITH LOCAL TIME ZONE. Values of datetime data types are sometimes called datetimes. The
interval data types are INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND. Values of
interval data types are sometimes called intervals. For information on expressing datetime
and interval values as literals, refer to Datetime Literals and Interval Literals.

Both datetimes and intervals are made up of fields. The values of these fields determine the
value of the data type. Table 2-4 lists the datetime fields and their possible values for
datetimes and intervals.

To avoid unexpected results in your DML operations on datetime data, you can verify the
database and session time zones by querying the built-in SQL functions DBTIMEZONE and
SESSIONTIMEZONE. If the time zones have not been set manually, then Oracle Database uses
the operating system time zone by default. If the operating system time zone is not a valid
Oracle time zone, then Oracle uses UTC as the default value.

Table 2-4 Datetime Fields and Values

Datetime Field Valid Values for Datetime Valid Values for INTERVAL

YEAR -4712 to 9999 (excluding year 0) Any positive or negative
integer

MONTH 01 to 12 0 to 11

DAY 01 to 31 (limited by the values of MONTH and YEAR,
according to the rules of the current NLS calendar
parameter)

Any positive or negative
integer

HOUR 00 to 23 0 to 23

MINUTE 00 to 59 0 to 59

SECOND 00 to 59.9(n), where 9(n) is the precision of time
fractional seconds. The 9(n) portion is not applicable
for DATE.

0 to 59.9(n), where 9(n) is the
precision of interval fractional
seconds

TIMEZONE_HOUR -12 to 14 (This range accommodates daylight saving
time changes.) Not applicable for DATE or
TIMESTAMP.

Not applicable

TIMEZONE_MINUTE
(See note at end of table)

00 to 59. Not applicable for DATE or TIMESTAMP. Not applicable

TIMEZONE_REGION Query the TZNAME column of the
V$TIMEZONE_NAMES data dictionary view. Not
applicable for DATE or TIMESTAMP. For a complete
listing of all time zone region names, refer to Oracle
Database Globalization Support Guide.

Not applicable

Chapter 2
Data Types

2-19

Table 2-4 (Cont.) Datetime Fields and Values

Datetime Field Valid Values for Datetime Valid Values for INTERVAL

TIMEZONE_ABBR Query the TZABBREV column of the
V$TIMEZONE_NAMES data dictionary view. Not
applicable for DATE or TIMESTAMP.

Not applicable

Note:

TIMEZONE_HOUR and TIMEZONE_MINUTE are specified together and interpreted
as an entity in the format +|- hh:mi, with values ranging from -12:59 to
+14:00. Refer to Oracle Data Provider for .NET Developer's Guide for
Microsoft Windows for information on specifying time zone values for that
API.

DATE Data Type
The DATE data type stores date and time information. Although date and time
information can be represented in both character and number data types, the DATE
data type has special associated properties. For each DATE value, Oracle stores the
following information: year, month, day, hour, minute, and second.

You can specify a DATE value as a literal, or you can convert a character or numeric
value to a date value with the TO_DATE function. For examples of expressing DATE
values in both these ways, refer to Datetime Literals .

Using Julian Days

A Julian day number is the number of days since January 1, 4712 BC. Julian days
allow continuous dating from a common reference. You can use the date format model
"J" with date functions TO_DATE and TO_CHAR to convert between Oracle DATE values
and their Julian equivalents.

Note:

Oracle Database uses the astronomical system of calculating Julian days, in
which the year 4713 BC is specified as -4712. The historical system of
calculating Julian days, in contrast, specifies 4713 BC as -4713. If you are
comparing Oracle Julian days with values calculated using the historical
system, then take care to allow for the 365-day difference in BC dates. For
more information, see http://aa.usno.navy.mil/faq/docs/
millennium.php.

The default date values are determined as follows:

• The year is the current year, as returned by SYSDATE.

• The month is the current month, as returned by SYSDATE.

Chapter 2
Data Types

2-20

http://aa.usno.navy.mil/faq/docs/millennium.php
http://aa.usno.navy.mil/faq/docs/millennium.php

• The day is 01 (the first day of the month).

• The hour, minute, and second are all 0.

These default values are used in a query that requests date values where the date itself is
not specified, as in the following example, which is issued in the month of May:

SELECT TO_DATE('2009', 'YYYY')
 FROM DUAL;

TO_DATE('

01-MAY-09

Example

This statement returns the Julian equivalent of January 1, 2009:

SELECT TO_CHAR(TO_DATE('01-01-2009', 'MM-DD-YYYY'),'J')
 FROM DUAL;

TO_CHAR

2454833

See Also:

Selecting from the DUAL Table for a description of the DUAL table

TIMESTAMP Data Type
The TIMESTAMP data type is an extension of the DATE data type. It stores the year, month, and
day of the DATE data type, plus hour, minute, and second values. This data type is useful for
storing precise time values and for collecting and evaluating date information across
geographic regions. Specify the TIMESTAMP data type as follows:

TIMESTAMP [(fractional_seconds_precision)]

where fractional_seconds_precision optionally specifies the number of digits Oracle
stores in the fractional part of the SECOND datetime field. When you create a column of this
data type, the value can be a number in the range 0 to 9. The default is 6.

See Also:

TO_TIMESTAMP for information on converting character data to TIMESTAMP data

TIMESTAMP WITH TIME ZONE Data Type
TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that includes a time zone region name
or a time zone offset in its value. The time zone offset is the difference (in hours and
minutes) between local time and UTC (Coordinated Universal Time—formerly Greenwich
Mean Time). This data type is useful for preserving local time zone information.

Chapter 2
Data Types

2-21

Specify the TIMESTAMP WITH TIME ZONE data type as follows:

TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE

where fractional_seconds_precision optionally specifies the number of digits
Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this data type, the value can be a number in the range 0 to 9. The default is
6.

Oracle time zone data is derived from the public domain information available at
http://www.iana.org/time-zones/. Oracle time zone data may not reflect the most
recent data available at this site.

See Also:

• Oracle Database Globalization Support Guide for more information on
Oracle time zone data

• Support for Daylight Saving Times and Table 2-19 for information on
daylight saving support

• TO_TIMESTAMP_TZ for information on converting character data to
TIMESTAMP WITH TIME ZONE data

• ALTER SESSION for information on the ERROR_ON_OVERLAP_TIME
session parameter

TIMESTAMP WITH LOCAL TIME ZONE Data Type
TIMESTAMP WITH LOCAL TIME ZONE is another variant of TIMESTAMP that is sensitive to
time zone information. It differs from TIMESTAMP WITH TIME ZONE in that data stored in
the database is normalized to the database time zone, and the time zone information
is not stored as part of the column data. When a user retrieves the data, Oracle
returns it in the user's local session time zone. This data type is useful for date
information that is always to be displayed in the time zone of the client system in a
two-tier application.

Specify the TIMESTAMP WITH LOCAL TIME ZONE data type as follows:

TIMESTAMP [(fractional_seconds_precision)] WITH LOCAL TIME ZONE

where fractional_seconds_precision optionally specifies the number of digits
Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this data type, the value can be a number in the range 0 to 9. The default is
6.

Oracle time zone data is derived from the public domain information available at
http://www.iana.org/time-zones/. Oracle time zone data may not reflect the most
recent data available at this site.

Chapter 2
Data Types

2-22

http://www.iana.org/time-zones/
http://www.iana.org/time-zones/

See Also:

• Oracle Database Globalization Support Guide for more information on Oracle
time zone data

• Oracle Database Development Guide for examples of using this data type and
CAST for information on converting character data to TIMESTAMP WITH LOCAL
TIME ZONE

INTERVAL YEAR TO MONTH Data Type
INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime fields.
This data type is useful for representing the difference between two datetime values when
only the year and month values are significant.

Specify INTERVAL YEAR TO MONTH as follows:

INTERVAL YEAR [(year_precision)] TO MONTH

where year_precision is the number of digits in the YEAR datetime field. The default value of
year_precision is 2.

You have a great deal of flexibility when specifying interval values as literals. Refer to Interval
Literals for detailed information on specifying interval values as literals. Also see Datetime
and Interval Examples for an example using intervals.

INTERVAL DAY TO SECOND Data Type
INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and
seconds. This data type is useful for representing the precise difference between two
datetime values.

Specify this data type as follows:

INTERVAL DAY [(day_precision)]
 TO SECOND [(fractional_seconds_precision)]

where

• day_precision is the number of digits in the DAY datetime field. Accepted values are 0 to
9. The default is 2.

• fractional_seconds_precision is the number of digits in the fractional part of the
SECOND datetime field. Accepted values are 0 to 9. The default is 6.

You have a great deal of flexibility when specifying interval values as literals. Refer to Interval
Literals for detailed information on specify interval values as literals. Also see Datetime and
Interval Examples for an example using intervals.

Datetime/Interval Arithmetic
You can perform a number of arithmetic operations on date (DATE), timestamp (TIMESTAMP,
TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE) and interval (INTERVAL DAY
TO SECOND and INTERVAL YEAR TO MONTH) data. Oracle calculates the results based on the
following rules:

Chapter 2
Data Types

2-23

• You can use NUMBER constants in arithmetic operations on date and timestamp
values, but not interval values. Oracle internally converts timestamp values to date
values and interprets NUMBER constants in arithmetic datetime and interval
expressions as numbers of days. For example, SYSDATE + 1 is tomorrow. SYSDATE -
7 is one week ago. SYSDATE + (10/1440) is ten minutes from now. Subtracting the
hire_date column of the sample table employees from SYSDATE returns the
number of days since each employee was hired. You cannot multiply or divide date
or timestamp values.

• Oracle implicitly converts BINARY_FLOAT and BINARY_DOUBLE operands to NUMBER.

• Each DATE value contains a time component, and the result of many date
operations include a fraction. This fraction means a portion of one day. For
example, 1.5 days is 36 hours. These fractions are also returned by Oracle built-in
functions for common operations on DATE data. For example, the MONTHS_BETWEEN
function returns the number of months between two dates. The fractional portion of
the result represents that portion of a 31-day month.

• If one operand is a DATE value or a numeric value, neither of which contains time
zone or fractional seconds components, then:

– Oracle implicitly converts the other operand to DATE data. The exception is
multiplication of a numeric value times an interval, which returns an interval.

– If the other operand has a time zone value, then Oracle uses the session time
zone in the returned value.

– If the other operand has a fractional seconds value, then the fractional
seconds value is lost.

• When you pass a timestamp, interval, or numeric value to a built-in function that
was designed only for the DATE data type, Oracle implicitly converts the non-DATE
value to a DATE value. Refer to Datetime Functions for information on which
functions cause implicit conversion to DATE.

• When interval calculations return a datetime value, the result must be an actual
datetime value or the database returns an error. For example, the next two
statements return errors:

SELECT TO_DATE('31-AUG-2004','DD-MON-YYYY') + TO_YMINTERVAL('0-1')
 FROM DUAL;

SELECT TO_DATE('29-FEB-2004','DD-MON-YYYY') + TO_YMINTERVAL('1-0')
 FROM DUAL;

The first fails because adding one month to a 31-day month would result in
September 31, which is not a valid date. The second fails because adding one
year to a date that exists only every four years is not valid. However, the next
statement succeeds, because adding four years to a February 29 date is valid:

SELECT TO_DATE('29-FEB-2004', 'DD-MON-YYYY') + TO_YMINTERVAL('4-0')
 FROM DUAL;

TO_DATE('

29-FEB-08

• Oracle performs all timestamp arithmetic in UTC time. For TIMESTAMP WITH LOCAL
TIME ZONE, Oracle converts the datetime value from the database time zone to
UTC and converts back to the database time zone after performing the arithmetic.

Chapter 2
Data Types

2-24

For TIMESTAMP WITH TIME ZONE, the datetime value is always in UTC, so no conversion is
necessary.

Table 2-5 is a matrix of datetime arithmetic operations. Dashes represent operations that are
not supported.

Table 2-5 Matrix of Datetime Arithmetic

Operand & Operator DATE TIMESTAMP INTERVAL Numeric

DATE
+ — — DATE DATE
- NUMBER INTERVAL DATE DATE
* — — — —
/ — — — —
TIMESTAMP
+ — — TIMESTAMP DATE
- INTERVAL INTERVAL TIMESTAMP DATE
* — — — —
/ — — — —
INTERVAL
+ DATE TIMESTAMP INTERVAL —
- — — INTERVAL —
* — — — INTERVAL
/ — — — INTERVAL
Numeric
+ DATE DATE — NA
- — — — NA
* — — INTERVAL NA
/ — — — NA

Examples

You can add an interval value expression to a start time. Consider the sample table
oe.orders with a column order_date. The following statement adds 30 days to the value of
the order_date column:

SELECT order_id, order_date + INTERVAL '30' DAY AS "Due Date"
 FROM orders
 ORDER BY order_id, "Due Date";

Support for Daylight Saving Times
Oracle Database automatically determines, for any given time zone region, whether daylight
saving is in effect and returns local time values accordingly. The datetime value is sufficient
for Oracle to determine whether daylight saving time is in effect for a given region in all cases
except boundary cases. A boundary case occurs during the period when daylight saving
goes into or comes out of effect. For example, in the US-Pacific region, when daylight saving

Chapter 2
Data Types

2-25

goes into effect, the time changes from 2:00 a.m. to 3:00 a.m. The one hour interval
between 2 and 3 a.m. does not exist. When daylight saving goes out of effect, the time
changes from 2:00 a.m. back to 1:00 a.m., and the one-hour interval between 1 and 2
a.m. is repeated.

To resolve these boundary cases, Oracle uses the TZR and TZD format elements, as
described in Table 2-19. TZR represents the time zone region name in datetime input
strings. Examples are 'Australia/North', 'UTC', and 'Singapore'. TZD represents an
abbreviated form of the time zone region name with daylight saving information.
Examples are 'PST' for US/Pacific standard time and 'PDT' for US/Pacific daylight time.
To see a listing of valid values for the TZR and TZD format elements, query the TZNAME
and TZABBREV columns of the V$TIMEZONE_NAMES dynamic performance view.

Note:

Time zone region names are needed by the daylight saving feature. These
names are stored in two types of time zone files: one large and one small.
One of these files is the default file, depending on your environment and the
release of Oracle Database you are using. For more information regarding
time zone files and names, see Oracle Database Globalization Support
Guide.

For a complete listing of the time zone region names in both files, refer to Oracle
Database Globalization Support Guide.

Oracle time zone data is derived from the public domain information available at
http://www.iana.org/time-zones/. Oracle time zone data may not reflect the most
recent data available at this site.

See Also:

• Datetime Format Models for information on the format elements and the
session parameter ERROR_ON_OVERLAP_TIME .

• Oracle Database Globalization Support Guide for more information on
Oracle time zone data

• Oracle Database Reference for information on the dynamic performance
views

Datetime and Interval Examples
The following example shows how to specify some datetime and interval data types.

CREATE TABLE time_table
 (start_time TIMESTAMP,
 duration_1 INTERVAL DAY (6) TO SECOND (5),
 duration_2 INTERVAL YEAR TO MONTH);

The start_time column is of type TIMESTAMP. The implicit fractional seconds precision
of TIMESTAMP is 6.

Chapter 2
Data Types

2-26

http://www.iana.org/time-zones/

The duration_1 column is of type INTERVAL DAY TO SECOND. The maximum number of digits in
field DAY is 6 and the maximum number of digits in the fractional second is 5. The maximum
number of digits in all other datetime fields is 2.

The duration_2 column is of type INTERVAL YEAR TO MONTH. The maximum number of digits of
the value in each field (YEAR and MONTH) is 2.

Interval data types do not have format models. Therefore, to adjust their presentation, you
must combine character functions such as EXTRACT and concatenate the components. For
example, the following examples query the hr.employees and oe.orders tables, respectively,
and change interval output from the form "yy-mm" to "yy years mm months" and from "dd-hh"
to "dddd days hh hours":

SELECT last_name, EXTRACT(YEAR FROM (SYSDATE - hire_date) YEAR TO MONTH)
 || ' years '
 || EXTRACT(MONTH FROM (SYSDATE - hire_date) YEAR TO MONTH)
 || ' months' "Interval"
 FROM employees;

LAST_NAME Interval
------------------------- --------------------
OConnell 2 years 3 months
Grant 1 years 9 months
Whalen 6 years 1 months
Hartstein 5 years 8 months
Fay 4 years 2 months
Mavris 7 years 4 months
Baer 7 years 4 months
Higgins 7 years 4 months
Gietz 7 years 4 months
. . .

SELECT order_id, EXTRACT(DAY FROM (SYSDATE - order_date) DAY TO SECOND)
 || ' days '
 || EXTRACT(HOUR FROM (SYSDATE - order_date) DAY TO SECOND)
 || ' hours' "Interval"
 FROM orders;

 ORDER_ID Interval
---------- --------------------
 2458 780 days 23 hours
 2397 685 days 22 hours
 2454 733 days 21 hours
 2354 447 days 20 hours
 2358 635 days 20 hours
 2381 508 days 18 hours
 2440 765 days 17 hours
 2357 1365 days 16 hours
 2394 602 days 15 hours
 2435 763 days 15 hours
. . .

RAW and LONG RAW Data Types
The RAW and LONG RAW data types store data that is not to be explicitly converted by Oracle
Database when moving data between different systems. These data types are intended for
binary data or byte strings. For example, you can use LONG RAW to store graphics, sound,
documents, or arrays of binary data, for which the interpretation is dependent on the use.

Chapter 2
Data Types

2-27

Oracle strongly recommends that you convert LONG RAW columns to binary LOB (BLOB)
columns. LOB columns are subject to far fewer restrictions than LONG columns. See
TO_LOB for more information.

RAW is a variable-length data type like VARCHAR2, except that Oracle Net (which
connects client software to a database or one database to another) and the Oracle
import and export utilities do not perform character conversion when transmitting RAW
or LONG RAW data. In contrast, Oracle Net and the Oracle import and export utilities
automatically convert CHAR, VARCHAR2, and LONG data between different database
character sets, if data is transported between databases, or between the database
character set and the client character set, if data is transported between a database
and a client. The client character set is determined by the type of the client interface,
such as OCI or JDBC, and the client configuration (for example, the NLS_LANG
environment variable).

When Oracle implicitly converts RAW or LONG RAW data to character data, the resulting
character value contains a hexadecimal representation of the binary input, where each
character is a hexadecimal digit (0-9, A-F) representing four consecutive bits of RAW
data. For example, one byte of RAW data with bits 11001011 becomes the value CB.

When Oracle implicitly converts character data to RAW or LONG RAW, it interprets each
consecutive input character as a hexadecimal representation of four consecutive bits
of binary data and builds the resulting RAW or LONG RAW value by concatenating those
bits. If any of the input characters is not a hexadecimal digit (0-9, A-F, a-f), then an
error is reported. If the number of characters is odd, then the result is undefined.

The SQL functions RAWTOHEX and HEXTORAW perform explicit conversions that are
equivalent to the above implicit conversions. Other types of conversions between RAW
and character data are possible with functions in the Oracle-supplied PL/SQL
packages UTL_RAW and UTL_I18N.

Large Object (LOB) Data Types
The built-in LOB data types BLOB, CLOB, and NCLOB (stored internally) and BFILE (stored
externally) can store large and unstructured data such as text, image, video, and
spatial data. The size of BLOB, CLOB, and NCLOB data can be up to (232-1 bytes) * (the
value of the CHUNK parameter of LOB storage). If the tablespaces in your database are
of standard block size, and if you have used the default value of the CHUNK parameter
of LOB storage when creating a LOB column, then this is equivalent to (232-1 bytes) *
(database block size). BFILE data can be up to 264-1 bytes, although your operating
system may impose restrictions on this maximum.

When creating a table, you can optionally specify different tablespace and storage
characteristics for LOB columns or LOB object attributes from those specified for the
table.

CLOB, NCLOB, and BLOB values up to approximately 4000 bytes are stored inline if you
enable storage in row at the time the LOB column is created. LOBs greater than 4000
bytes are always stored externally. Refer to ENABLE STORAGE IN ROW for more
information.

LOB columns contain LOB locators that can refer to internal (in the database) or
external (outside the database) LOB values. Selecting a LOB from a table actually
returns the LOB locator and not the entire LOB value. The DBMS_LOB package and
Oracle Call Interface (OCI) operations on LOBs are performed through these locators.

Chapter 2
Data Types

2-28

LOBs are similar to LONG and LONG RAW types, but differ in the following ways:

• LOBs can be attributes of an object type (user-defined data type).

• The LOB locator is stored in the table column, either with or without the actual LOB value.
BLOB, NCLOB, and CLOB values can be stored in separate tablespaces. BFILE data is stored
in an external file on the server.

• When you access a LOB column, the locator is returned.

• A LOB can be up to (232-1 bytes)*(database block size) in size. BFILE data can be up to
264-1 bytes, although your operating system may impose restrictions on this maximum.

• LOBs permit efficient, random, piece-wise access to and manipulation of data.

• You can define more than one LOB column in a table.

• With the exception of NCLOB, you can define one or more LOB attributes in an object.

• You can declare LOB bind variables.

• You can select LOB columns and LOB attributes.

• You can insert a new row or update an existing row that contains one or more LOB
columns or an object with one or more LOB attributes. In update operations, you can set
the internal LOB value to NULL, empty, or replace the entire LOB with data. You can set
the BFILE to NULL or make it point to a different file.

• You can update a LOB row-column intersection or a LOB attribute with another LOB row-
column intersection or LOB attribute.

• You can delete a row containing a LOB column or LOB attribute and thereby also delete
the LOB value. For BFILEs, the actual operating system file is not deleted.

You can access and populate rows of an inline LOB column (a LOB column stored in the
database) or a LOB attribute (an attribute of an object type column stored in the database)
simply by issuing an INSERT or UPDATE statement.

Restrictions on LOB Columns

LOB columns are subject to a number of rules and restrictions. See Oracle Database
SecureFiles and Large Objects Developer's Guide for a complete listing.

See Also:

• Oracle Database PL/SQL Packages and Types Reference and Oracle Call
Interface Programmer's Guide for more information about these interfaces and
LOBs

• the modify_col_properties clause of ALTER TABLE and TO_LOB for more
information on converting LONG columns to LOB columns

BFILE Data Type
The BFILE data type enables access to binary file LOBs that are stored in file systems outside
Oracle Database. A BFILE column or attribute stores a BFILE locator, which serves as a
pointer to a binary file on the server file system. The locator maintains the directory name and
the filename.

Chapter 2
Data Types

2-29

You can change the filename and path of a BFILE without affecting the base table by
using the BFILENAME function. Refer to BFILENAME for more information on this built-
in SQL function.

Binary file LOBs do not participate in transactions and are not recoverable. Rather, the
underlying operating system provides file integrity and durability. BFILE data can be up
to 264-1 bytes, although your operating system may impose restrictions on this
maximum.

The database administrator must ensure that the external file exists and that Oracle
processes have operating system read permissions on the file.

The BFILE data type enables read-only support of large binary files. You cannot modify
or replicate such a file. Oracle provides APIs to access file data. The primary
interfaces that you use to access file data are the DBMS_LOB package and Oracle Call
Interface (OCI).

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide and
Oracle Call Interface Programmer's Guide for more information about LOBs
and CREATE DIRECTORY

BLOB Data Type
The BLOB data type stores unstructured binary large objects. BLOB objects can be
thought of as bitstreams with no character set semantics. BLOB objects can store
binary data up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage).
If the tablespaces in your database are of standard block size, and if you have used
the default value of the CHUNK parameter of LOB storage when creating a LOB column,
then this is equivalent to (4 gigabytes - 1) * (database block size).

BLOB objects have full transactional support. Changes made through SQL, the
DBMS_LOB package, or Oracle Call Interface (OCI) participate fully in the transaction.
BLOB value manipulations can be committed and rolled back. However, you cannot
save a BLOB locator in a PL/SQL or OCI variable in one transaction and then use it in
another transaction or session.

CLOB Data Type
The CLOB data type stores single-byte and multibyte character data. Both fixed-width
and variable-width character sets are supported, and both use the database character
set. CLOB objects can store up to (4 gigabytes -1) * (the value of the CHUNK parameter
of LOB storage) of character data. If the tablespaces in your database are of standard
block size, and if you have used the default value of the CHUNK parameter of LOB
storage when creating a LOB column, then this is equivalent to (4 gigabytes - 1) *
(database block size).

CLOB objects have full transactional support. Changes made through SQL, the
DBMS_LOB package, or Oracle Call Interface (OCI) participate fully in the transaction.
CLOB value manipulations can be committed and rolled back. However, you cannot
save a CLOB locator in a PL/SQL or OCI variable in one transaction and then use it in
another transaction or session.

Chapter 2
Data Types

2-30

NCLOB Data Type
The NCLOB data type stores Unicode data. Both fixed-width and variable-width character sets
are supported, and both use the national character set. NCLOB objects can store up to (4
gigabytes -1) * (the value of the CHUNK parameter of LOB storage) of character text data. If the
tablespaces in your database are of standard block size, and if you have used the default
value of the CHUNK parameter of LOB storage when creating a LOB column, then this is
equivalent to (4 gigabytes - 1) * (database block size).

NCLOB objects have full transactional support. Changes made through SQL, the DBMS_LOB
package, or OCI participate fully in the transaction. NCLOB value manipulations can be
committed and rolled back. However, you cannot save an NCLOB locator in a PL/SQL or OCI
variable in one transaction and then use it in another transaction or session.

See Also:

Oracle Database Globalization Support Guide for information on Unicode data type
support

JSON Data Type
Release 21c introduces a dedicated JSON data type.

You can use the JSON data type to store JSON data natively in binary format. This improves
query performance because textual JSON data no longer needs to be parsed. You can create
JSON type instances from other SQL data, and conversely.

You must set the database initialization parameter compatible to 20 in order to use the new
JSON data type.

The other SQL data types that support JSON data, besides JSON type, are VARCHAR2, CLOB,
and BLOB. Non-JSON type data is called textual, or serialized, JSON data. It is unparsed
character data.

You can use the JSON constructor function to convert textual JSON data to JSON type data.

To convert JSON type data to textual data, you can use the JSON_SERIALIZE function.

You can create complex JSON type data from non-JSON type data using the JSON generation
functions: JSON_OBJECT, JSON_ARRAY, JSON_OBJECTAGG, and JSON_ARRAYAGG.

You can create a JSON type instance with a scalar JSON value using the function
JSON_SCALAR .

In the other direction, you can use the function JSON_VALUE to query JSON type data and
return an instance of a SQL object type or collection type.

See Also:

• Overview of JSON in Oracle Database

Chapter 2
Data Types

2-31

Extended Data Types
Beginning with Oracle Database 12c, you can specify a maximum size of 32767 bytes
for the VARCHAR2, NVARCHAR2, and RAW data types. You can control whether your
database supports this new maximum size by setting the initialization parameter
MAX_STRING_SIZE as follows:

• If MAX_STRING_SIZE = STANDARD, then the size limits for releases prior to Oracle
Database 12c apply: 4000 bytes for the VARCHAR2 and NVARCHAR2 data types, and
2000 bytes for the RAW data type. This is the default.

• If MAX_STRING_SIZE = EXTENDED, then the size limit is 32767 bytes for the VARCHAR2,
NVARCHAR2, and RAW data types.

See Also:

Setting MAX_STRING_SIZE = EXTENDED may update database objects and
possibly invalidate them. Refer to Oracle Database Reference for complete
information on the implications of this parameter and how to set and enable
this new functionality.

A VARCHAR2 or NVARCHAR2 data type with a declared size of greater than 4000 bytes, or
a RAW data type with a declared size of greater than 2000 bytes, is an extended data
type. Extended data type columns are stored out-of-line, leveraging Oracle's LOB
technology. The LOB storage is always aligned with the table. In tablespaces managed
with Automatic Segment Space Management (ASSM), extended data type columns
are stored as SecureFiles LOBs. Otherwise, they are stored as BasicFiles LOBs. The
use of LOBs as a storage mechanism is internal only. Therefore, you cannot
manipulate these LOBs using the DBMS_LOB package.

Note:

• Oracle strongly discourages the use of BasicFiles LOBs as a storage
mechanism. BasicFiles LOBs not only impose restrictions on the
capabilities of extended data type columns, but the BasicFiles data type
is planned to be deprecated in a future release.

• Extended data types are subject to the same rules and restrictions as
LOBs. Refer to Oracle Database SecureFiles and Large Objects
Developer's Guide for more information.

Note that, although you must set MAX_STRING_SIZE = EXTENDED in order to set the size
of a RAW data type to greater than 2000 bytes, a RAW data type is stored as an out-of-
line LOB only if it has a size of greater than 4000 bytes. For example, you must set
MAX_STRING_SIZE = EXTENDED in order to declare a RAW(3000) data type. However, the
column is stored inline.

You can use extended data types just as you would standard data types, with the
following considerations:

Chapter 2
Data Types

2-32

• For special considerations when creating an index on an extended data type column, or
when requiring an index to enforce a primary key or unique constraint, see Creating an
Index on an Extended Data Type Column.

• If the partitioning key column for a list partition is an extended data type column, then the
list of values that you want to specify for a partition may exceed the 4K byte limit for the
partition bounds. See the list_partitions clause of CREATE TABLE for information on how to
work around this issue.

• The value of the initialization parameter MAX_STRING_SIZE affects the following:

– The maximum length of a text literal. See Text Literals for more information.

– The size limit for concatenating two character strings. See Concatenation Operator
for more information.

– The length of the collation key returned by the NLSSORT function. See NLSSORT .

– The size of some of the attributes of the XMLFormat object. See XML Format Model
for more information.

– The size of some expressions in the following XML functions: XMLCOLATTVAL ,
XMLELEMENT , XMLFOREST , XMLPI , and XMLTABLE .

Rowid Data Types
Each row in the database has an address. The sections that follow describe the two forms of
row address in an Oracle Database.

ROWID Data Type
The rows in heap-organized tables that are native to Oracle Database have row addresses
called rowids. You can examine a rowid row address by querying the pseudocolumn ROWID.
Values of this pseudocolumn are strings representing the address of each row. These strings
have the data type ROWID. You can also create tables and clusters that contain actual
columns having the ROWID data type. Oracle Database does not guarantee that the values of
such columns are valid rowids. Refer to Pseudocolumns for more information on the ROWID
pseudocolumn.

Rowids contain the following information:

• The data block of the data file containing the row. The length of this string depends on
your operating system.

• The row in the data block.

• The database file containing the row. The first data file has the number 1. The length of
this string depends on your operating system.

• The data object number, which is an identification number assigned to every database
segment. You can retrieve the data object number from the data dictionary views
USER_OBJECTS, DBA_OBJECTS, and ALL_OBJECTS. Objects that share the same segment
(clustered tables in the same cluster, for example) have the same object number.

Rowids are stored as base 64 values that can contain the characters A-Z, a-z, 0-9, and the
plus sign (+) and forward slash (/). Rowids are not available directly. You can use the supplied
package DBMS_ROWID to interpret rowid contents. The package functions extract and provide
information on the four rowid elements listed above.

Chapter 2
Data Types

2-33

See Also:

Oracle Database PL/SQL Packages and Types Reference for information on
the functions available with the DBMS_ROWID package and how to use them

UROWID Data Type
The rows of some tables have addresses that are not physical or permanent or were
not generated by Oracle Database. For example, the row addresses of index-
organized tables are stored in index leaves, which can move. Rowids of foreign tables
(such as DB2 tables accessed through a gateway) are not standard Oracle rowids.

Oracle uses universal rowids (urowids) to store the addresses of index-organized and
foreign tables. Index-organized tables have logical urowids and foreign tables have
foreign urowids. Both types of urowid are stored in the ROWID pseudocolumn (as are
the physical rowids of heap-organized tables).

Oracle creates logical rowids based on the primary key of the table. The logical rowids
do not change as long as the primary key does not change. The ROWID pseudocolumn
of an index-organized table has a data type of UROWID. You can access this
pseudocolumn as you would the ROWID pseudocolumn of a heap-organized table
(using a SELECT ... ROWID statement). If you want to store the rowids of an index-
organized table, then you can define a column of type UROWID for the table and retrieve
the value of the ROWID pseudocolumn into that column.

ANSI, DB2, and SQL/DS Data Types
SQL statements that create tables and clusters can also use ANSI data types and data
types from the IBM products SQL/DS and DB2. Oracle recognizes the ANSI or IBM
data type name that differs from the Oracle Database data type name. It converts the
data type to the equivalent Oracle data type, records the Oracle data type as the name
of the column data type, and stores the column data in the Oracle data type based on
the conversions shown in the tables that follow.

Table 2-6 ANSI Data Types Converted to Oracle Data Types

ANSI SQL Data Type Oracle Data Type

CHARACTER(n)
CHAR(n)

CHAR(n)

CHARACTER VARYING(n)
CHAR VARYING(n)

VARCHAR2(n)

NATIONAL CHARACTER(n)
NATIONAL CHAR(n)
NCHAR(n)

NCHAR(n)

NATIONAL CHARACTER VARYING(n)
NATIONAL CHAR VARYING(n)
NCHAR VARYING(n)

NVARCHAR2(n)

Chapter 2
Data Types

2-34

Table 2-6 (Cont.) ANSI Data Types Converted to Oracle Data Types

ANSI SQL Data Type Oracle Data Type

NUMERIC[(p,s)]
DECIMAL[(p,s)] (Note 1)

NUMBER(p,s)

INTEGER
INT
SMALLINT

NUMBER(38)

FLOAT (Note 2)

DOUBLE PRECISION (Note 3)

REAL (Note 4)

FLOAT(126)
FLOAT(126)
FLOAT(63)

Notes:

1. The NUMERIC and DECIMAL data types can specify only fixed-point numbers. For those
data types, the scale (s) defaults to 0.

2. The FLOAT data type is a floating-point number with a binary precision b. The default
precision for this data type is 126 binary, or 38 decimal.

3. The DOUBLE PRECISION data type is a floating-point number with binary precision 126.

4. The REAL data type is a floating-point number with a binary precision of 63, or 18 decimal.

Do not define columns with the following SQL/DS and DB2 data types, because they have no
corresponding Oracle data type:

• GRAPHIC
• LONG VARGRAPHIC
• VARGRAPHIC
• TIME
Note that data of type TIME can also be expressed as Oracle datetime data.

See Also:

Datetime and Interval Data Types

Table 2-7 SQL/DS and DB2 Data Types Converted to Oracle Data Types

SQL/DS or DB2 Data Type Oracle Data Type

CHARACTER(n) CHAR(n)
VARCHAR(n) VARCHAR(n)
LONG VARCHAR LONG
DECIMAL(p,s) (Note 1) NUMBER(p,s)

Chapter 2
Data Types

2-35

Table 2-7 (Cont.) SQL/DS and DB2 Data Types Converted to Oracle Data Types

SQL/DS or DB2 Data Type Oracle Data Type

INTEGER
SMALLINT

NUMBER(p,0)

FLOAT (Note 2) NUMBER

Notes:

1. The DECIMAL data type can specify only fixed-point numbers. For this data type, s
defaults to 0.

2. The FLOAT data type is a floating-point number with a binary precision b. The
default precision for this data type is 126 binary or 38 decimal.

User-Defined Types
User-defined data types use Oracle built-in data types and other user-defined data
types as the building blocks of object types that model the structure and behavior of
data in applications. The sections that follow describe the various categories of user-
defined types.

See Also:

• Oracle Database Concepts for information about Oracle built-in data
types

• CREATE TYPE and the CREATE TYPE BODY for information about
creating user-defined types

• Oracle Database Object-Relational Developer's Guide for information
about using user-defined types

Object Types
Object types are abstractions of the real-world entities, such as purchase orders, that
application programs deal with. An object type is a schema object with three kinds of
components:

• A name, which identifies the object type uniquely within that schema.

• Attributes, which are built-in types or other user-defined types. Attributes model
the structure of the real-world entity.

• Methods, which are functions or procedures written in PL/SQL and stored in the
database, or written in a language like C or Java and stored externally. Methods
implement operations the application can perform on the real-world entity.

Chapter 2
Data Types

2-36

REF Data Types
An object identifier (represented by the keyword OID) uniquely identifies an object and
enables you to reference the object from other objects or from relational tables. A data type
category called REF represents such references. A REF data type is a container for an object
identifier. REF values are pointers to objects.

When a REF value points to a nonexistent object, the REF is said to be "dangling". A dangling
REF is different from a null REF. To determine whether a REF is dangling or not, use the
condition IS [NOT] DANGLING. For example, given object view oc_orders in the sample schema
oe, the column customer_ref is of type REF to type customer_typ, which has an attribute
cust_email:

SELECT o.customer_ref.cust_email
 FROM oc_orders o
 WHERE o.customer_ref IS NOT DANGLING;

Varrays
An array is an ordered set of data elements. All elements of a given array are of the same
data type. Each element has an index, which is a number corresponding to the position of
the element in the array.

The number of elements in an array is the size of the array. Oracle arrays are of variable size,
which is why they are called varrays. You must specify a maximum size when you declare
the varray.

When you declare a varray, it does not allocate space. It defines a type, which you can use
as:

• The data type of a column of a relational table

• An object type attribute

• A PL/SQL variable, parameter, or function return type

Oracle normally stores an array object either in line (as part of the row data) or out of line (in
a LOB), depending on its size. However, if you specify separate storage characteristics for a
varray, then Oracle stores it out of line, regardless of its size. Refer to the
varray_col_properties of CREATE TABLE for more information about varray storage.

Nested Tables
A nested table type models an unordered set of elements. The elements may be built-in
types or user-defined types. You can view a nested table as a single-column table or, if the
nested table is an object type, as a multicolumn table, with a column for each attribute of the
object type.

A nested table definition does not allocate space. It defines a type, which you can use to
declare:

• The data type of a column of a relational table

• An object type attribute

• A PL/SQL variable, parameter, or function return type

Chapter 2
Data Types

2-37

When a nested table appears as the type of a column in a relational table or as an
attribute of the underlying object type of an object table, Oracle stores all of the nested
table data in a single table, which it associates with the enclosing relational or object
table.

Oracle-Supplied Types
Oracle provides SQL-based interfaces for defining new types when the built-in or
ANSI-supported types are not sufficient. The behavior for these types can be
implemented in C/C++, Java, or PL/ SQL. Oracle Database automatically provides the
low-level infrastructure services needed for input-output, heterogeneous client-side
access for new data types, and optimizations for data transfers between the
application and the database.

These interfaces can be used to build user-defined (or object) types and are also used
by Oracle to create some commonly useful data types. Several such data types are
supplied with the server, and they serve both broad horizontal application areas (for
example, the Any types) and specific vertical ones (for example, the spatial types).

The Oracle-supplied types, along with cross-references to the documentation of their
implementation and use, are described in the following sections:

• Any Types

• XML Types

• Spatial Types

Any Types
The Any types provide highly flexible modeling of procedure parameters and table
columns where the actual type is not known. These data types let you dynamically
encapsulate and access type descriptions, data instances, and sets of data instances
of any other SQL type. These types have OCI and PL/SQL interfaces for construction
and access.

ANYTYPE
This type can contain a type description of any named SQL type or unnamed transient
type.

ANYDATA
This type contains an instance of a given type, with data, plus a description of the type.
ANYDATA can be used as a table column data type and lets you store heterogeneous
values in a single column. The values can be of SQL built-in types as well as user-
defined types.

ANYDATASET
This type contains a description of a given type plus a set of data instances of that
type. ANYDATASET can be used as a procedure parameter data type where such
flexibility is needed. The values of the data instances can be of SQL built-in types as
well as user-defined types.

Chapter 2
Data Types

2-38

See Also:

Oracle Database PL/SQL Packages and Types Reference for information on the
ANYTYPE, ANYDATA, and ANYDATASET types

XML Types
Extensible Markup Language (XML) is a standard format developed by the World Wide Web
Consortium (W3C) for representing structured and unstructured data on the World Wide Web.
Universal resource identifiers (URIs) identify resources such as Web pages anywhere on the
Web. Oracle provides types to handle XML and URI data, as well as a class of URIs called
DBURIRef types to access data stored within the database itself. It also provides a set of types
to store and access both external and internal URIs from within the database.

XMLType
This Oracle-supplied type can be used to store and query XML data in the database. XMLType
has member functions you can use to access, extract, and query the XML data using XPath
expressions. XPath is another standard developed by the W3C committee to traverse XML
documents. Oracle XMLType functions support many W3C XPath expressions. Oracle also
provides a set of SQL functions and PL/SQL packages to create XMLType values from existing
relational or object-relational data.

XMLType is a system-defined type, so you can use it as an argument of a function or as the
data type of a table or view column. You can also create tables and views of XMLType. When
you create an XMLType column in a table, you can choose to store the XML data in a CLOB
column, as binary XML (stored internally as a CLOB), or object relationally.

You can also register the schema (using the DBMS_XMLSCHEMA package) and create a table or
column conforming to the registered schema. In this case Oracle stores the XML data in
underlying object-relational columns by default, but you can specify storage in a CLOB or
binary XML column even for schema-based data.

Queries and DML on XMLType columns operate the same regardless of the storage
mechanism.

See Also:

Oracle XML DB Developer’s Guidefor information about using XMLType columns

URI Data Types
Oracle supplies a family of URI types—URIType, DBURIType, XDBURIType, and HTTPURIType—
which are related by an inheritance hierarchy. URIType is an object type and the others are
subtypes of URIType. Since URIType is the supertype, you can create columns of this type
and store DBURIType or HTTPURIType type instances in this column.

Chapter 2
Data Types

2-39

HTTPURIType

You can use HTTPURIType to store URLs to external Web pages or to files. Oracle
accesses these files using HTTP (Hypertext Transfer Protocol).

XDBURIType

You can use XDBURIType to expose documents in the XML database hierarchy as URIs
that can be embedded in any URIType column in a table. The XDBURIType consists of a
URL, which comprises the hierarchical name of the XML document to which it refers
and an optional fragment representing the XPath syntax. The fragment is separated
from the URL part by a pound sign (#). The following lines are examples of
XDBURIType:

/home/oe/doc1.xml
/home/oe/doc1.xml#/orders/order_item

DBURIType

DBURIType can be used to store DBURIRef values, which reference data inside the
database. Storing DBURIRef values lets you reference data stored inside or outside the
database and access the data consistently.

DBURIRef values use an XPath-like representation to reference data inside the
database. If you imagine the database as an XML tree, then you would see the tables,
rows, and columns as elements in the XML document. For example, the sample
human resources user hr would see the following XML tree:

<HR>
 <EMPLOYEES>
 <ROW>
 <EMPLOYEE_ID>205</EMPLOYEE_ID>
 <LAST_NAME>Higgins</LAST_NAME>
 <SALARY>12008</SALARY>
 .. <!-- other columns -->
 </ROW>
 ... <!-- other rows -->
 </EMPLOYEES>
 <!-- other tables..-->
</HR>
<!-- other user schemas on which you have some privilege on..-->

The DBURIRef is an XPath expression over this virtual XML document. So to reference
the SALARY value in the EMPLOYEES table for the employee with employee number 205,
you can write a DBURIRef as,

/HR/EMPLOYEES/ROW[EMPLOYEE_ID=205]/SALARY

Using this model, you can reference data stored in CLOB columns or other columns and
expose them as URLs to the external world.

URIFactory Package
Oracle also provides the URIFactory package, which can create and return instances
of the various subtypes of the URITypes. The package analyzes the URL string,
identifies the type of URL (HTTP, DBURI, and so on), and creates an instance of the
subtype. To create a DBURI instance, the URL must begin with the prefix /oradb. For

Chapter 2
Data Types

2-40

example, URIFactory.getURI('/oradb/HR/EMPLOYEES') would create a DBURIType instance
and URIFactory.getUri('/sys/schema') would create an XDBURIType instance.

See Also:

• Oracle Database Object-Relational Developer's Guide for general information
on object types and type inheritance

• Oracle XML DB Developer’s Guide for more information about these supplied
types and their implementation

• Oracle Database Advanced Queuing User's Guide for information about using
XMLType with Oracle Advanced Queuing

Spatial Types
Oracle Spatial and Graph is designed to make spatial data management easier and more
natural to users of location-enabled applications, geographic information system (GIS)
applications, and geoimaging applications. After the spatial data is stored in an Oracle
Database, you can easily manipulate, retrieve, and relate it to all the other data stored in the
database. The following data types are available only if you have installed Oracle Spatial and
Graph.

SDO_GEOMETRY
The geometric description of a spatial object is stored in a single row, in a single column of
object type SDO_GEOMETRY in a user-defined table. Any table that has a column of type
SDO_GEOMETRY must have another column, or set of columns, that defines a unique primary
key for that table. Tables of this sort are sometimes called geometry tables.

The SDO_GEOMETRY object type has the following definition:

CREATE TYPE SDO_GEOMETRY AS OBJECT
 (sgo_gtype NUMBER,
 sdo_srid NUMBER,
 sdo_point SDO_POINT_TYPE,
 sdo_elem_info SDO_ELEM_INFO_ARRAY,
 sdo_ordinates SDO_ORDINATE_ARRAY);
/

SDO_TOPO_GEOMETRY
This type describes a topology geometry, which is stored in a single row, in a single column of
object type SDO_TOPO_GEOMETRY in a user-defined table.

The SDO_TOPO_GEOMETRY object type has the following definition:

CREATE TYPE SDO_TOPO_GEOMETRY AS OBJECT
 (tg_type NUMBER,
 tg_id NUMBER,
 tg_layer_id NUMBER,
 topology_id NUMBER);
/

Chapter 2
Data Types

2-41

SDO_GEORASTER
In the GeoRaster object-relational model, a raster grid or image object is stored in a
single row, in a single column of object type SDO_GEORASTER in a user-defined table.
Tables of this sort are called GeoRaster tables.

The SDO_GEORASTER object type has the following definition:

CREATE TYPE SDO_GEORASTER AS OBJECT
 (rasterType NUMBER,
 spatialExtent SDO_GEOMETRY,
 rasterDataTable VARCHAR2(32),
 rasterID NUMBER,
 metadata XMLType);
/

See Also:

Oracle Spatial and Graph Developer's Guide, Oracle Spatial and Graph
Topology Data Model and Network Data Model Graph Developer's Guide,
and Oracle Spatial and Graph GeoRaster Developer's Guide for information
on the full implementation of the spatial data types and guidelines for using
them

Data Type Comparison Rules
This section describes how Oracle Database compares values of each data type.

Numeric Values
A larger value is considered greater than a smaller one. All negative numbers are less
than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

The floating-point value NaN (not a number) is greater than any other numeric value
and is equal to itself.

See Also:

Numeric Precedence and Floating-Point Numbers for more information on
comparison semantics

Datetime Values
A later date or timestamp is considered greater than an earlier one. For example, the
date equivalent of '29-MAR-2005' is less than that of '05-JAN-2006' and the timestamp
equivalent of '05-JAN-2006 1:35pm' is greater than that of '05-JAN-2005 10:09am'.

When two timestamps with time zone are compared, they are first normalized to UTC,
that is, to the timezone offset '+00:00'. For example, the timestamp with time zone

Chapter 2
Data Type Comparison Rules

2-42

equivalent of '16-OCT-2016 05:59am Europe/Warsaw' is equal to that of '15-OCT-2016
08:59pm US/Pacific'. Both represent the same absolute point in time, which represented in
UTC is October 16th, 2016, 03:59am.

Binary Values
A binary value of the data type RAW or BLOB is a sequence of bytes. When two binary values
are compared, the corresponding, consecutive bytes of the two byte sequences are
compared in turn. If the first bytes of both compared values are different, the binary value that
contains the byte with the lower numeric value is considered smaller. If the first bytes are
equal, second bytes are compared analogously, and so on, until either the compared bytes
differ or the comparison process reaches the end of one of the values. In the latter case, the
value that is shorter is considered smaller.

Binary values of the data type BLOB cannot be compared directly in comparison conditions.
However, they can be compared with the PL/SQL function DBMS_LOB.COMPARE.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more information on
the DBMS_LOB.COMPARE function

Character Values
Character values are compared on the basis of two measures:

• Binary or linguistic collation

• Blank-padded or nonpadded comparison semantics

The following subsections describe the two measures.

Binary and Linguistic Collation

In binary collation, which is the default, Oracle compares character values like binary values.
Two sequences of bytes that form the encodings of two character values in their storage
character set are treated as binary values and compared as described in Binary Values . The
result of this comparison is returned as the result of the binary comparison of the source
character values.

See Also:

Oracle Database Globalization Support Guide for more information on character
sets

For many languages, the binary collation can yield a linguistically incorrect ordering of
character values. For example, in most common character sets, all the uppercase Latin

Chapter 2
Data Type Comparison Rules

2-43

letters have character codes with lower values than all the lowercase Latin letters.
Hence, the binary collation yields the following order:

MacDonald
MacIntosh
Macdonald
Macintosh

However, most users expect these four values to be presented in the order:

MacDonald
Macdonald
MacIntosh
Macintosh

This shows that binary collation may not be suitable even for English character values.

Oracle Database supports linguistic collations that order strings according to rules of
various spoken languages. It also supports collation variants that match character
values case- and accent-insensitively. Linguistic collations are more expensive but
they provide superior user experience.

See Also:

Oracle Database Globalization Support Guide for more information about
linguistic sorting

Restrictions for Linguistic Collations

Comparison conditions, ORDER BY, GROUP BY and MATCH_RECOGNIZE query clauses,
COUNT(DISTINCT) and statistical aggregate functions, LIKE conditions, and ORDER BY
and PARTITION BY analytic clauses generate collation keys when using linguistic
collations. The collation keys are the same values that are returned by the function
NLSSORT and are subject to the same restrictions that are described in NLSSORT .

Blank-Padded and Nonpadded Comparison Semantics

With blank-padded semantics, if the two values have different lengths, then Oracle first
adds blanks to the end of the shorter one so their lengths are equal. Oracle then
compares the values character by character up to the first character that differs. The
value with the greater character in the first differing position is considered greater. If
two values have no differing characters, then they are considered equal. This rule
means that two values are equal if they differ only in the number of trailing blanks.
Oracle uses blank-padded comparison semantics only when both values in the
comparison are either expressions of data type CHAR, NCHAR, text literals, or values
returned by the USER function.

With nonpadded semantics, Oracle compares two values character by character up to
the first character that differs. The value with the greater character in that position is
considered greater. If two values of different length are identical up to the end of the
shorter one, then the longer value is considered greater. If two values of equal length
have no differing characters, then the values are considered equal. Oracle uses

Chapter 2
Data Type Comparison Rules

2-44

nonpadded comparison semantics whenever one or both values in the comparison have the
data type VARCHAR2 or NVARCHAR2.

The results of comparing two character values using different comparison semantics may
vary. The table that follows shows the results of comparing five pairs of character values
using each comparison semantic. Usually, the results of blank-padded and nonpadded
comparisons are the same. The last comparison in the table illustrates the differences
between the blank-padded and nonpadded comparison semantics.

Blank-Padded Nonpadded

'ac' > 'ab' 'ac' > 'ab'
'ab' > 'a ' 'ab' > 'a '
'ab' > 'a' 'ab' > 'a'
'ab' = 'ab' 'ab' = 'ab'
'a ' = 'a' 'a ' > 'a'

Data-Bound Collation

Starting with Oracle Database 12c Release 2 (12.2), the collation to use when comparing or
matching a given character value is associated with the value itself. It is called the data-
bound collation. The data-bound collation can be viewed as an attribute of the data type of
the value.

In previous Oracle Database releases, the session parameters NLS_COMP and NLS_SORT
coarsely determined the collation for all collation-sensitive SQL operations in a database
session. The data-bound collation architecture enables applications to consistently apply
language-specific comparison rules to exactly the data that needs these rules.

Oracle Database 12c Release 2 (12.2) allows you to declare a collation for a table column.
When a column is passed as an argument to a collation-sensitive SQL operation, the SQL
operation uses the column's declared collation to process the column's values. If the SQL
operation has multiple character arguments that are compared to each other, the collation
determination rules determine the collation to use.

There are two types of data-bound collations:

• Named Collation: This collation is a particular set of collating rules specified by a collation
name. Named collations are the same collations that are specified as values for the
NLS_SORT parameter. A named collation can be either a binary collation or a linguistic
collation.

• Pseudo-collation: This collation does not directly specify the collating rules for a SQL
operation. Instead, it instructs the operation to check the values of the session
parameters NLS_SORT and NLS_COMP for the actual named collation to use. Pseudo-
collations are the bridge between the new declarative method of specifying collations and
the old method that uses session parameters. In particular, the pseudo-collation
USING_NLS_COMP directs a SQL operation to behave exactly as it used to behave before
Oracle Database 12c Release 2.

When you declare a named collation for a column, you statically determine how the column
values are compared. When you declare a pseudo-collation, you can dynamically control
comparison behavior with the session parameter NLS_COMP and NLS_SORT. However, static
objects, such as indexes and constraints, defined on a column declared with a pseudo-
collation, fall back to using a binary collation. Dynamically settable collating rules cannot be
used to compare values for a static object.

Chapter 2
Data Type Comparison Rules

2-45

The collation for a character literal or bind variable that is used in an expression is
derived from the default collation of the database object containing the expression,
such as a view or materialized view query, a PL/SQL stored unit code, a user-defined
type method code, or a standalone DML or query statement. In Oracle Database 12c
Release 2, the default collation of PL/SQL stored units, user-defined type methods,
and standalone SQL statements is always the pseudo-collation USING_NLS_COMP. The
default collation of views and materialized views can be specified in the DEFAULT
COLLATION clause of the CREATE VIEW and CREATE MATERIALIZED VIEW statements.

If a SQL operation returns character values, the collation derivation rules determine
the derived collation for the result, so that its collation is known, when the result is
passed as an argument to another collation-sensitive SQL operation in the expression
tree or to a top-level consumer, such as an SQL statement clause in a SELECT
statement. If a SQL operation operates on character argument values, then the
derived collation of its character result is based on the collations of the arguments.
Otherwise, the derivation rules are the same as for a character literal.

You can override the derived collation of an expression node, such as a simple
expression or an operator result, by using the COLLATE operator.

Oracle Database allows you to declare a case-insensitive collation for a column, table
or schema, so that the column or all character columns in a table or a schema can be
always compared in a case-insensitive way.

See Also:

• Oracle Database Globalization Support Guide for more information on
data-bound collation architecture, including the detailed collation
derivation and determination rules

• COLLATE Operator

Object Values
Object values are compared using one of two comparison functions: MAP and ORDER.
Both functions compare object type instances, but they are quite different from one
another. These functions must be specified as part of any object type that will be
compared with other object types.

See Also:

CREATE TYPE for a description of MAP and ORDER methods and the values
they return

Varrays and Nested Tables
Comparison of nested tables is described in Comparison Conditions .

Chapter 2
Data Type Comparison Rules

2-46

Data Type Precedence
Oracle uses data type precedence to determine implicit data type conversion, which is
discussed in the section that follows. Oracle data types take the following precedence:

• Datetime and interval data types

• BINARY_DOUBLE
• BINARY_FLOAT
• NUMBER
• Character data types

• All other built-in data types

Data Conversion
Generally an expression cannot contain values of different data types. For example, an
expression cannot multiply 5 by 10 and then add 'JAMES'. However, Oracle supports both
implicit and explicit conversion of values from one data type to another.

Implicit and Explicit Data Conversion
Oracle recommends that you specify explicit conversions, rather than rely on implicit or
automatic conversions, for these reasons:

• SQL statements are easier to understand when you use explicit data type conversion
functions.

• Implicit data type conversion can have a negative impact on performance, especially if
the data type of a column value is converted to that of a constant rather than the other
way around.

• Implicit conversion depends on the context in which it occurs and may not work the same
way in every case. For example, implicit conversion from a datetime value to a VARCHAR2
value may return an unexpected year depending on the value of the NLS_DATE_FORMAT
parameter.

• Algorithms for implicit conversion are subject to change across software releases and
among Oracle products. Behavior of explicit conversions is more predictable.

• If implicit data type conversion occurs in an index expression, then Oracle Database
might not use the index because it is defined for the pre-conversion data type. This can
have a negative impact on performance.

Implicit Data Conversion
Oracle Database automatically converts a value from one data type to another when such a
conversion makes sense.

Table 2-8 is a matrix of Oracle implicit conversions. The table shows all possible conversions,
without regard to the direction of the conversion or the context in which it is made.

An 'X' in a cell indicates implicit conversion of the data types named in the named in the first
column and the header row.

Chapter 2
Data Type Comparison Rules

2-47

Table 2-8 Implicit Type Conversion Matrix

Data
Type

CHA
R

VAR
CHA
R2

NCH
AR

NVA
RCH
AR2

DAT
E

DAT
ETIM
E/
INTE
RVA
L

NUM
BER

BIN
ARY
_FL
OAT

BIN
ARY
_DO
UBL
E

LON
G

RAW RO
WID

CLO
B

BLO
B

NCL
OB

CHAR -- X X X X X X X X X X X X X X

VARCHAR
2

X -- X X X X X X X X X X X -- X

NCHAR X X -- X X X X X X X X X X -- X

NVARCHA
R2

X X X -- X X X X X X X X X -- X

DATE X X X X -- -- -- -- -- -- -- -- -- -- --

DATETIM
E/
INTERVA
L

X X X X -- -- -- -- -- X -- -- -- -- --

NUMBER X X X X -- -- -- X X -- -- -- -- -- --

BINARY_
FLOAT

X X X X -- -- X -- X -- -- -- -- -- --

BINARY_
DOUBLE

X X X X -- -- X X -- -- -- -- -- -- --

LONG X X X X -- X1 -- -- -- -- X -- X -- X

RAW X X X X -- -- -- -- -- X -- -- -- X --

ROWID X X X X -- -- -- -- -- -- -- -- -- -- --

CLOB X X X X -- -- -- -- -- X -- -- -- -- X

BLOB -- -- -- -- -- -- -- -- -- -- X -- -- -- --

NCLOB X X X X -- -- -- -- -- X -- -- X -- --

JSON -- X -- -- -- -- -- -- -- -- -- -- X X --

1 You cannot convert LONG to INTERVAL directly, but you can convert LONG to VARCHAR2 using TO_CHAR(interval), and
then convert the resulting VARCHAR2 value to INTERVAL.

Implicit Data Type Conversion Rules

• During INSERT and UPDATE operations, Oracle converts the value to the data type
of the affected column.

• During SELECT FROM operations, Oracle converts the data from the column to the
type of the target variable.

• When manipulating numeric values, Oracle usually adjusts precision and scale to
allow for maximum capacity. In such cases, the numeric data type resulting from
such operations can differ from the numeric data type found in the underlying
tables.

Chapter 2
Data Type Comparison Rules

2-48

• When comparing a character value with a numeric value, Oracle converts the character
data to a numeric value.

• Conversions between character values or NUMBER values and floating-point number
values can be inexact, because the character types and NUMBER use decimal precision to
represent the numeric value, and the floating-point numbers use binary precision.

• When converting a CLOB value into a character data type such as VARCHAR2, or converting
BLOB to RAW data, if the data to be converted is larger than the target data type, then the
database returns an error.

• During conversion from a timestamp value to a DATE value, the fractional seconds portion
of the timestamp value is truncated. This behavior differs from earlier releases of Oracle
Database, when the fractional seconds portion of the timestamp value was rounded.

• Conversions from BINARY_FLOAT to BINARY_DOUBLE are exact.

• Conversions from BINARY_DOUBLE to BINARY_FLOAT are inexact if the BINARY_DOUBLE
value uses more bits of precision that supported by the BINARY_FLOAT.

• When comparing a character value with a DATE value, Oracle converts the character data
to DATE.

• When you use a SQL function or operator with an argument of a data type other than the
one it accepts, Oracle converts the argument to the accepted data type.

• When making assignments, Oracle converts the value on the right side of the equal sign
(=) to the data type of the target of the assignment on the left side.

• During concatenation operations, Oracle converts from noncharacter data types to CHAR
or NCHAR.

• During arithmetic operations on and comparisons between character and noncharacter
data types, Oracle converts from any character data type to a numeric, date, or rowid, as
appropriate. In arithmetic operations between CHAR/VARCHAR2 and NCHAR/NVARCHAR2,
Oracle converts to a NUMBER.

• Most SQL character functions are enabled to accept CLOBs as parameters, and Oracle
performs implicit conversions between CLOB and character types. Therefore, functions
that are not yet enabled for CLOBs can accept CLOBs through implicit conversion. In such
cases, Oracle converts the CLOBs to CHAR or VARCHAR2 before the function is invoked. If
the CLOB is larger than 4000 bytes, then Oracle converts only the first 4000 bytes to CHAR.

• When converting RAW or LONG RAW data to or from character data, the binary data is
represented in hexadecimal form, with one hexadecimal character representing every
four bits of RAW data. Refer to "RAW and LONG RAW Data Types " for more information.

• Comparisons between CHAR and VARCHAR2 and between NCHAR and NVARCHAR2 types may
entail different character sets. The default direction of conversion in such cases is from
the database character set to the national character set. Table 2-9 shows the direction of
implicit conversions between different character types.

Table 2-9 Conversion Direction of Different Character Types

Source
Data Type

to CHAR to VARCHAR2 to NCHAR to NVARCHAR2

from CHAR -- VARCHAR2 NCHAR NVARCHAR2

Chapter 2
Data Type Comparison Rules

2-49

Table 2-9 (Cont.) Conversion Direction of Different Character Types

Source
Data Type

to CHAR to VARCHAR2 to NCHAR to NVARCHAR2

from
VARCHAR2

VARCHAR2 -- NVARCHAR2 NVARCHAR2

from NCHAR NCHAR NCHAR -- NVARCHAR2
from
NVARCHAR2

NVARCHAR2 NVARCHAR2 NVARCHAR2 --

User-defined types such as collections cannot be implicitly converted, but must be
explicitly converted using CAST ... MULTISET.

Implicit Data Conversion Examples

Text Literal Example

The text literal '10' has data type CHAR. Oracle implicitly converts it to the NUMBER data
type if it appears in a numeric expression as in the following statement:

SELECT salary + '10'
 FROM employees;

Character and Number Values Example

When a condition compares a character value and a NUMBER value, Oracle implicitly
converts the character value to a NUMBER value, rather than converting the NUMBER
value to a character value. In the following statement, Oracle implicitly converts '200'
to 200:

SELECT last_name
 FROM employees
 WHERE employee_id = '200';

Date Example

In the following statement, Oracle implicitly converts '24-JUN-06' to a DATE value using
the default date format 'DD-MON-YY':

SELECT last_name
 FROM employees
 WHERE hire_date = '24-JUN-06';

Explicit Data Conversion
You can explicitly specify data type conversions using SQL conversion functions.
Table 2-10 shows SQL functions that explicitly convert a value from one data type to
another.

You cannot specify LONG and LONG RAW values in cases in which Oracle can perform
implicit data type conversion. For example, LONG and LONG RAW values cannot appear in
expressions with functions or operators. Refer to LONG Data Type for information on
the limitations on LONG and LONG RAW data types.

Chapter 2
Data Type Comparison Rules

2-50

Table 2-10 Explicit Type Conversions

Source
Data Type

to CHAR,
VARCHAR2,
NCHAR,
NVARCHAR
2

to
NUMB
ER

to Datetime/
Interval

to RAW to
ROWID

to
LO
NG,
LO
NG
RA
W

to CLOB,
NCLOB,
BLOB

to
BINARY
_FLOAT

to
BINARY
_DOUB
LE

from
CHAR,
VARCHAR2
, NCHAR,
NVARCHAR
2

TO_CHAR
(char.)
TO_NCHAR
(char.)

TO_NUM
BER

TO_DATE
TO_TIMESTAM
P
TO_TIMESTAM
P_TZ
TO_YMINTERV
AL
TO_DSINTERV
AL

HEXTORAW CHARTO
=ROWID

-- TO_CLOB
TO_NCLOB

TO_BINA
RY_FLOA
T

TO_BINA
RY_DOUB
LE

from
NUMBER

TO_CHAR
(number)
TO_NCHAR
(number)

-- TO_DATE
NUMTOYM-
INTERVAL
NUMTODS-
INTERVAL

-- -- -- -- TO_BINA
RY_FLOA
T

TO_BINA
RY_DOUB
LE

from
Datetime
/
Interval

TO_CHAR
(date)
TO_NCHAR
(datetime)

-- -- -- -- -- -- -- --

from RAW RAWTOHEX
RAWTONHEX

-- -- -- -- -- TO_BLOB -- --

from
ROWID

ROWIDTOCHA
R

-- -- -- -- -- -- -- --

from
LONG /
LONG RAW

-- -- -- -- -- -- TO_LOB -- --

from
CLOB,
NCLOB,
BLOB

TO_CHAR
TO_NCHAR

-- -- -- -- -- TO_CLOB
TO_NCLOB

-- --

from
CLOB,
NCLOB,
BLOB

TO_CHAR
TO_NCHAR

-- -- -- -- -- TO_CLOB
TO_NCLOB

-- --

from
BINARY_F
LOAT

TO_CHAR
(char.)
TO_NCHAR
(char.)

TO_NUM
BER

-- -- -- -- -- TO_BINA
RY_FLOA
T

TO_BINA
RY_DOUB
LE

Chapter 2
Data Type Comparison Rules

2-51

Table 2-10 (Cont.) Explicit Type Conversions

Source
Data Type

to CHAR,
VARCHAR2,
NCHAR,
NVARCHAR
2

to
NUMB
ER

to Datetime/
Interval

to RAW to
ROWID

to
LO
NG,
LO
NG
RA
W

to CLOB,
NCLOB,
BLOB

to
BINARY
_FLOAT

to
BINARY
_DOUB
LE

from
BINARY_D
OUBLE

TO_CHAR
(char.)
TO_NCHAR
(char.)

TO_NUM
BER

-- -- -- -- -- TO_BINA
RY_FLOA
T

TO_BINA
RY_DOUB
LE

See Also:

Conversion Functions for details on all of the explicit conversion functions

Security Considerations for Data Conversion
When a datetime value is converted to text, either by implicit conversion or by explicit
conversion that does not specify a format model, the format model is defined by one of
the globalization session parameters. Depending on the source data type, the
parameter name is NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, or
NLS_TIMESTAMP_TZ_FORMAT. The values of these parameters can be specified in the
client environment or in an ALTER SESSION statement.

The dependency of format models on session parameters can have a negative impact
on database security when conversion without an explicit format model is applied to a
datetime value that is being concatenated to text of a dynamic SQL statement.
Dynamic SQL statements are those statements whose text is concatenated from
fragments before being passed to a database for execution. Dynamic SQL is
frequently associated with the built-in PL/SQL package DBMS_SQL or with the PL/SQL
statement EXECUTE IMMEDIATE, but these are not the only places where dynamically
constructed SQL text may be passed as argument. For example:

EXECUTE IMMEDIATE
'SELECT last_name FROM employees WHERE hire_date > ''' || start_date || '''';

where start_date has the data type DATE.

In the above example, the value of start_date is converted to text using a format
model specified in the session parameter NLS_DATE_FORMAT. The result is
concatenated into SQL text. A datetime format model can consist simply of literal text
enclosed in double quotation marks. Therefore, any user who can explicitly set
globalization parameters for a session can decide what text is produced by the above
conversion. If the SQL statement is executed by a PL/SQL procedure, the procedure
becomes vulnerable to SQL injection through the session parameter. If the procedure
runs with definer's rights, with higher privileges than the session itself, the user can
gain unauthorized access to sensitive data.

Chapter 2
Data Type Comparison Rules

2-52

See Also:

Oracle Database PL/SQL Language Reference for further examples and for
recommendations on avoiding this security risk

Note:

This security risk also applies to middle-tier applications that construct SQL text
from datetime values converted to text by the database or by OCI datetime
functions. Those applications are vulnerable if session globalization parameters are
obtained from a user preference.

Implicit and explicit conversion for numeric values may also suffer from the analogous
problem, as the conversion result may depend on the session parameter
NLS_NUMERIC_CHARACTERS. This parameter defines the decimal and group separator
characters. If the decimal separator is defined to be the quotation mark or the double
quotation mark, some potential for SQL injection emerges.

See Also:

• Oracle Database Globalization Support Guide for detailed descriptions of the
session globalization parameters

• Format Models for information on the format models

Literals
The terms literal and constant value are synonymous and refer to a fixed data value. For
example, 'JACK', 'BLUE ISLAND', and '101' are all character literals; 5001 is a numeric literal.
Character literals are enclosed in single quotation marks so that Oracle can distinguish them
from schema object names.

This section contains these topics:

• Text Literals

• Numeric Literals

• Datetime Literals

• Interval Literals

Many SQL statements and functions require you to specify character and numeric literal
values. You can also specify literals as part of expressions and conditions. You can specify
character literals with the 'text' notation, national character literals with the N'text' notation,
and numeric literals with the integer, or number notation, depending on the context of the
literal. The syntactic forms of these notations appear in the sections that follow.

Chapter 2
Literals

2-53

To specify a datetime or interval data type as a literal, you must take into account any
optional precisions included in the data types. Examples of specifying datetime and
interval data types as literals are provided in the relevant sections of Data Types .

Text Literals
Use the text literal notation to specify values whenever string appears in the syntax of
expressions, conditions, SQL functions, and SQL statements in other parts of this
reference. This reference uses the terms text literal, character literal, and string
interchangeably. Text, character, and string literals are always surrounded by single
quotation marks. If the syntax uses the term char, then you can specify either a text
literal or another expression that resolves to character data — for example, the
last_name column of the hr.employees table. When char appears in the syntax, the
single quotation marks are not used.

The syntax of text literals or strings follows:

string::=

N

n ’

c

’

Q

q
’ quote_delimiter c quote_delimiter ’

where N or n specifies the literal using the national character set (NCHAR or NVARCHAR2
data). By default, text entered using this notation is translated into the national
character set by way of the database character set when used by the server. To avoid
potential loss of data during the text literal conversion to the database character set,
set the environment variable ORA_NCHAR_LITERAL_REPLACE to TRUE. Doing so
transparently replaces the n' internally and preserves the text literal for SQL
processing.

See Also:

Oracle Database Globalization Support Guide for more information about N-
quoted literals

In the top branch of the syntax:

• c is any member of the user's character set. A single quotation mark (') within the
literal must be preceded by an escape character. To represent one single
quotation mark within a literal, enter two single quotation marks.

• ' ' are two single quotation marks that begin and end text literals.

In the bottom branch of the syntax:

• Q or q indicates that the alternative quoting mechanism will be used. This
mechanism allows a wide range of delimiters for the text string.

Chapter 2
Literals

2-54

• The outermost ' ' are two single quotation marks that precede and follow, respectively,
the opening and closing quote_delimiter.

• c is any member of the user's character set. You can include quotation marks (") in the
text literal made up of c characters. You can also include the quote_delimiter, as long
as it is not immediately followed by a single quotation mark.

• quote_delimiter is any single- or multibyte character except space, tab, and return. The
quote_delimiter can be a single quotation mark. However, if the quote_delimiter
appears in the text literal itself, ensure that it is not immediately followed by a single
quotation mark.

If the opening quote_delimiter is one of [, {, <, or (, then the closing quote_delimiter
must be the corresponding], }, >, or). In all other cases, the opening and closing
quote_delimiter must be the same character.

Text literals have properties of both the CHAR and VARCHAR2 data types:

• Within expressions and conditions, Oracle treats text literals as though they have the
data type CHAR by comparing them using blank-padded comparison semantics.

• A text literal can have a maximum length of 4000 bytes if the initialization parameter
MAX_STRING_SIZE = STANDARD, and 32767 bytes if MAX_STRING_SIZE = EXTENDED. See
Extended Data Types for more information.

Here are some valid text literals:

'Hello'
'ORACLE.dbs'
'Jackie''s raincoat'
'09-MAR-98'
N'nchar literal'

Here are some valid text literals using the alternative quoting mechanism:

q'!name LIKE '%DBMS_%%'!'
q'<'So,' she said, 'It's finished.'>'
q'{SELECT * FROM employees WHERE last_name = 'Smith';}'
nq'ï Ÿ1234 ï'
q'"name like '['"'

See Also:

Blank-Padded and Nonpadded Comparison Semantics

Numeric Literals
Use numeric literal notation to specify fixed and floating-point numbers.

Integer Literals
You must use the integer notation to specify an integer whenever integer appears in
expressions, conditions, SQL functions, and SQL statements described in other parts of this
reference.

The syntax of integer follows:

Chapter 2
Literals

2-55

integer::=

+

–

digit

where digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

An integer can store a maximum of 38 digits of precision.

Here are some valid integers:

7
+255

NUMBER and Floating-Point Literals
You must use the number or floating-point notation to specify values whenever number
or n appears in expressions, conditions, SQL functions, and SQL statements in other
parts of this reference.

The syntax of number follows:

number::=

+

– digit

. digit

. digit

e

E

+

–

digit

f

F

d

D

where

• + or - indicates a positive or negative value. If you omit the sign, then a positive
value is the default.

• digit is one of 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9.

• e or E indicates that the number is specified in scientific notation. The digits after
the E specify the exponent. The exponent can range from -130 to 125.

• f or F indicates that the number is a 32-bit binary floating point number of type
BINARY_FLOAT.

Chapter 2
Literals

2-56

• d or D indicates that the number is a 64-bit binary floating point number of type
BINARY_DOUBLE.

If you omit f or F and d or D, then the number is of type NUMBER.

The suffixes f (F) and d (D) are supported only in floating-point number literals, not in
character strings that are to be converted to NUMBER. For example, if Oracle is expecting a
NUMBER and it encounters the string '9', then it converts the string to the number 9.
However, if Oracle encounters the string '9f', then conversion fails and an error is
returned.

A number of type NUMBER can store a maximum of 38 digits of precision. If the literal requires
more precision than provided by NUMBER, BINARY_FLOAT, or BINARY_DOUBLE, then Oracle
truncates the value. If the range of the literal exceeds the range supported by NUMBER,
BINARY_FLOAT, or BINARY_DOUBLE, then Oracle raises an error.

Numeric literals are SQL syntax elements, which are not sensitive to NLS settings. The
decimal separator character in numeric literals is always the period (.). However, if a text
literal is specified where a numeric value is expected, then the text literal is implicitly
converted to a number in an NLS-sensitive way. The decimal separator contained in the text
literal must be the one established with the initialization parameter NLS_NUMERIC_CHARACTERS.
Oracle recommends that you use numeric literals in SQL scripts to make them work
independently of the NLS environment.

The following examples illustrate the behavior of decimal separators in numeric literals and
text literals. These examples assume that you have established the comma (,) as the NLS
decimal separator for the current session with the following statement:

ALTER SESSION SET NLS_NUMERIC_CHARACTERS=',.';

The previous statement also establishes the period (.) as the NLS group separator, but that is
irrelevant for these examples.

This example uses the required decimal separator (.) in the numeric literal 1.23 and the
established NLS decimal separator (,) in the text literal '2,34'. The text literal is converted to
the numeric value 2.34, and the output is displayed using commas for the decimal
separators.

SELECT 2 * 1.23, 3 * '2,34' FROM DUAL;

 2*1.23 3*'2,34'
---------- ----------
 2,46 7,02

The next example shows that a comma is not treated as part of a numeric literal. Rather, the
comma is treated as the delimiter in a list of two numeric expressions: 2*1 and 23.

SELECT 2 * 1,23 FROM DUAL;

 2*1 23
---------- ----------
 2 23

The next example shows that the decimal separator in a text literal must match the NLS
decimal separator in order for implicit text-to-number conversion to succeed. The following
statement fails because the decimal separator (.) does not match the established NLS
decimal separator (,):

SELECT 3 * '2.34' FROM DUAL;
 *

Chapter 2
Literals

2-57

ERROR at line 1:
ORA-01722: invalid number

See Also:

ALTER SESSION and Oracle Database Reference

Here are some valid NUMBER literals:

25
+6.34
0.5
25e-03
-1

Here are some valid floating-point number literals:

25f
+6.34F
0.5d
-1D

You can also use the following supplied floating-point literals in situations where a
value cannot be expressed as a numeric literal:

Table 2-11 Floating-Point Literals

Literal Meaning Example

binary_float_nan A value of type
BINARY_FLOAT for
which the condition
IS NAN is true

SELECT COUNT(*)
 FROM employees
 WHERE TO_BINARY_FLOAT(commission_pct)
 != BINARY_FLOAT_NAN;

binary_float_infin
ity

Single-precision
positive infinity

SELECT COUNT(*)
 FROM employees
 WHERE salary < BINARY_FLOAT_INFINITY;

binary_double_nan A value of type
BINARY_DOUBLE for
which the condition
IS NAN is true

SELECT COUNT(*)
 FROM employees
 WHERE TO_BINARY_FLOAT(commission_pct)
 != BINARY_FLOAT_NAN;

binary_double_infi
nity

Double-precision
positive infinity

SELECT COUNT(*)
 FROM employees
 WHERE salary <
BINARY_DOUBLE_INFINITY;

Datetime Literals
Oracle Database supports four datetime data types: DATE, TIMESTAMP, TIMESTAMP WITH
TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE.

Chapter 2
Literals

2-58

Date Literals

You can specify a DATE value as a string literal, or you can convert a character or numeric
value to a date value with the TO_DATE function. DATE literals are the only case in which
Oracle Database accepts a TO_DATE expression in place of a string literal.

To specify a DATE value as a literal, you must use the Gregorian calendar. You can specify an
ANSI literal, as shown in this example:

DATE '1998-12-25'

The ANSI date literal contains no time portion, and must be specified in the format 'YYYY-MM-
DD'. Alternatively you can specify an Oracle date value, as in the following example:

TO_DATE('98-DEC-25 17:30','YY-MON-DD HH24:MI')

The default date format for an Oracle DATE value is specified by the initialization parameter
NLS_DATE_FORMAT. This example date format includes a two-digit number for the day of the
month, an abbreviation of the month name, the last two digits of the year, and a 24-hour time
designation.

Oracle automatically converts character values that are in the default date format into date
values when they are used in date expressions.

If you specify a date value without a time component, then the default time is midnight
(00:00:00 or 12:00:00 for 24-hour and 12-hour clock time, respectively). If you specify a date
value without a date, then the default date is the first day of the current month.

Oracle DATE columns always contain both the date and time fields. Therefore, if you query a
DATE column, then you must either specify the time field in your query or ensure that the time
fields in the DATE column are set to midnight. Otherwise, Oracle may not return the query
results you expect. You can use the TRUNC date function to set the time field to midnight, or
you can include a greater-than or less-than condition in the query instead of an equality or
inequality condition.

Here are some examples that assume a table my_table with a number column row_num and a
DATE column datecol:

INSERT INTO my_table VALUES (1, SYSDATE);
INSERT INTO my_table VALUES (2, TRUNC(SYSDATE));

SELECT *
 FROM my_table;

 ROW_NUM DATECOL
---------- ---------
 1 03-OCT-02
 2 03-OCT-02

SELECT *
 FROM my_table
 WHERE datecol > TO_DATE('02-OCT-02', 'DD-MON-YY');

 ROW_NUM DATECOL
---------- ---------
 1 03-OCT-02
 2 03-OCT-02

SELECT *

Chapter 2
Literals

2-59

 FROM my_table
 WHERE datecol = TO_DATE('03-OCT-02','DD-MON-YY');

 ROW_NUM DATECOL
---------- ---------
 2 03-OCT-02

If you know that the time fields of your DATE column are set to midnight, then you can
query your DATE column as shown in the immediately preceding example, or by using
the DATE literal:

SELECT *
 FROM my_table
 WHERE datecol = DATE '2002-10-03';

 ROW_NUM DATECOL
---------- ---------
 2 03-OCT-02

However, if the DATE column contains values other than midnight, then you must filter
out the time fields in the query to get the correct result. For example:

SELECT *
 FROM my_table
 WHERE TRUNC(datecol) = DATE '2002-10-03';

 ROW_NUM DATECOL
---------- ---------
 1 03-OCT-02
 2 03-OCT-02

Oracle applies the TRUNC function to each row in the query, so performance is better if
you ensure the midnight value of the time fields in your data. To ensure that the time
fields are set to midnight, use one of the following methods during inserts and updates:

• Use the TO_DATE function to mask out the time fields:

INSERT INTO my_table
 VALUES (3, TO_DATE('3-OCT-2002','DD-MON-YYYY'));

• Use the DATE literal:

INSERT INTO my_table
 VALUES (4, '03-OCT-02');

• Use the TRUNC function:

INSERT INTO my_table
 VALUES (5, TRUNC(SYSDATE));

The date function SYSDATE returns the current system date and time. The function
CURRENT_DATE returns the current session date. For information on SYSDATE, the TO_*
datetime functions, and the default date format, see Datetime Functions .

TIMESTAMP Literals

The TIMESTAMP data type stores year, month, day, hour, minute, and second, and
fractional second values. When you specify TIMESTAMP as a literal, the
fractional_seconds_precision value can be any number of digits up to 9, as follows:

Chapter 2
Literals

2-60

TIMESTAMP '1997-01-31 09:26:50.124'

TIMESTAMP WITH TIME ZONE Literals

The TIMESTAMP WITH TIME ZONE data type is a variant of TIMESTAMP that includes a time zone
region name or time zone offset. When you specify TIMESTAMP WITH TIME ZONE as a literal, the
fractional_seconds_precision value can be any number of digits up to 9. For example:

TIMESTAMP '1997-01-31 09:26:56.66 +02:00'

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent the same
instant in UTC, regardless of the TIME ZONE offsets stored in the data. For example,

TIMESTAMP '1999-04-15 8:00:00 -8:00'

is the same as

TIMESTAMP '1999-04-15 11:00:00 -5:00'

8:00 a.m. Pacific Standard Time is the same as 11:00 a.m. Eastern Standard Time.

You can replace the UTC offset with the TZR (time zone region name) format element. For
example, the following example has the same value as the preceding example:

TIMESTAMP '1999-04-15 8:00:00 US/Pacific'

To eliminate the ambiguity of boundary cases when the daylight saving time switches, use
both the TZR and a corresponding TZD format element. The following example ensures that
the preceding example will return a daylight saving time value:

TIMESTAMP '1999-10-29 01:30:00 US/Pacific PDT'

You can also express the time zone offset using a datetime expression:

SELECT TIMESTAMP '2009-10-29 01:30:00' AT TIME ZONE 'US/Pacific'
 FROM DUAL;

See Also:

Datetime Expressions for more information

If you do not add the TZD format element, and the datetime value is ambiguous, then Oracle
returns an error if you have the ERROR_ON_OVERLAP_TIME session parameter set to TRUE. If
that parameter is set to FALSE, then Oracle interprets the ambiguous datetime as standard
time in the specified region.

TIMESTAMP WITH LOCAL TIME ZONE Literals

The TIMESTAMP WITH LOCAL TIME ZONE data type differs from TIMESTAMP WITH TIME ZONE in that
data stored in the database is normalized to the database time zone. The time zone offset is
not stored as part of the column data. There is no literal for TIMESTAMP WITH LOCAL TIME ZONE.
Rather, you represent values of this data type using any of the other valid datetime literals.
The table that follows shows some of the formats you can use to insert a value into a
TIMESTAMP WITH LOCAL TIME ZONE column, along with the corresponding value returned by a
query.

Chapter 2
Literals

2-61

Table 2-12 TIMESTAMP WITH LOCAL TIME ZONE Literals

Value Specified in INSERT Statement Value Returned by Query

'19-FEB-2004' 19-FEB-2004.00.00.000000
AM

SYSTIMESTAMP 19-FEB-04 02.54.36.497659
PM

TO_TIMESTAMP('19-FEB-2004', 'DD-MON-YYYY') 19-FEB-04 12.00.00.000000
AM

SYSDATE 19-FEB-04 02.55.29.000000
PM

TO_DATE('19-FEB-2004', 'DD-MON-YYYY') 19-FEB-04 12.00.00.000000
AM

TIMESTAMP'2004-02-19 8:00:00 US/Pacific' 19-FEB-04 08.00.00.000000
AM

Notice that if the value specified does not include a time component (either explicitly or
implicitly), then the value returned defaults to midnight.

Interval Literals
An interval literal specifies a period of time. You can specify these differences in terms
of years and months, or in terms of days, hours, minutes, and seconds. Oracle
Database supports two types of interval literals, YEAR TO MONTH and DAY TO SECOND.
Each type contains a leading field and may contain a trailing field. The leading field
defines the basic unit of date or time being measured. The trailing field defines the
smallest increment of the basic unit being considered. For example, a YEAR TO MONTH
interval considers an interval of years to the nearest month. A DAY TO MINUTE interval
considers an interval of days to the nearest minute.

If you have date data in numeric form, then you can use the NUMTOYMINTERVAL or
NUMTODSINTERVAL conversion function to convert the numeric data into interval values.

Interval literals are used primarily with analytic functions.

See Also:

Analytic Functions , NUMTODSINTERVAL , and NUMTOYMINTERVAL

INTERVAL YEAR TO MONTH
Specify YEAR TO MONTH interval literals using the following syntax:

Chapter 2
Literals

2-62

interval_year_to_month::=

INTERVAL ’ integer

– integer

’

YEAR

MONTH

(precision)
TO

YEAR

MONTH

where

• 'integer [-integer]' specifies integer values for the leading and optional trailing field
of the literal. If the leading field is YEAR and the trailing field is MONTH, then the range of
integer values for the month field is 0 to 11.

• precision is the maximum number of digits in the leading field. The valid range of the
leading field precision is 0 to 9 and its default value is 2.

Restriction on the Leading Field

If you specify a trailing field, then it must be less significant than the leading field. For
example, INTERVAL '0-1' MONTH TO YEAR is not valid.

The following INTERVAL YEAR TO MONTH literal indicates an interval of 123 years, 2 months:

INTERVAL '123-2' YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated versions:

Table 2-13 Forms of INTERVAL YEAR TO MONTH Literals

Form of Interval Literal Interpretation

INTERVAL '123-2' YEAR(3) TO MONTH An interval of 123 years, 2 months. You must
specify the leading field precision if it is greater
than the default of 2 digits.

INTERVAL '123' YEAR(3) An interval of 123 years 0 months.

INTERVAL '300' MONTH(3) An interval of 300 months.

INTERVAL '4' YEAR Maps to INTERVAL '4-0' YEAR TO MONTH and
indicates 4 years.

INTERVAL '50' MONTH Maps to INTERVAL '4-2' YEAR TO MONTH and
indicates 50 months or 4 years 2 months.

INTERVAL '123' YEAR Returns an error, because the default precision is
2, and '123' has 3 digits.

You can add or subtract one INTERVAL YEAR TO MONTH literal to or from another to yield another
INTERVAL YEAR TO MONTH literal. For example:

INTERVAL '5-3' YEAR TO MONTH + INTERVAL'20' MONTH =
INTERVAL '6-11' YEAR TO MONTH

Chapter 2
Literals

2-63

INTERVAL DAY TO SECOND
Specify DAY TO SECOND interval literals using the following syntax:

interval_day_to_second::=

INTERVAL ’

integer

integer time_expr

time_expr

’

DAY

HOUR

MINUTE

(leading_precision)

SECOND

(leading_precision

, fractional_seconds_precision

)

TO

DAY

HOUR

MINUTE

SECOND

(fractional_seconds_precision)

where

• integer specifies the number of days. If this value contains more digits than the
number specified by the leading precision, then Oracle returns an error.

• time_expr specifies a time in the format HH[:MI[:SS[.n]]] or MI[:SS[.n]] or
SS[.n], where n specifies the fractional part of a second. If n contains more digits
than the number specified by fractional_seconds_precision, then n is rounded
to the number of digits specified by the fractional_seconds_precision value.
You can specify time_expr following an integer and a space only if the leading
field is DAY.

• leading_precision is the number of digits in the leading field. Accepted values
are 0 to 9. The default is 2.

• fractional_seconds_precision is the number of digits in the fractional part of the
SECOND datetime field. Accepted values are 1 to 9. The default is 6.

Restriction on the Leading Field:

If you specify a trailing field, then it must be less significant than the leading field. For
example, INTERVAL MINUTE TO DAY is not valid. As a result of this restriction, if SECOND is
the leading field, the interval literal cannot have any trailing field.

The valid range of values for the trailing field are as follows:

Chapter 2
Literals

2-64

• HOUR: 0 to 23

• MINUTE: 0 to 59

• SECOND: 0 to 59.999999999

Examples of the various forms of INTERVAL DAY TO SECOND literals follow, including some
abbreviated versions:

Table 2-14 Forms of INTERVAL DAY TO SECOND Literals

Form of Interval Literal Interpretation

INTERVAL '4 5:12:10.222' DAY TO
SECOND(3)

4 days, 5 hours, 12 minutes, 10 seconds, and 222
thousandths of a second.

INTERVAL '4 5:12' DAY TO MINUTE 4 days, 5 hours and 12 minutes.

INTERVAL '400 5' DAY(3) TO HOUR 400 days 5 hours.

INTERVAL '400' DAY(3) 400 days.

INTERVAL '11:12:10.2222222' HOUR TO
SECOND(7)

11 hours, 12 minutes, and 10.2222222 seconds.

INTERVAL '11:20' HOUR TO MINUTE 11 hours and 20 minutes.

INTERVAL '10' HOUR 10 hours.

INTERVAL '10:22' MINUTE TO SECOND 10 minutes 22 seconds.

INTERVAL '10' MINUTE 10 minutes.

INTERVAL '4' DAY 4 days.

INTERVAL '25' HOUR 25 hours.

INTERVAL '40' MINUTE 40 minutes.

INTERVAL '120' HOUR(3) 120 hours.

INTERVAL '30.12345' SECOND(2,4) 30.1235 seconds. The fractional second '12345' is
rounded to '1235' because the precision is 4.

You can add or subtract one DAY TO SECOND interval literal from another DAY TO SECOND literal.
For example.

INTERVAL'20' DAY - INTERVAL'240' HOUR = INTERVAL'10-0' DAY TO SECOND

Format Models
A format model is a character literal that describes the format of datetime or numeric data
stored in a character string. A format model does not change the internal representation of
the value in the database. When you convert a character string into a date or number, a
format model determines how Oracle Database interprets the string. In SQL statements, you
can use a format model as an argument of the TO_CHAR and TO_DATE functions to specify:

• The format for Oracle to use to return a value from the database

• The format for a value you have specified for Oracle to store in the database

For example:

• The datetime format model for the string '17:45:29' is 'HH24:MI:SS'.

• The datetime format model for the string '11-Nov-1999' is 'DD-Mon-YYYY'.

Chapter 2
Format Models

2-65

• The number format model for the string '$2,304.25' is '$9,999.99'.

For lists of number and datetime format model elements, see Table 2-15 and
Table 2-17.

The values of some formats are determined by the value of initialization parameters.
For such formats, you can specify the characters returned by these format elements
implicitly using the initialization parameter NLS_TERRITORY. You can change the default
date format for your session with the ALTER SESSION statement.

See Also:

• ALTER SESSION for information on changing the values of these
parameters and Format Model Examples for examples of using format
models

• TO_CHAR (datetime) , TO_CHAR (number) , and TO_DATE

• Oracle Database Reference and Oracle Database Globalization Support
Guide for information on these parameters

This remainder of this section describes how to use the following format models:

• Number Format Models

• Datetime Format Models

• Format Model Modifiers

Number Format Models
You can use number format models in the following functions:

• In the TO_CHAR function to translate a value of NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE data type to VARCHAR2 data type

• In the TO_NUMBER function to translate a value of CHAR or VARCHAR2 data type to
NUMBER data type

• In the TO_BINARY_FLOAT and TO_BINARY_DOUBLE functions to translate CHAR and
VARCHAR2 expressions to BINARY_FLOAT or BINARY_DOUBLE values

All number format models cause the number to be rounded to the specified number of
significant digits. If a value has more significant digits to the left of the decimal place
than are specified in the format, then pound signs (#) replace the value. This event
typically occurs when you are using TO_CHAR with a restrictive number format string,
causing a rounding operation.

• If a positive NUMBER value is extremely large and cannot be represented in the
specified format, then the infinity sign (~) replaces the value. Likewise, if a
negative NUMBER value is extremely small and cannot be represented by the
specified format, then the negative infinity sign replaces the value (-~).

• If a BINARY_FLOAT or BINARY_DOUBLE value is converted to CHAR or NCHAR, and the
input is either infinity or NaN (not a number), then Oracle always returns the pound

Chapter 2
Format Models

2-66

signs to replace the value. However, if you omit the format model, then Oracle returns
either Inf or Nan as a string.

Number Format Elements
A number format model is composed of one or more number format elements. The tables
that follow list the elements of a number format model and provide some examples.

Negative return values automatically contain a leading negative sign and positive values
automatically contain a leading space unless the format model contains the MI, S, or PR
format element.

Table 2-15 Number Format Elements

Element Example Description

, (comma) 9,999 Returns a comma in the specified position. You can specify multiple commas in a
number format model.

Restrictions:
• A comma element cannot begin a number format model.
• A comma cannot appear to the right of a decimal character or period in a

number format model.

. (period) 99.99 Returns a decimal point, which is a period (.) in the specified position.

Restriction: You can specify only one period in a number format model.

$ $9999 Returns value with a leading dollar sign.

0 0999
9990

Returns leading zeros.

Returns trailing zeros.

9 9999 Returns value with the specified number of digits with a leading space if positive or
with a leading minus if negative. Leading zeros are blank, except for a zero value,
which returns a zero for the integer part of the fixed-point number.

B B9999 Returns blanks for the integer part of a fixed-point number when the integer part is
zero (regardless of zeros in the format model).

C C999 Returns in the specified position the ISO currency symbol (the current value of the
NLS_ISO_CURRENCY parameter).

D 99D99 Returns in the specified position the decimal character, which is the current value of
the NLS_NUMERIC_CHARACTER parameter. The default is a period (.).

Restriction: You can specify only one decimal character in a number format model.

EEEE 9.9EEEE Returns a value using in scientific notation.

G 9G999 Returns in the specified position the group separator (the current value of the
NLS_NUMERIC_CHARACTER parameter). You can specify multiple group separators in
a number format model.

Restriction: A group separator cannot appear to the right of a decimal character or
period in a number format model.

L L999 Returns in the specified position the local currency symbol (the current value of the
NLS_CURRENCY parameter).

MI 9999MI Returns negative value with a trailing minus sign (-).

Returns positive value with a trailing blank.

Restriction: The MI format element can appear only in the last position of a number
format model.

Chapter 2
Format Models

2-67

Table 2-15 (Cont.) Number Format Elements

Element Example Description

PR 9999PR Returns negative value in <angle brackets>.

Returns positive value with a leading and trailing blank.

Restriction: The PR format element can appear only in the last position of a
number format model.

RN

rn

RN
rn

Returns a value as Roman numerals in uppercase.

Returns a value as Roman numerals in lowercase.

Value can be an integer between 1 and 3999.

S S9999
9999S

Returns negative value with a leading minus sign (-).

Returns positive value with a leading plus sign (+).

Returns negative value with a trailing minus sign (-).

Returns positive value with a trailing plus sign (+).

Restriction: The S format element can appear only in the first or last position of a
number format model.

TM TM The text minimum number format model returns (in decimal output) the smallest
number of characters possible. This element is case insensitive.

The default is TM9, which returns the number in fixed notation unless the output
exceeds 64 characters. If the output exceeds 64 characters, then Oracle Database
automatically returns the number in scientific notation.

Restrictions:
• You cannot precede this element with any other element.
• You can follow this element only with one 9 or one E (or e), but not with any

combination of these. The following statement returns an error:

SELECT TO_CHAR(1234, 'TM9e') FROM DUAL;
U U9999 Returns in the specified position the Euro (or other) dual currency symbol,

determined by the current value of the NLS_DUAL_CURRENCY parameter.

V 999V99 Returns a value multiplied by 10n (and if necessary, round it up), where n is the
number of 9's after the V.

X XXXX
xxxx

Returns the hexadecimal value of the specified number of digits. If the specified
number is not an integer, then Oracle Database rounds it to an integer.

Restrictions:
• This element accepts only positive values or 0. Negative values return an error.
• You can precede this element only with 0 (which returns leading zeroes) or FM.

Any other elements return an error. If you specify neither 0 nor FM with X, then
the return always has one leading blank. Refer to the format model modifier FM
for more information.

Table 2-16 shows the results of the following query for different values of number and
'fmt':

SELECT TO_CHAR(number, 'fmt')
 FROM DUAL;

Table 2-16 Results of Number Conversions

number 'fmt' Result

-1234567890 9999999999S '1234567890-'

Chapter 2
Format Models

2-68

Table 2-16 (Cont.) Results of Number Conversions

number 'fmt' Result

0 99.99 ' .00'
+0.1 99.99 ' .10'
-0.2 99.99 ' -.20'
0 90.99 ' 0.00'
+0.1 90.99 ' 0.10'
-0.2 90.99 ' -0.20'
0 9999 ' 0'
1 9999 ' 1'
0 B9999 ' '
1 B9999 ' 1'
0 B90.99 ' '
+123.456 999.999 ' 123.456'
-123.456 999.999 '-123.456'
+123.456 FM999.009 '123.456'
+123.456 9.9EEEE ' 1.2E+02'
+1E+123 9.9EEEE ' 1.0E+123'
+123.456 FM9.9EEEE '1.2E+02'
+123.45 FM999.009 '123.45'
+123.0 FM999.009 '123.00'
+123.45 L999.99 ' $123.45'
+123.45 FML999.99 '$123.45'
+1234567890 9999999999S '1234567890+'

Datetime Format Models
You can use datetime format models in the following functions:

• In the TO_* datetime functions to translate a character value that is in a format other than
the default format into a datetime value. (The TO_* datetime functions are TO_DATE,
TO_TIMESTAMP, and TO_TIMESTAMP_TZ.)

• In the TO_CHAR function to translate a datetime value into a character value that is in a
format other than the default format (for example, to print the date from an application)

The total length of a datetime format model cannot exceed 22 characters.

The default datetime formats are specified either explicitly with the NLS session parameters
NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, and NLS_TIMESTAMP_TZ_FORMAT, or implicitly with
the NLS session parameter NLS_TERRITORY. You can change the default datetime formats for
your session with the ALTER SESSION statement.

Chapter 2
Format Models

2-69

See Also:

ALTER SESSION and Oracle Database Globalization Support Guide for
information on the NLS parameters

Datetime Format Elements
A datetime format model is composed of one or more datetime format elements as
listed in Table 2-17.

• For input format models, format items cannot appear twice, and format items that
represent similar information cannot be combined. For example, you cannot use
'SYYYY' and 'BC' in the same format string.

• The second column indicates whether the format element can be used in the TO_*
datetime functions. All format elements can be used in the TO_CHAR function.

• The following datetime format elements can be used in timestamp and interval
format models, but not in the original DATE format model: FF, TZD, TZH, TZM, and
TZR.

• Many datetime format elements are padded with blanks or leading zeroes to a
specific length. Refer to the format model modifier FM for more information.

Note:

Oracle recommends that you use the 4-digit year element (YYYY) instead of
the shorter year elements for these reasons:

• The 4-digit year element eliminates ambiguity.

• The shorter year elements may affect query optimization because the
year is not known at query compile time and can only be determined at
run time.

Uppercase Letters in Date Format Elements
Capitalization in a spelled-out word, abbreviation, or Roman numeral follows
capitalization in the corresponding format element. For example, the date format
model 'DAY' produces capitalized words like 'MONDAY'; 'Day' produces 'Monday'; and
'day' produces 'monday'.

Punctuation and Character Literals in Datetime Format Models
You can include these characters in a date format model:

• Punctuation such as hyphens, slashes, commas, periods, and colons

• Character literals, enclosed in double quotation marks

These characters appear in the return value in the same location as they appear in the
format model.

Chapter 2
Format Models

2-70

Table 2-17 Datetime Format Elements

Element TO_*
datetime
functions?

Description

-
/
,
.
;
:
"text"

Yes Punctuation and quoted text is reproduced in the result.

AD
A.D.

Yes AD indicator with or without periods.

AM
A.M.

Yes Meridian indicator with or without periods.

BC
B.C.

Yes BC indicator with or without periods.

CC
SCC

Century.

• If the last 2 digits of a 4-digit year are between 01 and 99 (inclusive), then the
century is one greater than the first 2 digits of that year.

• If the last 2 digits of a 4-digit year are 00, then the century is the same as the
first 2 digits of that year.

For example, 2002 returns 21; 2000 returns 20.

D Yes Day of week (1-7). This element depends on the NLS territory of the session.

DAY Yes Name of day.

DD Yes Day of month (1-31).

DDD Yes Day of year (1-366).

DL Yes Returns a value in the long date format, which is an extension of the Oracle
Database DATE format, determined by the current value of the NLS_DATE_FORMAT
parameter. Makes the appearance of the date components (day name, month
number, and so forth) depend on the NLS_TERRITORY and NLS_LANGUAGE
parameters. For example, in the AMERICAN_AMERICA locale, this is equivalent to
specifying the format 'fmDay, Month dd, yyyy'. In the GERMAN_GERMANY locale, it
is equivalent to specifying the format 'fmDay, dd. Month yyyy'.

Restriction: You can specify this format only with the TS element, separated by
white space.

Chapter 2
Format Models

2-71

Table 2-17 (Cont.) Datetime Format Elements

Element TO_*
datetime
functions?

Description

DS Yes Returns a value in the short date format. Makes the appearance of the date
components (day name, month number, and so forth) depend on the
NLS_TERRITORY and NLS_LANGUAGE parameters. For example, in the
AMERICAN_AMERICA locale, this is equivalent to specifying the format 'MM/DD/RRRR'.
In the ENGLISH_UNITED_KINGDOM locale, it is equivalent to specifying the format
'DD/MM/RRRR'.

Restriction: You can specify this format only with the TS element, separated by
white space.

DY Yes Abbreviated name of day.

E Yes Abbreviated era name (Japanese Imperial, ROC Official, and Thai Buddha
calendars).

EE Yes Full era name (Japanese Imperial, ROC Official, and Thai Buddha calendars).

FF [1..9] Yes Fractional seconds; no radix character is printed. Use the X format element to add
the radix character. Use the numbers 1 to 9 after FF to specify the number of digits
in the fractional second portion of the datetime value returned. If you do not specify
a digit, then Oracle Database uses the precision specified for the datetime data type
or the data type's default precision. Valid in timestamp and interval formats, but not
in DATE formats.

Examples: 'HH:MI:SS.FF'
SELECT TO_CHAR(SYSTIMESTAMP, 'SS.FF3') from DUAL;

FM Yes Returns a value with no leading or trailing blanks.

See Also: FM

FX Yes Requires exact matching between the character data and the format model.

See Also: FX

HH
HH12

Yes Hour of day (1-12).

HH24 Yes Hour of day (0-23).

IW Calendar week of year (1-52 or 1-53), as defined by the ISO 8601 standard.

• A calendar week starts on Monday.
• The first calendar week of the year includes January 4.
• The first calendar week of the year may include December 29, 30 and 31.
• The last calendar week of the year may include January 1, 2, and 3.

IYYY 4-digit year of the year containing the calendar week, as defined by the ISO 8601
standard.

IYY
IY
I

Last 3, 2, or 1 digit(s) of the year containing the calendar week, as defined by the
ISO 8601 standard.

Chapter 2
Format Models

2-72

Table 2-17 (Cont.) Datetime Format Elements

Element TO_*
datetime
functions?

Description

J Yes Julian day; the number of days since January 1, 4712 BC. Number specified with J
must be integers.

MI Yes Minute (0-59).

MM Yes Month (01-12; January = 01).

MON Yes Abbreviated name of month.

MONTH Yes Name of month.

PM
P.M.

Yes Meridian indicator with or without periods.

Q Quarter of year (1, 2, 3, 4; January - March = 1).

RM Yes Roman numeral month (I-XII; January = I).

RR Yes Lets you store 20th century dates in the 21st century using only two digits.

See Also: The RR Datetime Format Element

RRRR Yes Round year. Accepts either 4-digit or 2-digit input. If 2-digit, provides the same return
as RR. If you do not want this functionality, then enter the 4-digit year.

SS Yes Second (0-59).

SSSSS Yes Seconds past midnight (0-86399).

TS Yes Returns a value in the short time format. Makes the appearance of the time
components (hour, minutes, and so forth) depend on the NLS_TERRITORY and
NLS_LANGUAGE initialization parameters.

Restriction: You can specify this format only with the DL or DS element, separated
by white space.

TZD Yes Daylight saving information. The TZD value is an abbreviated time zone string with
daylight saving information. It must correspond with the region specified in TZR.
Valid in timestamp and interval formats, but not in DATE formats.

Example: PST (for US/Pacific standard time); PDT (for US/Pacific daylight time).

TZH Yes Time zone hour. (See TZM format element.) Valid in timestamp and interval formats,
but not in DATE formats.

Example: 'HH:MI:SS.FFTZH:TZM'.

TZM Yes Time zone minute. (See TZH format element.) Valid in timestamp and interval
formats, but not in DATE formats.

Example: 'HH:MI:SS.FFTZH:TZM'.

Chapter 2
Format Models

2-73

Table 2-17 (Cont.) Datetime Format Elements

Element TO_*
datetime
functions?

Description

TZR Yes Time zone region information. The value must be one of the time zone region names
supported in the database. Valid in timestamp and interval formats, but not in DATE
formats.

Example: US/Pacific

WW Week of year (1-53) where week 1 starts on the first day of the year and continues to
the seventh day of the year.

W Week of month (1-5) where week 1 starts on the first day of the month and ends on
the seventh.

X Yes Local radix character.

Example: 'HH:MI:SSXFF'.

Y,YYY Yes Year with comma in this position.

YEAR
SYEAR

Year, spelled out; S prefixes BC dates with a minus sign (-).

YYYY
SYYYY

Yes 4-digit year; S prefixes BC dates with a minus sign.

YYY
YY
Y

Yes Last 3, 2, or 1 digit(s) of year.

Oracle Database converts strings to dates with some flexibility. For example, when the
TO_DATE function is used, a format model containing punctuation characters matches
an input string lacking some or all of these characters, provided each numerical
element in the input string contains the maximum allowed number of digits—for
example, two digits '05' for 'MM' or four digits '2007' for 'YYYY'. The following
statement does not return an error:

SELECT TO_CHAR(TO_DATE('0207','MM/YY'), 'MM/YY') FROM DUAL;

TO_CH

02/07

However, the following format string does return an error, because the FX (format
exact) format modifier requires an exact match of the expression and the format string:

SELECT TO_CHAR(TO_DATE('0207', 'fxmm/yy'), 'mm/yy') FROM DUAL;
SELECT TO_CHAR(TO_DATE('0207', 'fxmm/yy'), 'mm/yy') FROM DUAL;
 *
ERROR at line 1:
ORA-01861: literal does not match format string

Chapter 2
Format Models

2-74

Any non-alphanumeric character is allowed to match the punctuation characters in the format
model. For example, the following statement does not return an error:

SELECT TO_CHAR (TO_DATE('02#07','MM/YY'), 'MM/YY') FROM DUAL;

TO_CH

02/07

See Also:

Format Model Modifiers and String-to-Date Conversion Rules for more information

Datetime Format Elements and Globalization Support
The functionality of some datetime format elements depends on the country and language in
which you are using Oracle Database. For example, these datetime format elements return
spelled values:

• MONTH

• MON

• DAY

• DY

• BC or AD or B.C. or A.D.

• AM or PM or A.M or P.M.

The language in which these values are returned is specified either explicitly with the
initialization parameter NLS_DATE_LANGUAGE or implicitly with the initialization parameter
NLS_LANGUAGE. The values returned by the YEAR and SYEAR datetime format elements are
always in English.

The datetime format element D returns the number of the day of the week (1-7). The day of
the week that is numbered 1 is specified implicitly by the initialization parameter
NLS_TERRITORY.

See Also:

Oracle Database Reference and Oracle Database Globalization Support Guide for
information on globalization support initialization parameters

ISO Standard Date Format Elements
Oracle calculates the values returned by the datetime format elements IYYY, IYY, IY, I, and
IW according to the ISO standard. For information on the differences between these values
and those returned by the datetime format elements YYYY, YYY, YY, Y, and WW, see the
discussion of globalization support in Oracle Database Globalization Support Guide.

Chapter 2
Format Models

2-75

The RR Datetime Format Element
The RR datetime format element is similar to the YY datetime format element, but it
provides additional flexibility for storing date values in other centuries. The RR datetime
format element lets you store 20th century dates in the 21st century by specifying only
the last two digits of the year.

If you use the TO_DATE function with the YY datetime format element, then the year
returned always has the same first 2 digits as the current year. If you use the RR
datetime format element instead, then the century of the return value varies according
to the specified two-digit year and the last two digits of the current year.

That is:

• If the specified two-digit year is 00 to 49, then

– If the last two digits of the current year are 00 to 49, then the returned year has
the same first two digits as the current year.

– If the last two digits of the current year are 50 to 99, then the first 2 digits of the
returned year are 1 greater than the first 2 digits of the current year.

• If the specified two-digit year is 50 to 99, then

– If the last two digits of the current year are 00 to 49, then the first 2 digits of the
returned year are 1 less than the first 2 digits of the current year.

– If the last two digits of the current year are 50 to 99, then the returned year has
the same first two digits as the current year.

The following examples demonstrate the behavior of the RR datetime format element.

RR Datetime Format Examples

Assume these queries are issued between 1950 and 1999:

SELECT TO_CHAR(TO_DATE('27-OCT-98', 'DD-MON-RR'), 'YYYY') "Year" FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE('27-OCT-17', 'DD-MON-RR'), 'YYYY') "Year" FROM DUAL;

Year

2017

Now assume these queries are issued between 2000 and 2049:

SELECT TO_CHAR(TO_DATE('27-OCT-98', 'DD-MON-RR'), 'YYYY') "Year" FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE('27-OCT-17', 'DD-MON-RR'), 'YYYY') "Year" FROM DUAL;

Year

Chapter 2
Format Models

2-76

2017

Note that the queries return the same values regardless of whether they are issued before or
after the year 2000. The RR datetime format element lets you write SQL statements that will
return the same values from years whose first two digits are different.

Datetime Format Element Suffixes
Table 2-18 lists suffixes that can be added to datetime format elements:

Table 2-18 Date Format Element Suffixes

Suffix Meaning Example Element Example Value

TH Ordinal Number DDTH 4TH
SP Spelled Number DDSP FOUR
SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

Notes on date format element suffixes:

• When you add one of these suffixes to a datetime format element, the return value is
always in English.

• Datetime suffixes are valid only to format output. You cannot use them to insert a date
into the database.

Format Model Modifiers
The FM and FX modifiers, used in format models in the TO_CHAR function, control blank
padding and exact format checking.

A modifier can appear in a format model more than once. In such a case, each subsequent
occurrence toggles the effects of the modifier. Its effects are enabled for the portion of the
model following its first occurrence, and then disabled for the portion following its second, and
then reenabled for the portion following its third, and so on.

FM

Fill mode. Oracle uses trailing blank characters and leading zeroes to fill format elements to a
constant width. The width is equal to the display width of the largest element for the relevant
format model:

• Numeric elements are padded with leading zeros to the width of the maximum value
allowed for the element. For example, the YYYY element is padded to four digits (the
length of '9999'), HH24 to two digits (the length of '23'), and DDD to three digits (the length
of '366').

• The character elements MONTH, MON, DAY, and DY are padded with trailing blanks to the
width of the longest full month name, the longest abbreviated month name, the longest
full date name, or the longest abbreviated day name, respectively, among valid names
determined by the values of NLS_DATE_LANGUAGE and NLS_CALENDAR parameters. For
example, when NLS_DATE_LANGUAGE is AMERICAN and NLS_CALENDAR is GREGORIAN (the
default), the largest element for MONTH is SEPTEMBER, so all values of the MONTH format
element are padded to nine display characters. The values of the NLS_DATE_LANGUAGE

Chapter 2
Format Models

2-77

and NLS_CALENDAR parameters are specified in the third argument to TO_CHAR and
TO_* datetime functions or they are retrieved from the NLS environment of the
current session.

• The character element RM is padded with trailing blanks to the length of 4, which
is the length of 'viii'.

• Other character elements and spelled-out numbers (SP, SPTH, and THSP suffixes)
are not padded.

The FM modifier suppresses the above padding in the return value of the TO_CHAR
function.

FX

Format exact. This modifier specifies exact matching for the character argument and
datetime format model of a TO_DATE function:

• Punctuation and quoted text in the character argument must exactly match (except
for case) the corresponding parts of the format model.

• The character argument cannot have extra blanks. Without FX, Oracle ignores
extra blanks.

• Numeric data in the character argument must have the same number of digits as
the corresponding element in the format model. Without FX, numbers in the
character argument can omit leading zeros.

When FX is enabled, you can disable this check for leading zeros by using the FM
modifier as well.

If any portion of the character argument violates any of these conditions, then Oracle
returns an error message.

Format Model Examples
The following statement uses a date format model to return a character expression:

SELECT TO_CHAR(SYSDATE, 'fmDDTH') || ' of ' ||
 TO_CHAR(SYSDATE, 'fmMonth') || ', ' ||
 TO_CHAR(SYSDATE, 'YYYY') "Ides"
 FROM DUAL;

Ides

3RD of April, 2008

The preceding statement also uses the FM modifier. If FM is omitted, then the month is
blank-padded to nine characters:

SELECT TO_CHAR(SYSDATE, 'DDTH') || ' of ' ||
 TO_CHAR(SYSDATE, 'Month') || ', ' ||
 TO_CHAR(SYSDATE, 'YYYY') "Ides"
 FROM DUAL;

Ides

03RD of April , 2008

The following statement places a single quotation mark in the return value by using a
date format model that includes two consecutive single quotation marks:

Chapter 2
Format Models

2-78

SELECT TO_CHAR(SYSDATE, 'fmDay') || '''s Special' "Menu"
 FROM DUAL;

Menu

Tuesday's Special

Two consecutive single quotation marks can be used for the same purpose within a character
literal in a format model.

Table 2-19 shows whether the following statement meets the matching conditions for different
values of char and 'fmt' using FX (the table named table has a column date_column of data
type DATE):

UPDATE table
 SET date_column = TO_DATE(char, 'fmt');

Table 2-19 Matching Character Data and Format Models with the FX Format Model
Modifier

char 'fmt' Match or Error?

'15/ JAN /1998' 'DD-MON-YYYY' Match
' 15! JAN % /1998' 'DD-MON-YYYY' Error
'15/JAN/1998' 'FXDD-MON-YYYY' Error
'15-JAN-1998' 'FXDD-MON-YYYY' Match
'1-JAN-1998' 'FXDD-MON-YYYY' Error
'01-JAN-1998' 'FXDD-MON-YYYY' Match
'1-JAN-1998' 'FXFMDD-MON-YYYY' Match

Format of Return Values: Examples

You can use a format model to specify the format for Oracle to use to return values from the
database to you.

The following statement selects the salaries of the employees in Department 80 and uses the
TO_CHAR function to convert these salaries into character values with the format specified by
the number format model '$99,990.99':

SELECT last_name employee, TO_CHAR(salary, '$99,990.99')
 FROM employees
 WHERE department_id = 80;

Because of this format model, Oracle returns salaries with leading dollar signs, commas
every three digits, and two decimal places.

The following statement selects the date on which each employee from Department 20 was
hired and uses the TO_CHAR function to convert these dates to character strings with the
format specified by the date format model 'fmMonth DD, YYYY':

SELECT last_name employee, TO_CHAR(hire_date,'fmMonth DD, YYYY') hiredate
 FROM employees
 WHERE department_id = 20;

With this format model, Oracle returns the hire dates without blank padding (as specified by
fm), two digits for the day, and the century included in the year.

Chapter 2
Format Models

2-79

See Also:

Format Model Modifiers for a description of the fm format element

Supplying the Correct Format Model: Examples

When you insert or update a column value, the data type of the value that you specify
must correspond to the column data type of the column. You can use format models to
specify the format of a value that you are converting from one data type to another
data type required for a column.

For example, a value that you insert into a DATE column must be a value of the DATE
data type or a character string in the default date format (Oracle implicitly converts
character strings in the default date format to the DATE data type). If the value is in
another format, then you must use the TO_DATE function to convert the value to the
DATE data type. You must also use a format model to specify the format of the
character string.

The following statement updates Hunold's hire date using the TO_DATE function with
the format mask 'YYYY MM DD' to convert the character string '2008 05 20' to a DATE
value:

UPDATE employees
 SET hire_date = TO_DATE('2008 05 20','YYYY MM DD')
 WHERE last_name = 'Hunold';

String-to-Date Conversion Rules
The following additional formatting rules apply when converting string values to date
values (unless you have used the FX or FXFM modifiers in the format model to control
exact format checking):

• You can omit punctuation included in the format string from the date string if all the
digits of the numerical format elements, including leading zeros, are specified. For
example, specify 02 and not 2 for two-digit format elements such as MM, DD, and
YY.

• You can omit time fields found at the end of a format string from the date string.

• You can use any non-alphanumeric character in the date string to match the
punctuation symbol in the format string.

• If a match fails between a datetime format element and the corresponding
characters in the date string, then Oracle attempts alternative format elements, as
shown in Table 2-20.

Table 2-20 Oracle Format Matching

Original Format Element Additional Format Elements to Try in Place of the Original

'MM' 'MON' and 'MONTH'

'MON 'MONTH'
'MONTH' 'MON'

Chapter 2
Format Models

2-80

Table 2-20 (Cont.) Oracle Format Matching

Original Format Element Additional Format Elements to Try in Place of the Original

'YY' 'YYYY'
'RR' 'RRRR'

XML Format Model
The SYS_XMLAgg and SYS_XMLGen (deprecated) functions return an instance of type XMLType
containing an XML document. Oracle provides the XMLFormat object, which lets you format
the output of these functions.

Table 2-21 lists and describes the attributes of the XMLFormat object. The function that
implements this type follows the table.

See Also:

• SYS_XMLAGG for information on the SYS_XMLAgg function

• SYS_XMLGEN for information on the SYS_XMLGen function

• Oracle XML DB Developer’s Guide for more information on the implementation
of the XMLFormat object and its use

Table 2-21 Attributes of the XMLFormat Object

Attribute Data Type Purpose

enclTag VARCHAR2(4000) or
VARCHAR2(32767)1

The name of the enclosing tag for the result of the SYS_XMLAgg or
SYS_XMLGen (deprecated) function.

SYS_XMLAgg: The default is ROWSET.

SYS_XMLGen: If the input to the function is a column name, then
the default is the column name. Otherwise the default is ROW.
When schemaType is set to USE_GIVEN_SCHEMA, this attribute
also gives the name of the XMLSchema element.

schemaType VARCHAR2(100) The type of schema generation for the output document. Valid
values are 'NO_SCHEMA' and 'USE_GIVEN_SCHEMA'. The default is
'NO_SCHEMA'.

schemaName VARCHAR2(4000) or
VARCHAR2(32767)1

The name of the target schema Oracle uses if the value of the
schemaType is 'USE_GIVEN_SCHEMA'. If you specify schemaName,
then Oracle uses the enclosing tag as the element name.

targetNameSpace VARCHAR2(4000) or
VARCHAR2(32767)1

The target namespace if the schema is specified (that is,
schemaType is GEN_SCHEMA_*, or USE_GIVEN_SCHEMA)

dburlPrefix VARCHAR2(4000) or
VARCHAR2(32767)1

The URL to the database to use if WITH_SCHEMA is specified. If
this attribute is not specified, then Oracle declares the URL to the
types as a relative URL reference.

processingIns VARCHAR2(4000) or
VARCHAR2(32767)1

User-provided processing instructions, which are appended to the
top of the function output before the element.

Chapter 2
Format Models

2-81

1 The data type for this attribute is VARCHAR2(4000) if the initialization parameter MAX_STRING_SIZE = STANDARD, and
VARCHAR2(32767) if MAX_STRING_SIZE = EXTENDED. See Extended Data Types for more information.

The function that implements the XMLFormat object follows:

STATIC FUNCTION createFormat(
 enclTag IN varchar2 := 'ROWSET',
 schemaType IN varchar2 := 'NO_SCHEMA',
 schemaName IN varchar2 := null,
 targetNameSpace IN varchar2 := null,
 dburlPrefix IN varchar2 := null,
 processingIns IN varchar2 := null) RETURN XMLGenFormatType
 deterministic parallel_enable,
 MEMBER PROCEDURE genSchema (spec IN varchar2),
 MEMBER PROCEDURE setSchemaName(schemaName IN varchar2),
 MEMBER PROCEDURE setTargetNameSpace(targetNameSpace IN varchar2),
 MEMBER PROCEDURE setEnclosingElementName(enclTag IN varchar2),
 MEMBER PROCEDURE setDbUrlPrefix(prefix IN varchar2),
 MEMBER PROCEDURE setProcessingIns(pi IN varchar2),
 CONSTRUCTOR FUNCTION XMLGenFormatType (
 enclTag IN varchar2 := 'ROWSET',
 schemaType IN varchar2 := 'NO_SCHEMA',
 schemaName IN varchar2 := null,
 targetNameSpace IN varchar2 := null,
 dbUrlPrefix IN varchar2 := null,
 processingIns IN varchar2 := null) RETURN SELF AS RESULT
 deterministic parallel_enable,
 STATIC function createFormat2(
 enclTag in varchar2 := 'ROWSET',
 flags in raw) return sys.xmlgenformattype
 deterministic parallel_enable
);

Nulls
If a column in a row has no value, then the column is said to be null, or to contain null.
Nulls can appear in columns of any data type that are not restricted by NOT NULL or
PRIMARY KEY integrity constraints. Use a null when the actual value is not known or
when a value would not be meaningful.

Oracle Database treats a character value with a length of zero as null. However, do
not use null to represent a numeric value of zero, because they are not equivalent.

Note:

Oracle Database currently treats a character value with a length of zero as
null. However, this may not continue to be true in future releases, and Oracle
recommends that you do not treat empty strings the same as nulls.

Any arithmetic expression containing a null always evaluates to null. For example, null
added to 10 is null. In fact, all operators (except concatenation) return null when given
a null operand.

Chapter 2
Nulls

2-82

Nulls in SQL Functions
For information on null handling in SQL functions, see Nulls in SQL Functions .

Nulls with Comparison Conditions
To test for nulls, use only the comparison conditions IS NULL and IS NOT NULL. If you use any
other condition with nulls and the result depends on the value of the null, then the result is
UNKNOWN. Because null represents a lack of data, a null cannot be equal or unequal to any
value or to another null. However, Oracle considers two nulls to be equal when evaluating a
DECODE function. Refer to DECODE for syntax and additional information.

Oracle also considers two nulls to be equal if they appear in compound keys. That is, Oracle
considers identical two compound keys containing nulls if all the non-null components of the
keys are equal.

Nulls in Conditions
A condition that evaluates to UNKNOWN acts almost like FALSE. For example, a SELECT
statement with a condition in the WHERE clause that evaluates to UNKNOWN returns no rows.
However, a condition evaluating to UNKNOWN differs from FALSE in that further operations on an
UNKNOWN condition evaluation will evaluate to UNKNOWN. Thus, NOT FALSE evaluates to TRUE, but
NOT UNKNOWN evaluates to UNKNOWN.

Table 2-22 shows examples of various evaluations involving nulls in conditions. If the
conditions evaluating to UNKNOWN were used in a WHERE clause of a SELECT statement, then no
rows would be returned for that query.

Table 2-22 Conditions Containing Nulls

Condition Value of A Evaluation

a IS NULL 10 FALSE
a IS NOT NULL 10 TRUE
a IS NULL NULL TRUE
a IS NOT NULL NULL FALSE
a = NULL 10 UNKNOWN
a != NULL 10 UNKNOWN
a = NULL NULL UNKNOWN
a != NULL NULL UNKNOWN
a = 10 NULL UNKNOWN
a != 10 NULL UNKNOWN

For the truth tables showing the results of logical conditions containing nulls, see Table 6-5,
Table 6-6, and Table 6-7.

Chapter 2
Nulls

2-83

Comments
You can create two types of comments:

• Comments within SQL statements are stored as part of the application code that
executes the SQL statements.

• Comments associated with individual schema or nonschema objects are stored in
the data dictionary along with metadata on the objects themselves.

Comments Within SQL Statements
Comments can make your application easier for you to read and maintain. For
example, you can include a comment in a statement that describes the purpose of the
statement within your application. With the exception of hints, comments within SQL
statements do not affect the statement execution. Refer to Hints on using this
particular form of comment.

A comment can appear between any keywords, parameters, or punctuation marks in a
statement. You can include a comment in a statement in two ways:

• Begin the comment with a slash and an asterisk (/*). Proceed with the text of the
comment. This text can span multiple lines. End the comment with an asterisk and
a slash (*/). The opening and terminating characters need not be separated from
the text by a space or a line break.

• Begin the comment with -- (two hyphens). Proceed with the text of the comment.
This text cannot extend to a new line. End the comment with a line break.

Some of the tools used to enter SQL have additional restrictions. For example, if you
are using SQL*Plus, by default you cannot have a blank line inside a multiline
comment. For more information, refer to the documentation for the tool you use as an
interface to the database.

A SQL statement can contain multiple comments of both styles. The text of a comment
can contain any printable characters in your database character set.

Example

These statements contain many comments:

SELECT last_name, employee_id, salary + NVL(commission_pct, 0),
 job_id, e.department_id
 /* Select all employees whose compensation is
 greater than that of Pataballa.*/
 FROM employees e, departments d
 /*The DEPARTMENTS table is used to get the department name.*/
 WHERE e.department_id = d.department_id
 AND salary + NVL(commission_pct,0) > /* Subquery: */
 (SELECT salary + NVL(commission_pct,0)
 /* total compensation is salary + commission_pct */
 FROM employees
 WHERE last_name = 'Pataballa')
 ORDER BY last_name, employee_id;

SELECT last_name, -- select the name
 employee_id -- employee id
 salary + NVL(commission_pct, 0), -- total compensation

Chapter 2
Comments

2-84

 job_id, -- job
 e.department_id -- and department
 FROM employees e, -- of all employees
 departments d
 WHERE e.department_id = d.department_id
 AND salary + NVL(commission_pct, 0) > -- whose compensation
 -- is greater than
 (SELECT salary + NVL(commission_pct,0) -- the compensation
 FROM employees
 WHERE last_name = 'Pataballa') -- of Pataballa
 ORDER BY last_name -- and order by last name
 employee_id -- and employee id.
;

Comments on Schema and Nonschema Objects
You can use the COMMENT command to associate a comment with a schema object (table,
view, materialized view, operator, indextype, mining model) or a nonschema object (edition)
using the COMMENT command. You can also create a comment on a column, which is part of a
table schema object. Comments associated with schema and nonschema objects are stored
in the data dictionary. Refer to COMMENT for a description of this form of comment.

Hints
Hints are comments in a SQL statement that pass instructions to the Oracle Database
optimizer. The optimizer uses these hints to choose an execution plan for the statement,
unless some condition exists that prevents the optimizer from doing so.

Hints were introduced in Oracle7, when users had little recourse if the optimizer generated
suboptimal plans. Now Oracle provides a number of tools, including the SQL Tuning Advisor,
SQL plan management, and SQL Performance Analyzer, to help you address performance
problems that are not solved by the optimizer. Oracle strongly recommends that you use
those tools rather than hints. The tools are far superior to hints, because when used on an
ongoing basis, they provide fresh solutions as your data and database environment change.

Hints should be used sparingly, and only after you have collected statistics on the relevant
tables and evaluated the optimizer plan without hints using the EXPLAIN PLAN statement.
Changing database conditions as well as query performance enhancements in subsequent
releases can have significant impact on how hints in your code affect performance.

The remainder of this section provides information on some commonly used hints. If you
decide to use hints rather than the more advanced tuning tools, be aware that any short-term
benefit resulting from the use of hints may not continue to result in improved performance
over the long term.

Using Hints

A statement block can have only one comment containing hints, and that comment must
follow the SELECT, UPDATE, INSERT, MERGE, or DELETE keyword.

The following syntax diagram shows hints contained in both styles of comments that Oracle
supports within a statement block. The hint syntax must follow immediately after an INSERT,
UPDATE, DELETE, SELECT, or MERGE keyword that begins the statement block.

Chapter 2
Comments

2-85

hint::=

/*+ hint

string

*/

– – + hint

string

where:

• The plus sign (+) causes Oracle to interpret the comment as a list of hints. The
plus sign must follow immediately after the comment delimiter. No space is
permitted.

• hint is one of the hints discussed in this section. The space between the plus sign
and the hint is optional. If the comment contains multiple hints, then separate the
hints by at least one space.

• string is other commenting text that can be interspersed with the hints.

The --+ syntax requires that the entire comment be on a single line.

Oracle Database ignores hints and does not return an error under the following
circumstances:

• The hint contains misspellings or syntax errors. However, the database does
consider other correctly specified hints in the same comment.

• The comment containing the hint does not follow a DELETE, INSERT, MERGE, SELECT,
or UPDATE keyword.

• A combination of hints conflict with each other. However, the database does
consider other hints in the same comment.

• The database environment uses PL/SQL version 1, such as Forms version 3
triggers, Oracle Forms 4.5, and Oracle Reports 2.5.

• A global hint refers to multiple query blocks. Refer to Specifying Multiple Query
Blocks in a Global Hint for more information.

With 19c you can use DBMS_XPLAN to find out whether a hint is used or not used. For
more information, see the Database SQL Tuning Guide.

Specifying a Query Block in a Hint

You can specify an optional query block name in many hints to specify the query block
to which the hint applies. This syntax lets you specify in the outer query a hint that
applies to an inline view.

The syntax of the query block argument is of the form @queryblock, where queryblock
is an identifier that specifies a query block in the query. The queryblock identifier can
either be system-generated or user-specified. When you specify a hint in the query
block itself to which the hint applies, you omit the @queryblock syntax.

• The system-generated identifier can be obtained by using EXPLAIN PLAN for the
query. Pretransformation query block names can be determined by running

Chapter 2
Comments

2-86

EXPLAIN PLAN for the query using the NO_QUERY_TRANSFORMATION hint. See
NO_QUERY_TRANSFORMATION Hint .

• The user-specified name can be set with the QB_NAME hint. See QB_NAME Hint .

Specifying Global Hints

Many hints can apply both to specific tables or indexes and more globally to tables within a
view or to columns that are part of indexes. The syntactic elements tablespec and indexspec
define these global hints.

tablespec::=

view .

table

You must specify the table to be accessed exactly as it appears in the statement. If the
statement uses an alias for the table, then use the alias rather than the table name in the hint.
However, do not include the schema name with the table name within the hint, even if the
schema name appears in the statement.

Note:

Specifying a global hint using the tablespec clause does not work for queries that
use ANSI joins, because the optimizer generates additional views during parsing.
Instead, specify @queryblock to indicate the query block to which the hint applies.

indexspec::=

index

(

table .

column)

When tablespec is followed by indexspec in the specification of a hint, a comma separating
the table name and index name is permitted but not required. Commas are also permitted,
but not required, to separate multiple occurrences of indexspec.

Specifying Multiple Query Blocks in a Global Hint

Oracle Database ignores global hints that refer to multiple query blocks. To avoid this issue,
Oracle recommends that you specify the object alias in the hint instead of using tablespec
and indexspec.

For example, consider the following view v and table t:

CREATE VIEW v AS
 SELECT e.last_name, e.department_id, d.location_id
 FROM employees e, departments d

Chapter 2
Comments

2-87

 WHERE e.department_id = d.department_id;

CREATE TABLE t AS
 SELECT * from employees
 WHERE employee_id < 200;

Note:

The following examples use the EXPLAIN PLAN statement, which enables you
to display the execution plan and determine if a hint is honored or ignored.
Refer to EXPLAIN PLAN for more information.

The LEADING hint is ignored in the following query because it refers to multiple query
blocks, that is, the main query block containing table t and the view query block v:

EXPLAIN PLAN
 SET STATEMENT_ID = 'Test 1'
 INTO plan_table FOR
 (SELECT /*+ LEADING(v.e v.d t) */ *
 FROM t, v
 WHERE t.department_id = v.department_id);

The following SELECT statement returns the execution plan, which shows that the
LEADING hint was ignored:

SELECT id, LPAD(' ',2*(LEVEL-1))||operation operation, options, object_name,
object_alias
 FROM plan_table
 START WITH id = 0 AND statement_id = 'Test 1'
 CONNECT BY PRIOR id = parent_id AND statement_id = 'Test 1'
 ORDER BY id;

 ID OPERATION OPTIONS OBJECT_NAME OBJECT_ALIAS
--- -------------------- ---------- ------------- --------------------
 0 SELECT STATEMENT
 1 HASH JOIN
 2 HASH JOIN
 3 TABLE ACCESS FULL DEPARTMENTS D@SEL$2
 4 TABLE ACCESS FULL EMPLOYEES E@SEL$2
 5 TABLE ACCESS FULL T T@SEL$1

The LEADING hint is honored in the following query because it refers to object aliases,
which can be found in the execution plan that was returned by the previous query:

EXPLAIN PLAN
 SET STATEMENT_ID = 'Test 2'
 INTO plan_table FOR
 (SELECT /*+ LEADING(E@SEL$2 D@SEL$2 T@SEL$1) */ *
 FROM t, v
 WHERE t.department_id = v.department_id);

The following SELECT statement returns the execution plan, which shows that the
LEADING hint was honored:

SELECT id, LPAD(' ',2*(LEVEL-1))||operation operation, options,
 object_name, object_alias
 FROM plan_table

Chapter 2
Comments

2-88

 START WITH id = 0 AND statement_id = 'Test 2'
 CONNECT BY PRIOR id = parent_id AND statement_id = 'Test 2'
 ORDER BY id;

 ID OPERATION OPTIONS OBJECT_NAME OBJECT_ALIAS
--- -------------------- ---------- ------------- --------------------
 0 SELECT STATEMENT
 1 HASH JOIN
 2 HASH JOIN
 3 TABLE ACCESS FULL EMPLOYEES E@SEL$2
 4 TABLE ACCESS FULL DEPARTMENTS D@SEL$2
 5 TABLE ACCESS FULL T T@SEL$1

See Also:

The Oracle Database SQL Tuning Guide describes hints and the EXPLAIN PLAN .

Hints by Functional Category

Table 2-23 lists the hints by functional category and contains cross-references to the syntax
and semantics for each hint. An alphabetical reference of the hints follows the table.

Table 2-23 Hints by Functional Category

Hint Link to Syntax and Semantics

Optimization Goals and
Approaches

ALL_ROWS Hint

FIRST_ROWS Hint

Access Path Hints CLUSTER Hint

-- CLUSTERING Hint

NO_CLUSTERING Hint

-- FULL Hint

-- HASH Hint

-- INDEX Hint

NO_INDEX Hint

-- INDEX_ASC Hint

INDEX_DESC Hint

-- INDEX_COMBINE Hint

-- INDEX_JOIN Hint

-- INDEX_FFS Hint

-- INDEX_SS Hint

-- INDEX_SS_ASC Hint

-- INDEX_SS_DESC Hint

-- NATIVE_FULL_OUTER_JOIN Hint

NO_NATIVE_FULL_OUTER_JOIN Hint

-- NO_INDEX_FFS Hint

-- NO_INDEX_SS Hint

Chapter 2
Comments

2-89

Table 2-23 (Cont.) Hints by Functional Category

Hint Link to Syntax and Semantics

-- NO_ZONEMAP Hint

In-Memory Column Store
Hints

INMEMORY Hint

NO_INMEMORY Hint

-- INMEMORY_PRUNING Hint

NO_INMEMORY_PRUNING Hint

Join Order Hints ORDERED Hint

-- LEADING Hint

Join Operation Hints USE_BAND Hint

NO_USE_BAND Hint

-- USE_CUBE Hint

NO_USE_CUBE Hint

-- USE_HASH Hint

NO_USE_HASH Hint

-- USE_MERGE Hint

NO_USE_MERGE Hint

-- USE_NL Hint

USE_NL_WITH_INDEX Hint

NO_USE_NL Hint

Parallel Execution Hints ENABLE_PARALLEL_DML Hint

DISABLE_PARALLEL_DML Hint

-- PARALLEL Hint

NO_PARALLEL Hint

-- PARALLEL_INDEX Hint

NO_PARALLEL_INDEX Hint

-- PQ_CONCURRENT_UNION Hint

NO_PQ_CONCURRENT_UNION Hint

-- PQ_DISTRIBUTE Hint

-- PQ_FILTER Hint

-- PQ_SKEW Hint

NO_PQ_SKEW Hint

Online Application Upgrade
Hints

CHANGE_DUPKEY_ERROR_INDEX Hint

-- IGNORE_ROW_ON_DUPKEY_INDEX Hint

-- RETRY_ON_ROW_CHANGE Hint

Query Transformation Hints FACT Hint

NO_FACT Hint

-- MERGE Hint

NO_MERGE Hint

-- NO_EXPAND Hint

USE_CONCAT Hint

Chapter 2
Comments

2-90

Table 2-23 (Cont.) Hints by Functional Category

Hint Link to Syntax and Semantics

-- REWRITE Hint

NO_REWRITE Hint

-- UNNEST Hint

NO_UNNEST Hint

-- STAR_TRANSFORMATION Hint

NO_STAR_TRANSFORMATION Hint

-- NO_QUERY_TRANSFORMATION Hint

XML Hints NO_XMLINDEX_REWRITE Hint

-- NO_XML_QUERY_REWRITE Hint

Other Hints APPEND Hint

APPEND_VALUES Hint

NOAPPEND Hint

-- CACHE Hint

NOCACHE Hint

-- CONTAINERS Hint

-- CURSOR_SHARING_EXACT Hint

-- DRIVING_SITE Hint

-- DYNAMIC_SAMPLING Hint

FRESH_MV Hint

-- GATHER_OPTIMIZER_STATISTICS Hint

NO_GATHER_OPTIMIZER_STATISTICS Hint

GROUPING Hint

-- MODEL_MIN_ANALYSIS Hint

-- MONITOR Hint

-- NO_MONITOR Hint

-- OPT_PARAM Hint

-- PUSH_PRED Hint

NO_PUSH_PRED Hint

-- PUSH_SUBQ Hint

NO_PUSH_SUBQ Hint

-- PX_JOIN_FILTER Hint

NO_PX_JOIN_FILTER Hint

-- QB_NAME Hint

Alphabetical Listing of Hints
This section provides syntax and semantics for all hints in alphabetical order.

Chapter 2
Comments

2-91

ALL_ROWS Hint

/*+ ALL_ROWS */

The ALL_ROWS hint instructs the optimizer to optimize a statement block with a goal of
best throughput, which is minimum total resource consumption. For example, the
optimizer uses the query optimization approach to optimize this statement for best
throughput:

SELECT /*+ ALL_ROWS */ employee_id, last_name, salary, job_id
 FROM employees
 WHERE employee_id = 107;

If you specify either the ALL_ROWS or the FIRST_ROWS hint in a SQL statement, and if the
data dictionary does not have statistics about tables accessed by the statement, then
the optimizer uses default statistical values, such as allocated storage for such tables,
to estimate the missing statistics and to subsequently choose an execution plan.
These estimates might not be as accurate as those gathered by the DBMS_STATS
package, so you should use the DBMS_STATS package to gather statistics.

If you specify hints for access paths or join operations along with either the ALL_ROWS
or FIRST_ROWS hint, then the optimizer gives precedence to the access paths and join
operations specified by the hints.

APPEND Hint

/*+ APPEND */

The APPEND hint instructs the optimizer to use direct-path INSERT with the subquery
syntax of the INSERT statement.

• Conventional INSERT is the default in serial mode. In serial mode, direct path can
be used only if you include the APPEND hint.

• Direct-path INSERT is the default in parallel mode. In parallel mode, conventional
insert can be used only if you specify the NOAPPEND hint.

The decision whether the INSERT will go parallel or not is independent of the APPEND
hint.

In direct-path INSERT, data is appended to the end of the table, rather than using
existing space currently allocated to the table. As a result, direct-path INSERT can be
considerably faster than conventional INSERT.

The APPEND hint is only supported with the subquery syntax of the INSERT statement,
not the VALUES clause. If you specify the APPEND hint with the VALUES clause, it is
ignored and conventional insert will be used. To use direct-path INSERT with the VALUES
clause, refer to "APPEND_VALUES Hint ".

Chapter 2
Comments

2-92

See Also:

NOAPPEND Hint for information on that hint and Oracle Database Administrator’s
Guide for information on direct-path inserts

APPEND_VALUES Hint

/*+ APPEND_VALUES */

The APPEND_VALUES hint instructs the optimizer to use direct-path INSERT with the VALUES
clause. If you do not specify this hint, then conventional INSERT is used.

In direct-path INSERT, data is appended to the end of the table, rather than using existing
space currently allocated to the table. As a result, direct-path INSERT can be considerably
faster than conventional INSERT.

The APPEND_VALUES hint can be used to greatly enhance performance. Some examples of its
uses are:

• In an Oracle Call Interface (OCI) program, when using large array binds or array binds
with row callbacks

• In PL/SQL, when loading a large number of rows with a FORALL loop that has an INSERT
statement with a VALUES clause

The APPEND_VALUES hint is only supported with the VALUES clause of the INSERT statement. If
you specify the APPEND_VALUES hint with the subquery syntax of the INSERT statement, it is
ignored and conventional insert will be used. To use direct-path INSERT with a subquery, refer
to "APPEND Hint ".

See Also:

Oracle Database Administrator’s Guide for information on direct-path inserts

CACHE Hint

/*+ CACHE (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The CACHE hint instructs the optimizer to place the blocks retrieved for the table at the most
recently used end of the LRU list in the buffer cache when a full table scan is performed. This
hint is useful for small lookup tables.

Chapter 2
Comments

2-93

In the following example, the CACHE hint overrides the default caching specification of
the table:

SELECT /*+ FULL (hr_emp) CACHE(hr_emp) */ last_name
 FROM employees hr_emp;

The CACHE and NOCACHE hints affect system statistics table scans (long tables) and
table scans (short tables), as shown in the V$SYSSTAT data dictionary view.

CHANGE_DUPKEY_ERROR_INDEX Hint

/*+ CHANGE_DUPKEY_ERROR_INDEX (

table , index

table (column

,

)

) */

Note:

The CHANGE_DUPKEY_ERROR_INDEX, IGNORE_ROW_ON_DUPKEY_INDEX, and
RETRY_ON_ROW_CHANGE hints are unlike other hints in that they have a
semantic effect. The general philosophy explained in Hints does not apply for
these three hints.

The CHANGE_DUPKEY_ERROR_INDEX hint provides a mechanism to unambiguously
identify a unique key violation for a specified set of columns or for a specified index.
When a unique key violation occurs for the specified index, an ORA-38911 error is
reported instead of an ORA-001.

This hint applies to INSERT, UPDATE operations. If you specify an index, then the index
must exist and be unique. If you specify a column list instead of an index, then a
unique index whose columns match the specified columns in number and order must
exist.

This use of this hint results in error messages if specific rules are violated. Refer to
IGNORE_ROW_ON_DUPKEY_INDEX Hint for details.

Note:

This hint disables both APPEND mode and parallel DML.

CLUSTER Hint

/*+ CLUSTER (

@ queryblock

tablespec) */

Chapter 2
Comments

2-94

(See Specifying a Query Block in a Hint , tablespec::=)

The CLUSTER hint instructs the optimizer to use a cluster scan to access the specified table.
This hint applies only to tables in an indexed cluster.

CLUSTERING Hint

/*+ CLUSTERING */

This hint is valid only for INSERT and MERGE operations on tables that are enabled for attribute
clustering. The CLUSTERING hint enables attribute clustering for direct-path inserts (serial or
parallel). This results in partially-clustered data, that is, data that is clustered per each insert
or merge operation. This hint overrides a NO ON LOAD setting in the DDL that created or altered
the table. This hint has no effect on tables that are not enabled for attribute clustering.

See Also:

• clustering_when clause of CREATE TABLE for more information on the NO ON LOAD
setting

• NO_CLUSTERING Hint

CONTAINERS Hint

/*+ CONTAINERS (DEFAULT_PDB_HINT = ’ hint ’) */

The CONTAINERS hint is useful in a multitenant container database (CDB). You can specify this
hint in a SELECT statement that contains the CONTAINERS() clause. Such a statement lets you
query data in the specified table or view across all containers in a CDB or application
container.

• To query data in a CDB, you must be a common user connected to the CDB root, and the
table or view must exist in the root and all PDBs. The query returns all rows from the
table or view in the CDB root and in all open PDBs.

• To query data in an application container, you must be a common user connected to the
application root, and the table or view must exist in the application root and all PDBs in
the application container. The query returns all rows from the table or view in the
application root and in all open PDBs in the application container.

Statements that contain the CONTAINERS() clause generate and execute recursive SQL
statements in each queried PDB. You can use the CONTAINERS hint to pass a default PDB hint
to each recursive SQL statement. For hint, you can specify any SQL hint that is appropriate
for the SELECT statement.

Chapter 2
Comments

2-95

In the following example, the NO_PARALLEL hint is passed to each recursive SQL
statement that is executed as part of the evaluation of the CONTAINERS() clause:

SELECT /*+ CONTAINERS(DEFAULT_PDB_HINT='NO_PARALLEL') */
 (CASE WHEN COUNT(*) < 10000
 THEN 'Less than 10,000'
 ELSE '10,000 or more' END) "Number of Tables"
 FROM CONTAINERS(DBA_TABLES);

See Also:

containers_clause for more information on the CONTAINERS() clause

CURSOR_SHARING_EXACT Hint

/*+ CURSOR_SHARING_EXACT */

Oracle can replace literals in SQL statements with bind variables, when it is safe to do
so. This replacement is controlled with the CURSOR_SHARING initialization parameter.
The CURSOR_SHARING_EXACT hint instructs the optimizer to switch this behavior off.
When you specify this hint, Oracle executes the SQL statement without any attempt to
replace literals with bind variables.

DISABLE_PARALLEL_DML Hint

/*+ DISABLE_PARALLEL_DML */

The DISABLE_PARALLEL_DML hint disables parallel DML for DELETE, INSERT, MERGE, and
UPDATE statements. You can use this hint to disable parallel DML for an individual
statement when parallel DML is enabled for the session with the ALTER SESSION
ENABLE PARALLEL DML statement.

DRIVING_SITE Hint

/*+ DRIVING_SITE (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The DRIVING_SITE hint instructs the optimizer to execute the query at a different site
than that selected by the database. This hint is useful if you are using distributed query
optimization.

Chapter 2
Comments

2-96

For example:

SELECT /*+ DRIVING_SITE(departments) */ *
 FROM employees, departments@rsite
 WHERE employees.department_id = departments.department_id;

If this query is executed without the hint, then rows from departments are sent to the local
site, and the join is executed there. With the hint, the rows from employees are sent to the
remote site, and the query is executed there and the result set is returned to the local site.

DYNAMIC_SAMPLING Hint

/*+ DYNAMIC_SAMPLING (

@ queryblock tablespec

integer) */

(See Specifying a Query Block in a Hint , tablespec::=)

The DYNAMIC_SAMPLING hint instructs the optimizer how to control dynamic sampling to
improve server performance by determining more accurate predicate selectivity and statistics
for tables and indexes.

You can set the value of DYNAMIC_SAMPLING to a value from 0 to 10. The higher the level, the
more effort the compiler puts into dynamic sampling and the more broadly it is applied.
Sampling defaults to cursor level unless you specify tablespec.

The integer value is 0 to 10, indicating the degree of sampling.

If a cardinality statistic already exists for the table, then the optimizer uses it. Otherwise, the
optimizer enables dynamic sampling to estimate the cardinality statistic.

If you specify tablespec and the cardinality statistic already exists, then:

• If there is no single-table predicate (a WHERE clause that evaluates only one table), then
the optimizer trusts the existing statistics and ignores this hint. For example, the following
query will not result in any dynamic sampling if employees is analyzed:

SELECT /*+ DYNAMIC_SAMPLING(e 1) */ count(*)
 FROM employees e;

• If there is a single-table predicate, then the optimizer uses the existing cardinality statistic
and estimates the selectivity of the predicate using the existing statistics.

To apply dynamic sampling to a specific table, use the following form of the hint:

SELECT /*+ DYNAMIC_SAMPLING(employees 1) */ *
 FROM employees
 WHERE ...

See Also:

Oracle Database SQL Tuning Guide for information about dynamic sampling and
the sampling levels that you can set

Chapter 2
Comments

2-97

ENABLE_PARALLEL_DML Hint

/*+ ENABLE_PARALLEL_DML */

The ENABLE_PARALLEL_DML hint enables parallel DML for DELETE, INSERT, MERGE, and
UPDATE statements. You can use this hint to enable parallel DML for an individual
statement, rather than enabling parallel DML for the session with the ALTER SESSION
ENABLE PARALLEL DML statement.

See Also:

Oracle Database VLDB and Partitioning Guide for information about enabling
parallel DML

FACT Hint

/*+ FACT (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The FACT hint is used in the context of the star transformation. It instructs the optimizer
that the table specified in tablespec should be considered as a fact table.

FIRST_ROWS Hint

/*+ FIRST_ROWS (integer) */

The FIRST_ROWS hint instructs Oracle to optimize an individual SQL statement for fast
response, choosing the plan that returns the first n rows most efficiently. For integer,
specify the number of rows to return.

For example, the optimizer uses the query optimization approach to optimize the
following statement for best response time:

SELECT /*+ FIRST_ROWS(10) */ employee_id, last_name, salary, job_id
 FROM employees
 WHERE department_id = 20;

In this example each department contains many employees. The user wants the first
10 employees of department 20 to be displayed as quickly as possible.

The optimizer ignores this hint in DELETE and UPDATE statement blocks and in SELECT
statement blocks that include any blocking operations, such as sorts or groupings.

Chapter 2
Comments

2-98

Such statements cannot be optimized for best response time, because Oracle Database
must retrieve all rows accessed by the statement before returning the first row. If you specify
this hint in any such statement, then the database optimizes for best throughput.

See Also:

ALL_ROWS Hint for additional information on the FIRST_ROWS hint and statistics

FRESH_MV Hint

/*+ FRESH_MV */

The FRESH_MV hint applies when querying a real-time materialized view. This hint instructs the
optimizer to use on-query computation to fetch up-to-date data from the materialized view,
even if the materialized view is stale.

The optimizer ignores this hint in SELECT statement blocks that query an object that is not a
real-time materialized view, and in all UPDATE, INSERT, MERGE, and DELETE statement blocks.

See Also:

The { ENABLE | DISABLE } ON QUERY COMPUTATION clause of CREATE
MATERIALIZED VIEW for more information on real-time materialized views

FULL Hint

/*+ FULL (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The FULL hint instructs the optimizer to perform a full table scan for the specified table. For
example:

SELECT /*+ FULL(e) */ employee_id, last_name
 FROM hr.employees e
 WHERE last_name LIKE :b1;

Oracle Database performs a full table scan on the employees table to execute this statement,
even if there is an index on the last_name column that is made available by the condition in
the WHERE clause.

The employees table has alias e in the FROM clause, so the hint must refer to the table by its
alias rather than by its name. Do not specify schema names in the hint even if they are
specified in the FROM clause.

Chapter 2
Comments

2-99

GATHER_OPTIMIZER_STATISTICS Hint

/*+ GATHER_OPTIMIZER_STATISTICS */

The GATHER_OPTIMIZER_STATISTICS hint instructs the optimizer to enable statistics
gathering during the following types of bulk loads:

• CREATE TABLE ... AS SELECT
• INSERT INTO ... SELECT into an empty table using a direct-path insert

See Also:

Oracle Database SQL Tuning Guide for more information on statistics
gathering for bulk loads

GROUPING Hint

/*+ GROUPING */

The GROUPING hint applies to data mining scoring functions when scoring partitioned
models. This hint results in partitioning the input data set into distinct data slices so
that each partition is scored in its entirety before advancing to the next partition;
however, parallelism by partition is still available. Data slices are determined by the
partitioning key columns that were used when the model was built. This method can
be used with any data mining function against a partitioned model. The hint may yield
a query performance gain when scoring large data that is associated with many
partitions, but may negatively impact performance when scoring large data with few
partitions on large systems. Typically, there is no performance gain if you use this hint
for single row queries.

In the following example, the GROUPING hint is used in the PREDICTION function.

SELECT PREDICTION(/*+ GROUPING */my_model USING *) pred FROM <input
table>;

See Also:

Oracle Machine Learning for SQL Functions

Chapter 2
Comments

2-100

HASH Hint

/*+ HASH (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The HASH hint instructs the optimizer to use a hash scan to access the specified table. This
hint applies only to tables in a hash cluster.

IGNORE_ROW_ON_DUPKEY_INDEX Hint

/*+ IGNORE_ROW_ON_DUPKEY_INDEX (

table , index

table (column

,

)

) */

Note:

The CHANGE_DUPKEY_ERROR_INDEX, IGNORE_ROW_ON_DUPKEY_INDEX, and
RETRY_ON_ROW_CHANGE hints are unlike other hints in that they have a semantic
effect. The general philosophy explained in Hints does not apply for these three
hints.

The IGNORE_ROW_ON_DUPKEY_INDEX hint applies only to single-table INSERT operations. It is
not supported for UPDATE, DELETE, MERGE, or multitable insert operations.
IGNORE_ROW_ON_DUPKEY_INDEX causes the statement to ignore a unique key violation for a
specified set of columns or for a specified index. When a unique key violation is encountered,
a row-level rollback occurs and execution resumes with the next input row. If you specify this
hint when inserting data with DML error logging enabled, then the unique key violation is not
logged and does not cause statement termination.

The semantic effect of this hint results in error messages if specific rules are violated:

• If you specify index, then the index must exist and be unique. Otherwise, the statement
causes ORA-38913.

• You must specify exactly one index. If you specify no index, then the statement causes
ORA-38912. If you specify more than one index, then the statement causes ORA-38915.

• You can specify either a CHANGE_DUPKEY_ERROR_INDEX or IGNORE_ROW_ON_DUPKEY_INDEX
hint in an INSERT statement, but not both. If you specify both, then the statement causes
ORA-38915.

As with all hints, a syntax error in the hint causes it to be silently ignored. The result will be
that ORA-00001 will be caused, just as if no hint were used.

Chapter 2
Comments

2-101

Note:

This hint disables both APPEND mode and parallel DML.

See Also:

CHANGE_DUPKEY_ERROR_INDEX Hint

INDEX Hint

/*+ INDEX (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX hint instructs the optimizer to use an index scan for the specified table. You
can use the INDEX hint for function-based, domain, B-tree, bitmap, and bitmap join
indexes.

The behavior of the hint depends on the indexspec specification:

• If the INDEX hint specifies a single available index, then the database performs a
scan on this index. The optimizer does not consider a full table scan or a scan of
another index on the table.

• For a hint on a combination of multiple indexes, Oracle recommends using
INDEX_COMBINE rather than INDEX, because it is a more versatile hint. If the INDEX
hint specifies a list of available indexes, then the optimizer considers the cost of a
scan on each index in the list and then performs the index scan with the lowest
cost. The database can also choose to scan multiple indexes from this list and
merge the results, if such an access path has the lowest cost. The database does
not consider a full table scan or a scan on an index not listed in the hint.

• If the INDEX hint specifies no indexes, then the optimizer considers the cost of a
scan on each available index on the table and then performs the index scan with
the lowest cost. The database can also choose to scan multiple indexes and
merge the results, if such an access path has the lowest cost. The optimizer does
not consider a full table scan.

For example:

SELECT /*+ INDEX (employees emp_department_ix)*/ employee_id, department_id
 FROM employees
 WHERE department_id > 50;

INDEX_ASC Hint

/*+ INDEX_ASC (

@ queryblock

tablespec

indexspec

) */

Chapter 2
Comments

2-102

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_ASC hint instructs the optimizer to use an index scan for the specified table. If the
statement uses an index range scan, then Oracle Database scans the index entries in
ascending order of their indexed values. Each parameter serves the same purpose as in
INDEX Hint .

The default behavior for a range scan is to scan index entries in ascending order of their
indexed values, or in descending order for a descending index. This hint does not change the
default order of the index, and therefore does not specify anything more than the INDEX hint.
However, you can use the INDEX_ASC hint to specify ascending range scans explicitly should
the default behavior change.

INDEX_COMBINE Hint

/*+ INDEX_COMBINE (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_COMBINE hint can use any type of index: bitmap, b-tree, or domain. If you do not
specify indexspec in the INDEX_COMBINE hint, the optimizer implicitly applies theINDEX hint to
all indexes, using as many indexes as possible. If you specify indexspec, then the optimizer
uses all the hinted indexes that are legal and valid to use, regardless of cost. Each parameter
serves the same purpose as in INDEX Hint . For example:

SELECT /*+ INDEX_COMBINE(e emp_manager_ix emp_department_ix) */ *
 FROM employees e
 WHERE manager_id = 108
 OR department_id = 110;

INDEX_DESC Hint

/*+ INDEX_DESC (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_DESC hint instructs the optimizer to use a descending index scan for the specified
table. If the statement uses an index range scan and the index is ascending, then Oracle
scans the index entries in descending order of their indexed values. In a partitioned index, the
results are in descending order within each partition. For a descending index, this hint
effectively cancels out the descending order, resulting in a scan of the index entries in
ascending order. Each parameter serves the same purpose as in INDEX Hint . For example:

SELECT /*+ INDEX_DESC(e emp_name_ix) */ *
 FROM employees e;

Chapter 2
Comments

2-103

See Also:

Oracle Database SQL Tuning Guide for information on full scans

INDEX_FFS Hint

/*+ INDEX_FFS (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_FFS hint instructs the optimizer to perform a fast full index scan rather than
a full table scan.

Each parameter serves the same purpose as in INDEX Hint . For example:

SELECT /*+ INDEX_FFS(e emp_name_ix) */ first_name
 FROM employees e;

INDEX_JOIN Hint

/*+ INDEX_JOIN (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_JOIN hint instructs the optimizer to use an index join as an access path. For
the hint to have a positive effect, a sufficiently small number of indexes must exist that
contain all the columns required to resolve the query.

Each parameter serves the same purpose as in INDEX Hint . For example, the
following query uses an index join to access the manager_id and department_id
columns, both of which are indexed in the employees table.

SELECT /*+ INDEX_JOIN(e emp_manager_ix emp_department_ix) */ department_id
 FROM employees e
 WHERE manager_id < 110
 AND department_id < 50;

INDEX_SS Hint

/*+ INDEX_SS (

@ queryblock

tablespec

indexspec

) */

Chapter 2
Comments

2-104

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_SS hint instructs the optimizer to perform an index skip scan for the specified
table. If the statement uses an index range scan, then Oracle scans the index entries in
ascending order of their indexed values. In a partitioned index, the results are in ascending
order within each partition.

Each parameter serves the same purpose as in INDEX Hint . For example:

SELECT /*+ INDEX_SS(e emp_name_ix) */ last_name
 FROM employees e
 WHERE first_name = 'Steven';

See Also:

Oracle Database SQL Tuning Guide for information on index skip scans

INDEX_SS_ASC Hint

/*+ INDEX_SS_ASC (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_SS_ASC hint instructs the optimizer to perform an index skip scan for the specified
table. If the statement uses an index range scan, then Oracle Database scans the index
entries in ascending order of their indexed values. In a partitioned index, the results are in
ascending order within each partition. Each parameter serves the same purpose as in INDEX
Hint .

The default behavior for a range scan is to scan index entries in ascending order of their
indexed values, or in descending order for a descending index. This hint does not change the
default order of the index, and therefore does not specify anything more than the INDEX_SS
hint. However, you can use the INDEX_SS_ASC hint to specify ascending range scans explicitly
should the default behavior change.

See Also:

Oracle Database SQL Tuning Guide for information on index skip scans

INDEX_SS_DESC Hint

/*+ INDEX_SS_DESC (

@ queryblock

tablespec

indexspec

) */

Chapter 2
Comments

2-105

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The INDEX_SS_DESC hint instructs the optimizer to perform an index skip scan for the
specified table. If the statement uses an index range scan and the index is ascending,
then Oracle scans the index entries in descending order of their indexed values. In a
partitioned index, the results are in descending order within each partition. For a
descending index, this hint effectively cancels out the descending order, resulting in a
scan of the index entries in ascending order.

Each parameter serves the same purpose as in the INDEX Hint . For example:

SELECT /*+ INDEX_SS_DESC(e emp_name_ix) */ last_name
 FROM employees e
 WHERE first_name = 'Steven';

See Also:

Oracle Database SQL Tuning Guide for information on index skip scans

INMEMORY Hint

/*+ INMEMORY (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The INMEMORY hint enables In-Memory queries.

This hint does not instruct the optimizer to perform a full table scan. If a full table scan
is desired, then also specify the FULL Hint .

INMEMORY_PRUNING Hint

/*+ INMEMORY_PRUNING (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The INMEMORY_PRUNING hint enables pruning of In-Memory queries.

LEADING Hint

/*+ LEADING (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

Chapter 2
Comments

2-106

The LEADING hint is a multitable hint that can specify more than one table or view. LEADING
instructs the optimizer to use the specified set of tables as the prefix in the execution plan.
The first table specified is used to start the join.

This hint is more versatile than the ORDERED hint. For example:

SELECT /*+ LEADING(e j) */ *
 FROM employees e, departments d, job_history j
 WHERE e.department_id = d.department_id
 AND e.hire_date = j.start_date;

The LEADING hint is ignored if the tables specified cannot be joined first in the order specified
because of dependencies in the join graph. If you specify two or more conflicting LEADING
hints, then all of them are ignored. If you specify the ORDERED hint, it overrides all LEADING
hints.

MERGE Hint

/*+ MERGE

(

@ queryblock

@ queryblock

tablespec

)

*/

(See Specifying a Query Block in a Hint , tablespec::=)

The MERGE hint lets you merge views in a query.

If a view's query block contains a GROUP BY clause or DISTINCT operator in the SELECT list,
then the optimizer can merge the view into the accessing statement only if complex view
merging is enabled. Complex merging can also be used to merge an IN subquery into the
accessing statement if the subquery is uncorrelated.

For example:

SELECT /*+ MERGE(v) */ e1.last_name, e1.salary, v.avg_salary
 FROM employees e1,
 (SELECT department_id, avg(salary) avg_salary
 FROM employees e2
 GROUP BY department_id) v
 WHERE e1.department_id = v.department_id
 AND e1.salary > v.avg_salary
 ORDER BY e1.last_name;

When the MERGE hint is used without an argument, it should be placed in the view query block.
When MERGE is used with the view name as an argument, it should be placed in the
surrounding query.

MODEL_MIN_ANALYSIS Hint

/*+ MODEL_MIN_ANALYSIS */

The MODEL_MIN_ANALYSIS hint instructs the optimizer to omit some compile-time optimizations
of spreadsheet rules—primarily detailed dependency graph analysis. Other spreadsheet

Chapter 2
Comments

2-107

optimizations, such as creating filters to selectively populate spreadsheet access
structures and limited rule pruning, are still used by the optimizer.

This hint reduces compilation time because spreadsheet analysis can be lengthy if the
number of spreadsheet rules is more than several hundreds.

MONITOR Hint

/*+ MONITOR */

The MONITOR hint forces real-time SQL monitoring for the query, even if the statement
is not long running. This hint is valid only when the parameter
CONTROL_MANAGEMENT_PACK_ACCESS is set to DIAGNOSTIC+TUNING.

See Also:

Oracle Database SQL Tuning Guide for more information about real-time
SQL monitoring

NATIVE_FULL_OUTER_JOIN Hint

/*+ NATIVE_FULL_OUTER_JOIN */

The NATIVE_FULL_OUTER_JOIN hint instructs the optimizer to use native full outer join,
which is a native execution method based on a hash join.

See Also:

• NO_NATIVE_FULL_OUTER_JOIN Hint

• Oracle Database SQL Tuning Guide for more information about native
full outer joins

NOAPPEND Hint

/*+ NOAPPEND */

The NOAPPEND hint instructs the optimizer to use conventional INSERT by disabling
parallel mode for the duration of the INSERT statement. Conventional INSERT is the
default in serial mode, and direct-path INSERT is the default in parallel mode.

Chapter 2
Comments

2-108

NOCACHE Hint

/*+ NOCACHE (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NOCACHE hint instructs the optimizer to place the blocks retrieved for the table at the least
recently used end of the LRU list in the buffer cache when a full table scan is performed. This
is the normal behavior of blocks in the buffer cache. For example:

SELECT /*+ FULL(hr_emp) NOCACHE(hr_emp) */ last_name
 FROM employees hr_emp;

The CACHE and NOCACHE hints affect system statistics table scans(long tables) and table
scans(short tables), as shown in the V$SYSSTAT view.

NO_CLUSTERING Hint

/*+ NO_CLUSTERING */

This hint is valid only for INSERT and MERGE operations on tables that are enabled for attribute
clustering. The NO_CLUSTERING hint disables attribute clustering for direct-path inserts (serial
or parallel). This hint overrides a YES ON LOAD setting in the DDL that created or altered the
table. This hint has no effect on tables that are not enabled for attribute clustering.

See Also:

• clustering_when clause of CREATE TABLE for more information on the YES ON
LOAD setting

• CLUSTERING Hint

NO_EXPAND Hint

/*+ NO_EXPAND

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The NO_EXPAND hint instructs the optimizer not to consider OR-expansion for queries having OR
conditions or IN-lists in the WHERE clause. Usually, the optimizer considers using OR expansion
and uses this method if it decides that the cost is lower than not using it. For example:

Chapter 2
Comments

2-109

SELECT /*+ NO_EXPAND */ *
 FROM employees e, departments d
 WHERE e.manager_id = 108
 OR d.department_id = 110;

See Also:

The USE_CONCAT Hint , which is the opposite of this hint

NO_FACT Hint

/*+ NO_FACT (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_FACT hint is used in the context of the star transformation. It instruct the
optimizer that the queried table should not be considered as a fact table.

NO_GATHER_OPTIMIZER_STATISTICS Hint

/*+ NO_GATHER_OPTIMIZER_STATISTICS */

The NO_GATHER_OPTIMIZER_STATISTICS hint instructs the optimizer to disable statistics
gathering during the following types of bulk loads:

• CREATE TABLE AS SELECT
• INSERT INTO ... SELECT into an empty table using a direct path insert

The NO_GATHER_OPTIMIZER_STATISTICS hint is applicable to a conventional load. If this
hint is specified in the conventional insert statement, Oracle will obey the hint and not
collect real-time statistics.

See Also:

Oracle Database SQL Tuning Guide for more information on online statistics
gathering for conventional loads.

NO_INDEX Hint

/*+ NO_INDEX (

@ queryblock

tablespec

indexspec

) */

Chapter 2
Comments

2-110

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The NO_INDEX hint instructs the optimizer not to use one or more indexes for the specified
table. For example:

SELECT /*+ NO_INDEX(employees emp_empid) */ employee_id
 FROM employees
 WHERE employee_id > 200;

Each parameter serves the same purpose as in INDEX Hint with the following modifications:

• If this hint specifies a single available index, then the optimizer does not consider a scan
on this index. Other indexes not specified are still considered.

• If this hint specifies a list of available indexes, then the optimizer does not consider a
scan on any of the specified indexes. Other indexes not specified in the list are still
considered.

• If this hint specifies no indexes, then the optimizer does not consider a scan on any index
on the table. This behavior is the same as a NO_INDEX hint that specifies a list of all
available indexes for the table.

The NO_INDEX hint applies to function-based, B-tree, bitmap, cluster, or domain indexes. If a
NO_INDEX hint and an index hint (INDEX, INDEX_ASC, INDEX_DESC, INDEX_COMBINE, or
INDEX_FFS) both specify the same indexes, then the database ignores both the NO_INDEX hint
and the index hint for the specified indexes and considers those indexes for use during
execution of the statement.

NO_INDEX_FFS Hint

/*+ NO_INDEX_FFS (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The NO_INDEX_FFS hint instructs the optimizer to exclude a fast full index scan of the specified
indexes on the specified table. Each parameter serves the same purpose as in the
NO_INDEX Hint . For example:

SELECT /*+ NO_INDEX_FFS(items item_order_ix) */ order_id
 FROM order_items items;

NO_INDEX_SS Hint

/*+ NO_INDEX_SS (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The NO_INDEX_SS hint instructs the optimizer to exclude a skip scan of the specified indexes
on the specified table. Each parameter serves the same purpose as in the NO_INDEX Hint .

Chapter 2
Comments

2-111

See Also:

Oracle Database SQL Tuning Guide for information on index skip scans

NO_INMEMORY Hint

/*+ NO_INMEMORY (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_INMEMORY hint disables In-Memory queries.

NO_INMEMORY_PRUNING Hint

/*+ NO_INMEMORY_PRUNING (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_INMEMORY_PRUNING hint disables pruning of In-Memory queries.

NO_MERGE Hint

/*+ NO_MERGE

(

@ queryblock

@ queryblock

tablespec

)

*/

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_MERGE hint instructs the optimizer not to combine the outer query and any inline
view queries into a single query.

This hint lets you have more influence over the way in which the view is accessed. For
example, the following statement causes view seattle_dept not to be merged:

SELECT /*+ NO_MERGE(seattle_dept) */ e1.last_name, seattle_dept.department_name
 FROM employees e1,
 (SELECT location_id, department_id, department_name
 FROM departments
 WHERE location_id = 1700) seattle_dept
 WHERE e1.department_id = seattle_dept.department_id;

Chapter 2
Comments

2-112

When you use the NO_MERGE hint in the view query block, specify it without an argument.
When you specify NO_MERGE in the surrounding query, specify it with the view name as an
argument.

NO_MONITOR Hint

/*+ NO_MONITOR */

The NO_MONITOR hint disables real-time SQL monitoring for the query, even if the query is long
running.

NO_NATIVE_FULL_OUTER_JOIN Hint

/*+ NO_NATIVE_FULL_OUTER_JOIN */

The NO_NATIVE_FULL_OUTER_JOIN hint instructs the optimizer to exclude the native execution
method when joining each specified table. Instead, the full outer join is executed as a union of
left outer join and anti-join.

See Also:

NATIVE_FULL_OUTER_JOIN Hint

NO_PARALLEL Hint

/*+ NO_PARALLEL (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_PARALLEL hint instructs the optimizer to run the statement serially. This hint overrides
the value of the PARALLEL_DEGREE_POLICY initialization parameter. It also overrides a
PARALLEL parameter in the DDL that created or altered the table. For example, the following
SELECT statement will run serially:

ALTER TABLE employees PARALLEL 8;
SELECT /*+ NO_PARALLEL(hr_emp) */ last_name
 FROM employees hr_emp;

Chapter 2
Comments

2-113

See Also:

• Note on Parallel Hints for more information on the parallel hints

• Oracle Database Reference for more information on the
PARALLEL_DEGREE_POLICY initialization parameter

NOPARALLEL Hint
The NOPARALLEL hint has been deprecated. Use the NO_PARALLEL hint instead.

NO_PARALLEL_INDEX Hint

/*+ NO_PARALLEL_INDEX (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The NO_PARALLEL_INDEX hint overrides a PARALLEL parameter in the DDL that created
or altered the index, thus avoiding a parallel index scan operation.

See Also:

Note on Parallel Hints for more information on the parallel hints

NOPARALLEL_INDEX Hint
The NOPARALLEL_INDEX hint has been deprecated. Use the NO_PARALLEL_INDEX hint
instead.

NO_PQ_CONCURRENT_UNION Hint

/*+ NO_PQ_CONCURRENT_UNION

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The NO_PQ_CONCURRENT_UNION hint instructs the optimizer to disable concurrent
processing of UNION and UNION ALL operations.

Chapter 2
Comments

2-114

See Also:

• PQ_CONCURRENT_UNION Hint

• Oracle Database VLDB and Partitioning Guide for information about using this
hint

NO_PQ_SKEW Hint

/*+ NO_PQ_SKEW (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_PQ_SKEW hint advises the optimizer that the distribution of the values of the join keys
for a parallel join is not skewed—that is, a high percentage of rows do not have the same join
key values. The table specified in tablespec is the probe table of the hash join.

NO_PUSH_PRED Hint

/*+ NO_PUSH_PRED

(

@ queryblock

@ queryblock

tablespec

)

*/

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_PUSH_PRED hint instructs the optimizer not to push a join predicate into the view. For
example:

SELECT /*+ NO_MERGE(v) NO_PUSH_PRED(v) */ *
 FROM employees e,
 (SELECT manager_id
 FROM employees) v
 WHERE e.manager_id = v.manager_id(+)
 AND e.employee_id = 100;

NO_PUSH_SUBQ Hint

/*+ NO_PUSH_SUBQ

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

Chapter 2
Comments

2-115

The NO_PUSH_SUBQ hint instructs the optimizer to evaluate nonmerged subqueries as
the last step in the execution plan. Doing so can improve performance if the subquery
is relatively expensive or does not reduce the number of rows significantly.

NO_PX_JOIN_FILTER Hint

/*+ NO_PX_JOIN_FILTER (tablespec) */

This hint prevents the optimizer from using parallel join bitmap filtering.

NO_QUERY_TRANSFORMATION Hint

/*+ NO_QUERY_TRANSFORMATION */

The NO_QUERY_TRANSFORMATION hint instructs the optimizer to skip all query
transformations, including but not limited to OR-expansion, view merging, subquery
unnesting, star transformation, and materialized view rewrite. For example:

SELECT /*+ NO_QUERY_TRANSFORMATION */ employee_id, last_name
 FROM (SELECT * FROM employees e) v
 WHERE v.last_name = 'Smith';

NO_RESULT_CACHE Hint

/*+ NO_RESULT_CACHE */

The optimizer caches query results in the result cache if the RESULT_CACHE_MODE
initialization parameter is set to FORCE. In this case, the NO_RESULT_CACHE hint disables
such caching for the current query.

If the query is executed from OCI client and OCI client result cache is enabled, then
the NO_RESULT_CACHE hint disables caching for the current query.

NO_REWRITE Hint

/*+ NO_REWRITE

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The NO_REWRITE hint instructs the optimizer to disable query rewrite for the query
block, overriding the setting of the parameter QUERY_REWRITE_ENABLED. For example:

SELECT /*+ NO_REWRITE */ sum(s.amount_sold) AS dollars
 FROM sales s, times t

Chapter 2
Comments

2-116

 WHERE s.time_id = t.time_id
 GROUP BY t.calendar_month_desc;

NOREWRITE Hint
The NOREWRITE hint has been deprecated. Use the NO_REWRITE hint instead.

NO_STAR_TRANSFORMATION Hint

/*+ NO_STAR_TRANSFORMATION

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The NO_STAR_TRANSFORMATION hint instructs the optimizer not to perform star query
transformation.

NO_STATEMENT_QUEUING Hint

/*+ NO_STATEMENT_QUEUING */

The NO_STATEMENT_QUEUING hint influences whether or not a statement is queued with parallel
statement queuing.

When PARALLEL_DEGREE_POLICY is set to AUTO, this hint enables a statement to bypass the
parallel statement queue. However, a statement that bypasses the statement queue can
potentially cause the system to exceed the maximum number of parallel execution servers
defined by the value of the PARALLEL_SERVERS_TARGET initialization parameter, which
determines the limit at which parallel statement queuing is initiated.

There is no guarantee that the statement that bypasses the parallel statement queue
receives the number of parallel execution servers requested because only the number of
parallel execution servers available on the system, up to the value of the
PARALLEL_MAX_SERVERS initialization parameter, can be allocated.

For example:

SELECT /*+ NO_STATEMENT_QUEUING */ emp.last_name, dpt.department_name
 FROM employees emp, departments dpt
 WHERE emp.department_id = dpt.department_id;

See Also:

STATEMENT_QUEUING Hint

Chapter 2
Comments

2-117

NO_UNNEST Hint

/*+ NO_UNNEST

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

Use of the NO_UNNEST hint turns off unnesting .

NO_USE_BAND Hint

/*+ NO_USE_BAND (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_USE_BAND hint instructs the optimizer to exclude band joins when joining each
specified table to another row source. For example:

SELECT /*+ NO_USE_BAND(e1 e2) */
 e1.last_name
 || ' has salary between 100 less and 100 more than '
 || e2.last_name AS "SALARY COMPARISON"
FROM employees e1, employees e2
WHERE e1.salary BETWEEN e2.salary - 100 AND e2.salary + 100;

NO_USE_CUBE Hint

/*+ NO_USE_CUBE (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_USE_CUBE hint instructs the optimizer to exclude cube joins when joining each
specified table to another row source using the specified table as the inner table.

NO_USE_HASH Hint

/*+ NO_USE_HASH (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

Chapter 2
Comments

2-118

The NO_USE_HASH hint instructs the optimizer to exclude hash joins when joining each
specified table to another row source using the specified table as the inner table. For
example:

SELECT /*+ NO_USE_HASH(e d) */ *
 FROM employees e, departments d
 WHERE e.department_id = d.department_id;

NO_USE_MERGE Hint

/*+ NO_USE_MERGE (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_USE_MERGE hint instructs the optimizer to exclude sort-merge joins when joining each
specified table to another row source using the specified table as the inner table. For
example:

SELECT /*+ NO_USE_MERGE(e d) */ *
 FROM employees e, departments d
 WHERE e.department_id = d.department_id
 ORDER BY d.department_id;

NO_USE_NL Hint

/*+ NO_USE_NL (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_USE_NL hint instructs the optimizer to exclude nested loops joins when joining each
specified table to another row source using the specified table as the inner table. For
example:

SELECT /*+ NO_USE_NL(l h) */ *
 FROM orders h, order_items l
 WHERE l.order_id = h.order_id
 AND l.order_id > 2400;

When this hint is specified, only hash join and sort-merge joins are considered for the
specified tables. However, in some cases tables can be joined only by using nested loops. In
such cases, the optimizer ignores the hint for those tables.

NO_XML_QUERY_REWRITE Hint

/*+ NO_XML_QUERY_REWRITE */

Chapter 2
Comments

2-119

The NO_XML_QUERY_REWRITE hint instructs the optimizer to prohibit the rewriting of
XPath expressions in SQL statements. By prohibiting the rewriting of XPath
expressions, this hint also prohibits the use of any XMLIndexes for the current query.
For example:

SELECT /*+NO_XML_QUERY_REWRITE*/ XMLQUERY('<A/>' RETURNING CONTENT)
 FROM DUAL;

See Also:

NO_XMLINDEX_REWRITE Hint

NO_XMLINDEX_REWRITE Hint

/*+ NO_XMLINDEX_REWRITE */

The NO_XMLINDEX_REWRITE hint instructs the optimizer not to use any XMLIndex
indexes for the current query. For example:

SELECT /*+NO_XMLINDEX_REWRITE*/ count(*)
 FROM warehouses
 WHERE existsNode(warehouse_spec, '/Warehouse/Building') = 1;

See Also:

NO_XML_QUERY_REWRITE Hint for another way to disable the use of
XMLIndexes

NO_ZONEMAP Hint

/*+ NO_ZONEMAP (

@ queryblock

tablespec

SCAN

JOIN

PARTITION

) */

(See Specifying a Query Block in a Hint , tablespec::=)

The NO_ZONEMAP hint disables the use of a zone map for different types of pruning. This
hint overrides an ENABLE PRUNING setting in the DDL that created or altered the zone
map.

Specify one of the following options:

• SCAN - Disables the use of a zone map for scan pruning.

Chapter 2
Comments

2-120

• JOIN - Disables the use of a zone map for join pruning.

• PARTITION - Disables the use of a zone map for partition pruning.

See Also:

• ENABLE | DISABLE PRUNING clause of CREATE MATERIALIZED ZONEMAP
• Oracle Database Data Warehousing Guide for more information on pruning with

zone maps

OPTIMIZER_FEATURES_ENABLE Hint
This hint is fully documented in the Database Reference book.

Please see Database Reference for details.

OPT_PARAM Hint

/*+ OPT_PARAM (parameter_name

,

parameter_value) */

The OPT_PARAM hint lets you set an initialization parameter for the duration of the current
query only. This hint is valid only for the following parameters: APPROX_FOR_AGGREGATION,
APPROX_FOR_COUNT_DISTINCT, APPROX_FOR_PERCENTILE, OPTIMIZER_DYNAMIC_SAMPLING,
OPTIMIZER_INDEX_CACHING, OPTIMIZER_INDEX_COST_ADJ, OPTIMIZER_SECURE_VIEW_MERGING,
and STAR_TRANSFORMATION_ENABLED.

For example, the following hint sets the parameter STAR_TRANSFORMATION_ENABLED to TRUE for
the statement to which it is added:

SELECT /*+ OPT_PARAM('star_transformation_enabled' 'true') */ *
 FROM ... ;

Parameter values that are strings are enclosed in single quotation marks. Numeric parameter
values are specified without quotation marks.

ORDERED Hint

/*+ ORDERED */

The ORDERED hint instructs Oracle to join tables in the order in which they appear in the FROM
clause. Oracle recommends that you use the LEADING hint, which is more versatile than the
ORDERED hint.

When you omit the ORDERED hint from a SQL statement requiring a join, the optimizer chooses
the order in which to join the tables. You might want to use the ORDERED hint to specify a join
order if you know something that the optimizer does not know about the number of rows

Chapter 2
Comments

2-121

selected from each table. Such information lets you choose an inner and outer table
better than the optimizer could.

The following query is an example of the use of the ORDERED hint:

SELECT /*+ ORDERED */ o.order_id, c.customer_id, l.unit_price * l.quantity
 FROM customers c, order_items l, orders o
 WHERE c.cust_last_name = 'Taylor'
 AND o.customer_id = c.customer_id
 AND o.order_id = l.order_id;

PARALLEL Hint

Note on Parallel Hints

Beginning with Oracle Database 11g Release 2, the PARALLEL and NO_PARALLEL hints
are statement-level hints and supersede the earlier object-level hints: PARALLEL_INDEX,
NO_PARALLEL_INDEX, and previously specified PARALLEL and NO_PARALLEL hints. For
PARALLEL, if you specify integer, then that degree of parallelism will be used for the
statement. If you omit integer, then the database computes the degree of parallelism.
All the access paths that can use parallelism will use the specified or computed degree
of parallelism.

In the syntax diagrams below, parallel_hint_statement shows the syntax for
statement-level hints, and parallel_hint_object shows the syntax for object-level
hints. Object-level hints are supported for backward compatibility, and are superseded
by statement-level hints.

parallel_hint_statement::=

/*+ PARALLEL

(

DEFAULT

AUTO

MANUAL

integer

)

*/

parallel_hint_object::=

/*+ PARALLEL (

@ queryblock

tablespec

integer

DEFAULT

) */

(See Specifying a Query Block in a Hint , tablespec::=)

The PARALLEL hint instructs the optimizer to use the specified number of concurrent
servers for a parallel operation. This hint overrides the value of the
PARALLEL_DEGREE_POLICY initialization parameter. It applies to the SELECT, INSERT,
MERGE, UPDATE, and DELETE portions of a statement, as well as to the table scan
portion. If any parallel restrictions are violated, then the hint is ignored.

Chapter 2
Comments

2-122

Note:

The number of servers that can be used is twice the value in the PARALLEL hint, if
sorting or grouping operations also take place.

For a statement-level PARALLEL hint:

• PARALLEL: The statement results in a degree of parallelism equal to or greater than the
computed degree of parallelism, except when parallelism is not feasible for the lowest
cost plan. When parallelism is is not feasible, the statement runs serially.

• PARALLEL (DEFAULT): The optimizer calculates a degree of parallelism equal to the number
of CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

• PARALLEL (AUTO): The statement results in a degree of parallelism that is equal to or
greater than the computed degree of parallelism, except when parallelism is not feasible
for the lowest cost plan. When parallelism is is not feasible, the statement runs serially.

• PARALLEL (MANUAL): The optimizer is forced to use the parallel settings of the objects in
the statement.

• PARALLEL (integer): The optimizer uses the degree of parallelism specified by integer.

In the following example, the optimizer calculates the degree of parallelism. The statement
always runs in parallel.

SELECT /*+ PARALLEL */ last_name
 FROM employees;

In the following example, the optimizer calculates the degree of parallelism, but that degree
may be 1, in which case the statement will run serially.

SELECT /*+ PARALLEL (AUTO) */ last_name
 FROM employees;

In the following example, the PARALLEL hint advises the optimizer to use the degree of
parallelism currently in effect for the table itself, which is 5:

CREATE TABLE parallel_table (col1 number, col2 VARCHAR2(10)) PARALLEL 5;

SELECT /*+ PARALLEL (MANUAL) */ col2
 FROM parallel_table;

For an object-level PARALLEL hint:

• PARALLEL: The query coordinator should examine the settings of the initialization
parameters to determine the default degree of parallelism.

• PARALLEL (integer): The optimizer uses the degree of parallelism specified by integer.

• PARALLEL (DEFAULT): The optimizer calculates a degree of parallelism equal to the number
of CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

In the following example, the PARALLEL hint overrides the degree of parallelism specified in
the employees table definition:

Chapter 2
Comments

2-123

SELECT /*+ FULL(hr_emp) PARALLEL(hr_emp, 5) */ last_name
 FROM employees hr_emp;

In the next example, the PARALLEL hint overrides the degree of parallelism specified in
the employees table definition and instructs the optimizer to calculate a degree of
parallelism equal to the number of CPUs available on all participating instances times
the value of the PARALLEL_THREADS_PER_CPU initialization parameter.

SELECT /*+ FULL(hr_emp) PARALLEL(hr_emp, DEFAULT) */ last_name
 FROM employees hr_emp;

Refer to CREATE TABLE and Oracle Database Concepts for more information on
parallel execution.

See Also:

• CREATE TABLE and Oracle Database Concepts for more information on
parallel execution.

• Oracle Database PL/SQL Packages and Types Reference for
information on the DBMS_PARALLEL_EXECUTE package, which provides
methods to apply table changes in chunks of rows. Changes to each
chunk are independently committed when there are no errors.

• Oracle Database Reference for more information on the
PARALLEL_DEGREE_POLICY initialization parameter

• NO_PARALLEL Hint

PARALLEL_INDEX Hint

/*+ PARALLEL_INDEX (

@ queryblock

tablespec

indexspec

integer

DEFAULT

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The PARALLEL_INDEX hint instructs the optimizer to use the specified number of
concurrent servers to parallelize index range scans, full scans, and fast full scans for
partitioned indexes.

The integer value indicates the degree of parallelism for the specified index.
Specifying DEFAULT or no value signifies that the query coordinator should examine the
settings of the initialization parameters to determine the default degree of parallelism.
For example, the following hint indicates three parallel execution processes are to be
used:

SELECT /*+ PARALLEL_INDEX(table1, index1, 3) */

Chapter 2
Comments

2-124

See Also:

Note on Parallel Hints for more information on the parallel hints

PQ_CONCURRENT_UNION Hint

/*+ PQ_CONCURRENT_UNION

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The PQ_CONCURRENT_UNION hint instructs the optimizer to enable concurrent processing of
UNION and UNION ALL operations.

See Also:

• NO_PQ_CONCURRENT_UNION Hint

• Oracle Database VLDB and Partitioning Guide for information about using this
hint

PQ_DISTRIBUTE Hint

/*+ PQ_DISTRIBUTE (

@ queryblock

tablespec
distribution

outer_distribution inner_distribution
) */

(See Specifying a Query Block in a Hint , tablespec::=)

The PQ_DISTRIBUTE hint instructs the optimizer how to distribute rows among producer and
consumer query servers. You can control the distribution of rows for either joins or for load.

Control of Distribution for Load

You can control the distribution of rows for parallel INSERT ... SELECT and parallel CREATE
TABLE ... AS SELECT statements to direct how rows should be distributed between the producer
(query) and the consumer (load) servers. Use the upper branch of the syntax by specifying a
single distribution method. The values of the distribution methods and their semantics are
described in Table 2-24.

Chapter 2
Comments

2-125

Table 2-24 Distribution Values for Load

Distribution Description

NONE No distribution. That is the query and load operation are
combined into each query server. All servers will load all
partitions. This lack of distribution is useful to avoid the overhead
of distributing rows where there is no skew. Skew can occur due
to empty segments or to a predicate in the statement that filters
out all rows evaluated by the query. If skew occurs due to using
this method, then use either RANDOM or RANDOM_LOCAL
distribution instead.

Note: Use this distribution with care. Each partition loaded
requires a minimum of 512 KB per process of PGA memory. If
you also use compression, then approximately 1.5 MB of PGA
memory is consumer per server.

PARTITION This method uses the partitioning information of tablespec to
distribute the rows from the query servers to the load servers.
Use this distribution method when it is not possible or desirable
to combine the query and load operations, when the number of
partitions being loaded is greater than or equal to the number of
load servers, and the input data will be evenly distributed across
the partitions being loaded—that is, there is no skew.

RANDOM This method distributes the rows from the producers in a round-
robin fashion to the consumers. Use this distribution method
when the input data is highly skewed.

RANDOM_LOCAL This method distributes the rows from the producers to a set of
servers that are responsible for maintaining a given set of
partitions. Two or more servers can be loading the same
partition, but no servers are loading all partitions. Use this
distribution method when the input data is skewed and
combining query and load operations is not possible due to
memory constraints.

For example, in the following direct-path insert operation, the query and load portions
of the operation are combined into each query server:

INSERT /*+ APPEND PARALLEL(target_table, 16) PQ_DISTRIBUTE(target_table, NONE) */
 INTO target_table
 SELECT * FROM source_table;

In the following table creation example, the optimizer uses the partitioning of
target_table to distribute the rows:

CREATE /*+ PQ_DISTRIBUTE(target_table, PARTITION) */ TABLE target_table
 NOLOGGING PARALLEL 16
 PARTITION BY HASH (l_orderkey) PARTITIONS 512
 AS SELECT * FROM source_table;

Control of Distribution for Joins

You control the distribution method for joins by specifying two distribution methods, as
shown in the lower branch of the syntax diagram, one distribution for the outer table
and one distribution for the inner table.

• outer_distribution is the distribution for the outer table.

Chapter 2
Comments

2-126

• inner_distribution is the distribution for the inner table.

The values of the distributions are HASH, BROADCAST, PARTITION, and NONE. Only six
combinations table distributions are valid, as described in Table 2-25:

Table 2-25 Distribution Values for Joins

Distribution Description

HASH, HASH The rows of each table are mapped to consumer query servers, using
a hash function on the join keys. When mapping is complete, each
query server performs the join between a pair of resulting partitions.
This distribution is recommended when the tables are comparable in
size and the join operation is implemented by hash-join or sort merge
join.

BROADCAST, NONE All rows of the outer table are broadcast to each query server. The
inner table rows are randomly partitioned. This distribution is
recommended when the outer table is very small compared with the
inner table. As a general rule, use this distribution when the inner
table size multiplied by the number of query servers is greater than
the outer table size.

NONE, BROADCAST All rows of the inner table are broadcast to each consumer query
server. The outer table rows are randomly partitioned. This distribution
is recommended when the inner table is very small compared with the
outer table. As a general rule, use this distribution when the inner
table size multiplied by the number of query servers is less than the
outer table size.

PARTITION, NONE The rows of the outer table are mapped using the partitioning of the
inner table. The inner table must be partitioned on the join keys. This
distribution is recommended when the number of partitions of the
outer table is equal to or nearly equal to a multiple of the number of
query servers; for example, 14 partitions and 15 query servers.

Note: The optimizer ignores this hint if the inner table is not
partitioned or not equijoined on the partitioning key.

NONE, PARTITION The rows of the inner table are mapped using the partitioning of the
outer table. The outer table must be partitioned on the join keys. This
distribution is recommended when the number of partitions of the
outer table is equal to or nearly equal to a multiple of the number of
query servers; for example, 14 partitions and 15 query servers.

Note: The optimizer ignores this hint if the outer table is not
partitioned or not equijoined on the partitioning key.

NONE, NONE Each query server performs the join operation between a pair of
matching partitions, one from each table. Both tables must be
equipartitioned on the join keys.

For example, given two tables r and s that are joined using a hash join, the following query
contains a hint to use hash distribution:

SELECT /*+ORDERED PQ_DISTRIBUTE(s HASH, HASH) USE_HASH (s)*/ column_list
 FROM r,s
 WHERE r.c=s.c;

To broadcast the outer table r, the query is:

SELECT /*+ORDERED PQ_DISTRIBUTE(s BROADCAST, NONE) USE_HASH (s) */ column_list
 FROM r,s
 WHERE r.c=s.c;

Chapter 2
Comments

2-127

PQ_FILTER Hint

/*+ PQ_FILTER (

SERIAL

NONE

HASH

RANDOM

) */

The PQ_FILTER hint instructs the optimizer on how to process rows when filtering
correlated subqueries.

• SERIAL: Process rows serially on the left and right sides of the filter. Use this option
when the overhead of parallelization is too high for the query, for example, when
the left side has very few rows.

• NONE: Process rows in parallel on the left and right sides of the filter. Use this
option when there is no skew in the distribution of the data on the left side of the
filter and you would like to avoid distribution of the left side, for example, due to the
large size of the left side.

• HASH: Process rows in parallel on the left side of the filter using a hash distribution.
Process rows serially on the right side of the filter. Use this option when there is no
skew in the distribution of data on the left side of the filter.

• RANDOM: Process rows in parallel on the left side of the filter using a random
distribution. Process rows serially on the right side of the filter. Use this option
when there is skew in the distribution of data on the left side of the filter.

PQ_SKEW Hint

/*+ PQ_SKEW (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The PQ_SKEW hint advises the optimizer that the distribution of the values of the join
keys for a parallel join is highly skewed—that is, a high percentage of rows have the
same join key values. The table specified in tablespec is the probe table of the hash
join.

PUSH_PRED Hint

/*+ PUSH_PRED

(

@ queryblock

@ queryblock

tablespec

)

*/

Chapter 2
Comments

2-128

(See Specifying a Query Block in a Hint , tablespec::=)

The PUSH_PRED hint instructs the optimizer to push a join predicate into the view. For example:

SELECT /*+ NO_MERGE(v) PUSH_PRED(v) */ *
 FROM employees e,
 (SELECT manager_id
 FROM employees) v
 WHERE e.manager_id = v.manager_id(+)
 AND e.employee_id = 100;

PUSH_SUBQ Hint

/*+ PUSH_SUBQ

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The PUSH_SUBQ hint instructs the optimizer to evaluate nonmerged subqueries at the earliest
possible step in the execution plan. Generally, subqueries that are not merged are executed
as the last step in the execution plan. If the subquery is relatively inexpensive and reduces
the number of rows significantly, then evaluating the subquery earlier can improve
performance.

This hint has no effect if the subquery is applied to a remote table or one that is joined using a
merge join.

PX_JOIN_FILTER Hint

/*+ PX_JOIN_FILTER (tablespec) */

This hint forces the optimizer to use parallel join bitmap filtering.

QB_NAME Hint

/*+ QB_NAME (queryblock) */

(See Specifying a Query Block in a Hint)

Use the QB_NAME hint to define a name for a query block. This name can then be used in a
hint in the outer query or even in a hint in an inline view to affect query execution on the
tables appearing in the named query block.

If two or more query blocks have the same name, or if the same query block is hinted twice
with different names, then the optimizer ignores all the names and the hints referencing that
query block. Query blocks that are not named using this hint have unique system-generated
names. These names can be displayed in the plan table and can also be used in hints within
the query block, or in query block hints. For example:

Chapter 2
Comments

2-129

SELECT /*+ QB_NAME(qb) FULL(@qb e) */ employee_id, last_name
 FROM employees e
 WHERE last_name = 'Smith';

RESULT_CACHE Hint

/*+ RESULT_CACHE

TEMP =

TRUE

FALSE

*/

The RESULT_CACHE hint instructs the database to cache the results of the current query
or query fragment in memory and then to use the cached results in future executions
of the query or query fragment. The hint is recognized in the top-level query, the
subquery_factoring_clause, or FROM clause inline view. The cached results reside in
the result cache memory portion of the shared pool.

A cached result is automatically invalidated whenever a database object used in its
creation is successfully modified.

If TEMP has a value of TRUE , then the query will be allowed to spill to disk and allocate
space in the temporary tablespace, if needed.

If TEMP has a value of FALSE , then the query will not be allowed to spill to disk and use
the temporary tablespace for caching the result.

Both values TRUE and FALSE override the value of the RESULT_CACHE_MODE initialization
parameter.

If you do not specify TEMP, then the value of RESULT_CACHE_MODE holds.

The query is eligible for result caching only if all functions entailed in the query—for
example, built-in or user-defined functions or virtual columns—are deterministic.

If the query is executed from an OCI client and the OCI client result cache is enabled,
then the RESULT_CACHE hint enables client caching for the current query.

See Also:

Oracle Database Performance Tuning Guide for information about using this
hint, Oracle Database Reference for information about the
RESULT_CACHE_MODE initialization parameter, and Oracle Call Interface
Programmer's Guide for more information about the OCI result cache and
usage guidelines

RETRY_ON_ROW_CHANGE Hint

/*+ RETRY_ON_ROW_CHANGE */

Chapter 2
Comments

2-130

Note:

The CHANGE_DUPKEY_ERROR_INDEX, IGNORE_ROW_ON_DUPKEY_INDEX, and
RETRY_ON_ROW_CHANGE hints are unlike other hints in that they have a semantic
effect. The general philosophy explained in Hints does not apply for these three
hints.

This hint is valid only for UPDATE and DELETE operations. It is not supported for INSERT or
MERGE operations. When you specify this hint, the operation is retried when the ORA_ROWSCN
for one or more rows in the set has changed from the time the set of rows to be modified is
determined to the time the block is actually modified.

See Also:

IGNORE_ROW_ON_DUPKEY_INDEX Hint and
CHANGE_DUPKEY_ERROR_INDEX Hint

REWRITE Hint

/*+ REWRITE

(

@ queryblock

view)

*/

(See Specifying a Query Block in a Hint)

The REWRITE hint instructs the optimizer to rewrite a query in terms of materialized views,
when possible, without cost consideration. Use the REWRITE hint with or without a view list. If
you use REWRITE with a view list and the list contains an eligible materialized view, then
Oracle uses that view regardless of its cost.

Oracle does not consider views outside of the list. If you do not specify a view list, then
Oracle searches for an eligible materialized view and always uses it regardless of the cost of
the final plan.

See Also:

• Oracle Database Concepts for more information on materialized views

• Oracle Database Data Warehousing Guide for more information on using
REWRITE with materialized views

STAR_TRANSFORMATION Hint

/*+ STAR_TRANSFORMATION

(@ queryblock)

*/

Chapter 2
Comments

2-131

(See Specifying a Query Block in a Hint)

The STAR_TRANSFORMATION hint instructs the optimizer to use the best plan in which the
transformation has been used. Without the hint, the optimizer could make a query
optimization decision to use the best plan generated without the transformation,
instead of the best plan for the transformed query. For example:

SELECT /*+ STAR_TRANSFORMATION */ s.time_id, s.prod_id, s.channel_id
 FROM sales s, times t, products p, channels c
 WHERE s.time_id = t.time_id
 AND s.prod_id = p.prod_id
 AND s.channel_id = c.channel_id
 AND c.channel_desc = 'Tele Sales';

Even if the hint is specified, there is no guarantee that the transformation will take
place. The optimizer generates the subqueries only if it seems reasonable to do so. If
no subqueries are generated, then there is no transformed query, and the best plan for
the untransformed query is used, regardless of the hint.

See Also:

• Oracle Database Data Warehousing Guide for a full discussion of star
transformation.

• Oracle Database Reference for more information on the
STAR_TRANSFORMATION_ENABLED initialization parameter.

STATEMENT_QUEUING Hint

/*+ STATEMENT_QUEUING */

The NO_STATEMENT_QUEUING hint influences whether or not a statement is queued with
parallel statement queuing.

When PARALLEL_DEGREE_POLICY is not set to AUTO, this hint enables a statement to be
considered for parallel statement queuing, but to run only when enough parallel
processes are available to run at the requested DOP. The number of available parallel
execution servers, before queuing is enabled, is equal to the difference between the
number of parallel execution servers in use and the maximum number allowed in the
system, which is defined by the PARALLEL_SERVERS_TARGET initialization parameter.

For example:

SELECT /*+ STATEMENT_QUEUING */ emp.last_name, dpt.department_name
 FROM employees emp, departments dpt
 WHERE emp.department_id = dpt.department_id;

See Also:

NO_STATEMENT_QUEUING Hint

Chapter 2
Comments

2-132

UNNEST Hint

/*+ UNNEST

(@ queryblock)

*/

(See Specifying a Query Block in a Hint)

The UNNEST hint instructs the optimizer to unnest and merge the body of the subquery into the
body of the query block that contains it, allowing the optimizer to consider them together
when evaluating access paths and joins.

Before a subquery is unnested, the optimizer first verifies whether the statement is valid. The
statement must then pass heuristic and query optimization tests. The UNNEST hint instructs the
optimizer to check the subquery block for validity only. If the subquery block is valid, then
subquery unnesting is enabled without checking the heuristics or costs.

See Also:

• Collection Unnesting: Examples for more information on unnesting nested
subqueries and the conditions that make a subquery block valid

• Oracle Database SQL Tuning Guide for additional information on subquery
unnesting

USE_BAND Hint

/*+ USE_BAND (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The USE_BAND hint instructs the optimizer to join each specified table with another row source
using a band join. For example:

SELECT /*+ USE_BAND(e1 e2) */
 e1.last_name
 || ' has salary between 100 less and 100 more than '
 || e2.last_name AS "SALARY COMPARISON"
FROM employees e1, employees e2
WHERE e1.salary BETWEEN e2.salary - 100 AND e2.salary + 100;

USE_CONCAT Hint

/*+ USE_CONCAT

(@ queryblock)

*/

Chapter 2
Comments

2-133

(See Specifying a Query Block in a Hint)

The USE_CONCAT hint instructs the optimizer to transform combined OR-conditions in the
WHERE clause of a query into a compound query using the UNION ALL set operator.
Without this hint, this transformation occurs only if the cost of the query using the
concatenations is cheaper than the cost without them. The USE_CONCAT hint overrides
the cost consideration. For example:

SELECT /*+ USE_CONCAT */ *
 FROM employees e
 WHERE manager_id = 108
 OR department_id = 110;

See Also:

The NO_EXPAND Hint , which is the opposite of this hint

USE_CUBE Hint

/*+ USE_CUBE (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

When the right-hand side of the join is a cube, the USE_CUBE hint instructs the optimizer
to join each specified table with another row source using a cube join. If the optimizer
decides not to use the cube join based on statistical analysis, then you can use
USE_CUBE to override that decision.

USE_HASH Hint

/*+ USE_HASH (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The USE_HASH hint instructs the optimizer to join each specified table with another row
source using a hash join. For example:

SELECT /*+ USE_HASH(l h) */ *
 FROM orders h, order_items l
 WHERE l.order_id = h.order_id
 AND l.order_id > 2400;

USE_MERGE Hint

/*+ USE_MERGE (

@ queryblock

tablespec) */

Chapter 2
Comments

2-134

(See Specifying a Query Block in a Hint , tablespec::=)

The USE_MERGE hint instructs the optimizer to join each specified table with another row
source using a sort-merge join. For example:

SELECT /*+ USE_MERGE(employees departments) */ *
 FROM employees, departments
 WHERE employees.department_id = departments.department_id;

Use of the USE_NL and USE_MERGE hints is recommended with the LEADING and ORDERED hints.
The optimizer uses those hints when the referenced table is forced to be the inner table of a
join. The hints are ignored if the referenced table is the outer table.

USE_NL Hint
The USE_NL hint instructs the optimizer to join each specified table to another row source with
a nested loops join, using the specified table as the inner table.

/*+ USE_NL (

@ queryblock

tablespec) */

(See Specifying a Query Block in a Hint , tablespec::=)

The USE_NL hint instructs the optimizer to join each specified table to another row source with
a nested loops join, using the specified table as the inner table.

Use of the USE_NL and USE_MERGE hints is recommended with the LEADING and ORDERED hints.
The optimizer uses those hints when the referenced table is forced to be the inner table of a
join. The hints are ignored if the referenced table is the outer table.

In the following example, where a nested loop is forced through a hint, orders is accessed
through a full table scan and the filter condition l.order_id = h.order_id is applied to every
row. For every row that meets the filter condition, order_items is accessed through the index
order_id.

SELECT /*+ USE_NL(l h) */ h.customer_id, l.unit_price * l.quantity
 FROM orders h, order_items l
 WHERE l.order_id = h.order_id;

Adding an INDEX hint to the query could avoid the full table scan on orders, resulting in an
execution plan similar to one used on larger systems, even though it might not be particularly
efficient here.

USE_NL_WITH_INDEX Hint

/*+ USE_NL_WITH_INDEX (

@ queryblock

tablespec

indexspec

) */

(See Specifying a Query Block in a Hint , tablespec::=, indexspec::=)

The USE_NL_WITH_INDEX hint instructs the optimizer to join the specified table to another row
source with a nested loops join using the specified table as the inner table. For example:

Chapter 2
Comments

2-135

SELECT /*+ USE_NL_WITH_INDEX(l item_product_ix) */ *
 FROM orders h, order_items l
 WHERE l.order_id = h.order_id
 AND l.order_id > 2400;

The following conditions apply:

• If no index is specified, then the optimizer must be able to use some index with at
least one join predicate as the index key.

• If an index is specified, then the optimizer must be able to use that index with at
least one join predicate as the index key.

Database Objects
Oracle Database recognizes objects that are associated with a particular schema and
objects that are not associated with any particular schema, as described in the
sections that follow.

Schema Objects
A schema is a collection of logical structures of data, or schema objects. A schema is
owned by a database user and has the same name as that user. Each user owns a
single schema. Schema objects can be created and manipulated with SQL and include
the following types of objects:

Analytic views
Attribute dimensions
Clusters
Constraints
Database links
Database triggers
Dimensions
External procedure libraries
Hierarchies
Index-organized tables
Indexes
Indextypes
Java classes
Java resources
Java sources
Join groups
Materialized views
Materialized view logs
Mining models
Object tables
Object types
Object views
Operators
Packages
Sequences
Stored functions

Chapter 2
Database Objects

2-136

Stored procedures
Synonyms
Tables
Views
Zone maps

Nonschema Objects
Other types of objects are also stored in the database and can be created and manipulated
with SQL but are not contained in a schema:

Contexts
Directories
Editions
Flashback archives
Lockdown profiles
Profiles
Restore points
Roles
Rollback segments
Tablespaces
Tablespace sets
Unified audit policies
Users

In this reference, each type of object is described in the section devoted to the statement that
creates the database object. These statements begin with the keyword CREATE. For example,
for the definition of a cluster, see CREATE CLUSTER .

See Also:

Oracle Database Concepts for an overview of database objects

You must provide names for most types of database objects when you create them. These
names must follow the rules listed in the sections that follow.

Database Object Names and Qualifiers
Some database objects are made up of parts that you can or must name, such as the
columns in a table or view, index and table partitions and subpartitions, integrity constraints
on a table, and objects that are stored within a package, including procedures and stored
functions. This section provides:

• Rules for naming database objects and database object location qualifiers

• Guidelines for naming database objects and qualifiers

Chapter 2
Database Object Names and Qualifiers

2-137

Note:

Oracle uses system-generated names beginning with "SYS_" for implicitly
generated database objects and subobjects, and names beginning with
"ORA_" for some Oracle-supplied objects. Oracle discourages you from using
these prefixes in the names you explicitly provide to your database objects
and subobjects to avoid possible conflict in name resolution.

Database Object Naming Rules
Every database object has a name. In a SQL statement, you represent the name of an
object with a quoted identifier or a nonquoted identifier.

• A quoted identifier begins and ends with double quotation marks ("). If you name a
schema object using a quoted identifier, then you must use the double quotation
marks whenever you refer to that object.

• A nonquoted identifier is not surrounded by any punctuation.

You can use either quoted or nonquoted identifiers to name any database object.
However, database names, global database names, database link names, disk group
names, and pluggable database (PDB) names are always case insensitive and are
stored as uppercase. If you specify such names as quoted identifiers, then the
quotation marks are silently ignored.

See Also:

CREATE USER for additional rules for naming users and passwords

Note:

Oracle does not recommend using quoted identifiers for database object
names. These quoted identifiers are accepted by SQL*Plus, but they may
not be valid when using other tools that manage database objects.

The following list of rules applies to both quoted and nonquoted identifiers unless
otherwise indicated:

1. The maximum length of identifier names depends on the value of the COMPATIBLE
initialization parameter.

• If COMPATIBLE is set to a value of 12.2 or higher, then names must be
from 1 to 128 bytes long with these exceptions:

– Names of databases are limited to 8 bytes.

– Names of disk groups, pluggable databases (PDBs), rollback segments,
tablespaces, and tablespace sets are limited to 30 bytes.

Chapter 2
Database Object Names and Qualifiers

2-138

– From Release 21c onwards names of pluggable databases are limited to 64
bytes.

If an identifier includes multiple parts separated by periods, then each attribute can
be up to 128 bytes long. Each period separator, as well as any surrounding double
quotation marks, counts as one byte. For example, suppose you identify a column
like this:

"schema"."table"."column"

The schema name can be 128 bytes, the table name can be 128 bytes, and the
column name can be 128 bytes. Each of the quotation marks and periods is a single-
byte character, so the total length of the identifier in this example can be up to 392
bytes.

• If COMPATIBLE is set to a value lower than 12.2, then names must be from 1 to
30 bytes long with these exceptions:

– Names of databases are limited to 8 bytes.

– Names of database links can be as long as 128 bytes.

If an identifier includes multiple parts separated by periods, then each attribute can
be up to 30 bytes long. Each period separator, as well as any surrounding double
quotation marks, counts as one byte. For example, suppose you identify a column
like this:

"schema"."table"."column"

The schema name can be 30 bytes, the table name can be 30 bytes, and the column
name can be 30 bytes. Each of the quotation marks and periods is a single-byte
character, so the total length of the identifier in this example can be up to 98 bytes.

2. Nonquoted identifiers cannot be Oracle SQL reserved words. Quoted identifiers can be
reserved words, although this is not recommended.

Depending on the Oracle product you plan to use to access a database object, names
might be further restricted by other product-specific reserved words.

Note:

The reserved word ROWID is an exception to this rule. You cannot use the
uppercase word ROWID, either quoted or nonquoted, as a column name.
However, you can use the uppercase word as a quoted identifier that is not a
column name, and you can use the word with one or more lowercase letters (for
example, "Rowid" or "rowid") as any quoted identifier, including a column name.

See Also:

• Oracle SQL Reserved Words for a listing of all Oracle SQL reserved words

• The manual for a specific product, such as Oracle Database PL/SQL
Language Reference, for a list of the reserved words of that product

Chapter 2
Database Object Names and Qualifiers

2-139

3. The Oracle SQL language contains other words that have special meanings.
These words include data types, schema names, function names, the dummy
system table DUAL, and keywords (the uppercase words in SQL statements, such
as DIMENSION, SEGMENT, ALLOCATE, DISABLE, and so forth). These words are not
reserved. However, Oracle uses them internally in specific ways. Therefore, if you
use these words as names for objects and object parts, then your SQL statements
may be more difficult to read and may lead to unpredictable results.

In particular, do not use words beginning with SYS_ or ORA_ as schema object
names, and do not use the names of SQL built-in functions for the names of
schema objects or user-defined functions.

See Also:

• Oracle SQL Keywords for information how to obtain a list of
keywords

• Data Types , About SQL Functions , and Selecting from the DUAL
Table

4. You should use characters from the ASCII repertoire in database names, global
database names, and database link names, because these characters provide
optimal compatibility across different platforms and operating systems. You must
use only characters from the ASCII repertoire in the names of common users,
common roles, and common profiles in a multitenant container database (CDB).

5. You can include multibyte characters in passwords.

6. Nonquoted identifiers must begin with an alphabetic character from your database
character set. Quoted identifiers can begin with any character.

7. Nonquoted identifiers can only contain alphanumeric characters from your
database character set and the underscore (_), dollar sign ($), and pound sign (#).
Database links can also contain periods (.) and "at" signs (@). Oracle strongly
discourages you from using $ and # in nonquoted identifiers.

Quoted identifiers can contain any characters and punctuations marks as well as
spaces. However, neither quoted nor nonquoted identifiers can contain double
quotation marks or the null character (\0).

8. Within a namespace, no two objects can have the same name.

The following schema objects share one namespace:

• Packages

• Private synonyms

• Sequences

• Stand-alone procedures

• Stand-alone stored functions

• Tables

• User-defined operators

• User-defined types

• Views

Chapter 2
Database Object Names and Qualifiers

2-140

Each of the following schema objects has its own namespace:

• Clusters

• Constraints

• Database triggers

• Dimensions

• Indexes

• Materialized views (When you create a materialized view, the database creates an
internal table of the same name. This table has the same namespace as the other
tables in the schema. Therefore, a schema cannot contain a table and a materialized
view of the same name.)

• Private database links

Because tables and sequences are in the same namespace, a table and a sequence in
the same schema cannot have the same name. However, tables and indexes are in
different namespaces. Therefore, a table and an index in the same schema can have the
same name.

Each schema in the database has its own namespaces for the objects it contains. This
means, for example, that two tables in different schemas are in different namespaces and
can have the same name.

Each of the following nonschema objects also has its own namespace:

• Editions

• Parameter files (PFILEs) and server parameter files (SPFILEs)

• Profiles

• Public database links

• Public synonyms

• Tablespaces

• User roles

Because the objects in these namespaces are not contained in schemas, these
namespaces span the entire database.

9. Nonquoted identifiers are not case sensitive. Oracle interprets them as uppercase.
Quoted identifiers are case sensitive.

By enclosing names in double quotation marks, you can give the following names to
different objects in the same namespace:

"employees"
"Employees"
"EMPLOYEES"

Note that Oracle interprets the following names the same, so they cannot be used for
different objects in the same namespace:

employees
EMPLOYEES
"EMPLOYEES"

10. When Oracle stores or compares identifiers in uppercase, the uppercase form of each
character in the identifiers is determined by applying the uppercasing rules of the
database character set. Language-specific rules determined by the session setting

Chapter 2
Database Object Names and Qualifiers

2-141

NLS_SORT are not considered. This behavior corresponds to applying the SQL
function UPPER to the identifier rather than the function NLS_UPPER.

The database character set uppercasing rules can yield results that are incorrect
when viewed as being in a certain natural language. For example, small letter
sharp s ("ß"), used in German, does not have an uppercase form according to the
database character set uppercasing rules. It is not modified when an identifier is
converted into uppercase, while the expected uppercase form in German is the
sequence of two characters capital letter S ("SS"). Similarly, the uppercase form of
small letter i, according to the database character set uppercasing rules, is capital
letter I. However, the expected uppercase form in Turkish and Azerbaijani is
capital letter I with dot above.

The database character set uppercasing rules ensure that identifiers are
interpreted the same in any linguistic configuration of a session. If you want an
identifier to look correctly in a certain natural language, then you can quote it to
preserve the lowercase form or you can use the linguistically correct uppercase
form whenever you use that identifier.

11. Columns in the same table or view cannot have the same name. However,
columns in different tables or views can have the same name.

12. Procedures or functions contained in the same package can have the same name,
if their arguments are not of the same number and data types. Creating multiple
procedures or functions with the same name in the same package with different
arguments is called overloading the procedure or function.

13. Tablespace names are case sensitive, unlike other identifiers that are limited to 30
bytes.

Schema Object Naming Examples
The following examples are valid schema object names:

last_name
horse
hr.hire_date
"EVEN THIS & THAT!"
a_very_long_and_valid_name

All of these examples adhere to the rules listed in Database Object Naming Rules .

Schema Object Naming Guidelines
Here are several helpful guidelines for naming objects and their parts:

• Use full, descriptive, pronounceable names (or well-known abbreviations).

• Use consistent naming rules.

• Use the same name to describe the same entity or attribute across tables.

When naming objects, balance the objective of keeping names short and easy to use
with the objective of making names as descriptive as possible. When in doubt, choose
the more descriptive name, because the objects in the database may be used by
many people over a period of time. Your counterpart ten years from now may have
difficulty understanding a table column with a name like pmdd instead of
payment_due_date.

Chapter 2
Database Object Names and Qualifiers

2-142

Using consistent naming rules helps users understand the part that each table plays in your
application. One such rule might be to begin the names of all tables belonging to the FINANCE
application with fin_.

Use the same names to describe the same things across tables. For example, the
department number columns of the sample employees and departments tables are both
named department_id.

Syntax for Schema Objects and Parts in SQL Statements
This section tells you how to refer to schema objects and their parts in the context of a SQL
statement. This section shows you:

• The general syntax for referring to an object

• How Oracle resolves a reference to an object

• How to refer to objects in schemas other than your own

• How to refer to objects in remote databases

• How to refer to table and index partitions and subpartitions

The following diagram shows the general syntax for referring to an object or a part:

database_object_or_part::=

schema .

object

. part @ dblink

(dblink::=)

where:

• object is the name of the object.

• schema is the schema containing the object. The schema qualifier lets you refer to an
object in a schema other than your own. You must be granted privileges to refer to
objects in other schemas. If you omit schema, then Oracle assumes that you are referring
to an object in your own schema.

Only schema objects can be qualified with schema. Schema objects are shown with list
item 8. Nonschema objects, also shown with list item 8, cannot be qualified with schema
because they are not schema objects. An exception is public synonyms, which can
optionally be qualified with "PUBLIC". The quotation marks are required.

• part is a part of the object. This identifier lets you refer to a part of a schema object, such
as a column or a partition of a table. Not all types of objects have parts.

• dblink applies only when you are using the Oracle Database distributed functionality.
This is the name of the database containing the object. The dblink qualifier lets you refer
to an object in a database other than your local database. If you omit dblink, then Oracle
assumes that you are referring to an object in your local database. Not all SQL
statements allow you to access objects on remote databases.

You can include spaces around the periods separating the components of the reference to
the object, but it is conventional to omit them.

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

2-143

How Oracle Database Resolves Schema Object References
When you refer to an object in a SQL statement, Oracle considers the context of the
SQL statement and locates the object in the appropriate namespace. After locating the
object, Oracle performs the operation specified by the statement on the object. If the
named object cannot be found in the appropriate namespace, then Oracle returns an
error.

The following example illustrates how Oracle resolves references to objects within
SQL statements. Consider this statement that adds a row of data to a table identified
by the name departments:

INSERT INTO departments
 VALUES (280, 'ENTERTAINMENT_CLERK', 206, 1700);

Based on the context of the statement, Oracle determines that departments can be:

• A table in your own schema

• A view in your own schema

• A private synonym for a table or view

• A public synonym

Oracle always attempts to resolve an object reference within the namespaces in your
own schema before considering namespaces outside your schema. In this example,
Oracle attempts to resolve the name departments as follows:

1. First, Oracle attempts to locate the object in the namespace in your own schema
containing tables, views, and private synonyms. If the object is a private synonym,
then Oracle locates the object for which the synonym stands. This object could be
in your own schema, another schema, or on another database. The object could
also be another synonym, in which case Oracle locates the object for which this
synonym stands.

2. If the object is in the namespace, then Oracle attempts to perform the statement
on the object. In this example, Oracle attempts to add the row of data to
departments. If the object is not of the correct type for the statement, then Oracle
returns an error. In this example, departments must be a table, view, or a private
synonym resolving to a table or view. If departments is a sequence, then Oracle
returns an error.

3. If the object is not in any namespace searched in thus far, then Oracle searches
the namespace containing public synonyms. If the object is in that namespace,
then Oracle attempts to perform the statement on it. If the object is not of the
correct type for the statement, then Oracle returns an error. In this example, if
departments is a public synonym for a sequence, then Oracle returns an error.

If a public synonym has any dependent tables or user-defined types, then you cannot
create an object with the same name as the synonym in the same schema as the
dependent objects.

If a synonym does not have any dependent tables or user-defined types, then you can
create an object with the same name in the same schema as the dependent objects.
Oracle invalidates any dependent objects and attempts to revalidate them when they
are next accessed.

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

2-144

See Also:

Oracle Database PL/SQL Language Reference for information about how PL/SQL
resolves identifier names

References to Objects in Other Schemas
To refer to objects in schemas other than your own, prefix the object name with the schema
name:

schema.object

For example, this statement drops the employees table in the sample schema hr:

DROP TABLE hr.employees;

References to Objects in Remote Databases
To refer to objects in databases other than your local database, follow the object name with
the name of the database link to that database. A database link is a schema object that
causes Oracle to connect to a remote database to access an object there. This section tells
you:

• How to create database links

• How to use database links in your SQL statements

Creating Database Links
You create a database link with the statement CREATE DATABASE LINK . The statement
lets you specify this information about the database link:

• The name of the database link

• The database connect string to access the remote database

• The username and password to connect to the remote database

Oracle stores this information in the data dictionary.

Database Link Names
When you create a database link, you must specify its name. Database link names are
different from names of other types of objects. They can be as long as 128 bytes and can
contain periods (.) and the "at" sign (@).

The name that you give to a database link must correspond to the name of the database to
which the database link refers and the location of that database in the hierarchy of database
names. The following syntax diagram shows the form of the name of a database link:

dblink::=

database

. domain @ connection_qualifier

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

2-145

where:

• database should specify the name portion of the global name of the remote
database to which the database link connects. This global name is stored in the
data dictionary of the remote database. You can see this name in the GLOBAL_NAME
data dictionary view.

• domain should specify the domain portion of the global name of the remote
database to which the database link connects. If you omit domain from the name of
a database link, then Oracle qualifies the database link name with the domain of
your local database as it currently exists in the data dictionary.

• connection_qualifier lets you further qualify a database link. Using connection
qualifiers, you can create multiple database links to the same database. For
example, you can use connection qualifiers to create multiple database links to
different instances of the Oracle Real Application Clusters that access the same
database.

See Also:

Oracle Database Administrator’s Guidefor more information on
connection qualifiers

The combination database.domain is sometimes called the service name.

See Also:

Oracle Database Net Services Administrator's Guide

Username and Password
Oracle uses the username and password to connect to the remote database. The
username and password for a database link are optional.

Database Connect String
The database connect string is the specification used by Oracle Net to access the
remote database. For information on writing database connect strings, see the Oracle
Net documentation for your specific network protocol. The database connect string for
a database link is optional.

References to Database Links
Database links are available only if you are using Oracle distributed functionality.
When you issue a SQL statement that contains a database link, you can specify the
database link name in one of these forms:

• The complete database link name as stored in the data dictionary, including the
database, domain, and optional connection_qualifier components.

• The partial database link name is the database and optional
connection_qualifier components, but not the domain component.

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

2-146

Oracle performs these tasks before connecting to the remote database:

1. If the database link name specified in the statement is partial, then Oracle expands the
name to contain the domain of the local database as found in the global database name
stored in the data dictionary. (You can see the current global database name in the
GLOBAL_NAME data dictionary view.)

2. Oracle first searches for a private database link in your own schema with the same name
as the database link in the statement. Then, if necessary, it searches for a public
database link with the same name.

• Oracle always determines the username and password from the first matching
database link (either private or public). If the first matching database link has an
associated username and password, then Oracle uses it. If it does not have an
associated username and password, then Oracle uses your current username and
password.

• If the first matching database link has an associated database string, then Oracle
uses it. Otherwise Oracle searches for the next matching (public) database link. If no
matching database link is found, or if no matching link has an associated database
string, then Oracle returns an error.

3. Oracle uses the database string to access the remote database. After accessing the
remote database, if the value of the GLOBAL_NAMES parameter is true, then Oracle verifies
that the database.domain portion of the database link name matches the complete global
name of the remote database. If this condition is true, then Oracle proceeds with the
connection, using the username and password chosen in Step 2. If not, Oracle returns an
error.

4. If the connection using the database string, username, and password is successful, then
Oracle attempts to access the specified object on the remote database using the rules for
resolving object references and referring to objects in other schemas discussed earlier in
this section.

You can disable the requirement that the database.domain portion of the database link name
must match the complete global name of the remote database by setting to FALSE the
initialization parameter GLOBAL_NAMES or the GLOBAL_NAMES parameter of the ALTER SYSTEM or
ALTER SESSION statement.

See Also:

Oracle Database Administrator’s Guide for more information on remote name
resolution

References to Partitioned Tables and Indexes
Tables and indexes can be partitioned. When partitioned, these schema objects consist of a
number of parts called partitions, all of which have the same logical attributes. For example,
all partitions in a table share the same column and constraint definitions, and all partitions in
an index share the same index columns.

Partition-extended and subpartition-extended names let you perform some partition-level and
subpartition-level operations, such as deleting all rows from a partition or subpartition, on only
one partition or subpartition. Without extended names, such operations would require that
you specify a predicate (WHERE clause). For range- and list-partitioned tables, trying to phrase

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

2-147

a partition-level operation with a predicate can be cumbersome, especially when the
range partitioning key uses more than one column. For hash partitions and
subpartitions, using a predicate is more difficult still, because these partitions and
subpartitions are based on a system-defined hash function.

Partition-extended names let you use partitions as if they were tables. An advantage of
this method, which is most useful for range-partitioned tables, is that you can build
partition-level access control mechanisms by granting (or revoking) privileges on these
views to (or from) other users or roles. To use a partition as a table, create a view by
selecting data from a single partition, and then use the view as a table.

Syntax

You can specify partition-extended or subpartition-extended table names in any SQL
statement in which the partition_extended_name or subpartition_extended_name
element appears in the syntax.

partition_extended_name::=

PARTITION partition

PARTITION FOR (partition_key_value

,

)

subpartition_extended_name::=

SUBPARTITION subpartition

SUBPARTITION FOR (subpartition_key_value

,

)

The DML statements INSERT, UPDATE, and DELETE and the ANALYZE statement require
parentheses around the partition or subpartition name. This small distinction is
reflected in the partition_extension_clause:

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

In partition_extended_name, subpartition_extended_name, and
partition_extension_clause, the PARTITION FOR and SUBPARTITION FOR clauses let

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

2-148

you refer to a partition without using its name. They are valid with any type of partitioning and
are especially useful for interval partitions. Interval partitions are created automatically as
needed when data is inserted into a table.

For the respective partition_key_value or subpartition_key_value, specify one value for
each partitioning key column. For multicolumn partitioning keys, specify one value for each
partitioning key. For composite partitions, specify one value for each partitioning key, followed
by one value for each subpartitioning key. All partitioning key values are comma separated.
For interval partitions, you can specify only one partition_key_value, and it must be a valid
NUMBER or datetime value. Your SQL statement will operate on the partition or subpartitions
that contain the values you specify.

See Also:

The CREATE TABLE INTERVAL Clause for more information on interval partitions

Restrictions on Extended Names

Currently, the use of partition-extended and subpartition-extended table names has the
following restrictions:

• No remote tables: A partition-extended or subpartition-extended table name cannot
contain a database link (dblink) or a synonym that translates to a table with a dblink. To
use remote partitions and subpartitions, create a view at the remote site that uses the
extended table name syntax and then refer to the remote view.

• No synonyms: A partition or subpartition extension must be specified with a base table.
You cannot use synonyms, views, or any other objects.

• The PARTITION FOR and SUBPARTITION FOR clauses are not valid for DDL operations on
views.

• In the PARTITION FOR and SUBPARTITION FOR clauses, you cannot specify the keywords
DEFAULT or MAXVALUE or a bind variable for the partition_key_value or
subpartition_key_value.

• In the PARTITION and SUBPARTITION clauses, you cannot specify a bind variable for the
partition or subpartition name.

Example

In the following statement, sales is a partitioned table with partition sales_q1_2000. You can
create a view of the single partition sales_q1_2000, and then use it as if it were a table. This
example deletes rows from the partition.

CREATE VIEW Q1_2000_sales AS
 SELECT *
 FROM sales PARTITION (SALES_Q1_2000);

DELETE FROM Q1_2000_sales
 WHERE amount_sold < 0;

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

2-149

References to Object Type Attributes and Methods
To refer to object type attributes or methods in a SQL statement, you must fully qualify
the reference with a table alias. Consider the following example from the sample
schema oe, which contains a type cust_address_typ and a table customers with a
cust_address column based on the cust_address_typ:

CREATE TYPE cust_address_typ
 OID '82A4AF6A4CD1656DE034080020E0EE3D'
 AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/
CREATE TABLE customers
 (customer_id NUMBER(6),
 cust_first_name VARCHAR2(20) CONSTRAINT cust_fname_nn NOT NULL,
 cust_last_name VARCHAR2(20) CONSTRAINT cust_lname_nn NOT NULL,
 cust_address cust_address_typ,
. . .

In a SQL statement, reference to the postal_code attribute must be fully qualified
using a table alias, as illustrated in the following example:

SELECT c.cust_address.postal_code
 FROM customers c;

UPDATE customers c
 SET c.cust_address.postal_code = '14621-2604'
 WHERE c.cust_address.city = 'Rochester'
 AND c.cust_address.state_province = 'NY';

To reference a member method that does not accept arguments, you must provide
empty parentheses. For example, the sample schema oe contains an object table
categories_tab, based on catalog_typ, which contains the member function
getCatalogName. In order to call this method in a SQL statement, you must provide
empty parentheses as shown in this example:

SELECT TREAT(VALUE(c) AS catalog_typ).getCatalogName() "Catalog Type"
 FROM categories_tab c
 WHERE category_id = 90;

Catalog Type

online catalog

Chapter 2
Syntax for Schema Objects and Parts in SQL Statements

2-150

3
Pseudocolumns

A pseudocolumn behaves like a table column, but is not actually stored in the table. You can
select from pseudocolumns, but you cannot insert, update, or delete their values. A
pseudocolumn is also similar to a function without arguments (refer to Functions). However,
functions without arguments typically return the same value for every row in the result set,
whereas pseudocolumns typically return a different value for each row.

This chapter contains the following sections:

• Hierarchical Query Pseudocolumns

• Sequence Pseudocolumns

• Version Query Pseudocolumns

• COLUMN_VALUE Pseudocolumn

• OBJECT_ID Pseudocolumn

• OBJECT_VALUE Pseudocolumn

• ORA_ROWSCN Pseudocolumn

• ROWID Pseudocolumn

• ROWNUM Pseudocolumn

• XMLDATA Pseudocolumn

Hierarchical Query Pseudocolumns
The hierarchical query pseudocolumns are valid only in hierarchical queries. The hierarchical
query pseudocolumns are:

• CONNECT_BY_ISCYCLE Pseudocolumn

• CONNECT_BY_ISLEAF Pseudocolumn

• LEVEL Pseudocolumn

To define a hierarchical relationship in a query, you must use the CONNECT BY clause.

CONNECT_BY_ISCYCLE Pseudocolumn
The CONNECT_BY_ISCYCLE pseudocolumn returns 1 if the current row has a child which is also
its ancestor. Otherwise it returns 0.

You can specify CONNECT_BY_ISCYCLE only if you have specified the NOCYCLE parameter of the
CONNECT BY clause. NOCYCLE enables Oracle to return the results of a query that would
otherwise fail because of a CONNECT BY loop in the data.

3-1

See Also:

Hierarchical Queries for more information about the NOCYCLE parameter and
Hierarchical Query Examples for an example that uses the
CONNECT_BY_ISCYCLE pseudocolumn

CONNECT_BY_ISLEAF Pseudocolumn
The CONNECT_BY_ISLEAF pseudocolumn returns 1 if the current row is a leaf of the tree
defined by the CONNECT BY condition. Otherwise it returns 0. This information indicates
whether a given row can be further expanded to show more of the hierarchy.

CONNECT_BY_ISLEAF Example

The following example shows the first three levels of the hr.employees table,
indicating for each row whether it is a leaf row (indicated by 1 in the IsLeaf column) or
whether it has child rows (indicated by 0 in the IsLeaf column):

SELECT last_name "Employee", CONNECT_BY_ISLEAF "IsLeaf",
 LEVEL, SYS_CONNECT_BY_PATH(last_name, '/') "Path"
 FROM employees
 WHERE LEVEL <= 3 AND department_id = 80
 START WITH employee_id = 100
 CONNECT BY PRIOR employee_id = manager_id AND LEVEL <= 4
 ORDER BY "Employee", "IsLeaf";

Employee IsLeaf LEVEL Path
------------------------- ---------- ---------- -------------------------
Abel 1 3 /King/Zlotkey/Abel
Ande 1 3 /King/Errazuriz/Ande
Banda 1 3 /King/Errazuriz/Banda
Bates 1 3 /King/Cambrault/Bates
Bernstein 1 3 /King/Russell/Bernstein
Bloom 1 3 /King/Cambrault/Bloom
Cambrault 0 2 /King/Cambrault
Cambrault 1 3 /King/Russell/Cambrault
Doran 1 3 /King/Partners/Doran
Errazuriz 0 2 /King/Errazuriz
Fox 1 3 /King/Cambrault/Fox
. . .

See Also:

Hierarchical Queries and SYS_CONNECT_BY_PATH

LEVEL Pseudocolumn
For each row returned by a hierarchical query, the LEVEL pseudocolumn returns 1 for a
root row, 2 for a child of a root, and so on. A root row is the highest row within an
inverted tree. A child row is any nonroot row. A parent row is any row that has

Chapter 3
Hierarchical Query Pseudocolumns

3-2

children. A leaf row is any row without children. Figure 3-1 shows the nodes of an inverted
tree with their LEVEL values.

Figure 3-1 Hierarchical Tree

L
e

v
e

l
1

L
e

v
e

l
2

L
e

v
e

l
3

L
e

v
e

l
4

c
h

ild
/

le
a

f

p
a

re
n

t/
c
h

ild

ro
o

t/
p

a
re

n
t

p
a

re
n

t/
c
h

ild

c
h

ild
/

le
a

f

c
h

ild
/

le
a

f
c
h

ild
/

le
a

f

c
h

ild
/

le
a

f

p
a

re
n

t/
c
h

ild

p
a

re
n

t/
c
h

ild

See Also:

Hierarchical Queries for information on hierarchical queries in general and IN
Condition for restrictions on using the LEVEL pseudocolumn

Sequence Pseudocolumns
A sequence is a schema object that can generate unique sequential values. These values
are often used for primary and unique keys. You can refer to sequence values in SQL
statements with these pseudocolumns:

• CURRVAL: Returns the current value of a sequence

• NEXTVAL: Increments the sequence and returns the next value

You must qualify CURRVAL and NEXTVAL with the name of the sequence:

sequence.CURRVAL
sequence.NEXTVAL

To refer to the current or next value of a sequence in the schema of another user, you must
have been granted either SELECT object privilege on the sequence or SELECT ANY SEQUENCE
system privilege, and you must qualify the sequence with the schema containing it:

schema.sequence.CURRVAL
schema.sequence.NEXTVAL

To refer to the value of a sequence on a remote database, you must qualify the sequence
with a complete or partial name of a database link:

schema.sequence.CURRVAL@dblink
schema.sequence.NEXTVAL@dblink

A sequence can be accessed by many users concurrently with no waiting or locking.

Chapter 3
Sequence Pseudocolumns

3-3

See Also:

References to Objects in Remote Databases for more information on
referring to database links

Where to Use Sequence Values
You can use CURRVAL and NEXTVAL in the following locations:

• The select list of a SELECT statement that is not contained in a subquery,
materialized view, or view

• The select list of a subquery in an INSERT statement

• The VALUES clause of an INSERT statement

• The SET clause of an UPDATE statement

Restrictions on Sequence Values

You cannot use CURRVAL and NEXTVAL in the following constructs:

• A subquery in a DELETE, SELECT, or UPDATE statement

• A query of a view or of a materialized view

• A SELECT statement with the DISTINCT operator

• A SELECT statement with a GROUP BY clause or ORDER BY clause

• A SELECT statement that is combined with another SELECT statement with the
UNION, INTERSECT, or MINUS set operator

• The WHERE clause of a SELECT statement

• The condition of a CHECK constraint

Within a single SQL statement that uses CURRVAL or NEXTVAL, all referenced LONG
columns, updated tables, and locked tables must be located on the same database.

How to Use Sequence Values
When you create a sequence, you can define its initial value and the increment
between its values. The first reference to NEXTVAL returns the initial value of the
sequence. Subsequent references to NEXTVAL increment the sequence value by the
defined increment and return the new value. Any reference to CURRVAL always returns
the current value of the sequence, which is the value returned by the last reference to
NEXTVAL.

Before you use CURRVAL for a sequence in your session, you must first initialize the
sequence with NEXTVAL. Refer to CREATE SEQUENCE for information on sequences.

Within a single SQL statement containing a reference to NEXTVAL, Oracle increments
the sequence once:

• For each row returned by the outer query block of a SELECT statement. Such a
query block can appear in the following places:

Chapter 3
Sequence Pseudocolumns

3-4

– A top-level SELECT statement

– An INSERT ... SELECT statement (either single-table or multitable). For a multitable
insert, the reference to NEXTVAL must appear in the VALUES clause, and the sequence
is updated once for each row returned by the subquery, even though NEXTVAL may be
referenced in multiple branches of the multitable insert.

– A CREATE TABLE ... AS SELECT statement

– A CREATE MATERIALIZED VIEW ... AS SELECT statement

• For each row updated in an UPDATE statement

• For each INSERT statement containing a VALUES clause

• For each INSERT ... [ALL | FIRST] statement (multitable insert). A multitable insert is
considered a single SQL statement. Therefore, a reference to the NEXTVAL of a sequence
will increase the sequence only once for each input record coming from the SELECT
portion of the statement. If NEXTVAL is specified more than once in any part of the
INSERT ... [ALL | FIRST] statement, then the value will be the same for all insert branches,
regardless of how often a given record might be inserted.

• For each row merged by a MERGE statement. The reference to NEXTVAL can appear in the
merge_insert_clause or the merge_update_clause or both. The NEXTVALUE value is
incremented for each row updated and for each row inserted, even if the sequence
number is not actually used in the update or insert operation. If NEXTVAL is specified more
than once in any of these locations, then the sequence is incremented once for each row
and returns the same value for all occurrences of NEXTVAL for that row.

• For each input row in a multitable INSERT ALL statement. NEXTVAL is incremented once for
each row returned by the subquery, regardless of how many occurrences of the
insert_into_clause map to each row.

If any of these locations contains more than one reference to NEXTVAL, then Oracle
increments the sequence once and returns the same value for all occurrences of NEXTVAL.

If any of these locations contains references to both CURRVAL and NEXTVAL, then Oracle
increments the sequence and returns the same value for both CURRVAL and NEXTVAL.

Finding the next value of a sequence: Example

This example selects the next value of the employee sequence in the sample schema hr:

SELECT employees_seq.nextval
 FROM DUAL;

Inserting sequence values into a table: Example

This example increments the employee sequence and uses its value for a new employee
inserted into the sample table hr.employees:

INSERT INTO employees
 VALUES (employees_seq.nextval, 'John', 'Doe', 'jdoe', '555-1212',
 TO_DATE(SYSDATE), 'PU_CLERK', 2500, null, null, 30);

Reusing the current value of a sequence: Example

This example adds a new order with the next order number to the master order table. It then
adds suborders with this number to the detail order table:

Chapter 3
Sequence Pseudocolumns

3-5

INSERT INTO orders (order_id, order_date, customer_id)
 VALUES (orders_seq.nextval, TO_DATE(SYSDATE), 106);

INSERT INTO order_items (order_id, line_item_id, product_id)
 VALUES (orders_seq.currval, 1, 2359);

INSERT INTO order_items (order_id, line_item_id, product_id)
 VALUES (orders_seq.currval, 2, 3290);

INSERT INTO order_items (order_id, line_item_id, product_id)
 VALUES (orders_seq.currval, 3, 2381);

Version Query Pseudocolumns
The version query pseudocolumns are valid only in Oracle Flashback Version Query,
which is a form of Oracle Flashback Query. The version query pseudocolumns are:

• VERSIONS_STARTSCN and VERSIONS_STARTTIME: Starting System Change Number
(SCN) or TIMESTAMP when the row version was created. This pseudocolumn
identifies the time when the data first had the values reflected in the row version.
Use this pseudocolumn to identify the past target time for Oracle Flashback Table
or Oracle Flashback Query. If this pseudocolumn is NULL, then the row version was
created before start.

• VERSIONS_ENDSCN and VERSIONS_ENDTIME: SCN or TIMESTAMP when the row
version expired. If the pseudocolumn is NULL, then either the row version was
current at the time of the query or the row corresponds to a DELETE operation.

• VERSIONS_XID: Identifier (a RAW number) of the transaction that created the row
version.

• VERSIONS_OPERATION: Operation performed by the transaction: I for insertion, D for
deletion, or U for update. The version is that of the row that was inserted, deleted,
or updated; that is, the row after an INSERT operation, the row before a DELETE
operation, or the row affected by an UPDATE operation.

For user updates of an index key, Oracle Flashback Version Query might treat an
UPDATE operation as two operations, DELETE plus INSERT, represented as two
version rows with a D followed by an I VERSIONS_OPERATION.

See Also:

• flashback_query_clause for more information on version queries

• Oracle Database Development Guide for more information on using
Oracle Flashback Version Query

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules for values of the VERSIONS_OPERATION
pseudocolumn

Chapter 3
Version Query Pseudocolumns

3-6

COLUMN_VALUE Pseudocolumn
When you refer to an XMLTable construct without the COLUMNS clause, or when you use the
TABLE collection expression to refer to a scalar nested table type, the database returns a
virtual table with a single column. This name of this pseudocolumn is COLUMN_VALUE.

In the context of XMLTable, the value returned is of data type XMLType. For example, the
following two statements are equivalent, and the output for both shows COLUMN_VALUE as the
name of the column being returned:

SELECT *
 FROM XMLTABLE('<a>123');

COLUMN_VALUE

<a>123

SELECT COLUMN_VALUE
 FROM (XMLTable('<a>123'));

COLUMN_VALUE
--
<a>123

In the context of a TABLE collection expression, the value returned is the data type of the
collection element. The following statements create the two levels of nested tables illustrated
in Creating a Table: Multilevel Collection Example to show the uses of COLUMN_VALUE in this
context:

CREATE TYPE phone AS TABLE OF NUMBER;
/
CREATE TYPE phone_list AS TABLE OF phone;
/

The next statement uses COLUMN_VALUE to select from the phone type:

SELECT t.COLUMN_VALUE
 FROM TABLE(phone(1,2,3)) t;

COLUMN_VALUE

 1
 2
 3

In a nested type, you can use the COLUMN_VALUE pseudocolumn in both the select list and the
TABLE collection expression:

SELECT t.COLUMN_VALUE
 FROM TABLE(phone_list(phone(1,2,3))) p, TABLE(p.COLUMN_VALUE) t;

COLUMN_VALUE

 1
 2
 3

Chapter 3
COLUMN_VALUE Pseudocolumn

3-7

The keyword COLUMN_VALUE is also the name that Oracle Database generates for the
scalar value of an inner nested table without a column or attribute name, as shown in
the example that follows. In this context, COLUMN_VALUE is not a pseudocolumn, but an
actual column name.

CREATE TABLE my_customers (
 cust_id NUMBER,
 name VARCHAR2(25),
 phone_numbers phone_list,
 credit_limit NUMBER)
 NESTED TABLE phone_numbers STORE AS outer_ntab
 (NESTED TABLE COLUMN_VALUE STORE AS inner_ntab);

See Also:

• XMLTABLE for information on that function

• table_collection_expression::= for information on the TABLE collection
expression

• ALTER TABLE examples in Nested Tables: Examples

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules for values of the COLUMN_VALUE pseudocolumn

OBJECT_ID Pseudocolumn
The OBJECT_ID pseudocolumn returns the object identifier of a column of an object
table or view. Oracle uses this pseudocolumn as the primary key of an object table.
OBJECT_ID is useful in INSTEAD OF triggers on views and for identifying the ID of a
substitutable row in an object table.

Note:

In earlier releases, this pseudocolumn was called SYS_NC_OID$. That name is
still supported for backward compatibility. However, Oracle recommends that
you use the more intuitive name OBJECT_ID.

See Also:

Oracle Database Object-Relational Developer's Guide for examples of the
use of this pseudocolumn

OBJECT_VALUE Pseudocolumn
The OBJECT_VALUE pseudocolumn returns system-generated names for the columns of
an object table, XMLType table, object view, or XMLType view. This pseudocolumn is

Chapter 3
OBJECT_ID Pseudocolumn

3-8

useful for identifying the value of a substitutable row in an object table and for creating object
views with the WITH OBJECT IDENTIFIER clause.

Note:

In earlier releases, this pseudocolumn was called SYS_NC_ROWINFO$. That name is
still supported for backward compatibility. However, Oracle recommends that you
use the more intuitive name OBJECT_VALUE.

See Also:

• object_table and object_view_clause for more information on the use of this
pseudocolumn

• Oracle Database Object-Relational Developer's Guide for examples of the use
of this pseudocolumn

ORA_ROWSCN Pseudocolumn
ORA_ROWSCN reflects the system change-number (SCN) of the most recent change to a row.
This change can be at the level of a block (coarse) or at the level of a row (fine-grained). The
latter is provided by row-level dependency tracking. Refer to CREATE TABLE ...
NOROWDEPENDENCIES | ROWDEPENDENCIES for more information on row-level
dependency tracking. In the absence of row-level dependencies, ORA_ROWSCN reflects block-
level dependencies.

Whether at the block level or at the row level, the ORA_ROWSCN should not be considered to be
an exact SCN. For example, if a transaction changed row R in a block and committed at SCN
10, it is not always true that the ORA_ROWSCN for the row would return 10. While a value less
than 10 would never be returned, any value greater than or equal to 10 could be returned.
That is, the ORA_ROWSCN of a row is not always guaranteed to be the exact commit SCN of the
transaction that last modified that row. However, with fine-grained ORA_ROWSCN, if two
transactions T1 and T2 modified the same row R, one after another, and committed, a query
on the ORA_ROWSCN of row R after the commit of T1 will return a value lower than the value
returned after the commit of T2. If a block is queried twice, then it is possible for the value of
ORA_ROWSCN to change between the queries even though rows have not been updated in the
time between the queries. The only guarantee is that the value of ORA_ROWSCN in both queries
is greater than the commit SCN of the transaction that last modified that row.

You cannot use the ORA_ROWSCN pseudocolumn in a query to a view. However, you can use it
to refer to the underlying table when creating a view. You can also use this pseudocolumn in
the WHERE clause of an UPDATE or DELETE statement.

ORA_ROWSCN is not supported for Flashback Query. Instead, use the version query
pseudocolumns, which are provided explicitly for Flashback Query. Refer to the SELECT ...
flashback_query_clause for information on Flashback Query and Version Query
Pseudocolumns for additional information on those pseudocolumns.

Restriction on ORA_ROWSCN: This pseudocolumn is not supported for external tables.

Chapter 3
ORA_ROWSCN Pseudocolumn

3-9

Example

The first statement below uses the ORA_ROWSCN pseudocolumn to get the system
change number of the last operation on the employees table. The second statement
uses the pseudocolumn with the SCN_TO_TIMESTAMP function to determine the
timestamp of the operation:

SELECT ORA_ROWSCN, last_name
 FROM employees
 WHERE employee_id = 188;

SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN), last_name
 FROM employees
 WHERE employee_id = 188;

See Also:

SCN_TO_TIMESTAMP

ORA_SHARDSPACE_NAME Pseudocolumn
You can use the ORA_SHARDSPACE_NAME pseudocolumn to run queries across shards
instead of a sharding key.

Before you can run cross-shard queries from the catalog, you must create users in the
catalog with shared DDL enabled. Then you must grant these users access to the
privately sharded tables.

The queries referencing the privately sharded tables will run across the shards in the
catalog using the pseudocolumn ORA_SHARDSPACE_NAME associated to them. To run a
cross shard query on a given shard, you must filter the query with the predicate
ORA_SHARDSPACE_NAME = <shardspace_name_belonging_to_name>.

Examples

SELECT CUST_NAME, CUST_ID FROM CUSTOMER WHERE ORA_SHARDSPACE_NAME = 'EUROPE'

This query will run on one of the shards belonging to the shardspace named Europe.
The query will run on the primary shard of the sharspace Europe or on one of its
standbys, depending on the value of the parameter
MULTISHARD_QUERY_DATA_CONSISTENCY.

A query like:

SELECT CUST_NAME, CUST_ID FROM CUSTOMER

where the table CUSTOMER is marked as privately sharded, will run on all shards.

ROWID Pseudocolumn
For each row in the database, the ROWID pseudocolumn returns the address of the row.
Oracle Database rowid values contain information necessary to locate a row:

Chapter 3
ORA_SHARDSPACE_NAME Pseudocolumn

3-10

• The data object number of the object

• The data block in the data file in which the row resides

• The position of the row in the data block (first row is 0)

• The data file in which the row resides (first file is 1). The file number is relative to the
tablespace.

Usually, a rowid value uniquely identifies a row in the database. However, rows in different
tables that are stored together in the same cluster can have the same rowid.

Values of the ROWID pseudocolumn have the data type ROWID or UROWID. Refer to Rowid Data
Types and UROWID Data Type for more information.

Rowid values have several important uses:

• They are the fastest way to access a single row.

• They can show you how the rows in a table are stored.

• They are unique identifiers for rows in a table.

You should not use ROWID as the primary key of a table. If you delete and reinsert a row with
the Import and Export utilities, for example, then its rowid may change. If you delete a row,
then Oracle may reassign its rowid to a new row inserted later.

Although you can use the ROWID pseudocolumn in the SELECT and WHERE clause of a query,
these pseudocolumn values are not actually stored in the database. You cannot insert,
update, or delete a value of the ROWID pseudocolumn.

Example

This statement selects the address of all rows that contain data for employees in department
20:

SELECT ROWID, last_name
 FROM employees
 WHERE department_id = 20;

ROWNUM Pseudocolumn

Note:

• The ROW_NUMBER built-in SQL function provides superior support for ordering the
results of a query. Refer to ROW_NUMBER for more information.

• The row_limiting_clause of the SELECT statement provides superior support
for limiting the number of rows returned by a query. Refer to
row_limiting_clause for more information.

For each row returned by a query, the ROWNUM pseudocolumn returns a number indicating the
order in which Oracle selects the row from a table or set of joined rows. The first row selected
has a ROWNUM of 1, the second has 2, and so on.

You can use ROWNUM to limit the number of rows returned by a query, as in this example:

Chapter 3
ROWNUM Pseudocolumn

3-11

SELECT *
 FROM employees
 WHERE ROWNUM < 11;

If an ORDER BY clause follows ROWNUM in the same query, then the rows will be reordered
by the ORDER BY clause. The results can vary depending on the way the rows are
accessed. For example, if the ORDER BY clause causes Oracle to use an index to
access the data, then Oracle may retrieve the rows in a different order than without the
index. Therefore, the following statement does not necessarily return the same rows
as the preceding example:

SELECT *
 FROM employees
 WHERE ROWNUM < 11
 ORDER BY last_name;

If you embed the ORDER BY clause in a subquery and place the ROWNUM condition in the
top-level query, then you can force the ROWNUM condition to be applied after the
ordering of the rows. For example, the following query returns the employees with the
10 smallest employee numbers. This is sometimes referred to as top-N reporting:

SELECT *
 FROM (SELECT * FROM employees ORDER BY employee_id)
 WHERE ROWNUM < 11;

In the preceding example, the ROWNUM values are those of the top-level SELECT
statement, so they are generated after the rows have already been ordered by
employee_id in the subquery.

Conditions testing for ROWNUM values greater than a positive integer are always false.
For example, this query returns no rows:

SELECT *
 FROM employees
 WHERE ROWNUM > 1;

The first row fetched is assigned a ROWNUM of 1 and makes the condition false. The
second row to be fetched is now the first row and is also assigned a ROWNUM of 1 and
makes the condition false. All rows subsequently fail to satisfy the condition, so no
rows are returned.

You can also use ROWNUM to assign unique values to each row of a table, as in this
example:

UPDATE my_table
 SET column1 = ROWNUM;

Refer to the function ROW_NUMBER for an alternative method of assigning unique
numbers to rows.

Note:

Using ROWNUM in a query can affect view optimization.

Chapter 3
ROWNUM Pseudocolumn

3-12

XMLDATA Pseudocolumn
Oracle stores XMLType data either in LOB or object-relational columns, based on XMLSchema
information and how you specify the storage clause. The XMLDATA pseudocolumn lets you
access the underlying LOB or object relational column to specify additional storage clause
parameters, constraints, indexes, and so forth.

Example

The following statements illustrate the use of this pseudocolumn. Suppose you create a
simple table of XMLType with one CLOB column:

CREATE TABLE xml_lob_tab of XMLTYPE
 XMLTYPE STORE AS CLOB;

To change the storage characteristics of the underlying LOB column, you can use the
following statement:

ALTER TABLE xml_lob_tab
 MODIFY LOB (XMLDATA) (STORAGE (MAXSIZE 2G) CACHE);

Now suppose you have created an XMLSchema-based table like the xwarehouses table
created in Using XML in SQL Statements . You could then use the XMLDATA column to set the
properties of the underlying columns, as shown in the following statement:

ALTER TABLE xwarehouses
 ADD (UNIQUE(XMLDATA."WarehouseId"));

Chapter 3
XMLDATA Pseudocolumn

3-13

4
Operators

An operator manipulates data items and returns a result. Syntactically, an operator appears
before or after an operand or between two operands.

This chapter contains these sections:

• About SQL Operators

• Arithmetic Operators

• COLLATE Operator

• Concatenation Operator

• Hierarchical Query Operators

• Set Operators

• Multiset Operators

• User-Defined Operators

This chapter discusses nonlogical (non-Boolean) operators. These operators cannot by
themselves serve as the condition of a WHERE or HAVING clause in queries or subqueries. For
information on logical operators, which serve as conditions, refer to Conditions.

About SQL Operators
Operators manipulate individual data items called operands or arguments. Operators are
represented by special characters or by keywords. For example, the multiplication operator is
represented by an asterisk (*).

If you have installed Oracle Text, then you can use the SCORE operator, which is part of that
product, in Oracle Text queries. You can also create conditions with the built-in Text
operators, including CONTAINS, CATSEARCH, and MATCHES. For more information on these
Oracle Text elements, refer to Oracle Text Reference.

Unary and Binary Operators
The two general classes of operators are:

• unary: A unary operator operates on only one operand. A unary operator typically
appears with its operand in this format:

operator operand
• binary: A binary operator operates on two operands. A binary operator appears with its

operands in this format:

operand1 operator operand2
Other operators with special formats accept more than two operands. If an operator is given a
null operand, then the result is always null. The only operator that does not follow this rule is
concatenation (||).

4-1

Operator Precedence
Precedence is the order in which Oracle Database evaluates different operators in the
same expression. When evaluating an expression containing multiple operators,
Oracle evaluates operators with higher precedence before evaluating those with lower
precedence. Oracle evaluates operators with equal precedence from left to right within
an expression.

Table 4-1 lists the levels of precedence among SQL operators from high to low.
Operators listed on the same line have the same precedence.

Table 4-1 SQL Operator Precedence

Operator Operation

+, - (as unary operators), PRIOR,
CONNECT_BY_ROOT, COLLATE

Identity, negation, location in hierarchy

*, / Multiplication, division

+, - (as binary operators), || Addition, subtraction, concatenation

SQL conditions are evaluated after SQL
operators

See "Condition Precedence"

Precedence Example

In the following expression, multiplication has a higher precedence than addition, so
Oracle first multiplies 2 by 3 and then adds the result to 1.

1+2*3

You can use parentheses in an expression to override operator precedence. Oracle
evaluates expressions inside parentheses before evaluating those outside.

SQL also supports set operators (UNION, UNION ALL, INTERSECT, and MINUS), which
combine sets of rows returned by queries, rather than individual data items. All set
operators have equal precedence.

See Also:

Hierarchical Query Operators and Hierarchical Queries for information on the
PRIOR operator, which is used only in hierarchical queries

Arithmetic Operators
You can use an arithmetic operator with one or two arguments to negate, add,
subtract, multiply, and divide numeric values. Some of these operators are also used in
datetime and interval arithmetic. The arguments to the operator must resolve to
numeric data types or to any data type that can be implicitly converted to a numeric
data type.

Chapter 4
Arithmetic Operators

4-2

Unary arithmetic operators return the same data type as the numeric data type of the
argument. For binary arithmetic operators, Oracle determines the argument with the highest
numeric precedence, implicitly converts the remaining arguments to that data type, and
returns that data type. Table 4-2 lists arithmetic operators.

See Also:

Table 2-8 for more information on implicit conversion, Numeric Precedence for
information on numeric precedence, and Datetime/Interval Arithmetic

Table 4-2 Arithmetic Operators

Operator Purpose Example

+ - When these denote a positive or negative
expression, they are unary operators.

SELECT *
 FROM order_items
 WHERE quantity = -1
 ORDER BY order_id,
 line_item_id, product_id;

SELECT *
 FROM employees
 WHERE -salary < 0
 ORDER BY employee_id;

+ - When they add or subtract, they are binary
operators.

SELECT hire_date
 FROM employees
 WHERE SYSDATE - hire_date > 365
 ORDER BY hire_date;

* / Multiply, divide. These are binary
operators.

UPDATE employees
 SET salary = salary * 1.1;

Do not use two consecutive minus signs (--) in arithmetic expressions to indicate double
negation or the subtraction of a negative value. The characters -- are used to begin
comments within SQL statements. You should separate consecutive minus signs with a
space or parentheses. Refer to Comments for more information on comments within SQL
statements.

COLLATE Operator
The COLLATE operator determines the collation for an expression. This operator enables you
to override the collation that the database would have derived for the expression using
standard collation derivation rules.

COLLATE is a postfix unary operator. It has the same precedence as other unary operators, but
it is evaluated after all prefix unary operators have been evaluated.

You can apply this operator to expressions of type VARCHAR2, CHAR, LONG, NVARCHAR, or NCHAR.

Chapter 4
COLLATE Operator

4-3

The COLLATE operator takes one argument, collation_name, for which you can specify
a named collation or pseudo-collation. If the collation name contains a space, then you
must enclose the name in double quotation marks.

Table 4-3 describes the COLLATE operator.

Table 4-3 COLLATE Operator

Operator Purpose Example

COLLATE collation_name Determines the collation
for an expression

SELECT last_name
 FROM employees
 ORDER BY last_name COLLATE GENERIC_M;

See Also:

• Compound Expressions for information on using the COLLATE operator in
a compound expression

• Oracle Database Globalization Support Guide for more information on
the COLLATE operator

Concatenation Operator
The concatenation operator manipulates character strings and CLOB data. Table 4-4
describes the concatenation operator.

Table 4-4 Concatenation Operator

Operator Purpose Example

|| Concatenates character strings
and CLOB data.

SELECT 'Name is ' || last_name
 FROM employees
 ORDER BY last_name;

The result of concatenating two character strings is another character string. If both
character strings are of data type CHAR, then the result has data type CHAR and is
limited to 2000 characters. If either string is of data type VARCHAR2, then the result has
data type VARCHAR2 and is limited to 32767 characters if the initialization parameter
MAX_STRING_SIZE = EXTENDED and 4000 characters if MAX_STRING_SIZE = STANDARD.
Refer to Extended Data Types for more information. If either argument is a CLOB, the
result is a temporary CLOB. Trailing blanks in character strings are preserved by
concatenation, regardless of the data types of the string or CLOB.

On most platforms, the concatenation operator is two solid vertical bars, as shown in
Table 4-4. However, some IBM platforms use broken vertical bars for this operator.
When moving SQL script files between systems having different character sets, such
as between ASCII and EBCDIC, vertical bars might not be translated into the vertical
bar required by the target Oracle Database environment. Oracle provides the CONCAT

Chapter 4
Concatenation Operator

4-4

character function as an alternative to the vertical bar operator for cases when it is difficult or
impossible to control translation performed by operating system or network utilities. Use this
function in applications that will be moved between environments with differing character
sets.

Although Oracle treats zero-length character strings as nulls, concatenating a zero-length
character string with another operand always results in the other operand, so null can result
only from the concatenation of two null strings. However, this may not continue to be true in
future versions of Oracle Database. To concatenate an expression that might be null, use the
NVL function to explicitly convert the expression to a zero-length string.

See Also:

• Character Data Types for more information on the differences between the CHAR
and VARCHAR2 data types

• The functions CONCAT and NVL

• Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about CLOBs

• Oracle Database Globalization Support Guide for the collation derivation rules
for the concatenation operator

Concatenation Example

This example creates a table with both CHAR and VARCHAR2 columns, inserts values both with
and without trailing blanks, and then selects these values and concatenates them. Note that
for both CHAR and VARCHAR2 columns, the trailing blanks are preserved.

CREATE TABLE tab1 (col1 VARCHAR2(6), col2 CHAR(6),
 col3 VARCHAR2(6), col4 CHAR(6));

INSERT INTO tab1 (col1, col2, col3, col4)
 VALUES ('abc', 'def ', 'ghi ', 'jkl');

SELECT col1 || col2 || col3 || col4 "Concatenation"
 FROM tab1;

Concatenation

abcdef ghi jkl

Hierarchical Query Operators
Two operators, PRIOR and CONNECT_BY_ROOT, are valid only in hierarchical queries.

PRIOR
In a hierarchical query, one expression in the CONNECT BY condition must be qualified by the
PRIOR operator. If the CONNECT BY condition is compound, then only one condition requires
the PRIOR operator, although you can have multiple PRIOR conditions. PRIOR evaluates the
immediately following expression for the parent row of the current row in a hierarchical query.

Chapter 4
Hierarchical Query Operators

4-5

PRIOR is most commonly used when comparing column values with the equality
operator. (The PRIOR keyword can be on either side of the operator.) PRIOR causes
Oracle to use the value of the parent row in the column. Operators other than the
equal sign (=) are theoretically possible in CONNECT BY clauses. However, the
conditions created by these other operators can result in an infinite loop through the
possible combinations. In this case Oracle detects the loop at run time and returns an
error. Refer to Hierarchical Queries for more information on this operator, including
examples.

CONNECT_BY_ROOT
CONNECT_BY_ROOT is a unary operator that is valid only in hierarchical queries. When
you qualify a column with this operator, Oracle returns the column value using data
from the root row. This operator extends the functionality of the CONNECT BY [PRIOR]
condition of hierarchical queries.

Restriction on CONNECT_BY_ROOT

You cannot specify this operator in the START WITH condition or the CONNECT BY
condition.

See Also:

CONNECT_BY_ROOT Examples

Set Operators
Set operators combine the results of two component queries into a single result.
Queries containing set operators are called compound queries. Table 4-5 lists the SQL
set operators. They are fully described with examples in The Set Operators.

Table 4-5 Set Operators

Operator Returns

UNION All distinct rows selected by either query

UNION ALL All rows selected by either query, including duplicates

INTERSECT All distinct rows selected by both queries

INTERSECT ALL All rows selected by both queries including duplicates

MINUS All distinct rows selected by the first query but not the second

MINUS ALL All rows selected by the first query but not the second including
duplicates

EXCEPT All distinct rows selected by the first query but not the second

EXCEPT ALL All rows selected by the first query but not the second including
duplicates

Chapter 4
Set Operators

4-6

Multiset Operators
Multiset operators combine the results of two nested tables into a single nested table.

The examples related to multiset operators require that two nested tables be created and
loaded with data as follows:

First, make a copy of the oe.customers table called customers_demo:

CREATE TABLE customers_demo AS
 SELECT * FROM customers;

Next, create a table type called cust_address_tab_typ. This type will be used when creating
the nested table columns.

CREATE TYPE cust_address_tab_typ AS
 TABLE OF cust_address_typ;
/

Now, create two nested table columns in the customers_demo table:

ALTER TABLE customers_demo
 ADD (cust_address_ntab cust_address_tab_typ,
 cust_address2_ntab cust_address_tab_typ)
 NESTED TABLE cust_address_ntab STORE AS cust_address_ntab_store
 NESTED TABLE cust_address2_ntab STORE AS cust_address2_ntab_store;

Finally, load data into the two new nested table columns using data from the cust_address
column of the oe.customers table:

UPDATE customers_demo cd
 SET cust_address_ntab =
 CAST(MULTISET(SELECT cust_address
 FROM customers c
 WHERE c.customer_id =
 cd.customer_id) as cust_address_tab_typ);

UPDATE customers_demo cd
 SET cust_address2_ntab =
 CAST(MULTISET(SELECT cust_address
 FROM customers c
 WHERE c.customer_id =
 cd.customer_id) as cust_address_tab_typ);

MULTISET EXCEPT
MULTISET EXCEPT takes as arguments two nested tables and returns a nested table whose
elements are in the first nested table but not in the second nested table. The two input nested
tables must be of the same type, and the returned nested table is of the same type as well.

nested_table1 MULTISET EXCEPT

ALL

DISTINCT

nested_table2

Chapter 4
Multiset Operators

4-7

• The ALL keyword instructs Oracle to return all elements in nested_table1 that are
not in nested_table2. For example, if a particular element occurs m times in
nested_table1 and n times in nested_table2, then the result will have (m-n)
occurrences of the element if m >n and 0 occurrences if m<=n. ALL is the default.

• The DISTINCT keyword instructs Oracle to eliminate any element in nested_table1
which is also in nested_table2, regardless of the number of occurrences.

• The element types of the nested tables must be comparable. Refer to Comparison
Conditions for information on the comparability of nonscalar types.

Example

The following example compares two nested tables and returns a nested table of
those elements found in the first nested table but not in the second nested table:

SELECT customer_id, cust_address_ntab
 MULTISET EXCEPT DISTINCT cust_address2_ntab multiset_except
 FROM customers_demo
 ORDER BY customer_id;

CUSTOMER_ID MULTISET_EXCEPT(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
----------- --
 101 CUST_ADDRESS_TAB_TYP()
 102 CUST_ADDRESS_TAB_TYP()
 103 CUST_ADDRESS_TAB_TYP()
 104 CUST_ADDRESS_TAB_TYP()
 105 CUST_ADDRESS_TAB_TYP()
. . .

The preceding example requires the table customers_demo and two nested table
columns containing data. Refer to Multiset Operators to create this table and nested
table columns.

MULTISET INTERSECT
MULTISET INTERSECT takes as arguments two nested tables and returns a nested table
whose values are common in the two input nested tables. The two input nested tables
must be of the same type, and the returned nested table is of the same type as well.

nested_table1 MULTISET INTERSECT

ALL

DISTINCT

nested_table2

• The ALL keyword instructs Oracle to return all common occurrences of elements
that are in the two input nested tables, including duplicate common values and
duplicate common NULL occurrences. For example, if a particular value occurs m
times in nested_table1 and n times in nested_table2, then the result would
contain the element min(m,n) times. ALL is the default.

• The DISTINCT keyword instructs Oracle to eliminate duplicates from the returned
nested table, including duplicates of NULL, if they exist.

• The element types of the nested tables must be comparable. Refer to Comparison
Conditions for information on the comparability of nonscalar types.

Chapter 4
Multiset Operators

4-8

Example

The following example compares two nested tables and returns a nested table of those
elements found in both input nested tables:

SELECT customer_id, cust_address_ntab
 MULTISET INTERSECT DISTINCT cust_address2_ntab multiset_intersect
 FROM customers_demo
 ORDER BY customer_id;

CUSTOMER_ID MULTISET_INTERSECT(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID
----------- ---
 101 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'))
 102 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'))
 103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))
 104 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'))
 105 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'))
. . .

The preceding example requires the table customers_demo and two nested table columns
containing data. Refer to Multiset Operators to create this table and nested table columns.

MULTISET UNION
MULTISET UNION takes as arguments two nested tables and returns a nested table whose
values are those of the two input nested tables. The two input nested tables must be of the
same type, and the returned nested table is of the same type as well.

nested_table1 MULTISET UNION

ALL

DISTINCT

nested_table2

• The ALL keyword instructs Oracle to return all elements that are in the two input nested
tables, including duplicate values and duplicate NULL occurrences. This is the default.

• The DISTINCT keyword instructs Oracle to eliminate duplicates from the returned nested
table, including duplicates of NULL, if they exist.

• The element types of the nested tables must be comparable. Refer to Comparison
Conditions for information on the comparability of nonscalar types.

Example

The following example compares two nested tables and returns a nested table of elements
from both input nested tables:

SELECT customer_id, cust_address_ntab
 MULTISET UNION cust_address2_ntab multiset_union
 FROM customers_demo
 ORDER BY customer_id;

CUSTOMER_ID MULTISET_UNION(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
----------- ---
 101 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'),
 CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'))
 102 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'),
 CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN','US'))
 103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'),
 CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))

Chapter 4
Multiset Operators

4-9

 104 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN',
'US'),
 CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'))
 105 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'),
 CUST_ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'))
. . .

The preceding example requires the table customers_demo and two nested table
columns containing data. Refer to Multiset Operators to create this table and nested
table columns.

SHARD_CHUNK_ID Operator
You can use the SQL operator SHARD_CHUNK_ID to get the chunk ID in a sharding
environment. You must provide the table family ID and the sharding key as input.

This operator can be used in all three sharding types: system, user-defined, and
composite. You can run the operator from the catalog and the shard.

Syntax

SELECT SHARD_CHUNK_ID(table_family, sharding_key1 [,
sharding_key2 ...]) FROM table_name ...

Semantics

table_family

The first operand table_family refers to the identifier of the table family. It can be:

• The table family id that can be queried from the
GSMADMIN_INTERNAL.TABLE_FAMILY table, or

• The name of the root table in the form of SCHEMA_NAME.TABLE_NAME .

If there is only one table family across the entire sharding environment, table_family
can take NULL as input. This will default to the existing single table family.

sharding_key

The second operand sharding_key refers to a list of sharding keys. It can be a
constant value or column name.

You must order the list of sharding keys as follows:

1. List of super-sharding keys in the order they are defined.

2. List of sharding keys in the order they are defined. For this refer to
GSMADMIN_INTERNAL.SHARDKEY_COLUMNS .

In system and user-defined sharding environments, where super-sharding keys are
not used, you only need to supply sharding keys.

Example

Given the composite sharded table customers defined as follows:

CREATE SHARDED TABLE customers (
 custno NUMBER NOT NULL,

Chapter 4
SHARD_CHUNK_ID Operator

4-10

 name VARCHAR2(50) NOT NULL,
 signup DATE DEFAULT NULL,
 class VARCHAR2(3) NOT NULL,
CONSTRAINT cust_pk PRIMARY KEY(custno,name))
PARTITIONSET BY LIST (class)
PARTITION BY CONSISTENT HASH (custno,name)
PARTITIONS AUTO
(PARTITIONSET gold VALUES ('gld') TABLESPACE SET tbs1,
 PARTITIONSET silver VALUES ('slv') TABLESPACE SET tbs2)
;

You can query it for the chunk ID with the following statement:

SELECT SHARD_CHUNK_ID(null, class, custno, name) FROM customers;

See Also:

• Using Oracle Sharding

User-Defined Operators
Like built-in operators, user-defined operators take a set of operands as input and return a
result. However, you create them with the CREATE OPERATOR statement, and they are identified
by user-defined names. They reside in the same namespace as tables, views, types, and
standalone functions.

After you have defined a new operator, you can use it in SQL statements like any other built-
in operator. For example, you can use user-defined operators in the select list of a SELECT
statement, the condition of a WHERE clause, or in ORDER BY clauses and GROUP BY clauses.
However, you must have EXECUTE privilege on the operator to do so, because it is a user-
defined object.

See Also:

CREATE OPERATOR for an example of creating an operator and Oracle Database
Data Cartridge Developer's Guide for more information on user-defined operators

Chapter 4
User-Defined Operators

4-11

5
Expressions

This chapter describes how to combine values, operators, and functions into expressions.

This chapter includes these sections:

• About SQL Expressions

• Simple Expressions

• Analytic View Expressions

• Compound Expressions

• CASE Expressions

• Column Expressions

• CURSOR Expressions

• Datetime Expressions

• Function Expressions

• Interval Expressions

• JSON Object Access Expressions

• Model Expressions

• Object Access Expressions

• Placeholder Expressions

• Scalar Subquery Expressions

• Type Constructor Expressions

• Expression Lists

About SQL Expressions
An expression is a combination of one or more values, operators, and SQL functions that
evaluates to a value. An expression generally assumes the data type of its components.

This simple expression evaluates to 4 and has data type NUMBER (the same data type as its
components):

2*2

The following expression is an example of a more complex expression that uses both
functions and operators. The expression adds seven days to the current date, removes the
time component from the sum, and converts the result to CHAR data type:

TO_CHAR(TRUNC(SYSDATE+7))

You can use expressions in:

• The select list of the SELECT statement

5-1

• A condition of the WHERE clause and HAVING clause

• The CONNECT BY, START WITH, and ORDER BY clauses

• The VALUES clause of the INSERT statement

• The SET clause of the UPDATE statement

For example, you could use an expression in place of the quoted string 'Smith' in this
UPDATE statement SET clause:

SET last_name = 'Smith';

This SET clause has the expression INITCAP(last_name) instead of the quoted string
'Smith':

SET last_name = INITCAP(last_name);

Expressions have several forms, as shown in the following syntax:

expr::=

simple_expression

compound_expression

calc_meas_expression

case_expression

cursor_expression

datetime_expression

function_expression

interval_expression

JSON_object_access_expr

model_expression

object_access_expression

scalar_subquery_expression

type_constructor_expression

variable_expression

Oracle Database does not accept all forms of expressions in all parts of all SQL
statements. Refer to the section devoted to a particular SQL statement in this book for
information on restrictions on the expressions in that statement.

You must use appropriate expression notation whenever expr appears in conditions,
SQL functions, or SQL statements in other parts of this reference. The sections that
follow describe and provide examples of the various forms of expressions.

Chapter 5
About SQL Expressions

5-2

Simple Expressions
A simple expression specifies a column, pseudocolumn, constant, sequence number, or null.

simple_expression::=

query_name

schema .
table

view

materialized view

t_alias

.

column

ROWID

ROWNUM

string

number

sequence .
CURRVAL

NEXTVAL

NULL

In addition to the schema of a user, schema can also be "PUBLIC" (double quotation marks
required), in which case it must qualify a public synonym for a table, view, or materialized
view. Qualifying a public synonym with "PUBLIC" is supported only in data manipulation
language (DML) statements, not data definition language (DDL) statements.

You can specify ROWID only with a table, not with a view or materialized view. NCHAR and
NVARCHAR2 are not valid pseudocolumn data types.

See Also:

Pseudocolumns for more information on pseudocolumns and
subquery_factoring_clause for information on query_name

Some valid simple expressions are:

employees.last_name
'this is a text string'
10
N'this is an NCHAR string'

Chapter 5
Simple Expressions

5-3

Analytic View Expressions
You can use analytic view expressions to create calculated measures within the
definition of an analytic view or in a query that selects from an analytic view.

Analytic view expressions differ from other types of expressions in that they reference
elements of hierarchies and analytic views rather than tables and columns.

An analytic view expression is one of the following:

• An av_meas_expression, which is based on a measure in an analytic view

• An av_hier_expression, which returns an attribute value of the related member

You use an analytic view expression as the calc_meas_expression parameter in a
calc_measure_clause in a CREATE ANALYTIC VIEW statement and in the WITH or FROM
clauses of a SELECT statement.

In defining a calculated measure, you may also use the following types of expression:

• Simple

• Case

• Compound

• Datetime

• Interval

Tip:

You can view and run SQL scripts that create analytic views with calculated
measures at the Oracle Live SQL website. The website has scripts and
tutorials that demonstrate the creation and use of analytic views.

Syntax

av_expression::=

av_meas_expression

av_hier_expression

av_meas_expression::=

lead_lag_expression

av_window_expression

rank_expression

share_of_expression

qdr_expression

Chapter 5
Analytic View Expressions

5-4

https://livesql.oracle.com/apex/livesql/file/index.html

lead_lag_expression::=

lead_lag_function_name (calc_meas_expression) OVER (lead_lag_clause)

lead_lag_function_name::=

LAG

LAG_DIFF

LAG_DIF_PERCENT

LEAD

LEAD_DIFF

LEAD_DIFF_PERCENT

lead_lag_clause::=

HIERARCHY hierarchy_ref OFFSET offset_expr

WITHIN
LEVEL

PARENT

ACROSS ANCESTOR AT LEVEL level_ref

POSITION FROM
BEGINNING

END

hierarchy_ref::=

attr_dim_alias .

hier_alias

av_window_expression::=

aggregate_function OVER (av_window_clause)

Chapter 5
Analytic View Expressions

5-5

av_window_clause::=

HIERARCHY hierarchy_ref BETWEEN
preceding_boundary

following_boundary

WITHIN

LEVEL

PARENT

ANCESTOR AT LEVEL level_ref

preceding_boundary ::=

UNBOUNDED PRECEDING

offset_expr PRECEDING
AND

CURRENT MEMBER

offset_expr
PRECEDING

FOLLOWING

UNBOUNDED FOLLOWING

following_boundary::=

CURRENT MEMBER

offset_expr FOLLOWING
AND

offset_expr FOLLOWING

UNBOUNDED FOLLOWING

rank_expression::=

rank_function_name () OVER (rank_clause)

rank_function_name::=

RANK

DENSE_RANK

AVERAGE_RANK

ROW_NUMBER

rank_clause::=

HIERARCHY hierarchy_ref ORDER BY calc_meas_order_by_clause

,

WITHIN

LEVEL

PARENT

ANCESTOR AT LEVEL level_ref

Chapter 5
Analytic View Expressions

5-6

calc_meas_order_by_clause::=

calc_meas_expression

ASC

DESC
NULLS

FIRST

LAST

share_of_expression::=

SHARE_OF (calc_meas_expression share_clause)

share_clause::=

HIERARCHY hierarchy_ref

PARENT

LEVEL level_ref

MEMBER member_expression

member_expression::=

level_member_literal

hier_navigation_expression

CURRENT MEMBER

NULL

ALL

level_member_literal::=

level_ref
pos_member_keys

named_member_keys

pos_member_keys::=

’ [’ member_key_expr

,

’] ’

Chapter 5
Analytic View Expressions

5-7

named_member_keys::=

’ [’ attr_name = member_key_expr

,

’] ’

hier_navigation_expression::=

hier_ancestor_expression

hier_parent_expression

hier_lead_lag_expression

hier_ancestor_expression::=

HIER_ANCESTOR (member_expression AT
LEVEL level_ref

DEPTH depth_expression
)

hier_parent_expression::=

HIER_PARENT (member_expression)

hier_lead_lag_expression::=

HIER_LEAD

HIER_LAG
(hier_lead_lag_clause)

hier_lead_lag_clause::=

member_expression OFFSET offset_expr

WITHIN

LEVEL

PARENT

ACROSS ANCESTOR AT LEVEL level_ref

POSITION FROM
BEGINNING

END

Chapter 5
Analytic View Expressions

5-8

qdr_expression::=

QUALIFY (calc_meas_expression , qualifier)

qualifier::=

hierarchy_ref = member_expression

av_hier_expression::=

hier_function_name (member_expression WITHIN HIERARCHY hierarchy_ref)

hier_function_name::=

HIER_CAPTION

HIER_DEPTH

HIER_DESCRIPTION

HIER_LEVEL

HIER_MEMBER_NAME

HIER_MEMBER_UNIQUE_NAME

HIER_PARENT_LEVEL

HIER_PARENT_UNIQUE_NAME

HIER_CHILD_COUNT

Semantics

av_meas_expression

An expression that performs hierarchical navigation to locate related measure values.

lead_lag_expression

An expression that specifies a lead or lag operation that locates a related measure value by
navigating forward or backward by some number of members within a hierarchy.

The calc_meas_expression parameter is evaluated in the new context created by the
lead_lag_expression. This context has the same members as the outer context, except that
the member of the specified hierarchy is changed to the related member specified by the lead
or lag operation. The lead or lag function is run over the hierarchy members specified by the
lead_lag_clause parameter.

lead_lag_function_name

The lead or lag function may be one of the following:

• LAG returns the measure value of an earlier member.

Chapter 5
Analytic View Expressions

5-9

• LAG_DIFF returns the difference between the measure value of the current member
and the measure value of an earlier member.

• LAG_DIFF_PERCENT returns the percent difference between the measure value of
the current member and the measure value of an earlier member.

• LEAD returns the measure value of a later member.

• LEAD_DIFF returns the difference between the measure value of the current
member and the measure value of a later member.

• LEAD_DIFF_PERCENT returns the percent difference between the measure value of
the current member and the measure value of a later member.

lead_lag_clause

Specifies the hierarchy to evaluate and an offset value. The parameters of the
lead_lag_clause are the following:

• HIERARCHY hierarchy_ref specifies the alias of a hierarchy as defined in the
analytic view.

• OFFSET offset_expr specifies a calc_meas_expression that resolves to a number.
The number specifies how many members to move either forward or backward
from the current member. The ordering of members within a level is determined by
the definition of the attribute dimension used by the hierarchy.

• WITHIN LEVEL specifies locating the related member by moving forward or
backward by the offset number of members within the members that have the
same level depth as the current member. The ordering of members within the level
is determined by the definition of the attribute dimension used by the hierarchy.

The WITHIN LEVEL operation is the default if neither the WITHIN LEVEL nor the
ACROSS ANCESTOR AT LEVEL keywords are specified.

• WITHIN PARENT specifies locating the related member by moving forward or
backward by the offset number of members within the members that have the
same parent as the current member.

• ACROSS ANCESTOR AT LEVEL level_ref specifies locating the related member by
navigating up to the ancestor (or to the member itself if no ancestor exists) of the
current member at the level specified by level_ref, and noting the position of
each ancestor member (including the member itself) within its parent. The
level_ref parameter is the name of a level in the specified hierarchy.

Once the ancestor member is found, navigation moves either forward or backward
the offset number of members within the members that have the same depth as
the ancestor member. After locating the related ancestor, navigation proceeds
back down the hierarchy from this member, matching the position within the parent
as recorded on the way up (in reverse order). The position within the parent is
either an offset from the first child or the last child depending on whether POSITION
FROM BEGINNING or POSITION FROM END is specified. The default value is POSITION
FROM BEGINNING. The ordering of members within the level is determined by the
definition of the attribute dimension used by the hierarchy.

av_window_expression

An av_window_expression selects the set of members that are in the specified range
starting from the current member and that are at the same depth as the current
member. You can further restrict the selection of members by specifying a hierarchical

Chapter 5
Analytic View Expressions

5-10

relationship using a WITHIN phrase. Aggregation is then performed over the selected
measure values to produce a single result for the expression.

The parameters for an av_window_expression are the following:

• aggregate_function is any existing SQL aggregate function except COLLECT, GROUP_ID,
GROUPING, GROUPING_ID, SYS_XMLAGG, XMLAGG, and any multi-argument function. A user
defined aggregate function is also allowed. The arguments to the aggregate function are
calc_meas_expression expressions. These expressions are evaluated using the outer
context, with the member of the specified hierarchy changed to each member in the
related range. Therefore, each expression argument is evaluated once per related
member. The results are then aggregated using the aggregate_function.

• OVER (av_window_clause) specifies the hierarchy to use and the boundaries of the
window to consider.

See Also:

Aggregate Functions

av_window_clause

The av_window_clause parameter selects a range of members related to the current member.
The range is between the members specified by the preceding_boundary or
following_boundary parameters. The range is always computed over members at the same
level as the current member.

The parameters for a av_window_clause are the following:

• HIERARCHY hierarchy_ref specifies the alias of the hierarchy as defined in the analytic
view.

• BETWEEN preceding_boundary or following_boundary defines the set of members to
relate to the current member.

• WITHIN LEVEL selects the related members by applying the boundary clause to all
members of the current level. This is the default when the WITHIN keyword is not
specified.

• WITHIN PARENT selects the related members by applying the boundary clause to all
members that share a parent with the current member.

• WITHIN ANCESTOR AT LEVEL selects the related members by applying the boundary clause
to all members at the current depth that share an ancestor (or is the member itself) at the
specified level with the current member. The value of the window expression is NULL if the
current member is above the specified level. If the level is not in the specified hierarchy,
then an error occurs.

preceding_boundary

The preceding_boundary parameter defines a range of members from the specified number
of members backward in the level from the current member and forward to the specified end
of the boundary. The following parameters specify the range:

• UNBOUNDED PRECEDING begins the range at the first member in the level.

Chapter 5
Analytic View Expressions

5-11

• offset_expr PRECEDING begins the range at the offset_expr number of members
backward from the current member. The offset_expr expression is a
calc_meas_expression that resolves to a number. If the offset number is greater
than the number of members from the current member to the first member in the
level, than the first member is used as the start of the range.

• CURRENT MEMBER ends the range at the current member.

• offset_expr PRECEDING ends the range at the member that is offset_expr
backward from the current member.

• offset_expr FOLLOWING ends the range at the member that is offset_expr
forward from the current member.

• UNBOUNDED FOLLOWING ends the range at the last member in the level.

following_boundary

The following_boundary parameter defines a range of members from the specified
number of members from the current member forward to the specified end of the
range. The following parameters specify the range:

• CURRENT MEMBER begins the range at the current member.

• offset_expr FOLLOWING begins the range at the member that is offset_expr
forward from the current member.

• offset_expr FOLLOWING ends the range at the member that is offset_expr
forward from the current member.

• UNBOUNDED FOLLOWING ends the range at the last member in the level.

hierarchy_ref

A reference to a hierarchy of an analytic view. The hier_alias parameter specifies the
alias of a hierarchy in the definition of the analytic view. You may use double quotes to
escape special characters or preserve case, or both.

The optional attr_dim_alias parameter specifies the alias of an attribute dimension in
the definition of the analytic view. You may use the attr_dim_alias parameter to
resolve the ambiguity if the specified hierarchy alias conflicts with another hierarchy
alias in the analytic view or if an attribute dimension is used more than once in the
analytic view definition. You may use the attr_dim_alias parameter even when a
name conflict does not exist.

rank_expression

Hierarchical rank calculations rank the related members of the specified hierarchy
based on the order of the specified measure values and return the rank of the current
member within those results.

Hierarchical rank calculations locate a set of related members in the specified
hierarchy, rank all the related members based on the order of the specified measure
values, and then return the rank of the current member within those results. The
related members are a set of members at the same level as the current member. You
may optionally restrict the set by some hierarchical relationship, but the set always
includes the current member. The ordering of the measure values is determined by the
calc_meas_order_by_clause of the rank_clause.

Chapter 5
Analytic View Expressions

5-12

rank_function_name

Each hierarchical ranking function assigns an order number to each related member based
on the calc_meas_order_by_clause, starting at 1. The functions differ in the way they treat
measure values that are the same.

The functions and the differences between them are the following:

• RANK, which assigns the same rank to identical measure values. The rank after a set of
tied values is the number of tied values plus the tied order value; therefore, the ordering
may not be consecutive numbers.

• DENSE_RANK, which assigns the same minimum rank to identical measure values. The
rank after a set of tied values is always one more than the tied value; therefore, the
ordering always has consecutive numbers.

• AVERAGE_RANK, assigns the same average rank to identical values. The next value after
the average rank value is the number of identical values plus 1, that sum divided by 2,
plus the average rank value. For example, for the series of five values 4, 5, 10, 5, 7,
AVERAGE_RANK returns 1, 1.5, 1.5, 3, 4. For the series 2, 12, 10, 12, 17, 12, the returned
ranks are 1, 2, 3, 3, 3, 5.

• ROW_NUMBER, which assigns values that are unique and consecutive across the hierarchy
members. If the calc_meas_order_by_clause results in equal values then the results are
non-deterministic.

rank_clause

The rank_clause locates a range of hierarchy members related to the current member. The
range is some subset of the members in the same level as the current member. The subset is
determined from the WITHIN clause.

Valid values for the WITHIN clause are:

• WITHIN LEVEL, which specifies that the related members are all the members of the
current level. This is the default subset if the WITHIN keyword is not specified.

• WITHIN PARENT, which specifies that the related members all share a parent with the
current member

• WITHIN ANCESTOR AT LEVEL, which specifies that the related members are all of the
members of the current level that share an ancestor (or self) at the specified level with
the current member.

share_of_expression

A share_of_expression expression calculates the ratio of an expression's value for the
current context over the expression's value at a related context. The expression is a
calc_meas_expression that is evaluated at the current context and the related context. The
share_clause specification determines the related context to use.

share_clause

A share_clause modifies the outer context by setting the member for the specified hierarchy
to a related member.

The parameters of the share clause are the following:

Chapter 5
Analytic View Expressions

5-13

• HIERARCHY hierarchy_ref specifies the name of the hierarchy that is the outer
context for the share_of_expression calculations.

• PARENT specifies that the related member is the parent of the current member.

• LEVEL level_ref specifies that the related member is the ancestor (or is the
member itself) of the current member at the specified level in the hierarchy. If the
current member is above the specified level, then NULL is returned for the share
expression. If the level is not in the hierarchy, then an error occurs.

• MEMBER member_expression specifies that the related member is the member
returned after evaluating the member_expression in the current context. If the
value of the specified member is NULL, then NULL is returned for the share
expression.

member_expression

A member_expression evaluates to a member of the specified hierarchy. The hierarchy
can always be determined from the outer expression (enforced by the syntax). A
member_expression can be one of the following:

• level_member_literal is an expression that evaluates to a hierarchy member.

• hier_navigation_expr is an expression that relates one member of the hierarchy
to another member.

• CURRENT MEMBER specifies the member of the hierarchy as determined by the outer
context.

• NULL is a way to specify a non-existent member.

• ALL specifies the single topmost member of every hierarchy.

level_member_literal

A level_member_literal is an expression that resolves to a single member of the
hierarchy. The expression contains the name of the level and one or more member
keys. The member key or keys may be identified by position or by name. If the
specified level is not in the context hierarchy, then an error occurs.

pos_member_keys

The member_key_expr expression resolves to the key value for the member. When
specified by position, all components of the key must be given in the order found in the
ALL_HIER_LEVEL_ID_ATTRS dictionary view. For a hierarchy in which the specified level
is not determined by the child level, then all member key values of all such child levels
must be provided preceding the current level's member key or keys. Duplicate key
components are only specified the first time they appear.

The primary key is used when level_member_literal is specified using the
pos_member_keys phrase. You can reference an alternate key by using the
named_member_keys phrase.

named_member_keys

The member_key_expr expression resolves to the key value for the member. The
attr_name parameter is an identifier for the name of the attribute. If all of the attribute
names do not make up a key or alternate key of the specified level, then an error
occurs.

Chapter 5
Analytic View Expressions

5-14

When specified by name, all components of the key must be given and all must use the
attribute name = value form, in any order. For a hierarchy in which the specified level is not
determined by the child level, then all member key values of all such child levels must be
provided, also using the named form. Duplicate key components are only specified once.

hier_navigation_expression

A hier_navigation_expression expression navigates from the specified member to a
different member in the hierarchy.

hier_ancestor_expression

Navigates from the specified member to the ancestor member (or to the member itself) at the
specified level or depth. The depth is specified as an expression that must resolve to a
number. If the member is at a level or depth above the specified member or the member is
NULL, then NULL is returned for the expression value. If the specified level is not in the context
hierarchy, then an error occurs.

hier_parent_expression

Navigates from the specified member to the parent member.

hier_lead_lag_expression

Navigates from the specified member to a related member by moving forward or backward
some number of members within the context hierarchy. The HIER_LEAD keyword returns a
later member. The HIER_LAG keyword returns an earlier member.

hier_lead_lag_clause

Navigates the offset_expr number of members forward or backward from the specified
member. The ordering of members within a level is specified in the definition of the attribute
dimension.

The optional parameters of hier_lead_lag_clause are the following:

• WITHIN LEVEL locates the related member by moving forward or backward offset_expr
members within the members that have the same depth as the current member. The
ordering of members within the level is determined by the definition of the attribute
dimension. The WITHIN LEVEL operation is the default if neither the WITHIN nor the ACROSS
keywords are used.

• WITHIN PARENT locates the related member by moving forward or backward offset_expr
members within the members that have the same depth as the current member, but only
considers members that share a parent with the current member. The ordering of
members within the level is determined by the definition of the attribute dimension.

• WITHIN ACROSS ANCESTOR AT LEVEL locates the related member by navigating up to the
ancestor of the current member (or to the member itself) at the specified level, noting the
position of each ancestor member (including the member itself) within its parent. Once
the ancestor member is found, navigation moves forward or backward offset_expr
members within the members that have the same depth as the ancestor member.

After locating the related ancestor, navigation moves back down the hierarchy from that
member, matching the position within the parent as recorded on the way up (in reverse
order). The position within the parent is either an offset from the first child or the last child
depending on whether POSITION FROM BEGINNING or POSITION FROM END is specified,

Chapter 5
Analytic View Expressions

5-15

defaulting to POSITION FROM BEGINNING. The ordering of members within the level
is determined by the definition of the attribute dimension.

qdr_expression

A qdr_expression is a qualified data reference that evaluates the specified
calc_meas_expression in a new context and sets the hierarchy member to the new
value.

qualifier

A qualifier modifies the outer context by setting the member for the specified hierarchy
to the member resulting from evaluating member_expression. If member_expression is
NULL, then the result of the qdr_expression selection is NULL.

av_hier_expression

An av_hier_expression performs hierarchy navigation to locate an attribute value of
the related member. An av_hier_expression may be a top-level expression, whereas
a hier_navigation_expression may only be used as a member_expression argument.

For example, in the following query HIER_MEMBER__NAME is an av_hier_expression
and HIER_PARENT is a hier_navigation_expression.

HIER_MEMBER_NAME(HIER_PARENT(CURRENT MEMBER) WITHIN HIERARCHY
product_hier))

hier_function_name

The hier_function_name values are the following:

• HIER_CAPTION, which returns the caption of the related member in the hierarchy.

• HIER_DEPTH, which returns one less than the number of ancestors between the
related member and the ALL member in the hierarchy. The depth of the ALL
member is 0.

• HIER_DESCRIPTION, which returns the description of the related member in the
hierarchy.

• HIER_LEVEL, which returns as a string value the name of the level to which the
related member belongs in the hierarchy.

• HIER_MEMBER_NAME, which returns the member name of the related member in the
hierarchy.

• HIER_MEMBER_UNIQUE_NAME, which returns the member unique name of the related
member in the hierarchy.

Examples of Analytic View Expressions
This topic contains examples that show calculated measures defined in the MEASURES
clause of an analytic view and in the ADD MEASURES clause of a SELECT statement.

The examples are the following:

• Examples of LAG Expressions

Chapter 5
Analytic View Expressions

5-16

• Example of a Window Expression

• Examples of SHARE OF Expressions

• Examples of QDR Expressions

• Example of an Added Measure Using the RANK Function

For more examples, see the tutorials on analytic views at the SQL Live website at https://
livesql.oracle.com/apex/livesql/file/index.html.

Examples of LAG Expressions

These calculated measures different LAG operations.

-- These calculated measures are from the measures_clause of the
-- sales_av analytic view.
MEASURES
 (sales FACT sales, -- A base measure
 units FACT units, -- A base measure
 sales_prior_period AS -- Calculated measures
 (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1)),
 sales_year_ago AS
 (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL year)),
 chg_sales_year_ago AS
 (LAG_DIFF(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL year)),
 pct_chg_sales_year_ago AS
 (LAG_DIFF_PERCENT(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL year)),
 sales_qtr_ago AS
 (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL quarter)),
 chg_sales_qtr_ago AS
 (LAG_DIFF(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL quarter)),
 pct_chg_sales_qtr_ago AS
 (LAG_DIFF_PERCENT(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL quarter))
)

Example of a Window Expression

This calculated measure uses a window operation.

MEASURES
 (sales FACT sales,
 units FACT units,
 sales_qtd AS
 (SUM(sales) OVER (HIERARCHY time_hier
 BETWEEN UNBOUNDED PRECEDING AND CURRENT MEMBER
 WITHIN ANCESTOR AT LEVEL QUARTER)),
 sales_ytd AS
 (SUM(sales) OVER (HIERARCHY time_hier
 BETWEEN UNBOUNDED PRECEDING AND CURRENT MEMBER

Chapter 5
Analytic View Expressions

5-17

https://livesql.oracle.com/apex/livesql/file/index.html
https://livesql.oracle.com/apex/livesql/file/index.html

 WITHIN ANCESTOR AT LEVEL YEAR))
)

Examples of SHARE OF Expressions

These calculated measures use SHARE OF expressions.

MEASURES
 (sales FACT sales,
 units FACT units,
 sales_shr_parent_prod AS
 (SHARE_OF(sales HIERARCHY product_hier PARENT)),
 sales_shr_parent_geog AS
 (SHARE_OF(sales HIERARCHY geography_hier PARENT)),
 sales_shr_region AS
 (SHARE_OF(sales HIERARCHY geography_hier LEVEL REGION))
)

Examples of QDR Expressions

These calculated measures use the QUALIFY keyword to specify qualified data
reference expressions.

MEASURES
 (sales FACT sales,
 units FACT units,
 sales_2011 AS
 (QUALIFY (sales, time_hier = year['11'])),
 sales_pct_chg_2011 AS
 ((sales - (QUALIFY (sales, time_hier = year['11']))) /
 (QUALIFY (sales, time_hier = year['11'])))
)

Example of an Added Measure Using the RANK Function

In this example, the units_geog_rank_level measure uses the RANK function to rank
geography hierarchy members within a level based on units.

SELECT geography_hier.member_name AS "Region",
 units AS "Units",
 units_geog_rank_level AS "Rank"
 FROM ANALYTIC VIEW (
 USING sales_av HIERARCHIES (geography_hier)
 ADD MEASURES (
 units_geog_rank_level AS (
 RANK() OVER (
 HIERARCHY geography_hier
 ORDER BY units desc nulls last
 WITHIN LEVEL))
)
)
 WHERE geography_hier.level_name IN ('REGION')
 ORDER BY units_geog_rank_level;

Chapter 5
Analytic View Expressions

5-18

The following is the result of the query.

Regions Units Rank
------------- --------- ----
Asia 56017849 1
South America 23904155 2
North America 20523698 3
Africa 12608308 4
Europe 8666520 5
Oceania 427664 6

Compound Expressions
A compound expression specifies a combination of other expressions.

compound_expression::=

(expr)

+

–

PRIOR

expr

expr

*

/

+

–

| |

expr

expr COLLATE collation_name

You can use any built-in function as an expression (Function Expressions). However, in a
compound expression, some combinations of functions are inappropriate and are rejected.
For example, the LENGTH function is inappropriate within an aggregate function.

The PRIOR operator is used in CONNECT BY clauses of hierarchical queries.

The COLLATE operator determines the collation for an expression. This operator overrides the
collation that the database would have derived for the expression using standard collation
derivation rules.

See Also:

• Operator Precedence

• Hierarchical Queries

• COLLATE Operator

Chapter 5
Compound Expressions

5-19

Some valid compound expressions are:

('CLARK' || 'SMITH')
LENGTH('MOOSE') * 57
SQRT(144) + 72
my_fun(TO_CHAR(sysdate,'DD-MMM-YY'))
name COLLATE BINARY_CI

CASE Expressions
CASE expressions let you use IF ... THEN ... ELSE logic in SQL statements without
having to invoke procedures. The syntax is:

CASE
simple_case_expression

searched_case_expression

else_clause

END

simple_case_expression::=

expr WHEN comparison_expr THEN return_expr

searched_case_expression::=

WHEN condition THEN return_expr

else_clause::=

ELSE else_expr

In a simple CASE expression, Oracle Database searches for the first WHEN ... THEN pair
for which expr is equal to comparison_expr and returns return_expr. If none of the
WHEN ... THEN pairs meet this condition, and an ELSE clause exists, then Oracle returns
else_expr. Otherwise, Oracle returns null.

In a searched CASE expression, Oracle searches from left to right until it finds an
occurrence of condition that is true, and then returns return_expr. If no condition is
found to be true, and an ELSE clause exists, then Oracle returns else_expr. Otherwise,
Oracle returns null.

Oracle Database uses short-circuit evaluation. For a simple CASE expression, the
database evaluates each comparison_expr value only before comparing it to expr,
rather than evaluating all comparison_expr values before comparing any of them with
expr. Consequently, Oracle never evaluates a comparison_expr if a previous
comparison_expr is equal to expr. For a searched CASE expression, the database

Chapter 5
CASE Expressions

5-20

evaluates each condition to determine whether it is true, and never evaluates a condition if
the previous condition was true.

For a simple CASE expression, the expr and all comparison_expr values must either have the
same data type (CHAR, VARCHAR2, NCHAR, or NVARCHAR2, NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE) or must all have a numeric data type. If all expressions have a numeric data
type, then Oracle determines the argument with the highest numeric precedence, implicitly
converts the remaining arguments to that data type, and returns that data type.

For both simple and searched CASE expressions, all of the return_exprs must either have the
same data type (CHAR, VARCHAR2, NCHAR, or NVARCHAR2, NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE) or must all have a numeric data type. If all return expressions have a
numeric data type, then Oracle determines the argument with the highest numeric
precedence, implicitly converts the remaining arguments to that data type, and returns that
data type.

The maximum number of arguments in a CASE expression is 65535. All expressions count
toward this limit, including the initial expression of a simple CASE expression and the optional
ELSE expression. Each WHEN ... THEN pair counts as two arguments. To avoid exceeding this
limit, you can nest CASE expressions so that the return_expr itself is a CASE expression.

The comparison performed by the simple CASE expression is collation-sensitive if the
compared arguments have a character data type (CHAR, VARCHAR2, NCHAR, or NVARCHAR2). The
collation determination rules determine the collation to use.

See Also:

• Table 2-8 for more information on implicit conversion

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation and determination rules for the CASE expression

• Numeric Precedence for information on numeric precedence

• COALESCE and NULLIF for alternative forms of CASE logic

• Oracle Database Data Warehousing Guide for examples using various forms of
the CASE expression

Simple CASE Example

For each customer in the sample oe.customers table, the following statement lists the credit
limit as "Low" if it equals $100, "High" if it equals $5000, and "Medium" if it equals anything
else.

SELECT cust_last_name,
 CASE credit_limit WHEN 100 THEN 'Low'
 WHEN 5000 THEN 'High'
 ELSE 'Medium' END AS credit
 FROM customers
 ORDER BY cust_last_name, credit;

CUST_LAST_NAME CREDIT
-------------------- ------
Adjani Medium
Adjani Medium

Chapter 5
CASE Expressions

5-21

Alexander Medium
Alexander Medium
Altman High
Altman Medium
. . .

Searched CASE Example

The following statement finds the average salary of the employees in the sample table
oe.employees, using $2000 as the lowest salary possible:

SELECT AVG(CASE WHEN e.salary > 2000 THEN e.salary
 ELSE 2000 END) "Average Salary" FROM employees e;

Average Salary

 6461.68224

Column Expressions
A column expression, which is designated as column_expression in subsequent
syntax diagrams, is a limited form of expr. A column expression can be a simple
expression, compound expression, function expression, or expression list, but it can
contain only the following forms of expression:

• Columns of the subject table — the table being created, altered, or indexed

• Constants (strings or numbers)

• Deterministic functions — either SQL built-in functions or user-defined functions

No other expression forms described in this chapter are valid. In addition, compound
expressions using the PRIOR keyword are not supported, nor are aggregate functions.

You can use a column expression for these purposes:

• To create a function-based index.

• To explicitly or implicitly define a virtual column. When you define a virtual column,
the defining column_expression must refer only to columns of the subject table
that have already been defined, in the current statement or in a prior statement.

The combined components of a column expression must be deterministic. That is, the
same set of input values must return the same set of output values.

See Also:

Simple Expressions , Compound Expressions , Function Expressions , and
Expression Lists for information on these forms of expr

CURSOR Expressions
A CURSOR expression returns a nested cursor. This form of expression is equivalent to
the PL/SQL REF CURSOR and can be passed as a REF CURSOR argument to a function.

Chapter 5
Column Expressions

5-22

CURSOR (subquery)

A nested cursor is implicitly opened when the cursor expression is evaluated. For example, if
the cursor expression appears in a select list, a nested cursor will be opened for each row
fetched by the query. The nested cursor is closed only when:

• The nested cursor is explicitly closed by the user

• The parent cursor is reexecuted

• The parent cursor is closed

• The parent cursor is cancelled

• An error arises during fetch on one of its parent cursors (it is closed as part of the clean-
up)

Restrictions on CURSOR Expressions

The following restrictions apply to CURSOR expressions:

• If the enclosing statement is not a SELECT statement, then nested cursors can appear
only as REF CURSOR arguments of a procedure.

• If the enclosing statement is a SELECT statement, then nested cursors can also appear in
the outermost select list of the query specification or in the outermost select list of
another nested cursor.

• Nested cursors cannot appear in views.

• You cannot perform BIND and EXECUTE operations on nested cursors.

Examples

The following example shows the use of a CURSOR expression in the select list of a query:

SELECT department_name, CURSOR(SELECT salary, commission_pct
 FROM employees e
 WHERE e.department_id = d.department_id)
 FROM departments d
 ORDER BY department_name;

The next example shows the use of a CURSOR expression as a function argument. The
example begins by creating a function in the sample OE schema that can accept the REF
CURSOR argument. (The PL/SQL function body is shown in italics.)

CREATE FUNCTION f(cur SYS_REFCURSOR, mgr_hiredate DATE)
 RETURN NUMBER IS
 emp_hiredate DATE;
 before number :=0;
 after number:=0;
begin
 loop
 fetch cur into emp_hiredate;
 exit when cur%NOTFOUND;
 if emp_hiredate > mgr_hiredate then
 after:=after+1;
 else
 before:=before+1;
 end if;

Chapter 5
CURSOR Expressions

5-23

 end loop;
 close cur;
 if before > after then
 return 1;
 else
 return 0;
 end if;
end;
/

The function accepts a cursor and a date. The function expects the cursor to be a
query returning a set of dates. The following query uses the function to find those
managers in the sample employees table, most of whose employees were hired before
the manager.

SELECT e1.last_name FROM employees e1
 WHERE f(
 CURSOR(SELECT e2.hire_date FROM employees e2
 WHERE e1.employee_id = e2.manager_id),
 e1.hire_date) = 1
 ORDER BY last_name;

LAST_NAME

Cambrault
Higgins
Hunold
Kochhar
Mourgos
Zlotkey

Datetime Expressions
A datetime expression yields a value of one of the datetime data types.

datetime_expression::=

expr AT

LOCAL

TIME ZONE

’

+

–

hh : mi ’

DBTIMEZONE

SESSIONTIMEZONE

’ time_zone_name ’

expr

The initial expr is any expression, except a scalar subquery expression, that evaluates
to a value of data type TIMESTAMP, TIMESTAMP WITH TIME ZONE, or TIMESTAMP WITH
LOCAL TIME ZONE. The DATE data type is not supported. If this expr is itself a
datetime_expression, then it must be enclosed in parentheses.

Chapter 5
Datetime Expressions

5-24

Datetimes and intervals can be combined according to the rules defined in Table 2-5. The
three combinations that yield datetime values are valid in a datetime expression.

If you specify AT LOCAL, then Oracle uses the current session time zone.

The settings for AT TIME ZONE are interpreted as follows:

• The string '[+|-]hh:mi ' specifies a time zone as an offset from UTC. For hh, specify the
number of hours. For mi, specify the number of minutes.

• DBTIMEZONE: Oracle uses the database time zone established (explicitly or by default)
during database creation.

• SESSIONTIMEZONE: Oracle uses the session time zone established by default or in the
most recent ALTER SESSION statement.

• time_zone_name: Oracle returns the datetime_value_expr in the time zone indicated by
time_zone_name. For a listing of valid time zone region names, query the
V$TIMEZONE_NAMES dynamic performance view.

Note:

Time zone region names are needed by the daylight saving feature. These
names are stored in two types of time zone files: one large and one small. One
of these files is the default file, depending on your environment and the release
of Oracle Database you are using. For more information regarding time zone
files and names, see Oracle Database Globalization Support Guide.

See Also:

• Oracle Database Globalization Support Guide for a complete listing of the time
zone region names in both files

• Oracle Database Reference for information on the dynamic performance views

• expr: If expr returns a character string with a valid time zone format, then Oracle returns
the input in that time zone. Otherwise, Oracle returns an error.

Example

The following example converts the datetime value of one time zone to another time zone:

SELECT FROM_TZ(CAST(TO_DATE('1999-12-01 11:00:00',
 'YYYY-MM-DD HH:MI:SS') AS TIMESTAMP), 'America/New_York')
 AT TIME ZONE 'America/Los_Angeles' "West Coast Time"
 FROM DUAL;

West Coast Time
--
01-DEC-99 08.00.00.000000 AM AMERICA/LOS_ANGELES

Chapter 5
Datetime Expressions

5-25

Function Expressions
You can use any built-in SQL function or user-defined function as an expression.
Some valid built-in function expressions are:

LENGTH('BLAKE')
ROUND(1234.567*43)
SYSDATE

See Also:

About SQL Functions ' and Aggregate Functions for information on built-in
functions

A user-defined function expression specifies a call to:

• A function in an Oracle-supplied package (see Oracle Database PL/SQL
Packages and Types Reference)

• A function in a user-defined package or type or in a standalone user-defined
function (see About User-Defined Functions)

• A user-defined function or operator (see CREATE OPERATOR , CREATE
FUNCTION , and Oracle Database Data Cartridge Developer's Guide)

Some valid user-defined function expressions are:

circle_area(radius)
payroll.tax_rate(empno)
hr.employees.comm_pct@remote(dependents, empno)
DBMS_LOB.getlength(column_name)
my_function(a_column)

In a user-defined function being used as an expression, positional, named, and mixed
notation are supported. For example, all of the following notations are correct:

CALL my_function(arg1 => 3, arg2 => 4) ...

CALL my_function(3, 4) ...

CALL my_function(3, arg2 => 4) ...

Restriction on User-Defined Function Expressions

You cannot pass arguments of object type or XMLType to remote functions and
procedures.

Interval Expressions
An interval expression yields a value of INTERVAL YEAR TO MONTH or INTERVAL DAY TO
SECOND.

Chapter 5
Function Expressions

5-26

interval_expression::=

(expr1 – expr2)

DAY

(leading_field_precision)

TO SECOND

(fractional_second_precision)

YEAR

(leading_field_precision)

TO MONTH

The expressions expr1 and expr2 can be any expressions that evaluate to values of data
type DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, or TIMESTAMP WITH LOCAL TIME ZONE.

Datetimes and intervals can be combined according to the rules defined in Table 2-5. The six
combinations that yield interval values are valid in an interval expression.

Both leading_field_precision and fractional_second_precision can be any integer from
0 to 9. If you omit the leading_field_precision for either DAY or YEAR, then Oracle Database
uses the default value of 2. If you omit the fractional_second_precision for second, then
the database uses the default value of 6. If the value returned by a query contains more digits
that the default precision, then Oracle Database returns an error. Therefore, it is good
practice to specify a precision that you know will be at least as large as any value returned by
the query.

For example, the following statement subtracts the value of the order_date column in the
sample table orders (a datetime value) from the system timestamp (another datetime value)
to yield an interval value expression. It is not known how many days ago the oldest order was
placed, so the maximum value of 9 for the DAY leading field precision is specified:

SELECT (SYSTIMESTAMP - order_date) DAY(9) TO SECOND FROM orders
 WHERE order_id = 2458;

JSON Object Access Expressions
A JSON object access expression is used only when querying a column of JSON data. It
yields a character string that contains one or more JSON values found in that data. The
syntax for this type of expression is called dot-notation syntax.

JSON_object_access_expr::=

table_alias . JSON_column

. JSON_object_key

array_step

Chapter 5
JSON Object Access Expressions

5-27

array_step::=

[

integer

integer TO integer

,

*

]

• For table_alias, specify the alias for the table that contains the column of JSON
data. This table alias is required and must be assigned to the table elsewhere in
the SQL statement.

• For JSON_column, specify the name of the column of JSON data. The column must
be of data type VARCHAR2, CLOB, BLOB, or JSON.

Columns can have data of JSON data type if they are the result of JSON generation
functions, of JSON_QUERY, or TREAT .

To identify non JSON type data types you can define the IS JSON check constraint
on the column .

• You can optionally specify one or more JSON object keys. The object keys allow
you to target specific JSON values in the JSON data. The first JSON_object_key
must be a case-sensitive match to the key (property) name of an object member in
the top level of the JSON data. If the value of that object member is another JSON
object, then you can specify a second JSON_object_key that matches the key
name of a member of that object, and so on. If a JSON array is encountered
during any of these iterations, and you do not specify an array_step, then the
array is implicitly unwrapped and the elements of the array are evaluated using the
JSON_object_key.

• If the JSON value is an array, then you can optionally specify one or more
array_step clauses. This allows you to access specific elements of the JSON
array.

– Use integer to specify the element at index integer in a JSON array. Use
integer TO integer to specify the range of elements between the two index
integer values, inclusive. If the specified elements exist in the JSON array
being evaluated, then the array step results in a match to those elements.
Otherwise, the array step does not result in a match. The first element in a
JSON array has index 0.

– Use the asterisk wildcard symbol (*) to specify all elements in a JSON array. If
the JSON array being evaluated contains at least one element, then the array
step results in a match to all elements in the JSON array. Otherwise, the array
step does not result in a match.

A JSON object access expression yields a character string of data type
VARCHAR2(4000), which contains the targeted JSON value(s) as follows:

• For a single targeted value, the character string contains that value, whether it is a
JSON scalar value, object, or array.

• For multiple targeted values, the character string contains a JSON array whose
elements are those values.

Chapter 5
JSON Object Access Expressions

5-28

If you omit JSON_object_key, then the expression yields a character string that contains the
JSON data in its entirety. In this case, the character string is of the same data type as the
column of JSON data being queried.

A JSON object access expression cannot return a value larger than 4K bytes. If the value
surpasses this limit, then the expression returns null. To obtain the actual value, instead use
the JSON_QUERY function or the JSON_VALUE function and specify an appropriate return
type with the RETURNING clause.

The collation derivation rules for the JSON object access expression are the same as for the
JSON_QUERY function.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules for the JSON_QUERY function

Examples

The following examples use the j_purchaseorder table, which is created in Creating a Table
That Contains a JSON Document: Example. This table contains a column of JSON data
called po_document. These examples return JSON values from column po_document.

The following statement returns the value of the property with key name PONumber. The value
returned, 1600, is a SQL number.

SELECT po.po_document.PONumber.number()
 FROM j_purchaseorder po;

PONumber

1600

The following statement first targets the property with key name ShippingInstructions,
whose value is a JSON object. The statement then targets the property with key name Phone
within that object. The statement returns the value of Phone, which is a JSON array.

SELECT po.po_document.ShippingInstructions.Phone
 FROM j_purchaseorder po;

SHIPPINGINSTRUCTIONS

[{"type":"Office","number":"909-555-7307"},{"type":"Mobile","number":"415-555-1234"}]

The following statement first targets the property with key name LineItems, whose value is a
JSON array. The expression implicitly unwraps the array and evaluates its elements, which
are JSON objects. Next, the statement targets the properties with key name Part, within the
unwrapped objects, and finds two objects. The statement then targets the properties with key
name Description within those two objects and finds string values. Because more than one
value is returned, the values are returned as elements of a JSON array.

SELECT po.po_document.LineItems.Part.Description
 FROM j_purchaseorder po;

LINEITEMS

Chapter 5
JSON Object Access Expressions

5-29

[One Magic Christmas,Lethal Weapon]

See Also:

Oracle Database JSON Developer’s Guide for more information on querying
JSON data using dot-notation syntax

Model Expressions
A model expression is used only in the model_clause of a SELECT statement and then
only on the right-hand side of a model rule. It yields a value for a cell in a measure
column previously defined in the model_clause. For additional information, refer to
model_clause.

model_expression::=

measure_column [
condition

expr

,

]

aggregate_function [

condition

expr

,

single_column_for_loop

,

multi_column_for_loop

]

analytic_function

When you specify a measure column in a model expression, any conditions and
expressions you specify must resolve to single values.

When you specify an aggregate function in a model expression, the argument to the
function is a measure column that has been previously defined in the model_clause.
An aggregate function can be used only on the right-hand side of a model rule.

Specifying an analytic function on the right-hand side of the model rule lets you
express complex calculations directly in the model_clause. The following restrictions
apply when using an analytic function in a model expression:

• Analytic functions can be used only in an UPDATE rule.

• You cannot specify an analytic function on the right-hand side of the model rule if
the left-hand side of the rule contains a FOR loop or an ORDER BY clause.

• The arguments in the OVER clause of the analytic function cannot contain an
aggregate.

Chapter 5
Model Expressions

5-30

• The arguments before the OVER clause of the analytic function cannot contain a cell
reference.

See Also:

The MODEL clause: Examples for an example of using an analytic function on the
right-hand side of a model rule

When expr is itself a model expression, it is referred to as a nested cell reference. The
following restrictions apply to nested cell references:

• Only one level of nesting is allowed.

• A nested cell reference must be a single-cell reference.

• When AUTOMATIC ORDER is specified in the model_rules_clause, a nested cell reference
can be used on the left-hand side of a model rule only if the measures used in the nested
cell reference remain static.

The model expressions shown below are based on the model_clause of the following SELECT
statement:

SELECT country,prod,year,s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER
 (
 s[prod='Mouse Pad', year=2000] =
 s['Mouse Pad', 1998] + s['Mouse Pad', 1999],
 s['Standard Mouse', 2001] = s['Standard Mouse', 2000]
)
 ORDER BY country, prod, year;

The following model expression represents a single cell reference using symbolic notation. It
represents the sales of the Mouse Pad for the year 2000.

s[prod='Mouse Pad',year=2000]

The following model expression represents a multiple cell reference using positional notation,
using the CV function. It represents the sales of the current value of the dimension column
prod for the year 2001.

s[CV(prod), 2001]

The following model expression represents an aggregate function. It represents the sum of
sales of the Mouse Pad for the years between the current value of the dimension column
year less two and the current value of the dimension column year less one.

SUM(s)['Mouse Pad',year BETWEEN CV()-2 AND CV()-1]

Chapter 5
Model Expressions

5-31

See Also:

CV and model_clause

Object Access Expressions
An object access expression specifies attribute reference and method invocation.

object_access_expression::=

table_alias . column .

object_table_alias .

(expr) .

attribute

.
. method (

argument

,

)

method (

argument

,

)

The column parameter can be an object or REF column. If you specify expr, then it
must resolve to an object type.

When a type's member function is invoked in the context of a SQL statement, if the
SELF argument is null, Oracle returns null and the function is not invoked.

Examples

The following example creates a table based on the sample oe.order_item_typ object
type, and then shows how you would update and select from the object column
attributes.

CREATE TABLE short_orders (
 sales_rep VARCHAR2(25), item order_item_typ);

UPDATE short_orders s SET sales_rep = 'Unassigned';

SELECT o.item.line_item_id, o.item.quantity FROM short_orders o;

Placeholder Expressions
A placeholder expression provides a location in a SQL statement for which a third-
generation language bind variable will provide a value. You can specify the
placeholder expression with an optional indicator variable. This form of expression can
appear only in embedded SQL statements or SQL statements processed in an Oracle
Call Interface (OCI) program.

Chapter 5
Object Access Expressions

5-32

placeholder_expression::=

: host_variable

INDICATOR

: indicator_variable

Some valid placeholder expressions are:

:employee_name INDICATOR :employee_name_indicator_var
:department_location

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules for the placeholder expression with a character data type

Scalar Subquery Expressions
A scalar subquery expression is a subquery that returns exactly one column value from one
row. The value of the scalar subquery expression is the value of the select list item of the
subquery. If the subquery returns 0 rows, then the value of the scalar subquery expression is
NULL. If the subquery returns more than one row, then Oracle returns an error.

You can use a scalar subquery expression in most syntax that calls for an expression (expr).
In all cases, a scalar subquery must be enclosed in its own parentheses, even if its syntactic
location already positions it within parentheses (for example, when the scalar subquery is
used as the argument to a built-in function).

Scalar subqueries are not valid expressions in the following places:

• As default values for columns

• As hash expressions for clusters

• In the RETURNING clause of DML statements

• As the basis of a function-based index

• In CHECK constraints

• In GROUP BY clauses

• In statements that are unrelated to queries, such as CREATE PROFILE

Type Constructor Expressions
A type constructor expression specifies a call to a constructor method. The argument to the
type constructor is any expression. Type constructors can be invoked anywhere functions are
invoked.

Chapter 5
Scalar Subquery Expressions

5-33

type_constructor_expression::=

NEW schema .

type_name (

expr

,

)

The NEW keyword applies to constructors for object types but not for collection types. It
instructs Oracle to construct a new object by invoking an appropriate constructor. The
use of the NEW keyword is optional, but it is good practice to specify it.

If type_name is an object type, then the expressions must be an ordered list, where
the first argument is a value whose type matches the first attribute of the object type,
the second argument is a value whose type matches the second attribute of the object
type, and so on. The total number of arguments to the constructor must match the total
number of attributes of the object type.

If type_name is a varray or nested table type, then the expression list can contain
zero or more arguments. Zero arguments implies construction of an empty collection.
Otherwise, each argument corresponds to an element value whose type is the element
type of the collection type.

Restriction on Type Constructor Invocation

In an invocation of a type constructor method, the number of parameters (expr)
specified cannot exceed 999, even if the object type has more than 999 attributes.
This limitation applies only when the constructor is called from SQL. For calls from PL/
SQL, the PL/SQL limitations apply.

See Also:

Oracle Database Object-Relational Developer's Guide for additional
information on constructor methods and Oracle Database PL/SQL Language
Reference for information on PL/SQL limitations on calls to type constructors

Expression Example

This example uses the cust_address_typ type in the sample oe schema to show the
use of an expression in the call to a constructor method (the PL/SQL is shown in
italics):

CREATE TYPE address_book_t AS TABLE OF cust_address_typ;
DECLARE
 myaddr cust_address_typ := cust_address_typ(
 '500 Oracle Parkway', 94065, 'Redwood Shores', 'CA','USA');
 alladdr address_book_t := address_book_t();
BEGIN
 INSERT INTO customers VALUES (
 666999, 'Joe', 'Smith', myaddr, NULL, NULL, NULL, NULL,
 NULL, NULL, NULL, NULL, NULL, NULL, NULL);
END;
/

Chapter 5
Type Constructor Expressions

5-34

Subquery Example

This example uses the warehouse_typ type in the sample schema oe to illustrate the use of a
subquery in the call to the constructor method.

CREATE TABLE warehouse_tab OF warehouse_typ;

INSERT INTO warehouse_tab
 VALUES (warehouse_typ(101, 'new_wh', 201));

CREATE TYPE facility_typ AS OBJECT (
 facility_id NUMBER,
 warehouse_ref REF warehouse_typ);

CREATE TABLE buildings (b_id NUMBER, building facility_typ);

INSERT INTO buildings VALUES (10, facility_typ(102,
 (SELECT REF(w) FROM warehouse_tab w
 WHERE warehouse_name = 'new_wh')));

SELECT b.b_id, b.building.facility_id "FAC_ID",
 DEREF(b.building.warehouse_ref) "WH" FROM buildings b;

 B_ID FAC_ID WH(WAREHOUSE_ID, WAREHOUSE_NAME, LOCATION_ID)
---------- ---------- ---
 10 102 WAREHOUSE_TYP(101, 'new_wh', 201)

Expression Lists
An expression list is a combination of other expressions.

expression_list::=

expr

,

(

expr

,

)

Expression lists can appear in comparison and membership conditions and in GROUP BY
clauses of queries and subqueries. An expression lists in a comparision or membership
condition is sometimes referred to as a row value constructor or row constructor.

Comparison and membership conditions appear in the conditions of WHERE clauses. They can
contain either one or more comma-delimited expressions or one or more sets of expressions
where each set contains one or more comma-delimited expressions. In the latter case
(multiple sets of expressions):

• Each set is bounded by parentheses

• Each set must contain the same number of expressions

Chapter 5
Expression Lists

5-35

• The number of expressions in each set must match the number of expressions
before the operator in the comparison condition or before the IN keyword in the
membership condition.

A comma-delimited list of expressions can contain no more than 1000 expressions. A
comma-delimited list of sets of expressions can contain any number of sets, but each
set can contain no more than 1000 expressions.

The following are some valid expression lists in conditions:

(10, 20, 40)
('SCOTT', 'BLAKE', 'TAYLOR')
(('Guy', 'Himuro', 'GHIMURO'),('Karen', 'Colmenares', 'KCOLMENA'))

In the third example, the number of expressions in each set must equal the number of
expressions in the first part of the condition. For example:

SELECT * FROM employees
 WHERE (first_name, last_name, email) IN
 (('Guy', 'Himuro', 'GHIMURO'),('Karen', 'Colmenares', 'KCOLMENA'))

See Also:

Comparison Conditions and IN Condition conditions

In a simple GROUP BY clause, you can use either the upper or lower form of expression
list:

SELECT department_id, MIN(salary) min, MAX(salary) max FROM employees
 GROUP BY department_id, salary
 ORDER BY department_id, min, max;

SELECT department_id, MIN(salary) min, MAX(salary) max FROM employees
 GROUP BY (department_id, salary)
 ORDER BY department_id, min, max;

In ROLLUP, CUBE, and GROUPING SETS clauses of GROUP BY clauses, you can combine
individual expressions with sets of expressions in the same expression list. The
following example shows several valid grouping sets expression lists in one SQL
statement:

SELECT
prod_category, prod_subcategory, country_id, cust_city, count(*)
 FROM products, sales, customers
 WHERE sales.prod_id = products.prod_id
 AND sales.cust_id=customers.cust_id
 AND sales.time_id = '01-oct-00'
 AND customers.cust_year_of_birth BETWEEN 1960 and 1970
GROUP BY GROUPING SETS
 (
 (prod_category, prod_subcategory, country_id, cust_city),
 (prod_category, prod_subcategory, country_id),
 (prod_category, prod_subcategory),
 country_id
)
ORDER BY prod_category, prod_subcategory, country_id, cust_city;

Chapter 5
Expression Lists

5-36

See Also:

SELECT

Chapter 5
Expression Lists

5-37

6
Conditions

A condition specifies a combination of one or more expressions and logical (Boolean)
operators and returns a value of TRUE, FALSE, or UNKNOWN.

This chapter contains the following sections:

• About SQL Conditions

• Comparison Conditions

• Floating-Point Conditions

• Logical Conditions

• Model Conditions

• Multiset Conditions

• Pattern-matching Conditions

• Null Conditions

• XML Conditions

• SQL For JSON Conditions

• Compound Conditions

• BETWEEN Condition

• EXISTS Condition

• IN Condition

• IS OF type Condition

About SQL Conditions
Conditions can have several forms, as shown in the following syntax.

6-1

condition::=

comparison_condition

floating_point_condition

logical_condition

model_condition

multiset_condition

pattern_matching_condition

range_condition

null_condition

XML_condition

JSON_condition

compound_condition

exists_condition

in_condition

is_of_type_condition

If you have installed Oracle Text, then you can create conditions with the built-in
operators that are part of that product, including CONTAINS, CATSEARCH, and MATCHES.
For more information on these Oracle Text elements, refer to Oracle Text Reference.

The sections that follow describe the various forms of conditions. You must use
appropriate condition syntax whenever condition appears in SQL statements.

You can use a condition in the WHERE clause of these statements:

• DELETE
• SELECT
• UPDATE
You can use a condition in any of these clauses of the SELECT statement:

• WHERE
• START WITH
• CONNECT BY
• HAVING
A condition could be said to be of a logical data type, although Oracle Database does
not formally support such a data type.

The following simple condition always evaluates to TRUE:

1 = 1

Chapter 6
About SQL Conditions

6-2

The following more complex condition adds the salary value to the commission_pct value
(substituting the value 0 for null) and determines whether the sum is greater than the number
constant 25000:

NVL(salary, 0) + NVL(salary + (salary*commission_pct, 0) > 25000)

Logical conditions can combine multiple conditions into a single condition. For example, you
can use the AND condition to combine two conditions:

(1 = 1) AND (5 < 7)

Here are some valid conditions:

name = 'SMITH'
employees.department_id = departments.department_id
hire_date > '01-JAN-08'
job_id IN ('SA_MAN', 'SA_REP')
salary BETWEEN 5000 AND 10000
commission_pct IS NULL AND salary = 2100

Oracle Database does not accept all conditions in all parts of all SQL statements. Refer to the
section devoted to a particular SQL statement in this book for information on restrictions on
the conditions in that statement.

Condition Precedence
Precedence is the order in which Oracle Database evaluates different conditions in the same
expression. When evaluating an expression containing multiple conditions, Oracle evaluates
conditions with higher precedence before evaluating those with lower precedence. Oracle
evaluates conditions with equal precedence from left to right within an expression, with the
following exceptions:

• Left to right evaluation is not guaranteed for multiple conditions connected using AND
• Left to right evaluation is not guaranteed for multiple conditions connected using OR
Table 6-1 lists the levels of precedence among SQL condition from high to low. Conditions
listed on the same line have the same precedence. As the table indicates, Oracle evaluates
operators before conditions.

Table 6-1 SQL Condition Precedence

Type of Condition Purpose

SQL operators are evaluated before SQL conditions See Operator Precedence

=, !=, <, >, <=, >=, comparison

IS [NOT] NULL, LIKE, [NOT] BETWEEN,
[NOT] IN, EXISTS, IS OF type

comparison

NOT exponentiation, logical negation

AND conjunction

OR disjunction

Chapter 6
About SQL Conditions

6-3

Comparison Conditions
Comparison conditions compare one expression with another. The result of such a
comparison can be TRUE, FALSE, or UNKNOWN.

Large objects (LOBs) are not supported in comparison conditions. However, you can
use PL/SQL programs for comparisons on CLOB data.

When comparing numeric expressions, Oracle uses numeric precedence to determine
whether the condition compares NUMBER, BINARY_FLOAT, or BINARY_DOUBLE values.
Refer to Numeric Precedence for information on numeric precedence.

When comparing character expressions, Oracle uses the rules described in Data Type
Comparison Rules . The rules define how the character sets of the expressions are
aligned before the comparison, the use of binary or linguistic comparison (collation),
the use of blank-padded comparison semantics, and the restrictions resulting from
limits imposed on collation keys, including reporting of the error ORA-12742: unable to
create the collation key.

Two objects of nonscalar type are comparable if they are of the same named type and
there is a one-to-one correspondence between their elements. In addition, nested
tables of user-defined object types, even if their elements are comparable, must have
MAP methods defined on them to be used in equality or IN conditions.

See Also:

Oracle Database Object-Relational Developer's Guide for information on
using MAP methods to compare objects

Table 6-2 lists comparison conditions.

Table 6-2 Comparison Conditions

Type of
Condition

Purpose Example

= Equality test. SELECT *
 FROM employees
 WHERE salary = 2500
 ORDER BY employee_id;

!=
^=
<>

Inequality test. SELECT *
 FROM employees
 WHERE salary != 2500
 ORDER BY employee_id;

Chapter 6
Comparison Conditions

6-4

Table 6-2 (Cont.) Comparison Conditions

Type of
Condition

Purpose Example

>
<

Greater-than and less-than tests. SELECT * FROM employees
 WHERE salary > 2500
 ORDER BY employee_id;
SELECT * FROM employees
 WHERE salary < 2500
 ORDER BY employee_id;

>=
<=

Greater-than-or-equal-to and less-than-or-equal-to
tests.

SELECT * FROM employees
 WHERE salary >= 2500
 ORDER BY employee_id;
SELECT * FROM employees
 WHERE salary <= 2500
 ORDER BY employee_id;

op ANY
op SOME

"op" must be one of =, !=, >, <, <=, or >=.

op ANY compares a value on the left side either to
each value in a list, or to each value returned by a
query, whichever is specified on the right side, using
the condition op.

If any of these comparisons returns TRUE, op ANY
returns TRUE.

If all of these comparisons return FALSE, or the
subquery on the right side returns no rows, op ANY
returns FALSE. Otherwise, the return value is
UNKNOWN.

op ANY and op SOME are synonymous.

SELECT * FROM employees
 WHERE salary = ANY
 (SELECT salary
 FROM employees
 WHERE department_id = 30)
 ORDER BY employee_id;

op ALL "op" must be one of =, !=, >, <, <=, or >=.

op ALL compares a value on the left side either to
each value in a list, or to each value returned by a
subquery, whichever is specified on the right side,
using the condition op.

If any of these comparisons returns FALSE, op ANY
returns FALSE.

If all of these comparisons return TRUE, or the
subquery on the right side returns no rows, op ALL
returns TRUE . Otherwise, the return value is
UNKNOWN.

SELECT * FROM employees
 WHERE salary >=
 ALL (1400, 3000)
 ORDER BY employee_id;

Simple Comparison Conditions
A simple comparison condition specifies a comparison with expressions or subquery results.

Chapter 6
Comparison Conditions

6-5

simple_comparison_condition::=

expr

=

!=

^=

<>

>

<

>=

<=

expr

(expr

,

)

=

!=

^=

<>

(
expression_list

subquery
)

expression_list::=

expr

,

(

expr

,

)

If you use the lower form of this condition with a single expression to the left of the
operator, then you can use the upper or lower form of expression_list. If you use the
lower form of this condition with multiple expressions to the left of the operator, then
you must use the lower form of expression_list. In either case, the expressions in
expression_list must match in number and data type the expressions to the left of
the operator. If you specify subquery, then the values returned by the subquery must
match in number and data type the expressions to the left of the operator.

See Also:

Expression Lists for more information about combining expressions and
SELECT for information about subqueries

Chapter 6
Comparison Conditions

6-6

Group Comparison Conditions
A group comparison condition specifies a comparison with any or all members in a list or
subquery.

group_comparison_condition::=

expr

=

!=

^=

<>

>

<

>=

<=

ANY

SOME

ALL

(
expression_list

subquery
)

(expr

,

)

=

!=

^=

<>

ANY

SOME

ALL

(
expression_list

’

subquery
)

expression_list::=

expr

,

(

expr

,

)

If you use the upper form of this condition (with a single expression to the left of the operator),
then you must use the upper form of expression_list. If you use the lower form of this
condition (with multiple expressions to the left of the operator), then you must use the lower
form of expression_list, and the expressions in each expression_list must match in
number and data type the expressions to the left of the operator. If you specify subquery,
then the values returned by the subquery must match in number and data type the
expressions to the left of the operator.

Chapter 6
Comparison Conditions

6-7

See Also:

• Expression Lists

• SELECT

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules for comparison conditions

Floating-Point Conditions
The floating-point conditions let you determine whether an expression is infinite or is
the undefined result of an operation (is not a number or NaN).

floating_point_condition::=

expr IS

NOT NAN

INFINITE

In both forms of floating-point condition, expr must resolve to a numeric data type or to
any data type that can be implicitly converted to a numeric data type. Table 6-3
describes the floating-point conditions.

Table 6-3 Floating-Point Conditions

Type of
Condition

Operation Example

IS [NOT]
NAN

Returns TRUE if expr is the special
value NaN when NOT is not
specified. Returns TRUE if expr is
not the special value NaN when NOT
is specified.

SELECT COUNT(*) FROM employees
 WHERE commission_pct IS NOT NAN;

IS [NOT]
INFINITE

Returns TRUE if expr is the special
value +INF or -INF when NOT is not
specified. Returns TRUE if expr is
neither +INF nor -INF when NOT is
specified.

SELECT last_name FROM employees
 WHERE salary IS NOT INFINITE;

See Also:

• Floating-Point Numbers for more information on the Oracle
implementation of floating-point numbers

• Implicit Data Conversion for more information on how Oracle converts
floating-point data types

Chapter 6
Floating-Point Conditions

6-8

Logical Conditions
A logical condition combines the results of two component conditions to produce a single
result based on them or to invert the result of a single condition. Table 6-4 lists logical
conditions.

Table 6-4 Logical Conditions

Type of
Condition

Operation Examples

NOT Returns TRUE if the following
condition is FALSE. Returns FALSE if
it is TRUE. If it is UNKNOWN, then it
remains UNKNOWN.

SELECT *
 FROM employees
 WHERE NOT (job_id IS NULL)
 ORDER BY employee_id;
SELECT *
 FROM employees
 WHERE NOT
 (salary BETWEEN 1000 AND 2000)
 ORDER BY employee_id;

AND Returns TRUE if both component
conditions are TRUE. Returns FALSE
if either is FALSE. Otherwise returns
UNKNOWN.

SELECT *
 FROM employees
 WHERE job_id = 'PU_CLERK'
 AND department_id = 30
 ORDER BY employee_id;

OR Returns TRUE if either component
condition is TRUE. Returns FALSE if
both are FALSE. Otherwise returns
UNKNOWN.

SELECT *
 FROM employees
 WHERE job_id = 'PU_CLERK'
 OR department_id = 10
 ORDER BY employee_id;

Table 6-5 shows the result of applying the NOT condition to an expression.

Table 6-5 NOT Truth Table

-- TRUE FALSE UNKNOWN

NOT FALSE TRUE UNKNOWN

Table 6-6 shows the results of combining the AND condition to two expressions.

Table 6-6 AND Truth Table

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

Chapter 6
Logical Conditions

6-9

For example, in the WHERE clause of the following SELECT statement, the AND logical
condition is used to ensure that only those hired before 2004 and earning more
than $2500 a month are returned:

SELECT * FROM employees
WHERE hire_date < TO_DATE('01-JAN-2004', 'DD-MON-YYYY')
 AND salary > 2500
 ORDER BY employee_id;

Table 6-7 shows the results of applying OR to two expressions.

Table 6-7 OR Truth Table

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

For example, the following query returns employees who have a 40% commission rate
or a salary greater than $20,000:

SELECT employee_id FROM employees
 WHERE commission_pct = .4 OR salary > 20000
 ORDER BY employee_id;

Model Conditions
Model conditions can be used only in the MODEL clause of a SELECT statement.

IS ANY Condition
The IS ANY condition can be used only in the model_clause of a SELECT statement.
Use this condition to qualify all values of a dimension column, including NULL.

is_any_condition::=

dimension_column IS

ANY

The condition always returns a Boolean value of TRUE in order to qualify all values of
the column.

See Also:

model_clause and Model Expressions for information

Example

The following example sets sales for each product for year 2000 to 0:

Chapter 6
Model Conditions

6-10

SELECT country, prod, year, s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER
 (
 s[ANY, 2000] = 0
)
 ORDER BY country, prod, year;

COUNTRY PROD YEAR S
---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 0
France Mouse Pad 2001 3269.09
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 0
France Standard Mouse 2001 2164.54
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 0
Germany Mouse Pad 2001 9535.08
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 0
Germany Standard Mouse 2001 6456.13

16 rows selected.

The preceding example requires the view sales_view_ref. Refer to The MODEL clause:
Examples to create this view.

IS PRESENT Condition
is_present_condition::=

The IS PRESENT condition can be used only in the model_clause of a SELECT statement. Use
this condition to test whether the cell referenced is present prior to the execution of the
model_clause.

cell_reference IS PRESENT

The condition returns TRUE if the cell exists prior to the execution of the model_clause and
FALSE if it does not.

See Also:

model_clause and Model Expressions for information

Chapter 6
Model Conditions

6-11

Example

In the following example, if sales of the Mouse Pad for year 1999 exist, then sales of
the Mouse Pad for year 2000 is set to sales of the Mouse Pad for year 1999.
Otherwise, sales of the Mouse Pad for year 2000 is set to 0.

SELECT country, prod, year, s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER
 (
 s['Mouse Pad', 2000] =
 CASE WHEN s['Mouse Pad', 1999] IS PRESENT
 THEN s['Mouse Pad', 1999]
 ELSE 0
 END
)
 ORDER BY country, prod, year;

COUNTRY PROD YEAR S
---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3678.69
France Mouse Pad 2001 3269.09
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 2164.54
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 8346.44
Germany Mouse Pad 2001 9535.08
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 6456.13
16 rows selected.

The preceding example requires the view sales_view_ref. Refer to The MODEL
clause: Examples to create this view.

Multiset Conditions
Multiset conditions test various aspects of nested tables.

IS A SET Condition
Use IS A SET conditions to test whether a specified nested table is composed of unique
elements. The condition returns UNKNOWN if the nested table is NULL. Otherwise, it
returns TRUE if the nested table is a set, even if it is a nested table of length zero, and
FALSE otherwise.

Chapter 6
Multiset Conditions

6-12

is_a_set_condition::=

nested_table IS

NOT

A SET

Example

The following example selects from the table customers_demo those rows in which the
cust_address_ntab nested table column contains unique elements:

SELECT customer_id, cust_address_ntab
 FROM customers_demo
 WHERE cust_address_ntab IS A SET
 ORDER BY customer_id;

CUSTOMER_ID CUST_ADDRESS_NTAB(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
--
 101 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'))
 102 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'))
 103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))
 104 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'))
 105 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'))

The preceding example requires the table customers_demo and a nested table column
containing data. Refer to "Multiset Operators " to create this table and nested table column.

IS EMPTY Condition
Use the IS [NOT] EMPTY conditions to test whether a specified nested table is empty. A nested
table that consists of a single value, a NULL, is not considered an empty nested table.

is_empty_condition::=

nested_table IS

NOT

EMPTY

The condition returns a Boolean value: TRUE for an IS EMPTY condition if the collection is
empty, and TRUE for an IS NOT EMPTY condition if the collection is not empty. If you specify
NULL for the nested table or varray, then the result is NULL.

Example

The following example selects from the sample table pm.print_media those rows in which
the ad_textdocs_ntab nested table column is not empty:

SELECT product_id, TO_CHAR(ad_finaltext) AS text
 FROM print_media
 WHERE ad_textdocs_ntab IS NOT EMPTY
 ORDER BY product_id, text;

Chapter 6
Multiset Conditions

6-13

MEMBER Condition
member_condition::=

expr

NOT

MEMBER

OF

nested_table

A member_condition is a membership condition that tests whether an element is a
member of a nested table. The return value is TRUE if expr is equal to a member of the
specified nested table or varray. The return value is NULL if expr is null or if the nested
table is empty.

• expr must be of the same type as the element type of the nested table.

• The OF keyword is optional and does not change the behavior of the condition.

• The NOT keyword reverses the Boolean output: Oracle returns FALSE if expr is a
member of the specified nested table.

• The element types of the nested table must be comparable. Refer to Comparison
Conditions for information on the comparability of nonscalar types.

Example

The following example selects from the table customers_demo those rows in which the
cust_address_ntab nested table column contains the values specified in the WHERE
clause:

SELECT customer_id, cust_address_ntab
 FROM customers_demo
 WHERE cust_address_typ('8768 N State Rd 37', 47404,
 'Bloomington', 'IN', 'US')
 MEMBER OF cust_address_ntab
 ORDER BY customer_id;

CUSTOMER_ID CUST_ADDRESS_NTAB(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
------------ ---
 103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))

The preceding example requires the table customers_demo and a nested table column
containing data. Refer to Multiset Operators to create this table and nested table
column.

SUBMULTISET Condition
The SUBMULTISET condition tests whether a specified nested table is a submultiset of
another specified nested table.

The operator returns a Boolean value. TRUE is returned when nested_table1 is a
submultiset of nested_table2. nested_table1 is a submultiset of nested_table2 when
one of the following conditions occur:

• nested_table1 is not null and contains no rows. TRUE is returned even if
nested_table2 is null since an empty multiset is a submultiset of any non-null
replacement for nested_table2.

Chapter 6
Multiset Conditions

6-14

• nested_table1 and nested_table2 are not null, nested_table1 does not contain a null
element, and there is a one-to-one mapping of each element in nested_table1 to an
equal element in nested_table2.

NULL is returned when one of the following conditions occurs:

• nested_table1 is null.

• nested_table2 is null, and nested_table1 is not null and not empty.

• nested_table1 is a submultiset of nested_table2 after modifying each null element of
nested_table1 and nested_table2 to some non-null value, enabling a one-to-one
mapping of each element in nested_table1 to an equal element in nested_table2.

If none of the above conditions occur, then FALSE is returned.

submultiset_condition::=

nested_table1

NOT

SUBMULTISET

OF

nested_table2

• The OF keyword is optional and does not change the behavior of the operator.

• The NOT keyword reverses the Boolean output: Oracle returns FALSE if nested_table1 is
a subset of nested_table2.

• The element types of the nested table must be comparable. Refer to Comparison
Conditions for information on the comparability of nonscalar types.

Example

The following example selects from the customers_demo table those rows in which the
cust_address_ntab nested table is a submultiset of the cust_address2_ntab nested table:

SELECT customer_id, cust_address_ntab
 FROM customers_demo
 WHERE cust_address_ntab SUBMULTISET OF cust_address2_ntab
 ORDER BY customer_id;

The preceding example requires the table customers_demo and two nested table columns
containing data. Refer to Multiset Operators to create this table and nested table columns.

Pattern-matching Conditions
The pattern-matching conditions compare character data.

LIKE Condition
The LIKE conditions specify a test involving pattern matching. Whereas the equality operator
(=) exactly matches one character value to another, the LIKE conditions match a portion of
one character value to another by searching the first value for the pattern specified by the
second. LIKE calculates strings using characters as defined by the input character set. LIKEC
uses Unicode complete characters. LIKE2 uses UCS2 code points. LIKE4 uses UCS4 code
points.

Chapter 6
Pattern-matching Conditions

6-15

like_condition::=

char1

NOT

LIKE

LIKEC

LIKE2

LIKE4

char2

ESCAPE esc_char

In this syntax:

• char1 is a character expression, such as a character column, called the search
value.

• char2 is a character expression, usually a literal, called the pattern.

• esc_char is a character expression, usually a literal, called the escape character.

The LIKE condition is the best choice in almost all situations. Use the following
guidelines to determine whether any of the variations would be helpful in your
environment:

• Use LIKE2 to process strings using UCS-2 semantics. LIKE2 treats a Unicode
supplementary character as two characters.

• Use LIKE4 to process strings using UCS-4 semantics. LIKE4 treats a Unicode
supplementary character as one character.

• Use LIKEC to process strings using Unicode complete character semantics. LIKEC
treats a composite character as one character.

For more on character length see the following:

• Oracle Database Globalization Support Guide

• Oracle Database SecureFiles and Large Objects Developer's Guide

If esc_char is not specified, then there is no default escape character. If any of char1,
char2, or esc_char is null, then the result is unknown. Otherwise, the escape
character, if specified, must be a character string of length 1.

All of the character expressions (char1, char2, and esc_char) can be of any of the
data types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. If they differ, then Oracle converts all
of them to the data type of char1.

The pattern can contain special pattern-matching characters:

• An underscore (_) in the pattern matches exactly one character (as opposed to
one byte in a multibyte character set) in the value.

• A percent sign (%) in the pattern can match zero or more characters (as opposed
to bytes in a multibyte character set) in the value. The pattern '%' cannot match a
null.

You can include the actual characters % or _ in the pattern by using the ESCAPE clause,
which identifies the escape character. If the escape character precedes the character %
or _ in the pattern, then Oracle interprets this character literally in the pattern rather
than as a special pattern-matching character. You can also search for the escape

Chapter 6
Pattern-matching Conditions

6-16

character itself by repeating it. For example, if @ is the escape character, then you can use
@@ to search for @.

Note:

Only ASCII-equivalent underscore (_) and percent (%) characters are recognized
as pattern-matching characters. Their full-width variants, present in East Asian
character sets and in Unicode, are treated as normal characters.

Table 6-8 describes the LIKE conditions.

Table 6-8 LIKE Condition

Type of
Condition

Operation Example

x [NOT]
LIKE y
[ESCAPE 'z']

TRUE if x does [not] match the pattern y.
Within y, the character % matches any
string of zero or more characters except
null. The character _ matches any single
character. Any character can follow ESCAPE
except percent (%) and underbar (_). A
wildcard character is treated as a literal if
preceded by the escape character.

SELECT last_name
 FROM employees
 WHERE last_name
 LIKE '%A_B%' ESCAPE '\'
 ORDER BY last_name;

To process the LIKE conditions, Oracle divides the pattern into subpatterns consisting of one
or two characters each. The two-character subpatterns begin with the escape character and
the other character is %, or _, or the escape character.

Let P1, P2, ..., Pn be these subpatterns. The like condition is true if there is a way to partition
the search value into substrings S1, S2, ..., Sn so that for all i between 1 and n:

• If Pi is _, then Si is a single character.

• If Pi is %, then Si is any string.

• If Pi is two characters beginning with an escape character, then Si is the second
character of Pi.

• Otherwise, Pi = Si.

With the LIKE conditions, you can compare a value to a pattern rather than to a constant. The
pattern must appear after the LIKE keyword. For example, you can issue the following query
to find the salaries of all employees with names beginning with R:

SELECT salary
 FROM employees
 WHERE last_name LIKE 'R%'
 ORDER BY salary;

The following query uses the = operator, rather than the LIKE condition, to find the salaries of
all employees with the name 'R%':

SELECT salary
 FROM employees
 WHERE last_name = 'R%'
 ORDER BY salary;

Chapter 6
Pattern-matching Conditions

6-17

The following query finds the salaries of all employees with the name 'SM%'. Oracle
interprets 'SM%' as a text literal, rather than as a pattern, because it precedes the
LIKE keyword:

SELECT salary
 FROM employees
 WHERE 'SM%' LIKE last_name
 ORDER BY salary;

Collation and Case Sensitivity

The LIKE condition is collation-sensitive. Oracle Database compares the subpattern Pi
to the substring Si in the processing algorithm above using the collation determined
from the derived collations of char1 and char2. If this collation is case-insensitive, the
pattern-matching is case-insensitive as well.

See Also:

Oracle Database Globalization Support Guide for more information on case-
and accent-insensitive collations and on collation determination rules for the
LIKE condition

Pattern Matching on Indexed Columns

When you use LIKE to search an indexed column for a pattern, Oracle can use the
index to improve performance of a query if the leading character in the pattern is not %
or _. In this case, Oracle can scan the index by this leading character. If the first
character in the pattern is % or _, then the index cannot improve performance because
Oracle cannot scan the index.

LIKE Condition: General Examples

This condition is true for all last_name values beginning with Ma:

last_name LIKE 'Ma%'

All of these last_name values make the condition true:

Mallin, Markle, Marlow, Marvins, Mavris, Matos

Case is significant, so last_name values beginning with MA, ma, and mA make the
condition false.

Consider this condition:

last_name LIKE 'SMITH_'

This condition is true for these last_name values:

SMITHE, SMITHY, SMITHS

This condition is false for SMITH because the special underscore character (_) must
match exactly one character of the last_name value.

Chapter 6
Pattern-matching Conditions

6-18

ESCAPE Clause Example

The following example searches for employees with the pattern A_B in their name:

SELECT last_name
 FROM employees
 WHERE last_name LIKE '%A_B%' ESCAPE '\'
 ORDER BY last_name;

The ESCAPE clause identifies the backslash (\) as the escape character. In the pattern, the
escape character precedes the underscore (_). This causes Oracle to interpret the
underscore literally, rather than as a special pattern matching character.

Patterns Without % Example

If a pattern does not contain the % character, then the condition can be true only if both
operands have the same length. Consider the definition of this table and the values inserted
into it:

CREATE TABLE ducks (f CHAR(6), v VARCHAR2(6));
INSERT INTO ducks VALUES ('DUCK', 'DUCK');
SELECT '*'||f||'*' "char",
 '*'||v||'*' "varchar"
 FROM ducks;

char varchar
-------- --------
*DUCK * *DUCK*

Because Oracle blank-pads CHAR values, the value of f is blank-padded to 6 bytes. v is not
blank-padded and has length 4.

REGEXP_LIKE Condition
REGEXP_LIKE is similar to the LIKE condition, except REGEXP_LIKE performs regular
expression matching instead of the simple pattern matching performed by LIKE. This
condition evaluates strings using characters as defined by the input character set.

This condition complies with the POSIX regular expression standard and the Unicode
Regular Expression Guidelines. For more information, refer to Oracle Regular Expression
Support.

regexp_like_condition::=

REGEXP_LIKE (source_char , pattern

, match_param

)

• source_char is a character expression that serves as the search value. It is commonly a
character column and can be of any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB, or NCLOB.

• pattern is the regular expression. It is usually a text literal and can be of any of the
data types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. It can contain up to 512 bytes. If the
data type of pattern is different from the data type of source_char, Oracle converts

Chapter 6
Pattern-matching Conditions

6-19

pattern to the data type of source_char. For a listing of the operators you can
specify in pattern, refer to Oracle Regular Expression Support.

• match_param is a character expression of the data type VARCHAR2 or CHAR that lets
you change the default matching behavior of the condition.

The value of match_param can include one or more of the following characters:

– 'i' specifies case-insensitive matching, even if the determined collation of the
condition is case-sensitive.

– 'c' specifies case-sensitive and accent-sensitive matching, even if the
determined collation of the condition is case-insensitive or accent-insensitive.

– 'n' allows the period (.), which is the match-any-character wildcard character,
to match the newline character. If you omit this parameter, then the period
does not match the newline character.

– 'm' treats the source string as multiple lines. Oracle interprets ^ and $ as the
start and end, respectively, of any line anywhere in the source string, rather
than only at the start or end of the entire source string. If you omit this
parameter, then Oracle treats the source string as a single line.

– 'x' ignores whitespace characters. By default, whitespace characters match
themselves.

If the value of match_param contains multiple contradictory characters, then Oracle
uses the last character. For example, if you specify 'ic', then Oracle uses case-
sensitive and accent-sensitive matching. If the value contains a character other
than those shown above, then Oracle returns an error.

If you omit match_param, then:

– The default case and accent sensitivity are determined by the determined
collation of the REGEXP_LIKE condition.

– A period (.) does not match the newline character.

– The source string is treated as a single line.

Similar to the LIKE condition, the REGEXP_LIKE condition is collation-sensitive.

See Also:

• LIKE Condition

• REGEXP_INSTR , REGEXP_REPLACE , and REGEXP_SUBSTR for
functions that provide regular expression support

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules for the REGEXP_LIKE condition

Examples

The following query returns the first and last names for those employees with a first
name of Steven or Stephen (where first_name begins with Ste and ends with en and
in between is either v or ph):

Chapter 6
Pattern-matching Conditions

6-20

SELECT first_name, last_name
FROM employees
WHERE REGEXP_LIKE (first_name, '^Ste(v|ph)en$')
ORDER BY first_name, last_name;

FIRST_NAME LAST_NAME
-------------------- -------------------------
Steven King
Steven Markle
Stephen Stiles

The following query returns the last name for those employees with a double vowel in their
last name (where last_name contains two adjacent occurrences of either a, e, i, o, or u,
regardless of case):

SELECT last_name
FROM employees
WHERE REGEXP_LIKE (last_name, '([aeiou])\1', 'i')
ORDER BY last_name;

LAST_NAME

De Haan
Greenberg
Khoo
Gee
Greene
Lee
Bloom
Feeney

Null Conditions
A NULL condition tests for nulls. This is the only condition that you should use to test for nulls.

null_condition::=

expr IS

NOT

NULL

Table 6-9 lists the null conditions.

Table 6-9 Null Condition

Type of
Condition

Operation Example

IS [NOT]
NULL

Tests for nulls.

See Also: Nulls
SELECT last_name
 FROM employees
 WHERE commission_pct
 IS NULL
 ORDER BY last_name;

Chapter 6
Null Conditions

6-21

XML Conditions
XML conditions determine whether a specified XML resource can be found in a
specified path.

EQUALS_PATH Condition
The EQUALS_PATH condition determines whether a resource in the Oracle XML
database can be found in the database at a specified path.

Use this condition in queries to RESOURCE_VIEW and PATH_VIEW. These public views
provide a mechanism for SQL access to data stored in the XML database repository.
RESOURCE_VIEW contains one row for each resource in the repository, and PATH_VIEW
contains one row for each unique path in the repository.

equals_path_condition::=

EQUALS_PATH (column , path_string

, correlation_integer

)

This condition applies only to the path as specified. It is similar to but more restrictive
than UNDER_PATH.

For path_string, specify the (absolute) path name to resolve. This can contain
components that are hard or weak resource links.

The optional correlation_integer argument correlates the EQUALS_PATH condition
with its ancillary functions DEPTH and PATH.

See Also:

UNDER_PATH Condition , DEPTH , and PATH

Example

The view RESOURCE_VIEW computes the paths (in the any_path column) that lead to all
XML resources (in the res column) in the database repository. The following example
queries the RESOURCE_VIEW view to find the paths to the resources in the sample
schema oe. The EQUALS_PATH condition causes the query to return only the specified
path:

SELECT ANY_PATH FROM RESOURCE_VIEW
 WHERE EQUALS_PATH(res, '/sys/schemas/OE/www.example.com')=1;

ANY_PATH

/sys/schemas/OE/www.example.com

Compare this example with that for UNDER_PATH Condition .

Chapter 6
XML Conditions

6-22

UNDER_PATH Condition
The UNDER_PATH condition determines whether resources specified in a column can be found
under a particular path specified by path_string in the Oracle XML database repository. The
path information is computed by the RESOURCE_VIEW view, which you query to use this
condition.

Use this condition in queries to RESOURCE_VIEW and PATH_VIEW. These public views provide a
mechanism for SQL access to data stored in the XML database repository. RESOURCE_VIEW
contains one row for each resource in the repository, and PATH_VIEW contains one row for
each unique path in the repository.

under_path_condition::=

UNDER_PATH (column

, levels

, path_string

, correlation_integer

)

The optional levels argument indicates the number of levels down from path_string Oracle
should search. For levels, specify any nonnegative integer.

The optional correlation_integer argument correlates the UNDER_PATH condition with its
ancillary functions PATH and DEPTH.

See Also:

The related condition EQUALS_PATH Condition and the ancillary functions DEPTH
and PATH

Example

The view RESOURCE_VIEW computes the paths (in the any_path column) that lead to all XML
resources (in the res column) in the database repository. The following example queries the
RESOURCE_VIEW view to find the paths to the resources in the sample schema oe. The query
returns the path of the XML schema that was created in XMLType Table Examples:

SELECT ANY_PATH FROM RESOURCE_VIEW
 WHERE UNDER_PATH(res, '/sys/schemas/OE/www.example.com')=1;

ANY_PATH
--
/sys/schemas/OE/www.example.com/xwarehouses.xsd

SQL For JSON Conditions
SQL for JSON conditions allow you to test JavaScript Object Notation (JSON) data as
follows:

• IS JSON Condition lets you test whether an expression is syntactically correct JSON data

Chapter 6
SQL For JSON Conditions

6-23

• JSON_EXISTS Condition lets you test whether a specified JSON value exists in
JSON data

• JSON_TEXTCONTAINS Condition lets you test whether a specified character
string exists in JSON property values.

• JSON_EQUAL Condition tests whether two JSON values are the same.

JSON_condition::=

is_JSON_condition

JSON_exists_condition

JSON_textcontains_condition

IS JSON Condition
Use this SQL/JSON condition to test whether an expression is syntactically correct, or
well-formed, JSON data.

• If you specify IS JSON, then this condition returns TRUE if the expression is well-
formed JSON data and FALSE if the expression is not well-formed JSON data.

• If you specify IS NOT JSON, then this condition returns TRUE if the expression is not
well-formed JSON data and FALSE if the expression is well-formed JSON data.

is_JSON_condition::=

expr IS

NOT

JSON

FORMAT JSON

STRICT

LAX

ALLOW

DISALLOW
SCALARS

WITH

WITHOUT
UNIQUE KEYS

• Use expr to specify the JSON data to be evaluated. Specify an expression that
evaluates to a text literal. If expr is a column, then the column must be of data type
VARCHAR2, CLOB, or BLOB. If expr evaluates to null or a text literal of length zero,
then this condition returns UNKNOWN.

• You must specify FORMAT JSON if expr is a column of data type BLOB.

• If you specify STRICT, then this condition considers only strict JSON syntax to be
well-formed JSON data. If you specify LAX, then this condition also considers lax
JSON syntax to be well-formed JSON data. The default is LAX. Refer to Oracle
Database JSON Developer’s Guide for more information on strict and lax JSON
syntax.

• If you specify WITH UNIQUE KEYS, then this condition considers JSON data to be
well-formed only if key names are unique within each object. If you specify

Chapter 6
SQL For JSON Conditions

6-24

WITHOUT UNIQUE KEYS, then this condition considers JSON data to be well-formed even if
duplicate key names occur within an object. A WITHOUT UNIQUE KEYS test performs faster
than a WITH UNIQUE KEYS test. The default is WITHOUT UNIQUE KEYS.

Examples

Testing for STRICT or LAX JSON Syntax: Example

The following statement creates table t with column col1:

CREATE TABLE t (col1 VARCHAR2(100));

The following statements insert values into column col1 of table t:

INSERT INTO t VALUES ('["LIT192", "CS141", "HIS160"]');
INSERT INTO t VALUES ('{ "Name": "John" }');
INSERT INTO t VALUES ('{ "Grade Values" : { A : 4.0, B : 3.0, C : 2.0 } }');
INSERT INTO t VALUES ('{ "isEnrolled" : true }');
INSERT INTO t VALUES ('{ "isMatriculated" : False }');
INSERT INTO t VALUES (NULL);
INSERT INTO t VALUES ('This is not well-formed JSON data');

The following statement queries table t and returns col1 values that are well-formed JSON
data. Because neither the STRICT nor LAX keyword is specified, this example uses the default
LAX setting. Therefore, this query returns values that use strict or lax JSON syntax.

SELECT col1
 FROM t
 WHERE col1 IS JSON;

COL1
--
["LIT192", "CS141", "HIS160"]
{ "Name": "John" }
{ "Grade Values" : { A : 4.0, B : 3.0, C : 2.0 } }
{ "isEnrolled" : true }
{ "isMatriculated" : False }

The following statement queries table t and returns col1 values that are well-formed JSON
data. This example specifies the STRICT setting. Therefore, this query returns only values that
use strict JSON syntax.

SELECT col1
 FROM t
 WHERE col1 IS JSON STRICT;

COL1
--
["LIT192", "CS141", "HIS160"]
{ "Name": "John" }
{ "isEnrolled" : true }

The following statement queries table t and returns col1 values that use lax JSON syntax,
but omits col1 values that use strict JSON syntax. Therefore, this query returns only values
that contain the exceptions allowed in lax JSON syntax.

SELECT col1
 FROM t
 WHERE col1 IS NOT JSON STRICT AND col1 IS JSON LAX;

Chapter 6
SQL For JSON Conditions

6-25

COL1
--
{ "Grade Values" : { A : 4.0, B : 3.0, C : 2.0 } }
{ "isMatriculated" : False }

Testing for Unique Keys: Example

The following statement creates table t with column col1:

CREATE TABLE t (col1 VARCHAR2(100));

The following statements insert values into column col1 of table t:

INSERT INTO t VALUES ('{a:100, b:200, c:300}');
INSERT INTO t VALUES ('{a:100, a:200, b:300}');
INSERT INTO t VALUES ('{a:100, b : {a:100, c:300}}');

The following statement queries table t and returns col1 values that are well-formed
JSON data with unique key names within each object:

SELECT col1 FROM t
 WHERE col1 IS JSON WITH UNIQUE KEYS;

COL1

{a:100, b:200, c:300}
{a:100, b : {a:100, c:300}}

The second row is returned because, while the key name a appears twice, it is in two
different objects.

The following statement queries table t and returns col1 values that are well-formed
JSON data, regardless of whether there are unique key names within each object:

SELECT col1 FROM t
 WHERE col1 IS JSON WITHOUT UNIQUE KEYS;

COL1

{a:100, b:200, c:300}
{a:100, a:200, b:300}
{a:100, b : {a:100, c:300}}

Using IS JSON as a Check Constraint: Example

The following statement creates table j_purchaseorder, which will store JSON data in
column po_document. The statement uses the IS JSON condition as a check constraint
to ensure that only well-formed JSON is stored in column po_document.

CREATE TABLE j_purchaseorder
 (id RAW (16) NOT NULL,
 date_loaded TIMESTAMP(6) WITH TIME ZONE,
 po_document CLOB CONSTRAINT ensure_json CHECK (po_document IS JSON));

JSON_EQUAL Condition
Syntax

JSON_EQUAL (expr , expr)

Chapter 6
SQL For JSON Conditions

6-26

Purpose

The Oracle SQL condition JSON_EQUAL compares two JSON values and returns true if they are
equal. It returns false if the two values are not equal. The input values must be valid JSON
data.

The comparison ignores insignificant whitespace and insignificant object member order. For
example, JSON objects are equal, if they have the same members, regardless of their order.

If either of the two compared inputs has one or more duplicate fields, then the value returned
by JSON_EQUAL is unspecified.

JSON_EQUAL supports ERROR ON ERROR, FALSE ON ERROR, and TRUE ON ERROR. The default is
FALSE ON ERROR. A typical example of an error is when the input expression is not valid JSON.

Examples

The following statements return TRUE:

JSON_EQUAL('{}', '{ }')

JSON_EQUAL('{a:1, b:2}', '{b:2 , a:1 }')

The following statement return FALSE:

JSON_EQUAL('{a:"1"}', '{a:1 }') -> FALSE

The following statement results in a ORA-40441 JSON syntax error

JSON_EQUAL('[1]', '[}' ERROR ON ERROR)

See Also:

• Oracle Database JSON Developer’s Guide for more information.

JSON_EXISTS Condition
Use the SQL/JSON condition JSON_EXISTS to test whether a specified JSON value exists in
JSON data. This condition returns TRUE if the JSON value exists and FALSE if the JSON value
does not exist.

JSON_exists_condition::=

JSON_EXISTS (expr

FORMAT JSON

, JSON_basic_path_expression

JSON_passing_clause JSON_exists_on_error_clause

JSON_exists_on_empty_clause

)

Chapter 6
SQL For JSON Conditions

6-27

(JSON_basic_path_expression: See Oracle Database JSON Developer’s Guide)

JSON_passing_clause::=

PASSING expr AS identifier

,

JSON_exists_on_error_clause::=

ERROR

TRUE

FALSE

ON ERROR

JSON_exists_on_empty_clause::=

ERROR

TRUE

FALSE

ON EMPTY

expr

Use this clause to specify the JSON data to be evaluated. For expr, specify an
expression that evaluates to a text literal. If expr is a column, then the column must be
of data type VARCHAR2, CLOB, or BLOB. If expr evaluates to null or a text literal of length
zero, then the condition returns UNKNOWN.

If expr is not a text literal of well-formed JSON data using strict or lax syntax, then the
condition returns FALSE by default. You can use the JSON_exists_on_error_clause to
override this default behavior. Refer to the JSON_exists_on_error_clause.

FORMAT JSON

You must specify FORMAT JSON if expr is a column of data type BLOB.

JSON_basic_path_expression

Use this clause to specify a SQL/JSON path expression. The condition uses the path
expression to evaluate expr and determine if a JSON value that matches, or satisfies,
the path expression exists. The path expression must be a text literal, but it can
contain variables whose values are passed to the path expression by the
JSON_passing_clause. See Oracle Database JSON Developer’s Guide for the full
semantics of JSON_basic_path_expression.

JSON_passing_clause

Use this clause to pass values to the path expression. For expr, specify a value of
data type VARCHAR2, NUMBER, BINARY_DOUBLE, DATE, TIMESTAMP, or TIMESTAMP WITH TIME
ZONE. The result of evaluating expr is bound to the corresponding identifier in the
JSON_basic_path_expression.

Chapter 6
SQL For JSON Conditions

6-28

JSON_exists_on_error_clause

Use this clause to specify the value returned by this condition when expr is not well-formed
JSON data.

You can specify the following clauses:

• ERROR ON ERROR - Returns the appropriate Oracle error when expr is not well-formed
JSON data.

• TRUE ON ERROR - Returns TRUE when expr is not well-formed JSON data.

• FALSE ON ERROR - Returns FALSE when expr is not well-formed JSON data. This is the
default.

JSON_exists_on_empty_clause

Use this clause to specify the value returned by this function if no match is found when the
JSON data is evaluated using the SQL/JSON path expression. This clause allows you to
specify a different outcome for this type of error than the outcome specified with the
JSON_exists_on_error_clause.

You can specify the following clauses:

• NULL ON EMPTY - Returns null when no match is found.

• ERROR ON EMPTY - Returns the appropriate Oracle error when no match is found.

• DEFAULT literal ON EMPTY - Returns literal when no match is found. The data type of
literal must match the data type of the value returned by this function.

If you omit this clause, then the JSON_exists_on_error_clause determines the value
returned when no match is found.

Examples

The following statement creates table t with column name:

CREATE TABLE t (name VARCHAR2(100));

The following statements insert values into column name of table t:

INSERT INTO t VALUES ('[{first:"John"}, {middle:"Mark"}, {last:"Smith"}]');
INSERT INTO t VALUES ('[{first:"Mary"}, {last:"Jones"}]');
INSERT INTO t VALUES ('[{first:"Jeff"}, {last:"Williams"}]');
INSERT INTO t VALUES ('[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]');
INSERT INTO t VALUES (NULL);
INSERT INTO t VALUES ('This is not well-formed JSON data');

The following statement queries column name in table t and returns JSON data that consists
of an array whose first element is an object with property name first. The ON ERROR clause is
not specified. Therefore, the JSON_EXISTS condition returns FALSE for values that are not well-
formed JSON data.

SELECT name FROM t
 WHERE JSON_EXISTS(name, '$[0].first');

NAME
--
[{first:"John"}, {middle:"Mark"}, {last:"Smith"}]
[{first:"Mary"}, {last:"Jones"}]

Chapter 6
SQL For JSON Conditions

6-29

[{first:"Jeff"}, {last:"Williams"}]
[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]

The following statement queries column name in table t and returns JSON data that
consists of an array whose second element is an object with property name middle.
The ON ERROR clause is not specified. Therefore, the JSON_EXISTS condition returns
FALSE for values that are not well-formed JSON data.

SELECT name FROM t
 WHERE JSON_EXISTS(name, '$[1].middle');

NAME
--
[{first:"John"}, {middle:"Mark"}, {last:"Smith"}]
[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]

The following statement is similar to the previous statement, except that the TRUE ON
ERROR clause is specified. Therefore, the JSON_EXISTS condition returns TRUE for values
that are not well-formed JSON data.

SELECT name FROM t
 WHERE JSON_EXISTS(name, '$[1].middle' TRUE ON ERROR);

NAME
--
[{first:"John"}, {middle:"Mark"}, {last:"Smith"}]
[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]
This is not well-formed JSON data

The following statement queries column name in table t and returns JSON data that
consists of an array that contains an element that is an object with property name
last. The wildcard symbol (*) is specified for the array index. Therefore, the query
returns arrays that contain such an object, regardless of its index number in the array.

SELECT name FROM t
 WHERE JSON_EXISTS(name, '$[*].last');

NAME
--
[{first:"John"}, {middle:"Mark"}, {last:"Smith"}]
[{first:"Mary"}, {last:"Jones"}]
[{first:"Jeff"}, {last:"Williams"}]
[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]

The following statement performs a filter expression using the passing clause. The
SQL/JSON variable $var1 in the comparison predicate (@.middle == $var1) gets its
value from the bind variable var1 of the PASSING clause.

Using bind variables for value comparisons avoids query re-compilation.

SELECT name FROM t

 WHERE JSON_EXISTS(name, '$[1]?(@.middle == $var1)' PASSING 'Anne' as "var1");

NAME

--

[{first:"Jean"}, {middle:"Anne"}, {last:"Brown"}]

Chapter 6
SQL For JSON Conditions

6-30

See Also:

Condition JSON_Exists

JSON_TEXTCONTAINS Condition
Use the SQL/JSON condition JSON_TEXTCONTAINS to test whether a specified character string
exists in JSON property values. You can use this condition to filter JSON data on a specific
word or number.

This condition takes the following arguments:

• A table or view column that contains JSON data. A JSON search index, which is an
Oracle Text index designed specifically for use with JSON data, must be defined on the
column. Each row of JSON data in the column is referred to as a JSON document.

• A SQL/JSON path expression. The path expression is applied to each JSON document in
an attempt to match a specific JSON object within the document. The path expression
can contain only JSON object steps; it cannot contain JSON array steps.

• A character string. The condition searches for the character string in all of the string and
numeric property values in the matched JSON object, including array values. The string
must exist as a separate word in the property value. For example, if you search for 'beth',
then a match will be found for string property value "beth smith", but not for "elizabeth
smith". If you search for '10', then a match will be found for numeric property value 10 or
string property value "10 main street", but a match will not be found for numeric property
value 110 or string property value "102 main street".

This condition returns TRUE if a match is found, and FALSE if a match is not found.

See Also:

JSON Full text search queries

JSON_textcontains_condition::=

JSON_TEXTCONTAINS (column , JSON_basic_path_expression , string)

(JSON_basic_path_expression: See Oracle Database JSON Developer’s Guide)

column

Specify the name of the table or view column containing the JSON data to be tested. The
column must be of data type VARCHAR2, CLOB, or BLOB. A JSON search index, which is an
Oracle Text index designed specifically for use with JSON data, must be defined on the
column. If a column value is a null or a text literal of length zero, then the condition returns
UNKNOWN.

If a column value is not a text literal of well-formed JSON data using strict or lax syntax, then
the condition returns FALSE.

Chapter 6
SQL For JSON Conditions

6-31

JSON_basic_path_expression

Use this clause to specify a SQL/JSON path expression. The condition uses the path
expression to evaluate column and determine if a JSON value that matches, or
satisfies, the path expression exists. The path expression must be a text literal. See
Oracle Database JSON Developer’s Guide for the full semantics of
JSON_basic_path_expression.

string

The condition searches for the character string specified by string. The string must be
enclosed in single quotation marks.

Examples

The following statement creates table families with column family_doc:

CREATE TABLE families (family_doc VARCHAR2(200));

The following statement creates a JSON search index on column family_doc:

CREATE INDEX ix
 ON families(family_doc)
 INDEXTYPE IS CTXSYS.CONTEXT
 PARAMETERS ('SECTION GROUP CTXSYS.JSON_SECTION_GROUP SYNC (ON COMMIT)');

The following statements insert JSON documents that describe families into column
family_doc:

INSERT INTO families
VALUES ('{family : {id:10, ages:[40,38,12], address : {street : "10 Main Street"}}}');

INSERT INTO families
VALUES ('{family : {id:11, ages:[42,40,10,5], address : {street : "200 East Street", apt :
20}}}');

INSERT INTO families
VALUES ('{family : {id:12, ages:[25,23], address : {street : "300 Oak Street", apt : 10}}}');

The following statement commits the transaction:

COMMIT;

The following query returns the JSON documents that contain 10 in any property value
in the document:

SELECT family_doc FROM families
 WHERE JSON_TEXTCONTAINS(family_doc, '$', '10');

FAMILY_DOC
--
{family : {id:10, ages:[40,38,12], address : {street : "10 Main Street"}}}
{family : {id:11, ages:[42,40,10,5], address : {street : "200 East Street", apt : 20}}}
{family : {id:12, ages:[25,23], address : {street : "300 Oak Street", apt : 10}}}

The following query returns the JSON documents that contain 10 in the id property
value:

SELECT family_doc FROM families
 where json_textcontains(family_doc, '$.family.id', '10');

Chapter 6
SQL For JSON Conditions

6-32

FAMILY_DOC
--
{family : {id:10, ages:[40,38,12], address : {street : "10 Main Street"}}}

The following query returns the JSON documents that have a 10 in the array of values for the
ages property:

SELECT family_doc FROM families
 WHERE JSON_TEXTCONTAINS(family_doc, '$.family.ages', '10');

FAMILY_DOC
--
{family : {id:11, ages:[42,40,10,5], address : {street : "200 East Street", apt : 20}}}

The following query returns the JSON documents that have a 10 in the address property
value:

SELECT family_doc FROM families
 WHERE JSON_TEXTCONTAINS(family_doc, '$.family.address', '10');

FAMILY_DOC
--
{family : {id:10, ages:[40,38,12], address : {street : "10 Main Street"}}}
{family : {id:12, ages:[25,23], address : {street : "300 Oak Street", apt : 10}}}

The following query returns the JSON documents that have a 10 in the apt property value:

SELECT family_doc FROM families
 WHERE JSON_TEXTCONTAINS(family_doc, '$.family.address.apt', '10');

FAMILY_DOC
--
{family : {id:12, ages:[25,23], address : {street : "300 Oak Street", apt : 10}}}

Compound Conditions
A compound condition specifies a combination of other conditions.

compound_condition::=

(condition)

NOT condition

condition
AND

OR
condition

See Also:

Logical Conditions for more information about NOT, AND, and OR conditions

Chapter 6
Compound Conditions

6-33

BETWEEN Condition
A BETWEEN condition determines whether the value of one expression is in an interval
defined by two other expressions.

between_condition::=

expr1

NOT

BETWEEN expr2 AND expr3

All three expressions must be numeric, character, or datetime expressions. In SQL, it
is possible that expr1 will be evaluated more than once. If the BETWEEN expression
appears in PL/SQL, expr1 is guaranteed to be evaluated only once. If the expressions
are not all the same data type, then Oracle Database implicitly converts the
expressions to a common data type. If it cannot do so, then it returns an error.

See Also:

Implicit Data Conversion for more information on SQL data type conversion

The value of

expr1 NOT BETWEEN expr2 AND expr3

is the value of the expression

NOT (expr1 BETWEEN expr2 AND expr3)

And the value of

expr1 BETWEEN expr2 AND expr3

is the value of the boolean expression:

expr2 <= expr1 AND expr1 <= expr3

If expr3 < expr2, then the interval is empty. If expr1 is NULL, then the result is NULL. If
expr1 is not NULL, then the value is FALSE in the ordinary case and TRUE when the
keyword NOT is used.

The boolean operator AND may produce unexpected results. Specifically, in the
expression x AND y, the condition x IS NULL is not sufficient to determine the value of
the expression. The second operand still must be evaluated. The result is FALSE if the
second operand has the value FALSE and NULL otherwise. See Logical Conditions for
more information on AND.

Chapter 6
BETWEEN Condition

6-34

Table 6-10 BETWEEN Condition

Type of
Condition

Operation Example

[NOT]
BETWEEN x
AND y

[NOT] (expr2 less than or equal to
expr1 AND expr1 less than or equal
to expr3)

SELECT * FROM employees
 WHERE salary
 BETWEEN 2000 AND 3000
 ORDER BY employee_id;

EXISTS Condition
An EXISTS condition tests for existence of rows in a subquery.

EXISTS (subquery)

Table 6-11 shows the EXISTS condition.

Table 6-11 EXISTS Condition

Type of
Condition

Operation Example

EXISTS TRUE if a subquery returns at
least one row.

SELECT department_id
 FROM departments d
 WHERE EXISTS
 (SELECT * FROM employees e
 WHERE d.department_id
 = e.department_id)
 ORDER BY department_id;

IN Condition
An in_condition is a membership condition. It tests a value for membership in a list of
values or subquery

in_condition::=

expr

NOT

IN (
expression_list

subquery
)

(expr

,

)

NOT

IN (
expression_list

,

subquery
)

Chapter 6
EXISTS Condition

6-35

expression_list::=

expr

,

(

expr

,

)

If you use the upper form of the in_condition condition (with a single expression to
the left of the operator), then you must use the upper form of expression_list. If you
use the lower form of this condition (with multiple expressions to the left of the
operator), then you must use the lower form of expression_list, and the expressions
in each expression_list must match in number and data type the expressions to the
left of the operator. You can specify up to 1000 expressions in expression_list.

Oracle Database does not always evaluate the expressions in an expression_list in
the order in which they appear in the IN list. However, expressions in the select list of a
subquery are evaluated in their specified order.

See Also:

Expression Lists

Table 6-12 lists the form of IN condition.

Table 6-12 IN Condition

Type of Condition Operation Example

IN Equal-to-any-member-of test.
Equivalent to =ANY.

SELECT * FROM employees
 WHERE job_id IN
 ('PU_CLERK','SH_CLERK')
 ORDER BY employee_id;
SELECT * FROM employees
 WHERE salary IN
 (SELECT salary
 FROM employees
 WHERE department_id =30)
 ORDER BY employee_id;

Chapter 6
IN Condition

6-36

Table 6-12 (Cont.) IN Condition

Type of Condition Operation Example

NOT IN Equivalent to !=ALL. Evaluates
to FALSE if any member of the
set is NULL.

SELECT * FROM employees
 WHERE salary NOT IN
 (SELECT salary
 FROM employees
 WHERE department_id = 30)
 ORDER BY employee_id;
SELECT * FROM employees
 WHERE job_id NOT IN
 ('PU_CLERK', 'SH_CLERK')
 ORDER BY employee_id;

If any item in the list following a NOT IN operation evaluates to null, then all rows evaluate to
FALSE or UNKNOWN, and no rows are returned. For example, the following statement returns the
string 'True' for each row:

SELECT 'True' FROM employees
 WHERE department_id NOT IN (10, 20);

However, the following statement returns no rows:

SELECT 'True' FROM employees
 WHERE department_id NOT IN (10, 20, NULL);

The preceding example returns no rows because the WHERE clause condition evaluates to:

department_id != 10 AND department_id != 20 AND department_id != null

Because the third condition compares department_id with a null, it results in an UNKNOWN, so
the entire expression results in FALSE (for rows with department_id equal to 10 or 20). This
behavior can easily be overlooked, especially when the NOT IN operator references a
subquery.

Moreover, if a NOT IN condition references a subquery that returns no rows at all, then all rows
will be returned, as shown in the following example:

SELECT 'True' FROM employees
 WHERE department_id NOT IN (SELECT 0 FROM DUAL WHERE 1=2);

For character arguments, the IN condition is collation-sensitive. The collation determination
rules determine the collation to use.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for the IN condition

Chapter 6
IN Condition

6-37

Restriction on LEVEL in WHERE Clauses

In a [NOT] IN condition in a WHERE clause, if the right-hand side of the condition is a
subquery, you cannot use LEVEL on the left-hand side of the condition. However, you
can specify LEVEL in a subquery of the FROM clause to achieve the same result. For
example, the following statement is not valid:

SELECT employee_id, last_name FROM employees
 WHERE (employee_id, LEVEL)
 IN (SELECT employee_id, 2 FROM employees)
 START WITH employee_id = 2
 CONNECT BY PRIOR employee_id = manager_id;

But the following statement is valid because it encapsulates the query containing the
LEVEL information in the FROM clause:

SELECT v.employee_id, v.last_name, v.lev FROM
 (SELECT employee_id, last_name, LEVEL lev
 FROM employees v
 START WITH employee_id = 100
 CONNECT BY PRIOR employee_id = manager_id) v
 WHERE (v.employee_id, v.lev) IN
 (SELECT employee_id, 2 FROM employees);

IS OF type Condition
Use the IS OF type condition to test object instances based on their specific type
information.

is_of_type_condition::=

expr IS

NOT

OF

TYPE

(

ONLY schema .

type

,

)

You must have EXECUTE privilege on all types referenced by type, and all types must
belong to the same type family.

This condition evaluates to null if expr is null. If expr is not null, then the condition
evaluates to true (or false if you specify the NOT keyword) under either of these
circumstances:

• The most specific type of expr is the subtype of one of the types specified in the
type list and you have not specified ONLY for the type, or

• The most specific type of expr is explicitly specified in the type list.

The expr frequently takes the form of the VALUE function with a correlation variable.

The following example uses the sample table oe.persons, which is built on a type
hierarchy in Substitutable Table and Column Examples. The example uses the IS OF
type condition to restrict the query to specific subtypes:

SELECT * FROM persons p
 WHERE VALUE(p) IS OF TYPE (employee_t);

Chapter 6
IS OF type Condition

6-38

NAME SSN

Joe 32456
Tim 5678

SELECT * FROM persons p
 WHERE VALUE(p) IS OF (ONLY part_time_emp_t);

NAME SSN

Tim 5678

Chapter 6
IS OF type Condition

6-39

7
Functions

Functions are similar to operators in that they manipulate data items and return a result.
Functions differ from operators in the format of their arguments. This format enables them to
operate on zero, one, two, or more arguments:

function(argument, argument, ...)

A function without any arguments is similar to a pseudocolumn (refer to Pseudocolumns).
However, a pseudocolumn typically returns a different value for each row in the result set,
whereas a function without any arguments typically returns the same value for each row.

This chapter contains these sections:

• About SQL Functions

• Single-Row Functions

– Numeric Functions

– Character Functions Returning Character Values

– Character Functions Returning Number Values

– Character Set Functions

– Collation Functions

– Datetime Functions

– General Comparison Functions

– Conversion Functions

– Large Object Functions

– Collection Functions

– Hierarchical Functions

– Oracle Machine Learning for SQL Functions

– XML Functions

– JSON Functions

– Encoding and Decoding Functions

– NULL-Related Functions

– Environment and Identifier Functions

• Aggregate Functions

• Analytic Functions

• Object Reference Functions

• Model Functions

• OLAP Functions

• Data Cartridge Functions

7-1

• About User-Defined Functions

About SQL Functions
SQL functions are built into Oracle Database and are available for use in various
appropriate SQL statements. Do not confuse SQL functions with user-defined
functions written in PL/SQL.

If you call a SQL function with an argument of a data type other than the data type
expected by the SQL function, then Oracle attempts to convert the argument to the
expected data type before performing the SQL function.

See Also:

About User-Defined Functions for information on user functions and Data
Conversion for implicit conversion of data types

Nulls in SQL Functions

Most scalar functions return null when given a null argument. You can use the NVL
function to return a value when a null occurs. For example, the expression
NVL(commission_pct,0) returns 0 if commission_pct is null or the value of
commission_pct if it is not null.

For information on how aggregate functions handle nulls, see Aggregate Functions .

Syntax for SQL Functions

In the syntax diagrams for SQL functions, arguments are indicated by their data types.
When the parameter function appears in SQL syntax, replace it with one of the
functions described in this section. Functions are grouped by the data types of their
arguments and their return values.

Note:

When you apply SQL functions to LOB columns, Oracle Database creates
temporary LOBs during SQL and PL/SQL processing. You should ensure
that temporary tablespace quota is sufficient for storing these temporary
LOBs for your application.

A SQL function may be collation-sensitive, which means that character value
comparison or matching that it performs is controlled by a collation. The particular
collation to use by the function is determined from the collations of the function's
arguments.

If the result of a SQL function has a character data type, the collation derivation rules
define the collation to associate with the result.

Chapter 7
About SQL Functions

7-2

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation and determination rules for SQL functions

The syntax showing the categories of functions follows:

function::=

single_row_function

aggregate_function

analytic_function

object_reference_function

model_function

OLAP_function

data_cartridge_function

user_defined_function

single_row_function::=

numeric_function

character_function

datetime_function

comparison_function

conversion_function

large_object_function

collection_function

hierarchical_function

data_mining_function

XML_function

JSON_function

encoding_decoding_function

NULL_related_function

environment_id_function

Chapter 7
About SQL Functions

7-3

The sections that follow list the built-in SQL functions in each of the groups illustrated
in the preceding diagrams except user-defined functions. All of the built-in SQL
functions are then described in alphabetical order.

See Also:

About User-Defined Functions and CREATE FUNCTION

Single-Row Functions
Single-row functions return a single result row for every row of a queried table or view.
These functions can appear in select lists, WHERE clauses, START WITH and CONNECT BY
clauses, and HAVING clauses.

Numeric Functions
Numeric functions accept numeric input and return numeric values. Most numeric
functions return NUMBER values that are accurate to 38 decimal digits. The
transcendental functions COS, COSH, EXP, LN, LOG, SIN, SINH, SQRT, TAN, and TANH are
accurate to 36 decimal digits. The transcendental functions ACOS, ASIN, ATAN, and
ATAN2 are accurate to 30 decimal digits. The numeric functions are:

ABS
ACOS
ASIN
ATAN
ATAN2
BITAND
CEIL
COS
COSH
EXP
FLOOR
LN
LOG
MOD
NANVL
POWER
REMAINDER
ROUND (number)
SIGN
SIN
SINH
SQRT
TAN
TANH
TRUNC (number)
WIDTH_BUCKET

Chapter 7
Single-Row Functions

7-4

Character Functions Returning Character Values
Character functions that return character values return values of the following data types
unless otherwise documented:

• If the input argument is CHAR or VARCHAR2, then the value returned is VARCHAR2.

• If the input argument is NCHAR or NVARCHAR2, then the value returned is NVARCHAR2.

The length of the value returned by the function is limited by the maximum length of the data
type returned.

• For functions that return CHAR or VARCHAR2, if the length of the return value exceeds the
limit, then Oracle Database truncates it and returns the result without an error message.

• For functions that return CLOB values, if the length of the return values exceeds the limit,
then Oracle raises an error and returns no data.

The character functions that return character values are:

CHR
CONCAT
INITCAP
LOWER
LPAD
LTRIM
NCHR
NLS_INITCAP
NLS_LOWER
NLS_UPPER
NLSSORT
REGEXP_REPLACE
REGEXP_SUBSTR
REPLACE
RPAD
RTRIM
SOUNDEX
SUBSTR
TRANSLATE
TRANSLATE ... USING
TRIM
UPPER

Character Functions Returning Number Values
Character functions that return number values can take as their argument any character data
type. The character functions that return number values are:

ASCII
INSTR
LENGTH
REGEXP_COUNT
REGEXP_INSTR

Chapter 7
Single-Row Functions

7-5

Character Set Functions
The character set functions return information about the character set. The character
set functions are:

NLS_CHARSET_DECL_LEN
NLS_CHARSET_ID
NLS_CHARSET_NAME

Collation Functions
The collation functions return information about collation settings. The collation
functions are:

COLLATION
NLS_COLLATION_ID
NLS_COLLATION_NAME

Datetime Functions
Datetime functions operate on date (DATE), timestamp (TIMESTAMP, TIMESTAMP WITH
TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE), and interval (INTERVAL DAY TO
SECOND, INTERVAL YEAR TO MONTH) values.

Some of the datetime functions were designed for the Oracle DATE data type
(ADD_MONTHS, CURRENT_DATE, LAST_DAY, NEW_TIME, and NEXT_DAY). If you provide a
timestamp value as their argument, then Oracle Database internally converts the input
type to a DATE value and returns a DATE value. The exceptions are the MONTHS_BETWEEN
function, which returns a number, and the ROUND and TRUNC functions, which do not
accept timestamp or interval values at all.

The remaining datetime functions were designed to accept any of the three types of
data (date, timestamp, and interval) and to return a value of one of these types.

All of the datetime functions that return current system datetime information, such as
SYSDATE, SYSTIMESTAMP, CURRENT_TIMESTAMP, and so forth, are evaluated once for
each SQL statement, regardless how many times they are referenced in that
statement.

The datetime functions are:

ADD_MONTHS
CURRENT_DATE
CURRENT_TIMESTAMP
DBTIMEZONE
EXTRACT (datetime)
FROM_TZ
LAST_DAY
LOCALTIMESTAMP
MONTHS_BETWEEN
NEW_TIME
NEXT_DAY
NUMTODSINTERVAL

Chapter 7
Single-Row Functions

7-6

NUMTOYMINTERVAL
ORA_DST_AFFECTED
ORA_DST_CONVERT
ORA_DST_ERROR
ROUND (date)
SESSIONTIMEZONE
SYS_EXTRACT_UTC
SYSDATE
SYSTIMESTAMP
TO_CHAR (datetime)
TO_DSINTERVAL
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TRUNC (date)
TZ_OFFSET

General Comparison Functions
The general comparison functions determine the greatest and or least value from a set of
values. The general comparison functions are:

GREATEST
LEAST

Conversion Functions
Conversion functions convert a value from one data type to another. Generally, the form of
the function names follows the convention datatype TO datatype. The first data type is the
input data type. The second data type is the output data type. The SQL conversion functions
are:

ASCIISTR
BIN_TO_NUM
CAST
CHARTOROWID
COMPOSE
CONVERT
DECOMPOSE
HEXTORAW
NUMTODSINTERVAL
NUMTOYMINTERVAL
RAWTOHEX
RAWTONHEX
ROWIDTOCHAR
ROWIDTONCHAR
SCN_TO_TIMESTAMP
TIMESTAMP_TO_SCN
TO_BINARY_DOUBLE
TO_BINARY_FLOAT

Chapter 7
Single-Row Functions

7-7

TO_BLOB (bfile)
TO_BLOB (raw)
TO_CHAR (bfile|blob)
TO_CHAR (character)
TO_CHAR (datetime)
TO_CHAR (number)
TO_CLOB (bfile|blob)
TO_CLOB (character)
TO_DATE
TO_DSINTERVAL
TO_LOB
TO_MULTI_BYTE
TO_NCHAR (character)
TO_NCHAR (datetime)
TO_NCHAR (number)
TO_NCLOB
TO_NUMBER
TO_SINGLE_BYTE
TO_TIMESTAMP
TO_TIMESTAMP_TZ
TO_YMINTERVAL
TREAT
UNISTR
VALIDATE_CONVERSION

Large Object Functions
The large object functions operate on LOBs. The large object functions are:

BFILENAME
EMPTY_BLOB, EMPTY_CLOB

Collection Functions
The collection functions operate on nested tables and varrays. The SQL collection
functions are:

CARDINALITY
COLLECT
POWERMULTISET
POWERMULTISET_BY_CARDINALITY
SET

Hierarchical Functions
Hierarchical functions applies hierarchical path information to a result set. The
hierarchical function is:

SYS_CONNECT_BY_PATH

Chapter 7
Single-Row Functions

7-8

Oracle Machine Learning for SQL Functions
The Oracle Machine Learning for SQL functions use analytics to score data. The functions
can apply a mining model schema object to the data, or they can dynamically mine the data
by executing an analytic clause. The OML4SQL functions can be applied to models built
using the native algorithms of Oracle, as well as those built using R through the extensibility
mechanism.

The Oracle Machine Learning for SQL functions are:

CLUSTER_DETAILS
CLUSTER_DISTANCE
CLUSTER_ID
CLUSTER_PROBABILITY
CLUSTER_SET
FEATURE_COMPARE
FEATURE_DETAILS
FEATURE_ID
FEATURE_SET
FEATURE_VALUE
ORA_DM_PARTITION_NAME
PREDICTION
PREDICTION_BOUNDS
PREDICTION_COST
PREDICTION_DETAILS
PREDICTION_PROBABILITY
PREDICTION_SET

See Also:

• Oracle Machine Learning for SQL Concepts to learn about Oracle Machine
Learning for SQL

• Oracle Machine Learning for SQL User’s Guide for information about scoring

XML Functions
The XML functions operate on or return XML documents or fragments. These functions use
arguments that are not defined as part of the ANSI/ISO/IEC SQL Standard but are defined as
part of the World Wide Web Consortium (W3C) standards. The processing and operations
that the functions perform are defined by the relevant W3C standards. The table below
provides a link to the appropriate section of the W3C standard for the rules and guidelines
that apply to each of these XML-related arguments. A SQL statement that uses one of these
XML functions, where any of the arguments does not conform to the relevant W3C syntax,
will result in an error. Of special note is the fact that not every character that is allowed in the
value of a database column is considered legal in XML.

Chapter 7
Single-Row Functions

7-9

Syntax Element W3C Standard URL

value_expr http://www.w3.org/TR/2006/REC-xml-20060816
Xpath_string http://www.w3.org/TR/1999/REC-xpath-19991116
XQuery_string http://www.w3.org/TR/2007/REC-xquery-

semantics-20070123/
http://www.w3.org/TR/xquery-update-10/

namespace_string http://www.w3.org/TR/2006/REC-xml-names-20060816/
identifier http://www.w3.org/TR/2006/REC-xml-20060816/#NT-Nmtoken

For more information about selecting and querying XML data using these functions,
including information on formatting output, refer to Oracle XML DB Developer’s Guide

The SQL XML functions are:

DEPTH
EXISTSNODE
EXTRACT (XML)
EXTRACTVALUE
PATH
SYS_DBURIGEN
SYS_XMLAGG
SYS_XMLGEN
XMLAGG
XMLCAST
XMLCDATA
XMLCOLATTVAL
XMLCOMMENT
XMLCONCAT
XMLDIFF
XMLELEMENT
XMLEXISTS
XMLFOREST
XMLISVALID
XMLPARSE
XMLPATCH
XMLPI
XMLQUERY
XMLSEQUENCE
XMLSERIALIZE
XMLTABLE
XMLTRANSFORM

JSON Functions
JavaScript Object Notation (JSON) functions allow you to query and generate JSON
data.

The following SQL/JSON functions allow you to query JSON data:

Chapter 7
Single-Row Functions

7-10

http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2007/REC-xquery-semantics-20070123/
http://www.w3.org/TR/2007/REC-xquery-semantics-20070123/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/#NT-Nmtoken

JSON_QUERY
JSON_TABLE
JSON_VALUE

The following SQL/JSON functions allow you to generate JSON data:

JSON_ARRAY
JSON_ARRAYAGG
JSON_OBJECT
JSON_OBJECTAGG
JSON Type Constructor
JSON_SCALAR
JSON_SERIALIZE
JSON_TRANSFORM

The following Oracle SQL function creates a JSON data guide:

JSON_DATAGUIDE

Encoding and Decoding Functions
The encoding and decoding functions let you inspect and decode data in the database. The
encoding and decoding functions are:

DECODE
DUMP
ORA_HASH
STANDARD_HASH
VSIZE

NULL-Related Functions
The NULL-related functions facilitate null handling. The NULL-related functions are:

COALESCE
LNNVL
NANVL
NULLIF
NVL
NVL2

Environment and Identifier Functions
The environment and identifier functions provide information about the instance and session.
The environment and identifier functions are:

CON_DBID_TO_ID
CON_GUID_TO_ID
CON_NAME_TO_ID
CON_UID_TO_ID
ORA_INVOKING_USER
ORA_INVOKING_USERID
SYS_CONTEXT

Chapter 7
Single-Row Functions

7-11

SYS_GUID
SYS_TYPEID
UID
USER
USERENV

Aggregate Functions
Aggregate functions return a single result row based on groups of rows, rather than on
single rows. Aggregate functions can appear in select lists and in ORDER BY and HAVING
clauses. They are commonly used with the GROUP BY clause in a SELECT statement,
where Oracle Database divides the rows of a queried table or view into groups. In a
query containing a GROUP BY clause, the elements of the select list can be aggregate
functions, GROUP BY expressions, constants, or expressions involving one of these.
Oracle applies the aggregate functions to each group of rows and returns a single
result row for each group.

If you omit the GROUP BY clause, then Oracle applies aggregate functions in the select
list to all the rows in the queried table or view. You use aggregate functions in the
HAVING clause to eliminate groups from the output based on the results of the
aggregate functions, rather than on the values of the individual rows of the queried
table or view.

See Also:

• Using the GROUP BY Clause: Examples and the HAVING Clause for
more information on the GROUP BY clause and HAVING clauses in queries
and subqueries

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules for expressions in the ORDER BY clause of an
aggregate function

Many (but not all) aggregate functions that take a single argument accept these
clauses:

• DISTINCT and UNIQUE, which are synonymous, cause an aggregate function to
consider only distinct values of the argument expression. The syntax diagrams for
aggregate functions in this chapter use the keyword DISTINCT for simplicity.

• ALL causes an aggregate function to consider all values, including all duplicates.

For example, the DISTINCT average of 1, 1, 1, and 3 is 2. The ALL average is 1.5. If
you specify neither, then the default is ALL.

Some aggregate functions allow the windowing_clause, which is part of the syntax of
analytic functions. Refer to windowing_clause for information about this clause.

All aggregate functions except COUNT(*), GROUPING, and GROUPING_ID ignore nulls. You
can use the NVL function in the argument to an aggregate function to substitute a value
for a null. COUNT and REGR_COUNT never return null, but return either a number or zero.
For all the remaining aggregate functions, if the data set contains no rows, or contains

Chapter 7
Aggregate Functions

7-12

only rows with nulls as arguments to the aggregate function, then the function returns null.

The aggregate functions MIN, MAX, SUM, AVG, COUNT, VARIANCE, and STDDEV, when followed by
the KEEP keyword, can be used in conjunction with the FIRST or LAST function to operate on a
set of values from a set of rows that rank as the FIRST or LAST with respect to a given sorting
specification. Refer to FIRST for more information.

You can nest aggregate functions. For example, the following example calculates the average
of the maximum salaries of all the departments in the sample schema hr:

SELECT AVG(MAX(salary))
 FROM employees
 GROUP BY department_id;

AVG(MAX(SALARY))

 10926.3333

This calculation evaluates the inner aggregate (MAX(salary)) for each group defined by the
GROUP BY clause (department_id), and aggregates the results again.

ANY_VALUE
APPROX_COUNT
APPROX_COUNT_DISTINCT
APPROX_COUNT_DISTINCT_AGG
APPROX_COUNT_DISTINCT_DETAIL
APPROX_MEDIAN
APPROX_PERCENTILE
APPROX_PERCENTILE_AGG
APPROX_PERCENTILE_DETAIL
APPROX_RANK
APPROX_SUM
AVG
BIT_AND_AGG
BIT_OR_AGG
BIT_XOR_AGG
CHECKSUM
COLLECT
CORR
CORR_*
COUNT
COVAR_POP
COVAR_SAMP
CUME_DIST
DENSE_RANK
FIRST
GROUP_ID
GROUPING
GROUPING_ID
JSON_ARRAYAGG
JSON_OBJECTAGG
KURTOSIS_POP
KURTOSIS_SAMP

Chapter 7
Aggregate Functions

7-13

LAST
LISTAGG
MAX
MEDIAN
MIN
PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_DISC
RANK
REGR_ (Linear Regression) Functions
SKEWNESS_POP
SKEWNESS_SAMP
STATS_BINOMIAL_TEST
STATS_CROSSTAB
STATS_F_TEST
STATS_KS_TEST
STATS_MODE
STATS_MW_TEST
STATS_ONE_WAY_ANOVA
STATS_T_TEST_*
STATS_WSR_TEST
STDDEV
STDDEV_POP
STDDEV_SAMP
SUM
SYS_OP_ZONE_ID
SYS_XMLAGG
TO_APPROX_COUNT_DISTINCT
TO_APPROX_PERCENTILE
VAR_POP
VAR_SAMP
VARIANCE
XMLAGG

Analytic Functions
Analytic functions compute an aggregate value based on a group of rows. They differ
from aggregate functions in that they return multiple rows for each group. The group of
rows is called a window and is defined by the analytic_clause. For each row, a
sliding window of rows is defined. The window determines the range of rows used to
perform the calculations for the current row. Window sizes can be based on either a
physical number of rows or a logical interval such as time.

Analytic functions are the last set of operations performed in a query except for the
final ORDER BY clause. All joins and all WHERE, GROUP BY, and HAVING clauses are
completed before the analytic functions are processed. Therefore, analytic functions
can appear only in the select list or ORDER BY clause.

Analytic functions are commonly used to compute cumulative, moving, centered, and
reporting aggregates.

Chapter 7
Analytic Functions

7-14

analytic_function::=

analytic_function (

arguments

) OVER
window_name

(analytic_clause)

analytic_clause::=

window_name

query_partition_clause order_by_clause

windowing_clause

query_partition_clause::=

PARTITION BY

expr

,

(expr

,

)

order_by_clause::=

ORDER

SIBLINGS

BY

expr

position

c_alias

ASC

DESC

NULLS FIRST

NULLS LAST

,

Chapter 7
Analytic Functions

7-15

windowing_clause::=

ROWS

RANGE

GROUPS

BETWEEN

UNBOUNDED PRECEDING

CURRENT ROW

value_expr
PRECEDING

FOLLOWING

AND

UNBOUNDED FOLLOWING

CURRENT ROW

value_expr
PRECEDING

FOLLOWING

UNBOUNDED PRECEDING

CURRENT ROW

value_expr PRECEDING

EXCLUDE

CURRENT ROW

GROUPS

TIES

NO OTHERS

The semantics of this syntax are discussed in the sections that follow.

analytic_function

Specify the name of an analytic function (see the listing of analytic functions following
this discussion of semantics).

arguments

Analytic functions take 0 to 3 arguments. The arguments can be any numeric data
type or any nonnumeric data type that can be implicitly converted to a numeric data
type. Oracle determines the argument with the highest numeric precedence and
implicitly converts the remaining arguments to that data type. The return type is also
that data type, unless otherwise noted for an individual function.

See Also:

Numeric Precedence for information on numeric precedence and Table 2-8
for more information on implicit conversion

analytic_clause

Use OVER analytic_clause to indicate that the function operates on a query result set.
This clause is computed after the FROM, WHERE, GROUP BY, and HAVING clauses. You can
specify analytic functions with this clause in the select list or ORDER BY clause. To filter
the results of a query based on an analytic function, nest these functions within the
parent query, and then filter the results of the nested subquery.

Chapter 7
Analytic Functions

7-16

Notes on the analytic_clause:

The following notes apply to the analytic_clause:

• You cannot nest analytic functions by specifying any analytic function in any part of the
analytic_clause. However, you can specify an analytic function in a subquery and
compute another analytic function over it.

• You can specify OVER analytic_clause with user-defined analytic functions as well as
built-in analytic functions. See CREATE FUNCTION .

• The PARTITION BY and ORDER BY clauses in the analytic_clause are collation-sensitive.

See Also:

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for the OVER (PARTITION BY ... ORDER BY ...) clause of an
analytic function

• window_clause in the SELECT statement

query_partition_clause

Use the PARTITION BY clause to partition the query result set into groups based on one or
more value_expr. If you omit this clause, then the function treats all rows of the query result
set as a single group.

To use the query_partition_clause in an analytic function, use the upper branch of the
syntax (without parentheses). To use this clause in a model query (in the
model_column_clauses) or a partitioned outer join (in the outer_join_clause), use the lower
branch of the syntax (with parentheses).

You can specify multiple analytic functions in the same query, each with the same or different
PARTITION BY keys.

If the objects being queried have the parallel attribute, and if you specify an analytic function
with the query_partition_clause, then the function computations are parallelized as well.

Valid values of value_expr are constants, columns, nonanalytic functions, function
expressions, or expressions involving any of these.

order_by_clause

Use the order_by_clause to specify how data is ordered within a partition. For all analytic
functions you can order the values in a partition on multiple keys, each defined by a
value_expr and each qualified by an ordering sequence.

Within each function, you can specify multiple ordering expressions. Doing so is especially
useful when using functions that rank values, because the second expression can resolve
ties between identical values for the first expression.

Whenever the order_by_clause results in identical values for multiple rows, the function
behaves as follows:

Chapter 7
Analytic Functions

7-17

• CUME_DIST, DENSE_RANK, NTILE, PERCENT_RANK, and RANK return the same result for
each of the rows.

• ROW_NUMBER assigns each row a distinct value even if there is a tie based on the
order_by_clause. The value is based on the order in which the row is processed,
which may be nondeterministic if the ORDER BY does not guarantee a total ordering.

• For all other analytic functions, the result depends on the window specification. If
you specify a logical window with the RANGE keyword, then the function returns the
same result for each of the rows. If you specify a physical window with the ROWS
keyword, then the result is nondeterministic.

Restrictions on the ORDER BY Clause

The following restrictions apply to the ORDER BY clause:

• When used in an analytic function, the order_by_clause must take an expression
(expr). The SIBLINGS keyword is not valid (it is relevant only in hierarchical
queries). Position (position) and column aliases (c_alias) are also invalid.
Otherwise this order_by_clause is the same as that used to order the overall
query or subquery.

• An analytic function that uses the RANGE keyword can use multiple sort keys in its
ORDER BY clause if it specifies any of the following windows:

– RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. The short form of this
is RANGE UNBOUNDED PRECEDING.

– RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
– RANGE BETWEEN CURRENT ROW AND CURRENT ROW
– RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
Window boundaries other than these four can have only one sort key in the ORDER
BY clause of the analytic function. This restriction does not apply to window
boundaries specified by the ROW keyword.

ASC | DESC

Specify the ordering sequence (ascending or descending). ASC is the default.

NULLS FIRST | NULLS LAST

Specify whether returned rows containing nulls should appear first or last in the
ordering sequence.

NULLS LAST is the default for ascending order, and NULLS FIRST is the default for
descending order.

Analytic functions always operate on rows in the order specified in the
order_by_clause of the function. However, the order_by_clause of the function does
not guarantee the order of the result. Use the order_by_clause of the query to
guarantee the final result ordering.

Chapter 7
Analytic Functions

7-18

See Also:

order_by_clause of SELECT for more information on this clause

windowing_clause

Some analytic functions allow the windowing_clause. In the listing of analytic functions at the
end of this section, the functions that allow the windowing_clause are followed by an asterisk
(*).

ROWS | RANGE | GROUPS

The keywords ROWS, RANGE, and GROUPS are options to define a window frame unit used for
calculating the function result. The function is then applied to all the rows in the window. The
window moves through the query result set or partition from top to bottom.

• Use ROWS to specify the window frame extent by counting rows forward or backward from
the current row. ROWS allows any number of sort keys, of any ordered data types.

• Use RANGE to specify the window frame extent as a logical offset. RANGE allows only one
sort key, and its declared data type must allow addition and subtraction operations, for
example they must be numeric, datetime, or interval data types.

• Use GROUPS to specifiy the window frame extent with both ROWS and RANGE characteristics.
Like ROWS a GROUPS window can have any number of sort keys, or any ordered types. Like
RANGE, a GROUPS window does not make cutoffs between adjacent rows with the same
values in the sort keys.

You cannot specify this clause unless you have specified the order_by_clause. Some
window boundaries defined by the RANGE clause let you specify only one expression in the
order_by_clause. Refer to Restrictions on the ORDER BY Clause.

The value returned by an analytic function with a logical offset is always deterministic.
However, the value returned by an analytic function with a physical offset may produce
nondeterministic results unless the ordering expression results in a unique ordering. You may
have to specify multiple columns in the order_by_clause to achieve this unique ordering.

BETWEEN ... AND

Use the BETWEEN ... AND clause to specify a start point and end point for the window. The first
expression (before AND) defines the start point and the second expression (after AND) defines
the end point.

If you omit BETWEEN and specify only one end point, then Oracle considers it the start point,
and the end point defaults to the current row.

UNBOUNDED PRECEDING

Specify UNBOUNDED PRECEDING to indicate that the window starts at the first row of the partition.
This is the start point specification and cannot be used as an end point specification.

UNBOUNDED FOLLOWING

Specify UNBOUNDED FOLLOWING to indicate that the window ends at the last row of the partition.
This is the end point specification and cannot be used as a start point specification.

Chapter 7
Analytic Functions

7-19

CURRENT ROW

As a start point, CURRENT ROW specifies that the window begins at the current row or
value (depending on whether you have specified ROW or RANGE, respectively). In this
case the end point cannot be value_expr PRECEDING.

As an end point, CURRENT ROW specifies that the window ends at the current row or
value (depending on whether you have specified ROW or RANGE, respectively). In this
case the start point cannot be value_expr FOLLOWING.

value_expr PRECEDING or value_expr FOLLOWING

For RANGE or ROW:

• If value_expr FOLLOWING is the start point, then the end point must be value_expr
FOLLOWING.

• If value_expr PRECEDING is the end point, then the start point must be value_expr
PRECEDING.

If you are defining a logical window defined by an interval of time in numeric format,
then you may need to use conversion functions.

See Also:

NUMTOYMINTERVAL and NUMTODSINTERVAL for information on
converting numeric times into intervals

If you specified ROWS:

• value_expr is a physical offset. It must be a constant or expression and must
evaluate to a positive numeric value.

• If value_expr is part of the start point, then it must evaluate to a row before the
end point.

If you specified RANGE:

• value_expr is a logical offset. It must be a constant or expression that evaluates to
a positive numeric value or an interval literal. Refer to Literals for information on
interval literals.

• You can specify only one expression in the order_by_clause.

• If value_expr evaluates to a numeric value, then the ORDER BY expr must be a
numeric or DATE data type.

• If value_expr evaluates to an interval value, then the ORDER BY expr must be a
DATE data type.

If you omit the windowing_clause entirely, then the default is RANGE BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW.

Chapter 7
Analytic Functions

7-20

EXCLUDE

You can remove rows, groups, and ties from the window frame with the EXCLUDE options:

• If you specify EXCLUDE CURRENT ROW, and the current row in in the window frame, then the
current row is removed from the window frame.

• If you specify EXCLUDE GROUP, then the current row and any peers of the current row are
removed from the window frame.

• If you specify EXCLUDE TIES, then the peers of the current row are removed from the
window frame. The current row is retained. Note, that if the current row is previously
removed from the window frame, it remains removed.

• If you specify EXCLUDE NO OTHERS, then no additional rows are removed from the window
frame. This is the default option.

Analytic functions are commonly used in data warehousing environments. In the list of
analytic functions that follows, functions followed by an asterisk (*) allow the full syntax,
including the windowing_clause.

AVG *
BIT_AND_AGG*
BIT_OR_AGG*
BIT_XOR_AGG*
CHECKSUM*
CLUSTER_DETAILS
CLUSTER_DISTANCE
CLUSTER_ID
CLUSTER_PROBABILITY
CLUSTER_SET
CORR *
COUNT *
COVAR_POP *
COVAR_SAMP *
CUME_DIST
DENSE_RANK
FEATURE_DETAILS
FEATURE_ID
FEATURE_SET
FEATURE_VALUE
FIRST
FIRST_VALUE *
KURTOSIS_POP*
KURTOSIS_SAMP*
LAG
LAST
LAST_VALUE *
LEAD
LISTAGG
MAX *
MIN *
NTH_VALUE *

Chapter 7
Analytic Functions

7-21

NTILE
PERCENT_RANK
PERCENTILE_CONT
PERCENTILE_DISC
PREDICTION
PREDICTION_COST
PREDICTION_DETAILS
PREDICTION_PROBABILITY
PREDICTION_SET
RANK
RATIO_TO_REPORT
REGR_ (Linear Regression) Functions *
ROW_NUMBER
STDDEV *
STDDEV_POP *
SKEWNESS_POP*
SKEWNESS_SAMP*
STDDEV_SAMP *
SUM *
VAR_POP *
VAR_SAMP *
VARIANCE *

See Also:

Oracle Database Data Warehousing Guide for more information on these
functions and for scenarios illustrating their use

Object Reference Functions
Object reference functions manipulate REF values, which are references to objects of
specified object types. The object reference functions are:

DEREF
MAKE_REF
REF
REFTOHEX
VALUE

See Also:

Oracle Database Object-Relational Developer's Guide for more information
about REF data types

Chapter 7
Object Reference Functions

7-22

Model Functions
Model functions can be used only in the model_clause of the SELECT statement. The model
functions are:

CV
ITERATION_NUMBER
PRESENTNNV
PRESENTV
PREVIOUS

OLAP Functions
OLAP functions returns data from a dimensional object in two-dimension relational format.
The OLAP function is:

CUBE_TABLE

Data Cartridge Functions
Data Cartridge functions are useful for Data Cartridge developers. The Data Cartridge
functions are:

DATAOBJ_TO_MAT_PARTITION
DATAOBJ_TO_PARTITION

ABS
Syntax

ABS (n)

Purpose

ABS returns the absolute value of n.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type
as the numeric data type of the argument.

See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns the absolute value of -15:

Chapter 7
Model Functions

7-23

SELECT ABS(-15) "Absolute"
 FROM DUAL;

 Absolute

 15

ACOS
Syntax

ACOS (n)

Purpose

ACOS returns the arc cosine of n. The argument n must be in the range of -1 to 1, and
the function returns a value in the range of 0 to pi, expressed in radians.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. If the argument is
BINARY_FLOAT, then the function returns BINARY_DOUBLE. Otherwise the function
returns the same numeric data type as the argument.

See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns the arc cosine of .3:

SELECT ACOS(.3)"Arc_Cosine"
 FROM DUAL;

Arc_Cosine

1.26610367

ADD_MONTHS
Syntax

ADD_MONTHS (date , integer)

Purpose

ADD_MONTHS returns the date date plus integer months. A month is defined by the
session parameter NLS_CALENDAR. The date argument can be a datetime value or any

Chapter 7
ACOS

7-24

value that can be implicitly converted to DATE. The integer argument can be an integer or
any value that can be implicitly converted to an integer. The return type is always DATE,
regardless of the data type of date. If date is the last day of the month or if the resulting
month has fewer days than the day component of date, then the result is the last day of the
resulting month. Otherwise, the result has the same day component as date.

See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns the month after the hire_date in the sample table employees:

SELECT TO_CHAR(ADD_MONTHS(hire_date, 1), 'DD-MON-YYYY') "Next month"
 FROM employees
 WHERE last_name = 'Baer';

Next Month

07-JUL-2002

ANY_VALUE
Syntax

ANY_VALUE (

DISTINCT

ALL

expr)

Purpose

ANY_VALUE returns a single non-deterministic value of expr. You can use it as an aggregate
function.

Use ANY_VALUE to optimize a query that has a GROUP BY clause. ANY_VALUE returns a value of
an expression in a group. It is optimized to return the first value.

It ensures that there are no comparisons for any incoming row and also eliminates the
necessity to specify every column as part of the GROUP BY clause. Because it does not
compare values, ANY_VALUE returns a value more quickly than MIN or MAX in a GROUP BY query.

Semantics

ALL, DISTINCT: These keywords are supported by ANY_VALUE although they have no effect on
the result of the query.

expr: The expression can be a column, constant, bind variable, or an expression involving
them.

NULL values in the expression are ignored.

Supports all of the data types, except for LONG, LOB, FILE, or COLLECTION.

Chapter 7
ANY_VALUE

7-25

If you use LONG, ORA-00997 is raised.

If you use LOB, FILE, or COLLECTION data types, ORA-00932 is raised.

ANY_VALUE follows the same rules as MIN and MAX.

Returns any value within each group based on the GROUP BY specification. Returns
NULL if all rows in the group have NULL expression values.

The result of ANY_VALUE is not deterministic.

Restrictions

XMLType and ANYDATA are not supported.

Example 7-1 Using ANY_VALUE As an Aggregate Function

This example uses ANY_VALUE as an aggregate function in a GROUP BY query of the SH
schema.

SELECT c.cust_id, ANY_VALUE(cust_last_name), SUM(amount_sold)
 FROM customers c, sales s
 WHERE s.cust_id = c.cust_id
 GROUP BY c.cust_id;

In the following result of the query, only the first eleven rows are shown.

CUST_ID ANY_VALUE(CUST_LAST_NAME) SUM(AMOUNT_SOLD)
------- -------------------------- ----------------
 6950 Sandburg 78
 17920 Oliver 3201
 66800 Case 2024
 37280 Edwards 2256
 109850 Lindegreen 757
 3910 Oddell 185
 84700 Marker 164.4
 26380 Remler 118
 11600 Oppy 158
 23030 Rothrock 533
 42780 Zanis 182
...
630 rows selected.

APPROX_COUNT
Syntax

APPROX_COUNT (
*

expr

, ’ MAX_ERROR ’

)

Chapter 7
APPROX_COUNT

7-26

Purpose

APPROX_COUNT returns the approximate count of an expression. If you supply MAX_ERROR as
the second argument, then the function returns the maximum error between the actual and
approximate count.

You must use this function with a corresponding APPROX_RANK function in the HAVING clause. If
a query uses APPROX_COUNT, APPROX_SUM, or APPROX_RANK, then the query must not use any
other aggregation functions.

Examples

The following query returns the 10 most common jobs within every department:

SELECT department_id, job_id,
 APPROX_COUNT(*)
FROM employees
GROUP BY department_id, job_id
HAVING
 APPROX_RANK (
 PARTITION BY department_id
 ORDER BY APPROX_COUNT(*)
 DESC) <= 10;

APPROX_COUNT_DISTINCT
Syntax

APPROX_COUNT_DISTINCT (expr)

Purpose

APPROX_COUNT_DISTINCT returns the approximate number of rows that contain a distinct value
for expr.

This function provides an alternative to the COUNT (DISTINCT expr) function, which returns the
exact number of rows that contain distinct values of expr. APPROX_COUNT_DISTINCT processes
large amounts of data significantly faster than COUNT, with negligible deviation from the exact
result.

For expr, you can specify a column of any scalar data type other than BFILE, BLOB, CLOB,
LONG, LONG RAW, or NCLOB.

APPROX_COUNT_DISTINCT ignores rows that contain a null value for expr. This function returns
a NUMBER.

Chapter 7
APPROX_COUNT_DISTINCT

7-27

See Also:

• COUNT for more information on the COUNT (DISTINCT expr) function

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules, which define the collation
APPROX_COUNT_DISTINCT uses to compare character values for expr

Examples

The following statement returns the approximate number of rows with distinct values
for manager_id:

SELECT APPROX_COUNT_DISTINCT(manager_id) AS "Active Managers"
 FROM employees;

Active Managers

 18

The following statement returns the approximate number of distinct customers for each
product:

SELECT prod_id, APPROX_COUNT_DISTINCT(cust_id) AS "Number of Customers"
 FROM sales
 GROUP BY prod_id
 ORDER BY prod_id;

 PROD_ID Number of Customers
---------- -------------------
 13 2516
 14 2030
 15 2105
 16 2367
 17 2093
 18 2975
 19 2630
 20 3791
. . .

APPROX_COUNT_DISTINCT_AGG
Syntax

APPROX_COUNT_DISTINCT_AGG (detail)

Purpose

APPROX_COUNT_DISTINCT_AGG takes as its input a column of details containing
information about approximate distinct value counts, and enables you to perform
aggregations of those counts.

Chapter 7
APPROX_COUNT_DISTINCT_AGG

7-28

For detail, specify a column of details created by the APPROX_COUNT_DISTINCT_DETAIL
function or the APPROX_COUNT_DISTINCT_AGG function. This column is of data type BLOB.

You can specify this function in a SELECT statement with a GROUP BY clause to aggregate the
information contained in the details within each group of rows and return a single detail for
each group.

This function returns a BLOB value, called a detail, which contains information about the count
aggregations in a special format. You can store details returned by this function in a table or
materialized view, and then again use the APPROX_COUNT_DISTINCT_AGG function to further
aggregate those details, or use the TO_APPROX_COUNT_DISTINCT function to convert the detail
values to human-readable NUMBER values.

See Also:

• APPROX_COUNT_DISTINCT_DETAIL

• TO_APPROX_COUNT_DISTINCT

Examples

Refer to APPROX_COUNT_DISTINCT_AGG: Examples for examples of using the
APPROX_COUNT_DISTINCT_AGG function in conjunction with the
APPROX_COUNT_DISTINCT_DETAIL and TO_APPROX_COUNT_DISTINCT functions.

APPROX_COUNT_DISTINCT_DETAIL
Syntax

APPROX_COUNT_DISTINCT_DETAIL (expr)

Purpose

APPROX_COUNT_DISTINCT_DETAIL calculates information about the approximate number of
rows that contain a distinct value for expr and returns a BLOB value, called a detail, which
contains that information in a special format.

For expr, you can specify a column of any scalar data type other than BFILE, BLOB, CLOB,
LONG, LONG RAW, or NCLOB. This function ignores rows for which the value of expr is null.

This function is commonly used with the GROUP BY clause in a SELECT statement. When used
in this way, it calculates approximate distinct value count information for expr within each
group of rows and returns a single detail for each group.

The details returned by APPROX_COUNT_DISTINCT_DETAIL can be used as input to the
APPROX_COUNT_DISTINCT_AGG function, which enables you to perform aggregations of the
details, or the TO_APPROX_COUNT_DISTINCT function, which converts a detail to a human-
readable distinct count value. You can use these three functions together to perform
resource-intensive approximate count calculations once, store the resulting details, and then
perform efficient aggregations and queries on those details. For example:

Chapter 7
APPROX_COUNT_DISTINCT_DETAIL

7-29

1. Use the APPROX_COUNT_DISTINCT_DETAIL function to calculate approximate distinct
value count information and store the resulting details in a table or materialized
view. These could be highly-granular details, such as city demographic counts or
daily sales counts.

2. Use the APPROX_COUNT_DISTINCT_AGG function to aggregate the details obtained in
the previous step and store the resulting details in a table or materialized view.
These could be details of lower granularity, such as state demographic counts or
monthly sales counts.

3. Use the TO_APPROX_COUNT_DISTINCT function to convert the stored detail values to
human-readable NUMBER values. You can use the TO_APPROX_COUNT_DISTINCT
function to query detail values created by the APPROX_COUNT_DISTINCT_DETAIL
function or the APPROX_COUNT_DISTNCT_AGG function.

See Also:

• APPROX_COUNT_DISTINCT_AGG

• TO_APPROX_COUNT_DISTINCT

Examples

The examples in this section demonstrate how to use the
APPROX_COUNT_DISTINCT_DETAIL, APPROX_COUNT_DISTINCT_AGG, and
TO_APPROX_COUNT_DISTINCT functions together to perform resource-intensive
approximate count calculations once, store the resulting details, and then perform
efficient aggregations and queries on those details.

APPROX_COUNT_DISTINCT_DETAIL: Example

The following statement queries the tables sh.times and sh.sales for the approximate
number of distinct products sold each day. The APPROX_COUNT_DISTINCT_DETAIL
function returns the information in a detail, called daily_detail, for each day that
products were sold. The returned details are stored in a materialized view called
daily_prod_count_mv.

CREATE MATERIALIZED VIEW daily_prod_count_mv AS
 SELECT t.calendar_year year,
 t.calendar_month_number month,
 t.day_number_in_month day,
 APPROX_COUNT_DISTINCT_DETAIL(s.prod_id) daily_detail
 FROM times t, sales s
 WHERE t.time_id = s.time_id
 GROUP BY t.calendar_year, t.calendar_month_number, t.day_number_in_month;

APPROX_COUNT_DISTINCT_AGG: Examples

The following statement uses the APPROX_COUNT_DISTINCT_AGG function to read the
daily details stored in daily_prod_count_mv and create aggregated details that contain
the approximate number of distinct products sold each month. These aggregated
details are stored in a materialized view called monthly_prod_count_mv.

CREATE MATERIALIZED VIEW monthly_prod_count_mv AS
 SELECT year,
 month,

Chapter 7
APPROX_COUNT_DISTINCT_DETAIL

7-30

 APPROX_COUNT_DISTINCT_AGG(daily_detail) monthly_detail
 FROM daily_prod_count_mv
 GROUP BY year, month;

The following statement is similar to the previous statement, except it creates aggregated
details that contain the approximate number of distinct products sold each year. These
aggregated details are stored in a materialized view called annual_prod_count_mv.

CREATE MATERIALIZED VIEW annual_prod_count_mv AS
 SELECT year,
 APPROX_COUNT_DISTINCT_AGG(daily_detail) annual_detail
 FROM daily_prod_count_mv
 GROUP BY year;

TO_APPROX_COUNT_DISTINCT: Examples

The following statement uses the TO_APPROX_COUNT_DISTINCT function to query the daily
detail information stored in daily_prod_count_mv and return the approximate number of
distinct products sold each day:

SELECT year,
 month,
 day,
 TO_APPROX_COUNT_DISTINCT(daily_detail) "NUM PRODUCTS"
 FROM daily_prod_count_mv
 ORDER BY year, month, day;

 YEAR MONTH DAY NUM PRODUCTS
---------- ---------- ---------- ------------
 1998 1 1 24
 1998 1 2 25
 1998 1 3 11
 1998 1 4 34
 1998 1 5 10
 1998 1 6 8
 1998 1 7 37
 1998 1 8 26
 1998 1 9 25
 1998 1 10 38
. . .

The following statement uses the TO_APPROX_COUNT_DISTINCT function to query the monthly
detail information stored in monthly_prod_count_mv and return the approximate number of
distinct products sold each month:

SELECT year,
 month,
 TO_APPROX_COUNT_DISTINCT(monthly_detail) "NUM PRODUCTS"
 FROM monthly_prod_count_mv
 ORDER BY year, month;

 YEAR MONTH NUM PRODUCTS
---------- ---------- ------------
 1998 1 57
 1998 2 56
 1998 3 55

Chapter 7
APPROX_COUNT_DISTINCT_DETAIL

7-31

 1998 4 49
 1998 5 49
 1998 6 48
 1998 7 54
 1998 8 56
 1998 9 55
 1998 10 57
. . .

The following statement uses the TO_APPROX_COUNT_DISTINCT function to query the
annual detail information stored in annual_prod_count_mv and return the approximate
number of distinct products sold each year:

SELECT year,
 TO_APPROX_COUNT_DISTINCT(annual_detail) "NUM PRODUCTS"
 FROM annual_prod_count_mv
 ORDER BY year;

 YEAR NUM PRODUCTS
---------- ------------
 1998 60
 1999 72
 2000 72
 2001 71

APPROX_MEDIAN
Syntax

APPROX_MEDIAN (expr

DETERMINISTIC
,

’ ERROR_RATE ’

’ CONFIDENCE ’

)

Purpose

APPROX_MEDIAN is an approximate inverse distribution function that assumes a
continuous distribution model. It takes a numeric or datetime value and returns an
approximate middle value or an approximate interpolated value that would be the
middle value once the values are sorted. Nulls are ignored in the calculation.

This function provides an alternative to the MEDIAN function, which returns the exact
middle value or interpolated value. APPROX_MEDIAN processes large amounts of data
significantly faster than MEDIAN, with negligible deviation from the exact result.

For expr, specify the expression for which the approximate median value is being
calculated. The acceptable data types for expr, and the return value data type for this
function, depend on the algorithm that you specify with the DETERMINISTIC clause.

DETERMINISTIC

This clause lets you specify the type of algorithm this function uses to calculate the
approximate median value.

Chapter 7
APPROX_MEDIAN

7-32

• If you specify DETERMINISTIC, then this function calculates a deterministic approximate
median value. In this case, expr must evaluate to a numeric value, or to a value that can
be implicitly converted to a numeric value. The function returns the same data type as the
numeric data type of its argument.

• If you omit DETERMINSTIC, then this function calculates a nondeterministic approximate
median value. In this case, expr must evaluate to a numeric or datetime value, or to a
value that can be implicitly converted to a numeric or datetime value. The function returns
the same data type as the numeric or datetime data type of its argument.

ERROR_RATE | CONFIDENCE

These clauses let you determine the accuracy of the value calculated by this function. If you
specify one of these clauses, then instead of returning the approximate median value for
expr, the function returns a decimal value from 0 to 1, inclusive, which represents one of the
following values:

• If you specify ERROR_RATE, then the return value represents the error rate for the
approximate median value calculation for expr.

• If you specify CONFIDENCE, then the return value represents the confidence level for the
error rate that is returned when you specify ERROR_RATE.

See Also:

• MEDIAN

• APPROX_PERCENTILE which returns, for a given percentile, the approximate
value that corresponds to that percentile by way of interpolation. APPROX_MEDIAN
is the specific case of APPROX_PERCENTILE where the percentile value is 0.5.

Examples

The following query returns the deterministic approximate median salary for each department
in the hr.employees table:

SELECT department_id "Department",
 APPROX_MEDIAN(salary DETERMINISTIC) "Median Salary"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Department Median Salary
---------- -------------
 10 4400
 20 6000
 30 2765
 40 6500
 50 3100
 60 4800
 70 10000
 80 9003
 90 17000
 100 7739
 110 8300
 7000

Chapter 7
APPROX_MEDIAN

7-33

The following query returns the error rates for the approximate median salaries that
were returned by the previous query:

SELECT department_id "Department",
 APPROX_MEDIAN(salary DETERMINISTIC, 'ERROR_RATE') "Error Rate"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Department Error Rate
---------- ----------
 10 .002718282
 20 .021746255
 30 .021746255
 40 .002718282
 50 .019027973
 60 .019027973
 70 .002718282
 80 .021746255
 90 .021746255
 100 .019027973
 110 .019027973
 .002718282

The following query returns the confidence levels for the error rates that were returned
by the previous query:

SELECT department_id "Department",
 APPROX_MEDIAN(salary DETERMINISTIC, 'CONFIDENCE') "Confidence Level"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Department Confidence Level
---------- ----------------
 10 .997281718
 20 .999660215
 30 .999660215
 40 .997281718
 50 .999611674
 60 .999611674
 70 .997281718
 80 .999660215
 90 .999660215
 100 .999611674
 110 .999611674
 .997281718

The following query returns the nondeterministic approximate median hire date for
each department in the hr.employees table:

SELECT department_id "Department",
 APPROX_MEDIAN(hire_date) "Median Hire Date"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Department Median Hire Date
---------- ----------------
 10 17-SEP-03
 20 17-FEB-04

Chapter 7
APPROX_MEDIAN

7-34

 30 24-JUL-05
 40 07-JUN-02
 50 15-MAR-06
 60 05-FEB-06
 70 07-JUN-02
 80 23-MAR-06
 90 17-JUN-03
 100 28-SEP-05
 110 07-JUN-02
 24-MAY-07

APPROX_PERCENTILE
Syntax

APPROX_PERCENTILE (expr

DETERMINISTIC
,

’ ERROR_RATE ’

’ CONFIDENCE ’

)

WITHIN GROUP (ORDER BY expr

DESC

ASC

)

Purpose

APPROX_PERCENTILE is an approximate inverse distribution function. It takes a percentile value
and a sort specification, and returns the value that would fall into that percentile value with
respect to the sort specification. Nulls are ignored in the calculation

This function provides an alternative to the PERCENTILE_CONT and PERCENTILE_DISC functions,
which returns the exact results. APPROX_PERCENTILE processes large amounts of data
significantly faster than PERCENTILE_CONT and PERCENTILE_DISC, with negligible deviation
from the exact result.

The first expr is the percentile value, which must evaluate to a numeric value between 0 and
1.

The second expr, which is part of the ORDER BY clause, is a single expression over which this
function calculates the result. The acceptable data types for expr, and the return value data
type for this function, depend on the algorithm that you specify with the DETERMINISTIC
clause.

DETERMINISTIC

This clause lets you specify the type of algorithm this function uses to calculate the return
value.

• If you specify DETERMINISTIC, then this function calculates a deterministic result. In this
case, the ORDER BY clause expression must evaluate to a numeric value, or to a value that
can be implicitly converted to a numeric value, in the range -2,147,483,648 through
2,147,483,647. The function rounds numeric input to the closest integer. The function
returns the same data type as the numeric data type of the ORDER BY clause expression.
The return value is not necessarily one of the values of expr

Chapter 7
APPROX_PERCENTILE

7-35

• If you omit DETERMINSTIC, then this function calculates a nondeterministic result. In
this case, the ORDER BY clause expression must evaluate to a numeric or datetime
value, or to a value that can be implicitly converted to a numeric or datetime value.
The function returns the same data type as the numeric or datetime data type of
the ORDER BY clause expression. The return value is one of the values of expr.

ERROR_RATE | CONFIDENCE

These clauses let you determine the accuracy of the result calculated by this function.
If you specify one of these clauses, then instead of returning the value that would fall
into the specified percentile value for expr, the function returns a decimal value from 0
to 1, inclusive, which represents one of the following values:

• If you specify ERROR_RATE, then the return value represents the error rate for
calculating the value that would fall into the specified percentile value forexpr.

• If you specify CONFIDENCE, then the return value represents the confidence level for
the error rate that is returned when you specify ERROR_RATE.

DESC | ASC

Specify the sort specification for the calculating the value that would fall into the
specified percentile value. Specify DESC to sort the ORDER BY clause expression values
in descending order, or ASC to sort the values in ascending order. ASC is the default.

See Also:

• PERCENTILE_CONT and PERCENTILE_DISC

• APPROX_MEDIAN, which is the specific case of APPROX_PERCENTILE
where the percentile value is 0.5

Examples

The following query returns the deterministic approximate 25th percentile, 50th
percentile, and 75th percentile salaries for each department in the hr.employees table.
The salaries are sorted in ascending order for the interpolation calculation.

SELECT department_id "Department",
 APPROX_PERCENTILE(0.25 DETERMINISTIC)
 WITHIN GROUP (ORDER BY salary ASC) "25th Percentile Salary",
 APPROX_PERCENTILE(0.50 DETERMINISTIC)
 WITHIN GROUP (ORDER BY salary ASC) "50th Percentile Salary",
 APPROX_PERCENTILE(0.75 DETERMINISTIC)
 WITHIN GROUP (ORDER BY salary ASC) "75th Percentile Salary"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Department 25th Percentile Salary 50th Percentile Salary 75th Percentile Salary
---------- ---------------------- ---------------------- ----------------------
 10 4400 4400 4400
 20 6000 6000 13000
 30 2633 2765 3100
 40 6500 6500 6500
 50 2600 3100 3599
 60 4800 4800 6000

Chapter 7
APPROX_PERCENTILE

7-36

 70 10000 10000 10000
 80 7400 9003 10291
 90 17000 17000 24000
 100 7698 7739 8976
 110 8300 8300 12006
 7000 7000 7000

The following query returns the error rates for the approximate 25th percentile salaries that
were calculated in the previous query:

SELECT department_id "Department",
 APPROX_PERCENTILE(0.25 DETERMINISTIC, 'ERROR_RATE')
 WITHIN GROUP (ORDER BY salary ASC) "Error Rate"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Department Error Rate
---------- ----------
 10 .002718282
 20 .021746255
 30 .021746255
 40 .002718282
 50 .019027973
 60 .019027973
 70 .002718282
 80 .021746255
 90 .021746255
 100 .019027973
 110 .019027973
 .002718282

The following query returns the confidence levels for the error rates that were calculated in
the previous query:

SELECT department_id "Department",
 APPROX_PERCENTILE(0.25 DETERMINISTIC, 'CONFIDENCE')
 WITHIN GROUP (ORDER BY salary ASC) "Confidence"
FROM employees
GROUP BY department_id
ORDER BY department_id;

Department Confidence
---------- ----------
 10 .997281718
 20 .999660215
 30 .999660215
 40 .997281718
 50 .999611674
 60 .999611674
 70 .997281718
 80 .999660215
 90 .999660215
 100 .999611674
 110 .999611674
 .997281718

The following query returns the nondeterministic approximate 25th percentile, 50th percentile,
and 75th percentile salaries for each department in the hr.employees table. The salaries are
sorted in ascending order for the interpolation calculation.

Chapter 7
APPROX_PERCENTILE

7-37

SELECT department_id "Department",
 APPROX_PERCENTILE(0.25)
 WITHIN GROUP (ORDER BY salary ASC) "25th Percentile Salary",
 APPROX_PERCENTILE(0.50)
 WITHIN GROUP (ORDER BY salary ASC) "50th Percentile Salary",
 APPROX_PERCENTILE(0.75)
 WITHIN GROUP (ORDER BY salary ASC) "75th Percentile Salary"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Department 25th Percentile Salary 50th Percentile Salary 75th Percentile Salary
---------- ---------------------- ---------------------- ----------------------
 10 4400 4400 4400
 20 6000 6000 13000
 30 2600 2800 3100
 40 6500 6500 6500
 50 2600 3100 3600
 60 4800 4800 6000
 70 10000 10000 10000
 80 7300 8800 10000
 90 17000 17000 24000
 100 7700 7800 9000
 110 8300 8300 12008
 7000 7000 7000

APPROX_PERCENTILE_AGG
Syntax

APPROX_PERCENTILE_AGG (expr)

Purpose

APPROX_PERCENTILE_AGG takes as its input a column of details containing approximate
percentile information, and enables you to perform aggregations of that information.

For detail, specify a column of details created by the APPROX_PERCENT_DETAIL
function or the APPROX_PERCENTILE_AGG function. This column is of data type BLOB.

You can specify this function in a SELECT statement with a GROUP BY clause to
aggregate the information contained in the details within each group of rows and return
a single detail for each group.

This function returns a BLOB value, called a detail, which contains approximate
percentile information in a special format. You can store details returned by this
function in a table or materialized view, and then again use the
APPROX_PERCENTILE_AGG function to further aggregate those details, or use the
TO_APPROX_PERCENTILE function to convert the details to specified percentile values.

Chapter 7
APPROX_PERCENTILE_AGG

7-38

See Also:

• APPROX_PERCENTILE_DETAIL

• TO_APPROX_PERCENTILE

Examples

Refer to APPROX_PERCENTILE_AGG: Examples for examples of using the
APPROX_PERCENTILE_AGG function in conjunction with the APPROX_PERCENTILE_DETAIL and
TO_APPROX_PERCENTILE functions.

APPROX_PERCENTILE_DETAIL
Syntax

APPROX_PERCENTILE_DETAIL (expr

DETERMINISTIC

)

Purpose

APPROX_PERCENTILE_DETAIL calculates approximate percentile information for the values of
expr and returns a BLOB value, called a detail, which contains that information in a special
format.

The acceptable data types for expr depend on the algorithm that you specify with the
DETERMINISTIC clause. Refer to the DETERMINISTIC clause for more information.

This function is commonly used with the GROUP BY clause in a SELECT statement. It calculates
approximate percentile information for expr within each group of rows and returns a single
detail for each group.

The details returned by APPROX_PERCENTILE_DETAIL can be used as input to the
APPROX_PERCENTILE_AGG function, which enables you to perform aggregations of the details,
or the TO_APPROX_PERCENTILE function, which converts a detail to a specified percentile value.
You can use these three functions together to perform resource-intensive approximate
percentile calculations once, store the resulting details, and then perform efficient
aggregations and queries on those details. For example:

1. Use the APPROX_PERCENTILE_DETAIL function to perform approximate percentile
calculations and store the resulting details in a table or materialized view. These could be
highly-granular percentile details, such as income percentile information for cities.

2. Use the APPROX_PERCENTILE_AGG function to aggregate the details obtained in the
previous step and store the resulting details in a table or materialized view. These could
be details of lower granularity, such as income percentile information for states.

3. Use the TO_APPROX_PERCENTILE function to convert the stored detail values to percentile
values. You can use the TO_APPROX_PERCENTILE function to query detail values created
by the APPROX_PERCENTILE_DETAIL function or the APPROX_PERCENTILE_AGG function.

DETERMINISTIC

Chapter 7
APPROX_PERCENTILE_DETAIL

7-39

This clause lets you control the type of algorithm used to calculate the approximate
percentile values.

• If you specify DETERMINISTIC, then this function calculates deterministic
approximate percentile information. In this case, expr must evaluate to a numeric
value, or to a value that can be implicitly converted to a numeric value.

• If you omit DETERMINSTIC, then this function calculates nondeterministic
approximate percentile information. In this case, expr must evaluate to a numeric
or datetime value, or to a value that can be implicitly converted to a numeric or
datetime value.

See Also:

• APPROX_PERCENTILE_AGG

• TO_APPROX_PERCENTILE

Examples

The examples in this section demonstrate how to use the APPROX_PERCENTILE_DETAIL,
APPROX_PERCENTILE_AGG, and TO_APPROX_PERCENTILE functions together to perform
resource-intensive approximate percentile calculations once, store the resulting
details, and then perform efficient aggregations and queries on those details.

APPROX_PERCENTILE_DETAIL: Example

The following statement queries the tables sh.customers and sh.sales for the
monetary amounts for products sold to each customer. The
APPROX_PERCENTILE_DETAIL function returns the information in a detail, called
city_detail, for each city in which customers reside. The returned details are stored
in a materialized view called amt_sold_by_city_mv.

CREATE MATERIALIZED VIEW amt_sold_by_city_mv
ENABLE QUERY REWRITE AS
SELECT c.country_id country,
 c.cust_state_province state,
 c.cust_city city,
 APPROX_PERCENTILE_DETAIL(s.amount_sold) city_detail
FROM customers c, sales s
WHERE c.cust_id = s.cust_id
GROUP BY c.country_id, c.cust_state_province, c.cust_city;

APPROX_PERCENTILE_AGG: Examples

The following statement uses the APPROX_PERCENTILE_AGG function to read the details
stored in amt_sold_by_city_mv and create aggregated details that contain the
monetary amounts for products sold to customers in each state. These aggregated
details are stored in a materialized view called amt_sold_by_state_mv.

CREATE MATERIALIZED VIEW amt_sold_by_state_mv AS
SELECT country,
 state,
 APPROX_PERCENTILE_AGG(city_detail) state_detail
FROM amt_sold_by_city_mv
GROUP BY country, state;

Chapter 7
APPROX_PERCENTILE_DETAIL

7-40

The following statement is similar to the previous statement, except it creates aggregated
details that contain the approximate monetary amounts for products sold to customers in
each country. These aggregated details are stored in a materialized view called
amt_sold_by_country_mv.

CREATE MATERIALIZED VIEW amt_sold_by_country_mv AS
 SELECT country,
 APPROX_PERCENTILE_AGG(city_detail) country_detail
 FROM amt_sold_by_city_mv
 GROUP BY country;

TO_APPROX_PERCENTILE: Examples

The following statement uses the TO_APPROX_PERCENTILE function to query the details stored
in amt_sold_by_city_mv and return approximate 25th percentile, 50th percentile, and 75th
percentile values for monetary amounts for products sold to customers in each city:

SELECT country,
 state,
 city,
 TO_APPROX_PERCENTILE(city_detail, .25, 'NUMBER') "25th Percentile",
 TO_APPROX_PERCENTILE(city_detail, .50, 'NUMBER') "50th Percentile",
 TO_APPROX_PERCENTILE(city_detail, .75, 'NUMBER') "75th Percentile"
FROM amt_sold_by_city_mv
ORDER BY country, state, city;

COUNTRY STATE CITY 25th Percentile 50th Percentile 75th Percentile
------- ------------ -------------- --------------- --------------- ---------------
 52769 Kuala Lumpur Kuala Lumpur 19.29 38.1 53.84
 52769 Penang Batu Ferringhi 21.51 42.09 57.26
 52769 Penang Georgetown 19.15 33.25 56.12
 52769 Selangor Klang 18.08 32.06 51.29
 52769 Selangor Petaling Jaya 19.29 35.43 60.2
. . .

The following statement uses the TO_APPROX_PERCENTILE function to query the details stored
in amt_sold_by_state_mv and return approximate 25th percentile, 50th percentile, and 75th
percentile values for monetary amounts for products sold to customers in each state:

SELECT country,
 state,
 TO_APPROX_PERCENTILE(state_detail, .25, 'NUMBER') "25th Percentile",
 TO_APPROX_PERCENTILE(state_detail, .50, 'NUMBER') "50th Percentile",
 TO_APPROX_PERCENTILE(state_detail, .75, 'NUMBER') "75th Percentile"
FROM amt_sold_by_state_mv
ORDER BY country, state;

COUNTRY STATE 25th Percentile 50th Percentile 75th Percentile
------- ------------ --------------- --------------- ---------------
 52769 Kuala Lumpur 19.29 38.1 53.84
 52769 Penang 20.19 36.84 56.12
 52769 Selangor 16.97 32.41 52.69
 52770 Drenthe 16.76 31.7 53.89
 52770 Flevopolder 20.38 39.73 61.81
. . .

The following statement uses the TO_APPROX_PERCENTILE function to query the details stored
in amt_sold_by_country_mv and return approximate 25th percentile, 50th percentile, and
75th percentile values for monetary amounts for products sold to customers in each country:

Chapter 7
APPROX_PERCENTILE_DETAIL

7-41

SELECT country,
 TO_APPROX_PERCENTILE(country_detail, .25, 'NUMBER') "25th Percentile",
 TO_APPROX_PERCENTILE(country_detail, .50, 'NUMBER') "50th Percentile",
 TO_APPROX_PERCENTILE(country_detail, .75, 'NUMBER') "75th Percentile"
FROM amt_sold_by_country_mv
ORDER BY country;

 COUNTRY 25th Percentile 50th Percentile 75th Percentile
--------- --------------- --------------- ---------------
 52769 19.1 35.43 52.78
 52770 19.29 38.99 59.58
 52771 11.99 44.99 561.47
 52772 18.08 33.72 54.16
 52773 15.67 29.61 50.65
. . .

APPROX_PERCENTILE_AGG takes as its input a column of details containing approximate
percentile information, and enables you to perform aggregations of that information.
The following statement demonstrates how approximate percentile details can
interpreted by APPROX_PERCENTILE_AGG to provide an input to the
TO_APPROX_PERCENTILE function. Like the previous example, this query returns
approximate 25th percentile values for monetary amounts for products sold to
customers in each country. Note that the results are identical to those returned for the
25th percentile in the previous example.

SELECT country,
 TO_APPROX_PERCENTILE(APPROX_PERCENTILE_AGG(city_detail), .25, 'NUMBER')
"25th Percentile"
FROM amt_sold_by_city_mv
GROUP BY country
ORDER BY country;

 COUNTRY 25th Percentile
---------- ---------------
 52769 19.1
 52770 19.29
 52771 11.99
 52772 18.08
 52773 15.67
. . .

Query Rewrite and Materialized Views Based on Approximate Queries: Example

In APPROX_PERCENTILE_DETAIL: Example, the ENABLE QUERY REWRITE clause is
specified when creating the materialized view amt_sold_by_city_mv. This enables
queries that contain approximation functions, such as APPROX_MEDIAN or
APPROX_PERCENTILE, to be rewritten using the materialized view.

For example, ensure that query rewrite is enabled at either the database level or for
the current session, and run the following query:

SELECT c.country_id country,
 APPROX_MEDIAN(s.amount_sold) amount_median
FROM customers c, sales s
WHERE c.cust_id = s.cust_id
GROUP BY c.country_id;

Explain the plan by querying DBMS_XPLAN:

Chapter 7
APPROX_PERCENTILE_DETAIL

7-42

SET LINESIZE 300
SET PAGESIZE 0
COLUMN plan_table_output FORMAT A150

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR(format=>'BASIC'));

As shown in the following plan, the optimizer used the materialized view
amt_sold_by_city_mv for the query:

EXPLAINED SQL STATEMENT:

SELECT c.country_id country, APPROX_MEDIAN(s.amount_sold)
amount_median FROM customers c, sales s WHERE c.cust_id = s.cust_id
GROUP BY c.country_id

Plan hash value: 2232676046

| Id | Operation | Name |

0	SELECT STATEMENT	
1	HASH GROUP BY APPROX	
2	MAT_VIEW REWRITE ACCESS FULL	AMT_SOLD_BY_CITY_MV

APPROX_RANK
Syntax

APPROX_RANK (expr

PARTITION BY partition_by_clause ORDER BY order_by_clause DESC

)

Purpose

APPROX_RANK returns the approximate value in a group of values.

This function takes an optional PARTITION BY clause followed by a mandatory ORDER BY ...
DESC clause. The PARTITION BY key must be a subset of the GROUP BY key. The ORDER BY
clause must include either APPROX_COUNT or APPROX_SUM.

Examples

The query returns the jobs that are among the top 10 total salary per department. For each
job, the total salary and ranking is also given.

SELECT job_id,
 APPROX_SUM(sal),
 APPROX_RANK(PARTITION BY department_id ORDER BY APPROX_SUM(salary)
DESC)
FROM employees
GROUP BY department_id, job_id
HAVING
 APPROX_RANK(
 PARTITION BY department_id

Chapter 7
APPROX_RANK

7-43

 ORDER BY APPROX_SUM (salary)
 DESC) <= 10;

APPROX_SUM
Syntax

APPROX_SUM (
*

expr

, ’ MAX_ERROR ’

)

Purpose

APPROX_SUM returns the approximate sum of an expression. If you supply MAX_ERROR as
the second argument, then the function returns the maximum error between the actual
and approximate sum.

You must use this function with a corresponding APPROX_RANK function in the HAVING
clause. If a query uses APPROX_COUNT, APPROX_SUM, or APPROX_RANK, then the query
must not use any other aggregation functions.

Note that APPROX_SUM returns an error when the input is a negative number.

Examples

The following query returns the 10 job types within every department that have the
highest aggregate salary:

SELECT department_id, job_id,
 APPROX_SUM(salary)
FROM employees
GROUP BY department_id, job_id
HAVING
 APPROX_RANK (
 PARTITION BY department_id
 ORDER BY APPROX_SUM(salary)
 DESC) <= 10;

ASCII
Syntax

ASCII (char)

Purpose

ASCII returns the decimal representation in the database character set of the first
character of char.

Chapter 7
APPROX_SUM

7-44

char can be of data type CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The value returned is of data
type NUMBER. If your database character set is 7-bit ASCII, then this function returns an ASCII
value. If your database character set is EBCDIC Code, then this function returns an EBCDIC
value. There is no corresponding EBCDIC character function.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also:

Data Type Comparison Rules for more information

Examples

The following example returns employees whose last names begin with the letter L, whose
ASCII equivalent is 76:

SELECT last_name
 FROM employees
 WHERE ASCII(SUBSTR(last_name, 1, 1)) = 76
 ORDER BY last_name;

LAST_NAME

Ladwig
Landry
Lee
Livingston
Lorentz

ASCIISTR
Syntax

ASCIISTR (char)

Purpose

ASCIISTR takes as its argument a string, or an expression that resolves to a string, in any
character set and returns an ASCII version of the string in the database character set. Non-
ASCII characters are converted to the form \xxxx, where xxxx represents a UTF-16 code
unit.

Chapter 7
ASCIISTR

7-45

See Also:

• Oracle Database Globalization Support Guide for information on Unicode
character sets and character semantics

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of ASCIISTR

Examples

The following example returns the ASCII string equivalent of the text string "ABÄCDE":

SELECT ASCIISTR('ABÄCDE')
 FROM DUAL;

ASCIISTR('

AB\00C4CDE

ASIN
Syntax

ASIN (n)

Purpose

ASIN returns the arc sine of n. The argument n must be in the range of -1 to 1, and the
function returns a value in the range of -pi/2 to pi/2, expressed in radians.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. If the argument is
BINARY_FLOAT, then the function returns BINARY_DOUBLE. Otherwise the function
returns the same numeric data type as the argument.

See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns the arc sine of .3:

SELECT ASIN(.3) "Arc_Sine"
 FROM DUAL;

 Arc_Sine

.304692654

Chapter 7
ASIN

7-46

ATAN
Syntax

ATAN (n)

Purpose

ATAN returns the arc tangent of n. The argument n can be in an unbounded range and returns
a value in the range of -pi/2 to pi/2, expressed in radians.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the
function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

See Also:

ATAN2 for information about the ATAN2 function and Table 2-8 for more information
on implicit conversion

Examples

The following example returns the arc tangent of .3:

SELECT ATAN(.3) "Arc_Tangent"
 FROM DUAL;

Arc_Tangent

.291456794

ATAN2
Syntax

ATAN2 (n1 , n2)

Purpose

ATAN2 returns the arc tangent of n1 and n2. The argument n1 can be in an unbounded range
and returns a value in the range of -pi to pi, depending on the signs of n1 and n2, expressed
in radians.

This function takes as arguments any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If any argument is BINARY_FLOAT or

Chapter 7
ATAN

7-47

BINARY_DOUBLE, then the function returns BINARY_DOUBLE. Otherwise the function
returns NUMBER.

See Also:

ATAN for information on the ATAN function and Table 2-8 for more information
on implicit conversion

Examples

The following example returns the arc tangent of .3 and .2:

SELECT ATAN2(.3, .2) "Arc_Tangent2"
 FROM DUAL;

Arc_Tangent2

 .982793723

AVG
Syntax

AVG (

DISTINCT

ALL

expr)

OVER (analytic_clause)

See Also:

Analytic Functions for information on syntax, semantics, and restrictions

Purpose

AVG returns average value of expr.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. The function returns the
same data type as the numeric data type of the argument.

See Also:

Table 2-8 for more information on implicit conversion

If you specify DISTINCT, then you can specify only the query_partition_clause of the
analytic_clause. The order_by_clause and windowing_clause are not allowed.

Chapter 7
AVG

7-48

See Also:

About SQL Expressions for information on valid forms of expr and Aggregate
Functions

Aggregate Example

The following example calculates the average salary of all employees in the hr.employees
table:

SELECT AVG(salary) "Average"
 FROM employees;

 Average

 6461.83178

Analytic Example

The following example calculates, for each employee in the employees table, the average
salary of the employees reporting to the same manager who were hired in the range just
before through just after the employee:

SELECT manager_id, last_name, hire_date, salary,
 AVG(salary) OVER (PARTITION BY manager_id ORDER BY hire_date
 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS c_mavg
 FROM employees
 ORDER BY manager_id, hire_date, salary;

MANAGER_ID LAST_NAME HIRE_DATE SALARY C_MAVG
---------- ------------------------- --------- ---------- ----------
 100 De Haan 13-JAN-01 17000 14000
 100 Raphaely 07-DEC-02 11000 11966.6667
 100 Kaufling 01-MAY-03 7900 10633.3333
 100 Hartstein 17-FEB-04 13000 9633.33333
 100 Weiss 18-JUL-04 8000 11666.6667
 100 Russell 01-OCT-04 14000 11833.3333
 100 Partners 05-JAN-05 13500 13166.6667
 100 Errazuriz 10-MAR-05 12000 11233.3333
. . .

BFILENAME
Syntax

BFILENAME (’ directory ’ , ’ filename ’)

Purpose

BFILENAME returns a BFILE locator that is associated with a physical LOB binary file on the
server file system.

• 'directory' is a database object that serves as an alias for a full path name on the server
file system where the files are actually located.

Chapter 7
BFILENAME

7-49

• 'filename' is the name of the file in the server file system.

You must create the directory object and associate a BFILE value with a physical file
before you can use them as arguments to BFILENAME in a SQL or PL/SQL statement,
DBMS_LOB package, or OCI operation.

You can use this function in two ways:

• In a DML statement to initialize a BFILE column

• In a programmatic interface to access BFILE data by assigning a value to the
BFILE locator

The directory argument is case sensitive. You must ensure that you specify the
directory object name exactly as it exists in the data dictionary. For example, if an
"Admin" directory object was created using mixed case and a quoted identifier in the
CREATE DIRECTORY statement, then when using the BFILENAME function you must refer
to the directory object as 'Admin'. You must specify the filename argument according
to the case and punctuation conventions for your operating system.

See Also:

• Oracle Database SecureFiles and Large Objects Developer's Guide and
Oracle Call Interface Programmer's Guide for more information on LOBs
and for examples of retrieving BFILE data

• CREATE DIRECTORY

Examples

The following example inserts a row into the sample table pm.print_media. The
example uses the BFILENAME function to identify a binary file on the server file system
in the directory /demo/schema/product_media. The example shows how the directory
database object media_dir was created in the pm schema.

CREATE DIRECTORY media_dir AS '/demo/schema/product_media';

INSERT INTO print_media (product_id, ad_id, ad_graphic)
 VALUES (3000, 31001, BFILENAME('MEDIA_DIR', 'modem_comp_ad.gif'));

BIN_TO_NUM
Syntax

BIN_TO_NUM (expr

,

)

Purpose

BIN_TO_NUM converts a bit vector to its equivalent number. Each argument to this
function represents a bit in the bit vector. This function takes as arguments any

Chapter 7
BIN_TO_NUM

7-50

numeric data type, or any nonnumeric data type that can be implicitly converted to NUMBER.
Each expr must evaluate to 0 or 1. This function returns Oracle NUMBER.

BIN_TO_NUM is useful in data warehousing applications for selecting groups of interest from a
materialized view using grouping sets.

See Also:

• group_by_clause for information on GROUPING SETS syntax

• Table 2-8 for more information on implicit conversion

• Oracle Database Data Warehousing Guide for information on data aggregation
in general

Examples

The following example converts a binary value to a number:

SELECT BIN_TO_NUM(1,0,1,0)
 FROM DUAL;

BIN_TO_NUM(1,0,1,0)

 10

The next example converts three values into a single binary value and uses BIN_TO_NUM to
convert that binary into a number. The example uses a PL/SQL declaration to specify the
original values. These would normally be derived from actual data sources.

SELECT order_status
 FROM orders
 WHERE order_id = 2441;

ORDER_STATUS

 5
DECLARE
 warehouse NUMBER := 1;
 ground NUMBER := 1;
 insured NUMBER := 1;
 result NUMBER;
BEGIN
 SELECT BIN_TO_NUM(warehouse, ground, insured) INTO result FROM DUAL;
 UPDATE orders SET order_status = result WHERE order_id = 2441;
END;
/
PL/SQL procedure successfully completed.

SELECT order_status
 FROM orders
 WHERE order_id = 2441;

ORDER_STATUS

 7

Chapter 7
BIN_TO_NUM

7-51

Refer to the examples for BITAND for information on reversing this process by
extracting multiple values from a single column value.

BITAND
Syntax

BITAND (expr1 , expr2)

Purpose

The BITAND function treats its inputs and its output as vectors of bits; the output is the
bitwise AND of the inputs.

The types of expr1 and expr2 are NUMBER, and the result is of type NUMBER. If either
argument to BITAND is NULL, the result is NULL.

The arguments must be in the range -(2(n-1)) .. ((2(n-1))-1). If an argument is out of this
range, the result is undefined.

The result is computed in several steps. First, each argument A is replaced with the
value SIGN(A)*FLOOR(ABS(A)). This conversion has the effect of truncating each
argument towards zero. Next, each argument A (which must now be an integer value)
is converted to an n-bit two's complement binary integer value. The two bit values are
combined using a bitwise AND operation. Finally, the resulting n-bit two's complement
value is converted back to NUMBER.

Notes on the BITAND Function

• The current implementation of BITAND defines n = 128.

• PL/SQL supports an overload of BITAND for which the types of the inputs and of
the result are all BINARY_INTEGER and for which n = 32.

Examples

The following example performs an AND operation on the numbers 6 (binary 1,1,0) and
3 (binary 0,1,1):

SELECT BITAND(6,3)
 FROM DUAL;

BITAND(6,3)

 2

This is the same as the following example, which shows the binary values of 6 and 3.
The BITAND function operates only on the significant digits of the binary values:

SELECT BITAND(
 BIN_TO_NUM(1,1,0),
 BIN_TO_NUM(0,1,1)) "Binary"
 FROM DUAL;

 Binary

Chapter 7
BITAND

7-52

 2

Refer to the example for BIN_TO_NUM for information on encoding multiple values in a
single column value.

The following example supposes that the order_status column of the sample table
oe.orders encodes several choices as individual bits within a single numeric value. For
example, an order still in the warehouse is represented by a binary value 001 (decimal 1). An
order being sent by ground transportation is represented by a binary value 010 (decimal 2).
An insured package is represented by a binary value 100 (decimal 4). The example uses the
DECODE function to provide two values for each of the three bits in the order_status value,
one value if the bit is turned on and one if it is turned off.

SELECT order_id, customer_id, order_status,
 DECODE(BITAND(order_status, 1), 1, 'Warehouse', 'PostOffice') "Location",
 DECODE(BITAND(order_status, 2), 2, 'Ground', 'Air') "Method",
 DECODE(BITAND(order_status, 4), 4, 'Insured', 'Certified') "Receipt"
 FROM orders
 WHERE sales_rep_id = 160
 ORDER BY order_id;

 ORDER_ID CUSTOMER_ID ORDER_STATUS Location Method Receipt
---------- ----------- ------------ ---------- ------ ---------
 2416 104 6 PostOffice Ground Insured
 2419 107 3 Warehouse Ground Certified
 2420 108 2 PostOffice Ground Certified
 2423 145 3 Warehouse Ground Certified
 2441 106 5 Warehouse Air Insured
 2455 145 7 Warehouse Ground Insured

For the Location column, BITAND first compares order_status with 1 (binary 001). Only
significant bit values are compared, so any binary value with a 1 in its rightmost bit (any odd
number) will evaluate positively and return 1. Even numbers will return 0. The DECODE function
compares the value returned by BITAND with 1. If they are both 1, then the location is
"Warehouse". If they are different, then the location is "PostOffice".

The Method and Receipt columns are calculated similarly. For Method, BITAND performs the
AND operation on order_status and 2 (binary 010). For Receipt, BITAND performs the AND
operation on order_status and 4 (binary 100).

BIT_AND_AGG
Syntax

BIT_AND_AGG (

DISTINCT

ALL

UNIQUE

expr)

Purpose

BIT_AND_AGG is a bitwise aggregation function that returns the result of a bitwise AND
operation.

Chapter 7
BIT_AND_AGG

7-53

You can use BIT_AND_AGG as part of a GROUP BY query, window function, or as an
analytical function. The return type of BIT_AND_AGG is always a number.

Semantics

The keywords DISTINCT or UNIQUE ensure that only unique values in expr are used for
computation. UNIQUE is an Oracle-specific keyword and not an ANSI standard.

NULL values in the expr column are ignored.

Returns NULL if all rows in the group have NULL expr values.

Floating point values are truncated to the integer prior to aggregation. For instance,
the value 4.64 is converted to 4, and the value 4.4 is also converted to 4.

Negative numbers are represented in two’s complement form internally prior to
performing an aggregate operation. The resultant aggregate could be a negative
value.

Range of inputs supported: -2 raised to 127 to (2 raised to 127) -1

Numbers are internally converted to a 128b decimal representation prior to
aggregation. The resultant aggregate is converted back into an Oracle Number.

For a given set of values, the result of a bitwise aggregate is always deterministic and
independent of ordering.

Example 7-2 Use the BIT_AND_AGG Function

Select two numbers and their bitwise representation:

SELECT '011' num, bin_to_num(0,1,1) bits FROM dual
 UNION ALL SELECT '101' num, bin_to_num(1,0,1) bits FROM dual;

NUM BITS
--- ----------
011 3
101 5

Perform the bitwise AND operation:

SELECT bit_and_agg(bits)
 FROM (SELECT '011' num, bin_to_num(0,1,1) bits FROM dual
 UNION ALL SELECT '101' num, bin_to_num(1,0,1) bits FROM dual);

BIT_AND_AGG(BITS)

 1

Only the first bit is identical in both rows, thus the result is 001, which is the number 1.

BITMAP_BIT_POSITION
Syntax

Chapter 7
BITMAP_BIT_POSITION

7-54

BITMAP_BIT_POSITION (expr)

Purpose

Use BITMAP_BIT_POSITION to construct the one-to-one mapping between a number and a bit
position.

The argument expr is of type NUMBER. It is the absolute bit position in the bitmap.

BITMAP_BIT_POSITION returns a NUMBER, the relative bit position.

If expr is NULL, the function returns NULL.

If expr is not an integer, you will see the following error message:

Invalid value has been passed to a BITMAP COUNT DISTINCT related operator.

BITMAP_BUCKET_NUMBER
Syntax

BITMAP_BUCKET_NUMBER (expr)

Purpose

Use BITMAP_BUCKET_NUMBER to construct a one-to-one mapping between a number and a bit
position in a bitmap.

The argument expr is of type NUMBER. It represents the absolute bit position in the bitmap.

BITMAP_BUCKET_NUMBER returns a NUMBER. It represents the relative bit position.

If expr is NULL, the function returns NULL.

If expr is not an integer, you will see the following error message:

Invalid value has been passed to a BITMAP COUNT DISTINCT related operator.

BITMAP_CONSTRUCT_AGG
Syntax

BITMAP_CONSTRUCT_AGG (expr)

Purpose

BITMAP_CONSTRUCT_AGG is an aggregation function that operates on bit positions and returns
the bitmap representation of the set of all input bit positions. It essentially maintains a bitmap
and sets into it all the input bit positions. It returns the representation of the bitmap.

Chapter 7
BITMAP_BUCKET_NUMBER

7-55

The argument expr is of type NUMBER.

The return type is of type BLOB.

If expr is NULL, the function returns NULL.

Restrictions

• The argument must be of NUMBER type. If the input value cannot be converted to a
natural number, error ORA-62575 is raised:

62575, 00000, "Invalid value has been passed to a BITMAP COUNT
DISTINCT related operator."
// *Cause: An attempt was made to pass an invalid value to a BITMAP
COUNT DISTINCT operator.
// *Action: Pass only natural number values to BITMAP_CONSTRUCT_AGG.

• If the bitmap exceeds the maximum value of a BLOB, you will see error ORA-62577:

62577, 00000, "The bitmap size exceeds maximum size of its SQL data type."
// *Cause: An attempt was made to construct a bitmap larger than its maximum
SQL type size.
// *Action: Break the input to BITMAP_CONSTRUCT_AGG into smaller ranges.

BITMAP_COUNT
Syntax

BITMAP_COUNT (expr)

Purpose

BITMAP_COUNT is a scalar function that returns the 1-bit count for the input bitmap.

The argument expr is of type BLOB.

It returns a NUMBER representing the count of bits set in its input.

If expr is NULL, it returns 0.

Restrictions

The argument must be of type BLOBtype. The argument is expected to be a bitmap
produced by BITMAP_CONSTRUCT_AGG or, recursively, by BITMAP_OR_AGG. Any other input
results in ORA-62578:

62578, 00000, "The input is not a valid bitmap produced by BITMAP
COUNT DISTINCT related operators."
// *Cause: An attempt was made to pass a bitmap that was not produced
by one of the BITMAP COUNT DISTINCT operators.
// *Action: Only pass bitmaps constructed via BITMAP_CONSTRUCT_AGG or
BITMAP_OR_AGG to BITMAP COUNT DISTINCT related operators.

Chapter 7
BITMAP_COUNT

7-56

BITMAP_OR_AGG
Syntax

BITMAP_OR_AGG (expr)

Purpose

BITMAP_OR_AGG is an aggregation function that operates on bitmaps and computes the OR of
its inputs.

The argument expr must be of type BLOB.

The return type is of type BLOB. It returns the bitmap representing the OR of all the bitmaps it
has aggregated.

The output of BITMAP_OR_AGG is not human-readable. It is meant to be processed by further
aggregations via BITMAP_OR_AGG or by the scalar function BITMAP_COUNT.

If expr is NULL, the function returns NULL.

Restrictions

The argument must be of type BLOB. The argument is expected to be a bitmap produced by
BITMAP_CONSTRUCT_AGG or, recursively, by BITMAP_OR_AGG. Any other input results in
ORA-62578:

62578, 00000, "The input is not a valid bitmap produced by BITMAP COUNT
DISTINCT related operators."
// *Cause: An attempt was made to pass a bitmap that was not produced by one
of the BITMAP COUNT DISTINCT operators.
// *Action: Only pass bitmaps constructed via BITMAP_CONSTRUCT_AGG or
BITMAP_OR_AGG to BITMAP COUNT DISTINCT related operators.

BIT_OR_AGG
Syntax

BIT_OR_AGG (

DISTINCT

ALL

UNIQUE

expr)

Purpose

BIT_OR_AGG is a bitwise aggregation function that returns the result of a bitwise OR operation.

Chapter 7
BITMAP_OR_AGG

7-57

You can use BIT_OR_AGG as part of a GROUP BY query, window function, or as an
analytical function. The return type of BIT_OR_AGG is always a number.

Semantics

The keywords DISTINCT or UNIQUE ensure that only unique values in expr are used for
computation. UNIQUE is an Oracle-specific keyword and not an ANSI standard.

NULL values in the expr column are ignored.

Returns NULL if all rows in the group have NULL expr values.

Floating point values are truncated to the integer prior to aggregation. For instance,
the value 4.64 is converted to 4 and the value 4.4 is also converted to 4.

Negative numbers are represented in two’s complement form internally prior to
performing an aggregate operation. The resultant aggregate could be a negative
value.

Range of inputs supported: -2 raised to 127 to (2 raised to 127) -1

Numbers are internally converted to a 128b decimal representation prior to
aggregation. The resultant aggregate is converted back into an Oracle Number.

For a given set of values, the result of a bitwise aggregate is always deterministic and
independent of ordering.

BIT_XOR_AGG
Syntax

BIT_XOR_AGG (

DISTINCT

ALL

UNIQUE

expr)

Purpose

BIT_XOR_AGG is a bitwise aggregation function that returns the result of a bitwise XOR
operation.

You can use BIT_XOR_AGG as part of a GROUP BY query, window function, or as an
analytical function. The return type of BIT_XOR_AGG is always a number.

Semantics

The keywords DISTINCT or UNIQUE ensure that only unique values in expr are used for
computation. BIT_XOR_AGG could potentially return a different value when DISTINCT is
present. UNIQUE is an Oracle-specific keyword and not an ANSI standard.

NULL values in the expr column are ignored.

Returns NULL if all rows in the group have NULL expr values.

Chapter 7
BIT_XOR_AGG

7-58

Floating point values are truncated to the integer prior to aggregation. For instance, the value
4.64 is converted to 4 and the value 4.4 is also converted to 4.

Negative numbers are represented in two’s complement form internally prior to performing an
aggregate operation. The resultant aggregate could be a negative value.

Range of inputs supported: -2 raised to 127 to (2 raised to 127) -1

Numbers are internally converted to a 128b decimal representation prior to aggregation. The
resultant aggregate is converted back into an Oracle Number.

For a given set of values, the result of a bitwise aggregate is always deterministic and
independent of ordering.

CARDINALITY
Syntax

CARDINALITY (nested_table)

Purpose

CARDINALITY returns the number of elements in a nested table. The return type is NUMBER. If
the nested table is empty, or is a null collection, then CARDINALITY returns NULL.

Examples

The following example shows the number of elements in the nested table column
ad_textdocs_ntab of the sample table pm.print_media:

SELECT product_id, CARDINALITY(ad_textdocs_ntab) cardinality
 FROM print_media
 ORDER BY product_id;

PRODUCT_ID CARDINALITY
---------- -----------
 2056 3
 2268 3
 3060 3
 3106 3

CAST
Syntax

CAST (
expr

MULTISET (subquery)
AS type_name

DEFAULT return_value ON CONVERSION ERROR , fmt

, ’ nlsparam ’

)

Chapter 7
CARDINALITY

7-59

Purpose

CAST lets you convert built-in data types or collection-typed values of one type into
another built-in data type or collection type. You can cast an unnamed operand (such
as a date or the result set of a subquery) or a named collection (such as a varray or a
nested table) into a type-compatible data type or named collection. The type_name
must be the name of a built-in data type or collection type and the operand must be a
built-in data type or must evaluate to a collection value.

For the operand, expr can be either a built-in data type, a collection type, or an
instance of an ANYDATA type. If expr is an instance of an ANYDATA type, then CAST tries
to extract the value of the ANYDATA instance and return it if it matches the cast target
type, otherwise, null will be returned. MULTISET informs Oracle Database to take the
result set of the subquery and return a collection value. Table 7-1 shows which built-in
data types can be cast into which other built-in data types. (CAST does not support
LONG, LONG RAW, or the Oracle-supplied types.)

CAST does not directly support any of the LOB data types. When you use CAST to
convert a CLOB value into a character data type or a BLOB value into the RAW data type,
the database implicitly converts the LOB value to character or raw data and then
explicitly casts the resulting value into the target data type. If the resulting value is
larger than the target type, then the database returns an error.

When you use CAST ... MULTISET to get a collection value, each select list item in the
query passed to the CAST function is converted to the corresponding attribute type of
the target collection element type.

Table 7-1 Casting Built-In Data Types

Destination
Data Type

from
BINARY_F
LOAT,
BINARY_D
OUBLE

from
CHAR,
VARCHAR2

from
NUMBER/
INTEGER

from
DATETIME
/ INTERVAL
(Note 1)

from RAW from
ROWID,
UROWID
(Note 2)

from
NCHAR,
NVARCHAR
2

to
BINARY_FLOA
T,
BINARY_DOU
BLE

X (Note 3) X (Note 3) X (Note 3) -- -- -- X (Note 3)

to CHAR,
VARCHAR2

X X X X X X --

to NUMBER/
INTEGER

X (Note 3) X (Note 3) X (Note 3) -- -- -- X (Note 3)

to DATETIME/
INTERVAL

-- X (Note 3) -- X (Note 3) -- -- --

to RAW -- X -- -- X -- --
to ROWID,
UROWID

-- X -- -- -- X --

to NCHAR,
NVARCHAR2

X -- X X X X X

Chapter 7
CAST

7-60

Note 1: Datetime/interval includes DATE, TIMESTAMP, TIMESTAMP WITH TIMEZONE, TIMESTAMP
WITH LOCAL TIME ZONE, INTERVAL DAY TO SECOND, and INTERVAL YEAR TO MONTH.

Note 2: You cannot cast a UROWID to a ROWID if the UROWID contains the value of a ROWID of an
index-organized table.

Note 3: You can specify the DEFAULT return_value ON CONVERSION ERROR clause for this type
of conversion. You can specify the fmt and nlsparam clauses for this type of conversion with
the following exceptions: you cannot specify fmt when converting to INTERVAL DAY TO SECOND,
and you cannot specify fmt or nlsparam when converting to INTERVAL YEAR TO MONTH.

If you want to cast a named collection type into another named collection type, then the
elements of both collections must be of the same type.

See Also:

• Implicit Data Conversion for information on how Oracle Database implicitly
converts collection type data into character data and Security Considerations
for Data Conversion

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of CAST
when it is a character value

MULTISET

If the result set of subquery can evaluate to multiple rows, then you must specify the
MULTISET keyword. The rows resulting from the subquery form the elements of the collection
value into which they are cast. Without the MULTISET keyword, the subquery is treated as a
scalar subquery.

Restriction on MULTISET

If you specify the MULTISET keyword, then you cannot specify the DEFAULT return_value ON
CONVERSION ERROR, fmt, or nlsparam clauses.

DEFAULT return_value ON CONVERSION ERROR

This clause allows you to specify the value returned by this function if an error occurs while
converting expr to type_name. This clause has no effect if an error occurs while evaluating
expr.

This clause is valid if expr evaluates to a character string of type CHAR, VARCHAR2, NCHAR, or
NVARCHAR2, and type_name is BINARY_DOUBLE, BINARY_FLOAT, DATE, INTERVAL DAY TO SECOND,
INTERVAL YEAR TO MONTH, NUMBER, TIMESTAMP, TIMESTAMP WITH TIME ZONE, or TIMESTAMP WITH
LOCAL TIME ZONE.

The return_value can be a string literal, null, constant expression, or a bind variable, and
must evaluate to null or a character string of type CHAR, VARCHAR2, NCHAR, or NVARCHAR2. If
return_value cannot be converted to type_name, then the function returns an error.

fmt and nlsparam

Chapter 7
CAST

7-61

The fmt argument lets you specify a format model and the nlsparam argument lets you
specify NLS parameters. If you specify these arguments, then they are applied when
converting expr and return_value, if specified, to type_name.

You can specify fmt and nlsparam if type_name is one of the following data types:

• BINARY_DOUBLE
If you specify BINARY_DOUBLE, then the optional fmt and nlsparam arguments
serve the same purpose as for the TO_BINARY_DOUBLE function. Refer to
TO_BINARY_DOUBLE for more information.

• BINARY_FLOAT
If you specify BINARY_FLOAT, then the optional fmt and nlsparam arguments serve
the same purpose as for the TO_BINARY_FLOAT function. Refer to
TO_BINARY_FLOAT for more information.

• DATE
If you specify DATE, then the optional fmt and nlsparam arguments serve the same
purpose as for the TO_DATE function. Refer to TO_DATE for more information.

• NUMBER
If you specify NUMBER, then the optional fmt and nlsparam arguments serve the
same purpose as for the TO_NUMBER function. Refer to TO_NUMBER for more
information.

• TIMESTAMP
If you specify TIMESTAMP, then the optional fmt and nlsparam arguments serve the
same purpose as for the TO_TIMESTAMP function. If you omit fmt, then expr must
be in the default format of the TIMESTAMP data type, which is determined explicitly
by the NLS_TIMESTAMP_FORMAT parameter or implicitly by the NLS_TERRITORY
parameter. Refer to TO_TIMESTAMP for more information.

• TIMESTAMP WITH TIME ZONE
If you specify TIMESTAMP WITH TIME ZONE, then the optional fmt and nlsparam
arguments serve the same purpose as for the TO_TIMESTAMP_TZ function. If you
omit fmt, then expr must be in the default format of the TIMESTAMP WITH TIME ZONE
data type, which is determined explicitly by the NLS_TIMESTAMP_TZ_FORMAT
parameter or implicitly by the NLS_TERRITORY parameter. Refer to
TO_TIMESTAMP_TZ for more information.

• TIMESTAMP WITH LOCAL TIME ZONE
If you specify TIMESTAMP WITH LOCAL TIME ZONE then the optional fmt and nlsparam
arguments serve the same purpose as for the TO_TIMESTAMP function. If you omit
fmt, then expr must be in the default format of the TIMESTAMP data type, , which is
determined explicitly by the NLS_TIMESTAMP_FORMAT parameter or implicitly by the
NLS_TERRITORY parameter. Refer to TO_TIMESTAMP for more information.

Built-In Data Type Examples

The following examples use the CAST function with scalar data types. The first example
converts text to a timestamp value by applying the format model provided in the
session parameter NLS_TIMESTAMP_FORMAT. If you want to avoid dependency on this
NLS parameter, then you can use the TO_DATE as shown in the second example.

Chapter 7
CAST

7-62

SELECT CAST('22-OCT-1997'
 AS TIMESTAMP WITH LOCAL TIME ZONE)
 FROM DUAL;

SELECT CAST(TO_DATE('22-Oct-1997', 'DD-Mon-YYYY')
 AS TIMESTAMP WITH LOCAL TIME ZONE)
 FROM DUAL;

In the preceding example, TO_DATE converts from text to DATE, and CAST converts from DATE
to TIMESTAMP WITH LOCAL TIME ZONE, interpreting the date in the session time zone
(SESSIONTIMEZONE).

SELECT product_id, CAST(ad_sourcetext AS VARCHAR2(30)) text
 FROM print_media
 ORDER BY product_id;

The following examples return a default value if an error occurs while converting the specified
value to the specified data type. In these examples, the conversions occurs without error.

SELECT CAST(200
 AS NUMBER
 DEFAULT 0 ON CONVERSION ERROR)
 FROM DUAL;

SELECT CAST('January 15, 1989, 11:00 A.M.'
 AS DATE
 DEFAULT NULL ON CONVERSION ERROR,
 'Month dd, YYYY, HH:MI A.M.')
 FROM DUAL;

SELECT CAST('1999-12-01 11:00:00 -8:00'
 AS TIMESTAMP WITH TIME ZONE
 DEFAULT '2000-01-01 01:00:00 -8:00' ON CONVERSION ERROR,
 'YYYY-MM-DD HH:MI:SS TZH:TZM',
 'NLS_DATE_LANGUAGE = American')
 FROM DUAL;

In the following example, an error occurs while converting 'N/A' to a NUMBER value.
Therefore, the CAST function returns the default value of 0.

SELECT CAST('N/A'
 AS NUMBER
 DEFAULT '0' ON CONVERSION ERROR)
 FROM DUAL;

Collection Examples

The CAST examples that follow build on the cust_address_typ found in the sample order
entry schema, oe.

CREATE TYPE address_book_t AS TABLE OF cust_address_typ;
/
CREATE TYPE address_array_t AS VARRAY(3) OF cust_address_typ;
/
CREATE TABLE cust_address (
 custno NUMBER,
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));

Chapter 7
CAST

7-63

CREATE TABLE cust_short (custno NUMBER, name VARCHAR2(31));

CREATE TABLE states (state_id NUMBER, addresses address_array_t);

This example casts a subquery:

SELECT s.custno, s.name,
 CAST(MULTISET(SELECT ca.street_address,
 ca.postal_code,
 ca.city,
 ca.state_province,
 ca.country_id
 FROM cust_address ca
 WHERE s.custno = ca.custno)
 AS address_book_t)
 FROM cust_short s
 ORDER BY s.custno;

CAST converts a varray type column into a nested table:

SELECT CAST(s.addresses AS address_book_t)
 FROM states s
 WHERE s.state_id = 111;

The following objects create the basis of the example that follows:

CREATE TABLE projects
 (employee_id NUMBER, project_name VARCHAR2(10));

CREATE TABLE emps_short
 (employee_id NUMBER, last_name VARCHAR2(10));

CREATE TYPE project_table_typ AS TABLE OF VARCHAR2(10);
/

The following example of a MULTISET expression uses these objects:

SELECT e.last_name,
 CAST(MULTISET(SELECT p.project_name
 FROM projects p
 WHERE p.employee_id = e.employee_id
 ORDER BY p.project_name)
 AS project_table_typ)
 FROM emps_short e
 ORDER BY e.last_name;

CEIL
Syntax

CEIL (n)

Purpose

CEIL returns the smallest integer that is greater than or equal to n. The number n can
always be written as the difference of an integer k and a positive fraction f such that 0

Chapter 7
CEIL

7-64

<= f < 1 and n = k - f. The value of CEIL is the integer k. Thus, the value of CEIL is n itself if
and only if n is precisely an integer.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type
as the numeric data type of the argument.

See Also:

Table 2-8 for more information on implicit conversion and FLOOR

Examples

The following example returns the smallest integer greater than or equal to the order total of a
specified order:

SELECT order_total, CEIL(order_total)
 FROM orders
 WHERE order_id = 2434;

ORDER_TOTAL CEIL(ORDER_TOTAL)
----------- -----------------
 268651.8 268652

CHARTOROWID
Syntax

CHARTOROWID (char)

Purpose

CHARTOROWID converts a value from CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type to ROWID
data type.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also:

Data Type Comparison Rules for more information.

Examples

The following example converts a character rowid representation to a rowid. (The actual
rowid is different for each database instance.)

SELECT last_name
 FROM employees
 WHERE ROWID = CHARTOROWID('AAAFd1AAFAAAABSAA/');

Chapter 7
CHARTOROWID

7-65

LAST_NAME

Greene

CHECKSUM
Syntax

CHECKSUM (

DISTINCT

ALL

expr)

OVER (analytic_clause)

Purpose

Use CHECKSUM to detect changes in a table. The order of the rows in the table does not
affect the result. You can use CHECKSUM with DISTINCT, as part of a GROUP BY query, as
a window function, or an analytical function.

Semantics

ALL: Applies the aggregate function to all values. ALL is the default option.

DISTINCT or UNIQUE: Returns the checksum of unique values. UNIQUE is an Oracle-
specific keyword and not an ANSI standard.

expr: Can be a column, constant, bind variable, or an expression involving them. All
data types except ADT and JSON are supported.

The return data type is an Oracle number (converted from an (8-byte) signed long
long) regardless of the data type of expr.

NULL values in expr column are ignored.

It returns NULL if expr is NULL.

The output of the CHECKSUM function is deterministic and independent of the ordering of
the input rows.

CHR
Syntax

CHR (n

USING NCHAR_CS

)

Purpose

CHR returns the character having the binary equivalent to n as a VARCHAR2 value in
either the database character set or, if you specify USING NCHAR_CS, the national
character set.

Chapter 7
CHECKSUM

7-66

For single-byte character sets, if n > 256, then Oracle Database returns the binary equivalent
of n mod 256. For multibyte character sets, n must resolve to one entire code point. Invalid
code points are not validated, and the result of specifying invalid code points is indeterminate.

This function takes as an argument a NUMBER value, or any value that can be implicitly
converted to NUMBER, and returns a character.

Note:

Use of the CHR function (either with or without the optional USING NCHAR_CS clause)
results in code that is not portable between ASCII- and EBCDIC-based machine
architectures.

See Also:

• NCHR and Table 2-8 for more information on implicit conversion

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of CHR

Examples

The following example is run on an ASCII-based machine with the database character set
defined as WE8ISO8859P1:

SELECT CHR(67)||CHR(65)||CHR(84) "Dog"
 FROM DUAL;

Dog

CAT

To produce the same results on an EBCDIC-based machine with the WE8EBCDIC1047
character set, the preceding example would have to be modified as follows:

SELECT CHR(195)||CHR(193)||CHR(227) "Dog"
 FROM DUAL;

Dog

CAT

For multibyte character sets, this sort of concatenation gives different results. For example,
given a multibyte character whose hexadecimal value is a1a2 (a1 representing the first byte
and a2 the second byte), you must specify for n the decimal equivalent of 'a1a2', or 41378:

SELECT CHR(41378)
 FROM DUAL;

You cannot specify the decimal equivalent of a1 concatenated with the decimal equivalent of
a2, as in the following example:

Chapter 7
CHR

7-67

SELECT CHR(161)||CHR(162)
 FROM DUAL;

However, you can concatenate whole multibyte code points, as in the following
example, which concatenates the multibyte characters whose hexadecimal values are
a1a2 and a1a3:

SELECT CHR(41378)||CHR(41379)
 FROM DUAL;

The following example assumes that the national character set is UTF16:

SELECT CHR (196 USING NCHAR_CS)
 FROM DUAL;

CH
--
Ä

CLUSTER_DETAILS
Syntax

cluster_details::=

CLUSTER_DETAILS (

schema .

model

, cluster_id

, topN

DESC

ASC

ABS

mining_attribute_clause)

Analytic Syntax

cluster_details_analytic::=

CLUSTER_DETAILS (INTO n

, cluster_id

, topN

DESC

ASC

ABS

mining_attribute_clause) OVER (mining_analytic_clause)

Chapter 7
CLUSTER_DETAILS

7-68

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

Analytic Functions for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

CLUSTER_DETAILS returns cluster details for each row in the selection. The return value is an
XML string that describes the attributes of the highest probability cluster or the specified
cluster_id.

topN

If you specify a value for topN, the function returns the N attributes that most influence the
cluster assignment (the score). If you do not specify topN, the function returns the 5 most
influential attributes.

DESC, ASC, or ABS

The returned attributes are ordered by weight. The weight of an attribute expresses its
positive or negative impact on cluster assignment. A positive weight indicates an increased
likelihood of assignment. A negative weight indicates a decreased likelihood of assignment.

By default, CLUSTER_DETAILS returns the attributes with the highest positive weights (DESC). If
you specify ASC, the attributes with the highest negative weights are returned. If you specify
ABS, the attributes with the greatest weights, whether negative or positive, are returned. The
results are ordered by absolute value from highest to lowest. Attributes with a zero weight are
not included in the output.

Chapter 7
CLUSTER_DETAILS

7-69

Syntax Choice

CLUSTER_DETAILS can score the data in one of two ways: It can apply a mining model
object to the data, or it can dynamically mine the data by executing an analytic clause
that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-
defined model. Include INTO n, where n is the number of clusters to compute, and
mining_analytic_clause, which specifies if the data should be partitioned for
multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See analytic_clause::=.)

The syntax of the CLUSTER_DETAILS function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See mining_attribute_clause::=.)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
clustering.

Note:

The following examples are excerpted from the Oracle Machine Learning for
SQL sample programs. For more information about the sample programs,
see Appendix A in Oracle Machine Learning for SQL User’s Guide.

Example

This example lists the attributes that have the greatest impact (more that 20%
probability) on cluster assignment for customer ID 100955. The query invokes the
CLUSTER_DETAILS and CLUSTER_SET functions, which apply the clustering model
em_sh_clus_sample.

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 USING T.*) det
FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset
 FROM mining_data_apply_v v

Chapter 7
CLUSTER_DETAILS

7-70

 WHERE cust_id = 100955) T,
 TABLE(T.pset) S
ORDER BY 2 DESC;

CLUSTER_ID PROB DET
---------- ----- ---
 14 .6761 <Details algorithm="Expectation Maximization" cluster="14">
 <Attribute name="AGE" actualValue="51" weight=".676" rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".557" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".412" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".171" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight="-.003"rank="5"/>
 </Details>

 3 .3227 <Details algorithm="Expectation Maximization" cluster="3">
 <Attribute name="YRS_RESIDENCE" actualValue="3" weight=".323" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".265" rank="2"/>
 <Attribute name="EDUCATION" actualValue="HS-grad" weight=".172" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".125" rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".055" rank="5"/>
 </Details>

Analytic Example

This example divides the customer database into four segments based on common
characteristics. The clustering functions compute the clusters and return the score without a
predefined clustering model.

SELECT * FROM (
 SELECT cust_id,
 CLUSTER_ID(INTO 4 USING *) OVER () cls,
 CLUSTER_DETAILS(INTO 4 USING *) OVER () cls_details
 FROM mining_data_apply_v)
WHERE cust_id <= 100003
ORDER BY 1;

CUST_ID CLS CLS_DETAILS
------- --- ---
 100001 5 <Details algorithm="K-Means Clustering" cluster="5">
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".349" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="0" weight=".33" rank="2"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="G: 130\,000 - 149\,999" weight=".291"
 rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".268" rank="4"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".179" rank="5"/>
 </Details>

 100002 6 <Details algorithm="K-Means Clustering" cluster="6">
 <Attribute name="CUST_GENDER" actualValue="F" weight=".945" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".856" rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".468" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".012" rank="4"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above" weight=".009"
 rank="5"/>
 </Details>

 100003 7 <Details algorithm="K-Means Clustering" cluster="7">
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".862" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".423" rank="2"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="0" weight=".113" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".007" rank="4"/>

Chapter 7
CLUSTER_DETAILS

7-71

 <Attribute name="CUST_ID" actualValue="100003" weight=".006" rank="5"/>
 </Details>

CLUSTER_DISTANCE
Syntax

cluster_distance::=

CLUSTER_DISTANCE (

schema .

model

, cluster_id

mining_attribute_clause)

Analytic Syntax

cluster_distance_analytic::=

CLUSTER_DISTANCE (INTO n

, cluster_id

mining_attribute_clause)

OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

Analytic Functions for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Chapter 7
CLUSTER_DISTANCE

7-72

Purpose

CLUSTER_DISTANCE returns a cluster distance for each row in the selection. The cluster
distance is the distance between the row and the centroid of the highest probability cluster or
the specified cluster_id. The distance is returned as BINARY_DOUBLE.

Syntax Choice

CLUSTER_DISTANCE can score the data in one of two ways: It can apply a mining model object
to the data, or it can dynamically mine the data by executing an analytic clause that builds
and applies one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply the
name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-defined
model. Include INTO n, where n is the number of clusters to compute, and
mining_analytic_clause, which specifies if the data should be partitioned for multiple
model builds. The mining_analytic_clause supports a query_partition_clause and an
order_by_clause. (See analytic_clause::=.)

The syntax of the CLUSTER_DISTANCE function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring.
When the function is invoked with the analytic syntax, this data is also used for building the
transient models. The mining_attribute_clause behaves as described for the PREDICTION
function. (See mining_attribute_clause::=.)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about clustering.

Note:

The following example is excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix
A in Oracle Machine Learning for SQL User’s Guide.

Example

This example finds the 10 rows that are most anomalous as measured by their distance from
their nearest cluster centroid.

SELECT cust_id
 FROM (
 SELECT cust_id,
 rank() over

Chapter 7
CLUSTER_DISTANCE

7-73

 (order by CLUSTER_DISTANCE(km_sh_clus_sample USING *) desc) rnk
 FROM mining_data_apply_v)
 WHERE rnk <= 11
 ORDER BY rnk;

 CUST_ID

 100579
 100050
 100329
 100962
 101251
 100179
 100382
 100713
 100629
 100787
 101478

CLUSTER_ID
Syntax

cluster_id::=

CLUSTER_ID (

schema .

model mining_attribute_clause)

Analytic Syntax

cluster_id_analytic::=

CLUSTER_ID (INTO n mining_attribute_clause) OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

Chapter 7
CLUSTER_ID

7-74

See Also:

Analytic Functions for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

CLUSTER_ID returns the identifier of the highest probability cluster for each row in the
selection. The cluster identifier is returned as an Oracle NUMBER.

Syntax Choice

CLUSTER_ID can score the data in one of two ways: It can apply a mining model object to the
data, or it can dynamically mine the data by executing an analytic clause that builds and
applies one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply the
name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-defined
model. Include INTO n, where n is the number of clusters to compute, and
mining_analytic_clause, which specifies if the data should be partitioned for multiple
model builds. The mining_analytic_clause supports a query_partition_clause and an
order_by_clause. (See analytic_clause::=.)

The syntax of the CLUSTER_ID function can use an optional GROUPING hint when scoring a
partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring.
When the function is invoked with the analytic syntax, these predictors are also used for
building the transient models. The mining_attribute_clause behaves as described for the
PREDICTION function. (See mining_attribute_clause::=.)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about clustering.

Note:

The following examples are excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix
A in Oracle Machine Learning for SQL User’s Guide.

Chapter 7
CLUSTER_ID

7-75

Example

The following example lists the clusters into which the customers in
mining_data_apply_v have been grouped.

SELECT CLUSTER_ID(km_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt
 FROM mining_data_apply_v
 GROUP BY CLUSTER_ID(km_sh_clus_sample USING *)
 ORDER BY cnt DESC;

 CLUS CNT
---------- ----------
 2 580
 10 216
 6 186
 8 115
 19 110
 12 101
 18 81
 16 39
 17 38
 14 34

Analytic Example

This example divides the customer database into four segments based on common
characteristics. The clustering functions compute the clusters and return the score
without a predefined clustering model.

SELECT * FROM (
 SELECT cust_id,
 CLUSTER_ID(INTO 4 USING *) OVER () cls,
 CLUSTER_DETAILS(INTO 4 USING *) OVER () cls_details
 FROM mining_data_apply_v)
WHERE cust_id <= 100003
ORDER BY 1;

CUST_ID CLS CLS_DETAILS
------- --- ---
 100001 5 <Details algorithm="K-Means Clustering" cluster="5">
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".349" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="0" weight=".33" rank="2"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="G: 130\,000 - 149\,999"
 weight=".291" rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".268" rank="4"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".179" rank="5"/>
 </Details>

 100002 6 <Details algorithm="K-Means Clustering" cluster="6">
 <Attribute name="CUST_GENDER" actualValue="F" weight=".945" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".856" rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".468" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".012" rank="4"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above"
 weight=".009" rank="5"/>
 </Details>

 100003 7 <Details algorithm="K-Means Clustering" cluster="7">
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".862" rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".423" rank="2"/>

Chapter 7
CLUSTER_ID

7-76

 <Attribute name="HOME_THEATER_PACKAGE" actualValue="0" weight=".113" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".007" rank="4"/>
 <Attribute name="CUST_ID" actualValue="100003" weight=".006" rank="5"/>
 </Details>

CLUSTER_PROBABILITY
Syntax

cluster_probability::=

CLUSTER_PROBABILITY (

schema .

model

, cluster_id

mining_attribute_clause)

Analytic Syntax

cluster_prob_analytic::=

CLUSTER_PROBABILITY (INTO n

, cluster_id

mining_attribute_clause)

OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

Analytic Functions for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Chapter 7
CLUSTER_PROBABILITY

7-77

Purpose

CLUSTER_PROBABILITY returns a probability for each row in the selection. The
probability refers to the highest probability cluster or to the specified cluster_id. The
cluster probability is returned as BINARY_DOUBLE.

Syntax Choice

CLUSTER_PROBABILITY can score the data in one of two ways: It can apply a mining
model object to the data, or it can dynamically mine the data by executing an analytic
clause that builds and applies one or more transient mining models. Choose Syntax or
Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-
defined model. Include INTO n, where n is the number of clusters to compute, and
mining_analytic_clause, which specifies if the data should be partitioned for
multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See analytic_clause::=.)

The syntax of the CLUSTER_PROBABILITY function can use an optional GROUPING hint
when scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See mining_attribute_clause::=.)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
clustering.

Note:

The following example is excerpted from the Oracle Machine Learning for
SQL sample programs. For more information about the sample programs,
see Appendix A in Oracle Machine Learning for SQL User’s Guide.

Example

The following example lists the ten most representative customers, based on
likelihood, of cluster 2.

Chapter 7
CLUSTER_PROBABILITY

7-78

SELECT cust_id
 FROM (SELECT cust_id, rank() OVER (ORDER BY prob DESC, cust_id) rnk_clus2
 FROM (SELECT cust_id, CLUSTER_PROBABILITY(km_sh_clus_sample, 2 USING *) prob
 FROM mining_data_apply_v))
WHERE rnk_clus2 <= 10
ORDER BY rnk_clus2;

 CUST_ID

 100256
 100988
 100889
 101086
 101215
 100390
 100985
 101026
 100601
 100672

CLUSTER_SET
Syntax

cluster_set::=

CLUSTER_SET (

schema .

model

, topN

, cutoff

mining_attribute_clause)

Analytic Syntax

cluster_set_analytic::=

CLUSTER_SET (INTO n

, topN

, cutoff

mining_attribute_clause)

OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Chapter 7
CLUSTER_SET

7-79

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

Analytic Functions for information on the syntax, semantics, and restrictions
of mining_analytic_clause

Purpose

CLUSTER_SET returns a set of cluster ID and probability pairs for each row in the
selection. The return value is a varray of objects with field names CLUSTER_ID and
PROBABILITY. The cluster identifier is an Oracle NUMBER; the probability is
BINARY_DOUBLE.

topN and cutoff

You can specify topN and cutoff to limit the number of clusters returned by the
function. By default, both topN and cutoff are null and all clusters are returned.

• topN is the N most probable clusters. If multiple clusters share the Nth probability,
then the function chooses one of them.

• cutoff is a probability threshold. Only clusters with probability greater than or
equal to cutoff are returned. To filter by cutoff only, specify NULL for topN.

To return up to the N most probable clusters that are greater than or equal to cutoff,
specify both topN and cutoff.

Syntax Choice

CLUSTER_SET can score the data in one of two ways: It can apply a mining model object
to the data, or it can dynamically mine the data by executing an analytic clause that
builds and applies one or more transient mining models. Choose Syntax or Analytic
Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a clustering model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-
defined model. Include INTO n, where n is the number of clusters to compute, and
mining_analytic_clause, which specifies if the data should be partitioned for
multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See analytic_clause::=.)

The syntax of the CLUSTER_SET function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

Chapter 7
CLUSTER_SET

7-80

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring.
When the function is invoked with the analytic syntax, these predictors are also used for
building the transient models. The mining_attribute_clause behaves as described for the
PREDICTION function. (See mining_attribute_clause::=.)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about clustering.

Note:

The following example is excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix
A in Oracle Machine Learning for SQL User’s Guide.

Example

This example lists the attributes that have the greatest impact (more that 20% probability) on
cluster assignment for customer ID 100955. The query invokes the CLUSTER_DETAILS and
CLUSTER_SET functions, which apply the clustering model em_sh_clus_sample.

SELECT S.cluster_id, probability prob,
 CLUSTER_DETAILS(em_sh_clus_sample, S.cluster_id, 5 USING T.*) det
FROM
 (SELECT v.*, CLUSTER_SET(em_sh_clus_sample, NULL, 0.2 USING *) pset
 FROM mining_data_apply_v v
 WHERE cust_id = 100955) T,
 TABLE(T.pset) S
ORDER BY 2 DESC;

CLUSTER_ID PROB DET
---------- ----- --
 14 .6761 <Details algorithm="Expectation Maximization" cluster="14">
 <Attribute name="AGE" actualValue="51" weight=".676" rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".557" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".412" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".171" rank="4"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight="-.003"rank="5"/>
 </Details>

 3 .3227 <Details algorithm="Expectation Maximization" cluster="3">
 <Attribute name="YRS_RESIDENCE" actualValue="3" weight=".323" rank="1"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".265" rank="2"/>
 <Attribute name="EDUCATION" actualValue="HS-grad" weight=".172" rank="3"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".125" rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Crafts" weight=".055" rank="5"/>
 </Details>

Chapter 7
CLUSTER_SET

7-81

COALESCE
Syntax

COALESCE (expr

,

)

Purpose

COALESCE returns the first non-null expr in the expression list. You must specify at least
two expressions. If all occurrences of expr evaluate to null, then the function returns
null.

Oracle Database uses short-circuit evaluation. The database evaluates each expr
value and determines whether it is NULL, rather than evaluating all of the expr values
before determining whether any of them is NULL.

If all occurrences of expr are numeric data type or any nonnumeric data type that can
be implicitly converted to a numeric data type, then Oracle Database determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that data type, and returns that data type.

See Also:

• Table 2-8 for more information on implicit conversion and Numeric
Precedence for information on numeric precedence

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
return value of COALESCE when it is a character value

This function is a generalization of the NVL function.

You can also use COALESCE as a variety of the CASE expression. For example,

COALESCE(expr1, expr2)

is equivalent to:

CASE WHEN expr1 IS NOT NULL THEN expr1 ELSE expr2 END

Similarly,

COALESCE(expr1, expr2, ..., exprn)

where n >= 3, is equivalent to:

CASE WHEN expr1 IS NOT NULL THEN expr1
 ELSE COALESCE (expr2, ..., exprn) END

Chapter 7
COALESCE

7-82

See Also:

NVL and CASE Expressions

Examples

The following example uses the sample oe.product_information table to organize a
clearance sale of products. It gives a 10% discount to all products with a list price. If there is
no list price, then the sale price is the minimum price. If there is no minimum price, then the
sale price is "5":

SELECT product_id, list_price, min_price,
 COALESCE(0.9*list_price, min_price, 5) "Sale"
 FROM product_information
 WHERE supplier_id = 102050
 ORDER BY product_id;

PRODUCT_ID LIST_PRICE MIN_PRICE Sale
---------- ---------- ---------- ----------
 1769 48 43.2
 1770 73 73
 2378 305 247 274.5
 2382 850 731 765
 3355 5

COLLATION
Syntax

COLLATION (expr)

Purpose

COLLATION returns the name of the derived collation for expr. This function returns named
collations and pseudo-collations. If the derived collation is a Unicode Collation Algorithm
(UCA) collation, then the function returns the long form of its name. This function is evaluated
during compilation of the SQL statement that contains it. If the derived collation is undefined
due to a collation conflict while evaluating expr, then the function returns null.

expr must evaluate to a character string of type CHAR, VARCHAR2, LONG, NCHAR, or NVARCHAR2.

This function returns a VARCHAR2 value.

Chapter 7
COLLATION

7-83

Note:

The COLLATION function returns only the data-bound collation, and not the
dynamic collation set by the NLS_SORT parameter. Thus, for a column
declared as COLLATE USING_NLS_SORT, the function returns the character
value 'USING_NLS_SORT', not the actual value of the session parameter
NLS_SORT. You can use the built-in function
SYS_CONTEXT('USERENV','NLS_SORT') to get the actual value of the session
parameter NLS_SORT.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of COLLATION

Examples

The following example returns the derived collation of columns name and id in table
id_table:

CREATE TABLE id_table
 (name VARCHAR2(64) COLLATE BINARY_AI,
 id VARCHAR2(8) COLLATE BINARY_CI);

INSERT INTO id_table VALUES('Christopher', 'ABCD1234');

SELECT COLLATION(name), COLLATION(id)
 FROM id_table;

COLLATION COLLATION
--------- ---------
BINARY_AI BINARY_CI

COLLECT
Syntax

COLLECT (

DISTINCT

UNIQUE

column

ORDER BY expr

)

Purpose

COLLECT is an aggregate function that takes as its argument a column of any type and
creates a nested table of the input type out of the rows selected. To get accurate
results from this function you must use it within a CAST function.

Chapter 7
COLLECT

7-84

If column is itself a collection, then the output of COLLECT is a nested table of collections. If
column is of a user-defined type, then column must have a MAP or ORDER method defined on it
in order for you to use the optional DISTINCT, UNIQUE, and ORDER BY clauses.

See Also:

• CAST and Aggregate Functions

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation COLLECT uses to compare
character values for the DISTINCT and ORDER BY clauses

Examples

The following example creates a nested table from the varray column of phone numbers in
the sample table oe.customers. The nested table includes only the phone numbers of
customers with an income level of L: 300,000 and above.

CREATE TYPE phone_book_t AS TABLE OF phone_list_typ;
/

SELECT CAST(COLLECT(phone_numbers) AS phone_book_t) "Income Level L Phone Book"
 FROM customers
 WHERE income_level = 'L: 300,000 and above';

Income Level L Phone Book
--
PHONE_BOOK_T(PHONE_LIST_TYP('+1 414 123 4307'), PHONE_LIST_TYP('+1 608 123 4344'
), PHONE_LIST_TYP('+1 814 123 4696'), PHONE_LIST_TYP('+1 215 123 4721'), PHONE_L
IST_TYP('+1 814 123 4755'), PHONE_LIST_TYP('+91 11 012 4817', '+91 11 083 4817')
, PHONE_LIST_TYP('+91 172 012 4837'), PHONE_LIST_TYP('+41 31 012 3569', '+41 31
083 3569'))

The following example creates a nested table from the column of warehouse names in the
sample table oe.warehouses. It uses ORDER BY to order the warehouse names.

CREATE TYPE warehouse_name_t AS TABLE OF VARCHAR2(35);
/

SELECT CAST(COLLECT(warehouse_name ORDER BY warehouse_name)
 AS warehouse_name_t) "Warehouses"
 FROM warehouses;

Warehouses
--
WAREHOUSE_NAME_TYP('Beijing', 'Bombay', 'Mexico City', 'New Jersey', 'San Franci
sco', 'Seattle, Washington', 'Southlake, Texas', 'Sydney', 'Toronto')

COMPOSE
Syntax

COMPOSE (char)

Chapter 7
COMPOSE

7-85

Purpose

COMPOSE takes as its argument a character value char and returns the result of
applying the Unicode canonical composition, as described in the Unicode Standard
definition D117, to it. If the character set of the argument is not one of the Unicode
character sets, COMPOSE returns its argument unmodified.

COMPOSE does not directly return strings in any of the Unicode normalization forms. To
get a string in the NFC form, first call DECOMPOSE with the CANONICAL setting and then
COMPOSE . To get a string in the NFKC form, first call DECOMPOSE with the COMPATIBILITY
setting and then COMPOSE .

char can be of any of the data types: CHAR, VARCHAR2, NCHAR, or NVARCHAR2. Other data
types are allowed if they can be implicitly converted to VARCHAR2 or NVARCHAR2. The
return value of COMPOSE is in the same character set as its argument.

CLOB and NCLOB values are supported through implicit conversion. If char is a character
LOB value, then it is converted to a VARCHAR2 value before the COMPOSE operation. The
operation will fail if the size of the LOB value exceeds the supported length of the
VARCHAR2 in the particular execution environment.

See Also:

• Oracle Database Globalization Support Guide for information on Unicode
character sets and character semantics

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of COMPOSE

• DECOMPOSE

Examples

The following example returns the o-umlaut code point:

SELECT COMPOSE('o' || UNISTR('\0308'))
 FROM DUAL;

CO
--
ö

See Also:

UNISTR

Chapter 7
COMPOSE

7-86

CON_DBID_TO_ID
Syntax

CON_DBID_TO_ID (container_dbid)

Purpose

CON_DBID_TO_ID takes as its argument a container DBID and returns the container ID. For
container_dbid, specify a NUMBER value or any value that can be implicitly converted to
NUMBER. The function returns a NUMBER value.

This function is useful in a multitenant container database (CDB). If you use this function in a
non-CDB, then it returns 0.

Example

The following query displays the ID and DBID for all containers in a CDB. The sample output
shown is for the purpose of this example.

SELECT CON_ID, DBID
 FROM V$CONTAINERS;

 CON_ID DBID
---------- ----------
 1 1930093401
 2 4054529501
 4 2256797992

The following statement returns the ID for the container with DBID 2256797992:

SELECT CON_DBID_TO_ID(2256797992) "Container ID"
 FROM DUAL;

Container ID

 4

CON_GUID_TO_ID
Syntax

CON_GUID_TO_ID (container_guid)

Purpose

CON_GUID_TO_ID takes as its argument a container GUID (globally unique identifier) and
returns the container ID. For container_guid, specify a raw value. The function returns a
NUMBER value.

Chapter 7
CON_DBID_TO_ID

7-87

This function is useful in a multitenant container database (CDB). If you use this
function in a non-CDB, then it returns 0.

Example

The following query displays the ID and GUID for all containers in a CDB. The GUID is
stored as a 16-byte RAW value in the V$CONTAINERS view. The query returns the 32-
character hexadecimal representation of the GUID. The sample output shown is for
the purpose of this example.

SELECT CON_ID, GUID
 FROM V$CONTAINERS;

 CON_ID GUID
---------- --------------------------------
 1 DB0A9F33DF99567FE04305B4F00A667D
 2 D990C280C309591EE04305B4F00A593E
 4 D990F4BD938865C1E04305B4F00ACA18

The following statement returns the ID for the container whose GUID is represented by
the hexadecimal value D990F4BD938865C1E04305B4F00ACA18. The HEXTORAW function
converts the GUID's hexadecimal representation to a raw value.

SELECT CON_GUID_TO_ID(HEXTORAW('D990F4BD938865C1E04305B4F00ACA18')) "Container
ID"
 FROM DUAL;

Container ID

 4

CON_ID_TO_CON_NAME
Syntax

CON_ID_TO_CON_NAME (container_id)

Purpose

CON_ID_TO_CON_NAME takes as an argument a container CON_ID and returns the
container NAME.

For CON_ID you must specify a number or an expression that resolves to a number.
The function returns a NUMBER value.

This function is useful in a multitentant container database (CDB). If you use this
function in a non-CDB, then it returns 0.

Example

SELECT CON_ID, NAME FROM V$CONTAINERS;
 CON_ID NAME
 –-------- –------------
 1 CDB$ROOT
 2 PDB$SEED

Chapter 7
CON_ID_TO_CON_NAME

7-88

 3 CDB1_PDB1
 4 SALESPDB

The following statement returns the container NAME given the container CON_ID 4:

SELECT CON_ID_TO_CON_NAME(4) "CON_NAME" FROM DUAL;
 CON_NAME
 –-------
 SALESDB

CON_ID_TO_DBID
Syntax

CON_ID_TO_DBID (container_id)

Purpose

CON_ID_TO_DBID takes as an argument a container CON_ID and returns the container DBID.
For CON_ID you must specify a number or an expression that resolves to a number. The
function returns a NUMBER value.

This function is useful in a multitentant container database (CDB). If you use this function in a
non-CDB, then it returns 0.

Example

SELECT CON_ID, NAME, DBID FROM V$CONTAINERS;

CON_ID NAME DBID
–------ –----------- –--------------
 1 CDB$ROOT 2048400776
 2 PDB$SEED 2929762556
 3 CDB1_PDB1 3483444080
 4 SALESPDB 2221053340

The following statement returns the container DBID given the container CON_ID 4:

SELECT CON_ID_TO_DBID(4) FROM DUAL;
 DBID
 –------------
 2221053340

CON_ID_TO_GUID
Syntax

CON_ID_TO_GUID (container_id)

Chapter 7
CON_ID_TO_DBID

7-89

Purpose

CON_ID_TO_GUID takes as an argument a container CON_ID and returns the container's
GLOBAL UNIQUE ID (GUID). For CON_ID you must specify a number or an expression
that resolves to a number. The function returns a NUMBER value.

This function is useful in a multitentant container database (CDB).

Example

The following query displays the CON_ID, NAME and GUID for all containers in a CDB:

SELECT CON_ID, NAME, GUID FROM V$CONTAINERS;

CON_ID NAME GUID
–------ –----------- –--------------
 1 CDB$ROOT A8C0E03CB11A132FE0532684E80A96B3
 2 PDB$SEED A8DA5D32F8F5590DE053C4E15A0A6EED
 3 CDB1_PDB1 A8DA63CEAD385A5BE053C4E15A0A774A
 4 SALESPDB A8DA9AB18CE85BD0E053C4E15A0AE2C3

The following statement returns the container GUID given the container CON_ID 4:

SELECT CON_ID_TO_GUID(4) "CON_GUID" FROM DUAL;
 CON_GUID
 –----------------
 A8DA9AB18CE85BD0E053C4E15A0AE2C3

CON_ID_TO_UID
Syntax

CON_ID_TO_UID (container_id)

Purpose

CON_ID_TO_UID takes as an argument a container CON_ID and returns the container's
UNIQUE ID (UID). For CON_ID you must specify a number or an expression that
resolves to a number. The function returns a NUMBER value.

This function is useful in a multitentant container database (CDB).

Example

The following query displays the CON_ID, NAME and CON_UID for all containers in a CDB:

SELECT CON_ID, NAME, CON_UID FROM V$CONTAINERS;

CON_ID NAME CON_UID
–------ –----------- –--------------
 1 CDB$ROOT 1
 2 PDB$SEED 2929762556
 3 CDB1_PDB1 3483444080
 4 SALESPDB 2221053340

Chapter 7
CON_ID_TO_UID

7-90

The following statement returns the container CON_UID given the container CON_ID 4:

SELECT CON_ID_TO_UID(4) "PDB_UID" FROM DUAL;
 PDB_UID
 –------------
 2221053340

CON_NAME_TO_ID
Syntax

CON_NAME_TO_ID (container_name)

Purpose

CON_NAME_TO_ID takes as its argument a container name and returns the container ID. For
container_name, specify a string, or an expression that resolves to a string, in any data type.
The function returns a NUMBER value.

This function is useful in a multitenant container database (CDB). If you use this function in a
non-CDB, then it returns 0.

Example

The following query displays the ID and name for all containers in a CDB. The sample output
shown is for the purpose of this example.

SELECT CON_ID, NAME
 FROM V$CONTAINERS;

 CON_ID NAME
---------- ----------
 1 CDB$ROOT
 2 PDB$SEED
 4 SALESPDB

The following statement returns the ID for the container named SALESPDB:

SELECT CON_NAME_TO_ID('SALESPDB') "Container ID"
 FROM DUAL;

Container ID

 4

CON_UID_TO_ID
Syntax

CON_UID_TO_ID (container_uid)

Chapter 7
CON_NAME_TO_ID

7-91

Purpose

CON_UID_TO_ID takes as its argument a container UID (unique identifier) and returns
the container ID. For container_uid, specify a NUMBER value or any value that can be
implicitly converted to NUMBER. The function returns a NUMBER value.

This function is useful in a multitenant container database (CDB). If you use this
function in a non-CDB, then it returns 0.

Example

The following query displays the ID and UID for all containers in a CDB. The sample
output shown is for the purpose of this example.

SELECT CON_ID, CON_UID
 FROM V$CONTAINERS;

 CON_ID CON_UID
---------- ----------
 1 1
 2 4054529501
 4 2256797992

The following query returns the ID for the container with UID 2256797992:

SELECT CON_UID_TO_ID(2256797992) "Container ID"
 FROM DUAL;

Container ID

 4

CONCAT
Syntax

CONCAT (char1 , char2)

Purpose

CONCAT returns char1 concatenated with char2. Both char1 and char2 can be any of
the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The string returned
is in the same character set as char1. Its data type depends on the data types of the
arguments.

In concatenations of two different data types, Oracle Database returns the data type
that results in a lossless conversion. Therefore, if one of the arguments is a LOB, then
the returned value is a LOB. If one of the arguments is a national data type, then the
returned value is a national data type. For example:

• CONCAT(CLOB, NCLOB) returns NCLOB
• CONCAT(NCLOB, NCHAR) returns NCLOB
• CONCAT(NCLOB, CHAR) returns NCLOB

Chapter 7
CONCAT

7-92

• CONCAT(NCHAR, CLOB) returns NCLOB
This function is equivalent to the concatenation operator (||).

See Also:

• Concatenation Operator for information on the CONCAT operator

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of CONCAT

Examples

This example uses nesting to concatenate three character strings:

SELECT CONCAT(CONCAT(last_name, '''s job category is '), job_id) "Job"
 FROM employees
 WHERE employee_id = 152;

Job
--
Hall's job category is SA_REP

CONVERT
Syntax

CONVERT (char , dest_char_set

, source_char_set

)

Purpose

CONVERT converts a character string from one character set to another.

• The char argument is the value to be converted. It can be any of the data types CHAR,
VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB.

• The dest_char_set argument is the name of the character set to which char is
converted.

• The source_char_set argument is the name of the character set in which char is stored
in the database. The default value is the database character set.

The return value for CHAR and VARCHAR2 is VARCHAR2. For NCHAR and NVARCHAR2, it is
NVARCHAR2. For CLOB, it is CLOB, and for NCLOB, it is NCLOB.

Both the destination and source character set arguments can be either literals or columns
containing the name of the character set.

For complete correspondence in character conversion, it is essential that the destination
character set contains a representation of all the characters defined in the source character
set. Where a character does not exist in the destination character set, a replacement

Chapter 7
CONVERT

7-93

character appears. Replacement characters can be defined as part of a character set
definition.

Note:

Oracle discourages the use of the CONVERT function in the current Oracle
Database release. The return value of CONVERT has a character data type, so
it should be either in the database character set or in the national character
set, depending on the data type. Any dest_char_set that is not one of these
two character sets is unsupported. The char argument and the
source_char_set have the same requirements. Therefore, the only practical
use of the function is to correct data that has been stored in a wrong
character set.

Values that are in neither the database nor the national character set should
be processed and stored as RAW or BLOB. Procedures in the PL/SQL
packages UTL_RAW and UTL_I18N—for example, UTL_RAW.CONVERT—allow
limited processing of such values. Procedures accepting a RAW argument in
the packages UTL_FILE, UTL_TCP, UTL_HTTP, and UTL_SMTP can be used to
output the processed data.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of CONVERT

Examples

The following example illustrates character set conversion by converting a Latin-1
string to ASCII. The result is the same as importing the same string from a
WE8ISO8859P1 database to a US7ASCII database.

SELECT CONVERT('Ä Ê Í Õ Ø A B C D E ', 'US7ASCII', 'WE8ISO8859P1')
 FROM DUAL;

CONVERT('ÄÊÍÕØABCDE'

A E I ? ? A B C D E ?

You can query the V$NLS_VALID_VALUES view to get a listing of valid character sets, as
follows:

SELECT * FROM V$NLS_VALID_VALUES WHERE parameter = 'CHARACTERSET';

Chapter 7
CONVERT

7-94

See Also:

Oracle Database Globalization Support Guide for the list of character sets that
Oracle Database supports and Oracle Database Reference for information on the
V$NLS_VALID_VALUES view

CORR
Syntax

CORR (expr1 , expr2)

OVER (analytic_clause)

See Also:

Analytic Functions for information on syntax, semantics, and restrictions

Purpose

CORR returns the coefficient of correlation of a set of number pairs. You can use it as an
aggregate or analytic function.

This function takes as arguments any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that data type,
and returns that data type.

See Also:

Table 2-8 for more information on implicit conversion and Numeric Precedence for
information on numeric precedence

Oracle Database applies the function to the set of (expr1, expr2) after eliminating the pairs
for which either expr1 or expr2 is null. Then Oracle makes the following computation:

COVAR_POP(expr1, expr2) / (STDDEV_POP(expr1) * STDDEV_POP(expr2))

The function returns a value of type NUMBER. If the function is applied to an empty set, then it
returns null.

Chapter 7
CORR

7-95

Note:

The CORR function calculates the Pearson's correlation coefficient, which
requires numeric expressions as arguments. Oracle also provides the CORR_S
(Spearman's rho coefficient) and CORR_K (Kendall's tau-b coefficient)
functions to support nonparametric or rank correlation.

See Also:

Aggregate Functions , About SQL Expressions for information on valid forms
of expr, and CORR_* for information on the CORR_S and CORR_K functions

Aggregate Example

The following example calculates the coefficient of correlation between the list prices
and minimum prices of products by weight class in the sample table
oe.product_information:

SELECT weight_class, CORR(list_price, min_price) "Correlation"
 FROM product_information
 GROUP BY weight_class
 ORDER BY weight_class, "Correlation";

WEIGHT_CLASS Correlation
------------ -----------
 1 .999149795
 2 .999022941
 3 .998484472
 4 .999359909
 5 .999536087

Analytic Example

The following example shows the correlation between duration at the company and
salary by the employee's position. The result set shows the same correlation for each
employee in a given job:

SELECT employee_id, job_id,
 TO_CHAR((SYSDATE - hire_date) YEAR TO MONTH) "Yrs-Mns", salary,
 CORR(SYSDATE-hire_date, salary)
 OVER(PARTITION BY job_id) AS "Correlation"
 FROM employees
 WHERE department_id in (50, 80)
 ORDER BY job_id, employee_id;

EMPLOYEE_ID JOB_ID Yrs-Mns SALARY Correlation
----------- ---------- ------- ---------- -----------
 145 SA_MAN +04-09 14000 .912385598
 146 SA_MAN +04-06 13500 .912385598
 147 SA_MAN +04-04 12000 .912385598
 148 SA_MAN +01-08 11000 .912385598
 149 SA_MAN +01-05 10500 .912385598
 150 SA_REP +04-05 10000 .80436755
 151 SA_REP +04-03 9500 .80436755

Chapter 7
CORR

7-96

 152 SA_REP +03-10 9000 .80436755
 153 SA_REP +03-03 8000 .80436755
 154 SA_REP +02-07 7500 .80436755
 155 SA_REP +01-07 7000 .80436755
. . .

CORR_*
The CORR_* functions are:

• CORR_S
• CORR_K

Syntax

correlation::=

CORR_K

CORR_S
(expr1 , expr2

,

COEFFICIENT

ONE_SIDED_SIG

ONE_SIDED_SIG_POS

ONE_SIDED_SIG_NEG

TWO_SIDED_SIG

)

Purpose

The CORR function (see CORR) calculates the Pearson's correlation coefficient and requires
numeric expressions as input. The CORR_* functions support nonparametric or rank
correlation. They let you find correlations between expressions that are ordinal scaled (where
ranking of the values is possible). Correlation coefficients take on a value ranging from -1 to
1, where 1 indicates a perfect relationship, -1 a perfect inverse relationship (when one
variable increases as the other decreases), and a value close to 0 means no relationship.

These functions takes as arguments any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. Oracle Database determines the argument
with the highest numeric precedence, implicitly converts the remaining arguments to that data
type, makes the calculation, and returns NUMBER.

See Also:

• Table 2-8 for more information on implicit conversion and Numeric Precedence
for information on numeric precedence

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation CORR_K and CORR_S use to
compare characters from expr1 with characters from expr2

Chapter 7
CORR_*

7-97

expr1 and expr2 are the two variables being analyzed. The third argument is a return
value of type VARCHAR2. If you omit the third argument, then the default is COEFFICIENT.
The meaning of the return values is shown in the table that follows:

Table 7-2 CORR_* Return Values

Return Value Meaning

COEFFICIENT Coefficient of correlation

ONE_SIDED_SIG Positive one-tailed significance of the correlation

ONE_SIDED_SIG_POS Same as ONE_SIDED_SIG
ONE_SIDED_SIG_NEG Negative one-tailed significance of the correlation

TWO_SIDED_SIG Two-tailed significance of the correlation

CORR_S
CORR_S calculates the Spearman's rho correlation coefficient. The input expressions
should be a set of (xi, yi) pairs of observations. The function first replaces each value
with a rank. Each value of xi is replaced with its rank among all the other xis in the
sample, and each value of yi is replaced with its rank among all the other yis. Thus,
each xi and yi take on a value from 1 to n, where n is the total number of pairs of
values. Ties are assigned the average of the ranks they would have had if their values
had been slightly different. Then the function calculates the linear correlation
coefficient of the ranks.

CORR_S Example

Using Spearman's rho correlation coefficient, the following example derives a
coefficient of correlation for each of two different comparisons -- salary and
commission_pct, and salary and employee_id:

SELECT COUNT(*) count,
 CORR_S(salary, commission_pct) commission,
 CORR_S(salary, employee_id) empid
 FROM employees;

 COUNT COMMISSION EMPID
---------- ---------- ----------
 107 .735837022 -.04473016

CORR_K
CORR_K calculates the Kendall's tau-b correlation coefficient. As for CORR_S, the input
expressions are a set of (xi, yi) pairs of observations. To calculate the coefficient, the
function counts the number of concordant and discordant pairs. A pair of observations
is concordant if the observation with the larger x also has a larger value of y. A pair of
observations is discordant if the observation with the larger x has a smaller y.

The significance of tau-b is the probability that the correlation indicated by tau-b was
due to chance—a value of 0 to 1. A small value indicates a significant correlation for
positive values of tau-b (or anticorrelation for negative values of tau-b).

Chapter 7
CORR_*

7-98

CORR_K Example

Using Kendall's tau-b correlation coefficient, the following example determines whether a
correlation exists between an employee's salary and commission percent:

SELECT CORR_K(salary, commission_pct, 'COEFFICIENT') coefficient,
 CORR_K(salary, commission_pct, 'TWO_SIDED_SIG') two_sided_p_value
 FROM employees;

COEFFICIENT TWO_SIDED_P_VALUE
----------- -----------------
 .603079768 3.4702E-07

COS
Syntax

COS (n)

Purpose

COS returns the cosine of n (an angle expressed in radians).

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the
function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns the cosine of 180 degrees:

SELECT COS(180 * 3.14159265359/180) "Cosine of 180 degrees"
 FROM DUAL;

Cosine of 180 degrees

 -1

COSH
Syntax

COSH (n)

Chapter 7
COS

7-99

Purpose

COSH returns the hyperbolic cosine of n.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. If the argument is
BINARY_FLOAT, then the function returns BINARY_DOUBLE. Otherwise the function
returns the same numeric data type as the argument.

See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns the hyperbolic cosine of zero:

SELECT COSH(0) "Hyperbolic cosine of 0"
 FROM DUAL;

Hyperbolic cosine of 0

 1

COUNT
Syntax

COUNT (

*

DISTINCT

ALL

expr

)

OVER (analytic_clause)

See Also:

Analytic Functions for information on syntax, semantics, and restrictions

Purpose

COUNT returns the number of rows returned by the query. You can use it as an
aggregate or analytic function.

If you specify DISTINCT, then you can specify only the query_partition_clause of the
analytic_clause. The order_by_clause and windowing_clause are not allowed.

If you specify expr, then COUNT returns the number of rows where expr is not null. You
can count either all rows, or only distinct values of expr.

Chapter 7
COUNT

7-100

If you specify the asterisk (*), then this function returns all rows, including duplicates and
nulls. COUNT never returns null.

Note:

Before performing a COUNT (DISTINCT expr)operation on a large amount of data,
consider using one of the following methods to obtain approximate results more
quickly than exact results:

• Set the APPROX_FOR_COUNT_DISTINCT initialization parameter to true before
using the COUNT (DISTINCT expr) function. Refer to Oracle Database Reference
for more information on this parameter.

• Use the APPROX_COUNT_DISTINCT function instead of the COUNT (DISTINCT expr)
function. Refer to APPROX_COUNT_DISTINCT.

See Also:

• "About SQL Expressions " for information on valid forms of expr and Aggregate
Functions

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation COUNT uses to compare character
values for the DISTINCT clause

Aggregate Examples

The following examples use COUNT as an aggregate function:

SELECT COUNT(*) "Total"
 FROM employees;

 Total

 107

SELECT COUNT(*) "Allstars"
 FROM employees
 WHERE commission_pct > 0;

 Allstars

 35

SELECT COUNT(commission_pct) "Count"
 FROM employees;

 Count

 35

SELECT COUNT(DISTINCT manager_id) "Managers"
 FROM employees;

Chapter 7
COUNT

7-101

 Managers

 18

Analytic Example

The following example calculates, for each employee in the employees table, the
moving count of employees earning salaries in the range 50 less than through 150
greater than the employee's salary.

SELECT last_name, salary,
 COUNT(*) OVER (ORDER BY salary RANGE BETWEEN 50 PRECEDING AND
 150 FOLLOWING) AS mov_count
 FROM employees
 ORDER BY salary, last_name;

LAST_NAME SALARY MOV_COUNT
------------------------- ---------- ----------
Olson 2100 3
Markle 2200 2
Philtanker 2200 2
Gee 2400 8
Landry 2400 8
Colmenares 2500 10
Marlow 2500 10
Patel 2500 10
. . .

COVAR_POP
Syntax

COVAR_POP (expr1 , expr2)

OVER (analytic_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

COVAR_POP returns the population covariance of a set of number pairs. You can use it
as an aggregate or analytic function.

This function takes as arguments any numeric data type or any nonnumeric data type
that can be implicitly converted to a numeric data type. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that data type, and returns that data type.

Chapter 7
COVAR_POP

7-102

See Also:

Table 2-8 for more information on implicit conversion and Numeric Precedence for
information on numeric precedence

Oracle Database applies the function to the set of (expr1, expr2) pairs after eliminating all
pairs for which either expr1 or expr2 is null. Then Oracle makes the following computation:

(SUM(expr1 * expr2) - SUM(expr2) * SUM(expr1) / n) / n

where n is the number of (expr1, expr2) pairs where neither expr1 nor expr2 is null.

The function returns a value of type NUMBER. If the function is applied to an empty set, then it
returns null.

See Also:

About SQL Expressions for information on valid forms of expr and Aggregate
Functions

Aggregate Example

The following example calculates the population covariance and sample covariance for time
employed (SYSDATE - hire_date) and salary using the sample table hr.employees:

SELECT job_id,
 COVAR_POP(SYSDATE-hire_date, salary) AS covar_pop,
 COVAR_SAMP(SYSDATE-hire_date, salary) AS covar_samp
 FROM employees
 WHERE department_id in (50, 80)
 GROUP BY job_id
 ORDER BY job_id, covar_pop, covar_samp;

JOB_ID COVAR_POP COVAR_SAMP
---------- ----------- -----------
SA_MAN 660700 825875
SA_REP 579988.466 600702.34
SH_CLERK 212432.5 223613.158
ST_CLERK 176577.25 185870.789
ST_MAN 436092 545115

Analytic Example

The following example calculates cumulative sample covariance of the list price and minimum
price of the products in the sample schema oe:

SELECT product_id, supplier_id,
 COVAR_POP(list_price, min_price)
 OVER (ORDER BY product_id, supplier_id)
 AS CUM_COVP,
 COVAR_SAMP(list_price, min_price)
 OVER (ORDER BY product_id, supplier_id)
 AS CUM_COVS
 FROM product_information p

Chapter 7
COVAR_POP

7-103

 WHERE category_id = 29
 ORDER BY product_id, supplier_id;

PRODUCT_ID SUPPLIER_ID CUM_COVP CUM_COVS
---------- ----------- ---------- ----------
 1774 103088 0
 1775 103087 1473.25 2946.5
 1794 103096 1702.77778 2554.16667
 1825 103093 1926.25 2568.33333
 2004 103086 1591.4 1989.25
 2005 103086 1512.5 1815
 2416 103088 1475.97959 1721.97619
. . .

COVAR_SAMP
Syntax

COVAR_SAMP (expr1 , expr2)

OVER (analytic_clause)

See Also:

Analytic Functions for information on syntax, semantics, and restrictions

Purpose

COVAR_SAMP returns the sample covariance of a set of number pairs. You can use it as
an aggregate or analytic function.

This function takes as arguments any numeric data type or any nonnumeric data type
that can be implicitly converted to a numeric data type. Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining
arguments to that data type, and returns that data type.

See Also:

Table 2-8 for more information on implicit conversion and Numeric
Precedence for information on numeric precedence

Oracle Database applies the function to the set of (expr1, expr2) pairs after eliminating
all pairs for which either expr1 or expr2 is null. Then Oracle makes the following
computation:

(SUM(expr1 * expr2) - SUM(expr1) * SUM(expr2) / n) / (n-1)

where n is the number of (expr1, expr2) pairs where neither expr1 nor expr2 is null.

The function returns a value of type NUMBER. If the function is applied to an empty set,
then it returns null.

Chapter 7
COVAR_SAMP

7-104

See Also:

About SQL Expressions for information on valid forms of expr and Aggregate
Functions

Aggregate Example

Refer to the aggregate example for COVAR_POP .

Analytic Example

Refer to the analytic example for COVAR_POP .

CUBE_TABLE
Syntax

CUBE_TABLE

(’

schema . cube

HIERARCHY

HRR
dimension hierarchy

schema . dimension

HIERARCHY

HRR

dimension

hierarchy
’)

Purpose

CUBE_TABLE extracts data from a cube or dimension and returns it in the two-dimensional
format of a relational table, which can be used by SQL-based applications.

The function takes a single VARCHAR2 argument. The optional hierarchy clause enables you to
specify a dimension hierarchy. A cube can have multiple hierarchy clauses, one for each
dimension.

You can generate these different types of tables:

• A cube table contains a key column for each dimension and a column for each measure
and calculated measure in the cube. To create a cube table, you can specify the cube
with or without a cube hierarchy clause. For a dimension with multiple hierarchies, this
clause limits the return values to the dimension members and levels in the specified
hierarchy. Without a hierarchy clause, all dimension members and all levels are included.

• A dimension table contains a key column, and a column for each level and each attribute.
It also contains a MEMBER_TYPE column, which identifies each member with one of the
following codes:

– L - Loaded from a table, view, or synonym

Chapter 7
CUBE_TABLE

7-105

– A - Loaded member and the single root of all hierarchies in the dimension, that
is, the "all" aggregate member

– C - Calculated member

All dimension members and all levels are included in the table. To create a
dimension table, specify the dimension without a dimension hierarchy clause.

• A hierarchy table contains all the columns of a dimension table plus a column for
the parent member and a column for each source level. It also contains a
MEMBER_TYPE column, as described for dimension tables. Any dimension members
and levels that are not part of the named hierarchy are excluded from the table. To
create a hierarchy table, specify the dimension with a dimension hierarchy clause.

CUBE_TABLE is a table function and is always used in the context of a SELECT statement
with this syntax:

SELECT ... FROM TABLE(CUBE_TABLE('arg'));

See Also:

• Oracle OLAP User’s Guide for information about dimensional objects
and about the tables generated by CUBE_TABLE.

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to each
character data type column in the table generated by CUBE_TABLE

Examples

The following examples require Oracle Database with the OLAP option and the GLOBAL
sample schema. Refer to Oracle OLAP User’s Guide for information on downloading
and installing the GLOBAL sample schema.

The following SELECT statement generates a dimension table of CHANNEL in the GLOBAL
schema.

SELECT dim_key, level_name, long_description, channel_total_id tot_id,
 channel_channel_id chan_id, channel_long_description chan_desc,
 total_long_description tot_desc
 FROM TABLE(CUBE_TABLE('global.channel'));

DIM_KEY LEVEL_NAME LONG_DESCRIPTION TOT_ID CHAN_ID CHAN_DESC TOT_DESC
----------- ---------- ---------------- ------ ------- ------------

CHANNEL_CAT CHANNEL Catalog TOTAL CAT Catalog Total
Channel
CHANNEL_DIR CHANNEL Direct Sales TOTAL DIR Direct Sales Total
Channel
CHANNEL_INT CHANNEL Internet TOTAL INT Internet Total
Channel
TOTAL_TOTAL TOTAL Total Channel TOTAL Total
Channel

The next statement generates a cube table of UNITS_CUBE. It restricts the table to the
MARKET and CALENDAR hierarchies.

Chapter 7
CUBE_TABLE

7-106

SELECT sales, units, cost, time, customer, product, channel
 FROM TABLE(CUBE_TABLE('global.units_cube HIERARCHY customer market HIERARCHY time calendar'))
 WHERE rownum < 20;

 SALES UNITS COST TIME CUSTOMER PRODUCT CHANNEL
---------- ---------- ---------- -------------------------- -------------- ----------- -----------
24538587.9 61109 22840853.7 CALENDAR_QUARTER_CY1998.Q1 TOTAL_TOTAL TOTAL_TOTAL TOTAL_TOTAL
24993273.3 61320 23147171 CALENDAR_QUARTER_CY1998.Q2 TOTAL_TOTAL TOTAL_TOTAL TOTAL_TOTAL
25080541.4 65265 23242535.4 CALENDAR_QUARTER_CY1998.Q3 TOTAL_TOTAL TOTAL_TOTAL TOTAL_TOTAL
 26258474 66122 24391020.6 CALENDAR_QUARTER_CY1998.Q4 TOTAL_TOTAL TOTAL_TOTAL TOTAL_TOTAL
 32785170 77589 30607218.1 CALENDAR_QUARTER_CY1999.Q1 TOTAL_TOTAL TOTAL_TOTAL TOTAL_TOTAL
. . .

CUME_DIST
Aggregate Syntax

cume_dist_aggregate::=

CUME_DIST (expr

,

) WITHIN GROUP

(ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

Analytic Syntax

cume_dist_analytic::=

CUME_DIST () OVER (

query_partition_clause

order_by_clause)

See Also:

Analytic Functions for information on syntax, semantics, and restrictions

Purpose

CUME_DIST calculates the cumulative distribution of a value in a group of values. The range of
values returned by CUME_DIST is >0 to <=1. Tie values always evaluate to the same
cumulative distribution value.

This function takes as arguments any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. Oracle Database determines the argument

Chapter 7
CUME_DIST

7-107

with the highest numeric precedence, implicitly converts the remaining arguments to
that data type, makes the calculation, and returns NUMBER.

See Also:

Table 2-8 for more information on implicit conversion and Numeric
Precedence for information on numeric precedence

• As an aggregate function, CUME_DIST calculates, for a hypothetical row r identified
by the arguments of the function and a corresponding sort specification, the
relative position of row r among the rows in the aggregation group. Oracle makes
this calculation as if the hypothetical row r were inserted into the group of rows to
be aggregated over. The arguments of the function identify a single hypothetical
row within each aggregate group. Therefore, they must all evaluate to constant
expressions within each aggregate group. The constant argument expressions
and the expressions in the ORDER BY clause of the aggregate match by position.
Therefore, the number of arguments must be the same and their types must be
compatible.

• As an analytic function, CUME_DIST computes the relative position of a specified
value in a group of values. For a row r, assuming ascending ordering, the
CUME_DIST of r is the number of rows with values lower than or equal to the value
of r, divided by the number of rows being evaluated (the entire query result set or
a partition).

Aggregate Example

The following example calculates the cumulative distribution of a hypothetical
employee with a salary of $15,500 and commission rate of 5% among the employees
in the sample table oe.employees:

SELECT CUME_DIST(15500, .05) WITHIN GROUP
 (ORDER BY salary, commission_pct) "Cume-Dist of 15500"
 FROM employees;

Cume-Dist of 15500

 .972222222

Analytic Example

The following example calculates the salary percentile for each employee in the
purchasing division. For example, 40% of clerks have salaries less than or equal to
Himuro.

SELECT job_id, last_name, salary, CUME_DIST()
 OVER (PARTITION BY job_id ORDER BY salary) AS cume_dist
 FROM employees
 WHERE job_id LIKE 'PU%'
 ORDER BY job_id, last_name, salary, cume_dist;

JOB_ID LAST_NAME SALARY CUME_DIST
---------- ------------------------- ---------- ----------
PU_CLERK Baida 2900 .8
PU_CLERK Colmenares 2500 .2

Chapter 7
CUME_DIST

7-108

PU_CLERK Himuro 2600 .4
PU_CLERK Khoo 3100 1
PU_CLERK Tobias 2800 .6
PU_MAN Raphaely 11000 1

CURRENT_DATE
Syntax

CURRENT_DATE

Purpose

CURRENT_DATE returns the current date in the session time zone, in a value in the Gregorian
calendar of data type DATE.

Examples

The following example illustrates that CURRENT_DATE is sensitive to the session time zone:

ALTER SESSION SET TIME_ZONE = '-5:0';
ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SESSIONTIMEZONE CURRENT_DATE
--------------- --------------------
-05:00 29-MAY-2000 13:14:03

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

SESSIONTIMEZONE CURRENT_DATE
--------------- --------------------
-08:00 29-MAY-2000 10:14:33

CURRENT_TIMESTAMP
Syntax

CURRENT_TIMESTAMP

(precision)

Purpose

CURRENT_TIMESTAMP returns the current date and time in the session time zone, in a value of
data type TIMESTAMP WITH TIME ZONE. The time zone offset reflects the current local time of
the SQL session. If you omit precision, then the default is 6. The difference between this
function and LOCALTIMESTAMP is that CURRENT_TIMESTAMP returns a TIMESTAMP WITH TIME ZONE
value while LOCALTIMESTAMP returns a TIMESTAMP value.

In the optional argument, precision specifies the fractional second precision of the time
value returned.

Chapter 7
CURRENT_DATE

7-109

See Also:

LOCALTIMESTAMP

Examples

The following example illustrates that CURRENT_TIMESTAMP is sensitive to the session
time zone:

ALTER SESSION SET TIME_ZONE = '-5:0';
ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP FROM DUAL;

SESSIONTIMEZONE CURRENT_TIMESTAMP
--------------- ---
-05:00 04-APR-00 01.17.56.917550 PM -05:00

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP FROM DUAL;

SESSIONTIMEZONE CURRENT_TIMESTAMP
--------------- --
-08:00 04-APR-00 10.18.21.366065 AM -08:00

When you use the CURRENT_TIMESTAMP with a format mask, take care that the format
mask matches the value returned by the function. For example, consider the following
table:

CREATE TABLE current_test (col1 TIMESTAMP WITH TIME ZONE);

The following statement fails because the mask does not include the TIME ZONE portion
of the type returned by the function:

INSERT INTO current_test VALUES
 (TO_TIMESTAMP_TZ(CURRENT_TIMESTAMP, 'DD-MON-RR HH.MI.SSXFF PM'));

The following statement uses the correct format mask to match the return type of
CURRENT_TIMESTAMP:

INSERT INTO current_test VALUES
 (TO_TIMESTAMP_TZ(CURRENT_TIMESTAMP, 'DD-MON-RR HH.MI.SSXFF PM TZH:TZM'));

CV
Syntax

CV (

dimension_column

)

Purpose

The CV function can be used only in the model_clause of a SELECT statement and then
only on the right-hand side of a model rule. It returns the current value of a dimension
column or a partitioning column carried from the left-hand side to the right-hand side of

Chapter 7
CV

7-110

a rule. This function is used in the model_clause to provide relative indexing with respect to
the dimension column. The return type is that of the data type of the dimension column. If you
omit the argument, then it defaults to the dimension column associated with the relative
position of the function within the cell reference.

The CV function can be used outside a cell reference. In this case, dimension_column is
required.

See Also:

• model_clause and Model Expressions for the syntax and semantics

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of CV
when it is a character value

Examples

The following example assigns the sum of the sales of the product represented by the current
value of the dimension column (Mouse Pad or Standard Mouse) for years 1999 and 2000 to
the sales of that product for year 2001:

SELECT country, prod, year, s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER
 (
 s[FOR prod IN ('Mouse Pad', 'Standard Mouse'), 2001] =
 s[CV(), 1999] + s[CV(), 2000]
)
 ORDER BY country, prod, year;

COUNTRY PROD YEAR S
---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3000.72
France Mouse Pad 2001 6679.41
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 3554.76
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 7375.46
Germany Mouse Pad 2001 15721.9
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 8900.45

16 rows selected.

Chapter 7
CV

7-111

The preceding example requires the view sales_view_ref. Refer to The MODEL
clause: Examples to create this view.

DATAOBJ_TO_MAT_PARTITION
Syntax

DATAOBJ_TO_MAT_PARTITION (table , partition_id)

Purpose

DATAOBJ_TO_MAT_PARTITION is useful only to Data Cartridge developers who are
performing data maintenance or query operations on system-partitioned tables that are
used to store domain index data. The DML or query operations are triggered by
corresponding operations on the base table of the domain index.

This function takes as arguments the name of the base table and the partition ID of the
base table partition, both of which are passed to the function by the appropriate
ODCIIndex method. The function returns the materialized partition number of the
corresponding system-partitioned table, which can be used to perform the operation
(DML or query) on that partition of the system-partitioned table.

If the base table is interval partitioned, then Oracle recommends that you use this
function instead of the DATAOBJ_TO_PARTITION function. The DATAOBJ_TO_PARTITION
function determines the absolute partition number, given the physical partition
identifier. However, if the base table is interval partitioned, then there might be holes in
the partition numbers corresponding to unmaterialized partitions. Because the system
partitioned table only has materialized partitions, DATAOBJ_TO_PARTITION numbers can
cause a mis-match between the partitions of the base table and the partitions of the
underlying system partitioned index storage tables. The DATAOBJ_TO_MAT_PARTITION
function returns the materialized partition number (as opposed to the absolute partition
number) and helps keep the two tables in sync. Indextypes planning to support local
domain indexes on interval partitioned tables should migrate to the use of this function.

See Also:

• DATAOBJ_TO_PARTITION

• Oracle Database Data Cartridge Developer's Guide for information on
the use of the DATAOBJ_TO_MAT_PARTITION function, including examples

DATAOBJ_TO_PARTITION
Syntax

DATAOBJ_TO_PARTITION (table , partition_id)

Chapter 7
DATAOBJ_TO_MAT_PARTITION

7-112

Purpose

DATAOBJ_TO_PARTITION is useful only to Data Cartridge developers who are performing data
maintenance or query operations on system-partitioned tables that are used to store domain
index data. The DML or query operations are triggered by corresponding operations on the
base table of the domain index.

This function takes as arguments the name of the base table and the partition ID of the base
table partition, both of which are passed to the function by the appropriate ODCIIndex
method. The function returns the absolute partition number of the corresponding system-
partitioned table, which can be used to perform the operation (DML or query) on that partition
of the system-partitioned table.

Note:

If the base table is interval partitioned, then Oracle recommends that you instead
use the DATAOBJ_TO_MAT_PARTITION function. Refer to
DATAOBJ_TO_MAT_PARTITION for more information.

See Also:

Oracle Database Data Cartridge Developer's Guide for information on the use of
the DATAOBJ_TO_PARTITION function, including examples

DBTIMEZONE
Syntax

DBTIMEZONE

Purpose

DBTIMEZONE returns the value of the database time zone. The return type is a time zone offset
(a character type in the format '[+|-]TZH:TZM') or a time zone region name, depending on
how the user specified the database time zone value in the most recent CREATE DATABASE or
ALTER DATABASE statement.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
DBTIMEZONE

Chapter 7
DBTIMEZONE

7-113

Examples

The following example assumes that the database time zone is set to UTC time zone:

SELECT DBTIMEZONE
 FROM DUAL;

DBTIME

+00:00

DECODE
Syntax

DECODE (expr , search , result

,
, default

)

Purpose

DECODE compares expr to each search value one by one. If expr is equal to a search,
then Oracle Database returns the corresponding result. If no match is found, then
Oracle returns default. If default is omitted, then Oracle returns null.

The arguments can be any of the numeric types (NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE) or character types.

• If expr and search are character data, then Oracle compares them using
nonpadded comparison semantics. expr, search, and result can be any of the
data types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The string returned is of
VARCHAR2 data type and is in the same character set as the first result parameter.

• If the first search-result pair are numeric, then Oracle compares all search-
result expressions and the first expr to determine the argument with the highest
numeric precedence, implicitly converts the remaining arguments to that data type,
and returns that data type.

The search, result, and default values can be derived from expressions. Oracle
Database uses short-circuit evaluation. The database evaluates each search value
only before comparing it to expr, rather than evaluating all search values before
comparing any of them with expr. Consequently, Oracle never evaluates a search if a
previous search is equal to expr.

Oracle automatically converts expr and each search value to the data type of the first
search value before comparing. Oracle automatically converts the return value to the
same data type as the first result. If the first result has the data type CHAR or if the
first result is null, then Oracle converts the return value to the data type VARCHAR2.

In a DECODE function, Oracle considers two nulls to be equivalent. If expr is null, then
Oracle returns the result of the first search that is also null.

The maximum number of components in the DECODE function, including expr,
searches, results, and default, is 255.

Chapter 7
DECODE

7-114

See Also:

• Data Type Comparison Rules for information on comparison semantics

• Data Conversion for information on data type conversion in general

• Floating-Point Numbers for information on floating-point comparison semantics

• Implicit and Explicit Data Conversion for information on the drawbacks of
implicit conversion

• COALESCE and CASE Expressions , which provide functionality similar to that
of DECODE

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation DECODE uses to compare
characters from expr with characters from search, and for the collation
derivation rules, which define the collation assigned to the return value of this
function when it is a character value

Examples

This example decodes the value warehouse_id. If warehouse_id is 1, then the function
returns 'Southlake'; if warehouse_id is 2, then it returns 'San Francisco'; and so forth. If
warehouse_id is not 1, 2, 3, or 4, then the function returns 'Non domestic'.

SELECT product_id,
 DECODE (warehouse_id, 1, 'Southlake',
 2, 'San Francisco',
 3, 'New Jersey',
 4, 'Seattle',
 'Non domestic') "Location"
 FROM inventories
 WHERE product_id < 1775
 ORDER BY product_id, "Location";

DECOMPOSE
Syntax

DECOMPOSE (string

,
’ CANONICAL ’

’ COMPATIBILITY ’

)

Purpose

DECOMPOSE takes as its first argument a character value string and returns the result of
applying one of the Unicode decompositions to it. The decomposition to apply is determined
by the second, optional parameter. If the character set of the first argument is not one of the
Unicode character sets, DECOMPOSE returns the argument unmodified.

If the second argument to DECOMPOSE is the string CANONICAL (case-insensitively), DECOMPOSE
applies canonical decomposition, as described in the Unicode Standard definition D68, and

Chapter 7
DECOMPOSE

7-115

returns a string in the NFD normalization form. If the second argument is the string
COMPATIBILITY, DECOMPOSE applies compatibility decomposition, as described in the
Unicode Standard definition D65, and returns a string in the NFKD normalization form.
The default behavior is to apply the canonical decomposition.

In a pessimistic case, the return value of DECOMPOSE may be a few times longer than
string. If a string to be returned is longer than the maximum length VARCHAR2 value in
a given runtime environment, the value is silently truncated to the maximum VARCHAR2
length.

Both arguments to DECOMPOSE can be of any of the data types CHAR, VARCHAR2, NCHAR,
or NVARCHAR2. Other data types are allowed if they can be implicitly converted to
VARCHAR2or NVARCHAR2. The return value of DECOMPOSE is in the same character set as
its first argument.

CLOB and NCLOB values are supported through implicit conversion. If string is a
character LOB value, then it is converted to a VARCHAR2 value before the DECOMPOSE
operation. The operation will fail if the size of the LOB value exceeds the supported
length of the VARCHAR2 in the particular execution environment.

See Also:

• Oracle Database Globalization Support Guide for information on Unicode
character sets and character semantics

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of DECOMPOSE

• COMPOSE

Examples

The following example decomposes the string "Châteaux" into its component code
points:

SELECT DECOMPOSE ('Châteaux')
 FROM DUAL;

DECOMPOSE

Châteaux

Note:

The results of this example can vary depending on the character set of your
operating system.

Chapter 7
DECOMPOSE

7-116

DENSE_RANK
Aggregate Syntax

dense_rank_aggregate::=

DENSE_RANK (expr

,

) WITHIN GROUP

(ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

Analytic Syntax

dense_rank_analytic::=

DENSE_RANK () OVER (

query_partition_clause

order_by_clause)

See Also:

Analytic Functions for information on syntax, semantics, and restrictions

Purpose

DENSE_RANK computes the rank of a row in an ordered group of rows and returns the rank as
a NUMBER. The ranks are consecutive integers beginning with 1. The largest rank value is the
number of unique values returned by the query. Rank values are not skipped in the event of
ties. Rows with equal values for the ranking criteria receive the same rank. This function is
useful for top-N and bottom-N reporting.

This function accepts as arguments any numeric data type and returns NUMBER.

• As an aggregate function, DENSE_RANK calculates the dense rank of a hypothetical row
identified by the arguments of the function with respect to a given sort specification. The
arguments of the function must all evaluate to constant expressions within each
aggregate group, because they identify a single row within each group. The constant
argument expressions and the expressions in the order_by_clause of the aggregate
match by position. Therefore, the number of arguments must be the same and types
must be compatible.

Chapter 7
DENSE_RANK

7-117

• As an analytic function, DENSE_RANK computes the rank of each row returned from
a query with respect to the other rows, based on the values of the value_exprs in
the order_by_clause.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation DENSE_RANK uses to compare
character values for the ORDER BY clause

Aggregate Example

The following example computes the ranking of a hypothetical employee with the
salary $15,500 and a commission of 5% in the sample table oe.employees:

SELECT DENSE_RANK(15500, .05) WITHIN GROUP
 (ORDER BY salary DESC, commission_pct) "Dense Rank"
 FROM employees;

Dense Rank

 3

Analytic Example

The following statement ranks the employees in the sample hr schema in department
60 based on their salaries. Identical salary values receive the same rank. However, no
rank values are skipped. Compare this example with the analytic example for RANK .

SELECT department_id, last_name, salary,
 DENSE_RANK() OVER (PARTITION BY department_id ORDER BY salary) DENSE_RANK
 FROM employees WHERE department_id = 60
 ORDER BY DENSE_RANK, last_name;

DEPARTMENT_ID LAST_NAME SALARY DENSE_RANK
------------- ------------------------- ---------- ----------
 60 Lorentz 4200 1
 60 Austin 4800 2
 60 Pataballa 4800 2
 60 Ernst 6000 3
 60 Hunold 9000 4

DEPTH
Syntax

DEPTH (correlation_integer)

Purpose

DEPTH is an ancillary function used only with the UNDER_PATH and EQUALS_PATH
conditions. It returns the number of levels in the path specified by the UNDER_PATH
condition with the same correlation variable.

Chapter 7
DEPTH

7-118

The correlation_integer can be any NUMBER integer. Use it to correlate this ancillary
function with its primary condition if the statement contains multiple primary conditions.
Values less than 1 are treated as 1.

See Also:

EQUALS_PATH Condition , UNDER_PATH Condition , and the related function
PATH

Examples

The EQUALS_PATH and UNDER_PATH conditions can take two ancillary functions, DEPTH and
PATH. The following example shows the use of both ancillary functions. The example
assumes the existence of the XMLSchema warehouses.xsd (created in Using XML in SQL
Statements).

SELECT PATH(1), DEPTH(2)
 FROM RESOURCE_VIEW
 WHERE UNDER_PATH(res, '/sys/schemas/OE', 1)=1
 AND UNDER_PATH(res, '/sys/schemas/OE', 2)=1;

PATH(1) DEPTH(2)
-------------------------------- --------
. . .
www.example.com 1
www.example.com/xwarehouses.xsd 2
. . .

DEREF
Syntax

DEREF (expr)

Purpose

DEREF returns the object reference of argument expr, where expr must return a REF to an
object. If you do not use this function in a query, then Oracle Database returns the object ID
of the REF instead, as shown in the example that follows.

See Also:

MAKE_REF

Examples

The sample schema oe contains an object type cust_address_typ. The REF Constraint
Examples create a similar type, cust_address_typ_new, and a table with one column that is a

Chapter 7
DEREF

7-119

REF to the type. The following example shows how to insert into such a column and
how to use DEREF to extract information from the column:

INSERT INTO address_table VALUES
 ('1 First', 'G45 EU8', 'Paris', 'CA', 'US');

INSERT INTO customer_addresses
 SELECT 999, REF(a) FROM address_table a;

SELECT address
 FROM customer_addresses
 ORDER BY address;

ADDRESS
--
000022020876B2245DBE325C5FE03400400B40DCB176B2245DBE305C5FE03400400B40DCB1

SELECT DEREF(address)
 FROM customer_addresses;

DEREF(ADDRESS)(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
--
CUST_ADDRESS_TYP_NEW('1 First', 'G45 EU8', 'Paris', 'CA', 'US')

DUMP
Syntax

DUMP (expr

, return_fmt

, start_position

, length

)

Purpose

DUMP returns a VARCHAR2 value containing the data type code, length in bytes, and
internal representation of expr. The returned result is always in the database character
set. For the data type corresponding to each code, see Table 2-1.

The argument return_fmt specifies the format of the return value and can have any of
the following values:

• 8 returns result in octal notation.

• 10 returns result in decimal notation.

• 16 returns result in hexadecimal notation.

• 17 returns each byte printed as a character if and only if it can be interpreted as a
printable character in the character set of the compiler—typically ASCII or
EBCDIC. Some ASCII control characters may be printed in the form ^X as well.
Otherwise the character is printed in hexadecimal notation. All NLS parameters
are ignored. Do not depend on any particular output format for DUMP with
return_fmt 17.

By default, the return value contains no character set information. To retrieve the
character set name of expr, add 1000 to any of the preceding format values. For

Chapter 7
DUMP

7-120

example, a return_fmt of 1008 returns the result in octal and provides the character set
name of expr.

The arguments start_position and length combine to determine which portion of the
internal representation to return. The default is to return the entire internal representation in
decimal notation.

If expr is null, then this function returns NULL.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also:

• Data Type Comparison Rules for more information

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of DUMP

Examples

The following examples show how to extract dump information from a string expression and a
column:

SELECT DUMP('abc', 1016)
 FROM DUAL;

DUMP('ABC',1016)
--
Typ=96 Len=3 CharacterSet=WE8DEC: 61,62,63

SELECT DUMP(last_name, 8, 3, 2) "OCTAL"
 FROM employees
 WHERE last_name = 'Hunold'
 ORDER BY employee_id;

OCTAL

Typ=1 Len=6: 156,157

SELECT DUMP(last_name, 10, 3, 2) "ASCII"
 FROM employees
 WHERE last_name = 'Hunold'
 ORDER BY employee_id;

ASCII
--
Typ=1 Len=6: 110,111

Chapter 7
DUMP

7-121

EMPTY_BLOB, EMPTY_CLOB
Syntax

empty_LOB::=

EMPTY_BLOB

EMPTY_CLOB
()

Purpose

EMPTY_BLOB and EMPTY_CLOB return an empty LOB locator that can be used to initialize
a LOB variable or, in an INSERT or UPDATE statement, to initialize a LOB column or
attribute to EMPTY. EMPTY means that the LOB is initialized, but not populated with data.

Note:

An empty LOB is not the same as a null LOB, and an empty CLOB is not the
same as a LOB containing a string of 0 length. For more information, see
Oracle Database SecureFiles and Large Objects Developer's Guide.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of
EMPTY_CLOB

Restriction on LOB Locators

You cannot use the locator returned from this function as a parameter to the DBMS_LOB
package or the OCI.

Examples

The following example initializes the ad_photo column of the sample pm.print_media
table to EMPTY:

UPDATE print_media
 SET ad_photo = EMPTY_BLOB();

Chapter 7
EMPTY_BLOB, EMPTY_CLOB

7-122

EXISTSNODE

Note:

The EXISTSNODE function is deprecated. It is still supported for backward
compatibility. However, Oracle recommends that you use the XMLEXISTS function
instead. See XMLEXISTS for more information.

Syntax

EXISTSNODE (XMLType_instance , XPath_string

, namespace_string

)

Purpose

EXISTSNODE determines whether traversal of an XML document using a specified path results
in any nodes. It takes as arguments the XMLType instance containing an XML document and a
VARCHAR2 XPath string designating a path. The optional namespace_string must resolve to a
VARCHAR2 value that specifies a default mapping or namespace mapping for prefixes, which
Oracle Database uses when evaluating the XPath expression(s).

The namespace_string argument defaults to the namespace of the root element. If you refer
to any subelement in Xpath_string, then you must specify namespace_string, and you must
specify the "who" prefix in both of these arguments.

See Also:

Using XML in SQL Statements for examples that specify namespace_string and
use the "who" prefix.

The return value is NUMBER:

• 0 if no nodes remain after applying the XPath traversal on the document

• 1 if any nodes remain

Examples

The following example tests for the existence of the /Warehouse/Dock node in the XML path
of the warehouse_spec column of the sample table oe.warehouses:

SELECT warehouse_id, warehouse_name
 FROM warehouses
 WHERE EXISTSNODE(warehouse_spec, '/Warehouse/Docks') = 1
 ORDER BY warehouse_id;

WAREHOUSE_ID WAREHOUSE_NAME
------------ -----------------------------------

Chapter 7
EXISTSNODE

7-123

 1 Southlake, Texas
 2 San Francisco
 4 Seattle, Washington

EXP
Syntax

EXP (n)

Purpose

EXP returns e raised to the nth power, where e = 2.71828183... . The function returns a
value of the same type as the argument.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. If the argument is
BINARY_FLOAT, then the function returns BINARY_DOUBLE. Otherwise the function
returns the same numeric data type as the argument.

See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns e to the 4th power:

SELECT EXP(4) "e to the 4th power"
 FROM DUAL;

e to the 4th power

 54.59815

Chapter 7
EXP

7-124

EXTRACT (datetime)
Syntax

extract_datetime::=

EXTRACT (

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

TIMEZONE_HOUR

TIMEZONE_MINUTE

TIMEZONE_REGION

TIMEZONE_ABBR

FROM expr)

Purpose

EXTRACT extracts and returns the value of a specified datetime field from a datetime or interval
expression. The expr can be any expression that evaluates to a datetime or interval data type
compatible with the requested field:

• If YEAR or MONTH is requested, then expr must evaluate to an expression of data type
DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, or
INTERVAL YEAR TO MONTH.

• If DAY is requested, then expr must evaluate to an expression of data type DATE,
TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, or INTERVAL
DAY TO SECOND.

• If HOUR, MINUTE, or SECOND is requested, then expr must evaluate to an expression of data
type TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, or
INTERVAL DAY TO SECOND. DATE is not valid here, because Oracle Database treats it as
ANSI DATE data type, which has no time fields.

• If TIMEZONE_HOUR, TIMEZONE_MINUTE, TIMEZONE_ABBR, TIMEZONE_REGION, or
TIMEZONE_OFFSET is requested, then expr must evaluate to an expression of data type
TIMESTAMP WITH TIME ZONE or TIMESTAMP WITH LOCAL TIME ZONE.

EXTRACT interprets expr as an ANSI datetime data type. For example, EXTRACT treats DATE not
as legacy Oracle DATE but as ANSI DATE, without time elements. Therefore, you can extract
only YEAR, MONTH, and DAY from a DATE value. Likewise, you can extract TIMEZONE_HOUR and
TIMEZONE_MINUTE only from the TIMESTAMP WITH TIME ZONE data type.

When you specify TIMEZONE_REGION or TIMEZONE_ABBR (abbreviation), the value returned is a
VARCHAR2 string containing the appropriate time zone region name or abbreviation. When you
specify any of the other datetime fields, the value returned is an integer value of NUMBER data

Chapter 7
EXTRACT (datetime)

7-125

type representing the datetime value in the Gregorian calendar. When extracting from
a datetime with a time zone value, the value returned is in UTC. For a listing of time
zone region names and their corresponding abbreviations, query the
V$TIMEZONE_NAMES dynamic performance view.

This function can be very useful for manipulating datetime field values in very large
tables, as shown in the first example below.

Note:

Time zone region names are needed by the daylight saving feature. These
names are stored in two types of time zone files: one large and one small.
One of these files is the default file, depending on your environment and the
release of Oracle Database you are using. For more information regarding
time zone files and names, see Oracle Database Globalization Support
Guide.

Some combinations of datetime field and datetime or interval value expression result
in ambiguity. In these cases, Oracle Database returns UNKNOWN (see the examples that
follow for additional information).

See Also:

• Oracle Database Globalization Support Guide for a complete listing of
the time zone region names in both files

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of EXTRACT

• Datetime/Interval Arithmetic for a description of datetime_value_expr
and interval_value_expr

• Oracle Database Reference for information on the dynamic performance
views

Examples

The following example returns from the oe.orders table the number of orders placed
in each month:

SELECT EXTRACT(month FROM order_date) "Month", COUNT(order_date) "No. of Orders"
 FROM orders
 GROUP BY EXTRACT(month FROM order_date)
 ORDER BY "No. of Orders" DESC, "Month";

 Month No. of Orders
---------- -------------
 11 15
 6 14
 7 14
 3 11
 5 10

Chapter 7
EXTRACT (datetime)

7-126

 2 9
 9 9
 8 7
 10 6
 1 5
 12 4
 4 1

12 rows selected.

The following example returns the year 1998.

SELECT EXTRACT(YEAR FROM DATE '1998-03-07')
 FROM DUAL;

EXTRACT(YEARFROMDATE'1998-03-07')

 1998

The following example selects from the sample table hr.employees all employees who were
hired after 2007:

SELECT last_name, employee_id, hire_date
 FROM employees
 WHERE EXTRACT(YEAR FROM (hire_date, 'DD-MON-RR')) > 2007
 ORDER BY hire_date;

LAST_NAME EMPLOYEE_ID HIRE_DATE
------------------------- ----------- ---------
Johnson 179 04-JAN-08
Grant 199 13-JAN-08
Marvins 164 24-JAN-08
. . .

The following example results in ambiguity, so Oracle returns UNKNOWN:

SELECT EXTRACT(TIMEZONE_REGION FROM TIMESTAMP '1999-01-01 10:00:00 -08:00')
 FROM DUAL;

EXTRACT(TIMEZONE_REGIONFROMTIMESTAMP'1999-01-0110:00:00-08:00')
--
UNKNOWN

The ambiguity arises because the time zone numerical offset is provided in the expression,
and that numerical offset may map to more than one time zone region name.

EXTRACT (XML)

Note:

The EXTRACT (XML) function is deprecated. It is still supported for backward
compatibility. However, Oracle recommends that you use the XMLQUERY function
instead. See XMLQUERY for more information.

Chapter 7
EXTRACT (XML)

7-127

Syntax

extract_xml::=

EXTRACT (XMLType_instance , XPath_string

, namespace_string

)

Purpose

EXTRACT (XML) is similar to the EXISTSNODE function. It applies a VARCHAR2 XPath string
and returns an XMLType instance containing an XML fragment. You can specify an
absolute XPath_string with an initial slash or a relative XPath_string by omitting the
initial slash. If you omit the initial slash, then the context of the relative path defaults to
the root node. The optional namespace_string is required if the XML you are handling
uses a namespace prefix. This argument must resolve to a VARCHAR2 value that
specifies a default mapping or namespace mapping for prefixes, which Oracle
Database uses when evaluating the XPath expression(s).

Examples

The following example extracts the value of the /Warehouse/Dock node of the XML
path of the warehouse_spec column in the sample table oe.warehouses:

SELECT warehouse_name,
 EXTRACT(warehouse_spec, '/Warehouse/Docks') "Number of Docks"
 FROM warehouses
 WHERE warehouse_spec IS NOT NULL
 ORDER BY warehouse_name;

WAREHOUSE_NAME Number of Docks
------------------------- -------------------------
New Jersey
San Francisco <Docks>1</Docks>
Seattle, Washington <Docks>3</Docks>
Southlake, Texas <Docks>2</Docks>

Compare this example with the example for EXTRACTVALUE , which returns the
scalar value of the XML fragment.

EXTRACTVALUE

Note:

The EXTRACTVALUE function is deprecated. It is still supported for backward
compatibility. However, Oracle recommends that you use the XMLTABLE
function, or the XMLCAST and XMLQUERY functions instead. See XMLTABLE ,
XMLCAST, and XMLQUERY for more information.

Chapter 7
EXTRACTVALUE

7-128

Syntax

EXTRACTVALUE (XMLType_instance , XPath_string

, namespace_string

)

The EXTRACTVALUE function takes as arguments an XMLType instance and an XPath
expression and returns a scalar value of the resultant node. The result must be a single node
and be either a text node, attribute, or element. If the result is an element, then the element
must have a single text node as its child, and it is this value that the function returns. You can
specify an absolute XPath_string with an initial slash or a relative XPath_string by omitting
the initial slash. If you omit the initial slash, the context of the relative path defaults to the root
node.

If the specified XPath points to a node with more than one child, or if the node pointed to has
a non-text node child, then Oracle returns an error. The optional namespace_string must
resolve to a VARCHAR2 value that specifies a default mapping or namespace mapping for
prefixes, which Oracle uses when evaluating the XPath expression(s).

For documents based on XML schemas, if Oracle can infer the type of the return value, then
a scalar value of the appropriate type is returned. Otherwise, the result is of type VARCHAR2.
For documents that are not based on XML schemas, the return type is always VARCHAR2.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
EXTRACTVALUE

Examples

The following example takes as input the same arguments as the example for EXTRACT
(XML) . Instead of returning an XML fragment, as does the EXTRACT function, it returns the
scalar value of the XML fragment:

SELECT warehouse_name, EXTRACTVALUE(e.warehouse_spec, '/Warehouse/Docks') "Docks"
 FROM warehouses e
 WHERE warehouse_spec IS NOT NULL
 ORDER BY warehouse_name;

WAREHOUSE_NAME Docks
-------------------- ------------
New Jersey
San Francisco 1
Seattle, Washington 3
Southlake, Texas 2

FEATURE_COMPARE
Syntax

Chapter 7
FEATURE_COMPARE

7-129

feature_compare::=

FEATURE_COMPARE (

schema .

model mining_attribute_clause AND mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Purpose

The FEATURE_COMPARE function uses a Feature Extraction model to compare two
different documents, including short ones such as keyword phrases or two attribute
lists, for similarity or dissimilarity. The FEATURE_COMPARE function can be used with
Feature Extraction algorithms such as Singular Value Decomposition (SVD), Principal
Component Analysis PCA), Non-Negative Matrix Factorization (NMF), and Explicit
Semantic Analysis (ESA). This function is applicable not only to documents, but also to
numeric and categorical data.

The input to the FEATURE_COMPARE function is a single feature model built using the
Feature Extraction algorithms of Oracle Machine Learning for SQL, such as NMF,
SVD, and ESA. The double USING clause provides a mechanism to compare two
different documents or constant keyword phrases, or any combination of the two, for
similarity or dissimilarity using the extracted features in the model.

The syntax of the FEATURE_COMPARE function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

The mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. See mining_attribute_clause.

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring

• Oracle Machine Learning for SQL Concepts for information about
clustering

Chapter 7
FEATURE_COMPARE

7-130

Note:

The following examples are excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix
A in Oracle Machine Learning for SQL User’s Guide.

Examples

An ESA model is built against a 2005 Wiki dataset rendering over 200,000 features. The
documents are mined as text and the document titles are considered as the Feature IDs.

The examples show the FEATURE_COMPARE function with the ESA algorithm, which compares a
similar set of texts and then a dissimilar set of texts.

Similar texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA tour golfers from South
Africa' text AND USING 'Nick Price won the 2002 Mastercard Colonial Open' text) similarity
FROM DUAL;

SIMILARITY

 .258

The output metric shows the results of a distance calculation. Therefore, a smaller number
represents more similar texts. So 1 minus the distance in the queries represents a document
similarity metric.

Dissimilar texts

SELECT 1-FEATURE_COMPARE(esa_wiki_mod USING 'There are several PGA tour golfers from South
Africa' text AND USING 'John Elway played quarterback for the Denver Broncos' text)
similarity FROM DUAL;

SIMILARITY

 .007

Chapter 7
FEATURE_COMPARE

7-131

FEATURE_DETAILS
Syntax

feature_details::=

FEATURE_DETAILS (

schema .

model

, feature_id

, topN

DESC

ASC

ABS

mining_attribute_clause)

Analytic Syntax

feature_details_analytic::=

FEATURE_DETAILS (INTO n

, feature_id

, topN

DESC

ASC

ABS

mining_attribute_clause) OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

Chapter 7
FEATURE_DETAILS

7-132

See Also:

"Analytic Functions " for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

FEATURE_DETAILS returns feature details for each row in the selection. The return value is an
XML string that describes the attributes of the highest value feature or the specified
feature_id.

topN

If you specify a value for topN, the function returns the N attributes that most influence the
feature value. If you do not specify topN, the function returns the 5 most influential attributes.

DESC, ASC, or ABS

The returned attributes are ordered by weight. The weight of an attribute expresses its
positive or negative impact on the value of the feature. A positive weight indicates a higher
feature value. A negative weight indicates a lower feature value.

By default, FEATURE_DETAILS returns the attributes with the highest positive weight (DESC). If
you specify ASC, the attributes with the highest negative weight are returned. If you specify
ABS, the attributes with the greatest weight, whether negative or positive, are returned. The
results are ordered by absolute value from highest to lowest. Attributes with a zero weight are
not included in the output.

Syntax Choice

FEATURE_DETAILS can score the data in one of two ways: It can apply a mining model object
to the data, or it can dynamically mine the data by executing an analytic clause that builds
and applies one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply the
name of a feature extraction model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-defined
model. Include INTO n, where n is the number of features to extract, and
mining_analytic_clause, which specifies if the data should be partitioned for multiple
model builds. The mining_analytic_clause supports a query_partition_clause and an
order_by_clause. (See "analytic_clause::=".)

The syntax of the FEATURE_DETAILS function can use an optional GROUPING hint when scoring
a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring.
When the function is invoked with the analytic syntax, these predictors are also used for
building the transient models. The mining_attribute_clause behaves as described for the
PREDICTION function. (See "mining_attribute_clause::=".)

Chapter 7
FEATURE_DETAILS

7-133

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about feature
extraction.

Note:

The following examples are excerpted from the Oracle Machine Learning for
SQL sample programs. For more information about the sample programs,
see Appendix A in Oracle Machine Learning for SQL User’s Guide.

Example

This example uses the feature extraction model nmf_sh_sample to score the data. The
query returns the three features that best represent customer 100002 and the
attributes that most affect those features.

SELECT S.feature_id fid, value val,
 FEATURE_DETAILS(nmf_sh_sample, S.feature_id, 5 using T.*) det
 FROM
 (SELECT v.*, FEATURE_SET(nmf_sh_sample, 3 USING *) fset
 FROM mining_data_apply_v v
 WHERE cust_id = 100002) T,
 TABLE(T.fset) S
ORDER BY 2 DESC;

 FID VAL DET
---- ------ --
 5 3.492 <Details algorithm="Non-Negative Matrix Factorization" feature="5">
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".077" rank="1"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".062" rank="2"/>
 <Attribute name="BOOKKEEPING_APPLICATION" actualValue="1" weight=".001" rank="3"/>
 <Attribute name="OS_DOC_SET_KANJI" actualValue="0" weight="0" rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight="0" rank="5"/>
 </Details>
 3 1.928 <Details algorithm="Non-Negative Matrix Factorization" feature="3">
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".239" rank="1"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above"
 weight=".051" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".02" rank="3"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".006" rank="4"/>
 <Attribute name="AGE" actualValue="41" weight=".004" rank="5"/>
 </Details>
 8 .816 <Details algorithm="Non-Negative Matrix Factorization" feature="8">
 <Attribute name="EDUCATION" actualValue="Bach." weight=".211" rank="1"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".143" rank="2"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".137" rank="3"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".044" rank="4"/>
 <Attribute name="BULK_PACK_DISKETTES" actualValue="1" weight=".032" rank="5"/>
 </Details>

Chapter 7
FEATURE_DETAILS

7-134

Analytic Example

This example dynamically maps customer attributes into six features and returns the feature
mapping for customer 100001.

SELECT feature_id, value
 FROM (
 SELECT cust_id, feature_set(INTO 6 USING *) OVER () fset
 FROM mining_data_apply_v),
 TABLE (fset)
 WHERE cust_id = 100001
 ORDER BY feature_id;

FEATURE_ID VALUE
---------- --------
 1 2.670
 2 .000
 3 1.792
 4 .000
 5 .000
 6 3.379

FEATURE_ID
Syntax

feature_id::=

FEATURE_ID (

schema .

model mining_attribute_clause)

Analytic Syntax

feature_id_analytic::=

FEATURE_ID (INTO n mining_attribute_clause) OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Chapter 7
FEATURE_ID

7-135

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions " for information on the syntax, semantics, and
restrictions of mining_analytic_clause

Purpose

FEATURE_ID returns the identifier of the highest value feature for each row in the
selection. The feature identifier is returned as an Oracle NUMBER.

Syntax Choice

FEATURE_ID can score the data in one of two ways: It can apply a mining model object
to the data, or it can dynamically mine the data by executing an analytic clause that
builds and applies one or more transient mining models. Choose Syntax or Analytic
Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a feature extraction model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-
defined model. Include INTO n, where n is the number of features to extract, and
mining_analytic_clause, which specifies if the data should be partitioned for
multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

The syntax of the FEATURE_ID function can use an optional GROUPING hint when scoring
a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause::=".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about feature
extraction.

Chapter 7
FEATURE_ID

7-136

Note:

The following example is excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix
A in Oracle Machine Learning for SQL User’s Guide.

Example

This example lists the features and corresponding count of customers in a data set.

SELECT FEATURE_ID(nmf_sh_sample USING *) AS feat, COUNT(*) AS cnt
 FROM nmf_sh_sample_apply_prepared
 GROUP BY FEATURE_ID(nmf_sh_sample USING *)
 ORDER BY cnt DESC, feat DESC;

 FEAT CNT
---------- ----------
 7 1443
 2 49
 3 6
 6 1
 1 1

FEATURE_SET
Syntax

feature_set::=

FEATURE_SET (

schema .

model

, topN

, cutoff

mining_attribute_clause)

Analytic Syntax

feature_set_analytic::=

FEATURE_SET (INTO n

, topN

, cutoff

mining_attribute_clause)

OVER (mining_analytic_clause)

Chapter 7
FEATURE_SET

7-137

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions " for information on the syntax, semantics, and
restrictions of mining_analytic_clause

Purpose

FEATURE_SET returns a set of feature ID and feature value pairs for each row in the
selection. The return value is a varray of objects with field names FEATURE_ID and
VALUE. The data type of both fields is NUMBER.

topN and cutoff

You can specify topN and cutoff to limit the number of features returned by the
function. By default, both topN and cutoff are null and all features are returned.

• topN is the N highest value features. If multiple features have the Nth value, then
the function chooses one of them.

• cutoff is a value threshold. Only features that are greater than or equal to cutoff
are returned. To filter by cutoff only, specify NULL for topN.

To return up to N features that are greater than or equal to cutoff, specify both topN
and cutoff.

Syntax Choice

FEATURE_SET can score the data in one of two ways: It can apply a mining model object
to the data, or it can dynamically mine the data by executing an analytic clause that
builds and applies one or more transient mining models. Choose Syntax or Analytic
Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply
the name of a feature extraction model.

Chapter 7
FEATURE_SET

7-138

• Analytic Syntax — Use the analytic syntax to score the data without a pre-defined
model. Include INTO n, where n is the number of features to extract, and
mining_analytic_clause, which specifies if the data should be partitioned for multiple
model builds. The mining_analytic_clause supports a query_partition_clause and an
order_by_clause. (See "analytic_clause::=".)

The syntax of the FEATURE_SET function can use an optional GROUPING hint when scoring a
partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring.
When the function is invoked with the analytic syntax, these predictors are also used for
building the transient models. The mining_attribute_clause behaves as described for the
PREDICTION function. (See "mining_attribute_clause::=".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about scoring.

• Oracle Machine Learning for SQL Concepts for information about feature
extraction.

Note:

The following example is excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix
A in Oracle Machine Learning for SQL User’s Guide.

Example

This example lists the top features corresponding to a given customer record and determines
the top attributes for each feature (based on coefficient > 0.25).

WITH
feat_tab AS (
SELECT F.feature_id fid,
 A.attribute_name attr,
 TO_CHAR(A.attribute_value) val,
 A.coefficient coeff
 FROM TABLE(DBMS_DATA_MINING.GET_MODEL_DETAILS_NMF('nmf_sh_sample')) F,
 TABLE(F.attribute_set) A
 WHERE A.coefficient > 0.25
),
feat AS (
SELECT fid,
 CAST(COLLECT(Featattr(attr, val, coeff))
 AS Featattrs) f_attrs
 FROM feat_tab
GROUP BY fid
),
cust_10_features AS (
SELECT T.cust_id, S.feature_id, S.value

Chapter 7
FEATURE_SET

7-139

 FROM (SELECT cust_id, FEATURE_SET(nmf_sh_sample, 10 USING *) pset
 FROM nmf_sh_sample_apply_prepared
 WHERE cust_id = 100002) T,
 TABLE(T.pset) S
)
SELECT A.value, A.feature_id fid,
 B.attr, B.val, B.coeff
 FROM cust_10_features A,
 (SELECT T.fid, F.*
 FROM feat T,
 TABLE(T.f_attrs) F) B
 WHERE A.feature_id = B.fid
ORDER BY A.value DESC, A.feature_id ASC, coeff DESC, attr ASC, val ASC;

 VALUE FID ATTR VAL COEFF
-------- ---- ------------------------- ------------------------ -------
 6.8409 7 YRS_RESIDENCE 1.3879
 6.8409 7 BOOKKEEPING_APPLICATION .4388
 6.8409 7 CUST_GENDER M .2956
 6.8409 7 COUNTRY_NAME United States of America .2848
 6.4975 3 YRS_RESIDENCE 1.2668
 6.4975 3 BOOKKEEPING_APPLICATION .3465
 6.4975 3 COUNTRY_NAME United States of America .2927
 6.4886 2 YRS_RESIDENCE 1.3285
 6.4886 2 CUST_GENDER M .2819
 6.4886 2 PRINTER_SUPPLIES .2704
 6.3953 4 YRS_RESIDENCE 1.2931
 5.9640 6 YRS_RESIDENCE 1.1585
 5.9640 6 HOME_THEATER_PACKAGE .2576
 5.2424 5 YRS_RESIDENCE 1.0067
 2.4714 8 YRS_RESIDENCE .3297
 2.3559 1 YRS_RESIDENCE .2768
 2.3559 1 FLAT_PANEL_MONITOR .2593

FEATURE_VALUE
Syntax

feature_value::=

FEATURE_VALUE (

schema .

model

, feature_id

mining_attribute_clause)

Analytic Syntax

feature_value_analytic::=

FEATURE_VALUE (INTO n

, feature_id

mining_attribute_clause)

OVER (mining_analytic_clause)

Chapter 7
FEATURE_VALUE

7-140

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions " for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

FEATURE_VALUE returns a feature value for each row in the selection. The value refers to the
highest value feature or to the specified feature_id. The feature value is returned as
BINARY_DOUBLE.

Syntax Choice

FEATURE_VALUE can score the data in one of two ways: It can apply a mining model object to
the data, or it can dynamically mine the data by executing an analytic clause that builds and
applies one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax — Use the first syntax to score the data with a pre-defined model. Supply the
name of a feature extraction model.

• Analytic Syntax — Use the analytic syntax to score the data without a pre-defined
model. Include INTO n, where n is the number of features to extract, and
mining_analytic_clause, which specifies if the data should be partitioned for multiple
model builds. The mining_analytic_clause supports a query_partition_clause and an
order_by_clause. (See "analytic_clause::=".)

The syntax of the FEATURE_VALUE function can use an optional GROUPING hint when scoring a
partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring.
When the function is invoked with the analytic syntax, this data is also used for building the

Chapter 7
FEATURE_VALUE

7-141

transient models. The mining_attribute_clause behaves as described for the
PREDICTION function. (See "mining_attribute_clause::=".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about feature
extraction.

Note:

The following example is excerpted from the Oracle Machine Learning for
SQL sample programs. For more information about the sample programs,
see Appendix A in Oracle Machine Learning for SQL User’s Guide.

Example

The following example lists the customers that correspond to feature 3, ordered by
match quality.

SELECT *
 FROM (SELECT cust_id, FEATURE_VALUE(nmf_sh_sample, 3 USING *) match_quality
 FROM nmf_sh_sample_apply_prepared
 ORDER BY match_quality DESC)
 WHERE ROWNUM < 11;

 CUST_ID MATCH_QUALITY
---------- -------------
 100210 19.4101627
 100962 15.2482251
 101151 14.5685197
 101499 14.4186292
 100363 14.4037396
 100372 14.3335148
 100982 14.1716545
 101039 14.1079914
 100759 14.0913761
 100953 14.0799737

Chapter 7
FEATURE_VALUE

7-142

FIRST
Syntax

first::=

aggregate_function KEEP

(DENSE_RANK FIRST ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

OVER (

query_partition_clause

)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions of the
ORDER BY clause and OVER clause

Purpose

FIRST and LAST are very similar functions. Both are aggregate and analytic functions that
operate on a set of values from a set of rows that rank as the FIRST or LAST with respect to a
given sorting specification. If only one row ranks as FIRST or LAST, then the aggregate
operates on the set with only one element.

If you omit the OVER clause, then the FIRST and LAST functions are treated as aggregate
functions. You can use these functions as analytic functions by specifying the OVER clause.
The query_partition_clause is the only part of the OVER clause valid with these functions. If
you include the OVER clause but omit the query_partition_clause, then the function is
treated as an analytic function, but the window defined for analysis is the entire table.

These functions take as an argument any numeric data type or any nonnumeric data type
that can be implicitly converted to a numeric data type. The function returns the same data
type as the numeric data type of the argument.

When you need a value from the first or last row of a sorted group, but the needed value is
not the sort key, the FIRST and LAST functions eliminate the need for self-joins or views and
enable better performance.

• The aggregate_function argument is any one of the MIN, MAX, SUM, AVG, COUNT,
VARIANCE, or STDDEV functions. It operates on values from the rows that rank either FIRST
or LAST. If only one row ranks as FIRST or LAST, then the aggregate operates on a
singleton (nonaggregate) set.

Chapter 7
FIRST

7-143

• The KEEP keyword is for semantic clarity. It qualifies aggregate_function,
indicating that only the FIRST or LAST values of aggregate_function will be
returned.

• DENSE_RANK FIRST or DENSE_RANK LAST indicates that Oracle Database will
aggregate over only those rows with the minimum (FIRST) or the maximum (LAST)
dense rank (also called olympic rank).

See Also:

Table 2-8 for more information on implicit conversion and LAST

Aggregate Example

The following example returns, within each department of the sample table
hr.employees, the minimum salary among the employees who make the lowest
commission and the maximum salary among the employees who make the highest
commission:

SELECT department_id,
 MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct) "Worst",
 MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct) "Best"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

DEPARTMENT_ID Worst Best
------------- ---------- ----------
 10 4400 4400
 20 6000 13000
 30 2500 11000
 40 6500 6500
 50 2100 8200
 60 4200 9000
 70 10000 10000
 80 6100 14000
 90 17000 24000
 100 6900 12008
 110 8300 12008
 7000 7000

Analytic Example

The next example makes the same calculation as the previous example but returns
the result for each employee within the department:

SELECT last_name, department_id, salary,
 MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct)
 OVER (PARTITION BY department_id) "Worst",
 MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct)
 OVER (PARTITION BY department_id) "Best"
 FROM employees
 ORDER BY department_id, salary, last_name;

LAST_NAME DEPARTMENT_ID SALARY Worst Best
------------------- ------------- ---------- ---------- ----------
Whalen 10 4400 4400 4400

Chapter 7
FIRST

7-144

Fay 20 6000 6000 13000
Hartstein 20 13000 6000 13000
. . .
Gietz 110 8300 8300 12008
Higgins 110 12008 8300 12008
Grant 7000 7000 7000

FIRST_VALUE
Syntax

FIRST_VALUE

(expr)

RESPECT

IGNORE
NULLS

(expr

RESPECT

IGNORE
NULLS

)

OVER (analytic_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions,
including valid forms of expr

Purpose

FIRST_VALUE is an analytic function. It returns the first value in an ordered set of values. If the
first value in the set is null, then the function returns NULL unless you specify IGNORE NULLS.
This setting is useful for data densification.

Note:

The two forms of this syntax have the same behavior. The top branch is the ANSI
format, which Oracle recommends for ANSI compatibility.

{RESPECT | IGNORE} NULLS determines whether null values of expr are included in or eliminated
from the calculation. The default is RESPECT NULLS. If you specify IGNORE NULLS, then
FIRST_VALUE returns the first non-null value in the set, or NULL if all values are null. Refer to
"Using Partitioned Outer Joins: Examples" for an example of data densification.

You cannot nest analytic functions by using FIRST_VALUE or any other analytic function for
expr. However, you can use other built-in function expressions for expr. Refer to "About SQL
Expressions " for information on valid forms of expr.

Chapter 7
FIRST_VALUE

7-145

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of
FIRST_VALUE when it is a character value

Examples

The following example selects, for each employee in Department 90, the name of the
employee with the lowest salary.

SELECT employee_id, last_name, salary, hire_date,
 FIRST_VALUE(last_name)
 OVER (ORDER BY salary ASC ROWS UNBOUNDED PRECEDING) AS fv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE FV
----------- ------------------------- ---------- --------- -------
 102 De Haan 17000 13-JAN-01 De Haan
 101 Kochhar 17000 21-SEP-05 De Haan
 100 King 24000 17-JUN-03 De Haan

The example illustrates the nondeterministic nature of the FIRST_VALUE function.
Kochhar and DeHaan have the same salary, so are in adjacent rows. Kochhar appears
first because the rows returned by the subquery are ordered by hire_date. However, if
the rows returned by the subquery are ordered by hire_date in descending order, as
in the next example, then the function returns a different value:

SELECT employee_id, last_name, salary, hire_date,
 FIRST_VALUE(last_name)
 OVER (ORDER BY salary ASC ROWS UNBOUNDED PRECEDING) AS fv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER by hire_date DESC);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE FV
----------- ------------------------- ---------- --------- -------
 101 Kochhar 17000 21-SEP-05 Kochhar
 102 De Haan 17000 13-JAN-01 Kochhar
 100 King 24000 17-JUN-03 Kochhar

The following two examples show how to make the FIRST_VALUE function deterministic
by ordering on a unique key. By ordering within the function by both salary and the
unique key employee_id, you can ensure the same result regardless of the ordering in
the subquery.

SELECT employee_id, last_name, salary, hire_date,
 FIRST_VALUE(last_name)
 OVER (ORDER BY salary ASC, employee_id ROWS UNBOUNDED PRECEDING) AS fv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE FV

Chapter 7
FIRST_VALUE

7-146

----------- ------------------------- ---------- --------- -------
 101 Kochhar 17000 21-SEP-05 Kochhar
 102 De Haan 17000 13-JAN-01 Kochhar
 100 King 24000 17-JUN-03 Kochhar

SELECT employee_id, last_name, salary, hire_date,
 FIRST_VALUE(last_name)
 OVER (ORDER BY salary ASC, employee_id ROWS UNBOUNDED PRECEDING) AS fv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date DESC);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE FV
----------- ------------------------- ---------- --------- -------
 101 Kochhar 17000 21-SEP-05 Kochhar
 102 De Haan 17000 13-JAN-01 Kochhar
 100 King 24000 17-JUN-03 Kochhar

The following two examples show that the FIRST_VALUE function is deterministic when you
use a logical offset (RANGE instead of ROWS). When duplicates are found for the ORDER BY
expression, the FIRST_VALUE is the lowest value of expr:

SELECT employee_id, last_name, salary, hire_date,
 FIRST_VALUE(last_name)
 OVER (ORDER BY salary ASC RANGE UNBOUNDED PRECEDING) AS fv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE FV
----------- ------------------------- ---------- --------- -------
 102 De Haan 17000 13-JAN-01 De Haan
 101 Kochhar 17000 21-SEP-05 De Haan
 100 King 24000 17-JUN-03 De Haan

SELECT employee_id, last_name, salary, hire_date,
 FIRST_VALUE(last_name)
 OVER (ORDER BY salary ASC RANGE UNBOUNDED PRECEDING) AS fv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date DESC);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE FV
----------- ------------------------- ---------- --------- -------
 102 De Haan 17000 13-JAN-01 De Haan
 101 Kochhar 17000 21-SEP-05 De Haan
 100 King 24000 17-JUN-03 De Haan

FLOOR
Syntax

FLOOR (n)

Chapter 7
FLOOR

7-147

Purpose

FLOOR returns the largest integer equal to or less than n. The number n can always be
written as the sum of an integer k and a positive fraction f such that 0 <= f < 1 and n =
k + f. The value of FLOOR is the integer k. Thus, the value of FLOOR is n itself if and only
if n is precisely an integer.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. The function returns the
same data type as the numeric data type of the argument.

See Also:

Table 2-8 for more information on implicit conversion and CEIL

Examples

The following example returns the largest integer equal to or less than 15.7:

SELECT FLOOR(15.7) "Floor"
 FROM DUAL;

 Floor

 15

FROM_TZ
Syntax

FROM_TZ (timestamp_value , time_zone_value)

Purpose

FROM_TZ converts a timestamp value and a time zone to a TIMESTAMP WITH TIME ZONE
value. time_zone_value is a character string in the format 'TZH:TZM' or a character
expression that returns a string in TZR with optional TZD format.

Examples

The following example returns a timestamp value to TIMESTAMP WITH TIME ZONE:

SELECT FROM_TZ(TIMESTAMP '2000-03-28 08:00:00', '3:00')
 FROM DUAL;

FROM_TZ(TIMESTAMP'2000-03-2808:00:00','3:00')

28-MAR-00 08.00.000000000 AM +03:00

Chapter 7
FROM_TZ

7-148

GREATEST
Syntax

GREATEST (expr

,

)

Purpose

GREATEST returns the greatest of a list of one or more expressions. Oracle Database uses the
first expr to determine the return type. If the first expr is numeric, then Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining arguments
to that data type before the comparison, and returns that data type. If the first expr is not
numeric, then each expr after the first is implicitly converted to the data type of the first expr
before the comparison.

Oracle Database compares each expr using nonpadded comparison semantics. The
comparison is binary by default and is linguistic if the NLS_COMP parameter is set to
LINGUISTIC and the NLS_SORT parameter has a setting other than BINARY. Character
comparison is based on the numerical codes of the characters in the database character set
and is performed on whole strings treated as one sequence of bytes, rather than character by
character. If the value returned by this function is character data, then its data type is
VARCHAR2 if the first expr is a character data type and NVARCHAR2 if the first expr is a national
character data type.

See Also:

• "Data Type Comparison Rules " for more information on character comparison

• Table 2-8 for more information on implicit conversion and "Floating-Point
Numbers " for information on binary-float comparison semantics

• "LEAST ", which returns the least of a list of one or more expressions

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation GREATEST uses to compare
character values for expr, and for the collation derivation rules, which define the
collation assigned to the return value of this function when it is a character
value

Examples

The following statement selects the string with the greatest value:

SELECT GREATEST('HARRY', 'HARRIOT', 'HAROLD') "Greatest"
 FROM DUAL;

Greatest

HARRY

Chapter 7
GREATEST

7-149

In the following statement, the first argument is numeric. Oracle Database determines
that the argument with the highest numeric precedence is the second argument,
converts the remaining arguments to the data type of the second argument, and
returns the greatest value as that data type:

SELECT GREATEST (1, '3.925', '2.4') "Greatest"
 FROM DUAL;

Greatest

 3.925

GROUP_ID
Syntax

GROUP_ID ()

Purpose

GROUP_ID distinguishes duplicate groups resulting from a GROUP BY specification. It is
useful in filtering out duplicate groupings from the query result. It returns an Oracle
NUMBER to uniquely identify duplicate groups. This function is applicable only in a
SELECT statement that contains a GROUP BY clause.

If n duplicates exist for a particular grouping, then GROUP_ID returns numbers in the
range 0 to n-1.

Examples

The following example assigns the value 1 to the duplicate co.country_region
grouping from a query on the sample tables sh.countries and sh.sales:

SELECT co.country_region, co.country_subregion,
 SUM(s.amount_sold) "Revenue", GROUP_ID() g
 FROM sales s, customers c, countries co
 WHERE s.cust_id = c.cust_id
 AND c.country_id = co.country_id
 AND s.time_id = '1-JAN-00'
 AND co.country_region IN ('Americas', 'Europe')
 GROUP BY GROUPING SETS ((co.country_region, co.country_subregion),
 (co.country_region, co.country_subregion))
 ORDER BY co.country_region, co.country_subregion, "Revenue", g;

COUNTRY_REGION COUNTRY_SUBREGION Revenue G
-------------------- ------------------------------ ---------- ----------
Americas Northern America 944.6 0
Americas Northern America 944.6 1
Europe Western Europe 566.39 0
Europe Western Europe 566.39 1

To ensure that only rows with GROUP_ID < 1 are returned, add the following HAVING
clause to the end of the statement :

HAVING GROUP_ID() < 1

Chapter 7
GROUP_ID

7-150

GROUPING
Syntax

GROUPING (expr)

Purpose

GROUPING distinguishes superaggregate rows from regular grouped rows. GROUP BY extensions
such as ROLLUP and CUBE produce superaggregate rows where the set of all values is
represented by null. Using the GROUPING function, you can distinguish a null representing the
set of all values in a superaggregate row from a null in a regular row.

The expr in the GROUPING function must match one of the expressions in the GROUP BY clause.
The function returns a value of 1 if the value of expr in the row is a null representing the set
of all values. Otherwise, it returns zero. The data type of the value returned by the GROUPING
function is Oracle NUMBER. Refer to the SELECT group_by_clause for a discussion of these
terms.

Examples

In the following example, which uses the sample tables hr.departments and hr.employees, if
the GROUPING function returns 1 (indicating a superaggregate row rather than a regular row
from the table), then the string "All Jobs" appears in the "JOB" column instead of the null that
would otherwise appear:

SELECT
 DECODE(GROUPING(department_name), 1, 'ALL DEPARTMENTS', department_name)
 AS department,
 DECODE(GROUPING(job_id), 1, 'All Jobs', job_id) AS job,
 COUNT(*) "Total Empl",
 AVG(salary) * 12 "Average Sal"
 FROM employees e, departments d
 WHERE d.department_id = e.department_id
 GROUP BY ROLLUP (department_name, job_id)
 ORDER BY department, job;

DEPARTMENT JOB Total Empl Average Sal
------------------------------ ---------- ---------- -----------
ALL DEPARTMENTS All Jobs 106 77481.0566
Accounting AC_ACCOUNT 1 99600
Accounting AC_MGR 1 144096
Accounting All Jobs 2 121848
Administration AD_ASST 1 52800
Administration All Jobs 1 52800
Executive AD_PRES 1 288000
Executive AD_VP 2 204000
Executive All Jobs 3 232000
Finance All Jobs 6 103216
Finance FI_ACCOUNT 5 95040
. . .

Chapter 7
GROUPING

7-151

GROUPING_ID
Syntax

GROUPING_ID (expr

,

)

Purpose

GROUPING_ID returns a number corresponding to the GROUPING bit vector associated
with a row. GROUPING_ID is applicable only in a SELECT statement that contains a GROUP
BY extension, such as ROLLUP or CUBE, and a GROUPING function. In queries with many
GROUP BY expressions, determining the GROUP BY level of a particular row requires many
GROUPING functions, which leads to cumbersome SQL. GROUPING_ID is useful in these
cases.

GROUPING_ID is functionally equivalent to taking the results of multiple GROUPING
functions and concatenating them into a bit vector (a string of ones and zeros). By
using GROUPING_ID you can avoid the need for multiple GROUPING functions and make
row filtering conditions easier to express. Row filtering is easier with GROUPING_ID
because the desired rows can be identified with a single condition of GROUPING_ID = n.
The function is especially useful when storing multiple levels of aggregation in a single
table.

Examples

The following example shows how to extract grouping IDs from a query of the sample
table sh.sales:

SELECT channel_id, promo_id, sum(amount_sold) s_sales,
 GROUPING(channel_id) gc,
 GROUPING(promo_id) gp,
 GROUPING_ID(channel_id, promo_id) gcp,
 GROUPING_ID(promo_id, channel_id) gpc
 FROM sales
 WHERE promo_id > 496
 GROUP BY CUBE(channel_id, promo_id)
 ORDER BY channel_id, promo_id, s_sales, gc;

CHANNEL_ID PROMO_ID S_SALES GC GP GCP GPC
---------- ---------- ---------- ---------- ---------- ---------- ----------
 2 999 25797563.2 0 0 0 0
 2 25797563.2 0 1 1 2
 3 999 55336945.1 0 0 0 0
 3 55336945.1 0 1 1 2
 4 999 13370012.5 0 0 0 0
 4 13370012.5 0 1 1 2
 999 94504520.8 1 0 2 1
 94504520.8 1 1 3 3

Chapter 7
GROUPING_ID

7-152

HEXTORAW
Syntax

HEXTORAW (char)

Purpose

HEXTORAW converts char containing hexadecimal digits in the CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type to a raw value.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also:

"Data Type Comparison Rules " for more information.

Examples

The following example creates a simple table with a raw column, and inserts a hexadecimal
value that has been converted to RAW:

CREATE TABLE test (raw_col RAW(10));

INSERT INTO test VALUES (HEXTORAW('7D'));

The following example converts hexadecimal digits to a raw value and casts the raw value to
VARCHAR2:

SELECT UTL_RAW.CAST_TO_VARCHAR2(HEXTORAW('4041424344'))
 FROM DUAL;

UTL_RAW.CAST_TO_VARCHAR2(HEXTORAW('4041424344'))
--
@ABCD

See Also:

"RAW and LONG RAW Data Types " and RAWTOHEX

INITCAP
Syntax

INITCAP (char)

Chapter 7
HEXTORAW

7-153

Purpose

INITCAP returns char, with the first letter of each word in uppercase, all other letters in
lowercase. Words are delimited by white space or characters that are not
alphanumeric.

char can be of any of the data types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The return
value is the same data type as char. The database sets the case of the initial
characters based on the binary mapping defined for the underlying character set. For
linguistic-sensitive uppercase and lowercase, refer to NLS_INITCAP .

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also:

• "Data Type Comparison Rules " for more information.

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of INITCAP

Examples

The following example capitalizes each word in the string:

SELECT INITCAP('the soap') "Capitals"
 FROM DUAL;

Capitals

The Soap

INSTR

Syntax

INSTR

INSTRB

INSTRC

INSTR2

INSTR4

(string , substring

, position

, occurrence

)

Purpose

The INSTR functions search string for substring. The search operation is defined as
comparing the substring argument with substrings of string of the same length for
equality until a match is found or there are no more substrings left. Each consecutive

Chapter 7
INSTR

7-154

compared substring of string begins one character to the right (for forward searches) or one
character to the left (for backward searches) from the first character of the previous
compared substring. If a substring that is equal to substring is found, then the function
returns an integer indicating the position of the first character of this substring. If no such
substring is found, then the function returns zero.

• position is an nonzero integer indicating the character of string where Oracle
Database begins the search—that is, the position of the first character of the first
substring to compare with substring. If position is negative, then Oracle counts
backward from the end of string and then searches backward from the resulting
position.

• occurrence is an integer indicating which occurrence of substring in string Oracle
should search for. The value of occurrence must be positive. If occurrence is greater
than 1, then the database does not return on the first match but continues comparing
consecutive substrings of string, as described above, until match number occurrence
has been found.

INSTR accepts and returns positions in characters as defined by the input character set, with
the first character of string having position 1. INSTRB uses bytes instead of characters. INSTRC
uses Unicode complete characters. INSTR2 uses UCS2 code points. INSTR4 uses UCS4 code
points.

string can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The
exceptions are INSTRC, INSTR2, and INSTR4, which do not allow string to be a CLOB or NCLOB.

substring can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB.

The value returned is of NUMBER data type.

Both position and occurrence must be of data type NUMBER, or any data type that can be
implicitly converted to NUMBER, and must resolve to an integer. The default values of both
position and occurrence are 1, meaning Oracle begins searching at the first character of
string for the first occurrence of substring. The return value is relative to the beginning of
string, regardless of the value of position.

See Also:

• Oracle Database Globalization Support Guide for more on character length.

• Oracle Database SecureFiles and Large Objects Developer's Guide for more
on character length.

• Table 2-8 for more information on implicit conversion

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation the INSTR functions use to
compare the substring argument with substrings of string

Examples

The following example searches the string CORPORATE FLOOR, beginning with the third
character, for the string "OR". It returns the position in CORPORATE FLOOR at which the second
occurrence of "OR" begins:

Chapter 7
INSTR

7-155

SELECT INSTR('CORPORATE FLOOR','OR', 3, 2) "Instring"
 FROM DUAL;

 Instring

 14

In the next example, Oracle counts backward from the last character to the third
character from the end, which is the first O in FLOOR. Oracle then searches backward
for the second occurrence of OR, and finds that this second occurrence begins with the
second character in the search string :

SELECT INSTR('CORPORATE FLOOR','OR', -3, 2) "Reversed Instring"
 FROM DUAL;

Reversed Instring

 2

The next example assumes a double-byte database character set.

SELECT INSTRB('CORPORATE FLOOR','OR',5,2) "Instring in bytes"
 FROM DUAL;

Instring in bytes

 27

ITERATION_NUMBER
Syntax

ITERATION_NUMBER

Purpose

The ITERATION_NUMBER function can be used only in the model_clause of the SELECT
statement and then only when ITERATE(number) is specified in the
model_rules_clause. It returns an integer representing the completed iteration
through the model rules. The ITERATION_NUMBER function returns 0 during the first
iteration. For each subsequent iteration, the ITERATION_NUMBER function returns the
equivalent of iteration_number plus one.

See Also:

model_clause and "Model Expressions" for the syntax and semantics

Examples

The following example assigns the sales of the Mouse Pad for the years 1998 and
1999 to the sales of the Mouse Pad for the years 2001 and 2002 respectively:

Chapter 7
ITERATION_NUMBER

7-156

SELECT country, prod, year, s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER ITERATE(2)
 (
 s['Mouse Pad', 2001 + ITERATION_NUMBER] =
 s['Mouse Pad', 1998 + ITERATION_NUMBER]
)
 ORDER BY country, prod, year;

COUNTRY PROD YEAR S
---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3000.72
France Mouse Pad 2001 2509.42
France Mouse Pad 2002 3678.69
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 2164.54
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 7375.46
Germany Mouse Pad 2001 5827.87
Germany Mouse Pad 2002 8346.44
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 6456.13

18 rows selected.

The preceding example requires the view sales_view_ref. Refer to "The MODEL clause:
Examples" to create this view.

JSON_ARRAY
Syntax

JSON_ARRAY (JSON_ARRAY_content)

JSON [JSON_ARRAY_content]

JSON_ARRAY_content

Chapter 7
JSON_ARRAY

7-157

JSON_ARRAY_element

,

JSON_on_null_clause

JSON_returning_clause STRICT

JSON_ARRAY_element

expr

format_clause

JSON_on_null_clause::=

NULL

ABSENT

ON NULL

JSON_returning_clause::=

RETURNING

VARCHAR2

(size

BYTE

CHAR

) WITH TYPENAME

CLOB

BLOB

JSON

Purpose

The SQL/JSON function JSON_ARRAY takes as its input a sequence of SQL scalar
expressions or one collection type instance, VARRAY or NESTED TABLE.

It converts each expression to a JSON value, and returns a JSON array that contains
those JSON values.

If an ADT has a member which is a collection than the type mapping creates a JSON
object for the ADT with a nested JSON array for the collection member.

If a collection contains ADT instances then the type mapping will create a JSON array
of JSON objects.

JSON_ARRAY_content

Use this clause to define the input to the JSON_ARRAY function.

Chapter 7
JSON_ARRAY

7-158

JSON_ARRAY_element

• expr
For expr, you can specify any SQL expression that evaluates to a JSON object, a JSON
array, a numeric literal, a text literal, date, timestamp, or null. This function converts a
numeric literal to a JSON number value, and a text literal to a JSON string value. The
date and timestamp data types are printed in the generated JSON object or array as
JSON Strings following the ISO 8601 date format.

• format_clause
You can specify FORMAT JSON to indicate that the input string is JSON, and will therefore
not be quoted in the output.

JSON_on_null_clause

Use this clause to specify the behavior of this function when expr evaluates to null.

• NULL ON NULL - If you specify this clause, then the function returns the JSON null value.

• ABSENT ON NULL - If you specify this clause, then the function omits the value from the
JSON array. This is the default.

JSON_returning_clause

Use this clause to specify the type of return value. One of :

• VARCHAR2 specifying the size as a number of bytes or characters. The default is bytes. If
you omit this clause, or specify the clause without specifying the size value, then
JSON_ARRAY returns a character string of type VARCHAR2(4000). Refer to VARCHAR2 Data
Type for more information. Note that when specifying the VARCHAR2 data type elsewhere
in SQL, you are required to specify a size. However, in the JSON_returning_clause you
can omit the size.

• CLOB to return a character large object containing single-byte or multi-byte characters.

• BLOB to return a binary large object of the AL32UTF8 character set.

STRICT

Specify the STRICT clause to verify that the output of the JSON generation function is correct
JSON. If the check fails, a syntax error is raised.

Refer to JSON_OBJECT for examples.

Examples

The following example constructs a JSON array from a JSON object, a JSON array, a
numeric literal, a text literal, and null:

SELECT JSON_ARRAY (
 JSON_OBJECT('percentage' VALUE .50),
 JSON_ARRAY(1,2,3),
 100,
 'California',
 null
 NULL ON NULL
) "JSON Array Example"
 FROM DUAL;

Chapter 7
JSON_ARRAY

7-159

JSON Array Example
--
[{"percentage":0.5},[1,2,3],100,"California",null]

JSON_ARRAYAGG
Syntax

JSON_ARRAYAGG (expr

FORMAT JSON order_by_clause JSON_on_null_clause

JSON_returning_clause STRICT

)

(See order_by_clause::= in the documentation on SELECT for the syntax of this clause)

JSON_on_null_clause::=

NULL

ABSENT

ON NULL

JSON_returning_clause::=

RETURNING

VARCHAR2

(size

BYTE

CHAR

) WITH TYPENAME

CLOB

BLOB

JSON

Purpose

The SQL/JSON function JSON_ARRAYAGG is an aggregate function. It takes as its input a
column of SQL expressions, converts each expression to a JSON value, and returns a
single JSON array that contains those JSON values.

expr

For expr, you can specify any SQL expression that evaluates to a JSON object, a
JSON array, a numeric literal, a text literal, or null. This function converts a numeric
literal to a JSON number value and a text literal to a JSON string value.

Chapter 7
JSON_ARRAYAGG

7-160

FORMAT JSON

Use this optional clause to indicate that the input string is JSON, and will therefore not be
quoted in the output.

order_by_clause

This clause allows you to order the JSON values within the JSON array returned by the
statement. Refer to the order_by_clause in the documentation on SELECT for the full
semantics of this clause.

JSON_on_null_clause

Use this clause to specify the behavior of this function when expr evaluates to null.

• NULL ON NULL - If you specify this clause, then the function returns the JSON null value.

• ABSENT ON NULL - If you specify this clause, then the function omits the value from the
JSON array. This is the default.

JSON_returning_clause

Use this clause to specify the data type of the character string returned by this function. You
can specify the following data types:

• VARCHAR2[(size [BYTE,CHAR])]
When specifying the VARCHAR2 data type elsewhere in SQL, you are required to specify a
size. However, in this clause you can omit the size.

• CLOB to return a character large object containing single-byte or multi-byte characters.

• BLOB to return a binary large object of the AL32UTF8 character set.

• JSON to return JSON data.

You must set the database initialization parameter compatible to 20 or greater to use the
JSON type.

If you omit this clause, or if you specify VARCHAR2 but omit the size value, then
JSON_ARRAYAGG returns a character string of type VARCHAR2(4000).

Refer to "Data Types " for more information on the preceding data types.

STRICT

Specify the STRICT clause to verify that the output of the JSON generation function is correct
JSON. If the check fails, a syntax error is raised.

Refer to JSON_OBJECT for examples.

WITH UNIQUE KEYS

Specify WITH UNIQUE KEYS to guarantee that generated JSON objects have unique keys.

Chapter 7
JSON_ARRAYAGG

7-161

Examples

The following statements creates a table id_table, which contains ID numbers:

CREATE TABLE id_table (id NUMBER);
INSERT INTO id_table VALUES(624);
INSERT INTO id_table VALUES(null);
INSERT INTO id_table VALUES(925);
INSERT INTO id_table VALUES(585);

The following example constructs a JSON array from the ID numbers in table
id_table:

SELECT JSON_ARRAYAGG(id ORDER BY id RETURNING VARCHAR2(100)) ID_NUMBERS
 FROM id_table;

ID_NUMBERS

[585,624,925]

JSON_DATAGUIDE
Syntax

JSON_DATAGUIDE (expr

, format

, flag

)

Purpose

The aggregate function JSON_DATAGUIDE computes the data guide of a set of JSON
data. The data guide is returned as a CLOB which can be in either flat or hierarchical
format depending on the passing format parameter.

expr

expr is a SQL expression that evaluates to a JSON object or a JSON array. It can also
be a JSON column in a table.

format options

Use the format options to specify the format of the data guide that will be returned. It
must be one of the following values:

• dbms_json.format_flat for a flat format.

• dbms_json.format_hierarchical for a hierarchical format.

If the parameter is the absent, the default is dbms_json.format_flat.

flag options

flag can have the following values:

Chapter 7
JSON_DATAGUIDE

7-162

• Specify DBMS_JSON.PRETTY to improve readability of the returned data guide with
appropriate indentation.

• Specify DBMS_JSON.GEOJSON for the data guide to auto detect the GeoJSON type. The
corresponding view column created by the data guide will be of sdo_geometry type.

• Specify DBMS_JSON.GATHER_STATS for the data guide to collect statistical information. The
data guide report generated with DBMS_JSON.GATHER_STATS has a new field
o:sample_size, in addition to all of the other statistical fields that you get with
DBMS_JSON.get_index_dataguide .

• All three values DBMS_JSON.PRETTY, DBMS_JSON.GEOJSON, and DBMS_JSON.GATHER_STATS
can be combined with a plus sign. For example, DBMS_JSON.GEOJSON+DBMS_JSON.PRETTY,
or DBMS_JSON.GEOJSON+DBMS_JSON.PRETTY+DBMS_JSON.GATHER_STATS.

See Also:

JSON Data Guide

Examples

The following example uses the j_purchaseorder table, which is created in "Creating a Table
That Contains a JSON Document: Example". This table contains a column of JSON data
called po_document. This example returns a flat data guide for each year group.

SELECT EXTRACT(YEAR FROM date_loaded) YEAR,
 JSON_DATAGUIDE(po_document) "DATA GUIDE"
 FROM j_purchaseorder
 GROUP BY extract(YEAR FROM date_loaded)
 ORDER BY extract(YEAR FROM date_loaded) DESC;

YEAR DATA GUIDE
---- --
2016 [
 {
 "o:path" : "$.PO_ID",
 "type" : "number",
 "o:length" : 4
 },
 {
 "o:path" : "$.PO_Ref",
 "type" : "string",
 "o:length" : 16
 },
 {
 "o:path" : "$.PO_Items",
 "type" : "array",
 "o:length" : 64
 },
 {
 "o:path" : "$.PO_Items.Part_No",
 "type" : "number",
 "o:length" : 16
 },
 {
 "o:path" : "$.PO_Items.Item_Quantity",

Chapter 7
JSON_DATAGUIDE

7-163

 "type" : "number",
 "o:length" : 2
 }
]
. . .

JSON_MERGEPATCH
Syntax

JSON_MERGEPATCH (JSON_target_expr , JSON_patch_expr

JSON_returning_clause

PRETTY ASCII TRUNCATE JSON_on_error_clause

)

JSON_returning_clause::=

RETURNING

VARCHAR2

(size

BYTE

CHAR

) WITH TYPENAME

CLOB

BLOB

JSON

json_on_error_clause::=

ERROR

NULL

ON ERROR

Purpose

You can use the JSON_MERGEPATCH function to update specific portions of a JSON
document. You pass it a JSON Merge Patch document in JSON_patch_expr, which
specifies the changes to make to a specified JSON document, the JSON_target_expr.

JSON_MERGEPATCH evaluates the patch document against the target document to
produce the result document. If the target or the patch document is NULL, then the
result is also NULL.

You can input any SQL datatype that supports JSON data: JSON, VARCHAR2, CLOB, or
BLOB. The function returns any of the SQL datatypes as output.

Data type JSON is available only if database initialization parameter compatible is 20 or
greater.

Chapter 7
JSON_MERGEPATCH

7-164

The default return type depends on the input data type. If the input type is JSON, then JSON is
also the default return type. Otherwise, VARCHAR2 is the default return type.

The JSON_returning_clause specifies the return type of the operator. The default return type
is VARCHAR2(4000).

The PRETTY keyword specifies that the result should be formatted for human readability.

The ASCII keyword specifies that non-ASCII characters should be output using JSON escape
sequences.

The TRUNCATE keyword specifies that the result document should be truncated to fit in the
specified return type.

The JSON_on_error_clause optionally controls the handling of errors that occur during the
processing of the target and patch documents.

• NULL ON ERROR - Returns null when an error occurs. This is the default.

• ERROR ON ERROR - Returns the appropriate Oracle error when an error occurs.

See Also:

• RFC 7396 JSON Merge Patch

• Updating a JSON Document with JSON Merge Patch

JSON_OBJECT
Syntax

JSON_OBJECT (JSON_OBJECT_content)

JSON { JSON_OBJECT_content }

json_object_content::=

*

entry

,

JSON_on_null_clause JSON_returning_clause

STRICT WITH UNIQUE KEYS

entry::=

Chapter 7
JSON_OBJECT

7-165

https://tools.ietf.org/html/rfc7396

regular_entry

format_clause

wildcard

regular_entry::=

KEY

string VALUE expr

expr

: expr

column

format_clause::=

FORMAT JSON

wildcard::=

id .

id . *

JSON_on_null_clause::=

NULL

ABSENT

ON NULL

JSON_returning_clause::=

RETURNING

VARCHAR2

(size

BYTE

CHAR

) WITH TYPENAME

CLOB

BLOB

JSON

Chapter 7
JSON_OBJECT

7-166

Purpose

The SQL/JSON function JSON_OBJECT takes as its input either a sequence of key-value pairs
or one object type instance. A collection type cannot be passed to JSON_OBJECT.

It returns a JSON object that contains an object member for each of those key-value pairs.

entry

regular_entry: Use this clause to specify a property key-value pair.

regular_entry

• KEY is optional and is provided for semantic clarity.

• Use the optional expr to specify the property key name as a case-sensitive text literal.

• Use expr to specify the property value. For expr, you can specify any expression that
evaluates to a SQL numeric literal, text literal, date, or timestamp. The date and
timestamp data types are printed in the generated JSON object or array as JSON strings
following the ISO date format. If expr evaluates to a numeric literal, then the resulting
property value is a JSON number value; otherwise, the resulting property value is a case-
sensitive JSON string value enclosed in double quotation marks.

You can use the colon to separate JSON_OBJECT entries.

Example

SELECT JSON_OBJECT(
'name' : first_name || ' ' || last_name,
'email' : email,
'phone' : phone_number,
'hire_date' : hire_date
)
FROM employees
WHERE employee_id = 140;

format_clause

Specify FORMAT JSON after an input expression to declare that the value that results from it
represents JSON data, and will therefore not be quoted in the output.

wildcard

Wildcard entries select multiple columns and can take the form of *, table.*, view.*, or
t_alias.*. Use wildcard entries to map all the columns from a table, subquery, or view to a
JSON object without explicitly naming all of the columns in the query. In this case wildcard
entries are used in the same way that they are used directly in a select_list.

Example 1

In the resulting JSON object, the key names are equal to the names of the corresponding
columns.

SELECT JSON_OBJECT(*)
FROM employees
WHERE employee_id = 140;

Chapter 7
JSON_OBJECT

7-167

Output 1

{"EMPLOYEE_ID":140,"FIRST_NAME":"Joshua","LAST_NAME":"Patel","EMAIL":"J
PAT
EL","PHONE_NUMBER":"650.121.1834","HIRE_DATE":"2006-04-
06T00:00:00","JOB_ID":"ST_CLERK","SALARY":2500,"COMMISSION_PCT":null,"M
AN
AGER_ID":123,"DEPARTMENT_ID":50}

Example 2

This query selects columns from a specific table in a join query.

SELECT JSON_OBJECT('NAME' VALUE first_name, d.*)
FROM employees e, departments d
WHERE e.department_id = d.department_id
AND e.employee_id =140

Example 3

This query converts the departments table to a single JSON array value.

SELECT JSON_ARRAYAGG(JSON_OBJECT(*))
FROM departments

JSON_on_null_clause

Use this clause to specify the behavior of this function when expr evaluates to null.

• NULL ON NULL - When NULL ON NULL is specified, then a JSON NULL value is
used as a value for the given key.

SELECT JSON_OBJECT('key1' VALUE NULL) evaluates to {"key1" :
 null}

• ABSENT ON NULL - If you specify this clause, then the function omits the property
key-value pair from the JSON object.

JSON_returning_clause

Use this clause to specify the type of return value. One of :

• VARCHAR2 specifying the size as a number of bytes or characters. The default is
bytes. If you omit this clause, or specify the clause without specifying the size
value, then JSON_ARRAY returns a character string of type VARCHAR2(4000). Refer
to VARCHAR2 Data Type for more information. Note that when specifying the
VARCHAR2 data type elsewhere in SQL, you are required to specify a size.
However, in the JSON_returning_clause you can omit the size.

• CLOB to return a character large object containing single-byte or multi-byte
characters.

• BLOB to return a binary large object of the AL32UTF8 character set.

• WITH TYPENAME

Chapter 7
JSON_OBJECT

7-168

STRICT

Specify the STRICT clause to verify that the output of the JSON generation function is correct
JSON. If the check fails, a syntax error is raised.

Example 1: Output string appears within quotes, because FORMAT JSON is not used

SELECT JSON_OBJECT ('name' value 'Foo') FROM DUAL
Output:
JSON_OBJECT('NAME'VALUE'FOO'FORMATJSON)

{"name":"Foo"}

Example 2: No quotes around output string when FORMAT JSON is used.

SELECT JSON_OBJECT ('name' value 'Foo' FORMAT JSON) FROM DUAL
Output:
JSON_OBJECT('NAME'VALUE'FOO'FORMATJSON)

{"name":Foo}

Example 3: JSON Syntax error when FORMAT JSON STRICT is used.

SELECT JSON_OBJECT ('name' value 'Foo' FORMAT JSON STRICT) FROM DUAL
Output:
ORA-40441: JSON syntax error

WITH UNIQUE KEYS

Specify WITH UNIQUE KEYS to guarantee that generated JSON objects have unique keys.

Example

The following example returns JSON objects that each contain two property key-value pairs:

SELECT JSON_OBJECT (
 KEY 'deptno' VALUE d.department_id,
 KEY 'deptname' VALUE d.department_name
) "Department Objects"
 FROM departments d
 ORDER BY d.department_id;

Department Objects
--
{"deptno":10,"deptname":"Administration"}
{"deptno":20,"deptname":"Marketing"}
{"deptno":30,"deptname":"Purchasing"}
{"deptno":40,"deptname":"Human Resources"}
{"deptno":50,"deptname":"Shipping"}
. . .

Chapter 7
JSON_OBJECT

7-169

JSON_OBJECT Column Entries

In some cases you might want to have JSON object key names match the names of
the table columns to avoid repeating the column name in the key value expression.
For example:

SELECT JSON_OBJECT(
'first_name' VALUE first_name,
'last_name' VALUE last_name,
'email' VALUE email,
'hire_date' VALUE hire_date
)
FROM employees
WHERE employee_id = 140;

{"first_name":"Joshua","last_name":"Patel","email":"JPATEL","hire_date"
:"2006-04-
06T00:00:00"}

In such cases you can use a shortcut, where a single column value may be specified
as input and the corresponding object entry key is inferred from the name of the
column. For example:

SELECT JSON_OBJECT(first_name, last_name, email, hire_date)
FROM employees
WHERE employee_id = 140;

{"first_name":"Joshua","last_name":"Patel","email":"JPATEL","hire_date"
:"2006-04-
06T00:00:00"}

You can use quoted or non-quoted identifiers for column names. If you use non-quoted
identifiers, then the case-sensitive value of the identifier, as written in the query, is
used to generate the corresponding object key value. However for the purpose of
referencing the column value, the identifier is still case-insensitive. For example:

SELECT JSON_OBJECT(eMail)
FROM employees
WHERE employee_id = 140

{"eMail":"JPATEL"}

Notice that the capital 'M' as typed in the column name is preserved.

See Also:

Generation of JSON Data Using SQL

Chapter 7
JSON_OBJECT

7-170

JSON_OBJECTAGG
Syntax

JSON_OBJECTAGG (

KEY

key_expr VALUE val_expr

JSON_on_null_clause

JSON_returning_clause STRICT WITH UNIQUE KEYS

)

JSON_on_null_clause::=

NULL

ABSENT

ON NULL

JSON_returning_clause::=

RETURNING

VARCHAR2

(size

BYTE

CHAR

) WITH TYPENAME

CLOB

BLOB

JSON

Purpose

The SQL/JSON function JSON_OBJECTAGG is an aggregate function. It takes as its input a
property key-value pair. Typically, the property key, the property value, or both are columns of
SQL expressions. This function constructs an object member for each key-value pair and
returns a single JSON object that contains those object members.

[KEY] string VALUE expr

Use this clause to specify property key-value pairs.

• KEY is optional and is provided for semantic clarity.

• Use string to specify the property key name as a case-sensitive text literal.

• Use expr to specify the property value. For expr, you can specify any expression that
evaluates to a SQL numeric literal, text literal, date, or timestamp. The date and
timestamp data types are printed in the generated JSON object or array as JSON Strings
following the ISO 8601 date format. If expr evaluates to a numeric literal, then the

Chapter 7
JSON_OBJECTAGG

7-171

resulting property value is a JSON number value; otherwise, the resulting property
value is a case-sensitive JSON string value enclosed in double quotation marks.

FORMAT JSON

Use this optional clause to indicate that the input string is JSON, and will therefore not
be quoted in the output.

JSON_on_null_clause

Use this clause to specify the behavior of this function when expr evaluates to null.

• NULL ON NULL - When NULL ON NULL is specified, then a JSON NULL value is
used as a value for the given key.

• ABSENT ON NULL - If you specify this clause, then the function omits the property
key-value pair from the JSON object.

JSON_returning_clause

Use this clause to specify the data type of the character string returned by this
function. You can specify the following data types:

• VARCHAR2[(size [BYTE,CHAR])]
When specifying the VARCHAR2 data type elsewhere in SQL, you are required to
specify a size. However, in this clause you can omit the size.

• CLOB to return a character large object containing single-byte or multi-byte
characters.

• BLOB to return a binary large object of the AL32UTF8 character set.

• JSON to return JSON data.

You must set the database initialization parameter compatible to 20 or greater to
use the JSON data type.

If you omit this clause, or if you specify VARCHAR2 but omit the size value, then
JSON_OBJECTAGG returns a character string of type VARCHAR2(4000).

Refer to "Data Types " for more information on the preceding data types.

STRICT

Specify the STRICT clause to verify that the output of the JSON generation function is
correct JSON. If the check fails, a syntax error is raised.

Refer to JSON_OBJECT for examples.

WITH UNIQUE KEYS

Specify WITH UNIQUE KEYS to guarantee that generated JSON objects have unique
keys.

Examples

The following example constructs a JSON object whose members contain department
names and department numbers:

SELECT JSON_OBJECTAGG(KEY department_name VALUE department_id) "Department
Numbers"

Chapter 7
JSON_OBJECTAGG

7-172

 FROM departments
 WHERE department_id <= 30;

Department Numbers
--
{"Administration":10,"Marketing":20,"Purchasing":30}

JSON_QUERY
Syntax

JSON_QUERY (expr

FORMAT JSON

, JSON_basic_path_expression

JSON_query_returning_clause JSON_query_wrapper_clause

JSON_query_on_error_clause JSON_query_on_empty_clause

JSON_query_on_mismatch_clause

)

(JSON_basic_path_expression: See Oracle Database JSON Developer's Guide)

JSON_query_returning_clause::=

RETURNING JSON_query_return_type

ALLOW

DISALLOW
SCALARS

PRETTY ASCII

JSON_query_return_type::=

VARCHAR2

(size

BYTE

CHAR

)

CLOB

BLOB

JSON

Chapter 7
JSON_QUERY

7-173

JSON_query_wrapper_clause::=

WITHOUT

ARRAY

WRAPPER

WITH

UNCONDITIONAL

CONDITIONAL ARRAY

WRAPPER

JSON_query_on_error_clause::=

ERROR

NULL

EMPTY

EMPTY ARRAY

EMPTY OBJECT

ON ERROR

JSON_query_on_empty_clause::=

ERROR

NULL

EMPTY

EMPTY ARRAY

EMPTY OBJECT

ON EMPTY

JSON_query_on_mismatch_clause::=

ERROR

NULL

ON MISMATCH

Purpose

JSON_QUERY selects and returns one or more values from JSON data and returns those
values. You can use JSON_QUERY to retrieve fragments of a JSON document.

Chapter 7
JSON_QUERY

7-174

See Also:

• Query JSON Data

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character value
returned by JSON_QUERY

expr

Use expr to specify the JSON data you want to query.

expr is a SQL expression that returns an instance of a SQL data type, one of JSON, VARCHAR2,
CLOB, or BLOB. It can be a table or view column value, a PL/SQLvariable, or a bind variable
with proper casting.

If expr is null, then the function returns null.

If expr is not a text literal of well-formed JSON data using strict or lax syntax, then the
function returns null by default. You can use the JSON_query_on_error_clause to override
this default behavior. Refer to JSON_query_on_error_clause.

FORMAT JSON

You must specify FORMAT JSON if expr is a column of data type BLOB.

JSON_basic_path_expression

Use this clause to specify a SQL/JSON path expression. The function uses the path
expression to evaluate expr and find one or more JSON values that match, or satisfy the path
expression. The path expression must be a text literal. See Oracle Database JSON
Developer's Guide for the full semantics of JSON_basic_path_expression.

JSON_query_returning_clause

Use this clause to specify the data type and format of the character string returned by this
function.

RETURNING

You can use the RETURNING clause to specify the data type of the returned instance, one of
JSON, VARCHAR2, CLOB, or BLOB.

The default return type depends on the input data type. If the input type is JSON, then JSON is
also the default return type. Otherwise VARCHAR2(4000) is the default return type.

When specifying the VARCHAR2 data type elsewhere in SQL, you are required to specify a
size. However, in this clause you can omit the size. In this case, JSON_QUERY returns a
character string of type VARCHAR2(4000).

Refer to "VARCHAR2 Data Type " for more information.

If the data type is not large enough to hold the return character string, then JSON_QUERY
returns null by default. You can use the JSON_query_on_error_clause to override this default
behavior. Refer to the JSON_query_on_error_clause.

Chapter 7
JSON_QUERY

7-175

PRETTY

Specify PRETTY to pretty-print the return character string by inserting newline
characters and indenting.

ASCII

Specify ASCII to automatically escape any non-ASCII Unicode characters in the return
character string, using standard ASCII Unicode escape sequences.

JSON_query_wrapper_clause

Use this clause to control whether this function wraps the values matched by the path
expression in an array wrapper—that is, encloses the sequence of values in square
brackets ([]).

• Specify WITHOUT WRAPPER to omit the array wrapper. You can specify this clause
only if the path expression matches a single JSON object or JSON array. This is
the default.

• Specify WITH WRAPPER to include the array wrapper. You must specify this clause if
the path expression matches a single scalar value (a value that is not a JSON
object or JSON array) or multiple values of any type.

• Specifying the WITH UNCONDITIONAL WRAPPER clause is equivalent to specifying the
WITH WRAPPER clause. The UNCONDITIONAL keyword is provided for semantic clarity.

• Specify WITH CONDITIONAL WRAPPER to include the array wrapper only if the path
expression matches a single scalar value or multiple values of any type. If the path
expression matches a single JSON object or JSON array, then the array wrapper
is omitted.

The ARRAY keyword is optional and is provided for semantic clarity.

If the function returns a single scalar value, or multiple values of any type, and you do
not specify WITH [UNCONDITIONAL | CONDITIONAL] WRAPPER, then the function returns
null by default. You can use the JSON_query_on_error_clause to override this default
behavior. Refer to the JSON_query_on_error_clause.

JSON_query_on_error_clause

Use this clause to specify the value returned by this function when the following errors
occur:

• expr is not well-formed JSON data using strict or lax JSON syntax

• No match is found when the JSON data is evaluated using the SQL/JSON path
expression. You can override the behavior for this type of error by specifying the
JSON_query_on_empty_clause.

• The return value data type is not large enough to hold the return character string

• The function matches a single scalar value or, multiple values of any type, and the
WITH [UNCONDITIONAL | CONDITIONAL] WRAPPER clause is not specified

You can specify the following clauses:

• NULL ON ERROR - Returns null when an error occurs. This is the default.

• ERROR ON ERROR - Returns the appropriate Oracle error when an error occurs.

Chapter 7
JSON_QUERY

7-176

• EMPTY ON ERROR - Specifying this clause is equivalent to specifying EMPTY ARRAY ON ERROR.

• EMPTY ARRAY ON ERROR - Returns an empty JSON array ([]) when an error occurs.

• EMPTY OBJECT ON ERROR - Returns an empty JSON object ({}) when an error occurs.

JSON_query_on_empty_clause

Use this clause to specify the value returned by this function if no match is found when the
JSON data is evaluated using the SQL/JSON path expression. This clause allows you to
specify a different outcome for this type of error than the outcome specified with the
JSON_query_on_error_clause.

You can specify the following clauses:

• NULL ON EMPTY - Returns null when no match is found.

• ERROR ON EMPTY - Returns the appropriate Oracle error when no match is found.

• EMPTY ON EMPTY - Specifying this clause is equivalent to specifying EMPTY ARRAY ON EMPTY.

• EMPTY ARRAY ON EMPTY - Returns an empty JSON array ([]) when no match is found.

• EMPTY OBJECT ON EMPTY - Returns an empty JSON object ({}) when no match is found.

If you omit this clause, then the JSON_query_on_error_clause determines the value returned
when no match is found.

Examples

The following query returns the context item, or the specified string of JSON data. The path
expression matches a single JSON object, which does not require an array wrapper. Note
that the JSON data is converted to strict JSON syntax in the returned value—that is, the
object property names are enclosed in double quotation marks.

SELECT JSON_QUERY('{a:100, b:200, c:300}', '$') AS value
 FROM DUAL;

VALUE
--
{"a":100,"b":200,"c":300}

The following query returns the value of the member with property name a. The path
expression matches a scalar value, which must be enclosed in an array wrapper. Therefore,
the WITH WRAPPER clause is specified.

SELECT JSON_QUERY('{a:100, b:200, c:300}', '$.a' WITH WRAPPER) AS value
 FROM DUAL;

VALUE
--
[100]

The following query returns the values of all object members. The path expression matches
multiple values, which together must be enclosed in an array wrapper. Therefore, the WITH
WRAPPER clause is specified.

SELECT JSON_QUERY('{a:100, b:200, c:300}', '$.*' WITH WRAPPER) AS value
 FROM DUAL;

VALUE

Chapter 7
JSON_QUERY

7-177

--
[100,200,300]

The following query returns the context item, or the specified string of JSON data. The
path expression matches a single JSON array, which does not require an array
wrapper.

SELECT JSON_QUERY('[0,1,2,3,4]', '$') AS value
 FROM DUAL;

VALUE
--
[0,1,2,3,4]

The following query is similar to the previous query, except the WITH WRAPPER clause is
specified. Therefore, the JSON array is wrapped in an array wrapper.

SELECT JSON_QUERY('[0,1,2,3,4]', '$' WITH WRAPPER) AS value
 FROM DUAL;

VALUE
--
[[0,1,2,3,4]]

The following query returns all elements in a JSON array. The path expression
matches multiple values, which together must be enclosed in an array wrapper.
Therefore, the WITH WRAPPER clause is specified.

SELECT JSON_QUERY('[0,1,2,3,4]', '$[*]' WITH WRAPPER) AS value
 FROM DUAL;

VALUE
--
[0,1,2,3,4]

The following query returns the elements at indexes 0, 3 through 5, and 7 in a JSON
array. The path expression matches multiple values, which together must be enclosed
in an array wrapper. Therefore, the WITH WRAPPER clause is specified.

SELECT JSON_QUERY('[0,1,2,3,4,5,6,7,8]', '$[0, 3 to 5, 7]' WITH WRAPPER) AS value
 FROM DUAL;

VALUE
--
[0,3,4,5,7]

The following query returns the fourth element in a JSON array. The path expression
matches a scalar value, which must be enclosed in an array wrapper. Therefore, the
WITH WRAPPER clause is specified.

SELECT JSON_QUERY('[0,1,2,3,4]', '$[3]' WITH WRAPPER) AS value
 FROM DUAL;

VALUE
--
[3]

The following query returns the first element in a JSON array. The WITH CONDITIONAL
WRAPPER clause is specified and the path expression matches a single JSON object.
Therefore, the value returned is not wrapped in an array. Note that the JSON data is

Chapter 7
JSON_QUERY

7-178

converted to strict JSON syntax in the returned value—that is, the object property name is
enclosed in double quotation marks.

SELECT JSON_QUERY('[{a:100},{b:200},{c:300}]', '$[0]'
 WITH CONDITIONAL WRAPPER) AS value
 FROM DUAL;

VALUE
--
{"a":100}

The following query returns all elements in a JSON array. The WITH CONDITIONAL WRAPPER
clause is specified and the path expression matches multiple JSON objects. Therefore, the
value returned is wrapped in an array.

SELECT JSON_QUERY('[{"a":100},{"b":200},{"c":300}]', '$[*]'
 WITH CONDITIONAL WRAPPER) AS value
 FROM DUAL;

VALUE
--
[{"a":100},{"b":200},{"c":300}]

The following query is similar to the previous query, except that the value returned is of data
type VARCHAR2(100).

SELECT JSON_QUERY('[{"a":100},{"b":200},{"c":300}]', '$[*]'
 RETURNING VARCHAR2(100) WITH CONDITIONAL WRAPPER) AS value
 FROM DUAL;

VALUE
--
[{"a":100},{"b":200},{"c":300}]

The following query returns the fourth element in a JSON array. However, the supplied JSON
array does not contain a fourth element, which results in an error. The EMPTY ON ERROR clause
is specified. Therefore, the query returns an empty JSON array.

SELECT JSON_QUERY('[{"a":100},{"b":200},{"c":300}]', '$[3]'
 EMPTY ON ERROR) AS value
 FROM DUAL;

VALUE
--
[]

JSON_SCALAR
Syntax

JSON_SCALAR (expr

SQL

JSON NULL ON NULL

)

Chapter 7
JSON_SCALAR

7-179

Purpose

JSON_SCALAR accepts a SQL scalar value as input and returns a corresponding JSON
scalar value as a JSON type instance. In particular, the value can be of an Oracle-
specific JSON-language type, such as a date, which is not part of the JSON standard.

The argument to JSON_SCALAR can be an instance of any of these SQL data types:
VARCHAR2, RAW, CLOB, BLOB, DATE, TIMESTAMP, INTERVAL YEAR TO MONTH, INTERVAL DAY
TO SECOND, NUMBER, BINARY_DOUBLE, or BINARY_FLOAT.

The returned JSON type instance is a JSON-language scalar value supported by
Oracle.

You can use the JSON_SCALAR function, only if the database initialization parameter
compatible is at least 20. Otherwise it raises an error.

See Also:

• See Oracle SQL Function JSON_SCALAR

JSON_SERIALIZE
Syntax

json_serialize

JSON_SERIALIZE (expr

JSON_returning_clause PRETTY

ASCII TRUNCATE

NULL

ERROR

EMPTY
ARRAY

OBJECT

ON ERROR

)

Purpose

json_serialize takes JSON data of any SQL data type (JSON, VARCHAR2, CLOB, or
BLOB) as input and returns a textual representation of it. You typically use it to
transform the result of a query.

You can use json_serialize to convert binary JSON data to textual form (CLOB or
VARCHAR2), or to transform textual JSON data by pretty-printing it or escaping non-
ASCII Unicode characters in it.

Chapter 7
JSON_SERIALIZE

7-180

expr

expr is the input expression. Can be any one of type JSON, VARCHAR2, CLOB, or BLOB.

JSON_returning_clause::=

You can use the JSON_returning_clause to specify the return type of the function. One of
VARCHAR2, CLOB, or BLOB.

The default return type is VARCHAR2(4000).

If the return type is RAW or BLOB, it contains UTF8 encoded JSON text.

PRETTY

Specify PRETTY if you want the result to be formatted for human readability.

ASCII

Specify ASCII if you want non-ASCII characters to be output using JSON escape sequences.

TRUNCATE

Specify TRUNCATE, if you want the textual output in the result document to fit into the buffer of
the specified return type .

JSON_on_error_clause::=

Specify JSON_on_error_clause to control the handling of processing errors.

ERROR ON ERROR is the default.

EMPTY ON ERROR is not supported.

If you specify TRUNCATE with JSON_on_error_clause, then a value too large for the return type
will be truncated to fit into the buffer instead of raising an error.

Example

SELECT JSON_SERIALIZE ('{a:[1,2,3,4]}' RETURNING VARCHAR2(3) TRUNCATE ERROR ON ERROR)
from dual
–-------
{"a

See Also:

Oracle SQL Function JSON_SERIALIZE

Chapter 7
JSON_SERIALIZE

7-181

JSON_TABLE
Syntax

JSON_TABLE (expr

FORMAT JSON , JSON_basic_path_expression

JSON_table_on_error_clause

JSON_columns_clause)

(JSON_basic_path_expression: See Oracle Database JSON Developer's Guide,
JSON_table_on_error_clause::=, JSON_columns_clause::=)

JSON_table_on_error_clause::=

ERROR

NULL

ON ERROR

JSON_table_on_empty_clause::=

ERROR

NULL

ON EMPTY

JSON_columns_clause::=

COLUMNS (TRUNCATE JSON_column_definition

,

)

JSON_column_definition::=

JSON_exists_column

JSON_query_column

JSON_value_column

JSON_nested_path

ordinality_column

Chapter 7
JSON_TABLE

7-182

JSON_exists_column::=

column_name

JSON_value_return_type

EXISTS

PATH JSON_path

JSON_exists_on_error_clause JSON_exists_on_empty_clause

(JSON_value_return_type::=—part of JSON_VALUE, JSON_basic_path_expression: See
Oracle Database JSON Developer's Guide, JSON_exists_on_error_clause::=—part of
JSON_EXISTS)

JSON_query_column::=

column_name

JSON_query_return_type FORMAT JSON

ALLOW

DISALLOW
SCALARS

JSON_query_wrapper_clause

PATH JSON_path JSON_query_on_error_clause

(JSON_query_return_type::=, JSON_query_wrapper_clause::=, and
JSON_query_on_error_clause::=—part of JSON_QUERY, JSON_basic_path_expression: See
Oracle Database JSON Developer's Guide)

JSON_value_column::=

column_name

JSON_value_return_type TRUNCATE PATH JSON_path

JSON_value_on_error_clause JSON_value_on_empty_clause JSON_value_on_mismatch_clause

(JSON_value_return_type::= and JSON_value_on_error_clause::=—part of JSON_VALUE,
JSON_basic_path_expression: See Oracle Database JSON Developer's Guide)

JSON_nested_path::=

NESTED

PATH

JSON_path JSON_columns_clause

Chapter 7
JSON_TABLE

7-183

(JSON_basic_path_expression: See Oracle Database JSON Developer's Guide,
JSON_columns_clause::=)

ordinality_column::=

column_name FOR ORDINALITY

JSON_path ::=

JSON_basic_path_expression

JSON_relative_object_access

JSON_relative_object_access ::=

JSON_object_key

array_step

. JSON_object_key

array_step

nested_clause ::=

table_reference NESTED

PATH

identifier

. JSON_object_key

array_step

, JSON_basic_path_expression

JSON_table_on_error_clause JSON_table_on_empty_clause

JSON_columns_clause

Purpose

The SQL/JSON function JSON_TABLE creates a relational view of JSON data. It maps
the result of a JSON data evaluation into relational rows and columns. You can query
the result returned by the function as a virtual relational table using SQL. The main
purpose of JSON_TABLE is to create a row of relational data for each object inside a
JSON array and output JSON values from within that object as individual SQL column
values.

You must specify JSON_TABLE only in the FROM clause of a SELECT statement. The
function first applies a path expression, called a SQL/JSON row path expression, to
the supplied JSON data. The JSON value that matches the row path expression is
called a row source in that it generates a row of relational data. The COLUMNS clause
evaluates the row source, finds specific JSON values within the row source, and
returns those JSON values as SQL values in individual columns of a row of relational
data.

Chapter 7
JSON_TABLE

7-184

The COLUMNS clause enables you to search for JSON values in different ways by using the
following clauses:

• JSON_exists_column - Evaluates JSON data in the same manner as the JSON_EXISTS
condition, that is, determines if a specified JSON value exists, and returns either a
VARCHAR2 column of values 'true' or 'false', or a NUMBER column of values 1 or 0.

• JSON_query_column - Evaluates JSON data in the same manner as the JSON_QUERY
function, that is, finds one or more specified JSON values, and returns a column of
character strings that contain those JSON values.

• JSON_value_column - Evaluates JSON data in the same manner as the JSON_VALUE
function, that is, finds a specified scalar JSON value, and returns a column of those
JSON values as SQL values.

• JSON_nested_path - Allows you to flatten JSON values in a nested JSON object or JSON
array into individual columns in a single row along with JSON values from the parent
object or array. You can use this clause recursively to project data from multiple layers of
nested objects or arrays into a single row.

• ordinality_column - Returns a column of generated row numbers.

The column definition clauses allow you to specify a name for each column of data that they
return. You can reference these column names elsewhere in the SELECT statement, such as
in the SELECT list and the WHERE clause.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to each character data type
column in the table generated by JSON_TABLE

expr

Use this clause to specify the JSON data to be evaluated. For expr, specify an expression
that evaluates to a text literal. If expr is a column, then the column must be of data type
VARCHAR2, CLOB, or BLOB. If expr is null, then the function returns null.

If expr is not a text literal of well-formed JSON data using strict or lax syntax, then the
function returns null by default. You can use the JSON_table_on_error_clause to override
this default behavior. Refer to JSON_table_on_error_clause.

FORMAT JSON

You must specify FORMAT JSON if expr is a column of data type BLOB.

PATH

Use the PATH clause to delineate a portion of the row that you want to use as the column
content. The absence of the PATH clause does not change the behavior with a path
of '$.<column-name>', where <column-name> is the column name. The name of the object
field that is targeted is taken implicitly as the column name. See Oracle Database JSON
Developer's Guide for the full semantics of PATH.

Chapter 7
JSON_TABLE

7-185

JSON_basic_path_expression

The JSON_basic_path_expression is a text literal. See Oracle Database JSON
Developer's Guide for the full semantics of this clause.

JSON_relative_object_access

Specify this row path expression to enable simple dot notation. The value of
JSON_relative_object_access is evaluated as a JSON/Path expression relative to the
current row item.

For more information on the JSON_object_key clause, refer to JSON Object Access
Expressions .

JSON_table_on_error_clause

Use this clause to specify the value returned by the function when errors occur:

• NULL ON ERROR

– If the input is not well-formed JSON text, no more rows will be returned as soon
as the error is detected. Note that since JSON_TABLE supports streaming
evaluation, rows may be returned prior to encountering the portion of the input
with the error.

– If no match is found when the row path expression is evaluated, no rows are
returned.

– Sets the default error behavior for all column expressions to NULL ON ERROR

• ERROR ON ERROR

– If the input is not well-formed JSON text, an error will be raised.

– If no match is found when the row path expression is evaluated, an error will
be raised

– Sets the default error behavior for all column expressions to ERROR ON ERROR

JSON_table_on_empty_clause

Use this clause to specify the value returned by this function if no match is found when
the JSON data is evaluated using the SQL/JSON path expression. This clause allows
you to specify a different outcome for this type of error than the outcome specified with
the JSON_table_on_error_clause.

You can specify the following clauses:

• NULL ON EMPTY - Returns null when no match is found.

• ERROR ON EMPTY - Returns the appropriate Oracle error when no match is found.

• DEFAULT literal ON EMPTY - Returns literal when no match is found. The data
type of literal must match the data type of the value returned by this function.

If you omit this clause, then the JSON_table_on_error_clause determines the value
returned when no match is found.

Chapter 7
JSON_TABLE

7-186

JSON_columns_clause

Use the COLUMNS clause to define the columns in the virtual relational table returned by the
JSON_TABLE function.

Specify TRUNCATE if the column has JSON_VALUE semantics.

JSON_exists_column

This clause evaluates JSON data in the same manner as the JSON_EXISTS condition, that is,
it determines if a specified JSON value exists. It returns either a VARCHAR2 column of values
'true' or 'false', or a NUMBER column of values 1 or 0.

A value of 'true' or 1 indicates that the JSON value exists and a value of 'false' or 0
indicates that the JSON value does not exist.

You can use the JSON_value_return_type clause to control the data type of the returned
column. If you omit this clause, then the data type is VARCHAR2(4000). Use column_name to
specify the name of the returned column. The rest of the clauses of JSON_exists_column
have the same semantics here as they have for the JSON_EXISTS condition. For full
information on these clauses, refer to "JSON_EXISTS Condition". Also see "Using
JSON_exists_column: Examples" for an example.

JSON_query_column

This clause evaluates JSON data in the same manner as the JSON_QUERY function, that is, it
finds one or more specified JSON values, and returns a column of character strings that
contain those JSON values.

Use column_name to specify the name of the returned column. The rest of the clauses of
JSON_query_column have the same semantics here as they have for the JSON_QUERY function.
For full information on these clauses, refer to JSON_QUERY. Also see "Using
JSON_query_column: Examples" for an example.

JSON_value_column

This clause evaluates JSON data in the same manner as the JSON_VALUE function, that is, it
finds a specified scalar JSON value, and returns a column of those JSON values as SQL
values.

Use column_name to specify the name of the returned column. The rest of the clauses of
JSON_value_column have the same semantics here as they have for the JSON_VALUE function.
For full information on these clauses, refer to JSON_VALUE. Also see "Using
JSON_value_column: Examples" for an example.

JSON_nested_path

Use this clause to flatten JSON values in a nested JSON object or JSON array into individual
columns in a single row along with JSON values from the parent object or array. You can use
this clause recursively to project data from multiple layers of nested objects or arrays into a
single row.

Specify the JSON_basic_path_expression clause to match the nested object or array. This
path expression is relative to the SQL/JSON row path expression specified in the JSON_TABLE
function.

Chapter 7
JSON_TABLE

7-187

Use the COLUMNS clause to define the columns of the nested object or array to be
returned. This clause is recursive—you can specify the JSON_nested_path clause
within another JSON_nested_path clause. Also see "Using JSON_nested_path:
Examples" for an example.

ordinality_column

This clause returns a column of generated row numbers of data type NUMBER. You can
specify at most one ordinality_column. Also see "Using JSON_value_column:
Examples" for an example of using the ordinality_column clause.

nested_clause

Use the nested_clause as a short-hand syntax for mapping JSON values to relational
columns. It reuses the syntax of the JSON_TABLE columns clause and is essentially
equivalent to a left-outer ANSI join with JSON_TABLE.

Example 1 using the nested_clause is equivalent to Example 2 using the left-outer join
with JSON_TABLE .

Example 1 Nested_Clause

SELECT t.*
FROM j_purchaseOrder
NESTED po_document COLUMNS(PONumber, Reference, Requestor) t;
PONUMBER REFERENCE REQUESTOR
--------------- ------------------------------

1600 ABULL-20140421 Alexis Bull

Example 2 Left-Outer Join With JSON_TABLE

SELECT t.*
FROM j_purchaseOrder LEFT OUTER JOIN
JSON_TABLE(po_document COLUMNS(PONumber, Reference, Requestor)) t ON
1=1;

When using the nested_clause, the JSON column name following the NESTED keyword
will not be included in SELECT * expansion. For example:

SELECT *
FROM j_purchaseOrder
NESTED po_document.LineItems[*]
COLUMNS(ItemNumber, Quantity NUMBER);
ID DATE_LOADED ITEMN QUANTITY
------------------------ --
------- -----------
6C5589E9A9156… 16-MAY-18 08.40.30.397688 AM -07:00 1 9
6C5589E9A9156… 16-MAY-18 08.40.30.397688 AM -07:00 2 5

The result does not include the JSON column name po_document as one of the
columns in the result.

Chapter 7
JSON_TABLE

7-188

When unnesting JSON column data, the recommendation is to use LEFT OUTER JOIN
semantics, so that JSON columns that produce no rows will not filter other non-JSON data
from the result. For example,a j_purchaseOrder row with a NULL po_document column will
not filter the possibly non-null relational columns id and date_loaded from the result.

The columns clause supports all the same features defined for JSON_TABLE including nested
columns. For example:

SELECT t.*
FROM j_purchaseorder
NESTED po_document COLUMNS(PONumber, Reference,
NESTED LineItems[*] COLUMNS(ItemNumber, Quantity)
) t
PONUMBER REFERENCE ITEMN QUANTITY
--------------- ------------------------------ ----- ------------
1600 ABULL-20140421 1 9
1600 ABULL-20140421 2 5

Examples

Creating a Table That Contains a JSON Document: Example

This example shows how to create and populate table j_purchaseorder, which is used in the
rest of the JSON_TABLE examples in this section.

The following statement creates table j_purchaseorder. Column po_document is for storing
JSON data and, therefore, has an IS JSON check constraint to ensure that only well-formed
JSON is stored in the column.

CREATE TABLE j_purchaseorder
 (id RAW (16) NOT NULL,
 date_loaded TIMESTAMP(6) WITH TIME ZONE,
 po_document CLOB CONSTRAINT ensure_json CHECK (po_document IS JSON));

The following statement inserts one row, or one JSON document, into table
j_purchaseorder:

INSERT INTO j_purchaseorder
 VALUES (
 SYS_GUID(),
 SYSTIMESTAMP,
 '{"PONumber" : 1600,
 "Reference" : "ABULL-20140421",
 "Requestor" : "Alexis Bull",
 "User" : "ABULL",
 "CostCenter" : "A50",
 "ShippingInstructions" : {"name" : "Alexis Bull",
 "Address": {"street" : "200 Sporting Green",
 "city" : "South San Francisco",
 "state" : "CA",
 "zipCode" : 99236,
 "country" : "United States of America"},
 "Phone" : [{"type" : "Office", "number" : "909-555-7307"},
 {"type" : "Mobile", "number" : "415-555-1234"}]},
 "Special Instructions" : null,
 "AllowPartialShipment" : true,
 "LineItems" : [{"ItemNumber" : 1,
 "Part" : {"Description" : "One Magic Christmas",

Chapter 7
JSON_TABLE

7-189

 "UnitPrice" : 19.95,
 "UPCCode" : 13131092899},
 "Quantity" : 9.0},
 {"ItemNumber" : 2,
 "Part" : {"Description" : "Lethal Weapon",
 "UnitPrice" : 19.95,
 "UPCCode" : 85391628927},
 "Quantity" : 5.0}]}');

Using JSON_query_column: Examples

The statement in this example queries JSON data for a specific JSON property using
the JSON_query_column clause, and returns the property value in a column.

The statement first applies a SQL/JSON row path expression to column po_document,
which results in a match to the ShippingInstructions property. The COLUMNS clause
then uses the JSON_query_column clause to return the Phone property value in a
VARCHAR2(100) column.

SELECT jt.phones
FROM j_purchaseorder,
JSON_TABLE(po_document, '$.ShippingInstructions'
COLUMNS
 (phones VARCHAR2(100) FORMAT JSON PATH '$.Phone')) AS jt;

PHONES

[{"type":"Office","number":"909-555-7307"},{"type":"Mobile","number":"415-555-1234"}]

Using JSON_value_column: Examples

The statement in this example refines the statement in the previous example by
querying JSON data for specific JSON values using the JSON_value_column clause,
and returns the JSON values as SQL values in relational rows and columns.

The statement first applies a SQL/JSON row path expression to column po_document,
which results in a match to the elements in the JSON array Phone. These elements are
JSON objects that contain two members named type and number. The statement uses
the COLUMNS clause to return the type value for each object in a VARCHAR2(10) column
called phone_type, and the number value for each object in a VARCHAR2(20) column
called phone_num. The statement also returns an ordinal column named row_number.

SELECT jt.*
FROM j_purchaseorder,
JSON_TABLE(po_document, '$.ShippingInstructions.Phone[*]'
COLUMNS (row_number FOR ORDINALITY,
 phone_type VARCHAR2(10) PATH '$.type',
 phone_num VARCHAR2(20) PATH '$.number'))
AS jt;

ROW_NUMBER PHONE_TYPE PHONE_NUM
---------- ---------- --------------------
 1 Office 909-555-7307
 2 Mobile 415-555-1234

Using JSON_exists_column: Examples

The statements in this example test whether a JSON value exists in JSON data using
the JSON_exists_column clause. The first example returns the result of the test as a

Chapter 7
JSON_TABLE

7-190

'true' or 'false' value in a column. The second example uses the result of the test in the
WHERE clause.

The following statement first applies a SQL/JSON row path expression to column
po_document, which results in a match to the entire context item, or JSON document. It then
uses the COLUMNS clause to return the requestor's name and a string value of 'true' or 'false'
indicating whether the JSON data for that requestor contains a zip code. The COLUMNS clause
first uses the JSON_value_column clause to return the Requestor value in a VARCHAR2(32)
column called requestor. It then uses the JSON_exists_column clause to determine if the
zipCode object exists and returns the result in a VARCHAR2(5) column called has_zip.

SELECT requestor, has_zip
FROM j_purchaseorder,
JSON_TABLE(po_document, '$'
COLUMNS
 (requestor VARCHAR2(32) PATH '$.Requestor',
 has_zip VARCHAR2(5) EXISTS PATH '$.ShippingInstructions.Address.zipCode'));

REQUESTOR HAS_ZIP
-------------------------------- -------
Alexis Bull true

The following statement is similar to the previous statement, except that it uses the value of
has_zip in the WHERE clause to determine whether to return the Requestor value:

SELECT requestor
FROM j_purchaseorder,
JSON_TABLE(po_document, '$'
COLUMNS
 (requestor VARCHAR2(32) PATH '$.Requestor',
 has_zip VARCHAR2(5) EXISTS PATH '$.ShippingInstructions.Address.zipCode'))
WHERE (has_zip = 'true');

REQUESTOR

Alexis Bull

Using JSON_nested_path: Examples

The following two simple statements demonstrate the functionality of the JSON_nested_path
clause. They operate on a simple JSON array that contains three elements. The first two
elements are numbers. The third element is a nested JSON array that contains two string
value elements.

The following statement does not use the JSON_nested_path clause. It returns the three
elements in the array in a single row. The nested array is returned in its entirety.

SELECT *
FROM JSON_TABLE('[1,2,["a","b"]]', '$'
COLUMNS (outer_value_0 NUMBER PATH '$[0]',
 outer_value_1 NUMBER PATH '$[1]',
 outer_value_2 VARCHAR2(20) FORMAT JSON PATH '$[2]'));

OUTER_VALUE_0 OUTER_VALUE_1 OUTER_VALUE_2
------------- ------------- --------------------
 1 2 ["a","b"]

Chapter 7
JSON_TABLE

7-191

The following statement is different from the previous statement because it uses the
JSON_nested_path clause to return the individual elements of the nested array in
individual columns in a single row along with the parent array elements.

SELECT *
FROM JSON_TABLE('[1,2,["a","b"]]', '$'
COLUMNS (outer_value_0 NUMBER PATH '$[0]',
 outer_value_1 NUMBER PATH '$[1]',
 NESTED PATH '$[2]'
 COLUMNS (nested_value_0 VARCHAR2(1) PATH '$[0]',
 nested_value_1 VARCHAR2(1) PATH '$[1]')));

OUTER_VALUE_0 OUTER_VALUE_1 NESTED_VALUE_0 NESTED_VALUE_1
------------- ------------- -------------- --------------
 1 2 a b

The previous example shows how to use JSON_nested_path with a nested JSON
array. The following example shows how to use the JSON_nested_path clause with a
nested JSON object by returning the individual elements of the nested object in
individual columns in a single row along with the parent object elements.

SELECT *
FROM JSON_TABLE('{a:100, b:200, c:{d:300, e:400}}', '$'
COLUMNS (outer_value_0 NUMBER PATH '$.a',
 outer_value_1 NUMBER PATH '$.b',
 NESTED PATH '$.c'
 COLUMNS (nested_value_0 NUMBER PATH '$.d',
 nested_value_1 NUMBER PATH '$.e')));

OUTER_VALUE_0 OUTER_VALUE_1 NESTED_VALUE_0 NESTED_VALUE_1
------------- ------------- -------------- --------------
 100 200 300 400

The following statement uses the JSON_nested_path clause when querying the
j_purchaseorder table. It first applies a row path expression to column po_document,
which results in a match to the entire context item, or JSON document. It then uses the
COLUMNS clause to return the Requestor value in a VARCHAR2(32) column called
requestor. It then uses the JSON_nested_path clause to return the property values of
the individual objects in each member of the nested Phone array. Note that a row is
generated for each member of the nested array, and each row contains the
corresponding Requestor value.

SELECT jt.*
FROM j_purchaseorder,
JSON_TABLE(po_document, '$'
COLUMNS
 (requestor VARCHAR2(32) PATH '$.Requestor',
 NESTED PATH '$.ShippingInstructions.Phone[*]'
 COLUMNS (phone_type VARCHAR2(32) PATH '$.type',
 phone_num VARCHAR2(20) PATH '$.number')))
AS jt;

REQUESTOR PHONE_TYPE PHONE_NUM
-------------------- -------------------- ---------------
Alexis Bull Office 909-555-7307
Alexis Bull Mobile 415-555-1234

Chapter 7
JSON_TABLE

7-192

The following example shows the use of simple dot-notation in JSON_nested_path and its
equivalent without dot notation.

SELECT c.*
FROM customer t,
JSON_TABLE(t.json COLUMNS(
id, name, phone, address,
NESTED orders[*] COLUMNS(
updated, status,
NESTED lineitems[*] COLUMNS(
description, quantity NUMBER, price NUMBER
)
)
)) c;

The above statement in dot notation is equivalent to the following one without dot notation:

SELECT c.*
FROM customer t,
JSON_TABLE(t.json, '$' COLUMNS(
id PATH '$.id',
name PATH '$.name',
phone PATH '$.phone',
address PATH '$.address',
NESTED PATH '$.orders[*]' COLUMNS(
updated PATH '$.updated',
status PATH '$.status',
NESTED PATH '$.lineitems[*]' COLUMNS(
description PATH '$.description',
quantity NUMBER PATH '$.quantity',
price NUMBER PATH '$.price'
)
)
)) c;

JSON_TRANSFORM
Syntax

JSON_TRANSFORM (input_expr , operation

,

)

JSON_TRANSFORM_returning_clause JSON_passing_clause

JSON_TRANSFORM_returning_clause::=

Chapter 7
JSON_TRANSFORM

7-193

JSON_passing_clause::=

For details on JSON_passing_clause see JSON_EXISTS Condition.

operation ::=

removeOp

insertOp

replaceOp

appendOp

setOp

renameOp

keepOp

removeOp ::=

REMOVE pathExp

IGNORE

ERROR
ON MISSING

insertOp ::=

INSERT pathExpr = rhsExpr

REPLACE

IGNORE

ERROR

ON EXISTING

NULL

IGNORE

ERROR

REMOVE

ON NULL

replaceOp ::=

Chapter 7
JSON_TRANSFORM

7-194

REPLACE pathExpr = rhsExpr

CREATE

IGNORE

ERROR

ON MISSING

NULL

IGNORE

ERROR

REMOVE

ON NULL

rhsExpr ::=

sqlExpr

FORMAT JSON

appendOp ::=

APPEND pathExpr = rhsExpr

CREATE

IGNORE

ERROR

ON MISSING

NULL

IGNORE

ERROR

ON NULL

setOp ::=

SET pathExpr = rhsExpr

IGNORE

ERROR

REPLACE

ON EXISTING

CREATE

IGNORE

ERROR

ON MISSING

NULL

IGNORE

ERROR

ON NULL

Chapter 7
JSON_TRANSFORM

7-195

renameOp ::=

RENAME pathExpr WITH stringLiteral

IGNORE

ERROR
ON MISSING

keepOp ::=

KEEP pathExpr

IGNORE

ERROR
ON MISSING

,

Purpose

You can use the JSON_TRANSFORM function to change input JSON data (or pieces of
JSON data), by specifying one or more modifying operations that perform changes to
the JSON data. You will get the modified JSON as output.

The input to the function is a SQL expression that contains a JSON value. For
example, the input can be a JSON type instance, a VARCHAR2 column with or without an
IS JSON check constraint, or a function call returning JSON data.

Examples

Example 1 : Update a JSON Column with a Timestamp

UPDATE t SET jcol = JSON_TRANSFORM(jcol, SET '$.lastUpdated' = SYSTIMESTAMP)

Example 2 : Remove a Social Security Number before Shipping JSON to a Client

SELECT JSON_TRANSFORM (jcol, REMOVE '$.ssn') FROM t WHERE …

JSON_TRANSFORM_returning_clause

If the input data is JSON, then the output data type is also JSON. For all other input
types, the default output data type is VARCHAR2(4000).

For a fuller discussion of JSON_TRANSFORM with examples, see Oracle SQL Function
JSON_TRANSFORM.

Chapter 7
JSON_TRANSFORM

7-196

JSON_VALUE
Syntax

JSON_VALUE (expr

FORMAT JSON

,

JSON_basic_path_expression

JSON_value_returning_clause JSON_value_on_error_clause

JSON_value_on_empty_clause JSON_value_on_mismatch_clause

)

JSON_basic_path_expression::=

(JSON_basic_path_expression: See SQL/JSON Path Expressions)

JSON_value_returning_clause::=

RETURNING JSON_value_return_type

ASCII

JSON_value_return_type::=

VARCHAR2

(size

BYTE

CHAR

) TRUNCATE

CLOB

NUMBER

(precision

, scale

)

ALLOW

DISALLOW

BOOLEAN

TO NUMBER

CONVERSION

DATE

TRUNCATE

PRESERVE
TIME

TIMESTAMP

WITH TIMEZONE

SDO_GEOMETRY

JSON_value_return_object_instance

Chapter 7
JSON_VALUE

7-197

JSON_value_return_object_instance ::=

object_type_name

JSON_value_mapper_clause

JSON_value_mapper_clause ::=

USING CASE_SENSITIVE MAPPING

JSON_value_on_error_clause::=

ERROR

NULL

DEFAULT literal

ON ERROR

JSON_value_on_empty_clause::=

ERROR

NULL

DEFAULT literal

ON EMPTY

JSON_value_on_mismatch_clause::=

IGNORE

ERROR

NULL

ON MISMATCH

(

MISSING DATA

EXTRA DATA

TYPE ERROR

,

)

Purpose

The SQL/JSON function JSON_VALUE finds a specified scalar JSON value in JSON data
and returns it as a SQL value.

Chapter 7
JSON_VALUE

7-198

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the value returned by this
function when it is a character value

expr

Use this clause to specify the JSON data to be evaluated. For expr, specify an expression
that evaluates to a text literal. If expr is a column, then the column must be of data type
VARCHAR2, CLOB, or BLOB. If expr is null, then the function returns null.

If expr is not a text literal of well-formed JSON data using strict or lax syntax, then the
function returns null by default. You can use the JSON_value_on_error_clause to override
this default behavior. Refer to the JSON_value_on_error_clause.

FORMAT JSON

You must specify FORMAT JSON if expr is a column of data type BLOB.

JSON_basic_path_expression

Use this clause to specify a SQL/JSON path expression. The function uses the path
expression to evaluate expr and find a scalar JSON value that matches, or satisfies, the path
expression. The path expression must be a text literal. See Oracle Database JSON
Developer's Guide for the full semantics of JSON_basic_path_expression.

JSON_value_returning_clause

Use this clause to specify the data type and format of the value returned by this function.

RETURNING

Use the RETURNING clause to specify the data type of the return value. If you omit this clause,
then JSON_VALUE returns a value of type VARCHAR2(4000).

JSON_value_return_type ::=

You can use JSON_value_return_type to specify the following data types:

• VARCHAR2[(size [BYTE,CHAR])]
If you specify this data type, then the scalar value returned by this function can be a
character or number value. A number value will be implicitly converted to a VARCHAR2.
When specifying the VARCHAR2 data type elsewhere in SQL, you are required to specify a
size. However, in this clause you can omit the size. In this case, JSON_VALUE returns a
value of type VARCHAR2(4000).

Specify the optional TRUNCATE clause immediately after VARCHAR2(N) to truncate the
return value to N characters, if the return value is greater than N characters.

Notes on the TRUNCATE clause :

– If the string value is too long, then ORA-40478 is raised.

Chapter 7
JSON_VALUE

7-199

– If TRUNCATE is present, and the return value is not a character type, then a
compile time error is raised.

– If TRUNCATE is present with FORMAT JSON, then the return value may contain
data that is not syntactically correct JSON.

– TRUNCATE does not work with EXISTS.

• CLOB
Specify this data type to return a character large object containing single-byte or
multi-byte characters.

• NUMBER[(precision [, scale])]
If you specify this data type, then the scalar value returned by this function must
be a number value. The scalar value returned can also be a JSON Boolean value.
Note however, that returning NUMBER for a JSON Boolean value is deprecated.

• DATE
If you specify this data type, then the scalar value returned by this function must
be a character value that can be implicitly converted to a DATE data type. If the
JSON input represents a date with a time component, specify DATE PRESERVE TIME
to retain the time component. If you do not want to retain the time component,
specify DATE TRUNCATE TIME.

If you specify neither PRESERVE TIME nor TRUNCATE TIME, the time component is
not preserved.

• TIMESTAMP
If you specify this data type, then the scalar value returned by this function must
be a character value that can be implicitly converted to a TIMESTAMP data type.

• TIMESTAMP WITH TIME ZONE
If you specify this data type, then the scalar value returned by this function must
be a character value that can be implicitly converted to a TIMESTAMP WITH TIME
ZONE data type.

• SDO_GEOMETRY
This data type is used for Oracle Spatial and Graph data. If you specify this data
type, then expr must evaluate to a text literal containing GeoJSON data, which is a
format for encoding geographic data in JSON. If you specify this data type, then
the scalar value returned by this function must be an object of type SDO_GEOMETRY.

• JSON_value_return_object_instance

If JSON_VALUE targets a JSON object, and you specify a user-defined SQL object
type as the return type, then JSON_VALUE returns an instance of that object type in
object_type_name.

For examples see Using JSON_VALUE To Instantiate a User-Defined Object Type
Instance

Chapter 7
JSON_VALUE

7-200

See Also:

• SQL/JSON Function JSON_VALUE for a conceptual understanding.

• Refer to "Data Types " for more information on the preceding data types.

• If the data type is not large enough to hold the return value, then this function
returns null by default. You can use the JSON_value_on_error_clause to
override this default behavior. Refer to the JSON_value_on_error_clause.

ASCII

Specify ASCII to automatically escape any non-ASCII Unicode characters in the return value,
using standard ASCII Unicode escape sequences.

JSON_value_on_error_clause

Use this clause to specify the value returned by this function when the following errors occur:

• expr is not well-formed JSON data using strict or lax JSON syntax

• A nonscalar value is found when the JSON data is evaluated using the SQL/JSON path
expression

• No match is found when the JSON data is evaluated using the SQL/JSON path
expression. You can override the behavior for this type of error by specifying the
JSON_value_on_empty_clause.

• The return value data type is not large enough to hold the return value

You can specify the following clauses:

• NULL ON ERROR - Returns null when an error occurs. This is the default.

• ERROR ON ERROR - Returns the appropriate Oracle error when an error occurs.

• DEFAULT literal ON ERROR - Returns literal when an error occurs. The data type of
literal must match the data type of the value returned by this function.

JSON_value_on_empty_clause

Use this clause to specify the value returned by this function if no match is found when the
JSON data is evaluated using the SQL/JSON path expression. This clause allows you to
specify a different outcome for this type of error than the outcome specified with the
JSON_value_on_error_clause.

You can specify the following clauses:

• NULL ON EMPTY - Returns null when no match is found.

• ERROR ON EMPTY - Returns the appropriate Oracle error when no match is found.

• DEFAULT literal ON EMPTY - Returns literal when no match is found. The data type of
literal must match the data type of the value returned by this function.

If you omit this clause, then the JSON_value_on_error_clause determines the value returned
when no match is found.

Chapter 7
JSON_VALUE

7-201

JSON_value_on_mismatch_clause

The JSON_value_on_mismatch_clause applies when a type conversion fails, for
example when you try to convert a JSON number to a SQL date.

If the return type of JSON_VALUE is a SQL scalar like NUMBER or DATE , then ON MISMATCH
applies for all type conversion errors - no further specification is required. ERROR and
NULL are valid options.

Example

select json_value('{a:"cat"}','$.a.number()' NULL ON
EMPTY
 ERROR ON MISMATCH DEFAULT -1 ON ERROR) from dual;
 ORA-01722: invalid number

If the return type is an object type, then ON MISMATCH can be further specified with
MISSING DATA, EXTRA DATA and TYPE ERROR. You can use it generally to apply to all
error cases, or you can use it case by case by specifying different ON MISMATCH
clauses for each case.

Examples

IGNORE ON MISMATCH (EXTRA DATA)

ERROR ON MISMATCH (MISSING DATA, TYPE ERROR)

The option IGNORE is only valid when the return type is an object type.

Examples

The following query returns the value of the member with property name a. Because
the RETURNING clause is not specified, the value is returned as a VARCHAR2(4000) data
type:

SELECT JSON_VALUE('{a:100}', '$.a') AS value
 FROM DUAL;

VALUE

100

The following query returns the value of the member with property name a. Because
the RETURNING NUMBER clause is specified, the value is returned as a NUMBER data type:

SELECT JSON_VALUE('{a:100}', '$.a' RETURNING NUMBER) AS value
 FROM DUAL;

 VALUE

 100

The following query returns the value of the member with property name b, which is in
the value of the member with property name a:

Chapter 7
JSON_VALUE

7-202

SELECT JSON_VALUE('{a:{b:100}}', '$.a.b') AS value
 FROM DUAL;

VALUE

100

The following query returns the value of the member with property name d in any object:

SELECT JSON_VALUE('{a:{b:100}, c:{d:200}, e:{f:300}}', '$.*.d') AS value
 FROM DUAL;

VALUE

200

The following query returns the value of the first element in an array:

SELECT JSON_VALUE('[0, 1, 2, 3]', '$[0]') AS value
 FROM DUAL;

VALUE

0

The following query returns the value of the third element in an array. The array is the value
of the member with property name a.

SELECT JSON_VALUE('{a:[5, 10, 15, 20]}', '$.a[2]') AS value
 FROM DUAL;

VALUE

15

The following query returns the value of the member with property name a in the second
object in an array:

SELECT JSON_VALUE('[{a:100}, {a:200}, {a:300}]', '$[1].a') AS value
 FROM DUAL;

VALUE

200

The following query returns the value of the member with property name c in any object in an
array:

SELECT JSON_VALUE('[{a:100}, {b:200}, {c:300}]', '$[*].c') AS value
 FROM DUAL;

VALUE

300

The following query attempts to return the value of the member that has property name
lastname. However, such a member does not exist in the specified JSON data, resulting in no
match. Because the ON ERROR clause is not specified, the statement uses the default NULL ON
ERROR and returns null.

Chapter 7
JSON_VALUE

7-203

SELECT JSON_VALUE('{firstname:"John"}', '$.lastname') AS "Last Name"
 FROM DUAL;

Last Name

The following query results in an error because it attempts to return the value of the
member with property name lastname, which does not exist in the specified JSON.
Because the ON ERROR clause is specified, the statement returns the specified text
literal.

SELECT JSON_VALUE('{firstname:"John"}', '$.lastname'
 DEFAULT 'No last name found' ON ERROR) AS "Last Name"
 FROM DUAL;

Last Name

No last name found

JSON Type Constructor
Syntax

JSON (expr)

Purpose

You can use the JSON data type constructor JSON to parse textual JSON input (a
scalar, object, or array), and return it as an instance of type JSON.

Input values must pass the IS JSON test. Input values that fail the IS JSON test are
rejected with a syntax error.

To filter out duplicate input values, you must run the IS JSON (WITH UNIQUE KEYS)
check on the textual JSON input before using the JSON constructor.

You can use the constructor JSON only if database initialization parameter compatible
is atleast 20.

expr

The input in expr must be a syntactically valid textual representation of type VARCHAR2,
CLOB and BLOB. It can also be a literal SQL string. A SQL NULL input value results in a
JSON type instance of SQL NULL.

See Also:

JSON Data Type Constructor

Chapter 7
JSON Type Constructor

7-204

KURTOSIS_POP
Syntax

KURTOSIS_POP (

DISTINCT

ALL

UNIQUE

expr)

Purpose

The population kurtosis function KURTOSIS_POP is primarily used to determine the
characteristics of outliers in a given distribution.

NULL values in expr are ignored.

Returns NULL if all rows in the group have NULL expr values.

Returns 0 if there are one or two rows in expr.

For a given set of values, the result of population kurtosis (KURTOSIS_POP) and sample
kurtosis (KURTOSIS_SAMP) are always deterministic. However, the values of KURTOSIS_POP and
KURTOSIS_SAMP differ. As the number of values in the data set increases, the difference
between the computed values of KURTOSIS_SAMP and KURTOSIS_POP decreases.

KURTOSIS_SAMP
Syntax

KURTOSIS_SAMP (

DISTINCT

ALL

UNIQUE

expr)

Purpose

The sample kurtosis function KURTOSIS_SAMP is primarily used to determine the characteristics
of outliers in a given distribution.

NULL values in expr are ignored.

Returns NULL if all rows in the group have NULL expr values.

Returns 0 if there are one or two rows in expr.

For a given set of values, the result of sample kurtosis (KURTOSIS_SAMP) and population
kurtosis (KURTOSIS_POP) are always deterministic. However, the values of KURTOSIS_SAMP and
KURTOSIS_POP differ. As the number of values in the data set increases, the difference
between the computed values of KURTOSIS_SAMP and KURTOSIS_POP decreases.

Chapter 7
KURTOSIS_POP

7-205

LAG
Syntax

LAG

(value_expr

, offset

, default

)

RESPECT

IGNORE
NULLS

(value_expr

RESPECT

IGNORE
NULLS

, offset

, default

)

OVER (

query_partition_clause

order_by_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions,
including valid forms of value_expr

Purpose

LAG is an analytic function. It provides access to more than one row of a table at the
same time without a self join. Given a series of rows returned from a query and a
position of the cursor, LAG provides access to a row at a given physical offset prior to
that position.

For the optional offset argument, specify an integer that is greater than zero. If you
do not specify offset, then its default is 1. The optional default value is returned if
the offset goes beyond the scope of the window. If you do not specify default, then its
default is null.

{RESPECT | IGNORE} NULLS determines whether null values of value_expr are included
in or eliminated from the calculation. The default is RESPECT NULLS.

You cannot nest analytic functions by using LAG or any other analytic function for
value_expr. However, you can use other built-in function expressions for value_expr.

See Also:

• "About SQL Expressions " for information on valid forms of expr and
LEAD

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
return value of LAG when it is a character value

Chapter 7
LAG

7-206

Examples

The following example provides, for each purchasing clerk in the employees table, the salary
of the employee hired just before:

SELECT hire_date, last_name, salary,
 LAG(salary, 1, 0) OVER (ORDER BY hire_date) AS prev_sal
 FROM employees
 WHERE job_id = 'PU_CLERK'
 ORDER BY hire_date;

HIRE_DATE LAST_NAME SALARY PREV_SAL
--------- ------------------------- ---------- ----------
18-MAY-03 Khoo 3100 0
24-JUL-05 Tobias 2800 3100
24-DEC-05 Baida 2900 2800
15-NOV-06 Himuro 2600 2900
10-AUG-07 Colmenares 2500 2600

LAST
Syntax

last::=

aggregate_function KEEP

(DENSE_RANK LAST ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

OVER (

query_partition_clause

)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions of the
query_partitioning_clause

Purpose

FIRST and LAST are very similar functions. Both are aggregate and analytic functions that
operate on a set of values from a set of rows that rank as the FIRST or LAST with respect to a
given sorting specification. If only one row ranks as FIRST or LAST, then the aggregate
operates on the set with only one element.

Refer to FIRST for complete information on this function and for examples of its use.

Chapter 7
LAST

7-207

LAST_DAY
Syntax

LAST_DAY (date)

Purpose

LAST_DAY returns the date of the last day of the month that contains date. The last day
of the month is defined by the session parameter NLS_CALENDAR. The return type is
always DATE, regardless of the data type of date.

Examples

The following statement determines how many days are left in the current month.

SELECT SYSDATE,
 LAST_DAY(SYSDATE) "Last",
 LAST_DAY(SYSDATE) - SYSDATE "Days Left"
 FROM DUAL;

SYSDATE Last Days Left
--------- --------- ----------
30-MAY-09 31-MAY-09 1

The following example adds 5 months to the hire date of each employee to give an
evaluation date:

SELECT last_name, hire_date,
 TO_CHAR(ADD_MONTHS(LAST_DAY(hire_date), 5)) "Eval Date"
 FROM employees
 ORDER BY last_name, hire_date;

LAST_NAME HIRE_DATE Eval Date
------------------------- --------- ---------
Abel 11-MAY-04 31-OCT-04
Ande 24-MAR-08 31-AUG-08
Atkinson 30-OCT-05 31-MAR-06
Austin 25-JUN-05 30-NOV-05
Baer 07-JUN-02 30-NOV-02
Baida 24-DEC-05 31-MAY-06
Banda 21-APR-08 30-SEP-08
Bates 24-MAR-07 31-AUG-07
. . .

Chapter 7
LAST_DAY

7-208

LAST_VALUE
Syntax

LAST_VALUE

(expr)

RESPECT

IGNORE
NULLS

(expr

RESPECT

IGNORE
NULLS

)

OVER (analytic_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions,
including valid forms of expr

Purpose

LAST_VALUE is an analytic function that is useful for data densification. It returns the last value
in an ordered set of values.

Note:

The two forms of this syntax have the same behavior. The top branch is the ANSI
format, which Oracle recommends for ANSI compatibility.

{RESPECT | IGNORE} NULLS determines whether null values of expr are included in or eliminated
from the calculation. The default is RESPECT NULLS. If the last value in the set is null, then the
function returns NULL unless you specify IGNORE NULLS. If you specify IGNORE NULLS, then
LAST_VALUE returns the last non-null value in the set, or NULL if all values are null. Refer to
"Using Partitioned Outer Joins: Examples" for an example of data densification.

You cannot nest analytic functions by using LAST_VALUE or any other analytic function for
expr. However, you can use other built-in function expressions for expr. Refer to "About SQL
Expressions " for information on valid forms of expr.

If you omit the windowing_clause of the analytic_clause, it defaults to RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW. This default sometimes returns an unexpected value,
because the last value in the window is at the bottom of the window, which is not fixed. It
keeps changing as the current row changes. For expected results, specify the
windowing_clause as RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.
Alternatively, you can specify the windowing_clause as RANGE BETWEEN CURRENT ROW AND
UNBOUNDED FOLLOWING.

Chapter 7
LAST_VALUE

7-209

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of this
function when it is a character value

Examples

The following example returns, for each row, the hire date of the employee earning the
lowest salary:

SELECT employee_id, last_name, salary, hire_date,
 LAST_VALUE(hire_date)
 OVER (ORDER BY salary DESC ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED
 FOLLOWING) AS lv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE LV
----------- ------------------------- ---------- --------- ---------
 100 King 24000 17-JUN-03 13-JAN-01
 101 Kochhar 17000 21-SEP-05 13-JAN-01
 102 De Haan 17000 13-JAN-01 13-JAN-01

This example illustrates the nondeterministic nature of the LAST_VALUE function.
Kochhar and De Haan have the same salary, so they are in adjacent rows. Kochhar
appears first because the rows in the subquery are ordered by hire_date. However, if
the rows are ordered by hire_date in descending order, as in the next example, then
the function returns a different value:

SELECT employee_id, last_name, salary, hire_date,
 LAST_VALUE(hire_date)
 OVER (ORDER BY salary DESC ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED
 FOLLOWING) AS lv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date DESC);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE LV
----------- ------------------------- ---------- --------- ---------
 100 King 24000 17-JUN-03 21-SEP-05
 102 De Haan 17000 13-JAN-01 21-SEP-05
 101 Kochhar 17000 21-SEP-05 21-SEP-05

The following two examples show how to make the LAST_VALUE function deterministic
by ordering on a unique key. By ordering within the function by both salary and the
unique key employee_id, you can ensure the same result regardless of the ordering in
the subquery.

SELECT employee_id, last_name, salary, hire_date,
 LAST_VALUE(hire_date)
 OVER (ORDER BY salary DESC, employee_id ROWS BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING) AS lv
 FROM (SELECT * FROM employees

Chapter 7
LAST_VALUE

7-210

 WHERE department_id = 90
 ORDER BY hire_date);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE LV
----------- ------------------------- ---------- --------- ---------
 100 King 24000 17-JUN-03 13-JAN-01
 101 Kochhar 17000 21-SEP-05 13-JAN-01
 102 De Haan 17000 13-JAN-01 13-JAN-01

SELECT employee_id, last_name, salary, hire_date,
 LAST_VALUE(hire_date)
 OVER (ORDER BY salary DESC, employee_id ROWS BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING) AS lv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date DESC);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE LV
----------- ------------------------- ---------- --------- ---------
 100 King 24000 17-JUN-03 13-JAN-01
 101 Kochhar 17000 21-SEP-05 13-JAN-01
 102 De Haan 17000 13-JAN-01 13-JAN-01

The following two examples show that the LAST_VALUE function is deterministic when you use
a logical offset (RANGE instead of ROWS). When duplicates are found for the ORDER BY
expression, the LAST_VALUE is the highest value of expr:

SELECT employee_id, last_name, salary, hire_date,
 LAST_VALUE(hire_date)
 OVER (ORDER BY salary DESC RANGE BETWEEN UNBOUNDED PRECEDING AND
 UNBOUNDED FOLLOWING) AS lv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE LV
----------- ------------------------- ---------- --------- ---------
 100 King 24000 17-JUN-03 21-SEP-05
 102 De Haan 17000 13-JAN-01 21-SEP-05
 101 Kochhar 17000 21-SEP-05 21-SEP-05

SELECT employee_id, last_name, salary, hire_date,
 LAST_VALUE(hire_date)
 OVER (ORDER BY salary DESC RANGE BETWEEN UNBOUNDED PRECEDING AND
 UNBOUNDED FOLLOWING) AS lv
 FROM (SELECT * FROM employees
 WHERE department_id = 90
 ORDER BY hire_date DESC);

EMPLOYEE_ID LAST_NAME SALARY HIRE_DATE LV
----------- ------------------------- ---------- --------- ---------
 100 King 24000 17-JUN-03 21-SEP-05
 102 De Haan 17000 13-JAN-01 21-SEP-05
 101 Kochhar 17000 21-SEP-05 21-SEP-05

Chapter 7
LAST_VALUE

7-211

LEAD
Syntax

LEAD

(value_expr

, offset

, default

)

RESPECT

IGNORE
NULLS

(value_expr

RESPECT

IGNORE
NULLS

, offset

, default

)

OVER (

query_partition_clause

order_by_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions,
including valid forms of value_expr

Purpose

LEAD is an analytic function. It provides access to more than one row of a table at the
same time without a self join. Given a series of rows returned from a query and a
position of the cursor, LEAD provides access to a row at a given physical offset beyond
that position.

If you do not specify offset, then its default is 1. The optional default value is
returned if the offset goes beyond the scope of the table. If you do not specify default,
then its default value is null.

{RESPECT | IGNORE} NULLS determines whether null values of value_expr are included
in or eliminated from the calculation. The default is RESPECT NULLS.

You cannot nest analytic functions by using LEAD or any other analytic function for
value_expr. However, you can use other built-in function expressions for value_expr.

See Also:

• "About SQL Expressions " for information on valid forms of expr and
LAG

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
return value of LEAD when it is a character value

Chapter 7
LEAD

7-212

Examples

The following example provides, for each employee in Department 30 in the employees table,
the hire date of the employee hired just after:

SELECT hire_date, last_name,
 LEAD(hire_date, 1) OVER (ORDER BY hire_date) AS "NextHired"
 FROM employees
 WHERE department_id = 30
 ORDER BY hire_date;

HIRE_DATE LAST_NAME Next Hired
--------- ------------------------- ----------
07-DEC-02 Raphaely 18-MAY-03
18-MAY-03 Khoo 24-JUL-05
24-JUL-05 Tobias 24-DEC-05
24-DEC-05 Baida 15-NOV-06
15-NOV-06 Himuro 10-AUG-07
10-AUG-07 Colmenares

LEAST
Syntax

LEAST (expr

,

)

Purpose

LEAST returns the least of a list of one or more expressions. Oracle Database uses the first
expr to determine the return type. If the first expr is numeric, then Oracle determines the
argument with the highest numeric precedence, implicitly converts the remaining arguments
to that data type before the comparison, and returns that data type. If the first expr is not
numeric, then each expr after the first is implicitly converted to the data type of the first expr
before the comparison.

Oracle Database compares each expr using nonpadded comparison semantics. The
comparison is binary by default and is linguistic if the NLS_COMP parameter is set to
LINGUISTIC and the NLS_SORT parameter has a setting other than BINARY. Character
comparison is based on the numerical codes of the characters in the database character set
and is performed on whole strings treated as one sequence of bytes, rather than character by
character. If the value returned by this function is character data, then its data type is
VARCHAR2 if the first expr is a character data type and NVARCHAR2 if the first expr is a national
character data type.

Chapter 7
LEAST

7-213

See Also:

• "Data Type Comparison Rules " for more information on character
comparison

• Table 2-8 for more information on implicit conversion and "Floating-Point
Numbers " for information on binary-float comparison semantics

• "GREATEST ", which returns the greatest of a list of one or more
expressions

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules, which define the collation LEAST uses to
compare character values for expr, and for the collation derivation rules,
which define the collation assigned to the return value of this function
when it is a character value

Examples

The following statement selects the string with the least value:

SELECT LEAST('HARRY','HARRIOT','HAROLD') "Least"
 FROM DUAL;

Least

HAROLD

In the following statement, the first argument is numeric. Oracle Database determines
that the argument with the highest numeric precedence is the third argument, converts
the remaining arguments to the data type of the third argument, and returns the least
value as that data type:

SELECT LEAST (1, '2.1', '.000832') "Least"
 FROM DUAL;

Least

.000832

LENGTH
Syntax

length::=

LENGTH

LENGTHB

LENGTHC

LENGTH2

LENGTH4

(char)

Chapter 7
LENGTH

7-214

Purpose

The LENGTH functions return the length of char. LENGTH calculates length using characters as
defined by the input character set. LENGTHB uses bytes instead of characters. LENGTHC uses
Unicode complete characters. LENGTH2 uses UCS2 code points. LENGTH4 uses UCS4 code
points.

char can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The
exceptions are LENGTHC, LENGTH2, and LENGTH4, which do not allow char to be a CLOB or
NCLOB. The return value is of data type NUMBER. If char has data type CHAR, then the length
includes all trailing blanks. If char is null, then this function returns null.

For more on character length see the following:

• Oracle Database Globalization Support Guide

• Oracle Database SecureFiles and Large Objects Developer's Guide

Restriction on LENGTHB

The LENGTHB function is supported for single-byte LOBs only. It cannot be used with CLOB and
NCLOB data in a multibyte character set.

Examples

The following example uses the LENGTH function using a single-byte database character set:

SELECT LENGTH('CANDIDE') "Length in characters"
 FROM DUAL;

Length in characters

 7

The next example assumes a double-byte database character set.

SELECT LENGTHB ('CANDIDE') "Length in bytes"
 FROM DUAL;

Length in bytes

 14

LISTAGG
Syntax

LISTAGG (

ALL

DISTINCT

measure_expr

, ’ delimiter ’ listagg_overflow_clause

)

WITHIN GROUP (order_by_clause) OVER (

query_partition_clause

)

Chapter 7
LISTAGG

7-215

(listagg_overflow_clause::=, order_by_clause::=, query_partition_clause::=)

listagg_overflow_clause::=

ON OVERFLOW ERROR

ON OVERFLOW TRUNCATE

’ truncation–indicator ’

WITH

WITHOUT

COUNT

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions of
the ORDER BY clause and OVER clause

Purpose

For a specified measure, LISTAGG orders data within each group specified in the ORDER
BY clause and then concatenates the values of the measure column.

• As a single-set aggregate function, LISTAGG operates on all rows and returns a
single output row.

• As a group-set aggregate, the function operates on and returns an output row for
each group defined by the GROUP BY clause.

• As an analytic function, LISTAGG partitions the query result set into groups based
on one or more expression in the query_partition_clause.

The arguments to the function are subject to the following rules:

• The ALL keyword is optional and is provided for semantic clarity.

• The measure_expr is the measure column and can be any expression. Null values
in the measure column are ignored.

• The delimiter designates the string that is to separate the measure column
values. This clause is optional and defaults to NULL.

If measure_expr is of type RAW, then the delimiter must be of type RAW. You can
achieve this by specifying the delimiter as a character string that can be implicitly
converted to RAW, or by explicitly converting the delimiter to RAW, for example, using
the UTL_RAW.CAST_TO_RAW function.

• The order_by_clause determines the order in which the concatenated values are
returned. The function is deterministic only if the ORDER BY column list achieved
unique ordering.

• If you specify order_by_clause, you must also specify WITHIN GROUP and vice
versa. These two clauses must be specified together or not at all.

The DISTINCT keyword removes duplicate values from the list.

If the measure column is of type RAW, then the return data type is RAW. Otherwise, the
return data type is VARCHAR2.

Chapter 7
LISTAGG

7-216

The maximum length of the return data type depends on the value of the MAX_STRING_SIZE
initialization parameter. If MAX_STRING_SIZE = EXTENDED, then the maximum length is 32767
bytes for the VARCHAR2 and RAW data types. If MAX_STRING_SIZE = STANDARD, then the
maximum length is 4000 bytes for the VARCHAR2 data type and 2000 bytes for the RAW data
type. A final delimiter is not included when determining if the return value fits in the return
data type.

See Also:

• Extended Data Types for more information on the MAX_STRING_SIZE initialization
parameter

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of LISTAGG

• Database Data Warehousing Guide for details.

listagg_overflow_clause

This clause controls how the function behaves when the return value exceeds the maximum
length of the return data type.

ON OVERFLOW ERROR If you specify this clause, then the function returns an ORA-01489
error. This is the default.

ON OVERFLOW TRUNCATE If you specify this clause, then the function returns a truncated
list of measure values.

• The truncation_indicator designates the string that is to be appended to the truncated
list of measure values. If you omit this clause, then the truncation indicator is an ellipsis
(...).

If measure_expr is of type RAW, then the truncation indicator must be of type RAW. You can
achieve this by specifying the truncation indicator as a character string that can be
implicitly converted to RAW, or by explicitly converting the truncation indicator to RAW, for
example, using the UTL_RAW.CAST_TO_RAW function.

• If you specify WITH COUNT, then after the truncation indicator, the database appends the
number of truncated values, enclosed in parentheses. In this case, the database
truncates enough measure values to allow space in the return value for a final delimiter,
the truncation indicator, and 24 characters for the number value enclosed in parentheses.

• If you specify WITHOUT COUNT, then the database omits the number of truncated values
from the return value. In this case, the database truncates enough measure values to
allow space in the return value for a final delimiter and the truncation indicator.

If you do not specify WITH COUNT or WITHOUT COUNT, then the default is WITH COUNT.

Aggregate Examples

The following single-set aggregate example lists all of the employees in Department 30 in the
hr.employees table, ordered by hire date and last name:

SELECT LISTAGG(last_name, '; ')
 WITHIN GROUP (ORDER BY hire_date, last_name) "Emp_list",

Chapter 7
LISTAGG

7-217

 MIN(hire_date) "Earliest"
 FROM employees
 WHERE department_id = 30;

Emp_list Earliest
-- ---------
Raphaely; Khoo; Tobias; Baida; Himuro; Colmenares 07-DEC-02

The following group-set aggregate example lists, for each department ID in the
hr.employees table, the employees in that department in order of their hire date:

SELECT department_id "Dept.",
 LISTAGG(last_name, '; ') WITHIN GROUP (ORDER BY hire_date) "Employees"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Dept. Employees
------ --
 10 Whalen
 20 Hartstein; Fay
 30 Raphaely; Khoo; Tobias; Baida; Himuro; Colmenares
 40 Mavris
 50 Kaufling; Ladwig; Rajs; Sarchand; Bell; Mallin; Weiss; Davie
 s; Marlow; Bull; Everett; Fripp; Chung; Nayer; Dilly; Bissot
 ; Vollman; Stiles; Atkinson; Taylor; Seo; Fleaur; Matos; Pat
 el; Walsh; Feeney; Dellinger; McCain; Vargas; Gates; Rogers;
 Mikkilineni; Landry; Cabrio; Jones; Olson; OConnell; Sulliv
 an; Mourgos; Gee; Perkins; Grant; Geoni; Philtanker; Markle
 60 Austin; Hunold; Pataballa; Lorentz; Ernst
 70 Baer
. . .

The following example is identical to the previous example, except it contains the ON
OVERFLOW TRUNCATE clause. For the purpose of this example, assume that the
maximum length of the return value is an artificially small number of 200 bytes.
Because the list of employees for department 50 exceeds 200 bytes, the list is
truncated and appended with a final delimiter '; ', the specified truncation indicator
'...', and the number of truncated values '(23)'.

SELECT department_id "Dept.",
 LISTAGG(last_name, '; ' ON OVERFLOW TRUNCATE '...')
 WITHIN GROUP (ORDER BY hire_date) "Employees"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

Dept. Employees
------ --
 10 Whalen
 20 Hartstein; Fay
 30 Raphaely; Khoo; Tobias; Baida; Himuro; Colmenares
 40 Mavris
 50 Kaufling; Ladwig; Rajs; Sarchand; Bell; Mallin; Weiss; Davie
 s; Marlow; Bull; Everett; Fripp; Chung; Nayer; Dilly; Bissot
 ; Vollman; Stiles; Atkinson; Taylor; Seo; Fleaur; ... (23)
 70 Baer
. . .

Chapter 7
LISTAGG

7-218

Analytic Example

The following analytic example shows, for each employee hired earlier than September 1,
2003, the employee's department, hire date, and all other employees in that department also
hired before September 1, 2003:

SELECT department_id "Dept", hire_date "Date", last_name "Name",
 LISTAGG(last_name, '; ') WITHIN GROUP (ORDER BY hire_date, last_name)
 OVER (PARTITION BY department_id) as "Emp_list"
 FROM employees
 WHERE hire_date < '01-SEP-2003'
 ORDER BY "Dept", "Date", "Name";

 Dept Date Name Emp_list
----- --------- --------------- ---
 30 07-DEC-02 Raphaely Raphaely; Khoo
 30 18-MAY-03 Khoo Raphaely; Khoo
 40 07-JUN-02 Mavris Mavris
 50 01-MAY-03 Kaufling Kaufling; Ladwig
 50 14-JUL-03 Ladwig Kaufling; Ladwig
 70 07-JUN-02 Baer Baer
 90 13-JAN-01 De Haan De Haan; King
 90 17-JUN-03 King De Haan; King
 100 16-AUG-02 Faviet Faviet; Greenberg
 100 17-AUG-02 Greenberg Faviet; Greenberg
 110 07-JUN-02 Gietz Gietz; Higgins
 110 07-JUN-02 Higgins Gietz; Higgins

LN
Syntax

LN (n)

Purpose

LN returns the natural logarithm of n, where n is greater than 0.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the
function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns the natural logarithm of 95:

SELECT LN(95) "Natural log of 95"
 FROM DUAL;

Chapter 7
LN

7-219

Natural log of 95

 4.55387689

LNNVL
Syntax

LNNVL (condition)

Purpose

LNNVL provides a concise way to evaluate a condition when one or both operands of
the condition may be null. The function can be used in the WHERE clause of a query, or
as the WHEN condition in a searched CASE expression. It takes as an argument a
condition and returns TRUE if the condition is FALSE or UNKNOWN and FALSE if the
condition is TRUE. LNNVL can be used anywhere a scalar expression can appear, even
in contexts where the IS [NOT] NULL, AND, or OR conditions are not valid but would
otherwise be required to account for potential nulls.

Oracle Database sometimes uses the LNNVL function internally in this way to rewrite
NOT IN conditions as NOT EXISTS conditions. In such cases, output from EXPLAIN PLAN
shows this operation in the plan table output. The condition can evaluate any scalar
values but cannot be a compound condition containing AND, OR, or BETWEEN.

The table that follows shows what LNNVL returns given that a = 2 and b is null.

Condition Truth of Condition LNNVL Return Value

a = 1 FALSE TRUE
a = 2 TRUE FALSE
a IS NULL FALSE TRUE
b = 1 UNKNOWN TRUE
b IS NULL TRUE FALSE
a = b UNKNOWN TRUE

Examples

Suppose that you want to know the number of employees with commission rates of
less than 20%, including employees who do not receive commissions. The following
query returns only employees who actually receive a commission of less than 20%:

SELECT COUNT(*)
 FROM employees
 WHERE commission_pct < .2;

 COUNT(*)

 11

Chapter 7
LNNVL

7-220

To include the 72 employees who receive no commission at all, you could rewrite the query
using the LNNVL function as follows:

SELECT COUNT(*)
 FROM employees
 WHERE LNNVL(commission_pct >= .2);

 COUNT(*)

 83

LOCALTIMESTAMP
Syntax

LOCALTIMESTAMP

(timestamp_precision)

Purpose

LOCALTIMESTAMP returns the current date and time in the session time zone in a value of data
type TIMESTAMP. The difference between this function and CURRENT_TIMESTAMP is that
LOCALTIMESTAMP returns a TIMESTAMP value while CURRENT_TIMESTAMP returns a TIMESTAMP
WITH TIME ZONE value.

The optional argument timestamp_precision specifies the fractional second precision of the
time value returned.

See Also:

CURRENT_TIMESTAMP , "TIMESTAMP Data Type ", and "TIMESTAMP WITH
TIME ZONE Data Type "

Examples

This example illustrates the difference between LOCALTIMESTAMP and CURRENT_TIMESTAMP:

ALTER SESSION SET TIME_ZONE = '-5:00';
SELECT CURRENT_TIMESTAMP, LOCALTIMESTAMP FROM DUAL;

CURRENT_TIMESTAMP LOCALTIMESTAMP

04-APR-00 01.27.18.999220 PM -05:00 04-APR-00 01.27.19 PM

ALTER SESSION SET TIME_ZONE = '-8:00';
SELECT CURRENT_TIMESTAMP, LOCALTIMESTAMP FROM DUAL;

CURRENT_TIMESTAMP LOCALTIMESTAMP
----------------------------------- ------------------------------
04-APR-00 10.27.45.132474 AM -08:00 04-APR-00 10.27.451 AM

When you use the LOCALTIMESTAMP with a format mask, take care that the format mask
matches the value returned by the function. For example, consider the following table:

Chapter 7
LOCALTIMESTAMP

7-221

CREATE TABLE local_test (col1 TIMESTAMP WITH LOCAL TIME ZONE);

The following statement fails because the mask does not include the TIME ZONE portion
of the return type of the function:

INSERT INTO local_test
 VALUES (TO_TIMESTAMP(LOCALTIMESTAMP, 'DD-MON-RR HH.MI.SSXFF'));

The following statement uses the correct format mask to match the return type of
LOCALTIMESTAMP:

INSERT INTO local_test
 VALUES (TO_TIMESTAMP(LOCALTIMESTAMP, 'DD-MON-RR HH.MI.SSXFF PM'));

LOG
Syntax

LOG (n2 , n1)

Purpose

LOG returns the logarithm, base n2, of n1. The base n2 can be any positive value other
than 0 or 1 and n1 can be any positive value.

This function takes as arguments any numeric data type or any nonnumeric data type
that can be implicitly converted to a numeric data type. If any argument is
BINARY_FLOAT or BINARY_DOUBLE, then the function returns BINARY_DOUBLE. Otherwise
the function returns NUMBER.

See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns the log of 100:

SELECT LOG(10,100) "Log base 10 of 100"
 FROM DUAL;

Log base 10 of 100

 2

LOWER
Syntax

LOWER (char)

Chapter 7
LOG

7-222

Purpose

LOWER returns char, with all letters lowercase. char can be any of the data types CHAR,
VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The return value is the same data type as char.
The database sets the case of the characters based on the binary mapping defined for the
underlying character set. For linguistic-sensitive lowercase, refer to NLS_LOWER .

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
LOWER

Examples

The following example returns a string in lowercase:

SELECT LOWER('MR. SCOTT MCMILLAN') "Lowercase"
 FROM DUAL;

Lowercase

mr. scott mcmillan

LPAD
Syntax

LPAD (expr1 , n

, expr2

)

Purpose

LPAD returns expr1, left-padded to length n characters with the sequence of characters in
expr2. This function is useful for formatting the output of a query.

Both expr1 and expr2 can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. The string returned is of VARCHAR2 data type if expr1 is a character data type,
NVARCHAR2 if expr1 is a national character data type, and a LOB if expr1 is a LOB data type.
The string returned is in the same character set as expr1. The argument n must be a NUMBER
integer or a value that can be implicitly converted to a NUMBER integer.

If you do not specify expr2, then the default is a single blank. If expr1 is longer than n, then
this function returns the portion of expr1 that fits in n.

The argument n is the total length of the return value as it is displayed on your terminal
screen. In most character sets, this is also the number of characters in the return value.
However, in some multibyte character sets, the display length of a character string can differ
from the number of characters in the string.

Chapter 7
LPAD

7-223

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of LPAD

Examples

The following example left-pads a string with the asterisk (*) and period (.) characters:

SELECT LPAD('Page 1',15,'*.') "LPAD example"
 FROM DUAL;

LPAD example

..*.*.*Page 1

LTRIM
Syntax

LTRIM (char

, set

)

Purpose

LTRIM removes from the left end of char all of the characters contained in set. If you
do not specify set, then it defaults to a single blank. Oracle Database begins scanning
char from its first character and removes all characters that appear in set until
reaching a character not in set and then returns the result.

Both char and set can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB, or NCLOB. The string returned is of VARCHAR2 data type if char is a character data
type, NVARCHAR2 if char is a national character data type, and a LOB if char is a LOB
data type.

See Also:

• RTRIM

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules, which define the collation LTRIM uses to
compare characters from set with characters from char, and for the
collation derivation rules, which define the collation assigned to the
character return value of this function

Chapter 7
LTRIM

7-224

Examples

The following example trims all the left-most occurrences of less than sign (<), greater than
sign (>) , and equal sign (=) from a string:

SELECT LTRIM('<=====>BROWNING<=====>', '<>=') "LTRIM Example"
 FROM DUAL;

LTRIM Example

BROWNING<=====>

MAKE_REF
Syntax

MAKE_REF (
table

view
, key

,

)

Purpose

MAKE_REF creates a REF to a row of an object view or a row in an object table whose object
identifier is primary key based. This function is useful, for example, if you are creating an
object view

See Also:

Oracle Database Object-Relational Developer's Guide for more information about
object views and DEREF

Examples

The sample schema oe contains an object view oc_inventories based on inventory_typ.
The object identifier is product_id. The following example creates a REF to the row in the
oc_inventories object view with a product_id of 3003:

SELECT MAKE_REF (oc_inventories, 3003)
 FROM DUAL;

MAKE_REF(OC_INVENTORIES,3003)
--
00004A038A0046857C14617141109EE03408002082543600000014260100010001
00290090606002A00078401FE0000000B03C21F040000000000000000000000000
0000000000

Chapter 7
MAKE_REF

7-225

MAX
Syntax

MAX (

DISTINCT

ALL

expr)

OVER (analytic_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

MAX returns maximum value of expr. You can use it as an aggregate or analytic
function.

See Also:

• "About SQL Expressions " for information on valid forms of expr,
"Floating-Point Numbers " for information on binary-float comparison
semantics, and "Aggregate Functions "

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules, which define the collation MAX uses to
compare character values for expr, and for the collation derivation rules,
which define the collation assigned to the return value of this function
when it is a character value

Aggregate Example

The following example determines the highest salary in the hr.employees table:

SELECT MAX(salary) "Maximum"
 FROM employees;

 Maximum

 24000

Analytic Examples

The following example calculates, for each employee, the highest salary of the
employees reporting to the same manager as the employee.

SELECT manager_id, last_name, salary,
 MAX(salary) OVER (PARTITION BY manager_id) AS mgr_max
 FROM employees

Chapter 7
MAX

7-226

 ORDER BY manager_id, last_name, salary;

MANAGER_ID LAST_NAME SALARY MGR_MAX
---------- ------------------------- ---------- ----------
 100 Cambrault 11000 17000
 100 De Haan 17000 17000
 100 Errazuriz 12000 17000
 100 Fripp 8200 17000
 100 Hartstein 13000 17000
 100 Kaufling 7900 17000
 100 Kochhar 17000 17000
. . .

If you enclose this query in the parent query with a predicate, then you can determine the
employee who makes the highest salary in each department:

SELECT manager_id, last_name, salary
 FROM (SELECT manager_id, last_name, salary,
 MAX(salary) OVER (PARTITION BY manager_id) AS rmax_sal
 FROM employees)
 WHERE salary = rmax_sal
 ORDER BY manager_id, last_name, salary;

MANAGER_ID LAST_NAME SALARY
---------- ------------------------- ----------
 100 De Haan 17000
 100 Kochhar 17000
 101 Greenberg 12008
 101 Higgins 12008
 102 Hunold 9000
 103 Ernst 6000
 108 Faviet 9000
 114 Khoo 3100
 120 Nayer 3200
 120 Taylor 3200
 121 Sarchand 4200
 122 Chung 3800
 123 Bell 4000
 124 Rajs 3500
 145 Tucker 10000
 146 King 10000
 147 Vishney 10500
 148 Ozer 11500
 149 Abel 11000
 201 Fay 6000
 205 Gietz 8300
 King 24000

22 rows selected.

MEDIAN
Syntax

MEDIAN (expr)

OVER (

query_partition_clause

)

Chapter 7
MEDIAN

7-227

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

MEDIAN is an inverse distribution function that assumes a continuous distribution
model. It takes a numeric or datetime value and returns the middle value or an
interpolated value that would be the middle value once the values are sorted. Nulls are
ignored in the calculation.

This function takes as arguments any numeric data type or any nonnumeric data type
that can be implicitly converted to a numeric data type. If you specify only expr, then
the function returns the same data type as the numeric data type of the argument. If
you specify the OVER clause, then Oracle Database determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that data
type, and returns that data type.

See Also:

Table 2-8 for more information on implicit conversion and "Numeric
Precedence " for information on numeric precedence

The result of MEDIAN is computed by first ordering the rows. Using N as the number of
rows in the group, Oracle calculates the row number (RN) of interest with the formula
RN = (1 + (0.5*(N-1)). The final result of the aggregate function is computed by linear
interpolation between the values from rows at row numbers CRN = CEILING(RN) and FRN
= FLOOR(RN).

The final result will be:

 if (CRN = FRN = RN) then
 (value of expression from row at RN)
 else
 (CRN - RN) * (value of expression for row at FRN) +
 (RN - FRN) * (value of expression for row at CRN)

You can use MEDIAN as an analytic function. You can specify only the
query_partition_clause in its OVER clause. It returns, for each row, the value that
would fall in the middle among a set of values within each partition.

Compare this function with these functions:

• PERCENTILE_CONT , which returns, for a given percentile, the value that
corresponds to that percentile by way of interpolation. MEDIAN is the specific case
of PERCENTILE_CONT where the percentile value defaults to 0.5.

• PERCENTILE_DISC , which is useful for finding values for a given percentile
without interpolation.

Chapter 7
MEDIAN

7-228

Aggregate Example

The following query returns the median salary for each department in the hr.employees table:

SELECT department_id, MEDIAN(salary)
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

DEPARTMENT_ID MEDIAN(SALARY)
------------- --------------
 10 4400
 20 9500
 30 2850
 40 6500
 50 3100
 60 4800
 70 10000
 80 8900
 90 17000
 100 8000
 110 10154
 7000

Analytic Example

The following query returns the median salary for each manager in a subset of departments
in the hr.employees table:

SELECT manager_id, employee_id, salary,
 MEDIAN(salary) OVER (PARTITION BY manager_id) "Median by Mgr"
 FROM employees
 WHERE department_id > 60
 ORDER BY manager_id, employee_id;

MANAGER_ID EMPLOYEE_ID SALARY Median by Mgr
---------- ----------- ---------- -------------
 100 101 17000 13500
 100 102 17000 13500
 100 145 14000 13500
 100 146 13500 13500
 100 147 12000 13500
 100 148 11000 13500
 100 149 10500 13500
 101 108 12008 12008
 101 204 10000 12008
 101 205 12008 12008
 108 109 9000 7800
 108 110 8200 7800
 108 111 7700 7800
 108 112 7800 7800
 108 113 6900 7800
 145 150 10000 8500
 145 151 9500 8500
 145 152 9000 8500
. . .

Chapter 7
MEDIAN

7-229

MIN
Syntax

MIN (

DISTINCT

ALL

expr)

OVER (analytic_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

MIN returns minimum value of expr. You can use it as an aggregate or analytic
function.

See Also:

• "About SQL Expressions " for information on valid forms of expr,
"Floating-Point Numbers " for information on binary-float comparison
semantics, and "Aggregate Functions "

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules, which define the collation MIN uses to
compare character values for expr, and for the collation derivation rules,
which define the collation assigned to the return value of this function
when it is a character value

Aggregate Example

The following statement returns the earliest hire date in the hr.employees table:

SELECT MIN(hire_date) "Earliest"
 FROM employees;

Earliest

13-JAN-01

Analytic Example

The following example determines, for each employee, the employees who were hired
on or before the same date as the employee. It then determines the subset of
employees reporting to the same manager as the employee, and returns the lowest
salary in that subset.

Chapter 7
MIN

7-230

SELECT manager_id, last_name, hire_date, salary,
 MIN(salary) OVER(PARTITION BY manager_id ORDER BY hire_date
 RANGE UNBOUNDED PRECEDING) AS p_cmin
 FROM employees
 ORDER BY manager_id, last_name, hire_date, salary;

MANAGER_ID LAST_NAME HIRE_DATE SALARY P_CMIN
---------- ------------------------- --------- ---------- ----------
 100 Cambrault 15-OCT-07 11000 6500
 100 De Haan 13-JAN-01 17000 17000
 100 Errazuriz 10-MAR-05 12000 7900
 100 Fripp 10-APR-05 8200 7900
 100 Hartstein 17-FEB-04 13000 7900
 100 Kaufling 01-MAY-03 7900 7900
 100 Kochhar 21-SEP-05 17000 7900
 100 Mourgos 16-NOV-07 5800 5800
 100 Partners 05-JAN-05 13500 7900
 100 Raphaely 07-DEC-02 11000 11000
 100 Russell 01-OCT-04 14000 7900

. . .

MOD
Syntax

MOD (n2 , n1)

Purpose

MOD returns the remainder of n2 divided by n1. Returns n2 if n1 is 0.

This function takes as arguments any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that data type,
and returns that data type.

See Also:

Table 2-8 for more information on implicit conversion and "Numeric Precedence "
for information on numeric precedence

Examples

The following example returns the remainder of 11 divided by 4:

SELECT MOD(11,4) "Modulus"
 FROM DUAL;

 Modulus

 3

Chapter 7
MOD

7-231

This function behaves differently from the classical mathematical modulus function, if
the product of n1 and n2 is negative. The classical modulus can be expressed using
the MOD function with this formula:

n2 - n1 * FLOOR(n2/n1)

The following table illustrates the difference between the MOD function and the classical
modulus:

n2 n1 MOD(n2,n1) Classical Modulus

11 4 3 3
11 -4 3 -1
-11 4 -3 1
-11 -4 -3 -3

See Also:

FLOOR and REMAINDER , which is similar to MOD, but uses ROUND in its
formula instead of FLOOR

MONTHS_BETWEEN
Syntax

MONTHS_BETWEEN (date1 , date2)

Purpose

MONTHS_BETWEEN returns number of months between dates date1 and date2. The
month and the last day of the month are defined by the parameter NLS_CALENDAR. If
date1 is later than date2, then the result is positive. If date1 is earlier than date2, then
the result is negative. If date1 and date2 are either the same days of the month or
both last days of months, then the result is always an integer. Otherwise Oracle
Database calculates the fractional portion of the result based on a 31-day month and
considers the difference in time components date1 and date2.

Examples

The following example calculates the months between two dates:

SELECT MONTHS_BETWEEN
 (TO_DATE('02-02-1995','MM-DD-YYYY'),
 TO_DATE('01-01-1995','MM-DD-YYYY')) "Months"
 FROM DUAL;

 Months

1.03225806

Chapter 7
MONTHS_BETWEEN

7-232

NANVL
Syntax

NANVL (n2 , n1)

Purpose

The NANVL function is useful only for floating-point numbers of type BINARY_FLOAT or
BINARY_DOUBLE. It instructs Oracle Database to return an alternative value n1 if the input
value n2 is NaN (not a number). If n2 is not NaN, then Oracle returns n2.

This function takes as arguments any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that data type,
and returns that data type.

See Also:

Table 2-8 for more information on implicit conversion, "Floating-Point Numbers " for
information on binary-float comparison semantics, and "Numeric Precedence " for
information on numeric precedence

Examples

Using table float_point_demo created for TO_BINARY_DOUBLE , insert a second entry into
the table:

INSERT INTO float_point_demo
 VALUES (0,'NaN','NaN');

SELECT *
 FROM float_point_demo;

 DEC_NUM BIN_DOUBLE BIN_FLOAT
---------- ---------- ----------
 1234.56 1.235E+003 1.235E+003
 0 Nan Nan

The following example returns bin_float if it is a number. Otherwise, 0 is returned.

SELECT bin_float, NANVL(bin_float,0)
 FROM float_point_demo;

 BIN_FLOAT NANVL(BIN_FLOAT,0)
---------- ------------------
1.235E+003 1.235E+003
 Nan 0

Chapter 7
NANVL

7-233

NCHR
Syntax

NCHR (number)

Purpose

NCHR returns the character having the binary equivalent to number in the national
character set. The value returned is always NVARCHAR2. This function is equivalent to
using the CHR function with the USING NCHAR_CS clause.

This function takes as an argument a NUMBER value, or any value that can be implicitly
converted to NUMBER, and returns a character.

See Also:

• CHR

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of NCHR

Examples

The following examples return the nchar character 187:

SELECT NCHR(187)
 FROM DUAL;

N
-
>

SELECT CHR(187 USING NCHAR_CS)
 FROM DUAL;

C
-
>

NEW_TIME
Syntax

NEW_TIME (date , timezone1 , timezone2)

Chapter 7
NCHR

7-234

Purpose

NEW_TIME returns the date and time in time zone timezone2 when date and time in time zone
timezone1 are date. Before using this function, you must set the NLS_DATE_FORMAT parameter
to display 24-hour time. The return type is always DATE, regardless of the data type of date.

Note:

This function takes as input only a limited number of time zones. You can have
access to a much greater number of time zones by combining the FROM_TZ function
and the datetime expression. See FROM_TZ and the example for "Datetime
Expressions ".

The arguments timezone1 and timezone2 can be any of these text strings:

• AST, ADT: Atlantic Standard or Daylight Time

• BST, BDT: Bering Standard or Daylight Time

• CST, CDT: Central Standard or Daylight Time

• EST, EDT: Eastern Standard or Daylight Time

• GMT: Greenwich Mean Time

• HST, HDT: Alaska-Hawaii Standard Time or Daylight Time.

• MST, MDT: Mountain Standard or Daylight Time

• NST: Newfoundland Standard Time

• PST, PDT: Pacific Standard or Daylight Time

• YST, YDT: Yukon Standard or Daylight Time

Examples

The following example returns an Atlantic Standard time, given the Pacific Standard time
equivalent:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';

SELECT NEW_TIME(TO_DATE('11-10-09 01:23:45', 'MM-DD-YY HH24:MI:SS'), 'AST', 'PST')
 "New Date and Time"
 FROM DUAL;

New Date and Time

09-NOV-2009 21:23:45

NEXT_DAY
Syntax

NEXT_DAY (date , char)

Chapter 7
NEXT_DAY

7-235

Purpose

NEXT_DAY returns the date of the first weekday named by char that is later than the
date date. The return type is always DATE, regardless of the data type of date. The
argument char must be a day of the week in the date language of your session, either
the full name or the abbreviation. The minimum number of letters required is the
number of letters in the abbreviated version. Any characters immediately following the
valid abbreviation are ignored. The return value has the same hours, minutes, and
seconds component as the argument date.

Examples

This example returns the date of the next Tuesday after October 15, 2009:

SELECT NEXT_DAY('15-OCT-2009','TUESDAY') "NEXT DAY"
 FROM DUAL;

NEXT DAY

20-OCT-2009 00:00:00

NLS_CHARSET_DECL_LEN
Syntax

NLS_CHARSET_DECL_LEN (byte_count , char_set_id)

Purpose

NLS_CHARSET_DECL_LEN returns the declaration length (in number of characters) of an
NCHAR column. The byte_count argument is the width of the column. The char_set_id
argument is the character set ID of the column.

Examples

The following example returns the number of characters that are in a 200-byte column
when you are using a multibyte character set:

SELECT NLS_CHARSET_DECL_LEN(200, nls_charset_id('ja16eucfixed'))
 FROM DUAL;

NLS_CHARSET_DECL_LEN(200,NLS_CHARSET_ID('JA16EUCFIXED'))
--
 100

NLS_CHARSET_ID
Syntax

NLS_CHARSET_ID (string)

Chapter 7
NLS_CHARSET_DECL_LEN

7-236

Purpose

NLS_CHARSET_ID returns the character set ID number corresponding to character set name
string. The string argument is a run-time VARCHAR2 value. The string value 'CHAR_CS'
returns the database character set ID number of the server. The string value 'NCHAR_CS'
returns the national character set ID number of the server.

Invalid character set names return null.

See Also:

Oracle Database Globalization Support Guide for a list of character sets

Examples

The following example returns the character set ID of a character set:

SELECT NLS_CHARSET_ID('ja16euc')
 FROM DUAL;

NLS_CHARSET_ID('JA16EUC')

 830

NLS_CHARSET_NAME
Syntax

NLS_CHARSET_NAME (number)

Purpose

NLS_CHARSET_NAME returns the name of the character set corresponding to ID number number.
The character set name is returned as a VARCHAR2 value in the database character set. If
number is not recognized as a valid character set ID, then this function returns null.

This function returns a VARCHAR2 value.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
NLS_CHARSET_NAME

Examples

The following example returns the character set corresponding to character set ID number 2:

Chapter 7
NLS_CHARSET_NAME

7-237

SELECT NLS_CHARSET_NAME(2)
 FROM DUAL;

NLS_CH

WE8DEC

NLS_COLLATION_ID
Syntax

NLS_COLLATION_ID (expr)

Purpose

NLS_COLLATION_ID takes as its argument a collation name and returns the
corresponding collation ID number. Collation IDs are used in the data dictionary tables
and in Oracle Call Interface (OCI). Collation names are used in SQL statements and
data dictionary views

For expr, specify the collation name as a VARCHAR2 value. You can specify a valid
named collation or a pseudo-collation, in any combination of uppercase and lowercase
letters.

This function returns a NUMBER value. If you specify an invalid collation name, then this
function returns null.

Examples

The following example returns the collation ID of collation BINARY_CI:

SELECT NLS_COLLATION_ID('BINARY_CI')
 FROM DUAL;

NLS_COLLATION_ID('BINARY_CI')

 147455

NLS_COLLATION_NAME
Syntax

NLS_COLLATION_NAME (expr

, flag

)

Purpose

NLS_COLLATION_NAME takes as its argument a collation ID number and returns the
corresponding collation name. Collation IDs are used in the data dictionary tables and
in Oracle Call Interface (OCI). Collation names are used in SQL statements and data
dictionary views

Chapter 7
NLS_COLLATION_ID

7-238

For expr, specify the collation ID as a NUMBER value.

This function returns a VARCHAR2 value. If you specify an invalid collation ID, then this function
returns null.

The optional flag parameter applies only to Unicode Collation Algorithm (UCA) collations.
This parameter determines whether the function returns the short form or long form of the
collation name. The parameter must be a character expression evaluating to the value 'S',
's', 'L', or 'l', with the following meaning:

• 'S' or 's' – Returns the short form of the collation name

• 'L' or 'l' – Returns the long form of the collation name

If you omit flag, then the default is 'L'.

See Also:

• Oracle Database Globalization Support Guide for more information on UCA
collations

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of NLS_COLLATION_NAME

Examples

The following example returns the name of the collation corresponding to collation ID number
81919:

SELECT NLS_COLLATION_NAME(81919)
 FROM DUAL;

NLS_COLLA

BINARY_AI

The following example returns the short form of the name of the UCA collation corresponding
to collation ID number 208897:

SELECT NLS_COLLATION_NAME(208897,'S')
 FROM DUAL;

NLS_COLLATION

UCA0610_DUCET

The following example returns the long form of the name of the UCA collation corresponding
to collation ID number 208897:

SELECT NLS_COLLATION_NAME(208897,'L')
 FROM DUAL;

NLS_COLLATION_NAME(208897,'L')
--
UCA0610_DUCET_S4_VS_BN_NY_EN_FN_HN_DN_MN

Chapter 7
NLS_COLLATION_NAME

7-239

NLS_INITCAP
Syntax

NLS_INITCAP (char

, ’ nlsparam ’

)

Purpose

NLS_INITCAP returns char, with the first letter of each word in uppercase, all other
letters in lowercase. Words are delimited by white space or characters that are not
alphanumeric.

Both char and 'nlsparam' can be any of the data types CHAR, VARCHAR2, NCHAR, or
NVARCHAR2. The string returned is of VARCHAR2 data type and is in the same character
set as char.

The value of 'nlsparam' can have this form:

'NLS_SORT = sort'

where sort is a named collation. The collation handles special linguistic requirements
for case conversions. These requirements can result in a return value of a different
length than the char. If you omit 'nlsparam', then this function uses the determined
collation of the function.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also:

• "Data Type Comparison Rules " for more information.

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules for NLS_INITCAP , and for the collation
derivation rules, which define the collation assigned to the character
return value of this function

Examples

The following examples show how the linguistic sort sequence results in a different
return value from the function:

SELECT NLS_INITCAP('ijsland') "InitCap"
 FROM DUAL;

InitCap

Ijsland

SELECT NLS_INITCAP('ijsland', 'NLS_SORT = XDutch') "InitCap"
 FROM DUAL;

Chapter 7
NLS_INITCAP

7-240

InitCap

IJsland

See Also:

Oracle Database Globalization Support Guide for information on collations

NLS_LOWER
Syntax

NLS_LOWER (char

, ’ nlsparam ’

)

Purpose

NLS_LOWER returns char, with all letters lowercase.

Both char and 'nlsparam' can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB, or NCLOB. The string returned is of VARCHAR2 data type if char is a character data type
and a LOB if char is a LOB data type. The return string is in the same character set as char.

The 'nlsparam' can have the same form and serve the same purpose as in the NLS_INITCAP
function.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for NLS_LOWER, and for the collation derivation rules, which
define the collation assigned to the character return value of this function

Examples

The following statement returns the lowercase form of the character string 'NOKTASINDA' using
the XTurkish linguistic sort sequence. The Turkish uppercase I becoming a small, dotless i.

SELECT NLS_LOWER('NOKTASINDA', 'NLS_SORT = XTurkish') "Lowercase"
 FROM DUAL;

NLS_UPPER
Syntax

NLS_UPPER (char

, ’ nlsparam ’

)

Chapter 7
NLS_LOWER

7-241

Purpose

NLS_UPPER returns char, with all letters uppercase.

Both char and 'nlsparam' can be any of the data types CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. The string returned is of VARCHAR2 data type if char is a
character data type and a LOB if char is a LOB data type. The return string is in the
same character set as char.

The 'nlsparam' can have the same form and serve the same purpose as in the
NLS_INITCAP function.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for NLS_UPPER, and for the collation derivation rules,
which define the collation assigned to the character return value of this
function

Examples

The following example returns a string with all the letters converted to uppercase:

SELECT NLS_UPPER('große') "Uppercase"
 FROM DUAL;

Upper

GROßE

SELECT NLS_UPPER('große', 'NLS_SORT = XGerman') "Uppercase"
 FROM DUAL;

Upperc

GROSSE

See Also:

NLS_INITCAP

NLSSORT
Syntax

NLSSORT (char

, ’ nlsparam ’

)

Chapter 7
NLSSORT

7-242

Purpose

NLSSORT returns a collation key for the character value char and an explicitly or implicitly
specified collation. A collation key is a string of bytes used to sort char according to the
specified collation. The property of the collation keys is that mutual ordering of two such keys
generated for the given collation when compared according to their binary order is the same
as mutual ordering of the source character values when compared according to the given
collation.

Both char and 'nlsparam' can be any of the data types CHAR, VARCHAR2, NCHAR, or NVARCHAR2.

The value of 'nlsparam' must have the form

'NLS_SORT = collation'

where collation is the name of a linguistic collation or BINARY. NLSSORT uses the specified
collation to generate the collation key. If you omit 'nlsparam', then this function uses the
derived collation of the argument char. If you specify BINARY, then this function returns the
char value itself cast to RAW and possibly truncated as described below.

If you specify 'nlsparam', then you can append to the linguistic collation name the suffix _ai to
request an accent-insensitive collation or _ci to request a case-insensitive collation. Refer to
Oracle Database Globalization Support Guide for more information on accent- and case-
insensitive sorting. Using accent-insensitive or case-insensitive collations with the ORDER BY
query clause is not recommended as it leads to a nondeterministic sort order.

The returned collation key is of RAW data type. The length of the collation key resulting from a
given char value for a given collation may exceed the maximum length of the RAW value
returned by NLSSORT. In this case, the behavior of NLSSORT depends on the value of the
initialization parameter MAX_STRING_SIZE. If MAX_STRING_SIZE = EXTENDED, then the maximum
length of the return value is 32767 bytes. If the collation key exceeds this limit, then the
function fails with the error "ORA-12742: unable to create the collation key". This error may
also be reported for short input strings if they contain a high percentage of Unicode
characters with very high decomposition ratios.

See Also:

Oracle Database Globalization Support Guide for details of when the ORA-12742
error is reported and how to prevent application availability issues that the error
could cause

If MAX_STRING_SIZE = STANDARD, then the maximum length of the return value is 2000 bytes. If
the value to be returned exceeds the limit, then NLSSORT calculates the collation key for a
maximum prefix, or initial substring, of char so that the calculated result does not exceed the
maximum length. For monolingual collations, for example FRENCH, the prefix length is typically
1000 characters. For multilingual collations, for example GENERIC_M, the prefix is typically 500
characters. For Unicode Collation Algorithm (UCA) collations, for example UCA0610_DUCET,
the prefix is typically 285 characters. The exact length may be lower or higher depending on
the collation and the characters contained in char.

The behavior when MAX_STRING_SIZE = STANDARD implies that two character values whose
collation keys (NLSSORT results) are compared to find the linguistic ordering are considered

Chapter 7
NLSSORT

7-243

equal if they do not differ in the prefix even though they may differ at some further
character position. Because the NLSSORT function is used implicitly to find linguistic
ordering for comparison conditions, the BETWEEN condition, the IN condition, ORDER BY,
GROUP BY, and COUNT(DISTINCT), those operations may return results that are only
approximate for long character values. If you want guarantee that the results of those
operations are exact, then migrate your database to use MAX_STRING_SIZE = EXTENDED.

Refer to "Extended Data Types" for more information on the MAX_STRING_SIZE
initialization parameter.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also:

• "Data Type Comparison Rules " for more information.

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules for NLSSORT

Examples

This function can be used to specify sorting and comparison operations based on a
linguistic sort sequence rather than on the binary value of a string. The following
example creates a test table containing two values and shows how the values returned
can be ordered by the NLSSORT function:

CREATE TABLE test (name VARCHAR2(15));
INSERT INTO test VALUES ('Gaardiner');
INSERT INTO test VALUES ('Gaberd');
INSERT INTO test VALUES ('Gaasten');

SELECT *
 FROM test
 ORDER BY name;

NAME

Gaardiner
Gaasten
Gaberd

SELECT *
 FROM test
 ORDER BY NLSSORT(name, 'NLS_SORT = XDanish');

NAME

Gaberd
Gaardiner
Gaasten

The following example shows how to use the NLSSORT function in comparison
operations:

Chapter 7
NLSSORT

7-244

SELECT *
 FROM test
 WHERE name > 'Gaberd'
 ORDER BY name;

no rows selected

SELECT *
 FROM test
 WHERE NLSSORT(name, 'NLS_SORT = XDanish') >
 NLSSORT('Gaberd', 'NLS_SORT = XDanish')
 ORDER BY name;

NAME

Gaardiner
Gaasten

If you frequently use NLSSORT in comparison operations with the same linguistic sort
sequence, then consider this more efficient alternative: Set the NLS_COMP parameter (either
for the database or for the current session) to LINGUISTIC, and set the NLS_SORT parameter
for the session to the desired sort sequence. Oracle Database will use that sort sequence by
default for all sorting and comparison operations during the current session:

ALTER SESSION SET NLS_COMP = 'LINGUISTIC';
ALTER SESSION SET NLS_SORT = 'XDanish';

SELECT *
 FROM test
 WHERE name > 'Gaberd'
 ORDER BY name;

NAME

Gaardiner
Gaasten

See Also:

Oracle Database Globalization Support Guide for information on sort sequences

NTH_VALUE
Syntax

NTH_VALUE (measure_expr , n)

FROM
FIRST

LAST

RESPECT

IGNORE
NULLS

OVER (analytic_clause)

Chapter 7
NTH_VALUE

7-245

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions of
the analytic_clause

Purpose

NTH_VALUE returns the measure_expr value of the nth row in the window defined by the
analytic_clause. The returned value has the data type of the measure_expr.

• {RESPECT | IGNORE} NULLS determines whether null values of measure_expr are
included in or eliminated from the calculation. The default is RESPECT NULLS.

• n determines the nth row for which the measure value is to be returned. n can be a
constant, bind variable, column, or an expression involving them, as long as it
resolves to a positive integer. The function returns NULL if the data source window
has fewer than n rows. If n is null, then the function returns an error.

• FROM {FIRST | LAST} determines whether the calculation begins at the first or last
row of the window. The default is FROM FIRST.

If you omit the windowing_clause of the analytic_clause, it defaults to RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW. This default sometimes returns an unexpected
value for NTH_VALUE ... FROM LAST ... , because the last value in the window is at the
bottom of the window, which is not fixed. It keeps changing as the current row
changes. For expected results, specify the windowing_clause as RANGE BETWEEN
UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING. Alternatively, you can specify the
windowing_clause as RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING.

See Also:

• Oracle Database Data Warehousing Guide for more information on the
use of this function

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
return value of NTH_VALUE when it is a character value

Examples

The following example shows the minimum amount_sold value for the second
channel_id in ascending order for each prod_id between 13 and 16:

SELECT prod_id, channel_id, MIN(amount_sold),
 NTH_VALUE(MIN(amount_sold), 2) OVER (PARTITION BY prod_id ORDER BY channel_id
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) nv
 FROM sales
 WHERE prod_id BETWEEN 13 and 16
 GROUP BY prod_id, channel_id;

 PROD_ID CHANNEL_ID MIN(AMOUNT_SOLD) NV
---------- ---------- ---------------- ----------
 13 2 907.34 906.2

Chapter 7
NTH_VALUE

7-246

 13 3 906.2 906.2
 13 4 842.21 906.2
 14 2 1015.94 1036.72
 14 3 1036.72 1036.72
 14 4 935.79 1036.72
 15 2 871.19 871.19
 15 3 871.19 871.19
 15 4 871.19 871.19
 16 2 266.84 266.84
 16 3 266.84 266.84
 16 4 266.84 266.84
 16 9 11.99 266.84

13 rows selected.

NTILE
Syntax

NTILE (expr) OVER (

query_partition_clause

order_by_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions,
including valid forms of expr

Purpose

NTILE is an analytic function. It divides an ordered data set into a number of buckets indicated
by expr and assigns the appropriate bucket number to each row. The buckets are numbered
1 through expr. The expr value must resolve to a positive constant for each partition. Oracle
Database expects an integer, and if expr is a noninteger constant, then Oracle truncates the
value to an integer. The return value is NUMBER.

The number of rows in the buckets can differ by at most 1. The remainder values (the
remainder of number of rows divided by buckets) are distributed one for each bucket, starting
with bucket 1.

If expr is greater than the number of rows, then a number of buckets equal to the number of
rows will be filled, and the remaining buckets will be empty.

You cannot nest analytic functions by using NTILE or any other analytic function for expr.
However, you can use other built-in function expressions for expr.

See Also:

"About SQL Expressions " for information on valid forms of expr and Table 2-8 for
more information on implicit conversion

Chapter 7
NTILE

7-247

Examples

The following example divides into 4 buckets the values in the salary column of the
oe.employees table from Department 100. The salary column has 6 values in this
department, so the two extra values (the remainder of 6 / 4) are allocated to buckets 1
and 2, which therefore have one more value than buckets 3 or 4.

SELECT last_name, salary, NTILE(4) OVER (ORDER BY salary DESC) AS quartile
 FROM employees
 WHERE department_id = 100
 ORDER BY last_name, salary, quartile;

LAST_NAME SALARY QUARTILE
------------------------- ---------- ----------
Chen 8200 2
Faviet 9000 1
Greenberg 12008 1
Popp 6900 4
Sciarra 7700 3
Urman 7800 2

NULLIF
Syntax

NULLIF (expr1 , expr2)

Purpose

NULLIF compares expr1 and expr2. If they are equal, then the function returns null. If
they are not equal, then the function returns expr1. You cannot specify the literal NULL
for expr1.

If both arguments are numeric data types, then Oracle Database determines the
argument with the higher numeric precedence, implicitly converts the other argument
to that data type, and returns that data type. If the arguments are not numeric, then
they must be of the same data type, or Oracle returns an error.

The NULLIF function is logically equivalent to the following CASE expression:

CASE WHEN expr1 = expr2 THEN NULL ELSE expr1 END

See Also:

• "CASE Expressions "

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules, which define the collation NULLIF uses to
compare characters from expr1 with characters from expr2, and for the
collation derivation rules, which define the collation assigned to the
return value of this function when it is a character value

Chapter 7
NULLIF

7-248

Examples

The following example selects those employees from the sample schema hr who have
changed jobs since they were hired, as indicated by a job_id in the job_history table
different from the current job_id in the employees table:

SELECT e.last_name, NULLIF(j.job_id, e.job_id) "Old Job ID"
 FROM employees e, job_history j
 WHERE e.employee_id = j.employee_id
 ORDER BY last_name, "Old Job ID";

LAST_NAME Old Job ID
------------------------- ----------
De Haan IT_PROG
Hartstein MK_REP
Kaufling ST_CLERK
Kochhar AC_ACCOUNT
Kochhar AC_MGR
Raphaely ST_CLERK
Taylor SA_MAN
Taylor
Whalen AC_ACCOUNT
Whalen

NUMTODSINTERVAL
Syntax

NUMTODSINTERVAL (n , ’ interval_unit ’)

Purpose

NUMTODSINTERVAL converts n to an INTERVAL DAY TO SECOND literal. The argument n can be
any NUMBER value or an expression that can be implicitly converted to a NUMBER value. The
argument interval_unit can be of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type. The
value for interval_unit specifies the unit of n and must resolve to one of the following string
values:

• 'DAY'

• 'HOUR'

• 'MINUTE'

• 'SECOND'

interval_unit is case insensitive. Leading and trailing values within the parentheses are
ignored. By default, the precision of the return is 9.

See Also:

Table 2-8 for more information on implicit conversion

Chapter 7
NUMTODSINTERVAL

7-249

Examples

The following example uses NUMTODSINTERVAL in a COUNT analytic function to calculate,
for each employee, the number of employees hired by the same manager within the
past 100 days from his or her hire date. Refer to "Analytic Functions " for more
information on the syntax of the analytic functions.

SELECT manager_id, last_name, hire_date,
 COUNT(*) OVER (PARTITION BY manager_id ORDER BY hire_date
 RANGE NUMTODSINTERVAL(100, 'day') PRECEDING) AS t_count
 FROM employees
 ORDER BY last_name, hire_date;

MANAGER_ID LAST_NAME HIRE_DATE T_COUNT
---------- ------------------------- --------- ----------
 149 Abel 11-MAY-04 1
 147 Ande 24-MAR-08 3
 121 Atkinson 30-OCT-05 2
 103 Austin 25-JUN-05 1
. . .
 124 Walsh 24-APR-06 2
 100 Weiss 18-JUL-04 1
 101 Whalen 17-SEP-03 1
 100 Zlotkey 29-JAN-08 2

NUMTOYMINTERVAL
Syntax

NUMTOYMINTERVAL (n , ’ interval_unit ’)

Purpose

NUMTOYMINTERVAL converts number n to an INTERVAL YEAR TO MONTH literal. The
argument n can be any NUMBER value or an expression that can be implicitly converted
to a NUMBER value. The argument interval_unit can be of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type. The value for interval_unit specifies the unit of n and must
resolve to one of the following string values:

• 'YEAR'

• 'MONTH'

interval_unit is case insensitive. Leading and trailing values within the parentheses
are ignored. By default, the precision of the return is 9.

See Also:

Table 2-8 for more information on implicit conversion

Chapter 7
NUMTOYMINTERVAL

7-250

Examples

The following example uses NUMTOYMINTERVAL in a SUM analytic function to calculate, for each
employee, the total salary of employees hired in the past one year from his or her hire date.
Refer to "Analytic Functions " for more information on the syntax of the analytic functions.

SELECT last_name, hire_date, salary,
 SUM(salary) OVER (ORDER BY hire_date
 RANGE NUMTOYMINTERVAL(1,'year') PRECEDING) AS t_sal
 FROM employees
 ORDER BY last_name, hire_date;

LAST_NAME HIRE_DATE SALARY T_SAL
------------------------- --------- ---------- ----------
Abel 11-MAY-04 11000 90300
Ande 24-MAR-08 6400 112500
Atkinson 30-OCT-05 2800 177000
Austin 25-JUN-05 4800 134700
. . .
Walsh 24-APR-06 3100 186200
Weiss 18-JUL-04 8000 70900
Whalen 17-SEP-03 4400 54000
Zlotkey 29-JAN-08 10500 119000

NVL
Syntax

NVL (expr1 , expr2)

Purpose

NVL lets you replace null (returned as a blank) with a string in the results of a query. If expr1 is
null, then NVL returns expr2. If expr1 is not null, then NVL returns expr1.

The arguments expr1 and expr2 can have any data type. If their data types are different, then
Oracle Database implicitly converts one to the other. If they cannot be converted implicitly,
then the database returns an error. The implicit conversion is implemented as follows:

• If expr1 is character data, then Oracle Database converts expr2 to the data type of expr1
before comparing them and returns VARCHAR2 in the character set of expr1.

• If expr1 is numeric, then Oracle Database determines which argument has the highest
numeric precedence, implicitly converts the other argument to that data type, and returns
that data type.

Chapter 7
NVL

7-251

See Also:

• Table 2-8 for more information on implicit conversion and "Numeric
Precedence " for information on numeric precedence

• "COALESCE " and "CASE Expressions ", which provide functionality
similar to that of NVL

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
return value of NVL when it is a character value

Examples

The following example returns a list of employee names and commissions, substituting
"Not Applicable" if the employee receives no commission:

SELECT last_name, NVL(TO_CHAR(commission_pct), 'Not Applicable') commission
 FROM employees
 WHERE last_name LIKE 'B%'
 ORDER BY last_name;

LAST_NAME COMMISSION
------------------------- --
Baer Not Applicable
Baida Not Applicable
Banda .1
Bates .15
Bell Not Applicable
Bernstein .25
Bissot Not Applicable
Bloom .2
Bull Not Applicable

NVL2
Syntax

NVL2 (expr1 , expr2 , expr3)

Purpose

NVL2 lets you determine the value returned by a query based on whether a specified
expression is null or not null. If expr1 is not null, then NVL2 returns expr2. If expr1 is
null, then NVL2 returns expr3.

The argument expr1 can have any data type. The arguments expr2 and expr3 can
have any data types except LONG.

If the data types of expr2 and expr3 are different, then Oracle Database implicitly
converts one to the other. If they cannot be converted implicitly, then the database
returns an error. If expr2 is character or numeric data, then the implicit conversion is
implemented as follows:

Chapter 7
NVL2

7-252

• If expr2 is character data, then Oracle Database converts expr3 to the data type of expr2
before returning a value unless expr3 is a null constant. In that case, a data type
conversion is not necessary, and the database returns VARCHAR2 in the character set of
expr2.

• If expr2 is numeric data, then Oracle Database determines which argument has the
highest numeric precedence, implicitly converts the other argument to that data type, and
returns that data type.

See Also:

• Table 2-8 for more information on implicit conversion and "Numeric Precedence
" for information on numeric precedence

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of NVL2
when it is a character value

Examples

The following example shows whether the income of some employees is made up of salary
plus commission, or just salary, depending on whether the commission_pct column of
employees is null or not.

SELECT last_name, salary,
 NVL2(commission_pct, salary + (salary * commission_pct), salary) income
 FROM employees
 WHERE last_name like 'B%'
 ORDER BY last_name;

LAST_NAME SALARY INCOME
------------------------- ---------- ----------
Baer 10000 10000
Baida 2900 2900
Banda 6200 6820
Bates 7300 8395
Bell 4000 4000
Bernstein 9500 11875
Bissot 3300 3300
Bloom 10000 12000
Bull 4100 4100

ORA_DM_PARTITION_NAME
Syntax

ORA_DM_PARTITION_NAME (

schema .

model mining_attribute_clause)

Chapter 7
ORA_DM_PARTITION_NAME

7-253

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Purpose

ORA_DM_PARTITION_NAME is a single row function that works along with other existing
functions. This function returns the name of the partition associated with the input row.
When ORA_DM_PARTITION_NAME is used on a non-partitioned model, the result is NULL.

The syntax of the ORA_DM_PARTITION_NAME function can use an optional GROUPING hint
when scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

The mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. See mining_attribute_clause.

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring

• Oracle Machine Learning for SQL Concepts for information about
clustering

Note:

The following examples are excerpted from the Oracle Machine Learning for
SQL sample programs. For more information about the sample programs,
see Appendix A in Oracle Machine Learning for SQL User’s Guide.

Example

SELECT prediction(mymodel using *) pred, ora_dm_partition_name(mymodel
USING *) pname FROM customers;

Chapter 7
ORA_DM_PARTITION_NAME

7-254

ORA_DST_AFFECTED
Syntax

ORA_DST_AFFECTED (datetime_expr)

Purpose

ORA_DST_AFFECTED is useful when you are changing the time zone data file for your database.
The function takes as an argument a datetime expression that resolves to a TIMESTAMP WITH
TIME ZONE value or a VARRAY object that contains TIMESTAMP WITH TIME ZONE values. The
function returns 1 if the datetime value is affected by or will result in a "nonexisting time" or
"duplicate time" error with the new time zone data. Otherwise, it returns 0.

This function can be issued only when changing the time zone data file of the database and
upgrading the timestamp with the time zone data, and only between the execution of the
DBMS_DST.BEGIN_PREPARE and the DBMS_DST.END_PREPARE procedures or between the
execution of the DBMS_DST.BEGIN_UPGRADE and the DBMS_DST.END_UPGRADE procedures.

See Also:

Oracle Database Globalization Support Guide for more information on time zone
data files and on how Oracle Database handles daylight saving time, and Oracle
Database PL/SQL Packages and Types Reference for information on the DBMS_DST
package

ORA_DST_CONVERT
Syntax

ORA_DST_CONVERT (datetime_expr

, integer

, integer

)

Purpose

ORA_DST_CONVERT is useful when you are changing the time zone data file for your database.
The function lets you specify error handling for a specified datetime expression.

• For datetime_expr, specify a datetime expression that resolves to a TIMESTAMP WITH
TIME ZONE value or a VARRAY object that contains TIMESTAMP WITH TIME ZONE values.

• The optional second argument specifies handling of "duplicate time" errors. Specify 0
(false) to suppress the error by returning the source datetime value. This is the default.
Specify 1 (true) to allow the database to return the duplicate time error.

Chapter 7
ORA_DST_AFFECTED

7-255

• The optional third argument specifies handling of "nonexisting time" errors. Specify
0 (false) to suppress the error by returning the source datetime value. This is the
default. Specify 1 (true) to allow the database to return the nonexisting time error.

If no error occurs, this function returns a value of the same data type as
datetime_expr (a TIMESTAMP WITH TIME ZONE value or a VARRAY object that contains
TIMESTAMP WITH TIME ZONE values). The returned datetime value when interpreted with
the new time zone file corresponds to datetime_expr interpreted with the old time
zone file.

This function can be issued only when changing the time zone data file of the
database and upgrading the timestamp with the time zone data, and only between the
execution of the DBMS_DST.BEGIN_UPGRADE and the DBMS_DST.END_UPGRADE procedures.

See Also:

Oracle Database Globalization Support Guide for more information on time
zone data files and on how Oracle Database handles daylight saving time,
and Oracle Database PL/SQL Packages and Types Reference for
information on the DBMS_DST package

ORA_DST_ERROR
Syntax

ORA_DST_ERROR (datetime_expr)

Purpose

ORA_DST_ERROR is useful when you are changing the time zone data file for your
database. The function takes as an argument a datetime expression that resolves to a
TIMESTAMP WITH TIME ZONE value or a VARRAY object that contains TIMESTAMP WITH TIME
ZONE values, and indicates whether the datetime value will result in an error with the
new time zone data. The return values are:

• 0: the datetime value does not result in an error with the new time zone data.

• 1878: the datetime value results in a "nonexisting time" error.

• 1883: the datetime value results in a "duplicate time" error.

This function can be issued only when changing the time zone data file of the
database and upgrading the timestamp with the time zone data, and only between the
execution of the DBMS_DST.BEGIN_PREPARE and the DBMS_DST.END_PREPARE procedures
or between the execution of the DBMS_DST.BEGIN_UPGRADE and the
DBMS_DST.END_UPGRADE procedures.

Chapter 7
ORA_DST_ERROR

7-256

See Also:

Oracle Database Globalization Support Guide for more information on time zone
data files and on how Oracle Database handles daylight saving time, and Oracle
Database PL/SQL Packages and Types Reference for information on the DBMS_DST
package

ORA_HASH
Syntax

ORA_HASH (expr

, max_bucket

, seed_value

)

Purpose

ORA_HASH is a function that computes a hash value for a given expression. This function is
useful for operations such as analyzing a subset of data and generating a random sample.

• The expr argument determines the data for which you want Oracle Database to compute
a hash value. There are no restrictions on the length of data represented by expr, which
commonly resolves to a column name. The expr cannot be a LONG or LOB type. It cannot
be a user-defined object type unless it is a nested table type. The hash value for nested
table types does not depend on the order of elements in the collection. All other data
types are supported for expr.

• The optional max_bucket argument determines the maximum bucket value returned by
the hash function. You can specify any value between 0 and 4294967295. The default is
4294967295.

• The optional seed_value argument enables Oracle to produce many different results for
the same set of data. Oracle applies the hash function to the combination of expr and
seed_value. You can specify any value between 0 and 4294967295. The default is 0.

The function returns a NUMBER value.

Examples

The following example creates a hash value for each combination of customer ID and product
ID in the sh.sales table, divides the hash values into a maximum of 100 buckets, and returns
the sum of the amount_sold values in the first bucket (bucket 0). The third argument (5)
provides a seed value for the hash function. You can obtain different hash results for the
same query by changing the seed value.

SELECT SUM(amount_sold)
 FROM sales
 WHERE ORA_HASH(CONCAT(cust_id, prod_id), 99, 5) = 0;

SUM(AMOUNT_SOLD)

 989431.14

Chapter 7
ORA_HASH

7-257

ORA_INVOKING_USER
Syntax

ORA_INVOKING_USER

Purpose

ORA_INVOKING_USER returns the name of the database user who invoked the current
statement or view. This function takes into account the BEQUEATH property of
intervening views referenced in the statement. If this function is invoked from within a
definer's rights context, then it returns the name of the owner of the definer's rights
object. If the invoking user is a Real Application Security user, then it returns user
XS$NULL.

This function returns a VARCHAR2 value.

See Also:

• BEQUEATH clause of the CREATE VIEW statement

• Oracle Database 2 Day + Security Guide for more information on user
XS$NULL

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of ORA_INVOKING_USER

Examples

The following example returns the name of the database user who invoked the
statement:

SELECT ORA_INVOKING_USER FROM DUAL;

ORA_INVOKING_USERID
Syntax

ORA_INVOKING_USERID

Purpose

ORA_INVOKING_USERID returns the identifier of the database user who invoked the
current statement or view. This function takes into account the BEQUEATH property of
intervening views referenced in the statement.

Chapter 7
ORA_INVOKING_USER

7-258

This function returns a NUMBER value.

See Also:

• ORA_INVOKING_USER to learn how Oracle Database determines the
database user who invoked the current statement or view

• BEQUEATH clause of the CREATE VIEW statement

Examples

The following example returns the identifier of the database user who invoked the statement:

SELECT ORA_INVOKING_USERID FROM DUAL;

PATH
Syntax

PATH (correlation_integer)

Purpose

PATH is an ancillary function used only with the UNDER_PATH and EQUALS_PATH conditions. It
returns the relative path that leads to the resource specified in the parent condition.

The correlation_integer can be any NUMBER integer and is used to correlate this ancillary
function with its primary condition. Values less than 1 are treated as 1.

See Also:

• EQUALS_PATH Condition and UNDER_PATH Condition

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of PATH

Examples

Refer to the related function DEPTH for an example using both of these ancillary functions of
the EQUALS_PATH and UNDER_PATH conditions.

Chapter 7
PATH

7-259

PERCENT_RANK
Aggregate Syntax

percent_rank_aggregate::=

PERCENT_RANK (expr

,

) WITHIN GROUP

(ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

Analytic Syntax

percent_rank_analytic::=

PERCENT_RANK () OVER (

query_partition_clause

order_by_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

PERCENT_RANK is similar to the CUME_DIST (cumulative distribution) function. The range
of values returned by PERCENT_RANK is 0 to 1, inclusive. The first row in any set has a
PERCENT_RANK of 0. The return value is NUMBER.

See Also:

Table 2-8 for more information on implicit conversion

• As an aggregate function, PERCENT_RANK calculates, for a hypothetical row r
identified by the arguments of the function and a corresponding sort specification,
the rank of row r minus 1 divided by the number of rows in the aggregate group.
This calculation is made as if the hypothetical row r were inserted into the group of
rows over which Oracle Database is to aggregate.

The arguments of the function identify a single hypothetical row within each
aggregate group. Therefore, they must all evaluate to constant expressions within

Chapter 7
PERCENT_RANK

7-260

each aggregate group. The constant argument expressions and the expressions in the
ORDER BY clause of the aggregate match by position. Therefore the number of arguments
must be the same and their types must be compatible.

• As an analytic function, for a row r, PERCENT_RANK calculates the rank of r minus 1,
divided by 1 less than the number of rows being evaluated (the entire query result set or
a partition).

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation PERCENT_RANK uses to compare
character values for the ORDER BY clause

Aggregate Example

The following example calculates the percent rank of a hypothetical employee in the sample
table hr.employees with a salary of $15,500 and a commission of 5%:

SELECT PERCENT_RANK(15000, .05) WITHIN GROUP
 (ORDER BY salary, commission_pct) "Percent-Rank"
 FROM employees;

Percent-Rank

 .971962617

Analytic Example

The following example calculates, for each employee, the percent rank of the employee's
salary within the department:

SELECT department_id, last_name, salary, PERCENT_RANK()
 OVER (PARTITION BY department_id ORDER BY salary DESC) AS pr
 FROM employees
 ORDER BY pr, salary, last_name;

DEPARTMENT_ID LAST_NAME SALARY PR
------------- ------------------------- ---------- ----------
 10 Whalen 4400 0
 40 Mavris 6500 0
 Grant 7000 0
. . .
 80 Vishney 10500 .181818182
 80 Zlotkey 10500 .181818182
 30 Khoo 3100 .2
. . .
 50 Markle 2200 .954545455
 50 Philtanker 2200 .954545455
 50 Olson 2100 1
. . .

Chapter 7
PERCENT_RANK

7-261

PERCENTILE_CONT
Syntax

PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BY expr

DESC

ASC

)

OVER (query_partition_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions of
the OVER clause

Purpose

PERCENTILE_CONT is an inverse distribution function that assumes a continuous
distribution model. It takes a percentile value and a sort specification, and returns an
interpolated value that would fall into that percentile value with respect to the sort
specification. Nulls are ignored in the calculation.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. The function returns the
same data type as the numeric data type of the argument.

See Also:

Table 2-8 for more information on implicit conversion

The first expr must evaluate to a numeric value between 0 and 1, because it is a
percentile value. This expr must be constant within each aggregation group. The
ORDER BY clause takes a single expression that must be a numeric or datetime value,
as these are the types over which Oracle can perform interpolation.

The result of PERCENTILE_CONT is computed by linear interpolation between values
after ordering them. Using the percentile value (P) and the number of rows (N) in the
aggregation group, you can compute the row number you are interested in after
ordering the rows with respect to the sort specification. This row number (RN) is
computed according to the formula RN = (1+(P*(N-1)). The final result of the
aggregate function is computed by linear interpolation between the values from rows
at row numbers CRN = CEILING(RN) and FRN = FLOOR(RN).

The final result will be:

Chapter 7
PERCENTILE_CONT

7-262

 If (CRN = FRN = RN) then the result is
 (value of expression from row at RN)
 Otherwise the result is
 (CRN - RN) * (value of expression for row at FRN) +
 (RN - FRN) * (value of expression for row at CRN)

You can use the PERCENTILE_CONT function as an analytic function. You can specify only the
query_partitioning_clause in its OVER clause. It returns, for each row, the value that would
fall into the specified percentile among a set of values within each partition.

The MEDIAN function is a specific case of PERCENTILE_CONT where the percentile value
defaults to 0.5. For more information, refer to MEDIAN .

Note:

Before processing a large amount of data with the PERCENTILE_CONT function,
consider using one of the following methods to obtain approximate results more
quickly than exact results:

• Set the APPROX_FOR_PERCENTILE initialization parameter to PERCENTILE_CONT or
ALL before using the PERCENTILE_CONT function. Refer to Oracle Database
Reference for more information on this parameter.

• Use the APPROX_PERCENTILE function instead of the PERCENTILE_CONT function.
Refer to APPROX_PERCENTILE.

Aggregate Example

The following example computes the median salary in each department:

SELECT department_id,
 PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY salary DESC) "Median cont",
 PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY salary DESC) "Median disc"
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

DEPARTMENT_ID Median cont Median disc
------------- ----------- -----------
 10 4400 4400
 20 9500 13000
 30 2850 2900
 40 6500 6500
 50 3100 3100
 60 4800 4800
 70 10000 10000
 80 8900 9000
 90 17000 17000
 100 8000 8200
 110 10154 12008
 7000 7000

PERCENTILE_CONT and PERCENTILE_DISC may return different results. PERCENTILE_CONT
returns a computed result after doing linear interpolation. PERCENTILE_DISC simply returns a
value from the set of values that are aggregated over. When the percentile value is 0.5, as in
this example, PERCENTILE_CONT returns the average of the two middle values for groups with

Chapter 7
PERCENTILE_CONT

7-263

even number of elements, whereas PERCENTILE_DISC returns the value of the first one
among the two middle values. For aggregate groups with an odd number of elements,
both functions return the value of the middle element.

Analytic Example

In the following example, the median for Department 60 is 4800, which has a
corresponding percentile (Percent_Rank) of 0.5. None of the salaries in Department 30
have a percentile of 0.5, so the median value must be interpolated between 2900
(percentile 0.4) and 2800 (percentile 0.6), which evaluates to 2850.

SELECT last_name, salary, department_id,
 PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY salary DESC)
 OVER (PARTITION BY department_id) "Percentile_Cont",
 PERCENT_RANK()
 OVER (PARTITION BY department_id ORDER BY salary DESC) "Percent_Rank"
 FROM employees
 WHERE department_id IN (30, 60)
 ORDER BY last_name, salary, department_id;

LAST_NAME SALARY DEPARTMENT_ID Percentile_Cont Percent_Rank
------------------------- ---------- ------------- --------------- ------------
Austin 4800 60 4800 .5
Baida 2900 30 2850 .4
Colmenares 2500 30 2850 1
Ernst 6000 60 4800 .25
Himuro 2600 30 2850 .8
Hunold 9000 60 4800 0
Khoo 3100 30 2850 .2
Lorentz 4200 60 4800 1
Pataballa 4800 60 4800 .5
Raphaely 11000 30 2850 0
Tobias 2800 30 2850 .6

PERCENTILE_DISC
Syntax

PERCENTILE_DISC (expr) WITHIN GROUP (ORDER BY expr

DESC

ASC

)

OVER (query_partition_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions of
the OVER clause

Chapter 7
PERCENTILE_DISC

7-264

Purpose

PERCENTILE_DISC is an inverse distribution function that assumes a discrete distribution
model. It takes a percentile value and a sort specification and returns an element from the
set. Nulls are ignored in the calculation.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type
as the numeric data type of the argument.

See Also:

Table 2-8 for more information on implicit conversion

The first expr must evaluate to a numeric value between 0 and 1, because it is a percentile
value. This expression must be constant within each aggregate group. The ORDER BY clause
takes a single expression that can be of any type that can be sorted.

For a given percentile value P, PERCENTILE_DISC sorts the values of the expression in the
ORDER BY clause and returns the value with the smallest CUME_DIST value (with respect to the
same sort specification) that is greater than or equal to P.

Note:

Before processing a large amount of data with the PERCENTILE_DISC function,
consider using one of the following methods to obtain approximate results more
quickly than exact results:

• Set the APPROX_FOR_PERCENTILE initialization parameter to PERCENTILE_DISC or
ALL before using the PERCENTILE_DISC function. Refer to Oracle Database
Reference for more information on this parameter.

• Use the APPROX_PERCENTILE function instead of the PERCENTILE_DISC function.
Refer to APPROX_PERCENTILE.

Aggregate Example

See aggregate example for PERCENTILE_CONT .

Analytic Example

The following example calculates the median discrete percentile of the salary of each
employee in the sample table hr.employees:

SELECT last_name, salary, department_id,
 PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY salary DESC)
 OVER (PARTITION BY department_id) "Percentile_Disc",
 CUME_DIST() OVER (PARTITION BY department_id
 ORDER BY salary DESC) "Cume_Dist"
 FROM employees
 WHERE department_id in (30, 60)
 ORDER BY last_name, salary, department_id;

Chapter 7
PERCENTILE_DISC

7-265

LAST_NAME SALARY DEPARTMENT_ID Percentile_Disc Cume_Dist
------------------------- ---------- ------------- --------------- ----------
Austin 4800 60 4800 .8
Baida 2900 30 2900 .5
Colmenares 2500 30 2900 1
Ernst 6000 60 4800 .4
Himuro 2600 30 2900 .833333333
Hunold 9000 60 4800 .2
Khoo 3100 30 2900 .333333333
Lorentz 4200 60 4800 1
Pataballa 4800 60 4800 .8
Raphaely 11000 30 2900 .166666667
Tobias 2800 30 2900 .666666667

The median value for Department 30 is 2900, which is the value whose corresponding
percentile (Cume_Dist) is the smallest value greater than or equal to 0.5. The median
value for Department 60 is 4800, which is the value whose corresponding percentile is
the smallest value greater than or equal to 0.5.

POWER
Syntax

POWER (n2 , n1)

Purpose

POWER returns n2 raised to the n1 power. The base n2 and the exponent n1 can be any
numbers, but if n2 is negative, then n1 must be an integer.

This function takes as arguments any numeric data type or any nonnumeric data type
that can be implicitly converted to a numeric data type. If any argument is
BINARY_FLOAT or BINARY_DOUBLE, then the function returns BINARY_DOUBLE. Otherwise,
the function returns NUMBER.

See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns 3 squared:

SELECT POWER(3,2) "Raised"
 FROM DUAL;

 Raised

 9

Chapter 7
POWER

7-266

POWERMULTISET
Syntax

POWERMULTISET (expr)

Purpose

POWERMULTISET takes as input a nested table and returns a nested table of nested tables
containing all nonempty subsets (called submultisets) of the input nested table.

• expr can be any expression that evaluates to a nested table.

• If expr resolves to null, then Oracle Database returns NULL.

• If expr resolves to a nested table that is empty, then Oracle returns an error.

• The element types of the nested table must be comparable. Refer to "Comparison
Conditions " for information on the comparability of nonscalar types.

Note:

This function is not supported in PL/SQL.

Examples

First, create a data type that is a nested table of the cust_address_tab_type data type:

CREATE TYPE cust_address_tab_tab_typ
 AS TABLE OF cust_address_tab_typ;
/

Now, select the nested table column cust_address_ntab from the customers_demo table
using the POWERMULTISET function:

SELECT CAST(POWERMULTISET(cust_address_ntab) AS cust_address_tab_tab_typ)
 FROM customers_demo;

CAST(POWERMULTISET(CUST_ADDRESS_NTAB) AS CUST_ADDRESS_TAB_TAB_TYP)
 (STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
--
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP
 ('514 W Superior St', '46901', 'Kokomo', 'IN', 'US')))
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP
 ('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US')))
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP
 ('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US')))
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP
 ('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US')))
. . .

The preceding example requires the customers_demo table and a nested table column
containing data. Refer to "Multiset Operators " to create this table and nested table columns.

Chapter 7
POWERMULTISET

7-267

POWERMULTISET_BY_CARDINALITY
Syntax

POWERMULTISET_BY_CARDINALITY (expr , cardinality)

Purpose

POWERMULTISET_BY_CARDINALITY takes as input a nested table and a cardinality and
returns a nested table of nested tables containing all nonempty subsets (called
submultisets) of the nested table of the specified cardinality.

• expr can be any expression that evaluates to a nested table.

• cardinality can be any positive integer.

• If expr resolves to null, then Oracle Database returns NULL.

• If expr resolves to a nested table that is empty, then Oracle returns an error.

• The element types of the nested table must be comparable. Refer to "Comparison
Conditions " for information on the comparability of nonscalar types.

Note:

This function is not supported in PL/SQL.

Examples

First, create a data type that is a nested table of the cust_address_tab_type data
type:

CREATE TYPE cust_address_tab_tab_typ
 AS TABLE OF cust_address_tab_typ;
/

Next, duplicate the elements in all the nested table rows to increase the cardinality of
the nested table rows to 2:

UPDATE customers_demo
 SET cust_address_ntab = cust_address_ntab MULTISET UNION cust_address_ntab;

Now, select the nested table column cust_address_ntab from the customers_demo
table using the POWERMULTISET_BY_CARDINALITY function:

SELECT CAST(POWERMULTISET_BY_CARDINALITY(cust_address_ntab, 2)
 AS cust_address_tab_tab_typ)
 FROM customers_demo;

CAST(POWERMULTISET_BY_CARDINALITY(CUST_ADDRESS_NTAB,2) AS CUST_ADDRESS_TAB_TAB_TYP)
 (STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
--
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP
 (CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'),
 CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US')))

Chapter 7
POWERMULTISET_BY_CARDINALITY

7-268

CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP
 (CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'),
 CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US')))
CUST_ADDRESS_TAB_TAB_TYP(CUST_ADDRESS_TAB_TYP
 (CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'),
 CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US')))
. . .

The preceding example requires the customers_demo table and a nested table column
containing data. Refer to "Multiset Operators " to create this table and nested table columns.

PREDICTION
Syntax

prediction::=

PREDICTION (

grouping_hint schema .

model

cost_matrix_clause

mining_attribute_clause)

prediction_ordered::=

PREDICTION (

grouping_hint schema .

model

cost_matrix_clause

mining_attribute_clause)

OVER (order_by_clause

,

)

Analytic Syntax

prediction_analytic::=

PREDICTION (
OF ANOMALY

FOR expr

cost_matrix_clause

mining_attribute_clause)

OVER (mining_analytic_clause)

cost_matrix_clause::=

COST

MODEL

AUTO

(class_value

,

) VALUES ((cost_value

,

)

,

)

Chapter 7
PREDICTION

7-269

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions " for information on the syntax, semantics, and
restrictions of mining_analytic_clause

Purpose

PREDICTION returns a prediction for each row in the selection. The data type of the
returned prediction depends on whether the function performs Regression,
Classification, or Anomaly Detection.

• Regression: Returns the expected target value for each row. The data type of the
return value is the data type of the target.

• Classification: Returns the most probable target class (or lowest cost target
class, if costs are specified) for each row. The data type of the return value is the
data type of the target.

• Anomaly Detection: Returns 1 or 0 for each row. Typical rows are classified as 1.
Rows that differ significantly from the rest of the data are classified as 0.

cost_matrix_clause

Costs are a biasing factor for minimizing the most harmful kinds of misclassifications.
You can specify cost_matrix_clause for Classification or Anomaly Detection. Costs
are not relevant for Regression. The cost_matrix_clause behaves as described for
"PREDICTION_COST ".

Syntax Choice

PREDICTION can score data by applying a mining model object to the data, or it can
dynamically score the data by executing an analytic clause that builds and applies one
or more transient mining models. Choose Syntax or Analytic Syntax:

Chapter 7
PREDICTION

7-270

• Syntax: Use the prediction syntax to score the data with a pre-defined model. Supply
the name of a model that performs classification, regression, or anomaly detection.

Use the prediction_ordered syntax for a model that requires ordered data, such as an
MSET-SPRT model. The prediction_ordered syntax requires an order_by_clause
clause.

Restrictions on the prediction_ordered syntax are that you cannot use it in the WHERE
clause of a query. Also, you cannot use a query_partition_clause or a
windowing_clause with the prediction_ordered syntax.

For details about the order_by_clause, see "Analytic Functions ".

• Analytic Syntax: Use the analytic syntax to score the data without a pre-defined model.
The analytic syntax uses mining_analytic_clause , which specifies if the data should be
partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

– For Regression, specify FOR expr, where expr is an expression that identifies a target
column that has a numeric data type.

– For Classification, specify FOR expr, where expr is an expression that identifies a
target column that has a character data type.

– For Anomaly Detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION function can use an optional GROUPING hint when scoring a
partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for scoring.

• If you specify USING *, all the relevant attributes present in the input row are used.

• If you invoke the function with the analytic syntax, the mining_attribute_clause is used
both for building the transient models and for scoring.

• It you invoke the function with a pre-defined model, the mining_attribute_clause
should include all or some of the attributes that were used to create the model. The
following conditions apply:

– If mining_attribute_clause includes an attribute with the same name but a different
data type from the one that was used to create the model, then the data type is
converted to the type expected by the model.

– If you specify more attributes for scoring than were used to create the model, then
the extra attributes are silently ignored.

– If you specify fewer attributes for scoring than were used to create the model, then
scoring is performed on a best-effort basis.

Chapter 7
PREDICTION

7-271

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
predictive Oracle Machine Learning for SQL.

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
return value of PREDICTION when it is a character value

Note:

The following examples are excerpted from the Oracle Machine Learning for
SQL sample programs. For more information about the sample programs,
see Appendix A in Oracle Machine Learning for SQL User’s Guide.

Example

In this example, the model dt_sh_clas_sample predicts the gender and age of
customers who are most likely to use an affinity card (target = 1). The PREDICTION
function takes into account the cost matrix associated with the model and uses marital
status, education, and household size as predictors.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
 FROM mining_data_apply_v
 WHERE PREDICTION(dt_sh_clas_sample COST MODEL
 USING cust_marital_status, education, household_size) = 1
 GROUP BY cust_gender
 ORDER BY cust_gender;

CUST_GENDER CNT AVG_AGE
------------ ---------- ----------
F 170 38
M 685 42

The cost matrix associated with the model dt_sh_clas_sample is stored in the table
dt_sh_sample_costs. The cost matrix specifies that the misclassification of 1 is 8
times more costly than the misclassification of 0.

SQL> select * from dt_sh_sample_cost;

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ------------
 0 0 .000000000
 0 1 1.000000000
 1 0 8.000000000
 1 1 .000000000

Analytic Example

In this example, dynamic regression is used to predict the age of customers who are
likely to use an affinity card. The query returns the 3 customers whose predicted age is

Chapter 7
PREDICTION

7-272

most different from the actual. The query includes information about the predictors that have
the greatest influence on the prediction.

SELECT cust_id, age, pred_age, age-pred_age age_diff, pred_det FROM
 (SELECT cust_id, age, pred_age, pred_det,
 RANK() OVER (ORDER BY ABS(age-pred_age) desc) rnk FROM
 (SELECT cust_id, age,
 PREDICTION(FOR age USING *) OVER () pred_age,
 PREDICTION_DETAILS(FOR age ABS USING *) OVER () pred_det
 FROM mining_data_apply_v))
 WHERE rnk <= 3;

CUST_ID AGE PRED_AGE AGE_DIFF PRED_DET
------- ---- -------- -------- -------- --
 100910 80 40.67 39.33 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059"
 rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".059"
 rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight=".059"
 rank="5"/>
 </Details>

 101285 79 42.18 36.82 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059"
 rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="2"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Mabsent"
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".059"
 rank="5"/>
 </Details>

 100694 77 41.04 35.96 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059"
 rank="1"/>
 <Attribute name="EDUCATION" actualValue="< Bach." weight=".059"
 rank="2"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="CUST_ID" actualValue="100694" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

Chapter 7
PREDICTION

7-273

PREDICTION_BOUNDS
Syntax

PREDICTION_BOUNDS

(

schema .

model

, confidence_level

, class_value

mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

Purpose

PREDICTION_BOUNDS applies a Generalized Linear Model (GLM) to predict a class or a
value for each row in the selection. The function returns the upper and lower bounds of
each prediction in a varray of objects with fields UPPER and LOWER.

GLM can perform either regression or binary classification:

• The bounds for regression refer to the predicted target value. The data type of
UPPER and LOWER is the data type of the target.

• The bounds for binary classification refer to the probability of either the predicted
target class or the specified class_value. The data type of UPPER and LOWER is
BINARY_DOUBLE.

If the model was built using ridge regression, or if the covariance matrix is found to be
singular during the build, then PREDICTION_BOUNDS returns NULL for both bounds.

confidence_level is a number in the range (0,1). The default value is 0.95. You can
specify class_value while leaving confidence_level at its default by specifying NULL
for confidence_level.

The syntax of the PREDICTION_BOUNDS function can use an optional GROUPING hint
when scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. This clause behaves as described for the PREDICTION function. (Note that the
reference to analytic syntax does not apply.) See "mining_attribute_clause::=".

Chapter 7
PREDICTION_BOUNDS

7-274

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about scoring

• Oracle Machine Learning for SQL Concepts for information about Generalized
Linear Models

Note:

The following example is excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix
A in Oracle Machine Learning for SQL User’s Guide.

Example

The following example returns the distribution of customers whose ages are predicted with
98% confidence to be greater than 24 and less than 46.

SELECT count(cust_id) cust_count, cust_marital_status
 FROM (SELECT cust_id, cust_marital_status
 FROM mining_data_apply_v
 WHERE PREDICTION_BOUNDS(glmr_sh_regr_sample,0.98 USING *).LOWER > 24 AND
 PREDICTION_BOUNDS(glmr_sh_regr_sample,0.98 USING *).UPPER < 46)
 GROUP BY cust_marital_status;

 CUST_COUNT CUST_MARITAL_STATUS
-------------- --------------------
 46 NeverM
 7 Mabsent
 5 Separ.
 35 Divorc.
 72 Married

PREDICTION_COST
Syntax

prediction_cost::=

PREDICTION_COST (

schema .

model

, class

cost_matrix_clause mining_attribute_clause)

Chapter 7
PREDICTION_COST

7-275

prediction_cost_ordered::=

PREDICTION_COST (

schema .

model

, class

cost_matrix_clause

mining_attribute_clause) OVER (order_by_clause

,

)

Analytic Syntax

prediction_cost_analytic::=

PREDICTION_COST (
OF ANOMALY

FOR expr

, class

cost_matrix_clause

mining_attribute_clause) OVER (mining_analytic_clause)

cost_matrix_clause::=

COST

MODEL

AUTO

(class_value

,

) VALUES ((cost_value

,

)

,

)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

Chapter 7
PREDICTION_COST

7-276

See Also:

"Analytic Functions " for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

PREDICTION_COST returns a cost for each row in the selection. The cost refers to the lowest
cost class or to the specified class. The cost is returned as BINARY_DOUBLE.

PREDICTION_COST can perform classification or anomaly detection. For classification, the
returned cost refers to a predicted target class. For anomaly detection, the returned cost
refers to a classification of 1 (for typical rows) or 0 (for anomalous rows).

You can use PREDICTION_COST in conjunction with the PREDICTION function to obtain the
prediction and the cost of the prediction.

cost_matrix_clause

Costs are a biasing factor for minimizing the most harmful kinds of misclassifications. For
example, false positives might be considered more costly than false negatives. Costs are
specified in a cost matrix that can be associated with the model or defined inline in a VALUES
clause. All classification algorithms can use costs to influence scoring.

Decision Tree is the only algorithm that can use costs to influence the model build. The cost
matrix used to build a Decision Tree model is also the default scoring cost matrix for the
model.

The following cost matrix table specifies that the misclassification of 1 is five times more
costly than the misclassification of 0.

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST
------------------- ---------------------- ----------
 0 0 0
 0 1 1
 1 0 5
 1 1 0

In cost_matrix_clause:

• COST MODEL indicates that scoring should be performed by taking into account the scoring
cost matrix associated with the model. If the cost matrix does not exist, then the function
returns an error.

• COST MODEL AUTO indicates that the existence of a cost matrix is unknown. If a cost matrix
exists, then the function uses it to return the lowest cost prediction. Otherwise the
function returns the highest probability prediction.

• The VALUES clause specifies an inline cost matrix for class_value. For example, you
could specify that the misclassification of 1 is five times more costly than the
misclassification of 0 as follows:

 PREDICTION (nb_model COST (0,1) VALUES ((0, 1),(1, 5)) USING *)

If a model that has a scoring cost matrix is invoked with an inline cost matrix, then the
inline costs are used.

Chapter 7
PREDICTION_COST

7-277

See Also:

Oracle Machine Learning for SQL User’s Guide for more information
about cost-sensitive prediction.

Syntax Choice

PREDICTION_COST can score the data by applying a mining model object to the data, or
it can dynamically mine the data by executing an analytic clause that builds and
applies one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax: Use the prediction_cost syntax to score the data with a pre-defined
model. Supply the name of a model that performs classification or anomaly
detection.

Use the prediction_cost_ordered syntax for a model that requires ordered data,
such as an MSET-SPRT model. The prediction_cost_ordered syntax requires
an order_by_clause clause.

Restrictions on the prediction_cost_ordered syntax are that you cannot use it in
the WHERE clause of a query. Also, you cannot use a query_partition_clause or a
windowing_clause with the prediction_ordered syntax.

• Analytic Syntax: Use the analytic syntax to score the data without a pre-defined
model. The analytic syntax uses mining_analytic_clause , which specifies if the
data should be partitioned for multiple model builds. The mining_analytic_clause
supports a query_partition_clause and an order_by_clause. (See
"analytic_clause::=".)

– For classification, specify FOR expr, where expr is an expression that identifies
a target column that has a character data type.

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_COST function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause::=".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
classification with costs

Chapter 7
PREDICTION_COST

7-278

Note:

The following example is excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix
A in Oracle Machine Learning for SQL User’s Guide.

Example

This example predicts the ten customers in Italy who would respond to the least expensive
sales campaign (offering an affinity card).

SELECT cust_id
FROM (SELECT cust_id,rank()
 OVER (ORDER BY PREDICTION_COST(DT_SH_Clas_sample, 1 COST MODEL USING *)
 ASC, cust_id) rnk
 FROM mining_data_apply_v
 WHERE country_name = 'Italy')
 WHERE rnk <= 10
 ORDER BY rnk;

 CUST_ID

 100081
 100179
 100185
 100324
 100344
 100554
 100662
 100733
 101250
 101306

PREDICTION_DETAILS
Syntax

prediction_details::=

PREDICTION_DETAILS (

schema .

model

, class_value

, topN

DESC

ASC

ABS

mining_attribute_clause)

Chapter 7
PREDICTION_DETAILS

7-279

prediction_details_ordered::=

PREDICTION_DETAILS (

schema .

model

, class_value

, topN

DESC

ASC

ABS

mining_attribute_clause)

OVER (order_by_clause

,

)

Analytic Syntax

prediction_details_analytic::=

PREDICTION_DETAILS (
OF ANOMALY

FOR expr

, class_value

, topN

DESC

ASC

ABS

mining_attribute_clause) OVER (mining_analytic_clause)

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

Chapter 7
PREDICTION_DETAILS

7-280

See Also:

"Analytic Functions " for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

PREDICTION_DETAILS returns prediction details for each row in the selection. The return value
is an XML string that describes the attributes of the prediction.

For regression, the returned details refer to the predicted target value. For classification and
anomaly detection, the returned details refer to the highest probability class or the specified
class_value.

topN

If you specify a value for topN, the function returns the N attributes that have the most
influence on the prediction (the score). If you do not specify topN, the function returns the 5
most influential attributes.

DESC, ASC, or ABS

The returned attributes are ordered by weight. The weight of an attribute expresses its
positive or negative impact on the prediction. For regression, a positive weight indicates a
higher value prediction; a negative weight indicates a lower value prediction. For
classification and anomaly detection, a positive weight indicates a higher probability
prediction; a negative weight indicates a lower probability prediction.

By default, PREDICTION_DETAILS returns the attributes with the highest positive weight (DESC).
If you specify ASC, the attributes with the highest negative weight are returned. If you specify
ABS, the attributes with the greatest weight, whether negative or positive, are returned. The
results are ordered by absolute value from highest to lowest. Attributes with a zero weight are
not included in the output.

Syntax Choice

PREDICTION_DETAILS can score the data by applying a mining model object to the data, or it
can dynamically mine the data by executing an analytic clause that builds and applies one or
more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax: Use the prediction_details syntax to score the data with a pre-defined model.
Supply the name of a model that performs classification, regression, or anomaly
detection.

Use the prediction_details_ordered syntax for a model that requires ordered data,
such as an MSET-SPRT model. The prediction_details_ordered syntax requires an
order_by_clause clause.

Restrictions on the prediction_details_ordered syntax are that you cannot use it in the
WHERE clause of a query. Also, you cannot use a query_partition_clause or a
windowing_clause with the prediction_details_ordered syntax.

• Analytic Syntax: Use the analytic syntax to score the data without a pre-defined model.
The analytic syntax uses mining_analytic_clause, which specifies if the data should be

Chapter 7
PREDICTION_DETAILS

7-281

partitioned for multiple model builds. The mining_analytic_clause supports a
query_partition_clause and an order_by_clause. (See "analytic_clause::=".)

– For classification, specify FOR expr, where expr is an expression that identifies
a target column that has a character data type.

– For regression, specify FOR expr, where expr is an expression that identifies a
target column that has a numeric data type.

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_DETAILS function can use an optional GROUPING hint
when scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause::=".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
predictive Oracle Machine Learning for SQL.

Note:

The following examples are excerpted from the Oracle Machine Learning for
SQL sample programs. For more information about the sample programs,
see Appendix A in Oracle Machine Learning for SQL User’s Guide.

Example

This example uses the model svmr_sh_regr_sample to score the data. The query
returns the three attributes that have the greatest influence on predicting a higher
value for customer age.

SELECT PREDICTION_DETAILS(svmr_sh_regr_sample, null, 3 USING *) prediction_details
 FROM mining_data_apply_v
 WHERE cust_id = 100001;

PREDICTION_DETAILS

<Details algorithm="Support Vector Machines">
<Attribute name="CUST_MARITAL_STATUS" actualValue="Widowed" weight=".361" rank="1"/>
<Attribute name="CUST_GENDER" actualValue="F" weight=".14" rank="2"/>
<Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".135" rank="3"/>
</Details>

Chapter 7
PREDICTION_DETAILS

7-282

Analytic Syntax

This example dynamically identifies customers whose age is not typical for the data. The
query returns the attributes that predict or detract from a typical age.

SELECT cust_id, age, pred_age, age-pred_age age_diff, pred_det
 FROM (SELECT cust_id, age, pred_age, pred_det,
 RANK() OVER (ORDER BY ABS(age-pred_age) DESC) rnk
 FROM (SELECT cust_id, age,
 PREDICTION(FOR age USING *) OVER () pred_age,
 PREDICTION_DETAILS(FOR age ABS USING *) OVER () pred_det
 FROM mining_data_apply_v))
 WHERE rnk <= 5;

CUST_ID AGE PRED_AGE AGE_DIFF PRED_DET
------- --- -------- -------- --
 100910 80 40.67 39.33 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059"
 rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>
 <Attribute name="AFFINITY_CARD" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".059"
 rank="4"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4" weight=".059"
 rank="5"/>
 </Details>

 101285 79 42.18 36.82 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059"
 rank="1"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="2"/>
 <Attribute name="CUST_MARITAL_STATUS" actualValue="Mabsent"
 weight=".059" rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="OCCUPATION" actualValue="Prof." weight=".059"
 rank="5"/>
 </Details>

 100694 77 41.04 35.96 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
 weight=".059" rank="1"/>
 <Attribute name="EDUCATION" actualValue="< Bach." weight=".059"
 rank="2"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="3"/>
 <Attribute name="CUST_ID" actualValue="100694" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

 100308 81 45.33 35.67 <Details algorithm="Support Vector Machines">
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".059"
 rank="1"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="2"/>

Chapter 7
PREDICTION_DETAILS

7-283

 <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".059"
 rank="3"/>
 <Attribute name="FLAT_PANEL_MONITOR" actualValue="1" weight=".059"
 rank="4"/>
 <Attribute name="CUST_GENDER" actualValue="F" weight=".059"
 rank="5"/>
 </Details>

 101256 90 54.39 35.61 <Details algorithm="Support Vector Machines">
 <Attribute name="YRS_RESIDENCE" actualValue="9" weight=".059"
 rank="1"/>
 <Attribute name="HOME_THEATER_PACKAGE" actualValue="1"
weight=".059"
 rank="2"/>
 <Attribute name="EDUCATION" actualValue="< Bach." weight=".059"
 rank="3"/>
 <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".059"
 rank="4"/>
 <Attribute name="COUNTRY_NAME" actualValue="United States of
 America" weight=".059" rank="5"/>
 </Details>

PREDICTION_PROBABILITY
Syntax

prediction_probability::=

PREDICTION_PROBABILITY (

schema .

model

, class

mining_attribute_clause)

prediction_probability_ordered::=

PREDICTION_PROBABILITY (

schema .

model

, class

mining_attribute_clause)

OVER (order_by_clause

,

)

Analytic Syntax

prediction_prob_analytic::=

PREDICTION_PROBABILITY (
OF ANOMALY

FOR expr

, class

mining_attribute_clause)

OVER (mining_analytic_clause)

Chapter 7
PREDICTION_PROBABILITY

7-284

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::=

query_partition_clause order_by_clause

See Also:

"Analytic Functions " for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

PREDICTION_PROBABILITY returns a probability for each row in the selection. The probability
refers to the highest probability class or to the specified class. The data type of the returned
probability is BINARY_DOUBLE.

PREDICTION_PROBABILITY can perform classification or anomaly detection. For classification,
the returned probability refers to a predicted target class. For anomaly detection, the returned
probability refers to a classification of 1 (for typical rows) or 0 (for anomalous rows).

You can use PREDICTION_PROBABILITY in conjunction with the PREDICTION function to obtain
the prediction and the probability of the prediction.

Syntax Choice

PREDICTION_PROBABILITY can score the data by applying a mining model object to the data,
or it can dynamically mine the data by executing an analytic clause that builds and applies
one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax: Use the prediction_probability syntax to score the data with a pre-defined
model. Supply the name of a model that performs classification or anomaly detection.

Use the prediction_probability_ordered syntax for a model that requires ordered
data, such as an MSET-SPRT model. The prediction_probability_ordered syntax
requires an order_by_clause clause.

Restrictions on the prediction_probability_ordered syntax are that you cannot use it
in the WHERE clause of a query. Also, you cannot use a query_partition_clause or a
windowing_clause with the prediction_probability_ordered syntax.

Chapter 7
PREDICTION_PROBABILITY

7-285

• Analytic Syntax: Use the analytic syntax to score the data without a pre-defined
model. The analytic syntax uses mining_analytic_clause, which specifies if the
data should be partitioned for multiple model builds. The mining_analytic_clause
supports a query_partition_clause and an order_by_clause. (See
"analytic_clause::=".)

– For classification, specify FOR expr, where expr is an expression that identifies
a target column that has a character data type.

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_PROBABILITY function can use an optional GROUPING hint
when scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause::=".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
predictive Oracle Machine Learning for SQL.

Note:

The following examples are excerpted from the Oracle Machine Learning for
SQL sample programs. For information about the sample programs, see
Appendix A in Oracle Machine Learning for SQL User’s Guide.

Example

The following example returns the 10 customers living in Italy who are most likely to
use an affinity card.

SELECT cust_id FROM (
 SELECT cust_id
 FROM mining_data_apply_v
 WHERE country_name = 'Italy'
 ORDER BY PREDICTION_PROBABILITY(DT_SH_Clas_sample, 1 USING *)
 DESC, cust_id)
 WHERE rownum < 11;

 CUST_ID

 100081
 100179
 100185

Chapter 7
PREDICTION_PROBABILITY

7-286

 100324
 100344
 100554
 100662
 100733
 101250
 101306

Analytic Example

This example identifies rows that are most atypical in the data in mining_data_one_class_v.
Each type of marital status is considered separately so that the most anomalous rows per
marital status group are returned.

The query returns three attributes that have the most influence on the determination of
anomalous rows. The PARTITION BY clause causes separate models to be built and applied
for each marital status. Because there is only one record with status Mabsent, no model is
created for that partition (and no details are provided).

SELECT cust_id, cust_marital_status, rank_anom, anom_det FROM
 (SELECT cust_id, cust_marital_status, anom_det,
 rank() OVER (PARTITION BY CUST_MARITAL_STATUS
 ORDER BY ANOM_PROB DESC,cust_id) rank_anom FROM
 (SELECT cust_id, cust_marital_status,
 PREDICTION_PROBABILITY(OF ANOMALY, 0 USING *)
 OVER (PARTITION BY CUST_MARITAL_STATUS) anom_prob,
 PREDICTION_DETAILS(OF ANOMALY, 0, 3 USING *)
 OVER (PARTITION BY CUST_MARITAL_STATUS) anom_det
 FROM mining_data_one_class_v
))
 WHERE rank_anom < 3 order by 2, 3;

CUST_ID CUST_MARITAL_STATUS RANK_ANOM ANOM_DET
------- ------------------- ---------- ---
102366 Divorc. 1 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="United Kingdom"
 weight=".069" rank="1"/>
 <Attribute name="AGE" actualValue="28" weight=".013"
 rank="2"/>
 <Attribute name="YRS_RESIDENCE" actualValue="4"
 weight=".006" rank="3"/>
 </Details>

101817 Divorc. 2 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="YRS_RESIDENCE" actualValue="8"
 weight=".018" rank="1"/>
 <Attribute name="EDUCATION" actualValue="PhD" weight=".007"
 rank="2"/>
 <Attribute name="CUST_INCOME_LEVEL" actualValue="K:
 250\,000 - 299\,999" weight=".006" rank="3"/>
 </Details>

101713 Mabsent 1

101790 Married 1 <Details algorithm="Support Vector Machines" class="0">
 <Attribute name="COUNTRY_NAME" actualValue="Canada"
 weight=".063" rank="1"/>
 <Attribute name="EDUCATION" actualValue="7th-8th"
 weight=".011" rank="2"/>
 <Attribute name="HOUSEHOLD_SIZE" actualValue="4-5"
 weight=".011" rank="3"/>

Chapter 7
PREDICTION_PROBABILITY

7-287

 </Details>
. . .

PREDICTION_SET
Syntax

prediction_set::=

PREDICTION_SET (

schema .

model

, bestN

, cutoff

cost_matrix_clause

mining_attribute_clause)

prediction_set_ordered::=

PREDICTION_SET (

schema .

model

, bestN

, cutoff

cost_matrix_clause

mining_attribute_clause) OVER (order_by_clause

,

)

Analytic Syntax

prediction_set_analytic::=

PREDICTION_SET (
OF ANOMALY

FOR expr

, bestN

, cutoff

cost_matrix_clause

mining_attribute_clause) OVER (mining_analytic_clause)

cost_matrix_clause::=

COST

MODEL

AUTO

(class_value

,

) VALUES ((cost_value

,

)

,

)

Chapter 7
PREDICTION_SET

7-288

mining_attribute_clause::=

USING

*

schema .

table . *

expr

AS alias

,

mining_analytic_clause::-

query_partition_clause order_by_clause

See Also:

"Analytic Functions " for information on the syntax, semantics, and restrictions of
mining_analytic_clause

Purpose

PREDICTION_SET returns a set of predictions with either probabilities or costs for each row in
the selection. The return value is a varray of objects with field names PREDICTION_ID and
PROBABILITY or COST. The prediction identifier has the data type of the target; the probability
and cost fields are BINARY_DOUBLE.

PREDICTION_SET can perform classification or anomaly detection. For classification, the return
value refers to a predicted target class. For anomaly detection, the return value refers to a
classification of 1 (for typical rows) or 0 (for anomalous rows).

bestN and cutoff

You can specify bestN and cutoff to limit the number of predictions returned by the function.
By default, both bestN and cutoff are null and all predictions are returned.

• bestN is the N predictions that are either the most probable or the least costly. If multiple
predictions share the Nth probability or cost, then the function chooses one of them.

• cutoff is a value threshold. Only predictions with probability greater than or equal to
cutoff, or with cost less than or equal to cutoff, are returned. To filter by cutoff only,
specify NULL for bestN. If the function uses a cost_matrix_clause with COST MODEL AUTO,
then cutoff is ignored.

You can specify bestN with cutoff to return up to the N most probable predictions that are
greater than or equal to cutoff. If costs are used, specify bestN with cutoff to return up to
the N least costly predictions that are less than or equal to cutoff.

Chapter 7
PREDICTION_SET

7-289

cost_matrix_clause

You can specify cost_matrix_clause as a biasing factor for minimizing the most
harmful kinds of misclassifications. cost_matrix_clause behaves as described for
"PREDICTION_COST ".

Syntax Choice

PREDICTION_SET can score the data by applying a mining model object to the data, or it
can dynamically mine the data by executing an analytic clause that builds and applies
one or more transient mining models. Choose Syntax or Analytic Syntax:

• Syntax: Use the prediction_set syntax to score the data with a pre-defined
model. Supply the name of a model that performs classification or anomaly
detection.

Use the prediction_set_ordered syntax for a model that requires ordered data,
such as an MSET-SPRT model. The prediction_set_ordered syntax requires an
order_by_clause clause.

Restrictions on the prediction_set_ordered syntax are that you cannot use it in
the WHERE clause of a query. Also, you cannot use a query_partition_clause or a
windowing_clause with the prediction_set_ordered syntax.

• Analytic Syntax: Use the analytic syntax to score the data without a pre-defined
model. The analytic syntax uses mining_analytic_clause, which specifies if the
data should be partitioned for multiple model builds. The mining_analytic_clause
supports a query_partition_clause and an order_by_clause. (See
"analytic_clause::=".)

– For classification, specify FOR expr, where expr is an expression that identifies
a target column that has a character data type.

– For anomaly detection, specify the keywords OF ANOMALY.

The syntax of the PREDICTION_SET function can use an optional GROUPING hint when
scoring a partitioned model. See GROUPING Hint.

mining_attribute_clause

mining_attribute_clause identifies the column attributes to use as predictors for
scoring. When the function is invoked with the analytic syntax, these predictors are
also used for building the transient models. The mining_attribute_clause behaves
as described for the PREDICTION function. (See "mining_attribute_clause::=".)

See Also:

• Oracle Machine Learning for SQL User’s Guide for information about
scoring.

• Oracle Machine Learning for SQL Concepts for information about
predictive Oracle Machine Learning for SQL.

Chapter 7
PREDICTION_SET

7-290

Note:

The following example is excerpted from the Oracle Machine Learning for SQL
sample programs. For more information about the sample programs, see Appendix
A in Oracle Machine Learning for SQL User’s Guide.

Example

This example lists the probability and cost that customers with ID less than 100006 will use
an affinity card. This example has a binary target, but such a query is also useful for
multiclass classification such as low, medium, and high.

SELECT T.cust_id, S.prediction, S.probability, S.cost
 FROM (SELECT cust_id,
 PREDICTION_SET(dt_sh_clas_sample COST MODEL USING *) pset
 FROM mining_data_apply_v
 WHERE cust_id < 100006) T,
 TABLE(T.pset) S
ORDER BY cust_id, S.prediction;

 CUST_ID PREDICTION PROBABILITY COST
---------- ---------- ------------ ------------
 100001 0 .966183575 .270531401
 100001 1 .033816425 .966183575
 100002 0 .740384615 2.076923077
 100002 1 .259615385 .740384615
 100003 0 .909090909 .727272727
 100003 1 .090909091 .909090909
 100004 0 .909090909 .727272727
 100004 1 .090909091 .909090909
 100005 0 .272357724 5.821138211
 100005 1 .727642276 .272357724

PRESENTNNV
Syntax

PRESENTNNV (cell_reference , expr1 , expr2)

Purpose

The PRESENTNNV function can be used only in the model_clause of the SELECT statement and
then only on the right-hand side of a model rule. It returns expr1 when cell_reference exists
prior to the execution of the model_clause and is not null when PRESENTNNV is evaluated.
Otherwise it returns expr2. This function differs from NVL2 in that NVL2 evaluates the data at
the time it is executed, rather than evaluating the data as it was prior to the execution of the
model_clause.

Chapter 7
PRESENTNNV

7-291

See Also:

• model_clause and "Model Expressions" for the syntax and semantics

• NVL2 for comparison

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
return value of PRESENTNNV when it is a character value

Examples

In the following example, if a row containing sales for the Mouse Pad for the year 2002
exists, and the sales value is not null, then the sales value remains unchanged. If the
row exists and the sales value is null, then the sales value is set to 10. If the row does
not exist, then the row is created with the sales value set to 10.

SELECT country, prod, year, s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER
 (s['Mouse Pad', 2002] =
 PRESENTNNV(s['Mouse Pad', 2002], s['Mouse Pad', 2002], 10)
)
 ORDER BY country, prod, year;

COUNTRY PROD YEAR S
---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3000.72
France Mouse Pad 2001 3269.09
France Mouse Pad 2002 10
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 2164.54
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 7375.46
Germany Mouse Pad 2001 9535.08
Germany Mouse Pad 2002 10
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 6456.13

18 rows selected.

The preceding example requires the view sales_view_ref. Refer to "Examples" to
create this view.

Chapter 7
PRESENTNNV

7-292

PRESENTV
Syntax

PRESENTV (cell_reference , expr1 , expr2)

Purpose

The PRESENTV function can be used only within the model_clause of the SELECT statement
and then only on the right-hand side of a model rule. It returns expr1 when, prior to the
execution of the model_clause, cell_reference exists. Otherwise it returns expr2.

See Also:

• model_clause and "Model Expressions" for the syntax and semantics

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of
PRESENTV when it is a character value

Examples

In the following example, if a row containing sales for the Mouse Pad for the year 2000 exists,
then the sales value for the Mouse Pad for the year 2001 is set to the sales value for the
Mouse Pad for the year 2000. If the row does not exist, then a row is created with the sales
value for the Mouse Pad for year 20001 set to 0.

SELECT country, prod, year, s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)
 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER
 (
 s['Mouse Pad', 2001] =
 PRESENTV(s['Mouse Pad', 2000], s['Mouse Pad', 2000], 0)
)
 ORDER BY country, prod, year;

COUNTRY PROD YEAR S
---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3000.72
France Mouse Pad 2001 3000.72
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 2164.54

Chapter 7
PRESENTV

7-293

Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 7375.46
Germany Mouse Pad 2001 7375.46
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 6456.13

16 rows selected.

The preceding example requires the view sales_view_ref. Refer to "The MODEL
clause: Examples" to create this view.

PREVIOUS
Syntax

PREVIOUS (cell_reference)

Purpose

The PREVIOUS function can be used only in the model_clause of the SELECT statement
and then only in the ITERATE ... [UNTIL] clause of the model_rules_clause. It returns
the value of cell_reference at the beginning of each iteration.

See Also:

• model_clause and "Model Expressions" for the syntax and semantics

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
return value of PREVIOUS when it is a character value

Examples

The following example repeats the rules, up to 1000 times, until the difference between
the values of cur_val at the beginning and at the end of an iteration is less than one:

SELECT dim_col, cur_val, num_of_iterations
 FROM (SELECT 1 AS dim_col, 10 AS cur_val FROM dual)
 MODEL
 DIMENSION BY (dim_col)
 MEASURES (cur_val, 0 num_of_iterations)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES ITERATE (1000) UNTIL (PREVIOUS(cur_val[1]) - cur_val[1] < 1)
 (
 cur_val[1] = cur_val[1]/2,
 num_of_iterations[1] = num_of_iterations[1] + 1
);

 DIM_COL CUR_VAL NUM_OF_ITERATIONS

Chapter 7
PREVIOUS

7-294

---------- ---------- -----------------
 1 .625 4

RANK
Aggregate Syntax

rank_aggregate::=

RANK (expr

,

) WITHIN GROUP

(ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

Analytic Syntax

rank_analytic::=

RANK () OVER (

query_partition_clause

order_by_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

RANK calculates the rank of a value in a group of values. The return type is NUMBER.

See Also:

Table 2-8 for more information on implicit conversion and "Numeric Precedence "
for information on numeric precedence

Rows with equal values for the ranking criteria receive the same rank. Oracle Database then
adds the number of tied rows to the tied rank to calculate the next rank. Therefore, the ranks
may not be consecutive numbers. This function is useful for top-N and bottom-N reporting.

• As an aggregate function, RANK calculates the rank of a hypothetical row identified by the
arguments of the function with respect to a given sort specification. The arguments of the

Chapter 7
RANK

7-295

function must all evaluate to constant expressions within each aggregate group,
because they identify a single row within each group. The constant argument
expressions and the expressions in the ORDER BY clause of the aggregate match by
position. Therefore, the number of arguments must be the same and their types
must be compatible.

• As an analytic function, RANK computes the rank of each row returned from a query
with respect to the other rows returned by the query, based on the values of the
value_exprs in the order_by_clause.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation RANK uses to compare
character values for the ORDER BY clause

Aggregate Example

The following example calculates the rank of a hypothetical employee in the sample
table hr.employees with a salary of $15,500 and a commission of 5%:

SELECT RANK(15500, .05) WITHIN GROUP
 (ORDER BY salary, commission_pct) "Rank"
 FROM employees;

 Rank

 105

Similarly, the following query returns the rank for a $15,500 salary among the
employee salaries:

SELECT RANK(15500) WITHIN GROUP
 (ORDER BY salary DESC) "Rank of 15500"
 FROM employees;

Rank of 15500

 4

Analytic Example

The following statement ranks the employees in the sample hr schema in department
60 based on their salaries. Identical salary values receive the same rank and cause
nonconsecutive ranks. Compare this example with the analytic example for
DENSE_RANK .

SELECT department_id, last_name, salary,
 RANK() OVER (PARTITION BY department_id ORDER BY salary) RANK
 FROM employees WHERE department_id = 60
 ORDER BY RANK, last_name;

DEPARTMENT_ID LAST_NAME SALARY RANK
------------- ------------------------- ---------- ----------
 60 Lorentz 4200 1
 60 Austin 4800 2
 60 Pataballa 4800 2

Chapter 7
RANK

7-296

 60 Ernst 6000 4
 60 Hunold 9000 5

RATIO_TO_REPORT
Syntax

RATIO_TO_REPORT (expr) OVER (

query_partition_clause

)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions,
including valid forms of expr

Purpose

RATIO_TO_REPORT is an analytic function. It computes the ratio of a value to the sum of a set
of values. If expr evaluates to null, then the ratio-to-report value also evaluates to null.

The set of values is determined by the query_partition_clause. If you omit that clause, then
the ratio-to-report is computed over all rows returned by the query.

You cannot nest analytic functions by using RATIO_TO_REPORT or any other analytic function
for expr. However, you can use other built-in function expressions for expr. Refer to "About
SQL Expressions " for information on valid forms of expr.

Examples

The following example calculates the ratio-to-report value of each purchasing clerk's salary to
the total of all purchasing clerks' salaries:

SELECT last_name, salary, RATIO_TO_REPORT(salary) OVER () AS rr
 FROM employees
 WHERE job_id = 'PU_CLERK'
 ORDER BY last_name, salary, rr;

LAST_NAME SALARY RR
------------------------- ---------- ----------
Baida 2900 .208633094
Colmenares 2500 .179856115
Himuro 2600 .18705036
Khoo 3100 .223021583
Tobias 2800 .201438849

RAWTOHEX
Syntax

RAWTOHEX (raw)

Chapter 7
RATIO_TO_REPORT

7-297

Purpose

RAWTOHEX converts raw to a character value containing its hexadecimal representation.

As a SQL built-in function, RAWTOHEX accepts an argument of any scalar data type
other than LONG, LONG RAW, CLOB, NCLOB, BLOB, or BFILE. If the argument is of a data
type other than RAW, then this function converts the argument value, which is
represented using some number of data bytes, into a RAW value with the same number
of data bytes. The data itself is not modified in any way, but the data type is recast to a
RAW data type.

This function returns a VARCHAR2 value with the hexadecimal representation of bytes
that make up the value of raw. Each byte is represented by two hexadecimal digits.

Note:

RAWTOHEX functions differently when used as a PL/SQL built-in function. Refer
to Oracle Database Development Guide for more information.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of RAWTOHEX

Examples

The following hypothetical example returns the hexadecimal equivalent of a RAW
column value:

SELECT RAWTOHEX(raw_column) "Graphics"
 FROM graphics;

Graphics

7D

See Also:

"RAW and LONG RAW Data Types " and HEXTORAW

RAWTONHEX
Syntax

RAWTONHEX (raw)

Chapter 7
RAWTONHEX

7-298

Purpose

RAWTONHEX converts raw to a character value containing its hexadecimal representation.
RAWTONHEX(raw) is equivalent to TO_NCHAR(RAWTOHEX(raw)). The value returned is always in
the national character set.

Note:

RAWTONHEX functions differently when used as a PL/SQL built-in function. Refer to
Oracle Database Development Guide for more information.

Examples

The following hypothetical example returns the hexadecimal equivalent of a RAW column
value:

SELECT RAWTONHEX(raw_column),
 DUMP (RAWTONHEX (raw_column)) "DUMP"
 FROM graphics;

RAWTONHEX(RA) DUMP
----------------------- ------------------------------
7D Typ=1 Len=4: 0,55,0,68

REF
Syntax

REF (correlation_variable)

Purpose

REF takes as its argument a correlation variable (table alias) associated with a row of an
object table or an object view. A REF value is returned for the object instance that is bound to
the variable or row.

Examples

The sample schema oe contains a type called cust_address_typ, described as follows:

 Attribute Type
 ----------------------------- ----------------
 STREET_ADDRESS VARCHAR2(40)
 POSTAL_CODE VARCHAR2(10)
 CITY VARCHAR2(30)
 STATE_PROVINCE VARCHAR2(10)
 COUNTRY_ID CHAR(2)

The following example creates a table based on the sample type oe.cust_address_typ,
inserts a row into the table, and retrieves a REF value for the object instance of the type in the
addresses table:

Chapter 7
REF

7-299

CREATE TABLE addresses OF cust_address_typ;

INSERT INTO addresses VALUES (
 '123 First Street', '4GF H1J', 'Our Town', 'Ourcounty', 'US');

SELECT REF(e) FROM addresses e;

REF(E)

00002802097CD1261E51925B60E0340800208254367CD1261E51905B60E034080020825436010101820000

See Also:

Oracle Database Object-Relational Developer's Guide for information on
REFs

REFTOHEX
Syntax

REFTOHEX (expr)

Purpose

REFTOHEX converts argument expr to a character value containing its hexadecimal
equivalent. expr must return a REF.

Examples

The sample schema oe contains a warehouse_typ. The following example builds on
that type to illustrate how to convert the REF value of a column to a character value
containing its hexadecimal equivalent:

CREATE TABLE warehouse_table OF warehouse_typ
 (PRIMARY KEY (warehouse_id));

CREATE TABLE location_table
 (location_number NUMBER, building REF warehouse_typ
 SCOPE IS warehouse_table);

INSERT INTO warehouse_table VALUES (1, 'Downtown', 99);

INSERT INTO location_table SELECT 10, REF(w) FROM warehouse_table w;

SELECT REFTOHEX(building) FROM location_table;

REFTOHEX(BUILDING)
--
0000220208859B5E9255C31760E034080020825436859B5E9255C21760E034080020825436

Chapter 7
REFTOHEX

7-300

REGEXP_COUNT
Syntax

REGEXP_COUNT (source_char , pattern

, position

, match_param

)

Purpose

REGEXP_COUNT complements the functionality of the REGEXP_INSTR function by returning the
number of times a pattern occurs in a source string. The function evaluates strings using
characters as defined by the input character set. It returns an integer indicating the number of
occurrences of pattern. If no match is found, then the function returns 0.

• source_char is a character expression that serves as the search value. It is commonly a
character column and can be of any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB, or NCLOB.

• pattern is the regular expression. It is usually a text literal and can be of any of the data
types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. It can contain up to 512 bytes. If the data
type of pattern is different from the data type of source_char, then Oracle Database
converts pattern to the data type of source_char.

REGEXP_COUNT ignores subexpression parentheses in pattern. For example, the pattern
'(123(45))' is equivalent to '12345'. For a listing of the operators you can specify in
pattern, refer to Oracle Regular Expression Support.

• position is a positive integer indicating the character of source_char where Oracle
should begin the search. The default is 1, meaning that Oracle begins the search at the
first character of source_char. After finding the first occurrence of pattern, the database
searches for a second occurrence beginning with the first character following the first
occurrence.

• match_param is a character expression of the data type VARCHAR2 or CHAR that lets you
change the default matching behavior of the function.

The value of match_param can include one or more of the following characters:

– 'i' specifies case-insensitive matching, even if the determined collation of the
condition is case-sensitive.

– 'c' specifies case-sensitive and accent-sensitive matching, even if the determined
collation of the condition is case-insensitive or accent-insensitive.

– 'n' allows the period (.), which is the match-any-character character, to match the
newline character. If you omit this parameter, then the period does not match the
newline character.

– 'm' treats the source string as multiple lines. Oracle interprets the caret (^) and
dollar sign ($) as the start and end, respectively, of any line anywhere in the source
string, rather than only at the start or end of the entire source string. If you omit this
parameter, then Oracle treats the source string as a single line.

– 'x' ignores whitespace characters. By default, whitespace characters match
themselves.

Chapter 7
REGEXP_COUNT

7-301

If the value of match_param contains multiple contradictory characters, then Oracle
uses the last character. For example, if you specify 'ic', then Oracle uses case-
sensitive and accent-sensitive matching. If the value contains a character other
than those shown above, then Oracle returns an error.

If you omit match_param, then:

– The default case and accent sensitivity are determined by the determined
collation of the REGEXP_COUNT function.

– A period (.) does not match the newline character.

– The source string is treated as a single line.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation REGEXP_COUNT uses to
compare characters from source_char with characters from pattern

Examples

The following example shows that subexpressions parentheses in pattern are ignored:

SELECT REGEXP_COUNT('123123123123123', '(12)3', 1, 'i') REGEXP_COUNT
 FROM DUAL;

REGEXP_COUNT

 5

In the following example, the function begins to evaluate the source string at the third
character, so skips over the first occurrence of pattern:

SELECT REGEXP_COUNT('123123123123', '123', 3, 'i') COUNT FROM DUAL;

 COUNT

 3

REGEXP_COUNT simple matching: Examples

In the following example, REGEXP_COUNT validates the supplied string for the given
pattern and returns the number of alphabetic letters:

select regexp_count('ABC123', '[A-Z]'), regexp_count('A1B2C3', '[A-Z]') from
dual;

REGEXP_COUNT('ABC123','[A-Z]') REGEXP_COUNT('A1B2C3','[A-Z]')
------------------------------ ------------------------------
 3 3

In the following example, REGEXP_COUNT validates the supplied string for the given
pattern and returns the number of alphabetic letters followed by a single digit number:

select regexp_count('ABC123', '[A-Z][0-9]'), regexp_count('A1B2C3', '[A-Z]
[0-9]') from dual;

Chapter 7
REGEXP_COUNT

7-302

REGEXP_COUNT('ABC123','[A-Z][0-9]') REGEXP_COUNT('A1B2C3','[A-Z][0-9]')
----------------------------------- -----------------------------------
 1 3

In the following example, REGEXP_COUNT validates the supplied string for the given pattern and
returns the number of alphabetic letters followed by a single digit number only at the
beginning of the string:

select regexp_count('ABC123', '[A-Z][0-9]'), regexp_count('A1B2C3', '[A-Z][0-9]') from
dual;

REGEXP_COUNT('ABC123','^[A-Z][0-9]') REGEXP_COUNT('A1B2C3','^[A-Z][0-9]')
------------------------------------ ------------------------------------
 0 1

In the following example, REGEXP_COUNT validates the supplied string for the given pattern and
returns the number of alphabetic letters followed by two digits of number only contained
within the string:

select regexp_count('ABC123', '[A-Z][0-9]{2}'), regexp_count('A1B2C3', '[A-Z][0-9]
{2}') from dual;

REGEXP_COUNT('ABC123','[A-Z][0-9]{2}') REGEXP_COUNT('A1B2C3','[A-Z][0-9]{2}')
-------------------------------------- --------------------------------------
 1 0

In the following example, REGEXP_COUNT validates the supplied string for the given pattern and
returns the number of alphabetic letters followed by a single digit number within the first two
occurrences from the beginning of the string:

select regexp_count('ABC123', '([A-Z][0-9]){2}'), regexp_count('A1B2C3', '([A-Z][0-9])
{2}') from dual;

REGEXP_COUNT('ABC123','([A-Z][0-9]){2}') REGEXP_COUNT('A1B2C3','([A-Z][0-9]){2}')
-- --
 0 1

Live SQL:

View and run related examples on Oracle Live SQL at REGEXP_COUNT simple
matching

REGEXP_COUNT advanced matching: Examples

In the following example, REGEXP_COUNT validates the supplied string for the given pattern and
returns the number of alphabetic letters:

select regexp_count('ABC123', '[A-Z]') Match_char_ABC_count,
regexp_count('A1B2C3', '[A-Z]') Match_char_ABC_count from dual;

MATCH_CHAR_ABC_COUNT MATCH_CHAR_ABC_COUNT
-------------------- --------------------
 3 3

In the following example, REGEXP_COUNT validates the supplied string for the given pattern and
returns the number of alphabetic letters followed by a single digit number:

Chapter 7
REGEXP_COUNT

7-303

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_count/simple-match.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_count/simple-match.html

select regexp_count('ABC123', '[A-Z][0-9]') Match_string_C1_count,
regexp_count('A1B2C3', '[A-Z][0-9]') Match_strings_A1_B2_C3_count from dual;

MATCH_STRING_C1_COUNT MATCH_STRINGS_A1_B2_C3_COUNT
--------------------- ----------------------------
 1 3

In the following example, REGEXP_COUNT validates the supplied string for the given
pattern and returns the number of alphabetic letters followed by a single digit number
only at the beginning of the string:

select regexp_count('ABC123A5', '^[A-Z][0-9]') Char_num_like_A1_at_start,
regexp_count('A1B2C3', '^[A-Z][0-9]') Char_num_like_A1_at_start from dual;

CHAR_NUM_LIKE_A1_AT_START CHAR_NUM_LIKE_A1_AT_START
------------------------- -------------------------
 0 1

In the following example, REGEXP_COUNT validates the supplied string for the given
pattern and returns the number of alphabetic letters followed by two digits of number
only contained within the string:

select regexp_count('ABC123', '[A-Z][0-9]{2}') Char_num_like_A12_anywhere,
regexp_count('A1B2C34', '[A-Z][0-9]{2}') Char_num_like_A12_anywhere from dual;

CHAR_NUM_LIKE_A12_ANYWHERE CHAR_NUM_LIKE_A12_ANYWHERE
-------------------------- --------------------------
 1 1

In the following example, REGEXP_COUNT validates the supplied string for the given
pattern and returns the number of alphabetic letters followed by a single digit number
within the first two occurrences from the beginning of the string:

select regexp_count('ABC12D3', '([A-Z][0-9]){2}') Char_num_within_2_places,
regexp_count('A1B2C3', '([A-Z][0-9]){2}') Char_num_within_2_places from dual;

CHAR_NUM_WITHIN_2_PLACES CHAR_NUM_WITHIN_2_PLACES
------------------------ ------------------------
 0 1

Live SQL:

View and run related examples on Oracle Live SQL at REGEXP_COUNT
advanced matching

REGEXP_COUNT case-sensitive matching: Examples

The following statements create a table regexp_temp and insert values into it:

CREATE TABLE regexp_temp(empName varchar2(20));

INSERT INTO regexp_temp (empName) VALUES ('John Doe');
INSERT INTO regexp_temp (empName) VALUES ('Jane Doe');

In the following example, the statement queries the employee name column and
searches for the lowercase of character ‘E’:

Chapter 7
REGEXP_COUNT

7-304

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_count/advanced-match.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_count/advanced-match.html

SELECT empName, REGEXP_COUNT(empName, 'e', 1, 'c') "CASE_SENSITIVE_E" From regexp_temp;

EMPNAME CASE_SENSITIVE_E
-------------------- ----------------
John Doe 1
Jane Doe 2

In the following example, the statement queries the employee name column and searches for
the lowercase of character ‘O’:

SELECT empName, REGEXP_COUNT(empName, 'o', 1, 'c') "CASE_SENSITIVE_O" From regexp_temp;

EMPNAME CASE_SENSITIVE_O
-------------------- ----------------
John Doe 2
Jane Doe 1

In the following example, the statement queries the employee name column and searches for
the lowercase or uppercase of character ‘E’:

SELECT empName, REGEXP_COUNT(empName, 'E', 1, 'i') "CASE_INSENSITIVE_E" From
regexp_temp;

EMPNAME CASE_INSENSITIVE_E
-------------------- ------------------
John Doe 1
Jane Doe 2

In the following example, the statement queries the employee name column and searches for
the lowercase of string ‘DO’:

SELECT empName, REGEXP_COUNT(empName, 'do', 1, 'i') "CASE_INSENSITIVE_STRING" From
regexp_temp;

EMPNAME CASE_INSENSITIVE_STRING
-------------------- -----------------------
John Doe 1
Jane Doe 1

In the following example, the statement queries the employee name column and searches for
the lowercase or uppercase of string ‘AN’:

SELECT empName, REGEXP_COUNT(empName, 'an', 1, 'c') "CASE_SENSITIVE_STRING" From
regexp_temp;

EMPNAME CASE_SENSITIVE_STRING
-------------------- ---------------------
John Doe 0
Jane Doe 1

Live SQL:

View and run related examples on Oracle Live SQL at REGEXP_COUNT case-
sensitive matching

Chapter 7
REGEXP_COUNT

7-305

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_count/case-sensitive-match.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_count/case-sensitive-match.html

REGEXP_INSTR
Syntax

REGEXP_INSTR (source_char , pattern

, position

, occurrence

, return_opt

, match_param

, subexpr

)

Purpose

REGEXP_INSTR extends the functionality of the INSTR function by letting you search a
string for a regular expression pattern. The function evaluates strings using characters
as defined by the input character set. It returns an integer indicating the beginning or
ending position of the matched substring, depending on the value of the
return_option argument. If no match is found, then the function returns 0.

This function complies with the POSIX regular expression standard and the Unicode
Regular Expression Guidelines. For more information, refer to Oracle Regular
Expression Support.

• source_char is a character expression that serves as the search value. It is
commonly a character column and can be of any of the data types CHAR, VARCHAR2,
NCHAR, NVARCHAR2, CLOB, or NCLOB.

• pattern is the regular expression. It is usually a text literal and can be of any of
the data types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. It can contain up to 512
bytes. If the data type of pattern is different from the data type of source_char,
then Oracle Database converts pattern to the data type of source_char. For a
listing of the operators you can specify in pattern, refer to Oracle Regular
Expression Support.

• position is a positive integer indicating the character of source_char where
Oracle should begin the search. The default is 1, meaning that Oracle begins the
search at the first character of source_char.

• occurrence is a positive integer indicating which occurrence of pattern in
source_char Oracle should search for. The default is 1, meaning that Oracle
searches for the first occurrence of pattern. If occurrence is greater than 1, then
the database searches for the second occurrence beginning with the first
character following the first occurrence of pattern, and so forth. This behavior is
different from the INSTR function, which begins its search for the second
occurrence at the second character of the first occurrence.

• return_option lets you specify what Oracle should return in relation to the
occurrence:

– If you specify 0, then Oracle returns the position of the first character of the
occurrence. This is the default.

Chapter 7
REGEXP_INSTR

7-306

– If you specify 1, then Oracle returns the position of the character following the
occurrence.

• match_param is a character expression of the data type VARCHAR2 or CHAR that lets you
change the default matching behavior of the function. The behavior of this parameter is
the same for this function as for REGEXP_COUNT. Refer to REGEXP_COUNT for detailed
information.

• For a pattern with subexpressions, subexpr is an integer from 0 to 9 indicating which
subexpression in pattern is the target of the function. The subexpr is a fragment of
pattern enclosed in parentheses. Subexpressions can be nested. Subexpressions are
numbered in order in which their left parentheses appear in pattern. For example,
consider the following expression:

0123(((abc)(de)f)ghi)45(678)

This expression has five subexpressions in the following order: "abcdefghi" followed by
"abcdef", "abc", "de" and "678".

If subexpr is zero, then the position of the entire substring that matches the pattern is
returned. If subexpr is greater than zero, then the position of the substring fragment that
corresponds to subexpression number subexpr in the matched substring is returned. If
pattern does not have at least subexpr subexpressions, the function returns zero. A null
subexpr value returns NULL. The default value for subexpr is zero.

See Also:

• INSTR and REGEXP_SUBSTR

• REGEXP_REPLACE and REGEXP_LIKE Condition

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation REGEXP_INSTR uses to compare
characters from source_char with characters from pattern

Examples

The following example examines the string, looking for occurrences of one or more non-blank
characters. Oracle begins searching at the first character in the string and returns the starting
position (default) of the sixth occurrence of one or more non-blank characters.

SELECT
 REGEXP_INSTR('500 Oracle Parkway, Redwood Shores, CA',
 '[^]+', 1, 6) "REGEXP_INSTR"
 FROM DUAL;

REGEXP_INSTR

 37

The following example examines the string, looking for occurrences of words beginning with
s, r, or p, regardless of case, followed by any six alphabetic characters. Oracle begins
searching at the third character in the string and returns the position in the string of the
character following the second occurrence of a seven-letter word beginning with s, r, or p,
regardless of case.

Chapter 7
REGEXP_INSTR

7-307

SELECT
 REGEXP_INSTR('500 Oracle Parkway, Redwood Shores, CA',
 '[s|r|p][[:alpha:]]{6}', 3, 2, 1, 'i') "REGEXP_INSTR"
 FROM DUAL;

REGEXP_INSTR

 28

The following examples use the subexpr argument to search for a particular
subexpression in pattern. The first statement returns the position in the source string
of the first character in the first subexpression, which is '123':

SELECT REGEXP_INSTR('1234567890', '(123)(4(56)(78))', 1, 1, 0, 'i', 1)
"REGEXP_INSTR" FROM DUAL;

REGEXP_INSTR

1

The next statement returns the position in the source string of the first character in the
second subexpression, which is '45678':

SELECT REGEXP_INSTR('1234567890', '(123)(4(56)(78))', 1, 1, 0, 'i', 2)
"REGEXP_INSTR" FROM DUAL;

REGEXP_INSTR

4

The next statement returns the position in the source string of the first character in the
fourth subexpression, which is '78':

SELECT REGEXP_INSTR('1234567890', '(123)(4(56)(78))', 1, 1, 0, 'i', 4)
"REGEXP_INSTR" FROM DUAL;

REGEXP_INSTR

7

REGEXP_INSTR pattern matching: Examples

The following statements create a table regexp_temp and insert values into it:

CREATE TABLE regexp_temp(empName varchar2(20), emailID varchar2(20));

INSERT INTO regexp_temp (empName, emailID) VALUES ('John Doe',
'johndoe@example.com');
INSERT INTO regexp_temp (empName, emailID) VALUES ('Jane Doe', 'janedoe');

In the following example, the statement queries the email column and searches for
valid email addresses:

SELECT emailID, REGEXP_INSTR(emailID, '\w+@\w+(\.\w+)+') "IS_A_VALID_EMAIL" FROM
regexp_temp;

EMAILID IS_A_VALID_EMAIL
-------------------- ----------------
johndoe@example.com 1
example.com 0

Chapter 7
REGEXP_INSTR

7-308

In the following example, the statement queries the email column and returns the count of
valid email addresses:

EMPNAME Valid Email FIELD_WITH_VALID_EMAIL
-------- ------------------- ----------------------
John Doe johndoe@example.com 1
Jane Doe

Live SQL:

View and run related examples on Oracle Live SQL at REGEXP_INSTR pattern
matching

REGEXP_REPLACE
Syntax

REGEXP_REPLACE (source_char , pattern

, replace_string

, position

, occurrence

, match_param

)

Purpose

REGEXP_REPLACE extends the functionality of the REPLACE function by letting you search a
string for a regular expression pattern. By default, the function returns source_char with
every occurrence of the regular expression pattern replaced with replace_string. The string
returned is in the same character set as source_char. The function returns VARCHAR2 if the
first argument is not a LOB and returns CLOB if the first argument is a LOB.

This function complies with the POSIX regular expression standard and the Unicode Regular
Expression Guidelines. For more information, refer to Oracle Regular Expression Support.

• source_char is a character expression that serves as the search value. It is commonly a
character column and can be of any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB or NCLOB.

• pattern is the regular expression. It is usually a text literal and can be of any of the data
types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. It can contain up to 512 bytes. If the data
type of pattern is different from the data type of source_char, then Oracle Database
converts pattern to the data type of source_char. For a listing of the operators you can
specify in pattern, refer to Oracle Regular Expression Support.

• replace_string can be of any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. If replace_string is a CLOB or NCLOB, then Oracle truncates replace_string to
32K. The replace_string can contain up to 500 backreferences to subexpressions in the
form \n, where n is a number from 1 to 9. If you want to include a backslash (\) in
replace_string, then you must precede it with the escape character, which is also a

Chapter 7
REGEXP_REPLACE

7-309

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_instr/find-location.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_instr/find-location.html

backslash. For example, to replace \2 you would enter \\2. For more information
on backreference expressions, refer to the notes to " Oracle Regular Expression
Support", Table D-1.

• position is a positive integer indicating the character of source_char where
Oracle should begin the search. The default is 1, meaning that Oracle begins the
search at the first character of source_char.

• occurrence is a nonnegative integer indicating the occurrence of the replace
operation:

– If you specify 0, then Oracle replaces all occurrences of the match.

– If you specify a positive integer n, then Oracle replaces the nth occurrence.

If occurrence is greater than 1, then the database searches for the second
occurrence beginning with the first character following the first occurrence of
pattern, and so forth. This behavior is different from the INSTR function, which
begins its search for the second occurrence at the second character of the first
occurrence.

• match_param is a character expression of the data type VARCHAR2 or CHAR that lets
you change the default matching behavior of the function. The behavior of this
parameter is the same for this function as for REGEXP_COUNT. Refer to
REGEXP_COUNT for detailed information.

See Also:

• REPLACE

• REGEXP_INSTR , REGEXP_SUBSTR , and REGEXP_LIKE Condition

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules, which define the collation REGEXP_REPLACE
uses to compare characters from source_char with characters from
pattern, and for the collation derivation rules, which define the collation
assigned to the character return value of this function

Examples

The following example examines phone_number, looking for the pattern xxx.xxx.xxxx.
Oracle reformats this pattern with (xxx) xxx-xxxx.

SELECT
 REGEXP_REPLACE(phone_number,
 '([[:digit:]]{3})\.([[:digit:]]{3})\.([[:digit:]]{4})',
 '(\1) \2-\3') "REGEXP_REPLACE"
 FROM employees
 ORDER BY "REGEXP_REPLACE";

REGEXP_REPLACE
--
(515) 123-4444
(515) 123-4567
(515) 123-4568
(515) 123-4569

Chapter 7
REGEXP_REPLACE

7-310

(515) 123-5555
. . .

The following example examines country_name. Oracle puts a space after each non-null
character in the string.

SELECT
 REGEXP_REPLACE(country_name, '(.)', '\1 ') "REGEXP_REPLACE"
 FROM countries;

REGEXP_REPLACE
--
A r g e n t i n a
A u s t r a l i a
B e l g i u m
B r a z i l
C a n a d a
. . .

The following example examines the string, looking for two or more spaces. Oracle replaces
each occurrence of two or more spaces with a single space.

SELECT
 REGEXP_REPLACE('500 Oracle Parkway, Redwood Shores, CA',
 '(){2,}', ' ') "REGEXP_REPLACE"
 FROM DUAL;

REGEXP_REPLACE

500 Oracle Parkway, Redwood Shores, CA

REGEXP_REPLACE pattern matching: Examples

The following statements create a table regexp_temp and insert values into it:

CREATE TABLE regexp_temp(empName varchar2(20), emailID varchar2(20));

INSERT INTO regexp_temp (empName, emailID) VALUES ('John Doe', 'johndoe@example.com');
INSERT INTO regexp_temp (empName, emailID) VALUES ('Jane Doe', 'janedoe@example.com');

The following statement replaces the string ‘Jane’ with ‘John’:

SELECT empName, REGEXP_REPLACE (empName, 'Jane', 'John') "STRING_REPLACE" FROM
regexp_temp;

EMPNAME STRING_REPLACE
-------- --------------
John Doe John Doe
Jane Doe John Doe

The following statement replaces the string ‘John’ with ‘Jane’:

SELECT empName, REGEXP_REPLACE (empName, 'Jane', 'John') "STRING_REPLACE" FROM
regexp_temp;

EMPNAME STRING_REPLACE
-------- --------------
John Doe Jane Doe
Jane Doe Jane Doe

Chapter 7
REGEXP_REPLACE

7-311

Live SQL:

View and run a related example on Oracle Live SQL at REGEXP_REPLACE
- Pattern Matching

REGEXP_REPLACE: Examples

The following statement replaces all the numbers in a string:

WITH strings AS (
 SELECT 'abc123' s FROM dual union all
 SELECT '123abc' s FROM dual union all
 SELECT 'a1b2c3' s FROM dual
)
 SELECT s "STRING", regexp_replace(s, '[0-9]', '') "MODIFIED_STRING"
 FROM strings;

 STRING MODIFIED_STRING
-------------------- --------------------
abc123 abc
123abc abc
a1b2c3 abc

The following statement replaces the first numeric occurrence in a string:

WITH strings AS (
 SELECT 'abc123' s from DUAL union all
 SELECT '123abc' s from DUAL union all
 SELECT 'a1b2c3' s from DUAL
)
 SELECT s "STRING", REGEXP_REPLACE(s, '[0-9]', '', 1, 1)
"MODIFIED_STRING"
 FROM strings;

 STRING MODIFIED_STRING
-------------------- --------------------
abc123 abc23
123abc 23abc
a1b2c3 ab2c3

The following statement replaces the second numeric occurrence in a string:

WITH strings AS (
 SELECT 'abc123' s from DUAL union all
 SELECT '123abc' s from DUAL union all
 SELECT 'a1b2c3' s from DUAL
)
 SELECT s "STRING", REGEXP_REPLACE(s, '[0-9]', '', 1, 2)
"MODIFIED_STRING"
 FROM strings;

Chapter 7
REGEXP_REPLACE

7-312

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_replace/match-replace1.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_replace/match-replace1.html

STRING MODIFIED_STRING
-------------------- --------------------
abc123 abc13
123abc 13abc
a1b2c3 a1bc3

The following statement replaces multiple spaces in a string with a single space:

WITH strings AS (
 SELECT 'Hello World' s FROM dual union all
 SELECT 'Hello World' s FROM dual union all
 SELECT 'Hello, World !' s FROM dual
)
 SELECT s "STRING", regexp_replace(s, ' {2,}', ' ') "MODIFIED_STRING"
 FROM strings;

 STRING MODIFIED_STRING
-------------------- --------------------
Hello World Hello World
Hello World Hello World
Hello, World ! Hello, World !

The following statement converts camel case strings to a string containing lower case words
separated by an underscore:

WITH strings as (
 SELECT 'AddressLine1' s FROM dual union all
 SELECT 'ZipCode' s FROM dual union all
 SELECT 'Country' s FROM dual
)
 SELECT s "STRING",
 lower(regexp_replace(s, '([A-Z0-9])', '_\1', 2)) "MODIFIED_STRING"
 FROM strings;

 STRING MODIFIED_STRING
-------------------- --------------------
AddressLine1 address_line_1
ZipCode zip_code
Country country

The following statement converts the format of a date:

WITH date_strings AS (
 SELECT '2015-01-01' d from dual union all
 SELECT '2000-12-31' d from dual union all
 SELECT '900-01-01' d from dual
)
 SELECT d "STRING",
 regexp_replace(d, '([[:digit:]]+)-([[:digit:]]{2})-([[:digit:]]
{2})', '\3.\2.\1') "MODIFIED_STRING"
 FROM date_strings;

 STRING MODIFIED_STRING

Chapter 7
REGEXP_REPLACE

7-313

-------------------- --------------------
2015-01-01 01.01.2015
2000-12-31 31.12.2000
900-01-01 01.01.900

The following statement replaces all the letters in a string with ‘1’:

WITH strings as (
 SELECT 'NEW YORK' s FROM dual union all
 SELECT 'New York' s FROM dual union all
 SELECT 'new york' s FROM dual
)
 SELECT s "STRING",
 regexp_replace(s, '[a-z]', '1', 1, 0, 'i')
"CASE_INSENSITIVE",
 regexp_replace(s, '[a-z]', '1', 1, 0, 'c') "CASE_SENSITIVE",
 regexp_replace(s, '[a-zA-Z]', '1', 1, 0, 'c')
"CASE_SENSITIVE_MATCHING"
 FROM strings;

 STRING CASE_INSEN CASE_SENSI CASE_SENSI
---------- ---------- ---------- ----------
NEW YORK 111 1111 NEW YORK 111 1111
New York 111 1111 N11 Y111 111 1111
new york 111 1111 111 1111 111 1111

Live SQL:

View and run a related example on Oracle Live SQL at REGEXP_REPLACE

REGEXP_SUBSTR
Syntax

REGEXP_SUBSTR (source_char , pattern

, position

, occurrence

, match_param

subexpr

)

Purpose

REGEXP_SUBSTR extends the functionality of the SUBSTR function by letting you search a
string for a regular expression pattern. It is also similar to REGEXP_INSTR, but instead of
returning the position of the substring, it returns the substring itself. This function is
useful if you need the contents of a match string but not its position in the source

Chapter 7
REGEXP_SUBSTR

7-314

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_replace/regexp-replace1.html

string. The function returns the string as VARCHAR2 or CLOB data in the same character set as
source_char.

This function complies with the POSIX regular expression standard and the Unicode Regular
Expression Guidelines. For more information, refer to Oracle Regular Expression Support.

• source_char is a character expression that serves as the search value. It is commonly a
character column and can be of any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB, or NCLOB.

• pattern is the regular expression. It is usually a text literal and can be of any of the data
types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. It can contain up to 512 bytes. If the data
type of pattern is different from the data type of source_char, then Oracle Database
converts pattern to the data type of source_char. For a listing of the operators you can
specify in pattern, refer to Oracle Regular Expression Support.

• position is a positive integer indicating the character of source_char where Oracle
should begin the search. The default is 1, meaning that Oracle begins the search at the
first character of source_char.

• occurrence is a positive integer indicating which occurrence of pattern in source_char
Oracle should search for. The default is 1, meaning that Oracle searches for the first
occurrence of pattern.

If occurrence is greater than 1, then the database searches for the second occurrence
beginning with the first character following the first occurrence of pattern, and so forth.
This behavior is different from the SUBSTR function, which begins its search for the second
occurrence at the second character of the first occurrence.

• match_param is a character expression of the data type VARCHAR2 or CHAR that lets you
change the default matching behavior of the function. The behavior of this parameter is
the same for this function as for REGEXP_COUNT. Refer to REGEXP_COUNT for detailed
information.

• For a pattern with subexpressions, subexpr is a nonnegative integer from 0 to 9
indicating which subexpression in pattern is to be returned by the function. This
parameter has the same semantics that it has for the REGEXP_INSTR function. Refer to
REGEXP_INSTR for more information.

See Also:

• SUBSTR and REGEXP_INSTR

• REGEXP_REPLACE , and REGEXP_LIKE Condition

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation REGEXP_SUBSTR uses to compare
characters from source_char with characters from pattern, and for the
collation derivation rules, which define the collation assigned to the character
return value of this function

Examples

The following example examines the string, looking for the first substring bounded by
commas. Oracle Database searches for a comma followed by one or more occurrences of

Chapter 7
REGEXP_SUBSTR

7-315

non-comma characters followed by a comma. Oracle returns the substring, including
the leading and trailing commas.

SELECT
 REGEXP_SUBSTR('500 Oracle Parkway, Redwood Shores, CA',
 ',[^,]+,') "REGEXPR_SUBSTR"
 FROM DUAL;

REGEXPR_SUBSTR

, Redwood Shores,

The following example examines the string, looking for http:// followed by a
substring of one or more alphanumeric characters and optionally, a period (.). Oracle
searches for a minimum of three and a maximum of four occurrences of this substring
between http:// and either a slash (/) or the end of the string.

SELECT
 REGEXP_SUBSTR('http://www.example.com/products',
 'http://([[:alnum:]]+\.?){3,4}/?') "REGEXP_SUBSTR"
 FROM DUAL;

REGEXP_SUBSTR

http://www.example.com/

The next two examples use the subexpr argument to return a specific subexpression
of pattern. The first statement returns the first subexpression in pattern:

SELECT REGEXP_SUBSTR('1234567890', '(123)(4(56)(78))', 1, 1, 'i', 1)
"REGEXP_SUBSTR" FROM DUAL;

REGEXP_SUBSTR

123

The next statement returns the fourth subexpression in pattern:

SELECT REGEXP_SUBSTR('1234567890', '(123)(4(56)(78))', 1, 1, 'i', 4)
"REGEXP_SUBSTR" FROM DUAL;

REGEXP_SUBSTR

78

REGEXP_SUBSTR pattern matching: Examples

The following statements create a table regexp_temp and insert values into it:

CREATE TABLE regexp_temp(empName varchar2(20), emailID varchar2(20));

INSERT INTO regexp_temp (empName, emailID) VALUES ('John Doe',
'johndoe@example.com');
INSERT INTO regexp_temp (empName, emailID) VALUES ('Jane Doe', 'janedoe');

In the following example, the statement queries the email column and searches for
valid email addresses:

SELECT empName, REGEXP_SUBSTR(emailID, '[[:alnum:]]+\@[[:alnum:]]+\.[[:alnum:]]
+') "Valid Email" FROM regexp_temp;

Chapter 7
REGEXP_SUBSTR

7-316

EMPNAME Valid Email
-------- -------------------
John Doe johndoe@example.com
Jane Doe

In the following example, the statement queries the email column and returns the count of
valid email addresses:

SELECT empName, REGEXP_SUBSTR(emailID, '[[:alnum:]]+\@[[:alnum:]]+\.[[:alnum:]]+')
"Valid Email", REGEXP_INSTR(emailID, '\w+@\w+(\.\w+)+') "FIELD_WITH_VALID_EMAIL" FROM
regexp_temp;

EMPNAME Valid Email FIELD_WITH_VALID_EMAIL
-------- ------------------- ----------------------
John Doe johndoe@example.com 1
Jane Doe

Live SQL:

View and run related examples on Oracle Live SQL at REGEXP_SUBSTR pattern
matching

In the following example, numbers and alphabets are extracted from a string:

with strings as (
 select 'ABC123' str from dual union all
 select 'A1B2C3' str from dual union all
 select '123ABC' str from dual union all
 select '1A2B3C' str from dual
)
 select regexp_substr(str, '[0-9]') First_Occurrence_of_Number,
 regexp_substr(str, '[0-9].*') Num_Followed_by_String,
 regexp_substr(str, '[A-Z][0-9]') Letter_Followed_by_String
 from strings;

FIRST_OCCURRENCE_OF_NUMB NUM_FOLLOWED_BY_STRING LETTER_FOLLOWED_BY_STRIN
------------------------ ------------------------ ------------------------
1 123 C1
1 1B2C3 A1
1 123ABC
1 1A2B3C A2

Live SQL:

View and run a related example on Oracle Live SQL at REGEXP_SUBSTR -
Extract Numbers and Alphabets

In the following example, passenger names and flight information are extracted from a string:

with strings as (
 select 'LHRJFK/010315/JOHNDOE' str from dual union all
 select 'CDGLAX/050515/JANEDOE' str from dual union all
 select 'LAXCDG/220515/JOHNDOE' str from dual union all
 select 'SFOJFK/010615/JANEDOE' str from dual

Chapter 7
REGEXP_SUBSTR

7-317

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_substr/find-pattern-email.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_substr/find-pattern-email.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_substr/extract1.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_substr/extract1.html

)
 SELECT regexp_substr(str, '[A-Z]{6}') String_of_6_characters,
 regexp_substr(str, '[0-9]+') First_Matching_Numbers,
 regexp_substr(str, '[A-Z].*$') Letter_by_other_characters,
 regexp_substr(str, '/[A-Z].*$') Slash_letter_and_characters
 FROM strings;

STRING_OF_6_CHARACTERS FIRST_MATCHING_NUMBERS
LETTER_BY_OTHER_CHARACTERS SLASH_LETTER_AND_CHARACTERS
---------------------- ----------------------
-------------------------- ---------------------------
LHRJFK 010315 LHRJFK/010315/
JOHNDOE /JOHNDOE
CDGLAX 050515 CDGLAX/050515/
JANEDOE /JANEDOE
LAXCDG 220515 LAXCDG/220515/
JOHNDOE /JOHNDOE
SFOJFK 010615 SFOJFK/010615/
JANEDOE /JANEDOE

Live SQL:

View and run a related example on Oracle Live SQL at REGEXP_SUBSTR -
Extract Passenger Names and Flight Information

REGR_ (Linear Regression) Functions
The linear regression functions are:

• REGR_SLOPE
• REGR_INTERCEPT
• REGR_COUNT
• REGR_R2
• REGR_AVGX
• REGR_AVGY
• REGR_SXX
• REGR_SYY
• REGR_SXY

Chapter 7
REGR_ (Linear Regression) Functions

7-318

https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_substr/extract2.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/regexp_substr/extract2.html

Syntax

linear_regr::=

REGR_SLOPE

REGR_INTERCEPT

REGR_COUNT

REGR_R2

REGR_AVGX

REGR_AVGY

REGR_SXX

REGR_SYY

REGR_SXY

(expr1 , expr2)

OVER (analytic_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

The linear regression functions fit an ordinary-least-squares regression line to a set of
number pairs. You can use them as both aggregate and analytic functions.

See Also:

"Aggregate Functions " and "About SQL Expressions " for information on valid
forms of expr

These functions take as arguments any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that data type,
and returns that data type.

See Also:

Table 2-8 for more information on implicit conversion and "Numeric Precedence "
for information on numeric precedence

Chapter 7
REGR_ (Linear Regression) Functions

7-319

Oracle applies the function to the set of (expr1, expr2) pairs after eliminating all pairs
for which either expr1 or expr2 is null. Oracle computes all the regression functions
simultaneously during a single pass through the data.

expr1 is interpreted as a value of the dependent variable (a y value), and expr2 is
interpreted as a value of the independent variable (an x value).

• REGR_SLOPE returns the slope of the line. The return value is a numeric data type
and can be null. After the elimination of null (expr1, expr2) pairs, it makes the
following computation:

COVAR_POP(expr1, expr2) / VAR_POP(expr2)
• REGR_INTERCEPT returns the y-intercept of the regression line. The return value is a

numeric data type and can be null. After the elimination of null (expr1, expr2)
pairs, it makes the following computation:

AVG(expr1) - REGR_SLOPE(expr1, expr2) * AVG(expr2)
• REGR_COUNT returns an integer that is the number of non-null number pairs used to

fit the regression line.

• REGR_R2 returns the coefficient of determination (also called R-squared or
goodness of fit) for the regression. The return value is a numeric data type and
can be null. VAR_POP(expr1) and VAR_POP(expr2) are evaluated after the
elimination of null pairs. The return values are:

 NULL if VAR_POP(expr2) = 0

 1 if VAR_POP(expr1) = 0 and
 VAR_POP(expr2) != 0

POWER(CORR(expr1,expr),2) if VAR_POP(expr1) > 0 and
 VAR_POP(expr2 != 0

All of the remaining regression functions return a numeric data type and can be null:

• REGR_AVGX evaluates the average of the independent variable (expr2) of the
regression line. It makes the following computation after the elimination of null
(expr1, expr2) pairs:

AVG(expr2)
• REGR_AVGY evaluates the average of the dependent variable (expr1) of the

regression line. It makes the following computation after the elimination of null
(expr1, expr2) pairs:

AVG(expr1)
REGR_SXY, REGR_SXX, REGR_SYY are auxiliary functions that are used to compute various
diagnostic statistics.

• REGR_SXX makes the following computation after the elimination of null (expr1,
expr2) pairs:

REGR_COUNT(expr1, expr2) * VAR_POP(expr2)
• REGR_SYY makes the following computation after the elimination of null (expr1,

expr2) pairs:

REGR_COUNT(expr1, expr2) * VAR_POP(expr1)

Chapter 7
REGR_ (Linear Regression) Functions

7-320

• REGR_SXY makes the following computation after the elimination of null (expr1, expr2)
pairs:

REGR_COUNT(expr1, expr2) * COVAR_POP(expr1, expr2)
The following examples are based on the sample tables sh.sales and sh.products.

General Linear Regression Example

The following example provides a comparison of the various linear regression functions used
in their analytic form. The analytic form of these functions can be useful when you want to
use regression statistics for calculations such as finding the salary predicted for each
employee by the model. The sections that follow on the individual linear regression functions
contain examples of the aggregate form of these functions.

SELECT job_id, employee_id ID, salary,
REGR_SLOPE(SYSDATE-hire_date, salary)
 OVER (PARTITION BY job_id) slope,
REGR_INTERCEPT(SYSDATE-hire_date, salary)
 OVER (PARTITION BY job_id) intcpt,
REGR_R2(SYSDATE-hire_date, salary)
 OVER (PARTITION BY job_id) rsqr,
REGR_COUNT(SYSDATE-hire_date, salary)
 OVER (PARTITION BY job_id) count,
REGR_AVGX(SYSDATE-hire_date, salary)
 OVER (PARTITION BY job_id) avgx,
REGR_AVGY(SYSDATE-hire_date, salary)
 OVER (PARTITION BY job_id) avgy
 FROM employees
 WHERE department_id in (50, 80)
 ORDER BY job_id, employee_id;

JOB_ID ID SALARY SLOPE INTCPT RSQR COUNT AVGX AVGY
---------- ----- ---------- ----- --------- ----- ------ ---------- ---------
SA_MAN 145 14000 .355 -1707.035 .832 5 12200.000 2626.589
SA_MAN 146 13500 .355 -1707.035 .832 5 12200.000 2626.589
SA_MAN 147 12000 .355 -1707.035 .832 5 12200.000 2626.589
SA_MAN 148 11000 .355 -1707.035 .832 5 12200.000 2626.589
SA_MAN 149 10500 .355 -1707.035 .832 5 12200.000 2626.589
SA_REP 150 10000 .257 404.763 .647 29 8396.552 2561.244
SA_REP 151 9500 .257 404.763 .647 29 8396.552 2561.244
SA_REP 152 9000 .257 404.763 .647 29 8396.552 2561.244
SA_REP 153 8000 .257 404.763 .647 29 8396.552 2561.244
SA_REP 154 7500 .257 404.763 .647 29 8396.552 2561.244
SA_REP 155 7000 .257 404.763 .647 29 8396.552 2561.244
SA_REP 156 10000 .257 404.763 .647 29 8396.552 2561.244
. . .

REGR_SLOPE and REGR_INTERCEPT Examples

The following example calculates the slope and regression of the linear regression model for
time employed (SYSDATE - hire_date) and salary using the sample table hr.employees.
Results are grouped by job_id.

SELECT job_id,
REGR_SLOPE(SYSDATE-hire_date, salary) slope,
REGR_INTERCEPT(SYSDATE-hire_date, salary) intercept
 FROM employees
 WHERE department_id in (50,80)
 GROUP BY job_id
 ORDER BY job_id;

Chapter 7
REGR_ (Linear Regression) Functions

7-321

JOB_ID SLOPE INTERCEPT
---------- ----- ------------
SA_MAN .355 -1707.030762
SA_REP .257 404.767151
SH_CLERK .745 159.015293
ST_CLERK .904 134.409050
ST_MAN .479 -570.077291

REGR_COUNT Examples

The following example calculates the count of by job_id for time employed (SYSDATE -
hire_date) and salary using the sample table hr.employees. Results are grouped by
job_id.

SELECT job_id,
REGR_COUNT(SYSDATE-hire_date, salary) count
 FROM employees
 WHERE department_id in (30, 50)
 GROUP BY job_id
 ORDER BY job_id, count;

JOB_ID COUNT
---------- ----------
PU_CLERK 5
PU_MAN 1
SH_CLERK 20
ST_CLERK 20
ST_MAN 5

REGR_R2 Examples

The following example calculates the coefficient of determination the linear regression
of time employed (SYSDATE - hire_date) and salary using the sample table
hr.employees:

SELECT job_id,
REGR_R2(SYSDATE-hire_date, salary) Regr_R2
 FROM employees
 WHERE department_id in (80, 50)
 GROUP by job_id
 ORDER BY job_id, Regr_R2;

JOB_ID REGR_R2
---------- ----------
SA_MAN .83244748
SA_REP .647007156
SH_CLERK .879799698
ST_CLERK .742808493
ST_MAN .69418508

REGR_AVGY and REGR_AVGX Examples

The following example calculates the average values for time employed (SYSDATE -
hire_date) and salary using the sample table hr.employees. Results are grouped by
job_id:

SELECT job_id,
REGR_AVGY(SYSDATE-hire_date, salary) avgy,
REGR_AVGX(SYSDATE-hire_date, salary) avgx
 FROM employees

Chapter 7
REGR_ (Linear Regression) Functions

7-322

 WHERE department_id in (30,50)
 GROUP BY job_id
 ORDER BY job_id, avgy, avgx;

JOB_ID AVGY AVGX
---------- ---------- ----------
PU_CLERK 2950.3778 2780
PU_MAN 4026.5778 11000
SH_CLERK 2773.0778 3215
ST_CLERK 2872.7278 2785
ST_MAN 3140.1778 7280

REGR_SXY, REGR_SXX, and REGR_SYY Examples

The following example calculates three types of diagnostic statistics for the linear regression
of time employed (SYSDATE - hire_date) and salary using the sample table hr.employees:

SELECT job_id,
REGR_SXY(SYSDATE-hire_date, salary) regr_sxy,
REGR_SXX(SYSDATE-hire_date, salary) regr_sxx,
REGR_SYY(SYSDATE-hire_date, salary) regr_syy
 FROM employees
 WHERE department_id in (80, 50)
 GROUP BY job_id
 ORDER BY job_id;

JOB_ID REGR_SXY REGR_SXX REGR_SYY
---------- ---------- ----------- ----------
SA_MAN 3303500 9300000.0 1409642
SA_REP 16819665.5 65489655.2 6676562.55
SH_CLERK 4248650 5705500.0 3596039
ST_CLERK 3531545 3905500.0 4299084.55
ST_MAN 2180460 4548000.0 1505915.2

REMAINDER
Syntax

REMAINDER (n2 , n1)

Purpose

REMAINDER returns the remainder of n2 divided by n1.

This function takes as arguments any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that data type,
and returns that data type.

The MOD function is similar to REMAINDER except that it uses FLOOR in its formula, whereas
REMAINDER uses ROUND. Refer to MOD .

Chapter 7
REMAINDER

7-323

See Also:

Table 2-8 for more information on implicit conversion and "Numeric
Precedence " for information on numeric precedence

• If n1 = 0 or n2 = infinity, then Oracle returns

– An error if the arguments are of type NUMBER
– NaN if the arguments are BINARY_FLOAT or BINARY_DOUBLE.

• If n1 != 0, then the remainder is n2 - (n1*N) where N is the integer nearest n2/n1. If
n2/n1 equals x.5, then N is the nearest even integer.

• If n2 is a floating-point number, and if the remainder is 0, then the sign of the
remainder is the sign of n2. Remainders of 0 are unsigned for NUMBER values.

Examples

Using table float_point_demo, created for the TO_BINARY_DOUBLE "Examples", the
following example divides two floating-point numbers and returns the remainder of that
operation:

SELECT bin_float, bin_double, REMAINDER(bin_float, bin_double)
 FROM float_point_demo;

 BIN_FLOAT BIN_DOUBLE REMAINDER(BIN_FLOAT,BIN_DOUBLE)
---------- ---------- -------------------------------
1.235E+003 1.235E+003 5.859E-005

REPLACE
Syntax

REPLACE (char , search_string

, replacement_string

)

Purpose

REPLACE returns char with every occurrence of search_string replaced with
replacement_string. If replacement_string is omitted or null, then all occurrences of
search_string are removed. If search_string is null, then char is returned.

Both search_string and replacement_string, as well as char, can be any of the data
types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The string returned is in the
same character set as char. The function returns VARCHAR2 if the first argument is not a
LOB and returns CLOB if the first argument is a LOB.

REPLACE provides functionality related to that provided by the TRANSLATE function.
TRANSLATE provides single-character, one-to-one substitution. REPLACE lets you
substitute one string for another as well as to remove character strings.

Chapter 7
REPLACE

7-324

See Also:

• TRANSLATE

• Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation REPLACE uses to compare
characters from char with characters from search_string, and for the collation
derivation rules, which define the collation assigned to the character return
value of this function

Examples

The following example replaces occurrences of J with BL:

SELECT REPLACE('JACK and JUE','J','BL') "Changes"
 FROM DUAL;

Changes

BLACK and BLUE

ROUND (date)
Syntax

round_date::=

ROUND (date

, fmt

)

Purpose

ROUND returns date rounded to the unit specified by the format model fmt. This function is not
sensitive to the NLS_CALENDAR session parameter. It operates according to the rules of the
Gregorian calendar. The value returned is always of data type DATE, even if you specify a
different datetime data type for date. If you omit fmt, then date is rounded to the nearest day.
The date expression must resolve to a DATE value.

See Also:

"ROUND and TRUNC Date Functions" for the permitted format models to use in
fmt

Examples

The following example rounds a date to the first day of the following year:

SELECT ROUND (TO_DATE ('27-OCT-00'),'YEAR')
 "New Year" FROM DUAL;

Chapter 7
ROUND (date)

7-325

New Year

01-JAN-01

ROUND (number)
Syntax

round_number::=

ROUND (n

, integer

)

Purpose

ROUND returns n rounded to integer places to the right of the decimal point. If you omit
integer, then n is rounded to zero places. If integer is negative, then n is rounded off
to the left of the decimal point.

n can be any numeric data type or any nonnumeric data type that can be implicitly
converted to a numeric data type. If you omit integer, then the function returns the
value ROUND(n, 0) in the same data type as the numeric data type of n. If you include
integer, then the function returns NUMBER.

ROUND is implemented using the following rules:

1. If n is 0, then ROUND always returns 0 regardless of integer.

2. If n is negative, then ROUND(n, integer) returns -ROUND(-n, integer).

3. If n is positive, then

ROUND(n, integer) = FLOOR(n * POWER(10, integer) + 0.5) * POWER(10, -integer)
ROUND applied to a NUMBER value may give a slightly different result from ROUND applied
to the same value expressed in floating-point. The different results arise from
differences in internal representations of NUMBER and floating point values. The
difference will be 1 in the rounded digit if a difference occurs.

See Also:

• Table 2-8 for more information on implicit conversion

• "Floating-Point Numbers " for more information on how Oracle Database
handles BINARY_FLOAT and BINARY_DOUBLE values

• FLOOR and CEIL , TRUNC (number) and MOD for information on
functions that perform related operations

Examples

The following example rounds a number to one decimal point:

Chapter 7
ROUND (number)

7-326

SELECT ROUND(15.193,1) "Round" FROM DUAL;

 Round

 15.2

The following example rounds a number one digit to the left of the decimal point:

SELECT ROUND(15.193,-1) "Round" FROM DUAL;

 Round

 20

ROUND_TIES_TO_EVEN (number)
Syntax

round_ties_to_even ::=

ROUND_TIES_TO_EVEN (n

, integer

)

Purpose

ROUND_TIES_TO_EVEN is a rounding function that takes two parameters: n and integer. The
function returns n rounded to integer places according to the following rules:

1. If integer is positive, n is rounded to integer places to the right of the decimal point.

2. If integer is not specified, then n is rounded to 0 places.

3. If integer is negative, then n is rounded to integer places to the left of the decimal point.

Restrictions

The function does not support the following types: BINARY_FLOAT and BINARY_DOUBLE.

Examples

The following example rounds a number to one decimal point to the right:

SELECT ROUND_TIES_TO_EVEN (0.05, 1) from DUAL

ROUND_TIES_TO_EVEN(0.05,1)

 0

The following example rounds a number to one decimal point to the left:

SELECT ROUND_TIES_TO_EVEN(45.177,-1) "ROUND_EVEN" FROM DUAL;

ROUND_TIES_TO_EVEN(45.177,-1)

 50

Chapter 7
ROUND_TIES_TO_EVEN (number)

7-327

ROW_NUMBER
Syntax

ROW_NUMBER () OVER (

query_partition_clause

order_by_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

ROW_NUMBER is an analytic function. It assigns a unique number to each row to which it
is applied (either each row in the partition or each row returned by the query), in the
ordered sequence of rows specified in the order_by_clause, beginning with 1.

By nesting a subquery using ROW_NUMBER inside a query that retrieves the ROW_NUMBER
values for a specified range, you can find a precise subset of rows from the results of
the inner query. This use of the function lets you implement top-N, bottom-N, and
inner-N reporting. For consistent results, the query must ensure a deterministic sort
order.

Examples

The following example finds the three highest paid employees in each department in
the hr.employees table. Fewer than three rows are returned for departments with
fewer than three employees.

SELECT department_id, first_name, last_name, salary
FROM
(
 SELECT
 department_id, first_name, last_name, salary,
 ROW_NUMBER() OVER (PARTITION BY department_id ORDER BY salary desc) rn
 FROM employees
)
WHERE rn <= 3
ORDER BY department_id, salary DESC, last_name;

The following example is a join query on the sh.sales table. It finds the sales amounts
in 2000 of the five top-selling products in 1999 and compares the difference between
2000 and 1999. The ten top-selling products are calculated within each distribution
channel.

SELECT sales_2000.channel_desc, sales_2000.prod_name,
 sales_2000.amt amt_2000, top_5_prods_1999_year.amt amt_1999,
 sales_2000.amt - top_5_prods_1999_year.amt amt_diff
FROM
/* The first subquery finds the 5 top-selling products per channel in year 1999. */
 (SELECT channel_desc, prod_name, amt
 FROM

Chapter 7
ROW_NUMBER

7-328

 (
 SELECT channel_desc, prod_name, sum(amount_sold) amt,
 ROW_NUMBER () OVER (PARTITION BY channel_desc
 ORDER BY SUM(amount_sold) DESC) rn
 FROM sales, times, channels, products
 WHERE sales.time_id = times.time_id
 AND times.calendar_year = 1999
 AND channels.channel_id = sales.channel_id
 AND products.prod_id = sales.prod_id
 GROUP BY channel_desc, prod_name
)
 WHERE rn <= 5
) top_5_prods_1999_year,
/* The next subquery finds sales per product and per channel in 2000. */
 (SELECT channel_desc, prod_name, sum(amount_sold) amt
 FROM sales, times, channels, products
 WHERE sales.time_id = times.time_id
 AND times.calendar_year = 2000
 AND channels.channel_id = sales.channel_id
 AND products.prod_id = sales.prod_id
 GROUP BY channel_desc, prod_name
) sales_2000
WHERE sales_2000.channel_desc = top_5_prods_1999_year.channel_desc
 AND sales_2000.prod_name = top_5_prods_1999_year.prod_name
ORDER BY sales_2000.channel_desc, sales_2000.prod_name
;
CHANNEL_DESC PROD_NAME AMT_2000 AMT_1999 AMT_DIFF
--------------- --------------==-------------------------------- ---------- ---------- ----------
Direct Sales 17" LCD w/built-in HDTV Tuner 628855.7 1163645.78 -534790.08
Direct Sales Envoy 256MB - 40GB 502938.54 843377.88 -340439.34
Direct Sales Envoy Ambassador 2259566.96 1770349.25 489217.71
Direct Sales Home Theatre Package with DVD-Audio/Video Play 1235674.15 1260791.44 -25117.29
Direct Sales Mini DV Camcorder with 3.5" Swivel LCD 775851.87 1326302.51 -550450.64
Internet 17" LCD w/built-in HDTV Tuner 31707.48 160974.7 -129267.22
Internet 8.3 Minitower Speaker 404090.32 155235.25 248855.07
Internet Envoy 256MB - 40GB 28293.87 154072.02 -125778.15
Internet Home Theatre Package with DVD-Audio/Video Play 155405.54 153175.04 2230.5
Internet Mini DV Camcorder with 3.5" Swivel LCD 39726.23 189921.97 -150195.74
Partners 17" LCD w/built-in HDTV Tuner 269973.97 325504.75 -55530.78
Partners Envoy Ambassador 1213063.59 614857.93 598205.66
Partners Home Theatre Package with DVD-Audio/Video Play 700266.58 520166.26 180100.32
Partners Mini DV Camcorder with 3.5" Swivel LCD 404265.85 520544.11 -116278.26
Partners Unix/Windows 1-user pack 374002.51 340123.02 33879.49

15 rows selected.

ROWIDTOCHAR
Syntax

ROWIDTOCHAR (rowid)

Purpose

ROWIDTOCHAR converts a rowid value to VARCHAR2 data type. The result of this conversion is
always 18 characters long.

Chapter 7
ROWIDTOCHAR

7-329

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of ROWIDTOCHAR

Examples

The following example converts a rowid value in the employees table to a character
value. (Results vary for each build of the sample database.)

SELECT ROWID FROM employees
 WHERE ROWIDTOCHAR(ROWID) LIKE '%JAAB%'
 ORDER BY ROWID;

ROWID

AAAFfIAAFAAAABSAAb

ROWIDTONCHAR
Syntax

ROWIDTONCHAR (rowid)

Purpose

ROWIDTONCHAR converts a rowid value to NVARCHAR2 data type. The result of this
conversion is always in the national character set and is 18 characters long.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of ROWIDTONCHAR

Examples

The following example converts a rowid value to an NVARCHAR2 string:

SELECT LENGTHB(ROWIDTONCHAR(ROWID)) Length, ROWIDTONCHAR(ROWID)
 FROM employees
 ORDER BY length;

 LENGTH ROWIDTONCHAR(ROWID
---------- ------------------
 36 AAAL52AAFAAAABSABD
 36 AAAL52AAFAAAABSABV
. . .

Chapter 7
ROWIDTONCHAR

7-330

RPAD
Syntax

RPAD (expr1 , n

, expr2

)

Purpose

RPAD returns expr1, right-padded to length n characters with expr2, replicated as many times
as necessary. This function is useful for formatting the output of a query.

Both expr1 and expr2 can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. The string returned is of VARCHAR2 data type if expr1 is a character data type,
NVARCHAR2 if expr1 is a national character data type, and a LOB if expr1 is a LOB data type.
The string returned is in the same character set as expr1. The argument n must be a NUMBER
integer or a value that can be implicitly converted to a NUMBER integer.

expr1 cannot be null. If you do not specify expr2, then it defaults to a single blank. If expr1 is
longer than n, then this function returns the portion of expr1 that fits in n.

The argument n is the total length of the return value as it is displayed on your terminal
screen. In most character sets, this is also the number of characters in the return value.
However, in some multibyte character sets, the display length of a character string can differ
from the number of characters in the string.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
RPAD

Examples

The following example creates a simple chart of salary amounts by padding a single space
with asterisks:

SELECT last_name, RPAD(' ', salary/1000/1, '*') "Salary"
 FROM employees
 WHERE department_id = 80
 ORDER BY last_name, "Salary";

LAST_NAME Salary
------------------------- ---------------
Abel **********
Ande *****
Banda *****
Bates ******
Bernstein ********
Bloom *********
Cambrault **********

Chapter 7
RPAD

7-331

Cambrault ******
Doran ******
Errazuriz ***********
Fox ********
Greene ********
Hall ********
Hutton *******
Johnson *****
King *********
. . .

RTRIM
Syntax

RTRIM (char

, set

)

Purpose

RTRIM removes from the right end of char all of the characters that appear in set. This
function is useful for formatting the output of a query.

If you do not specify set, then it defaults to a single blank. RTRIM works similarly to
LTRIM.

Both char and set can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2,
CLOB, or NCLOB. The string returned is of VARCHAR2 data type if char is a character data
type, NVARCHAR2 if char is a national character data type, and a LOB if char is a LOB
data type.

See Also:

• LTRIM

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules, which define the collation RTRIM uses to
compare characters from set with characters from char, and for the
collation derivation rules, which define the collation assigned to the
character return value of this function

Examples

The following example trims all the right-most occurrences of less than sign (<),
greater than sign (>) , and equal sign (=) from a string:

SELECT RTRIM('<=====>BROWNING<=====>', '<>=') "RTRIM Example"
 FROM DUAL;

RTRIM Example

<=====>BROWNING

Chapter 7
RTRIM

7-332

SCN_TO_TIMESTAMP
Syntax

SCN_TO_TIMESTAMP (number)

Purpose

SCN_TO_TIMESTAMP takes as an argument a number that evaluates to a system change
number (SCN), and returns the approximate timestamp associated with that SCN. The
returned value is of TIMESTAMP data type. This function is useful any time you want to know
the timestamp associated with an SCN. For example, it can be used in conjunction with the
ORA_ROWSCN pseudocolumn to associate a timestamp with the most recent change to a row.

Notes:

• The usual precision of the result value is 3 seconds.

• The association between an SCN and a timestamp when the SCN is generated
is remembered by the database for a limited period of time. This period is the
maximum of the auto-tuned undo retention period, if the database runs in the
Automatic Undo Management mode, and the retention times of all flashback
archives in the database, but no less than 120 hours. The time for the
association to become obsolete elapses only when the database is open. An
error is returned if the SCN specified for the argument to SCN_TO_TIMESTAMP is
too old.

See Also:

ORA_ROWSCN Pseudocolumn and TIMESTAMP_TO_SCN

Examples

The following example uses the ORA_ROWSCN pseudocolumn to determine the system change
number of the last update to a row and uses SCN_TO_TIMESTAMP to convert that SCN to a
timestamp:

SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN) FROM employees
 WHERE employee_id = 188;

You could use such a query to convert a system change number to a timestamp for use in an
Oracle Flashback Query:

SELECT salary FROM employees WHERE employee_id = 188;
 SALARY

 3800

Chapter 7
SCN_TO_TIMESTAMP

7-333

UPDATE employees SET salary = salary*10 WHERE employee_id = 188;
COMMIT;

SELECT salary FROM employees WHERE employee_id = 188;
 SALARY

 38000

SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN) FROM employees
 WHERE employee_id = 188;
SCN_TO_TIMESTAMP(ORA_ROWSCN)

28-AUG-03 01.58.01.000000000 PM

FLASHBACK TABLE employees TO TIMESTAMP
 TO_TIMESTAMP('28-AUG-03 01.00.00.000000000 PM');

SELECT salary FROM employees WHERE employee_id = 188;
 SALARY

 3800

SESSIONTIMEZONE
Syntax

SESSIONTIMEZONE

Purpose

SESSIONTIMEZONE returns the time zone of the current session. The return type is a
time zone offset (a character type in the format '[+|-]TZH:TZM') or a time zone region
name, depending on how the user specified the session time zone value in the most
recent ALTER SESSION statement.

Note:

The default client session time zone is an offset even if the client operating
system uses a named time zone. If you want the default session time zone to
use a named time zone, then set the ORA_SDTZ variable in the client
environment to an Oracle time zone region name. Refer to Oracle Database
Globalization Support Guide for more information on this variable.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of SESSIONTIMEZONE

Chapter 7
SESSIONTIMEZONE

7-334

Examples

The following example returns the time zone of the current session:

SELECT SESSIONTIMEZONE FROM DUAL;

SESSION

-08:00

SET
Syntax

SET (nested_table)

Purpose

SET converts a nested table into a set by eliminating duplicates. The function returns a nested
table whose elements are distinct from one another. The returned nested table is of the same
type as the input nested table.

The element types of the nested table must be comparable. Refer to "Comparison Conditions
" for information on the comparability of nonscalar types.

Examples

The following example selects from the customers_demo table the unique elements of the
cust_address_ntab nested table column:

SELECT customer_id, SET(cust_address_ntab) address
 FROM customers_demo
 ORDER BY customer_id;

CUSTOMER_ID ADDRESS(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)
----------- --
 101 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('514 W Superior St', '46901', 'Kokomo', 'IN', 'US'))
 102 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('2515 Bloyd Ave', '46218', 'Indianapolis', 'IN', 'US'))
 103 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('8768 N State Rd 37', '47404', 'Bloomington', 'IN', 'US'))
 104 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('6445 Bay Harbor Ln', '46254', 'Indianapolis', 'IN', 'US'))
 105 CUST_ADDRESS_TAB_TYP(CUST_ADDRESS_TYP('4019 W 3Rd St', '47404', 'Bloomington', 'IN', 'US'))
. . .

The preceding example requires the table customers_demo and a nested table column
containing data. Refer to "Multiset Operators " to create this table and nested table column.

SIGN
Syntax

SIGN (n)

Chapter 7
SET

7-335

Purpose

SIGN returns the sign of n. This function takes as an argument any numeric data type,
or any nonnumeric data type that can be implicitly converted to NUMBER, and returns
NUMBER.

For value of NUMBER type, the sign is:

• -1 if n<0

• 0 if n=0

• 1 if n>0

For binary floating-point numbers (BINARY_FLOAT and BINARY_DOUBLE), this function
returns the sign bit of the number. The sign bit is:

• -1 if n<0

• +1 if n>=0 or n=NaN

Examples

The following example indicates that the argument of the function (-15) is <0:

SELECT SIGN(-15) "Sign" FROM DUAL;

 Sign

 -1

SIN
Syntax

SIN (n)

Purpose

SIN returns the sine of n (an angle expressed in radians).

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. If the argument is
BINARY_FLOAT, then the function returns BINARY_DOUBLE. Otherwise the function
returns the same numeric data type as the argument.

See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns the sine of 30 degrees:

Chapter 7
SIN

7-336

SELECT SIN(30 * 3.14159265359/180)
 "Sine of 30 degrees" FROM DUAL;

Sine of 30 degrees

 .5

SINH
Syntax

SINH (n)

Purpose

SINH returns the hyperbolic sine of n.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the
function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns the hyperbolic sine of 1:

SELECT SINH(1) "Hyperbolic sine of 1" FROM DUAL;

Hyperbolic sine of 1

 1.17520119

SKEWNESS_POP
Syntax

SKEWNESS_POP

DISTINCT

ALL

UNIQUE

(expr)

Purpose

SKEWNESS_POP is an aggregate function that is primarily used to determine symmetry in a
given distribution.

Chapter 7
SINH

7-337

NULL values in expr are ignored.

Returns NULL if all rows in the group have NULL expr values.

Returns 0 if there are one or two rows in expr.

For a given set of values, the result of population skewness (SKEWNESS_POP) and
sample skewness (SKEWNESS_SAMP) are always deterministic. However, the values of
SKEWNESS_POP and SKEWNESS_SAMP differ. As the number of values in the data set
increases, the difference between the computed values of SKEWNESS_SAMP and
SKEWNESS_POP decreases.

SKEWNESS_SAMP
Syntax

SKEWNESS_SAMP

DISTINCT

ALL

UNIQUE

(expr)

Purpose

SKEWNESS_SAMP is an aggregate function that is primarily used to determine symmetry
in a given distribution.

NULL values in expr are ignored.

Returns NULL if all rows in the group have NULL expr values.

Returns 0 if there are one or two rows in expr.

For a given set of values, the result of population skewness (SKEWNESS_POP) and
sample skewness (SKEWNESS_SAMP) are always deterministic. However, the values of
SKEWNESS_POP and SKEWNESS_SAMP differ. As the number of values in the data set
increases, the difference between the computed values of SKEWNESS_SAMP and
SKEWNESS_POP decreases.

SOUNDEX
Syntax

SOUNDEX (char)

Purpose

SOUNDEX returns a character string containing the phonetic representation of char. This
function lets you compare words that are spelled differently, but sound alike in English.

The phonetic representation is defined in The Art of Computer Programming, Volume
3: Sorting and Searching, by Donald E. Knuth, as follows:

Chapter 7
SKEWNESS_SAMP

7-338

1. Retain the first letter of the string and remove all other occurrences of the following
letters: a, e, h, i, o, u, w, y.

2. Assign numbers to the remaining letters (after the first) as follows:

b, f, p, v = 1
c, g, j, k, q, s, x, z = 2
d, t = 3
l = 4
m, n = 5
r = 6

3. If two or more letters with the same number were adjacent in the original name (before
step 1), or adjacent except for any intervening h and w, then retain the first letter and omit
rest of all the adjacent letters with same number.

4. Return the first four bytes padded with 0.

char can be of any of the data types CHAR, VARCHAR2, NCHAR, or NVARCHAR2. The return value is
the same data type as char.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also:

• "Data Type Comparison Rules " for more information.

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of SOUNDEX

Examples

The following example returns the employees whose last names are a phonetic
representation of "Smyth":

SELECT last_name, first_name
 FROM hr.employees
 WHERE SOUNDEX(last_name)
 = SOUNDEX('SMYTHE')
 ORDER BY last_name, first_name;

LAST_NAME FIRST_NAME
---------- ----------
Smith Lindsey
Smith William

SQRT
Syntax

SQRT (n)

Chapter 7
SQRT

7-339

Purpose

SQRT returns the square root of n.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. The function returns the
same data type as the numeric data type of the argument.

See Also:

Table 2-8 for more information on implicit conversion

• If n resolves to a NUMBER, then the value n cannot be negative. SQRT returns a real
number.

• If n resolves to a binary floating-point number (BINARY_FLOAT or BINARY_DOUBLE):

– If n >= 0, then the result is positive.

– If n = -0, then the result is -0.

– If n < 0, then the result is NaN.

Examples

The following example returns the square root of 26:

SELECT SQRT(26) "Square root" FROM DUAL;

Square root

5.09901951

STANDARD_HASH
Syntax

STANDARD_HASH (expr

, ’ method ’

)

Purpose

STANDARD_HASH computes a hash value for a given expression using one of several
hash algorithms that are defined and standardized by the National Institute of
Standards and Technology. This function is useful for performing authentication and
maintaining data integrity in security applications such as digital signatures,
checksums, and fingerprinting.

You can use the STANDARD_HASH function to create an index on an extended data type
column. Refer to "Creating an Index on an Extended Data Type Column" for more
information.

Chapter 7
STANDARD_HASH

7-340

• The expr argument determines the data for which you want Oracle Database to compute
a hash value. There are no restrictions on the length of data represented by expr, which
commonly resolves to a column name. The expr cannot be a LONG or LOB type. It cannot
be a user-defined object type. All other data types are supported for expr.

• The optional method argument lets you specify the name of the hash algorithm to be
used. Valid algorithms are SHA1, SHA256, SHA384, SHA512 and MD5. If you omit this
argument, then SHA1 is used.

The function returns a RAW value.

Note:

The STANDARD_HASH function is not identical to the one used internally by Oracle
Database for hash partitioning.

STATS_BINOMIAL_TEST
Syntax

STATS_BINOMIAL_TEST (expr1 , expr2 , p

, ’

TWO_SIDED_PROB

EXACT_PROB

ONE_SIDED_PROB_OR_MORE

ONE_SIDED_PROB_OR_LESS

’

)

Purpose

STATS_BINOMIAL_TEST is an exact probability test used for dichotomous variables, where only
two possible values exist. It tests the difference between a sample proportion and a given
proportion. The sample size in such tests is usually small.

This function takes three required arguments: expr1 is the sample being examined, expr2
contains the values for which the proportion is expected to be, and p is a proportion to test
against. The optional fourth argument lets you specify the meaning of the NUMBER value
returned by this function, as shown in Table 7-3. For this argument, you can specify a text
literal, or a bind variable or expression that evaluates to a constant character value. If you
omit the fourth argument, then the default is 'TWO_SIDED_PROB'.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for STATS_BINOMIAL_TEST

Chapter 7
STATS_BINOMIAL_TEST

7-341

Table 7-3 STATS_BINOMIAL Return Values

Argument Return Value Meaning

'TWO_SIDED_PROB' The probability that the given population proportion, p,
could result in the observed proportion or a more extreme
one.

'EXACT_PROB' The probability that the given population proportion, p,
could result in exactly the observed proportion.

'ONE_SIDED_PROB_OR_MORE' The probability that the given population proportion, p,
could result in the observed proportion or a larger one.

'ONE_SIDED_PROB_OR_LESS' The probability that the given population proportion, p,
could result in the observed proportion or a smaller one.

'EXACT_PROB' gives the probability of getting exactly proportion p. In cases where you
want to test whether the proportion found in the sample is significantly different from a
50-50 split, p would normally be 0.50. If you want to test only whether the proportion is
different, then use the return value 'TWO_SIDED_PROB'. If your test is whether the
proportion is more than the value of expr2, then use the return value
'ONE_SIDED_PROB_OR_MORE'. If the test is to determine whether the proportion of expr2
is less, then use the return value 'ONE_SIDED_PROB_OR_LESS'.

STATS_BINOMIAL_TEST Example

The following example determines the probability that reality exactly matches the
number of men observed under the assumption that 69% of the population is
composed of men:

SELECT AVG(DECODE(cust_gender, 'M', 1, 0)) real_proportion,
 STATS_BINOMIAL_TEST
 (cust_gender, 'M', 0.68, 'EXACT_PROB') exact,
 STATS_BINOMIAL_TEST
 (cust_gender, 'M', 0.68, 'ONE_SIDED_PROB_OR_LESS') prob_or_less
 FROM sh.customers;

STATS_CROSSTAB
Syntax

STATS_CROSSTAB (expr1 , expr2

, ’

CHISQ_OBS

CHISQ_SIG

CHISQ_DF

PHI_COEFFICIENT

CRAMERS_V

CONT_COEFFICIENT

COHENS_K

’

)

Chapter 7
STATS_CROSSTAB

7-342

Purpose

Crosstabulation (commonly called crosstab) is a method used to analyze two nominal
variables. The STATS_CROSSTAB function takes two required arguments: expr1 and expr2 are
the two variables being analyzed. The optional third argument lets you specify the meaning of
the NUMBER value returned by this function, as shown in Table 7-4. For this argument, you can
specify a text literal, or a bind variable or expression that evaluates to a constant character
value. If you omit the third argument, then the default is 'CHISQ_SIG'.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for STATS_CROSSTAB

Table 7-4 STATS_CROSSTAB Return Values

Argument Return Value Meaning

'CHISQ_OBS' Observed value of chi-squared

'CHISQ_SIG' Significance of observed chi-squared

'CHISQ_DF' Degree of freedom for chi-squared

'PHI_COEFFICIENT' Phi coefficient

'CRAMERS_V' Cramer's V statistic

'CONT_COEFFICIENT' Contingency coefficient

'COHENS_K' Cohen's kappa

STATS_CROSSTAB Example

The following example determines the strength of the association between gender and
income level:

SELECT STATS_CROSSTAB
 (cust_gender, cust_income_level, 'CHISQ_OBS') chi_squared,
 STATS_CROSSTAB
 (cust_gender, cust_income_level, 'CHISQ_SIG') p_value,
 STATS_CROSSTAB
 (cust_gender, cust_income_level, 'PHI_COEFFICIENT') phi_coefficient
 FROM sh.customers;

CHI_SQUARED P_VALUE PHI_COEFFICIENT
----------- ---------- ---------------
 251.690705 1.2364E-47 .067367056

Chapter 7
STATS_CROSSTAB

7-343

STATS_F_TEST
Syntax

STATS_F_TEST (expr1 , expr2

,

’

STATISTIC

DF_NUM

DF_DEN

ONE_SIDED_SIG

’ , expr3

’ TWO_SIDED_SIG ’

)

Purpose

STATS_F_TEST tests whether two variances are significantly different. The observed
value of f is the ratio of one variance to the other, so values very different from 1
usually indicate significant differences.

This function takes two required arguments: expr1 is the grouping or independent
variable and expr2 is the sample of values. The optional third argument lets you
specify the meaning of the NUMBER value returned by this function, as shown in
Table 7-5. For this argument, you can specify a text literal, or a bind variable or
expression that evaluates to a constant character value. If you omit the third argument,
then the default is 'TWO_SIDED_SIG'.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for STATS_F_TEST

Table 7-5 STATS_F_TEST Return Values

Argument Return Value Meaning

'STATISTIC' The observed value of f

'DF_NUM' Degree of freedom for the numerator

'DF_DEN' Degree of freedom for the denominator

'ONE_SIDED_SIG' One-tailed significance of f

'TWO_SIDED_SIG' Two-tailed significance of f

The one-tailed significance is always in relation to the upper tail. The final argument,
expr3, indicates which of the two groups specified by expr1 is the high value or
numerator (the value whose rejection region is the upper tail).

The observed value of f is the ratio of the variance of one group to the variance of the
second group. The significance of the observed value of f is the probability that the

Chapter 7
STATS_F_TEST

7-344

variances are different just by chance—a number between 0 and 1. A small value for the
significance indicates that the variances are significantly different. The degree of freedom for
each of the variances is the number of observations in the sample minus 1.

STATS_F_TEST Example

The following example determines whether the variance in credit limit between men and
women is significantly different. The results, a p_value not close to zero, and an f_statistic
close to 1, indicate that the difference between credit limits for men and women are not
significant.

SELECT VARIANCE(DECODE(cust_gender, 'M', cust_credit_limit, null)) var_men,
 VARIANCE(DECODE(cust_gender, 'F', cust_credit_limit, null)) var_women,
 STATS_F_TEST(cust_gender, cust_credit_limit, 'STATISTIC', 'F') f_statistic,
 STATS_F_TEST(cust_gender, cust_credit_limit) two_sided_p_value
 FROM sh.customers;

 VAR_MEN VAR_WOMEN F_STATISTIC TWO_SIDED_P_VALUE
---------- ---------- ----------- -----------------
12879896.7 13046865 1.01296348 .311928071

STATS_KS_TEST
Syntax

STATS_KS_TEST (expr1 , expr2

, ’
STATISTIC

SIG
’

)

Purpose

STATS_KS_TEST is a Kolmogorov-Smirnov function that compares two samples to test whether
they are from the same population or from populations that have the same distribution. It
does not assume that the population from which the samples were taken is normally
distributed.

This function takes two required arguments: expr1 classifies the data into the two samples
and expr2 contains the values for each of the samples. If expr1 classifies the data into only
one sample or into more than two samples, then an error is raised. The optional third
argument lets you specify the meaning of the NUMBER value returned by this function, as
shown in Table 7-6. For this argument, you can specify a text literal, or a bind variable or
expression that evaluates to a constant character value. If you omit the third argument, then
the default is 'SIG'.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for STATS_KS_TEST

Chapter 7
STATS_KS_TEST

7-345

Table 7-6 STATS_KS_TEST Return Values

Argument Return Value Meaning

'STATISTIC' Observed value of D

'SIG' Significance of D

STATS_KS_TEST Example

Using the Kolmogorov Smirnov test, the following example determines whether the
distribution of sales between men and women is due to chance:

SELECT stats_ks_test(cust_gender, amount_sold, 'STATISTIC') ks_statistic,
 stats_ks_test(cust_gender, amount_sold) p_value
 FROM sh.customers c, sh.sales s
 WHERE c.cust_id = s.cust_id;

KS_STATISTIC P_VALUE
------------ ----------
 .003841396 .004080006

STATS_MODE
Syntax

STATS_MODE (expr)

Purpose

STATS_MODE takes as its argument a set of values and returns the value that occurs
with the greatest frequency. If more than one mode exists, then Oracle Database
chooses one and returns only that one value.

To obtain multiple modes (if multiple modes exist), you must use a combination of
other functions, as shown in the hypothetical query:

SELECT x FROM (SELECT x, COUNT(x) AS cnt1
 FROM t GROUP BY x)
 WHERE cnt1 =
 (SELECT MAX(cnt2) FROM (SELECT COUNT(x) AS cnt2 FROM t GROUP BY x));

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation STATS_MODE uses to compare
character values for expr , and for the collation derivation rules, which define
the collation assigned to the return value of this function when it is a
character value

Chapter 7
STATS_MODE

7-346

Examples

The following example returns the mode of salary per department in the hr.employees table:

SELECT department_id, STATS_MODE(salary) FROM employees
 GROUP BY department_id
 ORDER BY department_id, stats_mode(salary);

DEPARTMENT_ID STATS_MODE(SALARY)
------------- ------------------
 10 4400
 20 6000
 30 2500
 40 6500
 50 2500
 60 4800
 70 10000
 80 9500
 90 17000
 100 6900
 110 8300
 7000

If you need to retrieve all of the modes (in cases with multiple modes), you can do so using a
combination of other functions, as shown in the next example:

SELECT commission_pct FROM
 (SELECT commission_pct, COUNT(commission_pct) AS cnt1 FROM employees
 GROUP BY commission_pct)
 WHERE cnt1 =
 (SELECT MAX (cnt2) FROM
 (SELECT COUNT(commission_pct) AS cnt2
 FROM employees GROUP BY commission_pct))
 ORDER BY commission_pct;

COMMISSION_PCT

 .2
 .3

STATS_MW_TEST
Syntax

STATS_MW_TEST (expr1 , expr2

,

’ STATISTIC ’

’ U_STATISTIC ’

’ ONE_SIDED_SIG , expr3

’ TWO_SIDED_SIG ’

)

Chapter 7
STATS_MW_TEST

7-347

Purpose

A Mann Whitney test compares two independent samples to test the null hypothesis
that two populations have the same distribution function against the alternative
hypothesis that the two distribution functions are different.

The STATS_MW_TEST does not assume that the differences between the samples are
normally distributed, as do the STATS_T_TEST_* functions. This function takes two
required arguments: expr1 classifies the data into groups and expr2 contains the
values for each of the groups. The optional third argument lets you specify the
meaning of the NUMBER value returned by this function, as shown in Table 7-7. For this
argument, you can specify a text literal, or a bind variable or expression that evaluates
to a constant character value. If you omit the third argument, then the default is
'TWO_SIDED_SIG'.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for STATS_MW_TEST

Table 7-7 STATS_MW_TEST Return Values

Argument Return Value Meaning

'STATISTIC' The observed value of Z

'U_STATISTIC' The observed value of U

'ONE_SIDED_SIG' One-tailed significance of Z

'TWO_SIDED_SIG' Two-tailed significance of Z

The significance of the observed value of Z or U is the probability that the variances
are different just by chance—a number between 0 and 1. A small value for the
significance indicates that the variances are significantly different. The degree of
freedom for each of the variances is the number of observations in the sample minus
1.

The one-tailed significance is always in relation to the upper tail. The final argument,
expr3, indicates which of the two groups specified by expr1 is the high value (the value
whose rejection region is the upper tail).

STATS_MW_TEST computes the probability that the samples are from the same
distribution by checking the differences in the sums of the ranks of the values. If the
samples come from the same distribution, then the sums should be close in value.

STATS_MW_TEST Example

Using the Mann Whitney test, the following example determines whether the
distribution of sales between men and women is due to chance:

SELECT STATS_MW_TEST
 (cust_gender, amount_sold, 'STATISTIC') z_statistic,
 STATS_MW_TEST
 (cust_gender, amount_sold, 'ONE_SIDED_SIG', 'F') one_sided_p_value

Chapter 7
STATS_MW_TEST

7-348

 FROM sh.customers c, sh.sales s
 WHERE c.cust_id = s.cust_id;

Z_STATISTIC ONE_SIDED_P_VALUE
----------- -----------------
 -1.4011509 .080584471

STATS_ONE_WAY_ANOVA
Syntax

STATS_ONE_WAY_ANOVA (expr1 , expr2

, ’

SUM_SQUARES_BETWEEN

SUM_SQUARES_WITHIN

DF_BETWEEN

DF_WITHIN

MEAN_SQUARES_BETWEEN

MEAN_SQUARES_WITHIN

F_RATIO

SIG

’

)

Purpose

The one-way analysis of variance function (STATS_ONE_WAY_ANOVA) tests differences in means
(for groups or variables) for statistical significance by comparing two different estimates of
variance. One estimate is based on the variances within each group or category. This is
known as the mean squares within or mean square error. The other estimate is based on
the variances among the means of the groups. This is known as the mean squares
between. If the means of the groups are significantly different, then the mean squares
between will be larger than expected and will not match the mean squares within. If the mean
squares of the groups are consistent, then the two variance estimates will be about the same.

STATS_ONE_WAY_ANOVA takes two required arguments: expr1 is an independent or grouping
variable that divides the data into a set of groups and expr2 is a dependent variable (a
numeric expression) containing the values corresponding to each member of a group. The
optional third argument lets you specify the meaning of the NUMBER value returned by this
function, as shown in Table 7-8. For this argument, you can specify a text literal, or a bind
variable or expression that evaluates to a constant character value. If you omit the third
argument, then the default is 'SIG'.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for STATS_ONE_WAY_ANOVA

Chapter 7
STATS_ONE_WAY_ANOVA

7-349

Table 7-8 STATS_ONE_WAY_ANOVA Return Values

Argument Return Value Meaning

'SUM_SQUARES_BETEEN' Sum of squares between groups

'SUM_SQUARES_WITHIN' Sum of squares within groups

’DF_BETWEEN' Degree of freedom between groups

'DF_WITHIN' Degree of freedom within groups

'MEAN_SQUARES_BETWEEN
'

Mean squares between groups

'MEAN_SQUARES_WITHIN' Mean squares within groups

'F_RATIO' Ratio of the mean squares between to the mean squares within
(MSB/MSW)

'SIG' Significance

The significance of one-way analysis of variance is determined by obtaining the one-
tailed significance of an f-test on the ratio of the mean squares between and the mean
squares within. The f-test should use one-tailed significance, because the mean
squares between can be only equal to or larger than the mean squares within.
Therefore, the significance returned by STATS_ONE_WAY_ANOVA is the probability that the
differences between the groups happened by chance—a number between 0 and 1.
The smaller the number, the greater the significance of the difference between the
groups. Refer to the STATS_F_TEST for information on performing an f-test.

STATS_ONE_WAY_ANOVA Example

The following example determines the significance of the differences in mean sales
within an income level and differences in mean sales between income levels. The
results, p_values close to zero, indicate that, for both men and women, the difference
in the amount of goods sold across different income levels is significant.

SELECT cust_gender,
 STATS_ONE_WAY_ANOVA(cust_income_level, amount_sold, 'F_RATIO') f_ratio,
 STATS_ONE_WAY_ANOVA(cust_income_level, amount_sold, 'SIG') p_value
 FROM sh.customers c, sh.sales s
 WHERE c.cust_id = s.cust_id
 GROUP BY cust_gender
 ORDER BY cust_gender;

C F_RATIO P_VALUE
- ---------- ----------
F 5.59536943 4.7840E-09
M 9.2865001 6.7139E-17

STATS_T_TEST_*
The t-test functions are:

• STATS_T_TEST_ONE: A one-sample t-test

• STATS_T_TEST_PAIRED: A two-sample, paired t-test (also known as a crossed t-
test)

Chapter 7
STATS_T_TEST_*

7-350

• STATS_T_TEST_INDEP: A t-test of two independent groups with the same variance (pooled
variances)

• STATS_T_TEST_INDEPU: A t-test of two independent groups with unequal variance
(unpooled variances)

Syntax

stats_t_test::=

STATS_T_TEST_ONE (expr1

, expr2

STATS_T_TEST_PAIRED

STATS_T_TEST_INDEP

STATS_T_TEST_INDEPU

(expr1 , expr2

,

’
STATISTIC

ONE_SIDED_SIG
’ , expr3

’ TWO_SIDED_SIG ’

’ DF ’

)

Purpose

The t-test measures the significance of a difference of means. You can use it to compare the
means of two groups or the means of one group with a constant. Each t-test function takes
two expression arguments, although the second expression is optional for the one-sample
function (STATS_T_TEST_ONE). Each t-test function takes an optional third argument, which lets
you specify the meaning of the NUMBER value returned by the function, as shown in Table 7-9.
For this argument, you can specify a text literal, or a bind variable or expression that
evaluates to a constant character value. If you omit the third argument, then the default is
'TWO_SIDED_SIG'.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules for the STATS_T_TEST_* functions

Table 7-9 STATS_T_TEST_* Return Values

Argument Return Value Meaning

'STATISTIC' The observed value of t

'DF' Degree of freedom

'ONE_SIDED_SIG' One-tailed significance of t

'TWO_SIDED_SIG' Two-tailed significance of t

The two independent STATS_T_TEST_* functions can take a fourth argument (expr3) if the
third argument is specified as 'STATISTIC' or 'ONE_SIDED_SIG'. In this case, expr3 indicates
which value of expr1 is the high value, or the value whose rejection region is the upper tail.

Chapter 7
STATS_T_TEST_*

7-351

The significance of the observed value of t is the probability that the value of t would
have been obtained by chance—a number between 0 and 1. The smaller the value,
the more significant the difference between the means. One-sided significance is
always respect to the upper tail. For one-sample and paired t-test, the high value is the
first expression. For independent t-test, the high value is the one specified by expr3.

The degree of freedom depends on the type of t-test that resulted in the observed
value of t. For example, for a one-sample t-test (STATS_T_TEST_ONE), the degree of
freedom is the number of observations in the sample minus 1.

STATS_T_TEST_ONE
In the STATS_T_TEST_ONE function, expr1 is the sample and expr2 is the constant
mean against which the sample mean is compared. For this t-test only, expr2 is
optional; the constant mean defaults to 0. This function obtains the value of t by
dividing the difference between the sample mean and the known mean by the
standard error of the mean (rather than the standard error of the difference of the
means, as for STATS_T_TEST_PAIRED).

STATS_T_TEST_ONE Example

The following example determines the significance of the difference between the
average list price and the constant value 60:

SELECT AVG(prod_list_price) group_mean,
 STATS_T_TEST_ONE(prod_list_price, 60, 'STATISTIC') t_observed,
 STATS_T_TEST_ONE(prod_list_price, 60) two_sided_p_value
 FROM sh.products;

GROUP_MEAN T_OBSERVED TWO_SIDED_P_VALUE
---------- ---------- -----------------
139.545556 2.32107746 .023158537

STATS_T_TEST_PAIRED
In the STATS_T_TEST_PAIRED function, expr1 and expr2 are the two samples whose
means are being compared. This function obtains the value of t by dividing the
difference between the sample means by the standard error of the difference of the
means (rather than the standard error of the mean, as for STATS_T_TEST_ONE).

STATS_T_TEST_INDEP and STATS_T_TEST_INDEPU
In the STATS_T_TEST_INDEP and STATS_T_TEST_INDEPU functions, expr1 is the grouping
column and expr2 is the sample of values. The pooled variances version
(STATS_T_TEST_INDEP) tests whether the means are the same or different for two
distributions that have similar variances. The unpooled variances version
(STATS_T_TEST_INDEPU) tests whether the means are the same or different even if the
two distributions are known to have significantly different variances.

Before using these functions, it is advisable to determine whether the variances of the
samples are significantly different. If they are, then the data may come from
distributions with different shapes, and the difference of the means may not be very
useful. You can perform an f-test to determine the difference of the variances. If they
are not significantly different, use STATS_T_TEST_INDEP. If they are significantly

Chapter 7
STATS_T_TEST_*

7-352

different, use STATS_T_TEST_INDEPU. Refer to STATS_F_TEST for information on performing
an f-test.

STATS_T_TEST_INDEP Example

The following example determines the significance of the difference between the average
sales to men and women where the distributions are assumed to have similar (pooled)
variances:

SELECT SUBSTR(cust_income_level, 1, 22) income_level,
 AVG(DECODE(cust_gender, 'M', amount_sold, null)) sold_to_men,
 AVG(DECODE(cust_gender, 'F', amount_sold, null)) sold_to_women,
 STATS_T_TEST_INDEP(cust_gender, amount_sold, 'STATISTIC', 'F') t_observed,
 STATS_T_TEST_INDEP(cust_gender, amount_sold) two_sided_p_value
 FROM sh.customers c, sh.sales s
 WHERE c.cust_id = s.cust_id
 GROUP BY ROLLUP(cust_income_level)
 ORDER BY income_level, sold_to_men, sold_to_women, t_observed;

INCOME_LEVEL SOLD_TO_MEN SOLD_TO_WOMEN T_OBSERVED TWO_SIDED_P_VALUE
---------------------- ----------- ------------- ---------- -----------------
A: Below 30,000 105.28349 99.4281447 -1.9880629 .046811482
B: 30,000 - 49,999 102.59651 109.829642 3.04330875 .002341053
C: 50,000 - 69,999 105.627588 110.127931 2.36148671 .018204221
D: 70,000 - 89,999 106.630299 110.47287 2.28496443 .022316997
E: 90,000 - 109,999 103.396741 101.610416 -1.2544577 .209677823
F: 110,000 - 129,999 106.76476 105.981312 -.60444998 .545545304
G: 130,000 - 149,999 108.877532 107.31377 -.85298245 .393671218
H: 150,000 - 169,999 110.987258 107.152191 -1.9062363 .056622983
I: 170,000 - 189,999 102.808238 107.43556 2.18477851 .028908566
J: 190,000 - 249,999 108.040564 115.343356 2.58313425 .009794516
K: 250,000 - 299,999 112.377993 108.196097 -1.4107871 .158316973
L: 300,000 and above 120.970235 112.216342 -2.0642868 .039003862
 107.121845 113.80441 .686144393 .492670059
 106.663769 107.276386 1.08013499 .280082357
14 rows selected.

STATS_T_TEST_INDEPU Example

The following example determines the significance of the difference between the average
sales to men and women where the distributions are known to have significantly different
(unpooled) variances:

SELECT SUBSTR(cust_income_level, 1, 22) income_level,
 AVG(DECODE(cust_gender, 'M', amount_sold, null)) sold_to_men,
 AVG(DECODE(cust_gender, 'F', amount_sold, null)) sold_to_women,
 STATS_T_TEST_INDEPU(cust_gender, amount_sold, 'STATISTIC', 'F') t_observed,
 STATS_T_TEST_INDEPU(cust_gender, amount_sold) two_sided_p_value
 FROM sh.customers c, sh.sales s
 WHERE c.cust_id = s.cust_id
 GROUP BY ROLLUP(cust_income_level)
 ORDER BY income_level, sold_to_men, sold_to_women, t_observed;

INCOME_LEVEL SOLD_TO_MEN SOLD_TO_WOMEN T_OBSERVED TWO_SIDED_P_VALUE
---------------------- ----------- ------------- ---------- -----------------
A: Below 30,000 105.28349 99.4281447 -2.0542592 .039964704
B: 30,000 - 49,999 102.59651 109.829642 2.96922332 .002987742
C: 50,000 - 69,999 105.627588 110.127931 2.3496854 .018792277
D: 70,000 - 89,999 106.630299 110.47287 2.26839281 .023307831
E: 90,000 - 109,999 103.396741 101.610416 -1.2603509 .207545662
F: 110,000 - 129,999 106.76476 105.981312 -.60580011 .544648553

Chapter 7
STATS_T_TEST_*

7-353

G: 130,000 - 149,999 108.877532 107.31377 -.85219781 .394107755
H: 150,000 - 169,999 110.987258 107.152191 -1.9451486 .051762624
I: 170,000 - 189,999 102.808238 107.43556 2.14966921 .031587875
J: 190,000 - 249,999 108.040564 115.343356 2.54749867 .010854966
K: 250,000 - 299,999 112.377993 108.196097 -1.4115514 .158091676
L: 300,000 and above 120.970235 112.216342 -2.0726194 .038225611
 107.121845 113.80441 .689462437 .490595765
 106.663769 107.276386 1.07853782 .280794207
14 rows selected.

STATS_WSR_TEST
Syntax

STATS_WSR_TEST (expr1 , expr2

, ’

STATISTIC

ONE_SIDED_SIG

TWO_SIDED_SIG

’

)

Purpose

STATS_WSR_TEST is a Wilcoxon Signed Ranks test of paired samples to determine
whether the median of the differences between the samples is significantly different
from zero. The absolute values of the differences are ordered and assigned ranks.
Then the null hypothesis states that the sum of the ranks of the positive differences is
equal to the sum of the ranks of the negative differences.

This function takes two required arguments: expr1 and expr2 are the two samples
being analyzed. The optional third argument lets you specify the meaning of the
NUMBER value returned by this function, as shown in Table 7-10. For this argument, you
can specify a text literal, or a bind variable or expression that evaluates to a constant
character value. If you omit the third argument, then the default is 'TWO_SIDED_SIG'.

Table 7-10 STATS_WSR_TEST_* Return Values

Argument Return Value Meaning

'STATISTIC' The observed value of Z

'ONE_SIDED_SIG' One-tailed significance of Z

'TWO_SIDED_SIG' Two-tailed significance of Z

One-sided significance is always with respect to the upper tail. The high value (the
value whose rejection region is the upper tail) is expr1.

Chapter 7
STATS_WSR_TEST

7-354

STDDEV
Syntax

STDDEV (

DISTINCT

ALL

expr)

OVER (analytic_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

STDDEV returns the sample standard deviation of expr, a set of numbers. You can use it as
both an aggregate and analytic function. It differs from STDDEV_SAMP in that STDDEV returns
zero when it has only 1 row of input data, whereas STDDEV_SAMP returns null.

Oracle Database calculates the standard deviation as the square root of the variance defined
for the VARIANCE aggregate function.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type
as the numeric data type of the argument.

See Also:

Table 2-8 for more information on implicit conversion

If you specify DISTINCT, then you can specify only the query_partition_clause of the
analytic_clause. The order_by_clause and windowing_clause are not allowed.

See Also:

• "Aggregate Functions ", VARIANCE , and STDDEV_SAMP

• "About SQL Expressions " for information on valid forms of expr

Aggregate Examples

The following example returns the standard deviation of the salaries in the sample
hr.employees table:

SELECT STDDEV(salary) "Deviation"
 FROM employees;

Chapter 7
STDDEV

7-355

 Deviation

3909.36575

Analytic Examples

The query in the following example returns the cumulative standard deviation of the
salaries in Department 80 in the sample table hr.employees, ordered by hire_date:

SELECT last_name, salary,
 STDDEV(salary) OVER (ORDER BY hire_date) "StdDev"
 FROM employees
 WHERE department_id = 30
 ORDER BY last_name, salary, "StdDev";

LAST_NAME SALARY StdDev
------------------------- ---------- ----------
Baida 2900 4035.26125
Colmenares 2500 3362.58829
Himuro 2600 3649.2465
Khoo 3100 5586.14357
Raphaely 11000 0
Tobias 2800 4650.0896

STDDEV_POP
Syntax

STDDEV_POP (expr)

OVER (analytic_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

STDDEV_POP computes the population standard deviation and returns the square root of
the population variance. You can use it as both an aggregate and analytic function.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. The function returns the
same data type as the numeric data type of the argument.

See Also:

Table 2-8 for more information on implicit conversion

Chapter 7
STDDEV_POP

7-356

This function is the same as the square root of the VAR_POP function. When VAR_POP returns
null, this function returns null.

See Also:

• "Aggregate Functions " and VAR_POP

• "About SQL Expressions " for information on valid forms of expr

Aggregate Example

The following example returns the population and sample standard deviations of the amount
of sales in the sample table sh.sales:

SELECT STDDEV_POP(amount_sold) "Pop",
 STDDEV_SAMP(amount_sold) "Samp"
 FROM sales;

 Pop Samp
---------- ----------
896.355151 896.355592

Analytic Example

The following example returns the population standard deviations of salaries in the sample
hr.employees table by department:

SELECT department_id, last_name, salary,
 STDDEV_POP(salary) OVER (PARTITION BY department_id) AS pop_std
 FROM employees
 ORDER BY department_id, last_name, salary, pop_std;

DEPARTMENT_ID LAST_NAME SALARY POP_STD
------------- ------------------------- ---------- ----------
 10 Whalen 4400 0
 20 Fay 6000 3500
 20 Hartstein 13000 3500
 30 Baida 2900 3069.6091
. . .
 100 Urman 7800 1644.18166
 110 Gietz 8300 1850
 110 Higgins 12000 1850
 Grant 7000 0

STDDEV_SAMP
Syntax

STDDEV_SAMP (expr)

OVER (analytic_clause)

Chapter 7
STDDEV_SAMP

7-357

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

STDDEV_SAMP computes the cumulative sample standard deviation and returns the
square root of the sample variance. You can use it as both an aggregate and analytic
function.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. The function returns the
same data type as the numeric data type of the argument.

See Also:

Table 2-8 for more information on implicit conversion

This function is same as the square root of the VAR_SAMP function. When VAR_SAMP
returns null, this function returns null.

See Also:

• "Aggregate Functions " and VAR_SAMP

• "About SQL Expressions " for information on valid forms of expr

Aggregate Example

Refer to the aggregate example for STDDEV_POP .

Analytic Example

The following example returns the sample standard deviation of salaries in the
employees table by department:

SELECT department_id, last_name, hire_date, salary,
 STDDEV_SAMP(salary) OVER (PARTITION BY department_id
 ORDER BY hire_date
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cum_sdev
 FROM employees
 ORDER BY department_id, last_name, hire_date, salary, cum_sdev;

DEPARTMENT_ID LAST_NAME HIRE_DATE SALARY CUM_SDEV
------------- --------------- --------- ---------- ----------
 10 Whalen 17-SEP-03 4400
 20 Fay 17-AUG-05 6000 4949.74747
 20 Hartstein 17-FEB-04 13000
 30 Baida 24-DEC-05 2900 4035.26125
 30 Colmenares 10-AUG-07 2500 3362.58829

Chapter 7
STDDEV_SAMP

7-358

 30 Himuro 15-NOV-06 2600 3649.2465
 30 Khoo 18-MAY-03 3100 5586.14357
 30 Raphaely 07-DEC-02 11000
. . .
 100 Greenberg 17-AUG-02 12008 2126.9772
 100 Popp 07-DEC-07 6900 1804.13155
 100 Sciarra 30-SEP-05 7700 1929.76233
 100 Urman 07-MAR-06 7800 1788.92504
 110 Gietz 07-JUN-02 8300 2621.95194
 110 Higgins 07-JUN-02 12008
 Grant 24-MAY-07 7000

SUBSTR
Syntax

substr::=

SUBSTR

SUBSTRB

SUBSTRC

SUBSTR2

SUBSTR4

(char , position

, substring_length

)

Purpose

The SUBSTR functions return a portion of char, beginning at character position,
substring_length characters long. SUBSTR calculates lengths using characters as defined by
the input character set. SUBSTRB uses bytes instead of characters. SUBSTRC uses Unicode
complete characters. SUBSTR2 uses UCS2 code points. SUBSTR4 uses UCS4 code points.

• If position is 0, then it is treated as 1.

• If position is positive, then Oracle Database counts from the beginning of char to find
the first character.

• If position is negative, then Oracle counts backward from the end of char.

• If substring_length is omitted, then Oracle returns all characters to the end of char. If
substring_length is less than 1, then Oracle returns null.

char can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The
exceptions are SUBSTRC, SUBSTR2, and SUBSTR4, which do not allow char to be a CLOB or
NCLOB. Both position and substring_length must be of data type NUMBER, or any data type
that can be implicitly converted to NUMBER, and must resolve to an integer. The return value is
the same data type as char, except that for a CHAR argument a VARCHAR2 value is returned,
and for an NCHAR argument an NVARCHAR2 value is returned. Floating-point numbers passed
as arguments to SUBSTR are automatically converted to integers.

Chapter 7
SUBSTR

7-359

See Also:

• For a complete description of character length see Oracle Database
Globalization Support Guide and Oracle Database SecureFiles and
Large Objects Developer's Guide

• Oracle Database Globalization Support Guide for more information about
SUBSTR functions and length semantics in different locales

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of SUBSTR

Examples

The following example returns several specified substrings of "ABCDEFG":

SELECT SUBSTR('ABCDEFG',3,4) "Substring"
 FROM DUAL;

Substring

CDEF

SELECT SUBSTR('ABCDEFG',-5,4) "Substring"
 FROM DUAL;

Substring

CDEF

Assume a double-byte database character set:

SELECT SUBSTRB('ABCDEFG',5,4.2) "Substring with bytes"
 FROM DUAL;

Substring with bytes

CD

SUM
Syntax

SUM (

DISTINCT

ALL

expr)

OVER (analytic_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions

Chapter 7
SUM

7-360

Purpose

SUM returns the sum of values of expr. You can use it as an aggregate or analytic function.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type
as the numeric data type of the argument.

See Also:

Table 2-8 for more information on implicit conversion

If you specify DISTINCT, then you can specify only the query_partition_clause of the
analytic_clause. The order_by_clause and windowing_clause are not allowed.

See Also:

"About SQL Expressions " for information on valid forms of expr and "Aggregate
Functions "

Aggregate Example

The following example calculates the sum of all salaries in the sample hr.employees table:

SELECT SUM(salary) "Total"
 FROM employees;

 Total

 691400

Analytic Example

The following example calculates, for each manager in the sample table hr.employees, a
cumulative total of salaries of employees who answer to that manager that are equal to or
less than the current salary. You can see that Raphaely and Cambrault have the same
cumulative total. This is because Raphaely and Cambrault have the identical salaries, so
Oracle Database adds together their salary values and applies the same cumulative total to
both rows.

SELECT manager_id, last_name, salary,
 SUM(salary) OVER (PARTITION BY manager_id ORDER BY salary
 RANGE UNBOUNDED PRECEDING) l_csum
 FROM employees
 ORDER BY manager_id, last_name, salary, l_csum;

MANAGER_ID LAST_NAME SALARY L_CSUM
---------- ------------------------- ---------- ----------
 100 Cambrault 11000 68900
 100 De Haan 17000 155400
 100 Errazuriz 12000 80900
 100 Fripp 8200 36400

Chapter 7
SUM

7-361

 100 Hartstein 13000 93900
 100 Kaufling 7900 20200
 100 Kochhar 17000 155400
 100 Mourgos 5800 5800
 100 Partners 13500 107400
 100 Raphaely 11000 68900
 100 Russell 14000 121400
. . .
 149 Hutton 8800 39000
 149 Johnson 6200 6200
 149 Livingston 8400 21600
 149 Taylor 8600 30200
 201 Fay 6000 6000
 205 Gietz 8300 8300
 King 24000 24000

SYS_CONNECT_BY_PATH
Syntax

SYS_CONNECT_BY_PATH (column , char)

Purpose

SYS_CONNECT_BY_PATH is valid only in hierarchical queries. It returns the path of a
column value from root to node, with column values separated by char for each row
returned by CONNECT BY condition.

Both column and char can be any of the data types CHAR, VARCHAR2, NCHAR, or
NVARCHAR2. The string returned is of VARCHAR2 data type and is in the same character
set as column.

See Also:

• "Hierarchical Queries " for more information about hierarchical queries
and CONNECT BY conditions

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of SYS_CONNECT_BY_PATH

Examples

The following example returns the path of employee names from employee Kochhar to
all employees of Kochhar (and their employees):

SELECT LPAD(' ', 2*level-1)||SYS_CONNECT_BY_PATH(last_name, '/') "Path"
 FROM employees
 START WITH last_name = 'Kochhar'
 CONNECT BY PRIOR employee_id = manager_id;

Path

Chapter 7
SYS_CONNECT_BY_PATH

7-362

 /Kochhar/Greenberg/Chen
 /Kochhar/Greenberg/Faviet
 /Kochhar/Greenberg/Popp
 /Kochhar/Greenberg/Sciarra
 /Kochhar/Greenberg/Urman
 /Kochhar/Higgins/Gietz
 /Kochhar/Baer
 /Kochhar/Greenberg
 /Kochhar/Higgins
 /Kochhar/Mavris
 /Kochhar/Whalen
 /Kochhar

SYS_CONTEXT
Syntax

SYS_CONTEXT (’ namespace ’ , ’ parameter ’

, length

)

Purpose

SYS_CONTEXT returns the value of parameter associated with the context namespace at the
current instant. You can use this function in both SQL and PL/SQL statements. SYS_CONTEXT
must be executed locally.

For namespace and parameter, you can specify either a string or an expression that resolves
to a string designating a namespace or an attribute. If you specify literal arguments for
namespace and parameter, and you are using SYS_CONTEXT explicitly in a SQL statement—
rather than in a PL/SQL function that in turn is in mentioned in a SQL statement—then Oracle
Database evaluates SYS_CONTEXT only once per SQL statement execution for each call site
that invokes the SYS_CONTEXT function.

The context namespace must already have been created, and the associated parameter and
its value must also have been set using the DBMS_SESSION.set_context procedure. The
namespace must be a valid identifier. The parameter name can be any string. It is not case
sensitive, but it cannot exceed 30 bytes in length.

The data type of the return value is VARCHAR2. The default maximum size of the return value
is 256 bytes. You can override this default by specifying the optional length parameter, which
must be a NUMBER or a value that can be implicitly converted to NUMBER. The valid range of
values is 1 to 4000 bytes. If you specify an invalid value, then Oracle Database ignores it and
uses the default.

Oracle provides the following built-in namespaces:

• USERENV - Describes the current session. The predefined parameters of namespace
USERENV are listed in Table 7-11.

• SYS_SESSION_ROLES - Indicates whether a specified role is currently enabled for the
session. Oracle Database evaluates the SYS_SESSION_ROLES context for the current user,
and assumes the defining user's role when it evaluates SYS_SESSION_ROLES within a
definer's rights procedure or function. An alternative to using SYS_SESSION_ROLES to find
the login user's enabled roles in a definer’s rights procedure is to use the

Chapter 7
SYS_CONTEXT

7-363

DBMS_SESSION:SESSION_IS_ROLE_ENABLED function. Invoker's rights, procedures or
functions, and/or code based access control (CBAC) are also alternatives.

See Also:

• Using Code Based Access Control for Definer's Rights and Invoker's
Rights

• Oracle Database Security Guide for information on using the application
context feature in your application development

• CREATE CONTEXT for information on creating user-defined context
namespaces

• Oracle Database PL/SQL Packages and Types Reference for
information on the DBMS_SESSION.set_context procedure

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of SYS_CONTEXT

Examples

The following statement returns the name of the user who logged onto the database:

CONNECT OE
Enter password: password

SELECT SYS_CONTEXT ('USERENV', 'SESSION_USER')
 FROM DUAL;

SYS_CONTEXT ('USERENV', 'SESSION_USER')

OE

The following example queries the SESSION_ROLES data dictionary view to show that
RESOURCE is the only role currently enabled for the session. It then uses the
SYS_CONTEXT function to show that the RESOURCE role is currently enabled for the
session and the DBA role is not.

CONNECT OE
Enter password: password

SELECT role FROM session_roles;

ROLE

RESOURCE

SELECT SYS_CONTEXT('SYS_SESSION_ROLES', 'RESOURCE')
 FROM DUAL

SYS_CONTEXT('SYS_SESSION_ROLES','RESOURCE')

TRUE

SELECT SYS_CONTEXT('SYS_SESSION_ROLES', 'DBA')

Chapter 7
SYS_CONTEXT

7-364

 FROM DUAL;

SYS_CONTEXT('SYS_SESSION_ROLES','DBA')

FALSE

Note:

For simplicity in demonstrating this feature, these examples do not perform the
password management techniques that a deployed system normally uses. In a
production environment, follow the Oracle Database password management
guidelines, and disable any sample accounts. See Oracle Database Security Guide
for password management guidelines and other security recommendations.

The following hypothetical example returns the group number that was set as the value for
the attribute group_no in the PL/SQL package that was associated with the context hr_apps
when hr_apps was created:

SELECT SYS_CONTEXT ('hr_apps', 'group_no') "User Group"
 FROM DUAL;

Table 7-11 Predefined Parameters of Namespace USERENV

Parameter Return Value

ACTION Identifies the position in the module (application name) and is set through the
DBMS_APPLICATION_INFO package or OCI.

AUDITED_CURSORID Returns the cursor ID of the SQL that triggered the audit. This parameter is not
valid in a fine-grained auditing environment. If you specify it in such an
environment, then Oracle Database always returns null.

AUTHENTICATED_IDENTITY Returns the identity used in authentication. In the list that follows, the type of user
is followed by the value returned:

• Kerberos-authenticated enterprise user: kerberos principal name
• Kerberos-authenticated external user : kerberos principal name; same as the

schema name
• SSL-authenticated enterprise user: the DN in the user's PKI certificate
• SSL-authenticated external user: the DN in the user's PKI certificate
• Password-authenticated enterprise user: nickname; same as the login name
• Password-authenticated database user: the database username; same as

the schema name
• OS-authenticated external user: the external operating system user name
• Radius-authenticated external user: the schema name
• Proxy with DN : Oracle Internet Directory DN of the client
• Proxy with certificate: certificate DN of the client
• Proxy with username: database user name if client is a local database user;

nickname if client is an enterprise user.
• SYSDBA/SYSOPER using Password File: login name
• SYSDBA/SYSOPER using OS authentication: operating system user name

Chapter 7
SYS_CONTEXT

7-365

Table 7-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

AUTHENTICATION_DATA Data being used to authenticate the login user. For X.503 certificate authenticated
sessions, this field returns the context of the certificate in HEX2 format.

Note: You can change the return value of the AUTHENTICATION_DATA attribute
using the length parameter of the syntax. Values of up to 4000 are accepted.
This is the only attribute of USERENV for which Oracle Database implements such
a change.

AUTHENTICATION_METHOD Returns the method of authentication. In the list that follows, the type of user is
followed by the method returned:

• Password-authenticated enterprise user, local database user, or user with the
SYSDBA or SYSOPER administrative privilege using a password file; proxy
with username using password: PASSWORD

• Password-authenticated enterprise user, local database user, or user with the
SYSDBA or SYSOPER administrative privilege using a password file; proxy
with username using password: PASSWORD_GLOBAL

• Kerberos-authenticated enterprise user or external user (with no
administrative privileges): KERBEROS

• Kerberos-authenticated enterprise user (with administrative privileges):
KERBEROS_GLOBAL

• Kerberos-authenticated external user (with administrative privileges):
KERBEROS_EXTERNAL

• SSL-authenticated enterprise or external user (with no administrative
privileges): SSL

• SSL-authenticated enterprise user (with administrative privileges):
SSL_GLOBAL

• SSL-authenticated external user (with administrative privileges):
SSL_EXTERNAL

• Radius-authenticated external user: RADIUS
• OS-authenticated external user or use with the SYSDBA or SYSOPER

administrative privilege: OS
• Proxy with certificate, DN, or username without using password: NONE
• Background process (job queue slave process): JOB
• Parallel Query Slave process: PQ_SLAVE
For non-administrative connections, you can use IDENTIFICATION_TYPE to
distinguish between external and enterprise users when the authentication
method is PASSWORD, KERBEROS, or SSL. For administrative connections,
AUTHENTICATION_METHOD is sufficient for the PASSWORD, SSL_EXTERNAL,
and SSL_GLOBAL authentication methods.

BG_JOB_ID Job ID of the current session if it was established by an Oracle Database
background process. Null if the session was not established by a background
process.

CDB_DOMAIN CDB_DOMAIN is the DB_DOMAIN of the CDB and is the same for all the PDBs
associated with it.

CDB_NAME If queried while connected to a multitenant container database (CDB), returns the
name of the CDB. Otherwise, returns null.

CLIENT_IDENTIFIER Returns an identifier that is set by the application through the
DBMS_SESSION.SET_IDENTIFIER procedure, the OCI attribute
OCI_ATTR_CLIENT_IDENTIFIER, or Oracle Dynamic Monitoring Service (DMS).
This attribute is used by various database components to identify lightweight
application users who authenticate as the same database user.

Chapter 7
SYS_CONTEXT

7-366

Table 7-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

CLIENT_INFO Returns up to 64 bytes of user session information that can be stored by an
application using the DBMS_APPLICATION_INFO package.

CLIENT_PROGRAM_NAME The name of the program used for the database session.

CON_ID If queried while connected to a CDB, returns the current container ID. Otherwise,
returns 0.

CON_NAME If queried while connected to a CDB, returns the current container name.
Otherwise, returns the name of the database as specified in the DB_NAME
initialization parameter.

CURRENT_BIND The bind variables for fine-grained auditing. You can specify this attribute only
inside the event handler for the fine-grained auditing feature.

CURRENT_EDITION_ID The identifier of the current edition.

CURRENT_EDITION_NAME The name of the current edition.

CURRENT_SCHEMA The name of the currently active default schema. This value may change during
the duration of a session through use of an ALTER SESSION SET
CURRENT_SCHEMA statement. This may also change during the duration of a
session to reflect the owner of any active definer's rights object. When used
directly in the body of a view definition, this returns the default schema used when
executing the cursor that is using the view; it does not respect views used in the
cursor as being definer's rights.

Note: Oracle recommends against issuing the SQL statement ALTER SESSION
SET CURRENT_SCHEMA from within all types of stored PL/SQL units except logon
triggers.

CURRENT_SCHEMAID Identifier of the currently active default schema.

CURRENT_SQL
CURRENT_SQLn

CURRENT_SQL returns the first 4K bytes of the current SQL that triggered the fine-
grained auditing event. The CURRENT_SQLn attributes return subsequent 4K-byte
increments, where n can be an integer from 1 to 7, inclusive. CURRENT_SQL1
returns bytes 4K to 8K; CURRENT_SQL2 returns bytes 8K to 12K, and so forth. You
can specify these attributes only inside the event handler for the fine-grained
auditing feature.

CURRENT_SQL_LENGTH The length of the current SQL statement that triggers fine-grained audit or row-
level security (RLS) policy functions or event handlers. You can specify this
attribute only inside the event handler for the fine-grained auditing feature.

CURRENT_USER The name of the database user whose privileges are currently active. This may
change during the duration of a database session as Real Application Security
sessions are attached or detached, or to reflect the owner of any active definer's
rights object. When no definer's rights object is active, CURRENT_USER returns the
same value as SESSION_USER. When used directly in the body of a view
definition, this returns the user that is executing the cursor that is using the view; it
does not respect views used in the cursor as being definer's rights. For enterprise
users, returns schema. If a Real Application Security user is currently active,
returns user XS$NULL.

See Also: Oracle Database 2 Day + Security Guide for more information on user
XS$NULL

CURRENT_USERID The identifier of the database user whose privileges are currently active.

Chapter 7
SYS_CONTEXT

7-367

Table 7-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

DATABASE_ROLE The database role using the SYS_CONTEXT function with the USERENV
namespace. The role is one of the following: PRIMARY, PHYSICAL STANDBY,
LOGICAL STANDBY, SNAPSHOT STANDBY.

DB_DOMAIN Domain of the database as specified in the DB_DOMAIN initialization parameter.

DB_NAME Name of the database as specified in the DB_NAME initialization parameter.

DB_SUPPLEMENTAL_LOG_LEVE
L

If supplemental logging is enabled, returns a string containing the list of enabled
supplemental logging levels. Possible values are: ALL_COLUMN, FOREIGN_KEY,
MINIMAL, PRIMARY_KEY, PROCEDURAL, and UNIQUE_INDEX. If supplemental
logging is not enabled, returns null.

DB_UNIQUE_NAME Name of the database as specified in the DB_UNIQUE_NAME initialization
parameter.

DBLINK_INFO Returns the source of a database link session. Specifically, it returns a string of
the form:

SOURCE_GLOBAL_NAME=dblink_src_global_name, DBLINK_NAME=dblink_name,
SOURCE_AUDIT_SESSIONID=dblink_src_audit_sessionid

where:

• dblink_src_global_name is the unique global name of the source
database

• dblink_name is the name of the database link on the source database

• dblink_src_audit_sessionid is the audit session ID of the session on
the source database that initiated the connection to the remote database
using dblink_name

DRAIN_STATUS Displays the draining status for the current session. Returns DRAINING if the
session is a candidate for drain else returns NONE.

ENTRYID The current audit entry number. The audit entryid sequence is shared between
fine-grained audit records and regular audit records. You cannot use this attribute
in distributed SQL statements. The correct auditing entry identifier can be seen
only through an audit handler for standard or fine-grained audit.

ENTERPRISE_IDENTITY Returns the user's enterprise-wide identity:

• For enterprise users: the Oracle Internet Directory DN.
• For external users: the external identity (Kerberos principal name, Radius

schema names, OS user name, Certificate DN).
• For local users and SYSDBA/SYSOPER logins: NULL.

The value of the attribute differs by proxy method:

• For a proxy with DN: the Oracle Internet Directory DN of the client
• For a proxy with certificate: the certificate DN of the client for external users;

the Oracle Internet Directory DN for global users
• For a proxy with username: the Oracle Internet Directory DN if the client is an

enterprise users; Null if the client is a local database user.

FG_JOB_ID If queried from within a job that was created using the DBMS_JOB package:
Returns the job ID of the current session if it was established by a client
foreground process. Null if the session was not established by a foreground
process.

Otherwise: Returns 0.

Chapter 7
SYS_CONTEXT

7-368

Table 7-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

GLOBAL_CONTEXT_MEMORY Returns the number being used in the System Global Area by the globally
accessed context.

GLOBAL_UID Returns the global user ID from Oracle Internet Directory for Enterprise User
Security (EUS) logins; returns null for all other logins.

HOST Name of the host machine from which the client has connected.

IDENTIFICATION_TYPE Returns the way the user's schema was created in the database. Specifically, it
reflects the IDENTIFIED clause in the CREATE/ALTER USER syntax. In the list that
follows, the syntax used during schema creation is followed by the identification
type returned:

• IDENTIFIED BY password: LOCAL
• IDENTIFIED EXTERNALLY: EXTERNAL
• IDENTIFIED GLOBALLY: GLOBAL SHARED
• IDENTIFIED GLOBALLY AS DN: GLOBAL PRIVATE
• GLOBAL EXCLUSIVE for exclusive global user mapping.

• GLOBAL SHARED for shared user mapping.

• NONE when the schema is created with no authentication.

INSTANCE The instance identification number of the current instance.

INSTANCE_NAME The name of the instance.

IP_ADDRESS IP address of the machine from which the client is connected. If the client and
server are on the same machine and the connection uses IPv6 addressing,
then ::1 is returned.

IS_APPLY_SERVER Returns TRUE if queried from within a SQL Apply server in a logical standby
database. Otherwise, returns FALSE.

IS_DG_ROLLING_UPGRADE Returns TRUE if a rolling upgrade of the database software in a Data Guard
configuration, initiated by way of the DBMS_ROLLING package, is active.
Otherwise, returns FALSE.

ISDBA Returns TRUE if the user has been authenticated as having DBA privileges either
through the operating system or through a password file.

LANG The abbreviated name for the language, a shorter form than the existing
'LANGUAGE' parameter.

LANGUAGE The language and territory currently used by your session, along with the
database character set, in this form:

language_territory.characterset

LDAP_SERVER_TYPE Returns the configured LDAP server type, one of OID, AD(Active Directory),
OID_G, OPENLDAP.

MODULE The application name (module) set through the DBMS_APPLICATION_INFO
package or OCI.

NETWORK_PROTOCOL Network protocol being used for communication, as specified in the
'PROTOCOL=protocol' portion of the connect string.

NLS_CALENDAR The current calendar of the current session.

NLS_CURRENCY The currency of the current session.

NLS_DATE_FORMAT The date format for the session.

NLS_DATE_LANGUAGE The language used for expressing dates.

Chapter 7
SYS_CONTEXT

7-369

Table 7-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

NLS_SORT BINARY or the linguistic sort basis.

NLS_TERRITORY The territory of the current session.

ORACLE_HOME The full path name for the Oracle home directory.

OS_USER Operating system user name of the client process that initiated the database
session.

PID Oracle process ID.

PLATFORM_SLASH The slash character that is used as the file path delimiter for your platform.

POLICY_INVOKER The invoker of row-level security (RLS) policy functions.

PROXY_ENTERPRISE_IDENTIT
Y

Returns the Oracle Internet Directory DN when the proxy user is an enterprise
user.

PROXY_USER Name of the database user who opened the current session on behalf of
SESSION_USER.

PROXY_USERID Identifier of the database user who opened the current session on behalf of
SESSION_USER.

SCHEDULER_JOB Returns Y if the current session belongs to a foreground job or background job.
Otherwise, returns N.

SERVER_HOST The host name of the machine on which the instance is running.

SERVICE_NAME The name of the service to which a given session is connected.

SESSION_DEFAULT_COLLATIO
N

The default collation for the session, which is set by the ALTER SESSION SET
DEFAULT_COLLATION ... statement.

SESSION_EDITION_ID The identifier of the session edition.

SESSION_EDITION_NAME The name of the session edition.

SESSION_USER The name of the session user (the user who logged on). This may change during
the duration of a database session as Real Application Security sessions are
attached or detached. For enterprise users, returns the schema. For other users,
returns the database user name. If a Real Application Security session is
currently attached to the database session, returns user XS$NULL.

See Also: Oracle Database 2 Day + Security Guide for more information on user
XS$NULL

SESSION_USERID The identifier of the session user (the user who logged on).

SESSIONID The auditing session identifier. You cannot use this attribute in distributed SQL
statements.

SID The session ID.

STATEMENTID The auditing statement identifier. STATEMENTID represents the number of SQL
statements audited in a given session. You cannot use this attribute in distributed
SQL statements. The correct auditing statement identifier can be seen only
through an audit handler for standard or fine-grained audit.

TERMINAL The operating system identifier for the client of the current session. In distributed
SQL statements, this attribute returns the identifier for your local session. In a
distributed environment, this is supported only for remote SELECT statements, not
for remote INSERT, UPDATE, or DELETE operations. (The return length of this
parameter may vary by operating system.)

Chapter 7
SYS_CONTEXT

7-370

Table 7-11 (Cont.) Predefined Parameters of Namespace USERENV

Parameter Return Value

UNIFIED_AUDIT_SESSIONID If queried while connected to a database that uses unified auditing or mixed mode
auditing, returns the unified audit session ID.

If queried while connected to a database that uses traditional auditing, returns
null.

SYS_DBURIGEN
Syntax

SYS_DBURIGEN (
column

attribute

rowid

,

, ’ text () ’

)

Purpose

SYS_DBURIGen takes as its argument one or more columns or attributes, and optionally a
rowid, and generates a URL of data type DBURIType to a particular column or row object. You
can then use the URL to retrieve an XML document from the database.

All columns or attributes referenced must reside in the same table. They must perform the
function of a primary key. They need not actually match the primary key of the table, but they
must reference a unique value. If you specify multiple columns, then all but the final column
identify the row in the database, and the last column specified identifies the column within the
row.

By default the URL points to a formatted XML document. If you want the URL to point only to
the text of the document, then specify the optional 'text()'.

Note:

In this XML context, the lowercase text is a keyword, not a syntactic placeholder.

If the table or view containing the columns or attributes does not have a schema specified in
the context of the query, then Oracle Database interprets the table or view name as a public
synonym.

See Also:

Oracle XML DB Developer's Guide for information on the DBURIType data type and
XML documents in the database

Chapter 7
SYS_DBURIGEN

7-371

Examples

The following example uses the SYS_DBURIGen function to generate a URL of data type
DBURIType to the email column of the row in the sample table hr.employees where the
employee_id = 206:

SELECT SYS_DBURIGEN(employee_id, email)
 FROM employees
 WHERE employee_id = 206;

SYS_DBURIGEN(EMPLOYEE_ID,EMAIL)(URL, SPARE)
--
DBURITYPE('/PUBLIC/EMPLOYEES/ROW[EMPLOYEE_ID=''206'']/EMAIL', NULL)

SYS_EXTRACT_UTC
Syntax

SYS_EXTRACT_UTC (datetime_with_timezone)

Purpose

SYS_EXTRACT_UTC extracts the UTC (Coordinated Universal Time—formerly Greenwich
Mean Time) from a datetime value with time zone offset or time zone region name. If a
time zone is not specified, then the datetime is associated with the session time zone.

Examples

The following example extracts the UTC from a specified datetime:

SELECT SYS_EXTRACT_UTC(TIMESTAMP '2000-03-28 11:30:00.00 -08:00')
 FROM DUAL;

SYS_EXTRACT_UTC(TIMESTAMP'2000-03-2811:30:00.00-08:00')

28-MAR-00 07.30.00 PM

SYS_GUID
Syntax

SYS_GUID ()

Purpose

SYS_GUID generates and returns a globally unique identifier (RAW value) made up of 16
bytes. On most platforms, the generated identifier consists of a host identifier, a
process or thread identifier of the process or thread invoking the function, and a
nonrepeating value (sequence of bytes) for that process or thread.

Chapter 7
SYS_EXTRACT_UTC

7-372

Examples

The following example adds a column to the sample table hr.locations, inserts unique
identifiers into each row, and returns the 32-character hexadecimal representation of the 16-
byte RAW value of the global unique identifier:

ALTER TABLE locations ADD (uid_col RAW(16));

UPDATE locations SET uid_col = SYS_GUID();

SELECT location_id, uid_col FROM locations
 ORDER BY location_id, uid_col;

LOCATION_ID UID_COL
----------- --
 1000 09F686761827CF8AE040578CB20B7491
 1100 09F686761828CF8AE040578CB20B7491
 1200 09F686761829CF8AE040578CB20B7491
 1300 09F68676182ACF8AE040578CB20B7491
 1400 09F68676182BCF8AE040578CB20B7491
 1500 09F68676182CCF8AE040578CB20B7491
. . .

SYS_OP_ZONE_ID
Syntax

SYS_OP_ZONE_ID (

schema .

table .

t_alias .

rowid

, scale

)

Purpose

SYS_OP_ZONE_ID takes as its argument a rowid and returns a zone ID. The rowid identifies a
row in a table. The zone ID identifies the set of contiguous disk blocks, called the zone, that
contains the row. The function returns a NUMBER value.

The SYS_OP_ZONE_ID function is used when creating a zone map with the CREATE
MATERIALIZED ZONEMAP statement. You must specify SYS_OP_ZONE_ID in the SELECT and GROUP
BY clauses of the defining subquery of the zone map.

For rowid, specify the ROWID pseudocolumn of the fact table of the zone map.

Use schema and table to specify the schema and name of the fact table, or t_alias to
specify the table alias for the fact table. The specification of these parameters depends on
the FROM clause in the defining subquery of the zone map:

• If the FROM clause specifies a table alias for the fact table, then you must also specify the
table alias (t_alias) in SYS_OP_ZONE_ID.

• If the FROM clause does not specify a table alias for the fact table, then use table to
specify the name of the fact table. You can use the schema qualifier if the fact table is in a
schema other than your own. If you omit schema, then the database assumes the fact

Chapter 7
SYS_OP_ZONE_ID

7-373

table is in your own schema. If the FROM clause specifies only one table (the fact
table) then you need not specify schema or table.

The optional scale parameter represents the scale of the zone map. It is not
necessary to specify this parameter because, by default, SYS_OP_ZONE_ID uses the
scale of the zone map being created. If you do specify scale, then it must match the
scale of the zone map being created. Refer to the SCALE clause of CREATE
MATERIALIZED ZONEMAP for information on specifying the scale of a zone map.

See Also:

CREATE MATERIALIZED ZONEMAP for more information on creating zone
maps

Examples

The following example uses the SYS_OP_ZONE_ID function when creating a basic zone
map that tracks the column time_id of the fact table sales. The scale of the zone map
is the default value of 10. Therefore, the SYS_OP_ZONE_ID function will default to a
scale value of 10.

CREATE MATERIALIZED ZONEMAP sales_zmap
AS
 SELECT SYS_OP_ZONE_ID(rowid), MIN(time_id), MAX(time_id)
 FROM sales
 GROUP BY SYS_OP_ZONE_ID(rowid);

The following example is similar to the previous example, except that the scale of the
zone map being created is specified as 8. Therefore, the SYS_OP_ZONE_ID function will
default to a scale value of 8.

CREATE MATERIALIZED ZONEMAP sales_zmap
SCALE 8
AS
 SELECT SYS_OP_ZONE_ID(rowid), MIN(time_id), MAX(time_id)
 FROM sales
 GROUP BY SYS_OP_ZONE_ID(rowid);

The following example returns an error because the scale of the zone map being
created is specified as 8, which does not match the scale argument of 12 specified in
the SYS_OP_ZONE_ID function.

CREATE MATERIALIZED ZONEMAP sales_zmap
SCALE 8
AS
 SELECT SYS_OP_ZONE_ID(rowid,12), MIN(time_id), MAX(time_id)
 FROM sales
 GROUP BY SYS_OP_ZONE_ID(rowid,12);

The following example creates a join zone map. The fact table is sales and the
dimension tables are products and customers. Because the table alias s is specified
for the fact table in the FROM clause, the table alias s is also specified in the
SYS_OP_ZONE_ID function.

CREATE MATERIALIZED ZONEMAP sales_zmap
AS

Chapter 7
SYS_OP_ZONE_ID

7-374

 SELECT SYS_OP_ZONE_ID(s.rowid),
 MIN(prod_category), MAX(prod_category),
 MIN(country_id), MAX(country_id)
 FROM sales s, products p, customers c
 WHERE s.prod_id = p.prod_id(+) AND
 s.cust_id = c.cust_id(+)
 GROUP BY SYS_OP_ZONE_ID(s.rowid);

SYS_TYPEID
Syntax

SYS_TYPEID (object_type_value)

Purpose

SYS_TYPEID returns the typeid of the most specific type of the operand. This value is used
primarily to identify the type-discriminant column underlying a substitutable column. For
example, you can use the value returned by SYS_TYPEID to build an index on the type-
discriminant column.

You can use this function only on object type operands. All final root object types—final types
not belonging to a type hierarchy—have a null typeid. Oracle Database assigns to all types
belonging to a type hierarchy a unique non-null typeid.

See Also:

Oracle Database Object-Relational Developer's Guide for more information on
typeids

Examples

The following examples use the tables persons and books, which are created in
"Substitutable Table and Column Examples". The first query returns the most specific types of
the object instances stored in the persons table.

SELECT name, SYS_TYPEID(VALUE(p)) "Type_id" FROM persons p;

NAME Type_id
------------------------- --------------------------------
Bob 01
Joe 02
Tim 03

The next query returns the most specific types of authors stored in the table books:

SELECT b.title, b.author.name, SYS_TYPEID(author)
 "Type_ID" FROM books b;

TITLE AUTHOR.NAME Type_ID
------------------------- -------------------- -------------------
An Autobiography Bob 01

Chapter 7
SYS_TYPEID

7-375

Business Rules Joe 02
Mixing School and Work Tim 03

You can use the SYS_TYPEID function to create an index on the type-discriminant
column of a table. For an example, see "Indexing on Substitutable Columns:
Examples".

SYS_XMLAGG
Syntax

SYS_XMLAGG (expr

, fmt

)

Purpose

SYS_XMLAgg aggregates all of the XML documents or fragments represented by expr
and produces a single XML document. It adds a new enclosing element with a default
name ROWSET. If you want to format the XML document differently, then specify fmt,
which is an instance of the XMLFormat object.

See Also:

SYS_XMLGEN and "XML Format Model " for using the attributes of the
XMLFormat type to format SYS_XMLAgg results

Examples

The following example uses the SYS_XMLGen function to generate an XML document
for each row of the sample table employees where the employee's last name begins
with the letter R, and then aggregates all of the rows into a single XML document in
the default enclosing element ROWSET:

SELECT SYS_XMLAGG(SYS_XMLGEN(last_name)) XMLAGG
 FROM employees
 WHERE last_name LIKE 'R%'
 ORDER BY xmlagg;

XMLAGG
--
<?xml version="1.0"?>
<ROWSET>
<LAST_NAME>Rajs</LAST_NAME>
<LAST_NAME>Raphaely</LAST_NAME>
<LAST_NAME>Rogers</LAST_NAME>
<LAST_NAME>Russell</LAST_NAME>
</ROWSET>

Chapter 7
SYS_XMLAGG

7-376

SYS_XMLGEN

Note:

The SYS_XMLGen function is deprecated. It is still supported for backward
compatibility. However, Oracle recommends that you use the SQL/XML generation
functions instead. See Oracle XML DB Developer's Guide for more information.

Syntax

SYS_XMLGEN (expr

, fmt

)

Purpose

SYS_XMLGen takes an expression that evaluates to a particular row and column of the
database, and returns an instance of type XMLType containing an XML document. The expr
can be a scalar value, a user-defined type, or an XMLType instance.

• If expr is a scalar value, then the function returns an XML element containing the scalar
value.

• If expr is a type, then the function maps the user-defined type attributes to XML
elements.

• If expr is an XMLType instance, then the function encloses the document in an XML
element whose default tag name is ROW.

By default the elements of the XML document match the elements of expr. For example, if
expr resolves to a column name, then the enclosing XML element will be the same column
name. If you want to format the XML document differently, then specify fmt, which is an
instance of the XMLFormat object.

See Also:

"XML Format Model " for a description of the XMLFormat type and how to use its
attributes to format SYS_XMLGen results

Examples

The following example retrieves the employee email ID from the sample table oe.employees
where the employee_id value is 205, and generates an instance of an XMLType containing an
XML document with an EMAIL element.

SELECT SYS_XMLGEN(email)
 FROM employees
 WHERE employee_id = 205;

Chapter 7
SYS_XMLGEN

7-377

SYS_XMLGEN(EMAIL)

<?xml version="1.0"?>
<EMAIL>SHIGGINS</EMAIL>

SYSDATE
Syntax

SYSDATE

Purpose

SYSDATE returns the current date and time set for the operating system on which the
database server resides. The data type of the returned value is DATE, and the format
returned depends on the value of the NLS_DATE_FORMAT initialization parameter. The
function requires no arguments. In distributed SQL statements, this function returns
the date and time set for the operating system of your local database. You cannot use
this function in the condition of a CHECK constraint.

Note:

The FIXED_DATE initialization parameter enables you to set a constant date
and time that SYSDATE will always return instead of the current date and time.
This parameter is useful primarily for testing. Refer to Oracle Database
Reference for more information on the FIXED_DATE initialization parameter.

Examples

The following example returns the current operating system date and time:

SELECT TO_CHAR
 (SYSDATE, 'MM-DD-YYYY HH24:MI:SS') "NOW"
 FROM DUAL;

NOW

04-13-2001 09:45:51

SYSTIMESTAMP
Syntax

SYSTIMESTAMP

Chapter 7
SYSDATE

7-378

Purpose

SYSTIMESTAMP returns the system date, including fractional seconds and time zone, of the
system on which the database resides. The return type is TIMESTAMP WITH TIME ZONE.

Examples

The following example returns the system timestamp:

SELECT SYSTIMESTAMP FROM DUAL;

SYSTIMESTAMP
--
28-MAR-00 12.38.55.538741 PM -08:00

The following example shows how to explicitly specify fractional seconds:

SELECT TO_CHAR(SYSTIMESTAMP, 'SSSSS.FF') FROM DUAL;

TO_CHAR(SYSTIME

55615.449255

The following example returns the current timestamp in a specified time zone:

SELECT SYSTIMESTAMP AT TIME ZONE 'UTC' FROM DUAL;

SYSTIMESTAMPATTIMEZONE'UTC'

08-07-21 20:39:52,743557 UTC

The output format in this example depends on the NLS_TIMESTAMP_TZ_FORMAT for the session.

TAN
Syntax

TAN (n)

Purpose

TAN returns the tangent of n (an angle expressed in radians).

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. If the argument is BINARY_FLOAT, then the
function returns BINARY_DOUBLE. Otherwise the function returns the same numeric data type
as the argument.

See Also:

Table 2-8 for more information on implicit conversion

Chapter 7
TAN

7-379

Examples

The following example returns the tangent of 135 degrees:

SELECT TAN(135 * 3.14159265359/180)
 "Tangent of 135 degrees" FROM DUAL;

Tangent of 135 degrees

 - 1

TANH
Syntax

TANH (n)

Purpose

TANH returns the hyperbolic tangent of n.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. If the argument is
BINARY_FLOAT, then the function returns BINARY_DOUBLE. Otherwise the function
returns the same numeric data type as the argument.

See Also:

Table 2-8 for more information on implicit conversion

Examples

The following example returns the hyperbolic tangent of .5:

SELECT TANH(.5) "Hyperbolic tangent of .5"
 FROM DUAL;

Hyperbolic tangent of .5

 .462117157

TIMESTAMP_TO_SCN
Syntax

TIMESTAMP_TO_SCN (timestamp)

Chapter 7
TANH

7-380

Purpose

TIMESTAMP_TO_SCN takes as an argument a timestamp value and returns the approximate
system change number (SCN) associated with that timestamp. The returned value is of data
type NUMBER. This function is useful any time you want to know the SCN associated with a
particular timestamp.

Note:

The association between an SCN and a timestamp when the SCN is generated is
remembered by the database for a limited period of time. This period is the
maximum of the auto-tuned undo retention period, if the database runs in the
Automatic Undo Management mode, and the retention times of all flashback
archives in the database, but no less than 120 hours. The time for the association to
become obsolete elapses only when the database is open. An error is returned if
the timestamp specified for the argument to TIMESTAMP_TO_SCN is too old.

See Also:

SCN_TO_TIMESTAMP for information on converting SCNs to timestamp

Examples

The following example inserts a row into the oe.orders table and then uses
TIMESTAMP_TO_SCN to determine the system change number of the insert operation. (The
actual SCN returned will differ on each system.)

INSERT INTO orders (order_id, order_date, customer_id, order_total)
 VALUES (5000, SYSTIMESTAMP, 188, 2345);
1 row created.

COMMIT;
Commit complete.

SELECT TIMESTAMP_TO_SCN(order_date) FROM orders
 WHERE order_id = 5000;

TIMESTAMP_TO_SCN(ORDER_DATE)

 574100

TO_APPROX_COUNT_DISTINCT
Syntax

TO_APPROX_COUNT_DISTINCT (detail)

Chapter 7
TO_APPROX_COUNT_DISTINCT

7-381

Purpose

TO_APPROX_COUNT_DISTINCT takes as its input a detail containing information about an
approximate distinct value count, and converts it to a NUMBER value.

For detail, specify a detail of type BLOB, which was created by the
APPROX_COUNT_DISTINCT_DETAIL function or the APPROX_COUNT_DISTINCT_AGG function.

See Also:

• APPROX_COUNT_DISTINCT_DETAIL

• TO_APPROX_COUNT_DISTINCT

Examples

Refer to TO_APPROX_COUNT_DISTINCT: Examples for examples of using the
TO_APPROX_COUNT_DISTINCT function in conjunction with the
APPROX_COUNT_DISTINCT_DETAIL and APPROX_COUNT_DISTINCT_AGG functions.

TO_APPROX_PERCENTILE
Syntax

TO_APPROX_PERCENTILE (detail , expr , ’ datatype ’

,

’ DESC ’

’ ASC ’

’ ERROR_RATE ’

’ CONFIDENCE ’

)

Purpose

TO_APPROX_PERCENTILE takes as its input a detail containing approximate percentile
information, a percentile value, and a sort specification, and returns an approximate
interpolated value that would fall into that percentile value with respect to the sort
specification.

For detail, specify a detail of type BLOB, which was created by the
APPROX_PERCENTILE_DETAIL function or the APPROX_PERCENTLE_AGG function.

For expr, specify a percentile value, which must evaluate to a numeric value between
0 and 1. If you specify the ERROR_RATE or CONFIDENCE clause, then the percentile value
does not apply. In this case, for expr you must specify null or a numeric value between
0 and 1. However, the value will be ignored.

Chapter 7
TO_APPROX_PERCENTILE

7-382

For datatype, specify the data type of the approximate percentile information in the detail.
This is the data type of the expression supplied to the APPROX_PERCENTILE_DETAIL function
that originated the detail. Valid data types are NUMBER, BINARY_FLOAT, BINARY_DOUBLE, DATE,
TIMESTAMP, INTERVAL YEAR TO MONTH, and INTERVAL DAY TO SECOND.

DESC | ASC

Specify the sort specification for the interpolation. Specify DESC for a descending sort order, or
ASC for an ascending sort order. ASC is the default.

ERROR_RATE | CONFIDENCE

These clauses let you determine the accuracy of the percentile evaluation of the detail. If you
specify one of these clauses, then instead of returning the approximate interpolated value,
the function returns a decimal value from 0 to 1, inclusive, which represents one of the
following values:

• If you specify ERROR_RATE, then the return value represents the error rate of the percentile
evaluation for the detail.

• If you specify CONFIDENCE, then the return value represents the confidence level for the
error rate returned when you specify ERROR_RATE.

If you specify ERROR_RATE or CONFIDENCE, then the percentile value expr is ignored.

See Also:

• APPROX_PERCENTILE_DETAIL

• APPROX_PERCENTILE_AGG

Examples

Refer to APPROX_PERCENTILE_AGG: Examples for examples of using the
TO_APPROX_PERCENTILE function in conjunction with the APPROX_PERCENTILE_DETAIL and
APPROX_PERCENTILE_AGG functions.

TO_BINARY_DOUBLE
Syntax

TO_BINARY_DOUBLE (expr

DEFAULT return_value ON CONVERSION ERROR

, fmt

, ’ nlsparam ’

)

Purpose

TO_BINARY_DOUBLE converts expr to a double-precision floating-point number.

Chapter 7
TO_BINARY_DOUBLE

7-383

• expr can be any expression that evaluates to a character string of type CHAR,
VARCHAR2, NCHAR, or NVARCHAR2, a numeric value of type NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE, or null. If expr is BINARY_DOUBLE, then the function returns expr. If
expr evaluates to null, then the function returns null. Otherwise, the function
converts expr to a BINARY_DOUBLE value.

• The optional DEFAULT return_value ON CONVERSION ERROR clause allows you to
specify the value returned by this function if an error occurs while converting expr
to BINARY_DOUBLE. This clause has no effect if an error occurs while evaluating
expr. The return_value can be an expression or a bind variable, and must
evaluate to a character string of type CHAR, VARCHAR2, NCHAR, or NVARCHAR2, a
numeric value of type NUMBER, BINARY_FLOAT, or BINARY_DOUBLE, or null. The
function converts return_value to BINARY_DOUBLE in the same way it converts
expr to BINARY_DOUBLE. If return_value cannot be converted to BINARY_DOUBLE,
then the function returns an error.

• The optional 'fmt' and 'nlsparam' arguments serve the same purpose as for the
TO_NUMBER function. If you specify these arguments, then expr and return_value,
if specified, must each be a character string or null. If either is a character string,
then the function uses the fmt and nlsparam arguments to convert the character
string to a BINARY_DOUBLE value.

If expr or return_value evaluate to the following character strings, then the function
converts them as follows:

• The case-insensitive string 'INF' is converted to positive infinity.

• The case-insensitive string '-INF' is converted to negative identity.

• The case-insensitive string 'NaN' is converted to NaN (not a number).

You cannot use a floating-point number format element (F, f, D, or d) in a character
string expr.

Conversions from character strings or NUMBER to BINARY_DOUBLE can be inexact,
because the NUMBER and character types use decimal precision to represent the
numeric value, and BINARY_DOUBLE uses binary precision.

Conversions from BINARY_FLOAT to BINARY_DOUBLE are exact.

See Also:

TO_CHAR (number) and "Floating-Point Numbers "

Examples

The examples that follow are based on a table with three columns, each with a
different numeric data type:

CREATE TABLE float_point_demo
 (dec_num NUMBER(10,2), bin_double BINARY_DOUBLE, bin_float BINARY_FLOAT);

INSERT INTO float_point_demo
 VALUES (1234.56,1234.56,1234.56);

SELECT * FROM float_point_demo;

Chapter 7
TO_BINARY_DOUBLE

7-384

 DEC_NUM BIN_DOUBLE BIN_FLOAT
---------- ---------- ----------
 1234.56 1.235E+003 1.235E+003

The following example converts a value of data type NUMBER to a value of data type
BINARY_DOUBLE:

SELECT dec_num, TO_BINARY_DOUBLE(dec_num)
 FROM float_point_demo;

 DEC_NUM TO_BINARY_DOUBLE(DEC_NUM)
---------- -------------------------
 1234.56 1.235E+003

The following example compares extracted dump information from the dec_num and
bin_double columns:

SELECT DUMP(dec_num) "Decimal",
 DUMP(bin_double) "Double"
 FROM float_point_demo;

Decimal Double
--------------------------- ---
Typ=2 Len=4: 194,13,35,57 Typ=101 Len=8: 192,147,74,61,112,163,215,10

The following example returns the default value of 0 because the specified expression cannot
be converted to a BINARY_DOUBLE value:

SELECT TO_BINARY_DOUBLE('2oo' DEFAULT 0 ON CONVERSION ERROR) "Value"
 FROM DUAL;

 Value

 0

TO_BINARY_FLOAT
Syntax

TO_BINARY_FLOAT (expr

DEFAULT return_value ON CONVERSION ERROR

, fmt

, ’ nlsparam ’

)

Purpose

TO_BINARY_FLOAT converts expr to a single-precision floating-point number.

• expr can be any expression that evaluates to a character string of type CHAR, VARCHAR2,
NCHAR, or NVARCHAR2, a numeric value of type NUMBER, BINARY_FLOAT, or BINARY_DOUBLE,
or null. If expr is BINARY_FLOAT, then the function returns expr. If expr evaluates to null,

Chapter 7
TO_BINARY_FLOAT

7-385

then the function returns null. Otherwise, the function converts expr to a
BINARY_FLOAT value.

• The optional DEFAULT return_value ON CONVERSION ERROR clause allows you to
specify the value returned by this function if an error occurs while converting expr
to BINARY_FLOAT. This clause has no effect if an error occurs while evaluating
expr. The return_value can be an expression or a bind variable, and must
evaluate to a character string of type CHAR, VARCHAR2, NCHAR, or NVARCHAR2, a
numeric value of type NUMBER, BINARY_FLOAT, or BINARY_DOUBLE, or null. The
function converts return_value to BINARY_FLOAT in the same way it converts expr
to BINARY_FLOAT. If return_value cannot be converted to BINARY_FLOAT, then the
function returns an error.

• The optional 'fmt' and 'nlsparam' arguments serve the same purpose as for the
TO_NUMBER function. If you specify these arguments, then expr and return_value,
if specified, must each be a character string or null. If either is a character string,
then the function uses the fmt and nlsparam arguments to convert the character
string to a BINARY_FLOAT value.

If expr or return_value evaluate to the following character strings, then the function
converts them as follows:

• The case-insensitive string 'INF' is converted to positive infinity.

• The case-insensitive string '-INF' is converted to negative identity.

• The case-insensitive string 'NaN' is converted to NaN (not a number).

You cannot use a floating-point number format element (F, f, D, or d) in a character
string expr.

Conversions from character strings or NUMBER to BINARY_FLOAT can be inexact,
because the NUMBER and character types use decimal precision to represent the
numeric value and BINARY_FLOAT uses binary precision.

Conversions from BINARY_DOUBLE to BINARY_FLOAT are inexact if the BINARY_DOUBLE
value uses more bits of precision than supported by the BINARY_FLOAT.

See Also:

TO_CHAR (number) and "Floating-Point Numbers "

Examples

Using table float_point_demo created for TO_BINARY_DOUBLE , the following
example converts a value of data type NUMBER to a value of data type BINARY_FLOAT:

SELECT dec_num, TO_BINARY_FLOAT(dec_num)
 FROM float_point_demo;

 DEC_NUM TO_BINARY_FLOAT(DEC_NUM)
---------- ------------------------
 1234.56 1.235E+003

The following example returns the default value of 0 because the specified expression
cannot be converted to a BINARY_FLOAT value:

Chapter 7
TO_BINARY_FLOAT

7-386

SELECT TO_BINARY_FLOAT('2oo' DEFAULT 0 ON CONVERSION ERROR) "Value"
 FROM DUAL;

 Value

 0

TO_BLOB (bfile)
Syntax

to_blob_bfile::=

TO_BLOB (bfile

, ’ mime_type ’

)

Purpose

TO_BLOB (bfile) converts a BFILE value to a BLOB value.

For mime_type, specify the MIME type to be set on the BLOB value returned by this function. If
you omit mime_type, then a MIME type will not be set on the BLOB value.

Example

The following hypothetical example returns the BLOB of a BFILE column value media_col in
table media_tab. It sets the MIME type to JPEG on the resulting BLOB.

SELECT TO_BLOB(media_col, 'JPEG') FROM media_tab;

TO_BLOB (raw)
Syntax

to_blob::=

TO_BLOB (raw_value)

Purpose

TO_BLOB (raw) converts LONG RAW and RAW values to BLOB values.

From within a PL/SQL package, you can use TO_BLOB (raw) to convert RAW and BLOB values to
BLOB.

Examples

The following hypothetical example returns the BLOB of a RAW column value:

SELECT TO_BLOB(raw_column) blob FROM raw_table;

Chapter 7
TO_BLOB (bfile)

7-387

BLOB

00AADD343CDBBD

TO_CHAR (bfile|blob)
Syntax

to_char_bfile_blob::=

TO_CHAR (
bfile

blob

, csid

)

Purpose

TO_CHAR (bfile|blob) converts BFILE or BLOB data to the database character set. The
value returned is always VARCHAR2. If the value returned is too large to fit into the
VARCHAR2 data type, then the data is truncated.

For csid, specify the character set ID of the BFILE or BLOB data. If the character set of
the BFILE or BLOB data is the database character set, then you can specify a value of 0
for csid, or omit csid altogether.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of this function

Example

The following hypothetical example takes as its input a BFILE column media_col in
table media_tab, which uses the character set with ID 873. The example returns a
VARCHAR2 value that uses the database character set.

SELECT TO_CHAR(media_col, 873) FROM media_tab;

TO_CHAR (character)
Syntax

to_char_char::=

TO_CHAR (

nchar

clob

nclob

)

Chapter 7
TO_CHAR (bfile|blob)

7-388

Purpose

TO_CHAR (character) converts NCHAR, NVARCHAR2, CLOB, or NCLOB data to the database
character set. The value returned is always VARCHAR2.

When you use this function to convert a character LOB into the database character set, if the
LOB value to be converted is larger than the target type, then the database returns an error.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
this function

Examples

The following example interprets a simple string as character data:

SELECT TO_CHAR('01110') FROM DUAL;

TO_CH

01110

Compare this example with the first example for TO_CHAR (number) .

The following example converts some CLOB data from the pm.print_media table to the
database character set:

SELECT TO_CHAR(ad_sourcetext) FROM print_media
 WHERE product_id = 2268;

TO_CHAR(AD_SOURCETEXT)
--

TIGER2 2268...Standard Hayes Compatible Modem
Product ID: 2268
The #1 selling modem in the universe! Tiger2's modem includes call management
and Internet voicing. Make real-time full duplex phone calls at the same time
you're online.

TO_CHAR (character) Function: Example

The following statements create a table named empl_temp and populate it with employee
details:

CREATE TABLE empl_temp
 (
 employee_id NUMBER(6),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 hire_date DATE DEFAULT SYSDATE,
 job_id VARCHAR2(10),

Chapter 7
TO_CHAR (character)

7-389

 clob_column CLOB
);

INSERT INTO empl_temp
VALUES(111,'John','Doe','example.com','10-
JAN-2015','1001','Experienced Employee');

INSERT INTO empl_temp
VALUES(112,'John','Smith','example.com','12-JAN-2015','1002','Junior
Employee');

INSERT INTO empl_temp
VALUES(113,'Johnnie','Smith','example.com','12-JAN-2014','1002','Mid-
Career Employee');

INSERT INTO empl_temp
VALUES(115,'Jane','Doe','example.com','15-JAN-2015','1005','Executive
Employee');

The following statement converts CLOB data to the database character set:

SELECT To_char(clob_column) "CLOB_TO_CHAR"
FROM empl_temp
WHERE employee_id IN (111, 112, 115);

CLOB_TO_CHAR

Experienced Employee
Junior Employee
Executive Employee

Live SQL:

View and run a related example on Oracle Live SQL at Using the TO_CHAR
Function

TO_CHAR (datetime)
Syntax

to_char_date::=

TO_CHAR (
datetime

interval

, fmt

, ’ nlsparam ’

)

Chapter 7
TO_CHAR (datetime)

7-390

https://livesql.oracle.com/apex/livesql/docs/sqlrf/to_char/tochar_basic.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/to_char/tochar_basic.html

Purpose

TO_CHAR (datetime) converts a datetime or interval value of DATE, TIMESTAMP, TIMESTAMP WITH
TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL DAY TO SECOND, or INTERVAL YEAR TO
MONTH data type to a value of VARCHAR2 data type in the format specified by the date format
fmt. If you omit fmt, then date is converted to a VARCHAR2 value as follows:

• DATE values are converted to values in the default date format.

• TIMESTAMP and TIMESTAMP WITH LOCAL TIME ZONE values are converted to values in the
default timestamp format.

• TIMESTAMP WITH TIME ZONE values are converted to values in the default timestamp with
time zone format.

• Interval values are converted to the numeric representation of the interval literal.

Refer to "Format Models " for information on datetime formats.

The 'nlsparam' argument specifies the language in which month and day names and
abbreviations are returned. This argument can have this form:

'NLS_DATE_LANGUAGE = language'

If you omit 'nlsparam', then this function uses the default date language for your session.

See Also:

"Security Considerations for Data Conversion"

You can use this function in conjunction with any of the XML functions to generate a date in
the database format rather than the XML Schema standard format.

See Also:

• Oracle XML DB Developer's Guide for information about formatting of XML
dates and timestamps, including examples

• "XML Functions " for a listing of the XML functions

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of this function

Examples

The following example uses this table:

CREATE TABLE date_tab (
 ts_col TIMESTAMP,
 tsltz_col TIMESTAMP WITH LOCAL TIME ZONE,
 tstz_col TIMESTAMP WITH TIME ZONE);

Chapter 7
TO_CHAR (datetime)

7-391

The example shows the results of applying TO_CHAR to different TIMESTAMP data types.
The result for a TIMESTAMP WITH LOCAL TIME ZONE column is sensitive to session time
zone, whereas the results for the TIMESTAMP and TIMESTAMP WITH TIME ZONE columns
are not sensitive to session time zone:

ALTER SESSION SET TIME_ZONE = '-8:00';
INSERT INTO date_tab VALUES (
 TIMESTAMP'1999-12-01 10:00:00',
 TIMESTAMP'1999-12-01 10:00:00',
 TIMESTAMP'1999-12-01 10:00:00');
INSERT INTO date_tab VALUES (
 TIMESTAMP'1999-12-02 10:00:00 -8:00',
 TIMESTAMP'1999-12-02 10:00:00 -8:00',
 TIMESTAMP'1999-12-02 10:00:00 -8:00');

SELECT TO_CHAR(ts_col, 'DD-MON-YYYY HH24:MI:SSxFF') AS ts_date,
 TO_CHAR(tstz_col, 'DD-MON-YYYY HH24:MI:SSxFF TZH:TZM') AS tstz_date
 FROM date_tab
 ORDER BY ts_date, tstz_date;

TS_DATE TSTZ_DATE
------------------------------ -------------------------------------
01-DEC-1999 10:00:00.000000 01-DEC-1999 10:00:00.000000 -08:00
02-DEC-1999 10:00:00.000000 02-DEC-1999 10:00:00.000000 -08:00

SELECT SESSIONTIMEZONE,
 TO_CHAR(tsltz_col, 'DD-MON-YYYY HH24:MI:SSxFF') AS tsltz
 FROM date_tab
 ORDER BY sessiontimezone, tsltz;

SESSIONTIM TSLTZ
---------- ------------------------------
-08:00 01-DEC-1999 10:00:00.000000
-08:00 02-DEC-1999 10:00:00.000000

ALTER SESSION SET TIME_ZONE = '-5:00';
SELECT TO_CHAR(ts_col, 'DD-MON-YYYY HH24:MI:SSxFF') AS ts_col,
 TO_CHAR(tstz_col, 'DD-MON-YYYY HH24:MI:SSxFF TZH:TZM') AS tstz_col
 FROM date_tab
 ORDER BY ts_col, tstz_col;

TS_COL TSTZ_COL
------------------------------ -------------------------------------
01-DEC-1999 10:00:00.000000 01-DEC-1999 10:00:00.000000 -08:00
02-DEC-1999 10:00:00.000000 02-DEC-1999 10:00:00.000000 -08:00

SELECT SESSIONTIMEZONE,
TO_CHAR(tsltz_col, 'DD-MON-YYYY HH24:MI:SSxFF') AS tsltz_col
 FROM date_tab
 ORDER BY sessiontimezone, tsltz_col;
 2 3 4
SESSIONTIM TSLTZ_COL
---------- ------------------------------
-05:00 01-DEC-1999 13:00:00.000000
-05:00 02-DEC-1999 13:00:00.000000

The following example converts an interval literal into a text literal:

SELECT TO_CHAR(INTERVAL '123-2' YEAR(3) TO MONTH) FROM DUAL;

TO_CHAR

Chapter 7
TO_CHAR (datetime)

7-392

+123-02

Using TO_CHAR to Format Dates and Numbers: Example

The following statement converts date values to the format specified in the TO_CHAR function:

WITH dates AS (
 SELECT date'2015-01-01' d FROM dual union
 SELECT date'2015-01-10' d FROM dual union
 SELECT date'2015-02-01' d FROM dual
)
SELECT d "Original Date",
 to_char(d, 'dd-mm-yyyy') "Day-Month-Year",
 to_char(d, 'hh24:mi') "Time in 24-hr format",
 to_char(d, 'iw-iyyy') "ISO Year and Week of Year"
FROM dates;

The following statement converts date and timestamp values to the format specified in the
TO_CHAR function:

WITH dates AS (
 SELECT date'2015-01-01' d FROM dual union
 SELECT date'2015-01-10' d FROM dual union
 SELECT date'2015-02-01' d FROM dual union
 SELECT timestamp'2015-03-03 23:44:32' d FROM dual union
 SELECT timestamp'2015-04-11 12:34:56' d FROM dual
)
SELECT d "Original Date",
 to_char(d, 'dd-mm-yyyy') "Day-Month-Year",
 to_char(d, 'hh24:mi') "Time in 24-hr format",
 to_char(d, 'iw-iyyy') "ISO Year and Week of Year",
 to_char(d, 'Month') "Month Name",
 to_char(d, 'Year') "Year"
FROM dates;

The following statement extracts the datetime fields specified in the EXTRACT function from the
input datetime expressions:

WITH dates AS (
 SELECT date'2015-01-01' d FROM dual union
 SELECT date'2015-01-10' d FROM dual union
 SELECT date'2015-02-01' d FROM dual union
 SELECT timestamp'2015-03-03 23:44:32' d FROM dual union
 SELECT timestamp'2015-04-11 12:34:56' d FROM dual
)
SELECT extract(minute from d) minutes,
 extract(hour from d) hours,
 extract(day from d) days,
 extract(month from d) months,
 extract(year from d) years
FROM dates;

The following statement displays the input numbers as per the format specified in the
TO_CHAR function:

WITH nums AS (
 SELECT 10 n FROM dual union
 SELECT 9.99 n FROM dual union
 SELECT 1000000 n FROM dual --one million
)

Chapter 7
TO_CHAR (datetime)

7-393

SELECT n "Input Number N",
 to_char(n),
 to_char(n, '9,999,999.99') "Number with Commas",
 to_char(n, '0,000,000.000') "Zero-padded Number",
 to_char(n, '9.9EEEE') "Scientific Notation"
FROM nums;

The following statement converts the input numbers as per the format specified in the
TO_CHAR function:

WITH nums AS (
 SELECT 10 n FROM dual union
 SELECT 9.99 n FROM dual union
 SELECT .99 n FROM dual union
 SELECT 1000000 n FROM dual --one million
)
SELECT n "Input Number N",
 to_char(n),
 to_char(n, '9,999,999.99') "Number with Commas",
 to_char(n, '0,000,000.000') "Zero_padded Number",
 to_char(n, '9.9EEEE') "Scientific Notation",
 to_char(n, '$9,999,990.00') Monetary,
 to_char(n, 'X') "Hexadecimal Value"
FROM nums;

The following statement converts the input numbers as per the format specified in the
TO_CHAR function:

WITH nums AS (
 SELECT 10 n FROM dual union
 SELECT 9.99 n FROM dual union
 SELECT .99 n FROM dual union
 SELECT 1000000 n FROM dual --one million
)
SELECT n "Input Number N",
 to_char(n),
 to_char(n, '9,999,999.99') "Number with Commas",
 to_char(n, '0,000,000.000') "Zero_padded Number",
 to_char(n, '9.9EEEE') "Scientific Notation",
 to_char(n, '$9,999,990.00') Monetary,
 to_char(n, 'XXXXXX') "Hexadecimal Value"
FROM nums;

Live SQL:

View and run a related example on Oracle Live SQL at Using TO_CHAR to
Format Dates and Numbers

TO_CHAR (datetime) Function: Example

The following statements create a table named empl_temp and populate it with
employee details:

CREATE TABLE empl_temp
 (
 employee_id NUMBER(6),
 first_name VARCHAR2(20),

Chapter 7
TO_CHAR (datetime)

7-394

https://livesql.oracle.com/apex/livesql/docs/sqlrf/to_char/dates-numbers.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/to_char/dates-numbers.html

 last_name VARCHAR2(25),
 email VARCHAR2(25),
 hire_date DATE DEFAULT SYSDATE,
 job_id VARCHAR2(10),
 clob_column CLOB
);

INSERT INTO empl_temp
VALUES(111,'John','Doe','example.com','10-JAN-2015','1001','Experienced
Employee');

INSERT INTO empl_temp
VALUES(112,'John','Smith','example.com','12-JAN-2015','1002','Junior
Employee');

INSERT INTO empl_temp
VALUES(113,'Johnnie','Smith','example.com','12-JAN-2014','1002','Mid-Career
Employee');

INSERT INTO empl_temp
VALUES(115,'Jane','Doe','example.com','15-JAN-2015','1005','Executive
Employee');

The following statement displays dates by using the short and long formats:

SELECT hire_date "Default",
 TO_CHAR(hire_date,'DS') "Short",
 TO_CHAR(hire_date,'DL') "Long"FROM empl_temp
WHERE employee_id IN (111, 112, 115);

Default Short Long
---------- ---------- --------------------------
10-JAN-15 1/10/2015 Saturday, January 10, 2015
12-JAN-15 1/12/2015 Monday, January 12, 2015
15-JAN-15 1/15/2015 Thursday, January 15, 2015

Live SQL:

View and run a related example on Oracle Live SQL at Using the TO_CHAR
Function

TO_CHAR (number)
Syntax

to_char_number::=

TO_CHAR (n

, fmt

, ’ nlsparam ’

)

Chapter 7
TO_CHAR (number)

7-395

https://livesql.oracle.com/apex/livesql/docs/sqlrf/to_char/tochar_basic.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/to_char/tochar_basic.html

Purpose

TO_CHAR (number) converts n to a value of VARCHAR2 data type, using the optional
number format fmt. The value n can be of type NUMBER, BINARY_FLOAT, or
BINARY_DOUBLE. If you omit fmt, then n is converted to a VARCHAR2 value exactly long
enough to hold its significant digits.

If n is negative, then the sign is applied after the format is applied. Thus TO_CHAR(-1,
'$9') returns -$1, rather than $-1.

Refer to "Format Models " for information on number formats.

The 'nlsparam' argument specifies these characters that are returned by number
format elements:

• Decimal character

• Group separator

• Local currency symbol

• International currency symbol

This argument can have this form:

'NLS_NUMERIC_CHARACTERS = ''dg''
 NLS_CURRENCY = ''text''
 NLS_ISO_CURRENCY = territory '

The characters d and g represent the decimal character and group separator,
respectively. They must be different single-byte characters. Within the quoted string,
you must use two single quotation marks around the parameter values. Ten characters
are available for the currency symbol.

If you omit 'nlsparam' or any one of the parameters, then this function uses the
default parameter values for your session.

See Also:

• "Security Considerations for Data Conversion"

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of this function

Examples

The following statement uses implicit conversion to combine a string and a number
into a number:

SELECT TO_CHAR('01110' + 1) FROM DUAL;

TO_C

1111

Compare this example with the first example for TO_CHAR (character) .

Chapter 7
TO_CHAR (number)

7-396

In the next example, the output is blank padded to the left of the currency symbol. In the
optional number format fmt, L designates local currency symbol and MI designates a trailing
minus sign. See Table 2-15 for a complete listing of number format elements. The example
shows the output in a session in which the session parameter NLS_TERRITORY is set to
AMERICA.

SELECT TO_CHAR(-10000,'L99G999D99MI') "Amount"
 FROM DUAL;

Amount

 $10,000.00-

In the next example, NLS_CURRENCY specifies the string to use as the local currency symbol for
the L number format element. NLS_NUMERIC_CHARACTERS specifies comma as the character to
use as the decimal separator for the D number format element and period as the character to
use as the group separator for the G number format element. These characters are expected
in many countries, for example in Germany.

SELECT TO_CHAR(-10000,'L99G999D99MI',
 'NLS_NUMERIC_CHARACTERS = '',.''
 NLS_CURRENCY = ''AusDollars'' ') "Amount"
 FROM DUAL;

Amount

AusDollars10.000,00-

In the next example, NLS_ISO_CURRENCY instructs the database to use the international
currency symbol for the territory of POLAND for the C number format element:

SELECT TO_CHAR(-10000,'99G999D99C',
 'NLS_NUMERIC_CHARACTERS = '',.''
 NLS_ISO_CURRENCY=POLAND') "Amount"
 FROM DUAL;

Amount

 -10.000,00PLN

TO_CHAR (number) Function: Example

The following statements create a table named empl_temp and populate it with employee
details:

CREATE TABLE empl_temp
 (
 employee_id NUMBER(6),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 hire_date DATE DEFAULT SYSDATE,
 job_id VARCHAR2(10),
 clob_column CLOB
);

INSERT INTO empl_temp
VALUES(111,'John','Doe','example.com','10-JAN-2015','1001','Experienced

Chapter 7
TO_CHAR (number)

7-397

Employee');

INSERT INTO empl_temp
VALUES(112,'John','Smith','example.com','12-JAN-2015','1002','Junior
Employee');

INSERT INTO empl_temp
VALUES(113,'Johnnie','Smith','example.com','12-JAN-2014','1002','Mid-
Career Employee');

INSERT INTO empl_temp
VALUES(115,'Jane','Doe','example.com','15-JAN-2015','1005','Executive
Employee');

The following statement converts numeric data to the database character set:

SELECT To_char(employee_id) "NUM_TO_CHAR"
FROM empl_temp
WHERE employee_id IN (111, 112, 113, 115);

NUM_TO_CHAR

111
112
113
115

Live SQL:

View and run a related example on Oracle Live SQL at Using the TO_CHAR
Function

TO_CLOB (bfile|blob)
Syntax

TO_CLOB (
bfile

blob

, csid , ’ mime_type ’

)

Purpose

TO_CLOB (bfile|blob) converts BFILE or BLOB data to the database character set and
returns the data as a CLOB value.

For csid, specify the character set ID of the BFILE or BLOB data. If the character set of
the BFILE or BLOB data is the database character set, then you can specify a value of 0
for csid, or omit csid altogether.

Chapter 7
TO_CLOB (bfile|blob)

7-398

https://livesql.oracle.com/apex/livesql/docs/sqlrf/to_char/tochar_basic.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/to_char/tochar_basic.html

For mime_type, specify the MIME type to be set on the CLOB value returned by this function. If
you omit mime_type, then a MIME type will not be set on the CLOB value.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
this function

Example

The following hypothetical example returns the CLOB of a BFILE column value docu in table
media_tab, which uses the character set with ID 873. It sets the MIME type to text/xml for
the resulting CLOB.

SELECT TO_CLOB(docu, 873, 'text/xml') FROM media_tab;

TO_CLOB (character)
Syntax

TO_CLOB (
lob_column

char
)

Purpose

TO_CLOB (character) converts NCLOB values in a LOB column or other character strings to CLOB
values. char can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB.
Oracle Database executes this function by converting the underlying LOB data from the
national character set to the database character set.

From within a PL/SQL package, you can use the TO_CLOB (character) function to convert RAW,
CHAR, VARCHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB values to CLOB or NCLOB values.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
this function

Examples

The following statement converts NCLOB data from the sample pm.print_media table to CLOB
and inserts it into a CLOB column, replacing existing data in that column.

UPDATE PRINT_MEDIA
 SET AD_FINALTEXT = TO_CLOB (AD_FLTEXTN);

Chapter 7
TO_CLOB (character)

7-399

TO_DATE
Syntax

TO_DATE (char

DEFAULT return_value ON CONVERSION ERROR

, fmt

, ’ nlsparam ’

)

Purpose

TO_DATE converts char to a value of DATE data type.

For char, you can specify any expression that evaluates to a character string of CHAR,
VARCHAR2, NCHAR, or NVARCHAR2 data type.

Note:

This function does not convert data to any of the other datetime data types.
For information on other datetime conversions, refer to TO_TIMESTAMP ,
TO_TIMESTAMP_TZ , TO_DSINTERVAL , and TO_YMINTERVAL .

The optional DEFAULT return_value ON CONVERSION ERROR clause allows you to specify
the value this function returns if an error occurs while converting char to DATE. This
clause has no effect if an error occurs while evaluating char. The return_value can
be an expression or a bind variable, and it must evaluate to a character string of CHAR,
VARCHAR2, NCHAR, or NVARCHAR2 data type, or null. The function converts return_value
to DATE using the same method it uses to convert char to DATE. If return_value cannot
be converted to DATE, then the function returns an error.

The fmt is a datetime model format specifying the format of char. If you omit fmt, then
char must be in the default date format. The default date format is determined
implicitly by the NLS_TERRITORY initialization parameter or can be set explicitly by the
NLS_DATE_FORMAT parameter. If fmt is J, for Julian, then char must be an integer.

Caution:

It is good practice always to specify a format mask (fmt) with TO_DATE, as
shown in the examples in the section that follows. When it is used without a
format mask, the function is valid only if char uses the same format as is
determined by the NLS_TERRITORY or NLS_DATE_FORMAT parameters.
Furthermore, the function may not be stable across databases unless the
explicit format mask is specified to avoid dependencies.

Chapter 7
TO_DATE

7-400

The 'nlsparam' argument specifies the language of the text string that is being converted to
a date. This argument can have this form:

'NLS_DATE_LANGUAGE = language'

Do not use the TO_DATE function with a DATE value for the char argument. The first two digits
of the returned DATE value can differ from the original char, depending on fmt or the default
date format.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also:

"Datetime Format Models " and "Data Type Comparison Rules " for more
information

Examples

The following example converts a character string into a date:

SELECT TO_DATE(
 'January 15, 1989, 11:00 A.M.',
 'Month dd, YYYY, HH:MI A.M.',
 'NLS_DATE_LANGUAGE = American')
 FROM DUAL;

TO_DATE('

15-JAN-89

The value returned reflects the default date format if the NLS_TERRITORY parameter is set to
'AMERICA'. Different NLS_TERRITORY values result in different default date formats:

ALTER SESSION SET NLS_TERRITORY = 'KOREAN';

SELECT TO_DATE(
 'January 15, 1989, 11:00 A.M.',
 'Month dd, YYYY, HH:MI A.M.',
 'NLS_DATE_LANGUAGE = American')
 FROM DUAL;

TO_DATE(

89/01/15

The following example returns the default value because the specified expression cannot be
converted to a DATE value, due to a misspelling of the month:

SELECT TO_DATE('Febuary 15, 2016, 11:00 A.M.'
 DEFAULT 'January 01, 2016 12:00 A.M.' ON CONVERSION ERROR,
 'Month dd, YYYY, HH:MI A.M.') "Value"
 FROM DUAL;

Value

01-JAN-16

Chapter 7
TO_DATE

7-401

TO_DSINTERVAL
Syntax

TO_DSINTERVAL (’
sql_format

ds_iso_format
’

DEFAULT return_value ON CONVERSION ERROR

)

sql_format::=

+

–

days hours : minutes : seconds

. frac_secs

ds_iso_format::=

–

P

days D

T

hours H minutes M seconds

. frac_secs

S

Note:

In earlier releases, the TO_DSINTERVAL function accepted an optional
nlsparam clause. This clause is still accepted for backward compatibility, but
has no effect.

Purpose

TO_DSINTERVAL converts its argument to a value of INTERVAL DAY TO SECOND data type.

For the argument, you can specify any expression that evaluates to a character string
of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type.

TO_DSINTERVAL accepts argument in one of the two formats:

• SQL interval format compatible with the SQL standard (ISO/IEC 9075)

Chapter 7
TO_DSINTERVAL

7-402

• ISO duration format compatible with the ISO 8601:2004 standard

In the SQL format, days is an integer between 0 and 999999999, hours is an integer between
0 and 23, and minutes and seconds are integers between 0 and 59. frac_secs is the
fractional part of seconds between .0 and .999999999. One or more blanks separate days
from hours. Additional blanks are allowed between format elements.

In the ISO format, days, hours, minutes and seconds are integers between 0 and 999999999.
frac_secs is the fractional part of seconds between .0 and .999999999. No blanks are
allowed in the value. If you specify T, then you must specify at least one of the hours,
minutes, or seconds values.

The optional DEFAULT return_value ON CONVERSION ERROR clause allows you to specify the
value this function returns if an error occurs while converting the argument to an INTERVAL
DAY TO SECOND type. This clause has no effect if an error occurs while evaluating the
argument. The return_value can be an expression or a bind variable, and it must evaluate to
a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type. It can be in either the
SQL format or ISO format, and need not be in the same format as the function argument. If
return_value cannot be converted to an INTERVAL DAY TO SECOND type, then the function
returns an error.

Examples

The following example uses the SQL format to select from the hr.employees table the
employees who had worked for the company for at least 100 days on November 1, 2002:

SELECT employee_id, last_name FROM employees
 WHERE hire_date + TO_DSINTERVAL('100 00:00:00')
 <= DATE '2002-11-01'
 ORDER BY employee_id;

EMPLOYEE_ID LAST_NAME
----------- ---------------
 102 De Haan
 203 Mavris
 204 Baer
 205 Higgins
 206 Giet

The following example uses the ISO format to display the timestamp 100 days and 5 hours
after the beginning of the year 2009:

SELECT TO_CHAR(TIMESTAMP '2009-01-01 00:00:00' + TO_DSINTERVAL('P100DT05H'),
 'YYYY-MM-DD HH24:MI:SS') "Time Stamp"
 FROM DUAL;

Time Stamp

2009-04-11 05:00:00

The following example returns the default value because the specified expression cannot be
converted to an INTERVAL DAY TO SECOND value:

SELECT TO_DSINTERVAL('1o 1:02:10'
 DEFAULT '10 8:00:00' ON CONVERSION ERROR) "Value"
 FROM DUAL;

Value

Chapter 7
TO_DSINTERVAL

7-403

+000000010 08:00:00.000000000

TO_LOB
Syntax

TO_LOB (long_column)

Purpose

TO_LOB converts LONG or LONG RAW values in the column long_column to LOB values.
You can apply this function only to a LONG or LONG RAW column, and only in the select
list of a subquery in an INSERT statement.

Before using this function, you must create a LOB column to receive the converted
LONG values. To convert LONG values, create a CLOB column. To convert LONG RAW
values, create a BLOB column.

You cannot use the TO_LOB function to convert a LONG column to a LOB column in the
subquery of a CREATE TABLE ... AS SELECT statement if you are creating an index-
organized table. Instead, create the index-organized table without the LONG column,
and then use the TO_LOB function in an INSERT ... AS SELECT statement.

You cannot use this function within a PL/SQL package. Instead use the TO_CLOB
(character) or TO_BLOB (raw) functions.

See Also:

• the modify_col_properties clause of ALTER TABLE for an alternative
method of converting LONG columns to LOB

• INSERT for information on the subquery of an INSERT statement

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of this function

Examples

The following syntax shows how to use the TO_LOB function on your LONG data in a
hypothetical table old_table:

CREATE TABLE new_table (col1, col2, ... lob_col CLOB);
INSERT INTO new_table (select o.col1, o.col2, ... TO_LOB(o.old_long_col)
 FROM old_table o;

Chapter 7
TO_LOB

7-404

TO_MULTI_BYTE
Syntax

TO_MULTI_BYTE (char)

Purpose

TO_MULTI_BYTE returns char with all of its single-byte characters converted to their
corresponding multibyte characters. char can be of data type CHAR, VARCHAR2, NCHAR, or
NVARCHAR2. The value returned is in the same data type as char.

Any single-byte characters in char that have no multibyte equivalents appear in the output
string as single-byte characters. This function is useful only if your database character set
contains both single-byte and multibyte characters.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also:

• "Data Type Comparison Rules " for more information.

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of TO_MULTI_BYTE

Examples

The following example illustrates converting from a single byte A to a multibyte A in UTF8:

SELECT dump(TO_MULTI_BYTE('A')) FROM DUAL;

DUMP(TO_MULTI_BYTE('A'))

Typ=1 Len=3: 239,188,161

TO_NCHAR (character)
Syntax

to_nchar_char::=

TO_NCHAR (

char

clob

nclob

)

Chapter 7
TO_MULTI_BYTE

7-405

Purpose

TO_NCHAR (character) converts a character string, CHAR, VARCHAR2, CLOB, or NCLOB value
to the national character set. The value returned is always NVARCHAR2. This function is
equivalent to the TRANSLATE ... USING function with a USING clause in the national
character set.

See Also:

• "Data Conversion " and TRANSLATE ... USING

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of this function

Examples

The following example converts VARCHAR2 data from the oe.customers table to the
national character set:

SELECT TO_NCHAR(cust_last_name) FROM customers
 WHERE customer_id=103;

TO_NCHAR(CUST_LAST_NAME)
--
Taylor

TO_NCHAR (datetime)
Syntax

to_nchar_date::=

TO_NCHAR (
datetime

interval

, fmt

, ’ nlsparam ’

)

Purpose

TO_NCHAR (datetime) converts a datetime or interval value of DATE, TIMESTAMP,
TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL MONTH TO YEAR,
or INTERVAL DAY TO SECOND data type from the database character set to the national
character set.

Chapter 7
TO_NCHAR (datetime)

7-406

See Also:

• "Security Considerations for Data Conversion"

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of this function

Examples

The following example converts the order_date of all orders whose status is 9 to the national
character set:

SELECT TO_NCHAR(ORDER_DATE) AS order_date
 FROM ORDERS
 WHERE ORDER_STATUS > 9
 ORDER BY order_date;

ORDER_DATE
--
06-DEC-99 02.22.34.225609 PM
13-SEP-99 10.19.00.654279 AM
14-SEP-99 09.53.40.223345 AM
26-JUN-00 10.19.43.190089 PM
27-JUN-00 09.53.32.335522 PM

TO_NCHAR (number)
Syntax

to_nchar_number::=

TO_NCHAR (n

, fmt

, ’ nlsparam ’

)

Purpose

TO_NCHAR (number) converts n to a string in the national character set. The value n can be of
type NUMBER, BINARY_FLOAT, or BINARY_DOUBLE. The function returns a value of the same type
as the argument. The optional fmt and 'nlsparam' corresponding to n can be of DATE,
TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL MONTH TO
YEAR, or INTERVAL DAY TO SECOND data type.

Chapter 7
TO_NCHAR (number)

7-407

See Also:

• "Security Considerations for Data Conversion"

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of this function

Examples

The following example converts the customer_id values from the sample table
oe.orders to the national character set:

SELECT TO_NCHAR(customer_id) "NCHAR_Customer_ID" FROM orders
 WHERE order_status > 9
 ORDER BY "NCHAR_Customer_ID";

NCHAR_Customer_ID
--
102
103
148
148
149

TO_NCLOB
Syntax

TO_NCLOB (
lob_column

char
)

Purpose

TO_NCLOB converts CLOB values in a LOB column or other character strings to NCLOB
values. char can be any of the data types CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, or
NCLOB. Oracle Database implements this function by converting the character set of
char from the database character set to the national character set.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of this function

Examples

The following example inserts some character data into an NCLOB column of the
pm.print_media table by first converting the data with the TO_NCLOB function:

Chapter 7
TO_NCLOB

7-408

INSERT INTO print_media (product_id, ad_id, ad_fltextn)
 VALUES (3502, 31001,
 TO_NCLOB('Placeholder for new product description'));

TO_NUMBER
Syntax

TO_NUMBER (expr

DEFAULT return_value ON CONVERSION ERROR

, fmt

, ’ nlsparam ’

)

Purpose

TO_NUMBER converts expr to a value of NUMBER data type.

expr can be any expression that evaluates to a character string of type CHAR, VARCHAR2,
NCHAR, or NVARCHAR2, a numeric value of type NUMBER, BINARY_FLOAT, or BINARY_DOUBLE, or
null. If expr is NUMBER, then the function returns expr. If expr evaluates to null, then the
function returns null. Otherwise, the function converts expr to a NUMBER value.

• If you specify an expr of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type, then you can
optionally specify the format model fmt.

• If you specify an expr of BINARY_FLOAT or BINARY_DOUBLE data type, then you cannot
specify a format model because a float can be interpreted only by its internal
representation.

Refer to "Format Models " for information on number formats.

The 'nlsparam' argument in this function has the same purpose as it does in the TO_CHAR
function for number conversions. Refer to TO_CHAR (number) for more information.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also:

"Data Type Comparison Rules " for more information.

Examples

The following examples convert character string data into a number:

UPDATE employees SET salary = salary +
 TO_NUMBER('100.00', '9G999D99')
 WHERE last_name = 'Perkins';

SELECT TO_NUMBER('-AusDollars100','L9G999D99',
 ' NLS_NUMERIC_CHARACTERS = '',.''

Chapter 7
TO_NUMBER

7-409

 NLS_CURRENCY = ''AusDollars''
 ') "Amount"
 FROM DUAL;

 Amount

 -100

The following example returns the default value of 0 because the specified expression
cannot be converted to a NUMBER value:

SELECT TO_NUMBER('2,00' DEFAULT 0 ON CONVERSION ERROR) "Value"
 FROM DUAL;

 Value

 0

TO_SINGLE_BYTE
Syntax

TO_SINGLE_BYTE (char)

Purpose

TO_SINGLE_BYTE returns char with all of its multibyte characters converted to their
corresponding single-byte characters. char can be of data type CHAR, VARCHAR2, NCHAR,
or NVARCHAR2. The value returned is in the same data type as char.

Any multibyte characters in char that have no single-byte equivalents appear in the
output as multibyte characters. This function is useful only if your database character
set contains both single-byte and multibyte characters.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also:

• "Data Type Comparison Rules " for more information.

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of TO_SINGLE_BYTE

Examples

The following example illustrates going from a multibyte A in UTF8 to a single byte
ASCII A:

SELECT TO_SINGLE_BYTE(CHR(15711393)) FROM DUAL;

T

Chapter 7
TO_SINGLE_BYTE

7-410

-
A

TO_TIMESTAMP
Syntax

TO_TIMESTAMP (char

DEFAULT return_value ON CONVERSION ERROR

, fmt

, ’ nlsparam ’

)

Purpose

TO_TIMESTAMP converts char to a value of TIMESTAMP data type.

For char, you can specify any expression that evaluates to a character string of CHAR,
VARCHAR2, NCHAR, or NVARCHAR2 data type.

The optional DEFAULT return_value ON CONVERSION ERROR clause allows you to specify the
value this function returns if an error occurs while converting char to TIMESTAMP. This clause
has no effect if an error occurs while evaluating char. The return_value can be an
expression or a bind variable, and it must evaluate to a character string of CHAR, VARCHAR2,
NCHAR, or NVARCHAR2 data type, or null. The function converts return_value to TIMESTAMP
using the same method it uses to convert char to TIMESTAMP. If return_value cannot be
converted to TIMESTAMP, then the function returns an error.

The optional fmt specifies the format of char. If you omit fmt, then char must be in the
default format of the TIMESTAMP data type, which is determined by the NLS_TIMESTAMP_FORMAT
initialization parameter. The optional 'nlsparam' argument has the same purpose in this
function as in the TO_CHAR function for date conversion.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also:

"Data Type Comparison Rules " for more information.

Examples

The following example converts a character string to a timestamp. The character string is not
in the default TIMESTAMP format, so the format mask must be specified:

SELECT TO_TIMESTAMP ('10-Sep-02 14:10:10.123000', 'DD-Mon-RR HH24:MI:SS.FF')
 FROM DUAL;

TO_TIMESTAMP('10-SEP-0214:10:10.123000','DD-MON-RRHH24:MI:SS.FF')

Chapter 7
TO_TIMESTAMP

7-411

10-SEP-02 02.10.10.123000000 PM

The following example returns the default value of NULL because the specified
expression cannot be converted to a TIMESTAMP value, due to an invalid month
specification:

SELECT TO_TIMESTAMP ('10-Sept-02 14:10:10.123000'
 DEFAULT NULL ON CONVERSION ERROR,
 'DD-Mon-RR HH24:MI:SS.FF',
 'NLS_DATE_LANGUAGE = American') "Value"
 FROM DUAL;

See Also:

NLS_TIMESTAMP_FORMAT initialization parameter for information on the default
TIMESTAMP format and "Datetime Format Models " for information on
specifying the format mask

TO_TIMESTAMP_TZ
Syntax

TO_TIMESTAMP_TZ (char

DEFAULT return_value ON CONVERSION ERROR

, fmt

, ’ nlsparam ’

)

Purpose

TO_TIMESTAMP_TZ converts char to a value of TIMESTAMP WITH TIME ZONE data type.

For char, you can specify any expression that evaluates to a character string of CHAR,
VARCHAR2, NCHAR, or NVARCHAR2 data type.

Note:

This function does not convert character strings to TIMESTAMP WITH LOCAL
TIME ZONE. To do this, use a CAST function, as shown in CAST .

The optional DEFAULT return_value ON CONVERSION ERROR clause allows you to specify
the value this function returns if an error occurs while converting char to TIMESTAMP
WITH TIME ZONE. This clause has no effect if an error occurs while evaluating char. The
return_value can be an expression or a bind variable, and it must evaluate to a
character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type, or null. The function

Chapter 7
TO_TIMESTAMP_TZ

7-412

converts return_value to TIMESTAMP WITH TIME ZONE using the same method it uses to
convert char to TIMESTAMP WITH TIME ZONE. If return_value cannot be converted to
TIMESTAMP WITH TIME ZONE, then the function returns an error.

The optional fmt specifies the format of char. If you omit fmt, then char must be in the
default format of the TIMESTAMP WITH TIME ZONE data type. The optional 'nlsparam' has the
same purpose in this function as in the TO_CHAR function for date conversion.

Examples

The following example converts a character string to a value of TIMESTAMP WITH TIME ZONE:

SELECT TO_TIMESTAMP_TZ('1999-12-01 11:00:00 -8:00',
 'YYYY-MM-DD HH:MI:SS TZH:TZM') FROM DUAL;

TO_TIMESTAMP_TZ('1999-12-0111:00:00-08:00','YYYY-MM-DDHH:MI:SSTZH:TZM')
--
01-DEC-99 11.00.00.000000000 AM -08:00

The following example casts a null column in a UNION operation as TIMESTAMP WITH LOCAL
TIME ZONE using the sample tables oe.order_items and oe.orders:

SELECT order_id, line_item_id,
 CAST(NULL AS TIMESTAMP WITH LOCAL TIME ZONE) order_date
 FROM order_items
UNION
SELECT order_id, to_number(null), order_date
 FROM orders;

 ORDER_ID LINE_ITEM_ID ORDER_DATE
---------- ------------ -----------------------------------
 2354 1
 2354 2
 2354 3
 2354 4
 2354 5
 2354 6
 2354 7
 2354 8
 2354 9
 2354 10
 2354 11
 2354 12
 2354 13
 2354 14-JUL-00 05.18.23.234567 PM
 2355 1
 2355 2
. . .

The following example returns the default value of NULL because the specified expression
cannot be converted to a TIMESTAMP WITH TIME ZONE value, due to an invalid month
specification:

SELECT TO_TIMESTAMP_TZ('1999-13-01 11:00:00 -8:00'
 DEFAULT NULL ON CONVERSION ERROR,
 'YYYY-MM-DD HH:MI:SS TZH:TZM') "Value"
 FROM DUAL;

Chapter 7
TO_TIMESTAMP_TZ

7-413

TO_UTC_TIMESTAMP_TZ
Syntax

TO_UTC_TIMESTAMP_TZ (varchar)

Purpose

The SQL function TO_UTC_TIMESTAMP_TZ takes an ISO 8601 date format string as the
varchar input and returns an instance of SQL data type TIMESTAMP WITH TIMEZONE. It
normalizes the input to UTC time (Coordinated Universal Time, formerly Greenwich
Mean Time). Unlike SQL function TO_TIMESTAMP_TZ , the new function assumes that
the input string uses the ISO 8601 date format, defaulting the time zone to UTC 0.

A typical use of this function would be to provide its output to SQL function
SYS_EXTRACT_UTC, obtaining a UTC time that is then passed as a SQL bind variable to
SQL/JSON condition JSON_EXISTS, to perform a time-stamp range comparison.

This is the allowed syntax for dates and times:

• Date (only): YYYY-MM-DD
• Date with time: YYYY-MM-DDThh:mm:ss[.s[s[s[s[s[s]]]]][Z|(+|-)hh:mm]
where:

• YYYY specifies the year, as four decimal digits.

• MM specifies the month, as two decimal digits, 00 to 12.

• DD specifies the day, as two decimal digits, 00 to 31.

• hh specifies the hour, as two decimal digits, 00 to 23.

• mm specifies the minutes, as two decimal digits, 00 to 59.

• ss[.s[s[s[s[s]]]]] specifies the seconds, as two decimal digits, 00 to 59,
optionally followed by a decimal point and 1 to 6 decimal digits (representing the
fractional part of a second).

• Z specifies UTC time (time zone 0). (It can also be specified by +00:00, but not by
–00:00.)

• (+|-)hh:mm specifies the time-zone as difference from UTC. (One of + or – is
required.)

For a time value, the time-zone part is optional. If it is absent then UTC time is
assumed.

No other ISO 8601 date-time syntax is supported. In particular:

• Negative dates (dates prior to year 1 BCE), which begin with a hyphen (e.g. –
2018–10–26T21:32:52), are not supported.

• Hyphen and colon separators are required: so-called “basic” format,
YYYYMMDDThhmmss, is not supported.

Chapter 7
TO_UTC_TIMESTAMP_TZ

7-414

• Ordinal dates (year plus day of year, calendar week plus day number) are not supported.

• Using more than four digits for the year is not supported.

Supported dates and times include the following:

• 2018–10–26T21:32:52
• 2018-10-26T21:32:52+02:00
• 2018-10-26T19:32:52Z
• 2018-10-26T19:32:52+00:00
• 2018-10-26T21:32:52.12679
Unsupported dates and times include the following:

• 2018-10-26T21:32 (if a time is specified then all of its parts must be present)

• 2018-10-26T25:32:52+02:00 (the hours part, 25, is out of range)

• 18-10-26T21:32 (the year is not specified fully)

Examples

SELECT TO_UTC_TIMESTAMP_TZ('1998-01-01') FROM DUAL;

TO_UTC_TIMESTAMP_TZ('1998-01-01')

01-JAN-98 12.00.00.000000000 AM +00:00

SELECT TO_UTC_TIMESTAMP_TZ('2000-01-02T12:34:56.789') FROM DUAL;

TO_UTC_TIMESTAMP_TZ('2000-01-02T12:34:56.789')

02-JAN-00 12.34.56.789000000 PM +00:00

SELECT TO_UTC_TIMESTAMP_TZ('2016-05-05T00:00:00.000Z') FROM DUAL;

TO_UTC_TIMESTAMP_TZ('2016-05-05T00:00:00.000Z')

05-MAY-16 12.00.00.000000000 AM +00:00

SELECT TO_UTC_TIMESTAMP_TZ('2016-05-05T02:04:35.4678Z') FROM DUAL;

TO_UTC_TIMESTAMP_TZ('2016-05-05T02:04:35.4678Z')

05-MAY-16 02.04.35.467800000 AM +00:00

See Also:

• ISO 8601 standard

• ISO 8601 at Wikipedia

Chapter 7
TO_UTC_TIMESTAMP_TZ

7-415

https://en.wikipedia.org/wiki/ISO_8601

TO_YMINTERVAL
Syntax

TO_YMINTERVAL (’

+

–

years – months

ym_iso_format
’

DEFAULT return_value ON CONVERSION ERROR

)

ym_iso_format::=

–

P

years Y months M days D

T

hours H minutes M seconds

. frac_secs

S

Purpose

TO_YMINTERVAL converts its argument to a value of INTERVAL MONTH TO YEAR data type.

For the argument, you can specify any expression that evaluates to a character string
of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type.

TO_YMINTERVAL accepts argument in one of the two formats:

• SQL interval format compatible with the SQL standard (ISO/IEC 9075)

• ISO duration format compatible with the ISO 8601:2004 standard

In the SQL format, years is an integer between 0 and 999999999, and months is an
integer between 0 and 11. Additional blanks are allowed between format elements.

In the ISO format, years and months are integers between 0 and 999999999. Days,
hours, minutes, seconds, and frac_secs are non-negative integers, and are ignored, if
specified. No blanks are allowed in the value. If you specify T, then you must specify at
least one of the hours, minutes, or seconds values.

The optional DEFAULT return_value ON CONVERSION ERROR clause allows you to specify
the value this function returns if an error occurs while converting the argument to an
INTERVAL MONTH TO YEAR type. This clause has no effect if an error occurs while
evaluating the argument. The return_value can be an expression or a bind variable,
and it must evaluate to a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data
type. It can be in either the SQL format or ISO format, and need not be in the same

Chapter 7
TO_YMINTERVAL

7-416

format as the function argument. If return_value cannot be converted to an INTERVAL MONTH
TO YEAR type, then the function returns an error.

Examples

The following example calculates for each employee in the sample hr.employees table a date
one year two months after the hire date:

SELECT hire_date, hire_date + TO_YMINTERVAL('01-02') "14 months"
 FROM employees;

HIRE_DATE 14 months
--------- ---------
17-JUN-03 17-AUG-04
21-SEP-05 21-NOV-06
13-JAN-01 13-MAR-02
20-MAY-08 20-JUL-09
21-MAY-07 21-JUL-08

. . .

The following example makes the same calculation using the ISO format:

SELECT hire_date, hire_date + TO_YMINTERVAL('P1Y2M') FROM employees;

The following example returns the default value because the specified expression cannot be
converted to an INTERVAL MONTH TO YEAR value:

SELECT TO_YMINTERVAL('1x-02'
 DEFAULT '00-00' ON CONVERSION ERROR) "Value"
 FROM DUAL;

Value

+000000000-00

TRANSLATE
Syntax

TRANSLATE (expr , from_string , to_string)

Purpose

TRANSLATE returns expr with all occurrences of each character in from_string replaced by its
corresponding character in to_string. Characters in expr that are not in from_string are not
replaced. The argument from_string can contain more characters than to_string. In this
case, the extra characters at the end of from_string have no corresponding characters in
to_string. If these extra characters appear in expr, then they are removed from the return
value.

If a character appears multiple times in from_string, then the to_string mapping
corresponding to the first occurrence is used.

You cannot use an empty string for to_string to remove all characters in from_string from
the return value. Oracle Database interprets the empty string as null, and if this function has a

Chapter 7
TRANSLATE

7-417

null argument, then it returns null. To remove all characters in from_string,
concatenate another character to the beginning of from_string and specify this
character as the to_string. For example, TRANSLATE(expr, 'x0123456789', 'x') removes
all digits from expr.

TRANSLATE provides functionality related to that provided by the REPLACE function.
REPLACE lets you substitute a single string for another single string, as well as remove
character strings. TRANSLATE lets you make several single-character, one-to-one
substitutions in one operation.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also:

• "Data Type Comparison Rules " for more information and REPLACE

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules, which define the collation TRANSLATE uses
to compare characters from expr with characters from from_string, and
for the collation derivation rules, which define the collation assigned to
the character return value of TRANSLATE

Examples

The following statement translates a book title into a string that could be used (for
example) as a filename. The from_string contains four characters: a space, asterisk,
slash, and apostrophe (with an extra apostrophe as the escape character). The
to_string contains only three underscores. This leaves the fourth character in the
from_string without a corresponding replacement, so apostrophes are dropped from
the returned value.

SELECT TRANSLATE('SQL*Plus User''s Guide', ' */''', '___') FROM DUAL;

TRANSLATE('SQL*PLUSU

SQL_Plus_Users_Guide

TRANSLATE ... USING
Syntax

TRANSLATE (char USING
CHAR_CS

NCHAR_CS
)

Purpose

TRANSLATE ... USING converts char into the character set specified for conversions
between the database character set and the national character set.

Chapter 7
TRANSLATE ... USING

7-418

Note:

The TRANSLATE ... USING function is supported primarily for ANSI compatibility.
Oracle recommends that you use the TO_CHAR and TO_NCHAR functions, as
appropriate, for converting data to the database or national character set. TO_CHAR
and TO_NCHAR can take as arguments a greater variety of data types than
TRANSLATE ... USING, which accepts only character data.

The char argument is the expression to be converted.

• Specifying the USING CHAR_CS argument converts char into the database character set.
The output data type is VARCHAR2.

• Specifying the USING NCHAR_CS argument converts char into the national character set.
The output data type is NVARCHAR2.

This function is similar to the Oracle CONVERT function, but must be used instead of CONVERT if
either the input or the output data type is being used as NCHAR or NVARCHAR2. If the input
contains UCS2 code points or backslash characters (\), then use the UNISTR function.

See Also:

• CONVERT and UNISTR

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of TRANSLATE ... USING

Examples

The following statements use data from the sample table oe.product_descriptions to show
the use of the TRANSLATE ... USING function:

CREATE TABLE translate_tab (char_col VARCHAR2(100),
 nchar_col NVARCHAR2(50));
INSERT INTO translate_tab
 SELECT NULL, translated_name
 FROM product_descriptions
 WHERE product_id = 3501;

SELECT * FROM translate_tab;

CHAR_COL NCHAR_COL
-------------------- --
. . .
 C pre SPNIX4.0 - Sys
 C pro SPNIX4.0 - Sys
 C til SPNIX4.0 - Sys
 C voor SPNIX4.0 - Sys
. . .

UPDATE translate_tab
 SET char_col = TRANSLATE (nchar_col USING CHAR_CS);

Chapter 7
TRANSLATE ... USING

7-419

SELECT * FROM translate_tab;

CHAR_COL NCHAR_COL
------------------------- -------------------------
. . .
C per a SPNIX4.0 - Sys C per a SPNIX4.0 - Sys
C pro SPNIX4.0 - Sys C pro SPNIX4.0 - Sys
C for SPNIX4.0 - Sys C for SPNIX4.0 - Sys
C til SPNIX4.0 - Sys C til SPNIX4.0 - Sys
. . .

TREAT
Syntax

TREAT (expr AS

REF schema .

type

JSON
)

Purpose

You can use the TREAT function to change the declared type of an expression.

Use the keywords AS JSON when you want the expression to return JSON data. This is
useful when you want to force some text to be interpreted as JSON data. For example,
you can use it to interpret a VARCHAR2 value of {} as an empty JSON object instead of a
string.

You must have the EXECUTE object privilege on type to use this function.

• In expr AS JSON , expr is a SQL data type containing JSON, for example CLOB.

• In expr AS type , expr and type must be a user-defined object types, excluding
top-level collections.

• type must be some supertype or subtype of the declared type of expr. If the most
specific type of expr is type (or some subtype of type), then TREAT returns expr. If
the most specific type of expr is not type (or some subtype of type), then TREAT
returns NULL.

• You can specify REF only if the declared type of expr is a REF type.

• If the declared type of expr is a REF to a source type of expr, then type must be
some subtype or supertype of the source type of expr. If the most specific type of
DEREF(expr) is type (or a subtype of type), then TREAT returns expr. If the most
specific type of DEREF(expr) is not type (or a subtype of type), then TREAT returns
NULL.

See Also:

"Data Type Comparison Rules " for more information

Chapter 7
TREAT

7-420

Examples

The following statement uses the table oe.persons, which is created in "Substitutable Table
and Column Examples". The example retrieves the salary attribute of all people in the
persons table, the value being null for instances of people that are not employees.

SELECT name, TREAT(VALUE(p) AS employee_t).salary salary
 FROM persons p;

NAME SALARY
------------------------- ----------
Bob
Joe 100000
Tim 1000

You can use the TREAT function to create an index on the subtype attributes of a substitutable
column. For an example, see "Indexing on Substitutable Columns: Examples".

TRIM
Syntax

TRIM (

LEADING

TRAILING

BOTH

trim_character

trim_character

FROM

trim_source)

Purpose

TRIM enables you to trim leading or trailing characters (or both) from a character string. If
trim_character or trim_source is a character literal, then you must enclose it in single
quotation marks.

• If you specify LEADING, then Oracle Database removes any leading characters equal to
trim_character.

• If you specify TRAILING, then Oracle removes any trailing characters equal to
trim_character.

• If you specify BOTH or none of the three, then Oracle removes leading and trailing
characters equal to trim_character.

• If you do not specify trim_character, then the default value is a blank space.

• If you specify only trim_source, then Oracle removes leading and trailing blank spaces.

• The function returns a value with data type VARCHAR2. The maximum length of the value is
the length of trim_source.

• If either trim_source or trim_character is null, then the TRIM function returns null.

Both trim_character and trim_source can be VARCHAR2 or any data type that can be
implicitly converted to VARCHAR2. The string returned is a VARCHAR2 (NVARCHAR2) data type if

Chapter 7
TRIM

7-421

trim_source is a CHAR or VARCHAR2 (NCHAR or NVARCHAR2) data type, and a CLOB if
trim_source is a CLOB data type. The return string is in the same character set as
trim_source.

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
determination rules, which define the collation TRIM uses to compare
characters from trim_character with characters from trim_source, and for
the collation derivation rules, which define the collation assigned to the
character return value of this function

Examples

This example trims leading zeros from the hire date of the employees in the hr
schema:

SELECT employee_id,
 TO_CHAR(TRIM(LEADING 0 FROM hire_date))
 FROM employees
 WHERE department_id = 60
 ORDER BY employee_id;

EMPLOYEE_ID TO_CHAR(T
----------- ---------
 103 20-MAY-08
 104 21-MAY-07
 105 25-JUN-05
 106 5-FEB-06
 107 7-FEB-07

TRUNC (date)
Syntax

trunc_date::=

TRUNC (date

, fmt

)

Purpose

The TRUNC (date) function returns date with the time portion of the day truncated to the
unit specified by the format model fmt. This function is not sensitive to the
NLS_CALENDAR session parameter. It operates according to the rules of the Gregorian
calendar. The value returned is always of data type DATE, even if you specify a different
datetime data type for date. If you omit fmt, then the default format model 'DD' is used
and the value returned is date truncated to the day with a time of midnight. Refer to
"ROUND and TRUNC Date Functions" for the permitted format models to use in fmt.

Chapter 7
TRUNC (date)

7-422

Examples

The following example truncates a date:

SELECT TRUNC(TO_DATE('27-OCT-92','DD-MON-YY'), 'YEAR')
 "New Year" FROM DUAL;

New Year

01-JAN-92

Formatting Dates using TRUNC: Examples

In the following example, the TRUNC function returns the input date with the time portion of the
day truncated as specified in the format model:

WITH dates AS (
 SELECT date'2015-01-01' d FROM dual union
 SELECT date'2015-01-10' d FROM dual union
 SELECT date'2015-02-01' d FROM dual union
 SELECT timestamp'2015-03-03 23:45:00' d FROM dual union
 SELECT timestamp'2015-04-11 12:34:56' d FROM dual
)
SELECT d "Original Date",
 trunc(d) "Nearest Day, Time Removed",
 trunc(d, 'ww') "Nearest Week",
 trunc(d, 'iw') "Start of Week",
 trunc(d, 'mm') "Start of Month",
 trunc(d, 'year') "Start of Year"
FROM dates;

In the following example, the input date values are truncated and the TO_CHAR function is
used to obtain the minute component of the truncated date values:

WITH dates AS (
 SELECT date'2015-01-01' d FROM dual union
 SELECT date'2015-01-10' d FROM dual union
 SELECT date'2015-02-01' d FROM dual union
 SELECT timestamp'2015-03-03 23:45:00' d FROM dual union
 SELECT timestamp'2015-04-11 12:34:56' d FROM dual
)
SELECT d "Original Date",
 trunc(d) "Date with Time Removed",
 to_char(trunc(d, 'mi'), 'dd-mon-yyyy hh24:mi') "Nearest Minute",
 trunc(d, 'iw') "Start of Week",
 trunc(d, 'mm') "Start of Month",
 trunc(d, 'year') "Start of Year"
FROM dates;

The following statement alters the date format for the current session:

ALTER SESSION SET nls_date_format = 'dd-mon-yyyy hh24:mi';

In the following example, the data is displayed in the new date format:

WITH dates AS (
 SELECT date'2015-01-01' d FROM dual union
 SELECT date'2015-01-10' d FROM dual union
 SELECT date'2015-02-01' d FROM dual union
 SELECT timestamp'2015-03-03 23:44:32' d FROM dual union
 SELECT timestamp'2015-04-11 12:34:56' d FROM dual

Chapter 7
TRUNC (date)

7-423

)
SELECT d "Original Date",
 trunc(d) "Date, time removed",
 to_char(trunc(d, 'mi'), 'dd-mon-yyyy hh24:mi') "Nearest Minute",
 trunc(d, 'iw') "Start of Week",
 trunc(d, 'mm') "Start of Month",
 trunc(d, 'year') "Start of Year"
FROM dates;

Live SQL:

View and run related examples on Oracle Live SQL at Formatting Dates
Using TRUNC

TRUNC (number)
Syntax

trunc_number::=

TRUNC (n1

, n2

)

Purpose

The TRUNC (number) function returns n1 truncated to n2 decimal places. If n2 is
omitted, then n1 is truncated to 0 places. n2 can be negative to truncate (make zero)
n2 digits left of the decimal point.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. If you omit n2, then the
function returns the same data type as the numeric data type of the argument. If you
include n2, then the function returns NUMBER.

See Also:

Table 2-8 for more information on implicit conversion

Examples

The following examples truncate numbers:

SELECT TRUNC(15.79,1) "Truncate" FROM DUAL;

 Truncate

 15.7

SELECT TRUNC(15.79,-1) "Truncate" FROM DUAL;

Chapter 7
TRUNC (number)

7-424

https://livesql.oracle.com/apex/livesql/docs/sqlrf/trunc/trunc-dates.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/trunc/trunc-dates.html

 Truncate

 10

TZ_OFFSET
Syntax

TZ_OFFSET (

’ time_zone_name ’

’
+

–
hh : mi ’

SESSIONTIMEZONE

DBTIMEZONE

)

Purpose

TZ_OFFSET returns the time zone offset corresponding to the argument based on the date the
statement is executed. You can enter a valid time zone region name, a time zone offset from
UTC (which simply returns itself), or the keyword SESSIONTIMEZONE or DBTIMEZONE. For a
listing of valid values for time_zone_name, query the TZNAME column of the V$TIMEZONE_NAMES
dynamic performance view.

Note:

Time zone region names are needed by the daylight saving feature. These names
are stored in two types of time zone files: one large and one small. One of these
files is the default file, depending on your environment and the release of Oracle
Database you are using. For more information regarding time zone files and names,
see Oracle Database Globalization Support Guide.

See Also:

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of TZ_OFFSET

Examples

The following example returns the time zone offset of the US/Eastern time zone from UTC:

SELECT TZ_OFFSET('US/Eastern') FROM DUAL;

TZ_OFFS

-04:00

Chapter 7
TZ_OFFSET

7-425

UID
Syntax

UID

Purpose

UID returns an integer that uniquely identifies the session user (the user who logged
on).

See Also:

USER to learn how Oracle Database determines the session user

Examples

The following example returns the UID of the session user:

SELECT UID FROM DUAL;

UNISTR
Syntax

UNISTR (string)

Purpose

UNISTR takes as its argument a text literal or an expression that resolves to character
data and returns it in the national character set. The national character set of the
database can be either AL16UTF16 or UTF8. UNISTR provides support for Unicode
string literals by letting you specify the Unicode encoding value of characters in the
string. This is useful, for example, for inserting data into NCHAR columns.

The Unicode encoding value has the form '\xxxx' where 'xxxx' is the hexadecimal value
of a character in UCS-2 encoding format. Supplementary characters are encoded as
two code units, the first from the high-surrogates range (U+D800 to U+DBFF), and the
second from the low-surrogates range (U+DC00 to U+DFFF). To include the backslash
in the string itself, precede it with another backslash (\\).

For portability and data preservation, Oracle recommends that in the UNISTR string
argument you specify only ASCII characters and the Unicode encoding values.

Chapter 7
UID

7-426

See Also:

• Oracle Database Globalization Support Guide for information on Unicode and
national character sets

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of UNISTR

Examples

The following example passes both ASCII characters and Unicode encoding values to the
UNISTR function, which returns the string in the national character set:

SELECT UNISTR('abc\00e5\00f1\00f6') FROM DUAL;

UNISTR

abcåñö

UPPER
Syntax

UPPER (char)

Purpose

UPPER returns char, with all letters uppercase. char can be any of the data types CHAR,
VARCHAR2, NCHAR, NVARCHAR2, CLOB, or NCLOB. The return value is the same data type as char.
The database sets the case of the characters based on the binary mapping defined for the
underlying character set. For linguistic-sensitive uppercase, refer to NLS_UPPER .

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return value of
UPPER

Examples

The following example returns each employee's last name in uppercase:

SELECT UPPER(last_name) "Uppercase"
 FROM employees;

Chapter 7
UPPER

7-427

USER
Syntax

USER

Purpose

USER returns the name of the session user (the user who logged on). This may change
during the duration of a database session as Real Application Security sessions are
attached or detached. For enterprise users, this function returns the schema. For other
users, it returns the database user name. If a Real Application Security session is
currently attached to the database session, then it returns user XS$NULL.

This function returns a VARCHAR2 value.

Oracle Database compares values of this function with blank-padded comparison
semantics.

In a distributed SQL statement, the UID and USER functions together identify the user
on your local database. You cannot use these functions in the condition of a CHECK
constraint.

See Also:

• Oracle Database 2 Day + Security Guide for more information on user
XS$NULL

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of USER

Examples

The following example returns the session user and the user's UID:

SELECT USER, UID FROM DUAL;

USERENV
Syntax

USERENV (’ parameter ’)

Chapter 7
USER

7-428

Purpose

Note:

USERENV is a legacy function that is retained for backward compatibility. Oracle
recommends that you use the SYS_CONTEXT function with the built-in USERENV
namespace for current functionality. See SYS_CONTEXT for more information.

USERENV returns information about the current session. This information can be useful for
writing an application-specific audit trail table or for determining the language-specific
characters currently used by your session. You cannot use USERENV in the condition of a
CHECK constraint. Table 7-12 describes the values for the parameter argument.

All calls to USERENV return VARCHAR2 data except for calls with the SESSIONID, SID, and
ENTRYID parameters, which return NUMBER.

Table 7-12 Parameters of the USERENV Function

Parameter Return Value

CLIENT_IN
FO

CLIENT_INFO returns up to 64 bytes of user session information that can be stored by
an application using the DBMS_APPLICATION_INFO package.

Caution: Some commercial applications may be using this context value. Refer to the
applicable documentation for those applications to determine what restrictions they may
impose on use of this context area.

See Also: Oracle Database Security Guide for more information on application context,
CREATE CONTEXT, and SYS_CONTEXT

ENTRYID The current audit entry number. The audit entryid sequence is shared between fine-
grained audit records and regular audit records. You cannot use this attribute in
distributed SQL statements.

ISDBA ISDBA returns 'TRUE' if the user has been authenticated as having DBA privileges either
through the operating system or through a password file.

LANG LANG returns the ISO abbreviation for the language name, a shorter form than the
existing 'LANGUAGE' parameter.

LANGUAGE LANGUAGE returns the language and territory used by the current session along with the
database character set in this form:

language_territory.characterset

SESSIONID SESSIONID returns the auditing session identifier. You cannot specify this parameter in
distributed SQL statements.

SID SID returns the session ID.

TERMINAL TERMINAL returns the operating system identifier for the terminal of the current session.
In distributed SQL statements, this parameter returns the identifier for your local session.
In a distributed environment, this parameter is supported only for remote SELECT
statements, not for remote INSERT, UPDATE, or DELETE operations.

Chapter 7
USERENV

7-429

See Also:

Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the character return
value of USERENV

Examples

The following example returns the LANGUAGE parameter of the current session:

SELECT USERENV('LANGUAGE') "Language" FROM DUAL;

Language

AMERICAN_AMERICA.WE8ISO8859P1

VALIDATE_CONVERSION
Syntax

VALIDATE_CONVERSION (expr AS type_name

, fmt

, ’ nlsparam ’

)

Purpose

VALIDATE_CONVERSION determines whether expr can be converted to the specified data
type. If expr can be successfully converted, then this function returns 1; otherwise, this
function returns 0. If expr evaluates to null, then this function returns 1. If an error
occurs while evaluating expr, then this function returns the error.

For expr, specify a SQL expression. The acceptable data types for expr, and the
purpose of the optional fmt and nlsparam arguments, depend on the data type you
specify for type_name.

For type_name, specify the data type to which you want to convert expr. You can
specify the following data types:

• BINARY_DOUBLE
If you specify BINARY_DOUBLE, then expr can be any expression that evaluates to a
character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type, or a numeric
value of type NUMBER, BINARY_FLOAT, or BINARY_DOUBLE. The optional fmt and
nlsparam arguments serve the same purpose as for the TO_BINARY_DOUBLE
function. Refer to TO_BINARY_DOUBLE for more information.

• BINARY_FLOAT
If you specify BINARY_FLOAT, then expr can be any expression that evaluates to a
character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type, or a numeric
value of type NUMBER, BINARY_FLOAT, or BINARY_DOUBLE. The optional fmt and
nlsparam arguments serve the same purpose as for the TO_BINARY_FLOAT
function. Refer to TO_BINARY_FLOAT for more information.

Chapter 7
VALIDATE_CONVERSION

7-430

• DATE
If you specify DATE, then expr can be any expression that evaluates to a character string
of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type. The optional fmt and nlsparam
arguments serve the same purpose as for the TO_DATE function. Refer to TO_DATE for
more information.

• INTERVAL DAY TO SECOND
If you specify INTERVAL DAY TO SECOND, then expr can be any expression that evaluates to
a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type, and must contain a
value in either the SQL interval format or the ISO duration format. The optional fmt and
nlsparam arguments do not apply for this data type. Refer to TO_DSINTERVAL for more
information on the SQL interval format and the ISO duration format.

• INTERVAL YEAR TO MONTH
If you specify INTERVAL YEAR TO MONTH, then expr can be any expression that evaluates to
a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type, and must contain a
value in either the SQL interval format or the ISO duration format. The optional fmt and
nlsparam arguments do not apply for this data type. Refer to TO_YMINTERVAL for more
information on the SQL interval format and the ISO duration format.

• NUMBER
If you specify NUMBER, then expr can be any expression that evaluates to a character
string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type, or a numeric value of type
NUMBER, BINARY_FLOAT, or BINARY_DOUBLE. The optional fmt and nlsparam arguments
serve the same purpose as for the TO_NUMBER function. Refer to TO_NUMBER for more
information.

If expr is a value of type NUMBER, then the VALIDATE_CONVERSION function verifies that
expr is a legal numeric value. If expr is not a legal numeric value, then the function
returns 0. This enables you to identify corrupt numeric values in your database.

• TIMESTAMP
If you specify TIMESTAMP, then expr can be any expression that evaluates to a character
string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type. The optional fmt and nlsparam
arguments serve the same purpose as for the TO_TIMESTAMP function. If you omit fmt,
then expr must be in the default format of the TIMESTAMP data type, which is determined
by the NLS_TIMESTAMP_FORMAT initialization parameter. Refer to TO_TIMESTAMP for
more information.

• TIMESTAMP WITH TIME ZONE
If you specify TIMESTAMP WITH TIME ZONE, then expr can be any expression that evaluates
to a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type. The optional fmt
and nlsparam arguments serve the same purpose as for the TO_TIMESTAMP_TZ function. If
you omit fmt, then expr must be in the default format of the TIMESTAMP WITH TIME ZONE
data type, which is determined by the NLS_TIMESTAMP_TZ_FORMAT initialization parameter.
Refer to TO_TIMESTAMP_TZ for more information.

• TIMESTAMP WITH LOCAL TIME ZONE
If you specify TIMESTAMP, then expr can be any expression that evaluates to a character
string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 data type. The optional fmt and nlsparam
arguments serve the same purpose as for the TO_TIMESTAMP function. If you omit fmt,
then expr must be in the default format of the TIMESTAMP data type, which is determined

Chapter 7
VALIDATE_CONVERSION

7-431

by the NLS_TIMESTAMP_FORMAT initialization parameter. Refer to TO_TIMESTAMP
for more information.

Examples

In each of the following statements, the specified value can be successfully converted
to the specified data type. Therefore, each of these statements returns a value of 1.

SELECT VALIDATE_CONVERSION(1000 AS BINARY_DOUBLE)
 FROM DUAL;

SELECT VALIDATE_CONVERSION('1234.56' AS BINARY_FLOAT)
 FROM DUAL;

SELECT VALIDATE_CONVERSION('July 20, 1969, 20:18' AS DATE,
 'Month dd, YYYY, HH24:MI', 'NLS_DATE_LANGUAGE = American')
 FROM DUAL;

SELECT VALIDATE_CONVERSION('200 00:00:00' AS INTERVAL DAY TO SECOND)
 FROM DUAL;

SELECT VALIDATE_CONVERSION('P1Y2M' AS INTERVAL YEAR TO MONTH)
 FROM DUAL;

SELECT VALIDATE_CONVERSION('$100,00' AS NUMBER,
 '$999D99', 'NLS_NUMERIC_CHARACTERS = '',.''')
 FROM DUAL;

SELECT VALIDATE_CONVERSION('29-Jan-02 17:24:00' AS TIMESTAMP,
 'DD-MON-YY HH24:MI:SS')
 FROM DUAL;

SELECT VALIDATE_CONVERSION('1999-12-01 11:00:00 -8:00'
 AS TIMESTAMP WITH TIME ZONE, 'YYYY-MM-DD HH:MI:SS TZH:TZM')
 FROM DUAL;

SELECT VALIDATE_CONVERSION('11-May-16 17:30:00'
 AS TIMESTAMP WITH LOCAL TIME ZONE, 'DD-MON-YY HH24:MI:SS')
 FROM DUAL;

The following statement returns 0, because the specified value cannot be converted to
BINARY_FLOAT:

SELECT VALIDATE_CONVERSION('$29.99' AS BINARY_FLOAT)
 FROM DUAL;

The following statement returns 1, because the specified number format model
enables the value to be converted to BINARY_FLOAT:

SELECT VALIDATE_CONVERSION('$29.99' AS BINARY_FLOAT, '$99D99')
 FROM DUAL;

VALUE
Syntax

VALUE (correlation_variable)

Chapter 7
VALUE

7-432

Purpose

VALUE takes as its argument a correlation variable (table alias) associated with a row of an
object table and returns object instances stored in the object table. The type of the object
instances is the same type as the object table.

Examples

The following example uses the sample table oe.persons, which is created in "Substitutable
Table and Column Examples":

SELECT VALUE(p) FROM persons p;

VALUE(P)(NAME, SSN)

PERSON_T('Bob', 1234)
EMPLOYEE_T('Joe', 32456, 12, 100000)
PART_TIME_EMP_T('Tim', 5678, 13, 1000, 20)

See Also:

"IS OF type Condition " for information on using IS OF type conditions with the
VALUE function

VAR_POP
Syntax

VAR_POP (expr)

OVER (analytic_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

VAR_POP returns the population variance of a set of numbers after discarding the nulls in this
set. You can use it as both an aggregate and analytic function.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type
as the numeric data type of the argument.

Chapter 7
VAR_POP

7-433

See Also:

Table 2-8 for more information on implicit conversion

If the function is applied to an empty set, then it returns null. The function makes the
following calculation:

SUM((expr - (SUM(expr) / COUNT(expr)))2) / COUNT(expr)

See Also:

"About SQL Expressions " for information on valid forms of expr and
"Aggregate Functions "

Aggregate Example

The following example returns the population variance of the salaries in the employees
table:

SELECT VAR_POP(salary) FROM employees;

VAR_POP(SALARY)

 15141964.9

Analytic Example

The following example calculates the cumulative population and sample variances in
the sh.sales table of the monthly sales in 1998:

SELECT t.calendar_month_desc,
 VAR_POP(SUM(s.amount_sold))
 OVER (ORDER BY t.calendar_month_desc) "Var_Pop",
 VAR_SAMP(SUM(s.amount_sold))
 OVER (ORDER BY t.calendar_month_desc) "Var_Samp"
 FROM sales s, times t
 WHERE s.time_id = t.time_id AND t.calendar_year = 1998
 GROUP BY t.calendar_month_desc
 ORDER BY t.calendar_month_desc, "Var_Pop", "Var_Samp";

CALENDAR Var_Pop Var_Samp
-------- ---------- ----------
1998-01 0
1998-02 2269111326 4538222653
1998-03 5.5849E+10 8.3774E+10
1998-04 4.8252E+10 6.4336E+10
1998-05 6.0020E+10 7.5025E+10
1998-06 5.4091E+10 6.4909E+10
1998-07 4.7150E+10 5.5009E+10
1998-08 4.1345E+10 4.7252E+10
1998-09 3.9591E+10 4.4540E+10
1998-10 3.9995E+10 4.4439E+10
1998-11 3.6870E+10 4.0558E+10
1998-12 4.0216E+10 4.3872E+10

Chapter 7
VAR_POP

7-434

VAR_SAMP
Syntax

VAR_SAMP (expr)

OVER (analytic_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

VAR_SAMP returns the sample variance of a set of numbers after discarding the nulls in this
set. You can use it as both an aggregate and analytic function.

This function takes as an argument any numeric data type or any nonnumeric data type that
can be implicitly converted to a numeric data type. The function returns the same data type
as the numeric data type of the argument.

See Also:

Table 2-8 for more information on implicit conversion

If the function is applied to an empty set, then it returns null. The function makes the following
calculation:

(SUM(expr - (SUM(expr) / COUNT(expr)))2) / (COUNT(expr) - 1)

This function is similar to VARIANCE, except that given an input set of one element, VARIANCE
returns 0 and VAR_SAMP returns null.

See Also:

"About SQL Expressions " for information on valid forms of expr and "Aggregate
Functions "

Aggregate Example

The following example returns the sample variance of the salaries in the sample employees
table.

SELECT VAR_SAMP(salary) FROM employees;

VAR_SAMP(SALARY)

Chapter 7
VAR_SAMP

7-435

 15284813.7

Analytic Example

Refer to the analytic example for VAR_POP .

VARIANCE
Syntax

VARIANCE (

DISTINCT

ALL

expr)

OVER (analytic_clause)

See Also:

"Analytic Functions " for information on syntax, semantics, and restrictions

Purpose

VARIANCE returns the variance of expr. You can use it as an aggregate or analytic
function.

Oracle Database calculates the variance of expr as follows:

• 0 if the number of rows in expr = 1

• VAR_SAMP if the number of rows in expr > 1

If you specify DISTINCT, then you can specify only the query_partition_clause of the
analytic_clause. The order_by_clause and windowing_clause are not allowed.

This function takes as an argument any numeric data type or any nonnumeric data
type that can be implicitly converted to a numeric data type. The function returns the
same data type as the numeric data type of the argument.

See Also:

Table 2-8 for more information on implicit conversion, "About SQL
Expressions " for information on valid forms of expr and "Aggregate
Functions "

Aggregate Example

The following example calculates the variance of all salaries in the sample employees
table:

SELECT VARIANCE(salary) "Variance"
 FROM employees;

Chapter 7
VARIANCE

7-436

 Variance

15283140.5

Analytic Example

The following example returns the cumulative variance of salary values in Department 30
ordered by hire date.

SELECT last_name, salary, VARIANCE(salary)
 OVER (ORDER BY hire_date) "Variance"
 FROM employees
 WHERE department_id = 30
 ORDER BY last_name, salary, "Variance";

LAST_NAME SALARY Variance
------------------------- ---------- ----------
Baida 2900 16283333.3
Colmenares 2500 11307000
Himuro 2600 13317000
Khoo 3100 31205000
Raphaely 11000 0
Tobias 2800 21623333.3

VSIZE
Syntax

VSIZE (expr)

Purpose

VSIZE returns the number of bytes in the internal representation of expr. If expr is null, then
this function returns null.

This function does not support CLOB data directly. However, CLOBs can be passed in as
arguments through implicit data conversion.

See Also:

"Data Type Comparison Rules " for more information

Examples

The following example returns the number of bytes in the last_name column of the
employees in department 10:

SELECT last_name, VSIZE (last_name) "BYTES"
 FROM employees
 WHERE department_id = 10
 ORDER BY employee_id;

LAST_NAME BYTES

Chapter 7
VSIZE

7-437

--------------- ----------
Whalen 6

WIDTH_BUCKET
Syntax

WIDTH_BUCKET (expr , min_value , max_value , num_buckets)

Purpose

WIDTH_BUCKET lets you construct equiwidth histograms, in which the histogram range is
divided into intervals that have identical size. (Compare this function with NTILE, which
creates equiheight histograms.) Ideally each bucket is a closed-open interval of the
real number line. For example, a bucket can be assigned to scores between 10.00 and
19.999 ... to indicate that 10 is included in the interval and 20 is excluded. This is
sometimes denoted [10, 20).

For a given expression, WIDTH_BUCKET returns the bucket number into which the value
of this expression would fall after being evaluated.

• expr is the expression for which the histogram is being created. This expression
must evaluate to a numeric or datetime value or to a value that can be implicitly
converted to a numeric or datetime value. If expr evaluates to null, then the
expression returns null.

• min_value and max_value are expressions that resolve to the end points of the
acceptable range for expr. Both of these expressions must also evaluate to
numeric or datetime values, and neither can evaluate to null.

• num_buckets is an expression that resolves to a constant indicating the number of
buckets. This expression must evaluate to a positive integer.

See Also:

Table 2-8 for more information on implicit conversion

When needed, Oracle Database creates an underflow bucket numbered 0 and an
overflow bucket numbered num_buckets+1. These buckets handle values less than
min_value and more than max_value and are helpful in checking the reasonableness
of endpoints.

Examples

The following example creates a ten-bucket histogram on the credit_limit column
for customers in Switzerland in the sample table oe.customers and returns the bucket
number ("Credit Group") for each customer. Customers with credit limits greater than
or equal to the maximum value are assigned to the overflow bucket, 11:

SELECT customer_id, cust_last_name, credit_limit,
 WIDTH_BUCKET(credit_limit, 100, 5000, 10) "Credit Group"
 FROM customers WHERE nls_territory = 'SWITZERLAND'
 ORDER BY "Credit Group", customer_id, cust_last_name, credit_limit;

Chapter 7
WIDTH_BUCKET

7-438

CUSTOMER_ID CUST_LAST_NAME CREDIT_LIMIT Credit Group
----------- -------------------- ------------ ------------
 825 Dreyfuss 500 1
 826 Barkin 500 1
 827 Siegel 500 1
 853 Palin 400 1
 843 Oates 700 2
 844 Julius 700 2
 835 Eastwood 1200 3
 836 Berenger 1200 3
 837 Stanton 1200 3
 840 Elliott 1400 3
 841 Boyer 1400 3
 842 Stern 1400 3
 848 Olmos 1800 4
 849 Kaurusmdki 1800 4
 828 Minnelli 2300 5
 829 Hunter 2300 5
 850 Finney 2300 5
 851 Brown 2300 5
 852 Tanner 2300 5
 830 Dutt 3500 7
 831 Bel Geddes 3500 7
 832 Spacek 3500 7
 833 Moranis 3500 7
 834 Idle 3500 7
 838 Nicholson 3500 7
 839 Johnson 3500 7
 845 Fawcett 5000 11
 846 Brando 5000 11
 847 Streep 5000 11

XMLAGG
Syntax

XMLAGG (XMLType_instance

order_by_clause

)

Purpose

XMLAgg is an aggregate function. It takes a collection of XML fragments and returns an
aggregated XML document. Any arguments that return null are dropped from the result.

XMLAgg is similar to SYS_XMLAgg except that XMLAgg returns a collection of nodes but it does
not accept formatting using the XMLFormat object. Also, XMLAgg does not enclose the output in
an element tag as does SYS_XMLAgg.

Within the order_by_clause, Oracle Database does not interpret number literals as column
positions, as it does in other uses of this clause, but simply as number literals.

Chapter 7
XMLAGG

7-439

See Also:

XMLELEMENT and SYS_XMLAGG

Examples

The following example produces a Department element containing Employee elements
with employee job ID and last name as the contents of the elements:

SELECT XMLELEMENT("Department",
 XMLAGG(XMLELEMENT("Employee",
 e.job_id||' '||e.last_name)
 ORDER BY last_name))
 as "Dept_list"
 FROM employees e
 WHERE e.department_id = 30;

Dept_list

<Department>
 <Employee>PU_CLERK Baida</Employee>
 <Employee>PU_CLERK Colmenares</Employee>
 <Employee>PU_CLERK Himuro</Employee>
 <Employee>PU_CLERK Khoo</Employee>
 <Employee>PU_MAN Raphaely</Employee>
 <Employee>PU_CLERK Tobias</Employee>
</Department>

The result is a single row, because XMLAgg aggregates the rows. You can use the
GROUP BY clause to group the returned set of rows into multiple groups:

SELECT XMLELEMENT("Department",
 XMLAGG(XMLELEMENT("Employee", e.job_id||' '||e.last_name)))
 AS "Dept_list"
 FROM employees e
 GROUP BY e.department_id;

Dept_list

<Department>
 <Employee>AD_ASST Whalen</Employee>
</Department>

<Department>
 <Employee>MK_MAN Hartstein</Employee>
 <Employee>MK_REP Fay</Employee>
</Department>

<Department>
 <Employee>PU_MAN Raphaely</Employee>
 <Employee>PU_CLERK Khoo</Employee>
 <Employee>PU_CLERK Tobias</Employee>
 <Employee>PU_CLERK Baida</Employee>
 <Employee>PU_CLERK Colmenares</Employee>
 <Employee>PU_CLERK Himuro</Employee>
</Department>
. . .

Chapter 7
XMLAGG

7-440

XMLCAST
Syntax

XMLCAST (value_expression AS datatype)

Purpose

XMLCast casts value_expression to the scalar SQL data type specified by datatype. The
value_expression argument is a SQL expression that is evaluated. The datatype argument
can be of data type NUMBER, VARCHAR2, CHAR, CLOB, BLOB, REF XMLTYPE, and any of the
datetime data types.

See Also:

• Oracle XML DB Developer's Guide for more information on uses for this
function and examples

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to the return value of
XMLCAST when it is a character value

XMLCDATA
Syntax

XMLCDATA (value_expr)

Purpose

XMLCData generates a CDATA section by evaluating value_expr. The value_expr must
resolve to a string. The value returned by the function takes the following form:

<![CDATA[string]]>

If the resulting value is not a valid XML CDATA section, then the function returns an error.The
following conditions apply to XMLCData:

• The value_expr cannot contain the substring]]>.

• If value_expr evaluates to null, then the function returns null.

See Also:

Oracle XML DB Developer's Guide for more information on this function

Chapter 7
XMLCAST

7-441

Examples

The following statement uses the DUAL table to illustrate the syntax of XMLCData:

SELECT XMLELEMENT("PurchaseOrder",
 XMLAttributes(dummy as "pono"),
 XMLCdata('<!DOCTYPE po_dom_group [
 <!ELEMENT po_dom_group(student_name)*>
 <!ELEMENT po_purch_name (#PCDATA)>
 <!ATTLIST po_name po_no ID #REQUIRED>
 <!ATTLIST po_name trust_1 IDREF #IMPLIED>
 <!ATTLIST po_name trust_2 IDREF #IMPLIED>
]>')) "XMLCData" FROM DUAL;

XMLCData
--
<PurchaseOrder pono="X"><![CDATA[
<!DOCTYPE po_dom_group [
 <!ELEMENT po_dom_group(student_name)*>
 <!ELEMENT po_purch_name (#PCDATA)>
 <!ATTLIST po_name po_no ID #REQUIRED>
 <!ATTLIST po_name trust_1 IDREF #IMPLIED>
 <!ATTLIST po_name trust_2 IDREF #IMPLIED>
]>
]]>
</PurchaseOrder>

XMLCOLATTVAL
Syntax

XMLCOLATTVAL (value_expr

AS
c_alias

EVALNAME value_expr

,

)

Purpose

XMLColAttVal creates an XML fragment and then expands the resulting XML so that
each XML fragment has the name column with the attribute name.

You can use the AS clause to change the value of the name attribute to something other
than the column name. You can do this by specifying c_alias, which is a string literal,
or by specifying EVALNAME value_expr. In the latter case, the value expression is
evaluated and the result, which must be a string literal, is used as the alias. The alias
can be up to 4000 characters if the initialization parameter MAX_STRING_SIZE =
STANDARD, and 32767 characters if MAX_STRING_SIZE = EXTENDED. See "Extended Data
Types" for more information.

You must specify a value for value_expr. If value_expr is null, then no element is
returned.

Chapter 7
XMLCOLATTVAL

7-442

Restriction on XMLColAttVal

You cannot specify an object type column for value_expr.

Examples

The following example creates an Emp element for a subset of employees, with nested
employee_id, last_name, and salary elements as the contents of Emp. Each nested element
is named column and has a name attribute with the column name as the attribute value:

SELECT XMLELEMENT("Emp",
 XMLCOLATTVAL(e.employee_id, e.last_name, e.salary)) "Emp Element"
 FROM employees e
 WHERE employee_id = 204;

Emp Element
--
<Emp>
 <column name="EMPLOYEE_ID">204</column>
 <column name="LAST_NAME">Baer</column>
 <column name="SALARY">10000</column>
</Emp>

Refer to the example for XMLFOREST to compare the output of these two functions.

XMLCOMMENT
Syntax

XMLCOMMENT (value_expr)

Purpose

XMLComment generates an XML comment using an evaluated result of value_expr. The
value_expr must resolve to a string. It cannot contain two consecutive dashes (hyphens).
The value returned by the function takes the following form:

<!--string-->

If value_expr resolves to null, then the function returns null.

See Also:

Oracle XML DB Developer's Guide for more information on this function

Examples

The following example uses the DUAL table to illustrate the XMLComment syntax:

SELECT XMLCOMMENT('OrderAnalysisComp imported, reconfigured, disassembled')
 AS "XMLCOMMENT" FROM DUAL;

Chapter 7
XMLCOMMENT

7-443

XMLCOMMENT
--
<!--OrderAnalysisComp imported, reconfigured, disassembled-->

XMLCONCAT
Syntax

XMLCONCAT (XMLType_instance

,

)

Purpose

XMLConcat takes as input a series of XMLType instances, concatenates the series of
elements for each row, and returns the concatenated series. XMLConcat is the inverse
of XMLSequence.

Null expressions are dropped from the result. If all the value expressions are null, then
the function returns null.

See Also:

XMLSEQUENCE

Examples

The following example creates XML elements for the first and last names of a subset
of employees, and then concatenates and returns those elements:

SELECT XMLCONCAT(XMLELEMENT("First", e.first_name),
 XMLELEMENT("Last", e.last_name)) AS "Result"
 FROM employees e
 WHERE e.employee_id > 202;

Result
--
<First>Susan</First>
<Last>Mavris</Last>

<First>Hermann</First>
<Last>Baer</Last>

<First>Shelley</First>
<Last>Higgins</Last>

<First>William</First>
<Last>Gietz</Last>

4 rows selected.

Chapter 7
XMLCONCAT

7-444

XMLDIFF
Syntax

XMLDiff

(XMLType_document , XMLType_document

, integer , string

)

Purpose

The XMLDiff function is the SQL interface for the XmlDiff C API. This function compares two
XML documents and captures the differences in XML conforming to an Xdiff schema. The diff
document is returned as an XMLType document.

• For the first two arguments, specify the names of two XMLType documents.

• For the integer, specify a number representing the hashLevel for a C function XmlDiff. If
you do not want hashing, set this argument to 0 or omit it entirely. If you do not want
hashing, but you want to specify flags, then you must set this argument to 0.

• For string, specify the flags that control the behavior of the function. These flags are
specified by one or more names separated by semicolon. The names are the same as
the names of constants for XmlDiff function.

See Also:

Oracle XML Developer's Kit Programmer's Guide for more information on using this
function, including examples, and Oracle Database XML C API Reference for
information on the XML APIs for C

Examples

The following example compares two XML documents and returns the difference as an
XMLType document:

SELECT XMLDIFF(
XMLTYPE('<?xml version="1.0"?>
<bk:book xmlns:bk="http://example.com">
 <bk:tr>
 <bk:td>
 <bk:chapter>
 Chapter 1.
 </bk:chapter>
 </bk:td>
 <bk:td>
 <bk:chapter>
 Chapter 2.
 </bk:chapter>
 </bk:td>
 </bk:tr>
</bk:book>'),

Chapter 7
XMLDIFF

7-445

XMLTYPE('<?xml version="1.0"?>
<bk:book xmlns:bk="http://example.com">
 <bk:tr>
 <bk:td>
 <bk:chapter>
 Chapter 1.
 </bk:chapter>
 </bk:td>
 <bk:td/>
 </bk:tr>
</bk:book>')
)
FROM DUAL;

XMLELEMENT
Syntax

XMLELEMENT (

ENTITYESCAPING

NOENTITYESCAPING
NAME

identifier

EVALNAME value_expr

, XML_attributes_clause , value_expr

AS

c_alias

)

XML_attributes_clause::=

XMLATTRIBUTES

(

ENTITYESCAPING

NOENTITYESCAPING

SCHEMACHECK

NOSCHEMACHECK

value_expr

AS

c_alias

AS EVALNAME value_expr

,

)

Purpose

XMLElement takes an element name for identifier or evaluates an element name for
EVALNAME value_expr, an optional collection of attributes for the element, and
arguments that make up the content of the element. It returns an instance of type

Chapter 7
XMLELEMENT

7-446

XMLType. XMLElement is similar to SYS_XMLGen except that XMLElement can include attributes
in the XML returned, but it does not accept formatting using the XMLFormat object.

The XMLElement function is typically nested to produce an XML document with a nested
structure, as in the example in the following section.

For an explanation of the ENTITYESCAPING and NONENTITYESCAPING keywords, refer to Oracle
XML DB Developer's Guide.

You must specify a value for Oracle Database to use an the enclosing tag. You can do this by
specifying identifier, which is a string literal, or by specifying EVALNAME value_expr. In the
latter case, the value expression is evaluated and the result, which must be a string literal, is
used as the identifier. The identifier does not have to be a column name or column reference.
It cannot be an expression or null. It can be up to 4000 characters if the initialization
parameter MAX_STRING_SIZE = STANDARD, and 32767 characters if MAX_STRING_SIZE =
EXTENDED.

The objects that make up the element content follow the XMLATTRIBUTES keyword. In the
XML_attributes_clause, if the value_expr is null, then no attribute is created for that value
expression. The type of value_expr cannot be an object type or collection. If you specify an
alias for value_expr using the AS clause, then the c_alias or the evaluated value expression
(EVALNAME value_expr) can be up to 4000 characters if the initialization parameter
MAX_STRING_SIZE = STANDARD, and 32767 characters if MAX_STRING_SIZE = EXTENDED.

See Also:

"Extended Data Types" for more information on MAX_STRING_SIZE

For the optional value_expr that follows the XML_attributes_clause in the diagram:

• If value_expr is a scalar expression, then you can omit the AS clause, and Oracle uses
the column name as the element name.

• If value_expr is an object type or collection, then the AS clause is mandatory, and Oracle
uses the specified c_alias as the enclosing tag.

• If value_expr is null, then no element is created for that value expression.

See Also:

SYS_XMLGEN

Examples

The following example produces an Emp element for a series of employees, with nested
elements that provide the employee's name and hire date:

SELECT XMLELEMENT("Emp", XMLELEMENT("Name",
 e.job_id||' '||e.last_name),
 XMLELEMENT("Hiredate", e.hire_date)) as "Result"
 FROM employees e WHERE employee_id > 200;

Result

Chapter 7
XMLELEMENT

7-447

<Emp>
 <Name>MK_MAN Hartstein</Name>
 <Hiredate>2004-02-17</Hiredate>
</Emp>

<Emp>
 <Name>MK_REP Fay</Name>
 <Hiredate>2005-08-17</Hiredate>
</Emp>

<Emp>
 <Name>HR_REP Mavris</Name>
 <Hiredate>2002-06-07</Hiredate>
</Emp>

<Emp>
 <Name>PR_REP Baer</Name>
 <Hiredate>2002-06-07</Hiredate>
</Emp>

<Emp>
 <Name>AC_MGR Higgins</Name>
 <Hiredate>2002-06-07</Hiredate>
</Emp>

<Emp>
 <Name>AC_ACCOUNT Gietz</Name>
 <Hiredate>2002-06-07</Hiredate>
</Emp>

6 rows selected.

The following similar example uses the XMLElement function with the
XML_attributes_clause to create nested XML elements with attribute values for the
top-level element:

SELECT XMLELEMENT("Emp",
 XMLATTRIBUTES(e.employee_id AS "ID", e.last_name),
 XMLELEMENT("Dept", e.department_id),
 XMLELEMENT("Salary", e.salary)) AS "Emp Element"
 FROM employees e
 WHERE e.employee_id = 206;

Emp Element

<Emp ID="206" LAST_NAME="Gietz">
 <Dept>110</Dept>
 <Salary>8300</Salary>
</Emp>

Notice that the AS identifier clause was not specified for the last_name column. As
a result, the XML returned uses the column name last_name as the default.

Finally, the next example uses a subquery within the XML_attributes_clause to
retrieve information from another table into the attributes of an element:

SELECT XMLELEMENT("Emp", XMLATTRIBUTES(e.employee_id, e.last_name),
 XMLELEMENT("Dept", XMLATTRIBUTES(e.department_id,
 (SELECT d.department_name FROM departments d
 WHERE d.department_id = e.department_id) as "Dept_name")),

Chapter 7
XMLELEMENT

7-448

 XMLELEMENT("salary", e.salary),
 XMLELEMENT("Hiredate", e.hire_date)) AS "Emp Element"
 FROM employees e
 WHERE employee_id = 205;

Emp Element

<Emp EMPLOYEE_ID="205" LAST_NAME="Higgins">
 <Dept DEPARTMENT_ID="110" Dept_name="Accounting"/>
 <salary>12008</salary>
 <Hiredate>2002-06-07</Hiredate>
</Emp>

XMLEXISTS
Syntax

XMLEXISTS (XQuery_string

XML_passing_clause

)

XML_passing_clause::=

PASSING

BY VALUE

expr

AS identifier

,

Purpose

XMLExists checks whether a given XQuery expression returns a nonempty XQuery
sequence. If so, the function returns TRUE; otherwise, it returns FALSE. The argument
XQuery_string is a literal string, but it can contain XQuery variables that you bind using the
XML_passing_clause.

The expr in the XML_passing_clause is an expression returning an XMLType or an instance of
a SQL scalar data type that is used as the context for evaluating the XQuery expression. You
can specify only one expr in the PASSING clause without an identifier. The result of evaluating
each expr is bound to the corresponding identifier in the XQuery_string. If any expr that is
not followed by an AS clause, then the result of evaluating that expression is used as the
context item for evaluating the XQuery_string. If expr is a relational column, then its declared
collation is ignored by Oracle XML DB.

See Also:

Oracle XML DB Developer's Guide for more information on uses for this function
and examples

Chapter 7
XMLEXISTS

7-449

XMLFOREST
Syntax

XMLFOREST (value_expr

AS
c_alias

EVALNAME value_expr

,

)

Purpose

XMLForest converts each of its argument parameters to XML, and then returns an XML
fragment that is the concatenation of these converted arguments.

• If value_expr is a scalar expression, then you can omit the AS clause, and Oracle
Database uses the column name as the element name.

• If value_expr is an object type or collection, then the AS clause is mandatory, and
Oracle uses the specified expression as the enclosing tag.

You can do this by specifying c_alias, which is a string literal, or by specifying
EVALNAME value_expr. In the latter case, the value expression is evaluated and the
result, which must be a string literal, is used as the identifier. The identifier does
not have to be a column name or column reference. It cannot be an expression or
null. It can be up to 4000 characters if the initialization parameter
MAX_STRING_SIZE = STANDARD, and 32767 characters if MAX_STRING_SIZE =
EXTENDED. See "Extended Data Types" for more information.

• If value_expr is null, then no element is created for that value_expr.

Examples

The following example creates an Emp element for a subset of employees, with nested
employee_id, last_name, and salary elements as the contents of Emp:

SELECT XMLELEMENT("Emp",
 XMLFOREST(e.employee_id, e.last_name, e.salary))
 "Emp Element"
 FROM employees e WHERE employee_id = 204;

Emp Element
--
<Emp>
 <EMPLOYEE_ID>204</EMPLOYEE_ID>
 <LAST_NAME>Baer</LAST_NAME>
 <SALARY>10000</SALARY>
</Emp>

Refer to the example for XMLCOLATTVAL to compare the output of these two
functions.

Chapter 7
XMLFOREST

7-450

XMLISVALID
Syntax

XMLISVALID (XMLType_instance

, XMLSchema_URL

, element

)

Purpose

XMLISVALID checks whether the input XMLType_instance conforms to the relevant XML
schema. It does not change the validation status recorded for XMLType_instance.

If the input XML document is determined to be valid, then XMLISVALID returns 1; otherwise, it
returns 0. If you provide XMLSchema_URL as an argument, then that is used to check
conformance. Otherwise, the XML schema specified by the XML document is used to check
conformance.

• XMLType_instance is the XMLType instance to be validated.

• XMLSchema_URL is the URL of the XML schema against which to check conformance.

• element is the element of the specified schema against which to check conformance.
Use this if you have an XML schema that defines more than one top level element, and
you want to check conformance against a specific one of those elements.

See Also:

Oracle XML DB Developer's Guide for information on the use of this function,
including examples

XMLPARSE
Syntax

XMLPARSE (
DOCUMENT

CONTENT
value_expr

WELLFORMED

)

Purpose

XMLParse parses and generates an XML instance from the evaluated result of value_expr.
The value_expr must resolve to a string. If value_expr resolves to null, then the function
returns null.

• If you specify DOCUMENT, then value_expr must resolve to a singly rooted XML document.

Chapter 7
XMLISVALID

7-451

• If you specify CONTENT, then value_expr must resolve to a valid XML value.

• When you specify WELLFORMED, you are guaranteeing that value_expr resolves to
a well-formed XML document, so the database does not perform validity checks to
ensure that the input is well formed.

See Also:

Oracle XML DB Developer's Guide for more information on this function

Examples

The following example uses the DUAL table to illustrate the syntax of XMLParse:

SELECT XMLPARSE(CONTENT '124 <purchaseOrder poNo="12435">
 <customerName> Acme Enterprises</customerName>
 <itemNo>32987457</itemNo>
 </purchaseOrder>'
WELLFORMED) AS PO FROM DUAL;

PO

124 <purchaseOrder poNo="12435">
 <customerName> Acme Enterprises</customerName>
 <itemNo>32987457</itemNo>
 </purchaseOrder>

XMLPATCH
Syntax

XMLPatch (XMLType_document , XMLType_document)

Purpose

The XMLPatch function is the SQL interface for the XmlPatch C API. This function
patches an XML document with the changes specified. A patched XMLType document
is returned.

• For the first argument, specify the name of the input XMLType document.

• For the second argument, specify the XMLType document containing the changes
to be applied to the first document. The changes should conform to the Xdiff XML
schema. You can supply the XML output from the Oracle XML Developer's Kit
Java method diff().

Chapter 7
XMLPATCH

7-452

See Also:

Oracle XML Developer's Kit Programmer's Guide for more information on using this
function, including examples, and Oracle Database XML C API Reference for
information on the XML APIs for C

Examples

The following example patches an XMLType document with the changes specified in another
XMLType and returns a patched XMLType document:

SELECT XMLPATCH(
XMLTYPE('<?xml version="1.0"?>
<bk:book xmlns:bk="http://example.com">
 <bk:tr>
 <bk:td>
 <bk:chapter>
 Chapter 1.
 </bk:chapter>
 </bk:td>
 <bk:td>
 <bk:chapter>
 Chapter 2.
 </bk:chapter>
 </bk:td>
 </bk:tr>
</bk:book>'),
XMLTYPE('<?xml version="1.0"?>
<xd:xdiff xsi:schemaLocation="http://xmlns.oracle.com/xdb/xdiff.xsd
 http://xmlns.oracle.com/xdb/xdiff.xsd"
 xmlns:xd="http://xmlns.oracle.com/xdb/xdiff.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:bk="http://example.com">
 <?oracle-xmldiff operations-in-docorder="true" output-model="snapshot"
 diff-algorithm="global"?>
 <xd:delete-node xd:node-type="element"
 xd:xpath="/bk:book[1]/bk:tr[1]/bk:td[2]/bk:chapter[1]"/>
</xd:xdiff>')
)
FROM DUAL;

XMLPI
Syntax

XMLPI (

NAME

identifier

EVALNAME value_expr

, value_expr

)

Purpose

XMLPI generates an XML processing instruction using identifier and optionally the
evaluated result of value_expr. A processing instruction is commonly used to provide to an

Chapter 7
XMLPI

7-453

application information that is associated with all or part of an XML document. The
application uses the processing instruction to determine how best to process the XML
document.

You must specify a value for Oracle Database to use an the enclosing tag. You can do
this by specifying identifier, which is a string literal, or by specifying EVALNAME
value_expr. In the latter case, the value expression is evaluated and the result, which
must be a string literal, is used as the identifier. The identifier does not have to be a
column name or column reference. It cannot be an expression or null. It can be up to
4000 characters if the initialization parameter MAX_STRING_SIZE = STANDARD, and
32767 characters if MAX_STRING_SIZE = EXTENDED. See "Extended Data Types" for
more information.

The optional value_expr must resolve to a string. If you omit the optional value_expr,
then a zero-length string is the default. The value returned by the function takes this
form:

<?identifier string?>

XMLPI is subject to the following restrictions:

• The identifier must be a valid target for a processing instruction.

• You cannot specify xml in any case combination for identifier.

• The identifier cannot contain the consecutive characters ?>.

See Also:

Oracle XML DB Developer's Guide for more information on this function

Examples

The following statement uses the DUAL table to illustrate the use of the XMLPI syntax:

SELECT XMLPI(NAME "Order analysisComp", 'imported, reconfigured, disassembled')
 AS "XMLPI" FROM DUAL;

XMLPI
--
<?Order analysisComp imported, reconfigured, disassembled?>

XMLQUERY
Syntax

XMLQUERY

(XQuery_string

XML_passing_clause

RETURNING CONTENT

NULL ON EMPTY

)

Chapter 7
XMLQUERY

7-454

XML_passing_clause::=

PASSING

BY VALUE

expr

AS identifier

,

Purpose

XMLQUERY lets you query XML data in SQL statements. It takes an XQuery expression as a
string literal, an optional context item, and other bind variables and returns the result of
evaluating the XQuery expression using these input values.

• XQuery_string is a complete XQuery expression, including prolog.

• The expr in the XML_passing_clause is an expression returning an XMLType or an
instance of a SQL scalar data type that is used as the context for evaluating the XQuery
expression. You can specify only one expr in the PASSING clause without an identifier.
The result of evaluating each expr is bound to the corresponding identifier in the
XQuery_string. If any expr that is not followed by an AS clause, then the result of
evaluating that expression is used as the context item for evaluating the XQuery_string.
If expr is a relational column, then its declared collation is ignored by Oracle XML DB.

• RETURNING CONTENT indicates that the result from the XQuery evaluation is either an XML
1.0 document or a document fragment conforming to the XML 1.0 semantics.

• If the result set is empty, then the function returns the SQL NULL value. The NULL ON EMPTY
keywords are implemented by default and are shown for semantic clarity.

See Also:

Oracle XML DB Developer's Guide for more information on this function

Examples

The following statement specifies the warehouse_spec column of the oe.warehouses table in
the XML_passing_clause as a context item. The statement returns specific information about
the warehouses with area greater than 50K.

SELECT warehouse_name,
EXTRACTVALUE(warehouse_spec, '/Warehouse/Area'),
XMLQuery(
 'for $i in /Warehouse
 where $i/Area > 50000
 return <Details>
 <Docks num="{$i/Docks}"/>
 <Rail>
 {
 if ($i/RailAccess = "Y") then "true" else "false"
 }
 </Rail>
 </Details>' PASSING warehouse_spec RETURNING CONTENT) "Big_warehouses"
 FROM warehouses;

Chapter 7
XMLQUERY

7-455

WAREHOUSE_ID Area Big_warehouses
------------ --------- --
 1 25000
 2 50000
 3 85700 <Details><Docks></Docks><Rail>false</Rail></Details>
 4 103000 <Details><Docks num="3"></Docks><Rail>true</Rail></Details>
 . . .

XMLSEQUENCE

Note:

The XMLSEQUENCE function is deprecated. It is still supported for backward
compatibility. However, Oracle recommends that you use the XMLTABLE
function instead. See XMLTABLE for more information.

Syntax

XMLSEQUENCE (

XMLType_instance

sys_refcursor_instance

, fmt)

Purpose

XMLSequence has two forms:

• The first form takes as input an XMLType instance and returns a varray of the top-
level nodes in the XMLType. This form is effectively superseded by the SQL/XML
standard function XMLTable, which provides for more readable SQL code. Prior to
Oracle Database 10g Release 2, XMLSequence was used with SQL function TABLE
to do some of what can now be done better with the XMLTable function.

• The second form takes as input a REFCURSOR instance, with an optional instance of
the XMLFormat object, and returns as an XMLSequence type an XML document for
each row of the cursor.

Because XMLSequence returns a collection of XMLType, you can use this function in a
TABLE clause to unnest the collection values into multiple rows, which can in turn be
further processed in the SQL query.

See Also:

Oracle XML DB Developer's Guide for more information on this function, and
XMLTABLE

Examples

The following example shows how XMLSequence divides up an XML document with
multiple elements into VARRAY single-element documents. In this example, the TABLE

Chapter 7
XMLSEQUENCE

7-456

keyword instructs Oracle Database to consider the collection a table value that can be used
in the FROM clause of the subquery:

SELECT EXTRACT(warehouse_spec, '/Warehouse') as "Warehouse"
 FROM warehouses WHERE warehouse_name = 'San Francisco';

Warehouse
--
<Warehouse>
 <Building>Rented</Building>
 <Area>50000</Area>
 <Docks>1</Docks>
 <DockType>Side load</DockType>
 <WaterAccess>Y</WaterAccess>
 <RailAccess>N</RailAccess>
 <Parking>Lot</Parking>
 <VClearance>12 ft</VClearance>
</Warehouse>

1 row selected.

SELECT VALUE(p)
 FROM warehouses w,
 TABLE(XMLSEQUENCE(EXTRACT(warehouse_spec, '/Warehouse/*'))) p
 WHERE w.warehouse_name = 'San Francisco';

VALUE(P)
--
<Building>Rented</Building>
<Area>50000</Area>
<Docks>1</Docks>
<DockType>Side load</DockType>
<WaterAccess>Y</WaterAccess>
<RailAccess>N</RailAccess>
<Parking>Lot</Parking>
<VClearance>12 ft</VClearance>

8 rows selected.

XMLSERIALIZE
Syntax

XMLSERIALIZE (
DOCUMENT

CONTENT
value_expr

AS datatype

ENCODING xml_encoding_spec VERSION string_literal

NO INDENT

INDENT

SIZE = number
HIDE

SHOW
DEFAULTS

)

Chapter 7
XMLSERIALIZE

7-457

Purpose

XMLSerialize creates a string or LOB containing the contents of value_expr.

Any lob returned by XMLSERIALIZE will be read-only.

• If you specify DOCUMENT, then the value_expr must be a valid XML document.

• If you specify CONTENT, then the value_expr need not be a singly rooted XML
document. However it must be valid XML content.

• The datatype specified can be a string type (VARCHAR2 or VARCHAR, but not
NVARCHAR2), BLOB, or CLOB. The default is CLOB.

• If datatype is BLOB, then you can specify the ENCODING clause to use the specified
encoding in the prolog. The xml_encoding_spec is an XML encoding declaration
(encoding="...").

• Specify the VERSION clause to use the version you provide as string_literal in
the XML declaration (<?xml version="..." ...?>).

• Specify NO INDENT to strip all insignificant whitespace from the output. Specify
INDENT SIZE = N, where N is a whole number, for output that is pretty-printed
using a relative indentation of N spaces. If N is 0, then pretty-printing inserts a
newline character after each element, placing each element on a line by itself, but
omitting all other insignificant whitespace in the output. If INDENT is present without
a SIZE specification, then 2-space indenting is used. If you omit this clause, then
the behavior (pretty-printing or not) is indeterminate.

• HIDE DEFAULTS and SHOW DEFAULTS apply only to XML schema-based data. If you
specify SHOW DEFAULTS and the input data is missing any optional elements or
attributes for which the XML schema defines default values, then those elements
or attributes are included in the output with their default values. If you specify HIDE
DEFAULTS, then no such elements or attributes are included in the output. HIDE
DEFAULTS is the default behavior.

See Also:

• Oracle XML DB Developer's Guide for more information on this function

• Appendix C in Oracle Database Globalization Support Guide for the
collation derivation rules, which define the collation assigned to the
character return value of XMLSERIALIZE

Examples

The following statement uses the DUAL table to illustrate the syntax of XMLSerialize:

SELECT XMLSERIALIZE(CONTENT XMLTYPE('<Owner>Grandco</Owner>')) AS
xmlserialize_doc
 FROM DUAL;

XMLSERIALIZE_DOC

<Owner>Grandco</Owner>

Chapter 7
XMLSERIALIZE

7-458

XMLTABLE
Syntax

XMLTABLE (

XMLnamespaces_clause ,

XQuery_string XMLTABLE_options)

XMLnamespaces_clause::=

XMLNAMESPACES (
string AS identifier

DEFAULT string

,

)

Note:

You can specify at most one DEFAULT string clause.

XMLTABLE_options::=

XML_passing_clause RETURNING SEQUENCE BY REF COLUMNS XML_table_column

,

XML_passing_clause::=

PASSING

BY VALUE

expr

AS identifier

,

XML_table_column::=

column

FOR ORDINALITY

datatype

XMLTYPE

(SEQUENCE) BY REF

PATH string DEFAULT expr

Chapter 7
XMLTABLE

7-459

Purpose

XMLTable maps the result of an XQuery evaluation into relational rows and columns.
You can query the result returned by the function as a virtual relational table using
SQL.

• The XMLNAMESPACES clause contains a set of XML namespace declarations. These
declarations are referenced by the XQuery expression (the evaluated
XQuery_string), which computes the row, and by the XPath expression in the
PATH clause of XML_table_column, which computes the columns for the entire
XMLTable function. If you want to use qualified names in the PATH expressions of
the COLUMNS clause, then you need to specify the XMLNAMESPACES clause.

• XQuery_string is a literal string. It is a complete XQuery expression and can
include prolog declarations. The value of XQuery_string serves as input to the
XMLTable function; it is this XQuery result that is decomposed and stored as
relational data.

• The expr in the XML_passing_clause is an expression returning an XMLType or an
instance of a SQL scalar data type that is used as the context for evaluating the
XQuery expression. You can specify only one expr in the PASSING clause without
an identifier. The result of evaluating each expr is bound to the corresponding
identifier in the XQuery_string. If any expr that is not followed by an AS clause,
then the result of evaluating that expression is used as the context item for
evaluating the XQuery_string. This clause supports only passing by value, not
passing by reference. Therefore, the BY VALUE keywords are optional and are
provided for semantic clarity.

• The optional RETURNING SEQUENCE BY REF clause causes the result of the XQuery
evaluation to be returned by reference. This allows you to refer to any part of the
source data in the XML_table_column clause.

If you omit this clause, then the result of the XQuery evaluation is returned by
value. That is, a copy of the targeted nodes is returned instead of a reference to
the actual nodes. In this case, you cannot refer to any data that is not in the
returned copy in the XML_table_column clause. In particular, you cannot refer to
data that precedes the targeted nodes in the source data.

• The optional COLUMNS clause defines the columns of the virtual table to be created
by XMLTable.

– If you omit the COLUMNS clause, then XMLTable returns a row with a single
XMLType pseudocolumn named COLUMN_VALUE.

– FOR ORDINALITY specifies that column is to be a column of generated row
numbers. There must be at most one FOR ORDINALITY clause. It is created as a
NUMBER column.

– For each resulting column except the FOR ORDINALITY column, you must
specify the column data type, which can be XMLType or any other data type.

If the column data type is XMLType, then specify the XMLTYPE clause. If you
specify the optional (SEQUENCE) BY REF clause, then a reference to the source
data targeted by the PATH expression is returned as the column content.
Otherwise, column contains a copy of that targeted data.

Chapter 7
XMLTABLE

7-460

Returning the XMLType data by reference lets you specify other columns whose paths
target nodes in the source data that are outside those targeted by the PATH
expression for column.

If the column data type is any other data type, then specify datatype.

– The optional PATH clause specifies that the portion of the XQuery result that is
addressed by XQuery expression string is to be used as the column content.

If you omit PATH, then the XQuery expression column is assumed. For example:

XMLTable(... COLUMNS xyz)

is equivalent to

XMLTable(... COLUMNS xyz PATH 'XYZ')

You can use different PATH clauses to split the XQuery result into different virtual-table
columns.

– The optional DEFAULT clause specifies the value to use when the PATH expression
results in an empty sequence. Its expr is an XQuery expression that is evaluated to
produce the default value.

See Also:

• Oracle XML DB Developer's Guide for more information on the XMLTable
function, including additional examples, and on XQuery in general

• Appendix C in Oracle Database Globalization Support Guide for the collation
derivation rules, which define the collation assigned to each character data type
column in the table generated by XMLTABLE

Examples

The following example converts the result of applying the XQuery '/Warehouse' to each
value in the warehouse_spec column of the warehouses table into a virtual relational table with
columns Water and Rail:

SELECT warehouse_name warehouse,
 warehouse2."Water", warehouse2."Rail"
 FROM warehouses,
 XMLTABLE('/Warehouse'
 PASSING warehouses.warehouse_spec
 COLUMNS
 "Water" varchar2(6) PATH 'WaterAccess',
 "Rail" varchar2(6) PATH 'RailAccess')
 warehouse2;

WAREHOUSE Water Rail
----------------------------------- ------ ------
Southlake, Texas Y N
San Francisco Y N
New Jersey N N
Seattle, Washington N Y

Chapter 7
XMLTABLE

7-461

XMLTRANSFORM
Syntax

XMLTRANSFORM (XMLType_instance ,
XMLType_instance

string
)

Purpose

XMLTransform takes as arguments an XMLType instance and an XSL style sheet, which
is itself a form of XMLType instance. It applies the style sheet to the instance and
returns an XMLType.

This function is useful for organizing data according to a style sheet as you are
retrieving it from the database.

See Also:

Oracle XML DB Developer's Guide for more information on this function

Examples

The XMLTransform function requires the existence of an XSL style sheet. Here is an
example of a very simple style sheet that alphabetizes elements within a node:

CREATE TABLE xsl_tab (col1 XMLTYPE);

INSERT INTO xsl_tab VALUES (
 XMLTYPE.createxml(
 '<?xml version="1.0"?>
 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
 <xsl:output encoding="utf-8"/>
 <!-- alphabetizes an xml tree -->
 <xsl:template match="*">
 <xsl:copy>
 <xsl:apply-templates select="*|text()">
 <xsl:sort select="name(.)" data-type="text" order="ascending"/>
 </xsl:apply-templates>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="text()">
 <xsl:value-of select="normalize-space(.)"/>
 </xsl:template>
 </xsl:stylesheet> '));

1 row created.

The next example uses the xsl_tab XSL style sheet to alphabetize the elements in
one warehouse_spec of the sample table oe.warehouses:

SELECT XMLTRANSFORM(w.warehouse_spec, x.col1).GetClobVal()
 FROM warehouses w, xsl_tab x

Chapter 7
XMLTRANSFORM

7-462

 WHERE w.warehouse_name = 'San Francisco';

XMLTRANSFORM(W.WAREHOUSE_SPEC,X.COL1).GETCLOBVAL()
--
<Warehouse>
 <Area>50000</Area>
 <Building>Rented</Building>
 <DockType>Side load</DockType>
 <Docks>1</Docks>
 <Parking>Lot</Parking>
 <RailAccess>N</RailAccess>
 <VClearance>12 ft</VClearance>
 <WaterAccess>Y</WaterAccess>
</Warehouse>

ROUND and TRUNC Date Functions
Table 7-13 lists the format models you can use with the ROUND and TRUNC date functions and
the units to which they round and truncate dates. The default model, 'DD', returns the date
rounded or truncated to the day with a time of midnight.

Table 7-13 Date Format Models for the ROUND and TRUNC Date Functions

Format Model Rounding or Truncating Unit

CC
SCC

One greater than the first two digits of a four-digit year

SYYYY
YYYY
YEAR
SYEAR
YYY
YY
Y

Year (rounds up on July 1)

IYYY
IY
IY
I

Year containing the calendar week, as defined by the ISO 8601 standard

Q Quarter (rounds up on the sixteenth day of the second month of the quarter)

MONTH
MON
MM
RM

Month (rounds up on the sixteenth day)

WW Same day of the week as the first day of the year

IW Same day of the week as the first day of the calendar week as defined by the ISO
8601 standard, which is Monday

Chapter 7
ROUND and TRUNC Date Functions

7-463

Table 7-13 (Cont.) Date Format Models for the ROUND and TRUNC Date Functions

Format Model Rounding or Truncating Unit

W Same day of the week as the first day of the month

DDD
DD
J

Day

DAY
DY
D

Starting day of the week

HH
HH12
HH24

Hour

MI Minute

The starting day of the week used by the format models DAY, DY, and D is specified
implicitly by the initialization parameter NLS_TERRITORY.

See Also:

Oracle Database Reference and Oracle Database Globalization Support
Guide for information on this parameter

About User-Defined Functions
You can write user-defined functions in PL/SQL, Java, or C to provide functionality that
is not available in SQL or SQL built-in functions. User-defined functions can appear in
a SQL statement wherever an expression can occur.

For example, user-defined functions can be used in the following:

• The select list of a SELECT statement

• The condition of a WHERE clause

• CONNECT BY, START WITH, ORDER BY, and GROUP BY clauses

• The VALUES clause of an INSERT statement

• The SET clause of an UPDATE statement

Chapter 7
About User-Defined Functions

7-464

Note:

Oracle SQL does not support calling of functions with Boolean parameters or
returns. Therefore, if your user-defined functions will be called from SQL
statements, you must design them to return numbers (0 or 1) or character strings
('TRUE' or 'FALSE').

user_defined_function::=

schema .
package .

function

user_defined_operator

@ dblink . (

DISTINCT

ALL

expr

,

)

The optional expression list must match attributes of the function, package, or operator.

Restriction on User-defined Functions

The DISTINCT and ALL keywords are valid only with a user-defined aggregate function.

See Also:

• CREATE FUNCTION for information on creating functions, including restrictions
on user-defined functions

• Oracle Database Development Guide for a complete discussion of the creation
and use of user functions

Prerequisites
User-defined functions must be created as top-level functions or declared with a package
specification before they can be named within a SQL statement.

To use a user function in a SQL expression, you must own or have EXECUTE privilege on the
user function. To query a view defined with a user function, you must have the READ or SELECT
privilege on the view. No separate EXECUTE privileges are needed to select from the view.

Chapter 7
About User-Defined Functions

7-465

See Also:

CREATE FUNCTION for information on creating top-level functions and
CREATE PACKAGE for information on specifying packaged functions

Name Precedence
Within a SQL statement, the names of database columns take precedence over the
names of functions with no parameters. For example, if the Human Resources
manager creates the following two objects in the hr schema:

CREATE TABLE new_emps (new_sal NUMBER, ...);
CREATE FUNCTION new_sal RETURN NUMBER IS BEGIN ... END;

then in the following two statements, the reference to new_sal refers to the column
new_emps.new_sal:

SELECT new_sal FROM new_emps;
SELECT new_emps.new_sal FROM new_emps;

To access the function new_sal, you would enter:

SELECT hr.new_sal FROM new_emps;

Here are some sample calls to user functions that are allowed in SQL expressions:

circle_area (radius)
payroll.tax_rate (empno)
hr.employees.tax_rate (dependent, empno)@remote

Example

To call the tax_rate user function from schema hr, execute it against the ss_no and
sal columns in tax_table, specify the following:

SELECT hr.tax_rate (ss_no, sal)
 INTO income_tax
 FROM tax_table WHERE ss_no = tax_id;

The INTO clause is PL/SQL that lets you place the results into the variable income_tax.

Naming Conventions
If only one of the optional schema or package names is given, then the first identifier
can be either a schema name or a package name. For example, to determine whether
PAYROLL in the reference PAYROLL.TAX_RATE is a schema or package name, Oracle
Database proceeds as follows:

1. Check for the PAYROLL package in the current schema.

2. If a PAYROLL package is not found, then look for a schema name PAYROLL that
contains a top-level TAX_RATE function. If no such function is found, then return an
error.

3. If the PAYROLL package is found in the current schema, then look for a TAX_RATE
function in the PAYROLL package. If no such function is found, then return an error.

Chapter 7
About User-Defined Functions

7-466

You can also refer to a stored top-level function using any synonym that you have defined for
it.

Chapter 7
About User-Defined Functions

7-467

8
Common SQL DDL Clauses

This chapter describes some SQL data definition clauses that appear in multiple SQL
statements.

This chapter contains these sections:

• allocate_extent_clause

• constraint

• deallocate_unused_clause

• file_specification

• logging_clause

• parallel_clause

• physical_attributes_clause

• size_clause

• storage_clause

allocate_extent_clause
Purpose

Use the allocate_extent_clause clause to explicitly allocate a new extent for a database
object.

Explicitly allocating an extent with this clause does not change the values of the NEXT and
PCTINCREASE storage parameters, so does not affect the size of the next extent to be
allocated implicitly by Oracle Database. Refer to storage_clause for information about the
NEXT and PCTINCREASE storage parameters.

You can allocate an extent in the following SQL statements:

• ALTER CLUSTER (see ALTER CLUSTER)

• ALTER INDEX: to allocate an extent to the index, an index partition, or an index subpartition
(see ALTER INDEX)

• ALTER MATERIALIZED VIEW: to allocate an extent to the materialized view, one of its
partitions or subpartitions, or the overflow segment of an index-organized materialized
view (see ALTER MATERIALIZED VIEW)

• ALTER MATERIALIZED VIEW LOG (see ALTER MATERIALIZED VIEW LOG)

• ALTER TABLE: to allocate an extent to the table, a table partition, a table subpartition, the
mapping table of an index-organized table, the overflow segment of an index-organized
table, or a LOB storage segment (see ALTER TABLE)

8-1

Syntax

allocate_extent_clause::=

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

(size_clause::=)

Semantics

This section describes the parameters of the allocate_extent_clause. For additional
information, refer to the SQL statement in which you set or reset these parameters for
a particular database object.

You cannot specify the allocate_extent_clause and the deallocate_unused_clause
in the same statement.

SIZE

Specify the size of the extent in bytes. The value of integer can be 0 through
2147483647. To specify a larger extent size, use an integer within this range with K, M,
G, or T to specify the extent size in kilobytes, megabytes, gigabytes, or terabytes.

For a table, index, materialized view, or materialized view log, if you omit SIZE, then
Oracle Database determines the size based on the values of the storage parameters
of the object. However, for a cluster, Oracle does not evaluate the cluster's storage
parameters, so you must specify SIZE if you do not want Oracle to use a default value.

DATAFILE 'filename'

Specify one of the data files in the tablespace of the table, cluster, index, materialized
view, or materialized view log to contain the new extent. If you omit DATAFILE, then
Oracle chooses the data file.

INSTANCE integer

Use this parameter only if you are using Oracle Real Application Clusters.

Specifying INSTANCE integer makes the new extent available to the freelist group
associated with the specified instance. If the instance number exceeds the maximum
number of freelist groups, then Oracle divides the specified number by the maximum
number and uses the remainder to identify the freelist group to be used. An instance is
identified by the value of its initialization parameter INSTANCE_NUMBER.

If you omit this parameter, then the space is allocated to the table, cluster, index,
materialized view, or materialized view log but is not drawn from any particular freelist
group. Instead, Oracle uses the master freelist and allocates space as needed.

Chapter 8
allocate_extent_clause

8-2

Note:

If you are using automatic segment-space management, then the INSTANCE
parameter of the allocate_extent_clause may not reserve the newly allocated
space for the specified instance, because automatic segment-space management
does not maintain rigid affinity between extents and instances.

constraint
Purpose

Use a constraint to define an integrity constraint—a rule that restricts the values in a
database. Oracle Database lets you create six types of constraints and lets you declare them
in two ways.

The six types of integrity constraint are described briefly here and more fully in "Semantics":

• A NOT NULL constraint prohibits a database value from being null.

• A unique constraint prohibits multiple rows from having the same value in the same
column or combination of columns but allows some values to be null.

• A primary key constraint combines a NOT NULL constraint and a unique constraint in a
single declaration. It prohibits multiple rows from having the same value in the same
column or combination of columns and prohibits values from being null.

• A foreign key constraint requires values in one table to match values in another table.

• A check constraint requires a value in the database to comply with a specified
condition.

• A REF column by definition references an object in another object type or in a relational
table. A REF constraint lets you further describe the relationship between the REF
column and the object it references.

You can define constraints syntactically in two ways:

• As part of the definition of an individual column or attribute. This is called inline
specification.

• As part of the table definition. This is called out-of-line specification.

NOT NULL constraints must be declared inline. All other constraints can be declared either
inline or out of line.

Constraint clauses can appear in the following statements:

• CREATE TABLE (see CREATE TABLE)
• ALTER TABLE (see ALTER TABLE)

• CREATE VIEW (see CREATE VIEW)
• ALTER VIEW (see ALTER VIEW)
View Constraints

Oracle Database does not enforce view constraints. However, you can enforce constraints on
views through constraints on base tables.

Chapter 8
constraint

8-3

You can specify only unique, primary key, and foreign key constraints on views, and
they are supported only in DISABLE NOVALIDATE mode. You cannot define view
constraints on attributes of an object column.

See Also:

View Constraints for additional information on view constraints and
"DISABLE Clause" for information on DISABLE NOVALIDATE mode

External Table Constraints

You can specify only NOT NULL, unique, primary key, and foreign key constraints on
external tables. Unique, primary key, and foreign key constraints are supported only in
RELY DISABLE mode.

See Also:

DISABLE Clause for information on RELY and DISABLE.

Prerequisites

You must have the privileges necessary to issue the statement in which you are
defining the constraint.

To create a foreign key constraint, in addition, the parent table or view must be in your
own schema or you must have the REFERENCES privilege on the columns of the
referenced key in the parent table or view.

Syntax

constraint::=

inline_constraint

out_of_line_constraint

inline_ref_constraint

out_of_line_ref_constraint

(inline_constraint::=, out_of_line_constraint::=, inline_ref_constraint::=,
out_of_line_ref_constraint::=)

Chapter 8
constraint

8-4

inline_constraint::=

CONSTRAINT constraint_name

NOT

NULL

UNIQUE

PRIMARY KEY

references_clause

CHECK (condition)

constraint_state

(references_clause::=)

out_of_line_constraint::=

CONSTRAINT constraint_name

UNIQUE (column

,

)

PRIMARY KEY (column

,

)

FOREIGN KEY (column

,

) references_clause

CHECK (condition)

constraint_state

(references_clause::=, constraint_state::=)

inline_ref_constraint::=

SCOPE IS

schema .

scope_table

WITH ROWID

CONSTRAINT constraint_name

references_clause

constraint_state

(references_clause::=, constraint_state::=)

Chapter 8
constraint

8-5

out_of_line_ref_constraint::=

SCOPE FOR (
ref_col

ref_attr
) IS

schema .

scope_table

REF (
ref_col

ref_attr
) WITH ROWID

CONSTRAINT constraint_name

FOREIGN KEY (

ref_col

,

ref_attr

,) references_clause

constraint_state

(references_clause::=, constraint_state::=)

references_clause::=

REFERENCES

schema .

object

(column

,

)
ON DELETE

CASCADE

SET NULL

constraint_state::=

NOT

DEFERRABLE

INITIALLY
DEFERRED

IMMEDIATE

INITIALLY
DEFERRED

IMMEDIATE

NOT

DEFERRABLE

RELY

NORELY

using_index_clause

ENABLE

DISABLE

VALIDATE

NOVALIDATE exceptions_clause

(using_index_clause::=, exceptions_clause::=)

using_index_clause::=

USING INDEX

schema .

index

(create_index_statement)

index_properties

Chapter 8
constraint

8-6

(create_index::=, index_properties::=)

index_properties::=

global_partitioned_index

local_partitioned_index

index_attributes

INDEXTYPE IS
domain_index_clause

XMLIndex_clause

(global_partitioned_index::=, local_partitioned_index::=--part of CREATE INDEX,
index_attributes::=. The INDEXTYPE IS ... clause is not valid when defining a constraint.)

index_attributes::=

physical_attributes_clause

logging_clause

ONLINE

TABLESPACE
tablespace

DEFAULT

index_compression

SORT

NOSORT

REVERSE

VISIBLE

INVISIBLE

partial_index_clause

parallel_clause

(physical_attributes_clause::=, logging_clause::=, index_compression::=,
partial_index_clause::=--all part of CREATE INDEX, parallel_clause: not supported in
using_index_clause)

exceptions_clause::=

EXCEPTIONS INTO

schema .

table

Chapter 8
constraint

8-7

Semantics

This section describes the semantics of constraint. For additional information, refer
to the SQL statement in which you define or redefine a constraint for a table or view.

Oracle Database does not support constraints on columns or attributes whose type is
a user-defined object, nested table, VARRAY, REF, or LOB, with two exceptions:

• NOT NULL constraints are supported for a column or attribute whose type is user-
defined object, VARRAY, REF, or LOB.

• NOT NULL, foreign key, and REF constraints are supported on a column of type REF.

CONSTRAINT constraint_name

Specify a name for the constraint. The name must satisfy the requirements listed in
"Database Object Naming Rules ". If you omit this identifier, then Oracle Database
generates a name with the form SYS_Cn. Oracle stores the name and the definition of
the integrity constraint in the USER_, ALL_, and DBA_CONSTRAINTS data dictionary views
(in the CONSTRAINT_NAME and SEARCH_CONDITION columns, respectively).

See Also:

Oracle Database Reference for information on the data dictionary views

NOT NULL Constraints

A NOT NULL constraint prohibits a column from containing nulls. The NULL keyword by
itself does not actually define an integrity constraint, but you can specify it to explicitly
permit a column to contain nulls. You must define NOT NULL and NULL using inline
specification. If you specify neither NOT NULL nor NULL, then the default is NULL.

NOT NULL constraints are the only constraints you can specify inline on XMLType and
VARRAY columns.

To satisfy a NOT NULL constraint, every row in the table must contain a value for the
column.

Note:

Oracle Database does not index table rows in which all key columns are null
except in the case of bitmap indexes. Therefore, if you want an index on all
rows of a table, then you must either specify NOT NULL constraints for at least
one of the index key columns or create a bitmap index.

Restrictions on NOT NULL Constraints

NOT NULL constraints are subject to the following restrictions:

• You cannot specify NULL or NOT NULL in a view constraint.

Chapter 8
constraint

8-8

• You cannot specify NULL or NOT NULL for an attribute of an object. Instead, use a CHECK
constraint with the IS [NOT] NULL condition.

See Also:

"Attribute-Level Constraints Example" and "NOT NULL Example"

Unique Constraints

A unique constraint designates a column as a unique key. A composite unique key
designates a combination of columns as the unique key. When you define a unique constraint
inline, you need only the UNIQUE keyword. When you define a unique constraint out of line,
you must also specify one or more columns. You must define a composite unique key out of
line.

To satisfy a unique constraint, no two rows in the table can have the same value for the
unique key. However, the unique key made up of a single column can contain nulls. To satisfy
a composite unique key, no two rows in the table or view can have the same combination of
values in the key columns. Any row that contains nulls in all key columns automatically
satisfies the constraint. However, two rows that contain nulls for one or more key columns
and the same combination of values for the other key columns violate the constraint.

Unique constraints are sensitive to declared collations of their key columns. See Collation
Sensitivity of Constraints for more details.

When you specify a unique constraint on one or more columns, Oracle implicitly creates an
index on the unique key. If you are defining uniqueness for purposes of query performance,
then Oracle recommends that you instead create the unique index explicitly using a CREATE
UNIQUE INDEX statement. You can also use the CREATE UNIQUE INDEX statement to create a
unique function-based index that defines a conditional unique constraint. See "Using a
Function-based Index to Define Conditional Uniqueness: Example" for more information.

When you specify an enabled unique constraint on an extended data type column, you may
receive a "maximum key length exceeded" error when Oracle tries to create the index to
enforce uniqueness for the enabled constraint. See "Creating an Index on an Extended Data
Type Column" for information on how to work around this issue.

Restrictions on Unique Constraints

Unique constraints are subject to the following restrictions:

• None of the columns in the unique key can be of LOB, LONG, LONG RAW, VARRAY, NESTED
TABLE, OBJECT, REF, TIMESTAMP WITH TIME ZONE, or user-defined type. However, the
unique key can contain a column of TIMESTAMP WITH LOCAL TIME ZONE.

• A composite unique key cannot have more than 32 columns.

• You cannot designate the same column or combination of columns as both a primary key
and a unique key.

• You cannot specify a unique key when creating a subview in an inheritance hierarchy.
The unique key can be specified only for the top-level (root) view.

• When you specify a unique constraint for an external table, you must specify the RELY
and DISABLE constraint states. See External Table Constraints for more information.

Chapter 8
constraint

8-9

See Also:

"Unique Key Example" and Composite Unique Key Example

Primary Key Constraints

A primary key constraint designates a column as the primary key of a table or view. A
composite primary key designates a combination of columns as the primary key.
When you define a primary key constraint inline, you need only the PRIMARY KEY
keywords. When you define a primary key constraint out of line, you must also specify
one or more columns. You must define a composite primary key out of line.

To satisfy a primary key constraint:

• No primary key value can appear in more than one row in the table.

• No column that is part of the primary key can contain a null.

When you create a primary key constraint:

• Oracle Database uses an existing index if it contains a unique set of values before
enforcing the primary key constraint. The existing index can be defined as unique
or nonunique. When a DML operation is performed, the primary key constraint is
enforced using this existing index.

• If no existing index can be used, then Oracle Database generates a unique index.

When you drop a primary key constraint:

• If the primary key was created using an existing index, then the index is not
dropped.

• If the primary key was created using a system-generated index, then the index is
dropped.

When you designate an extended data type column as an enabled primary key, you
may receive a "maximum key length exceeded" error when Oracle tries to create the
index to enforce uniqueness for the enabled constraint. See "Creating an Index on an
Extended Data Type Column" for information on how to work around this issue.

Primary key constraints are sensitive to declared collations of their key columns. See
Collation Sensitivity of Constraints for more details.

Restrictions on Primary Key Constraints

Primary constraints are subject to the following restrictions:

• A table or view can have only one primary key.

• None of the columns in the primary key can be LOB, LONG, LONG RAW, VARRAY,
NESTED TABLE, BFILE, REF, TIMESTAMP WITH TIME ZONE, or user-defined type.
However, the primary key can contain a column of TIMESTAMP WITH LOCAL TIME
ZONE.

• The size of the primary key cannot exceed approximately one database block.

• A composite primary key cannot have more than 32 columns.

• You cannot designate the same column or combination of columns as both a
primary key and a unique key.

Chapter 8
constraint

8-10

• You cannot specify a primary key when creating a subview in an inheritance hierarchy.
The primary key can be specified only for the top-level (root) view.

• When you specify a primary key constraint for an external table, you must specify the
RELY and DISABLE constraint states. See External Table Constraints for more information.

See Also:

"Primary Key Example" and "Composite Primary Key Example"

Foreign Key Constraints

A foreign key constraint (also called a referential integrity constraint) designates a
column as the foreign key and establishes a relationship between that foreign key and a
specified primary or unique key, called the referenced key. A composite foreign key
designates a combination of columns as the foreign key.

The table or view containing the foreign key is called the child object, and the table or view
containing the referenced key is called the parent object. The foreign key and the referenced
key can be in the same table or view. In this case, the parent and child tables are the same. If
you identify only the parent table or view and omit the column name, then the foreign key
automatically references the primary key of the parent table or view. The corresponding
column or columns of the foreign key and the referenced key must match in order, data types,
and declared collations.

Foreign key constraints are sensitive to declared collations of the referenced primary or
unique key columns. See Collation Sensitivity of Constraints for more details.

You can define a foreign key constraint on a single key column either inline or out of line. You
must specify a composite foreign key and a foreign key on an attribute out of line.

To satisfy a composite foreign key constraint, the composite foreign key must refer to a
composite unique key or a composite primary key in the parent table or view, or the value of
at least one of the columns of the foreign key must be null.

You can designate the same column or combination of columns as both a foreign key and a
primary or unique key. You can also designate the same column or combination of columns
as both a foreign key and a cluster key.

You can define multiple foreign keys in a table or view. Also, a single column can be part of
more than one foreign key.

Restrictions on Foreign Key Constraints

Foreign key constraints are subject to the following restrictions:

• None of the columns in the foreign key can be of LOB, LONG, LONG RAW, VARRAY, NESTED
TABLE, BFILE, REF, TIMESTAMP WITH TIME ZONE, or user-defined type. However, the primary
key can contain a column of TIMESTAMP WITH LOCAL TIME ZONE.

• The referenced unique or primary key constraint on the parent table or view must already
be defined.

• A composite foreign key cannot have more than 32 columns.

Chapter 8
constraint

8-11

• The child and parent tables must be on the same database. To enable referential
integrity constraints across nodes of a distributed database, you must use
database triggers. See CREATE TRIGGER .

• If either the child or parent object is a view, then the constraint is subject to all
restrictions on view constraints. See "View Constraints ".

• You cannot define a foreign key constraint in a CREATE TABLE statement that
contains an AS subquery clause. Instead, you must create the table without the
constraint and then add it later with an ALTER TABLE statement.

• When a table has a foreign key, and the parent of the foreign key is an index-
organized table, a session that updates a row that contains the foreign key can
hang when another session is updating a non-key column in the parent table.

• When you specify a foreign key constraint for an external table, you must specify
the RELY and DISABLE constraint states. See External Table Constraints for more
information.

See Also:

• Oracle Database Development Guide for more information on using
constraints

• "Foreign Key Constraint Example" and "Composite Foreign Key
Constraint Example"

references_clause

Foreign key constraints use the references_clause syntax. When you specify a
foreign key constraint inline, you need only the references_clause. When you specify
a foreign key constraint out of line, you must also specify the FOREIGN KEY keywords
and one or more columns.

ON DELETE Clause

The ON DELETE clause lets you determine how Oracle Database automatically
maintains referential integrity if you remove a referenced primary or unique key value.
If you omit this clause, then Oracle does not allow you to delete referenced key values
in the parent table that have dependent rows in the child table.

• Specify CASCADE if you want Oracle to remove dependent foreign key values.

• Specify SET NULL if you want Oracle to convert dependent foreign key values to
NULL. You cannot specify this clause for a virtual column, because the values in a
virtual column cannot be updated directly. Rather, the values from which the virtual
column are derived must be updated.

Restriction on ON DELETE

You cannot specify this clause for a view constraint.

Chapter 8
constraint

8-12

See Also:

"ON DELETE Example"

Check Constraints

A check constraint lets you specify a condition that each row in the table must satisfy. To
satisfy the constraint, each row in the table must make the condition either TRUE or unknown
(due to a null). When Oracle evaluates a check constraint condition for a particular row, any
column names in the condition refer to the column values in that row.

The syntax for inline and out-of-line specification of check constraints is the same. However,
inline specification can refer only to the column (or the attributes of the column if it is an
object column) currently being defined, whereas out-of-line specification can refer to multiple
columns or attributes.

Oracle does not verify that conditions of check constraints are not mutually exclusive.
Therefore, if you create multiple check constraints for a column, design them carefully so
their purposes do not conflict. Do not assume any particular order of evaluation of the
conditions.

If the condition of a check constraint depends on NLS parameters, such as NLS_DATE_FORMAT,
Oracle evaluates the condition using the database values of the parameters, not the session
values. You can find the database values of the NLS parameters in the data dictionary view
NLS_DATABASE_PARAMETERS. These values are associated with a database by the DDL
statement CREATE DATABASE and never change afterwards.

See Also:

• Conditions for additional information and syntax

• "Check Constraint Examples" and "Attribute-Level Constraints Example"

Restrictions on Check Constraints

Check constraints are subject to the following restrictions:

• You cannot specify a check constraint for a view. However, you can define the view using
the WITH CHECK OPTION clause, which is equivalent to specifying a check constraint for the
view.

• The condition of a check constraint can refer to any column in the table, but it cannot
refer to columns of other tables.

• Conditions of check constraints cannot contain the following constructs:

– Subqueries and scalar subquery expressions

– Calls to the functions that are not deterministic (CURRENT_DATE, CURRENT_TIMESTAMP,
DBTIMEZONE, LOCALTIMESTAMP, SESSIONTIMEZONE, SYSDATE, SYSTIMESTAMP, UID, USER,
and USERENV)

– Calls to user-defined functions

Chapter 8
constraint

8-13

– Dereferencing of REF columns (for example, using the DEREF function)

– Nested table columns or attributes

– The pseudocolumns CURRVAL, NEXTVAL, LEVEL, or ROWNUM
– Date constants that are not fully specified

– You cannot specify a check constraint for an external table.

REF Constraints

REF constraints let you describe the relationship between a column of type REF and the
object it references.

ref_constraint

REF constraints use the ref_constraint syntax. You define a REF constraint either
inline or out of line. Out-of-line specification requires you to specify the REF column or
attribute you are further describing.

• For ref_column, specify the name of a REF column of an object or relational table.

• For ref_attribute, specify an embedded REF attribute within an object column of
a relational table.

Both inline and out-of-line specification let you define a scope constraint, a rowid
constraint, or a referential integrity constraint on a REF column.

If the scope table or referenced table of the REF column has a primary-key-based
object identifier, then the REF column is a user-defined REF column.

See Also:

• Oracle Database Object-Relational Developer's Guide for more
information on REF data types

• "Foreign Key Constraints", and "REF Constraint Examples"

SCOPE REF Constraints

In a table with a REF column, each REF value in the column can conceivably reference
a row in a different object table. The SCOPE clause restricts the scope of references to a
single table, scope_table. The values in the REF column or attribute point to objects in
scope_table, in which object instances of the same type as the REF column are stored.

Specify the SCOPE clause to restrict the scope of references in the REF column to a
single table. For you to specify this clause, scope_table must be in your own schema,
or you must have the READ or SELECT privilege on scope_table, or you must have the
READ ANY TABLE or SELECT ANY TABLE system privilege. You can specify only one scope
table for each REF column.

Restrictions on Scope Constraints

Scope constraints are subject to the following restrictions:

• You cannot add a scope constraint to an existing column unless the table is empty.

Chapter 8
constraint

8-14

• You cannot specify a scope constraint for the REF elements of a VARRAY column.

• You must specify this clause if you specify AS subquery and the subquery returns user-
defined REF data types.

• You cannot subsequently drop a scope constraint from a REF column.

• You cannot specify a scope constraint for an external table.

Rowid REF Constraints

Specify WITH ROWID to store the rowid along with the REF value in ref_column or
ref_attribute. Storing the rowid with the REF value can improve the performance of
dereferencing operations, but will also use more space. Default storage of REF values is
without rowids.

See Also:

The function DEREF for an example of dereferencing

Restrictions on Rowid Constraints

Rowid constraints are subject to the following restrictions:

• You cannot define a rowid constraint for the REF elements of a VARRAY column.

• You cannot subsequently drop a rowid constraint from a REF column.

• If the REF column or attribute is scoped, then this clause is ignored and the rowid is not
stored with the REF value.

• You cannot specify a rowid constraint for an external table.

Referential Integrity Constraints on REF Columns

The references_clause of the ref_constraint syntax lets you define a foreign key
constraint on the REF column. This clause also implicitly restricts the scope of the REF column
or attribute to the referenced table. However, whereas a foreign key constraint on a non-REF
column references an actual column in the parent table, a foreign key constraint on a REF
column references the implicit object identifier column of the parent table.

If you do not specify a constraint name, then Oracle generates a system name for the
constraint of the form SYS_Cn.

If you add a referential integrity constraint to an existing REF column that is already scoped,
then the referenced table must be the same as the scope table of the REF column. If you later
drop the referential integrity constraint, then the REF column will remain scoped to the
referenced table.

As is the case for foreign key constraints on other types of columns, you can use the
references_clause alone for inline declaration. For out-of-line declaration you must also
specify the FOREIGN KEY keywords plus one or more REF columns or attributes.

Chapter 8
constraint

8-15

See Also:

Oracle Database Object-Relational Developer's Guide for more information
on object identifiers

Restrictions on Foreign Key Constraints on REF Columns

Foreign key constraints on REF columns have the following additional restrictions:

• Oracle implicitly adds a scope constraint when you add a referential integrity
constraint to an existing unscoped REF column. Therefore, all the restrictions that
apply for scope constraints also apply in this case.

• You cannot specify a column after the object name in the references_clause.

Collation Sensitivity of Constraints

Starting with Oracle Database 12c Release 2 (12.2), primary key, unique, and foreign
key constraints are sensitive to declared collations of their key columns. A primary or
unique key character column value from a new or updated row is compared with
values in existing rows using the declared collation of the key column. For example, if
the declared collation of the key column is the case-insensitive collation BINARY_CI, a
new or updated row may be rejected if the new key column value differs from some
existing key value only by case. The collation BINARY_CI treats character values
differing only by case as equal.

A foreign key character column value is compared to parent primary or unique key
column values using the declared collation of the parent key column. For example, if
the declared collation of the key column is the case-insensitive collation BINARY_CI, a
new or updated child row may be accepted even if there is no identical parent key
value for the corresponding foreign key value, provided there exists a value differing
only by case.

The declared collation of a foreign key column must be the same as the collation of the
corresponding parent key column.

Columns in a composite key of a constraint may have different declared collations.

When the declared collation of a key column of a constraint is a pseudo-collation, the
constraint uses a corresponding variant of the collation BINARY. Pseudo-collations
cannot be used directly to compare values for a constraint, because constraints are
static and cannot depend on session NLS parameters on which the pseudo-collations
depend. Therefore:

• The pseudo-collations USING_NLS_COMP, USING_NLS_SORT, and USING_NLS_SORT_CS
use the collation BINARY.

• The pseudo-collation USING_NLS_COMP_CI uses the collation BINARY_CI.

• The pseudo-collation USING_NLS_COMP_AI uses the collation BINARY_AI.

When the effective collation used by a primary or unique key column is not BINARY,
Oracle creates a hidden virtual column for this column. The expression of the virtual
column calculates collation keys for character values of the original key column. The
primary key or unique constraint is internally created on the virtual column instead of
the original column. The virtual column is visible in the data dictionary views of the

Chapter 8
constraint

8-16

*_TAB_COLS family. For each of these hidden virtual columns, the COLLATED_COLUMN_ID of the
*_TAB_COLS views contains the internal sequence number pointing to the corresponding
original key column. The hidden virtual columns count to the 1000-column limit of a table.

See Also:

• Case-Insensitive Constraints Example

• Oracle Database Globalization Support Guide for more details about collations

Specifying Constraint State

You can specify how and when Oracle should enforce the constraint when you define the
constraint.

constraint_state

You can use constraint_state with both inline and out-of-line specification. Except for the
clauses DEFERRABLE and INITIALLY, that may be specified in any order, you must specify the
rest of the component clauses in the order shown, and each clause only once.

DEFERRABLE Clause

The DEFERRABLE and NOT DEFERRABLE parameters indicate whether or not, in subsequent
transactions, constraint checking can be deferred until the end of the transaction using the
SET CONSTRAINT(S) statement. If you omit this clause, then the default is NOT DEFERRABLE.

• Specify NOT DEFERRABLE to indicate that in subsequent transactions you cannot use the
SET CONSTRAINT[S] clause to defer checking of this constraint until the transaction is
committed. The checking of a NOT DEFERRABLE constraint can never be deferred to the
end of the transaction.

If you declare a new constraint NOT DEFERRABLE, then it must be valid at the time the
CREATE TABLE or ALTER TABLE statement is committed or the statement will fail.

• Specify DEFERRABLE to indicate that in subsequent transactions you can use the SET
CONSTRAINT[S] clause to defer checking of this constraint until a COMMIT statement is
submitted. If the constraint check fails, then the database returns an error and the
transaction is not committed. This setting in effect lets you disable the constraint
temporarily while making changes to the database that might violate the constraint until
all the changes are complete.

Note:

The optimizer does not consider indexes on deferrable constraints as usable.

You cannot alter the deferrability of a constraint. Whether you specify either of these
parameters, or make the constraint NOT DEFERRABLE implicitly by specifying neither of them,
you cannot specify this clause in an ALTER TABLE statement. You must drop the constraint and
re-create it.

Chapter 8
constraint

8-17

See Also:

• SET CONSTRAINT[S] for information on setting constraint checking for
a transaction

• Oracle Database Administrator's Guide and Oracle Database Concepts
for more information about deferred constraints

• "DEFERRABLE Constraint Examples"

Restriction on [NOT] DEFERRABLE

You cannot specify either of these parameters for a view constraint.

INITIALLY Clause

The INITIALLY clause establishes the default checking behavior for constraints that
are DEFERRABLE. The INITIALLY setting can be overridden by a SET CONSTRAINT(S)
statement in a subsequent transaction.

• Specify INITIALLY IMMEDIATE to indicate that Oracle should check this constraint
at the end of each subsequent SQL statement. If you do not specify INITIALLY at
all, then the default is INITIALLY IMMEDIATE.

If you declare a new constraint INITIALLY IMMEDIATE, then it must be valid at the
time the CREATE TABLE or ALTER TABLE statement is committed or the statement will
fail.

• Specify INITIALLY DEFERRED to indicate that Oracle should check this constraint at
the end of subsequent transactions.

This clause is not valid if you have declared the constraint to be NOT DEFERRABLE,
because a NOT DEFERRABLE constraint is automatically INITIALLY IMMEDIATE and
cannot ever be INITIALLY DEFERRED.

RELY Clause

The RELY and NORELY parameters specify whether a constraint in NOVALIDATE mode is
to be taken into account for query rewrite. Specify RELY to activate a constraint in
NOVALIDATE mode for query rewrite in an unenforced query rewrite integrity mode. The
constraint is in NOVALIDATE mode, so Oracle does not enforce it. The default is NORELY.

Unenforced constraints are generally useful only with materialized views and query
rewrite. Depending on the QUERY_REWRITE_INTEGRITY mode, query rewrite can use
only constraints that are in VALIDATE mode, or that are in NOVALIDATE mode with the
RELY parameter set, to determine join information.

Restriction on the RELY Clause

You cannot set a nondeferrable NOT NULL constraint to RELY.

Chapter 8
constraint

8-18

See Also:

Oracle Database Data Warehousing Guide for more information on materialized
views and query rewrite

Using Indexes to Enforce Constraints

When defining the state of a unique or primary key constraint, you can specify an index for
Oracle to use to enforce the constraint, or you can instruct Oracle to create the index used to
enforce the constraint.

using_index_clause

You can specify the using_index_clause only when enabling unique or primary key
constraints. You can specify the clauses of the using_index_clause in any order, but you can
specify each clause only once.

• If you specify schema.index, then Oracle attempts to enforce the constraint using the
specified index. If Oracle cannot find the index or cannot use the index to enforce the
constraint, then Oracle returns an error.

• If you specify the create_index_statement, then Oracle attempts to create the index and
use it to enforce the constraint. If Oracle cannot create the index or cannot use the index
to enforce the constraint, then Oracle returns an error.

• If you neither specify an existing index nor create a new index, then Oracle creates the
index. In this case:

– The index receives the same name as the constraint.

– If table is partitioned, then you can specify a locally or globally partitioned index for
the unique or primary key constraint.

Restrictions on the using_index_clause

The following restrictions apply to the using_index_clause:

• You cannot specify this clause for a view constraint.

• You cannot specify this clause for a NOT NULL, foreign key, or check constraint.

• You cannot specify an index (schema.index) or create an index
(create_index_statement) when enabling the primary key of an index-organized table.

• You cannot specify the parallel_clause of index_attributes.

• The INDEXTYPE IS ... clause of index_properties is not valid in the definition of a
constraint.

Chapter 8
constraint

8-19

See Also:

• CREATE INDEX for a description of index_attributes, the
global_partitioned_index and local_partitioned_index clauses, and for a
description of NOSORT and the logging_clause in relation to indexes

• physical_attributes_clause and PCTFREE parameters and storage_clause

• "Explicit Index Control Example"

ENABLE Clause

Specify ENABLE if you want the constraint to be applied to the data in the table.

If you enable a unique or primary key constraint, and if no index exists on the key, then
Oracle Database creates a unique index. Unless you specify KEEP INDEX when
subsequently disabling the constraint, this index is dropped and the database rebuilds
the index every time the constraint is reenabled.

You can also avoid rebuilding the index and eliminate redundant indexes by creating
new primary key and unique constraints initially disabled. Then create (or use existing)
nonunique indexes to enforce the constraint. Oracle does not drop a nonunique index
when the constraint is disabled, so subsequent ENABLE operations are facilitated.

• ENABLE VALIDATE specifies that all old and new data also complies with the
constraint. An enabled validated constraint guarantees that all data is and will
continue to be valid.

If any row in the table violates the integrity constraint, then the constraint remains
disabled and Oracle returns an error. If all rows comply with the constraint, then
Oracle enables the constraint. Subsequently, if new data violates the constraint,
then Oracle does not execute the statement and returns an error indicating the
integrity constraint violation.

If you place a primary key constraint in ENABLE VALIDATE mode, then the validation
process will verify that the primary key columns contain no nulls. To avoid this
overhead, mark each column in the primary key NOT NULL before entering data into
the column and before enabling the primary key constraint of the table.

• ENABLE NOVALIDATE ensures that all new DML operations on the constrained data
comply with the constraint. This clause does not ensure that existing data in the
table complies with the constraint.

If you specify neither VALIDATE nor NOVALIDATE, then the default is VALIDATE.

If you change the state of any single constraint from ENABLE NOVALIDATE to ENABLE
VALIDATE, then the operation can be performed in parallel, and does not block reads,
writes, or other DDL operations.

Restriction on the ENABLE Clause

You cannot enable a foreign key that references a disabled unique or primary key.

Chapter 8
constraint

8-20

DISABLE Clause

Specify DISABLE to disable the integrity constraint. Disabled integrity constraints appear in the
data dictionary along with enabled constraints. If you do not specify this clause when creating
a constraint, then Oracle automatically enables the constraint.

• DISABLE VALIDATE disables the constraint and drops the index on the constraint, but
keeps the constraint valid. This feature is most useful in data warehousing situations,
because it lets you load large amounts of data while also saving space by not having an
index. This setting lets you load data from a nonpartitioned table into a partitioned table
using the exchange_partition_subpart clause of the ALTER TABLE statement or using
SQL*Loader. All other modifications to the table (inserts, updates, and deletes) by other
SQL statements are disallowed.

See Also:

Oracle Database Data Warehousing Guide for more information on using this
setting

• DISABLE NOVALIDATE signifies that Oracle makes no effort to maintain the constraint
(because it is disabled) and cannot guarantee that the constraint is true (because it is not
being validated).

You cannot drop a table whose primary key is being referenced by a foreign key even if
the foreign key constraint is in DISABLE NOVALIDATE state. Further, the optimizer can use
constraints in DISABLE NOVALIDATE state.

See Also:

Oracle Database SQL Tuning Guide for information on when to use this setting

If you specify neither VALIDATE nor NOVALIDATE, then the default is NOVALIDATE.

If you disable a unique or primary key constraint that is using a unique index, then Oracle
drops the unique index. Refer to the CREATE TABLE enable_disable_clause for additional notes
and restrictions.

VALIDATE | NOVALIDATE

The behavior of VALIDATE and NOVALIDATE depends on whether the constraint is enabled or
disabled, either explicitly or by default. Therefore, the VALIDATE and NOVALIDATE keywords
are described in the context of "ENABLE Clause" and "DISABLE Clause".

Note on Foreign Key Constraints in NOVALIDATE Mode

When a foreign key constraint is in NOVALIDATE mode, if existing data in the table does not
comply with the constraint and the QUERY_REWRITE_INTEGRITY parameter is not set to
ENFORCED, then the optimizer may use join elimination during queries on the table. In this
case, a query may return table rows with noncompliant foreign key values even if the query
contains a join condition that should filter out those rows.

Chapter 8
constraint

8-21

Handling Constraint Exceptions

When defining the state of a constraint, you can specify a table into which Oracle
places the rowids of all rows violating the constraint.

exceptions_clause

Use the exceptions_clause syntax to define exception handling. If you omit schema,
then Oracle assumes the exceptions table is in your own schema. If you omit this
clause altogether, then Oracle assumes that the table is named EXCEPTIONS. The
EXCEPTIONS table or the table you specify must exist on your local database.

You can create the EXCEPTIONS table using one of these scripts:

• UTLEXCPT.SQL uses physical rowids. Therefore it can accommodate rows from
conventional tables but not from index-organized tables. (See the Note that
follows.)

• UTLEXPT1.SQL uses universal rowids, so it can accommodate rows from both
conventional and index-organized tables.

If you create your own exceptions table, then it must follow the format prescribed by
one of these two scripts.

If you are collecting exceptions from index-organized tables based on primary keys
(rather than universal rowids), then you must create a separate exceptions table for
each index-organized table to accommodate its primary-key storage. You create
multiple exceptions tables with different names by modifying and resubmitting the
script.

Restrictions on the exceptions_clause

The following restrictions apply to the exceptions_clause:

• You cannot specify this clause for a view constraint.

• You cannot specify this clause in a CREATE TABLE statement, because no rowids
exist until after the successful completion of the statement.

See Also:

– The DBMS_IOT package in Oracle Database PL/SQL Packages and
Types Reference for information on the SQL scripts

– Oracle Database Performance Tuning Guide for information on
eliminating migrated and chained rows

View Constraints

Oracle does not enforce view constraints. However, operations on views are subject to
the integrity constraints defined on the underlying base tables. This means that you
can enforce constraints on views through constraints on base tables.

Notes on View Constraints

Chapter 8
constraint

8-22

View constraints are a subset of table constraints and are subject to the following restrictions:

• You can specify only unique, primary key, and foreign key constraints on views. However,
you can define the view using the WITH CHECK OPTION clause, which is equivalent to
specifying a check constraint for the view.

• View constraints are supported only in DISABLE NOVALIDATE mode. You cannot specify
any other mode. You must specify the keyword DISABLE when you declare the view
constraint. You need not specify NOVALIDATE explicitly, as it is the default.

• The RELY and NORELY parameters are optional. View constraints, because they are
unenforced, are usually specified with the RELY parameter to make them more useful.
The RELY or NORELY keyword must precede the DISABLE keyword.

• Because view constraints are not enforced directly, you cannot specify INITIALLY
DEFERRED or DEFERRABLE.

• You cannot specify the using_index_clause, the exceptions_clause clause, or the ON
DELETE clause of the references_clause.

• You cannot define view constraints on attributes of an object column.

External Table Constraints

Starting with Oracle Database 12c Release 2 (12.2), you can specify NOT NULL, unique,
primary key, and foreign key constraints on external tables.

NOT NULL constraints on external tables are enforced and prohibit columns from containing
nulls.

Unique, primary key, and foreign key constraints are supported on external tables only in
RELY DISABLE mode. You must specify the keywords RELY and DISABLE when you create
these constraints. These constraints are declarative and are not enforced. They can increase
query performance and reduce resource consumption because more optimizer
transformations can be taken into account. In order for the optimizer to utilize these RELY
DISABLE constraints, the QUERY_REWRITE_INTEGRITY initialization parameter must be set to
either trusted or stale_tolerated.

Examples

Unique Key Example

The following statement is a variation of the statement that created the sample table
sh.promotions. It defines inline and implicitly enables a unique key on the promo_id column
(other constraints are not shown):

CREATE TABLE promotions_var1
 (promo_id NUMBER(6)
 CONSTRAINT promo_id_u UNIQUE
 , promo_name VARCHAR2(20)
 , promo_category VARCHAR2(15)
 , promo_cost NUMBER(10,2)
 , promo_begin_date DATE
 , promo_end_date DATE
) ;

The constraint promo_id_u identifies the promo_id column as a unique key. This constraint
ensures that no two promotions in the table have the same ID. However, the constraint does
allow promotions without identifiers.

Chapter 8
constraint

8-23

Alternatively, you can define and enable this constraint out of line:

CREATE TABLE promotions_var2
 (promo_id NUMBER(6)
 , promo_name VARCHAR2(20)
 , promo_category VARCHAR2(15)
 , promo_cost NUMBER(10,2)
 , promo_begin_date DATE
 , promo_end_date DATE
 , CONSTRAINT promo_id_u UNIQUE (promo_id)
 USING INDEX PCTFREE 20
 TABLESPACE stocks
 STORAGE (INITIAL 8M));

The preceding statement also contains the using_index_clause, which specifies
storage characteristics for the index that Oracle creates to enable the constraint.

Composite Unique Key Example

The following statement defines and enables a composite unique key on the
combination of the warehouse_id and warehouse_name columns of the oe.warehouses
table:

ALTER TABLE warehouses
 ADD CONSTRAINT wh_unq UNIQUE (warehouse_id, warehouse_name)
 USING INDEX PCTFREE 5
 EXCEPTIONS INTO wrong_id;

The wh_unq constraint ensures that the same combination of warehouse_id and
warehouse_name values does not appear in the table more than once.

The ADD CONSTRAINT clause also specifies other properties of the constraint:

• The USING INDEX clause specifies storage characteristics for the index Oracle
creates to enable the constraint.

• The EXCEPTIONS INTO clause causes Oracle to write to the wrong_id table
information about any rows currently in the warehouses table that violate the
constraint. If the wrong_id exceptions table does not already exist, then this
statement will fail.

Primary Key Example

The following statement is a variation of the statement that created the sample table
hr.locations. It creates the locations_demo table and defines and enables a primary
key on the location_id column (other constraints from the hr.locations table are
omitted):

CREATE TABLE locations_demo
 (location_id NUMBER(4) CONSTRAINT loc_id_pk PRIMARY KEY
 , street_address VARCHAR2(40)
 , postal_code VARCHAR2(12)
 , city VARCHAR2(30)
 , state_province VARCHAR2(25)
 , country_id CHAR(2)
) ;

The loc_id_pk constraint, specified inline, identifies the location_id column as the
primary key of the locations_demo table. This constraint ensures that no two locations
in the table have the same location number and that no location identifier is NULL.

Chapter 8
constraint

8-24

Alternatively, you can define and enable this constraint out of line:

CREATE TABLE locations_demo
 (location_id NUMBER(4)
 , street_address VARCHAR2(40)
 , postal_code VARCHAR2(12)
 , city VARCHAR2(30)
 , state_province VARCHAR2(25)
 , country_id CHAR(2)
 , CONSTRAINT loc_id_pk PRIMARY KEY (location_id));

NOT NULL Example

The following statement alters the locations_demo table (created in "Primary Key Example")
to define and enable a NOT NULL constraint on the country_id column:

ALTER TABLE locations_demo
 MODIFY (country_id CONSTRAINT country_nn NOT NULL);

The constraint country_nn ensures that no location in the table has a null country_id.

Composite Primary Key Example

The following statement defines a composite primary key on the combination of the prod_id
and cust_id columns of the sample table sh.sales:

ALTER TABLE sales
 ADD CONSTRAINT sales_pk PRIMARY KEY (prod_id, cust_id) DISABLE;

This constraint identifies the combination of the prod_id and cust_id columns as the primary
key of the sales table. The constraint ensures that no two rows in the table have the same
combination of values for the prod_id column and cust_id columns.

The constraint clause (PRIMARY KEY) also specifies the following properties of the constraint:

• The constraint definition does not include a constraint name, so Oracle generates a name
for the constraint.

• The DISABLE clause causes Oracle to define the constraint but not enable it.

Foreign Key Constraint Example

The following statement creates the dept_20 table and defines and enables a foreign key on
the department_id column that references the primary key on the department_id column of
the departments table:

CREATE TABLE dept_20
 (employee_id NUMBER(4),
 last_name VARCHAR2(10),
 job_id VARCHAR2(9),
 manager_id NUMBER(4),
 hire_date DATE,
 salary NUMBER(7,2),
 commission_pct NUMBER(7,2),
 department_id CONSTRAINT fk_deptno
 REFERENCES departments(department_id));

The constraint fk_deptno ensures that all departments given for employees in the dept_20
table are present in the departments table. However, employees can have null department
numbers, meaning they are not assigned to any department. To ensure that all employees

Chapter 8
constraint

8-25

are assigned to a department, you could create a NOT NULL constraint on the
department_id column in the dept_20 table in addition to the REFERENCES constraint.

Before you define and enable this constraint, you must define and enable a constraint
that designates the department_id column of the departments table as a primary or
unique key.

The foreign key constraint definition does not use the FOREIGN KEY clause, because the
constraint is defined inline. The data type of the department_id column is not needed,
because Oracle automatically assigns to this column the data type of the referenced
key.

The constraint definition identifies both the parent table and the columns of the
referenced key. Because the referenced key is the primary key of the parent table, the
referenced key column names are optional.

Alternatively, you can define this foreign key constraint out of line:

CREATE TABLE dept_20
 (employee_id NUMBER(4),
 last_name VARCHAR2(10),
 job_id VARCHAR2(9),
 manager_id NUMBER(4),
 hire_date DATE,
 salary NUMBER(7,2),
 commission_pct NUMBER(7,2),
 department_id,
 CONSTRAINT fk_deptno
 FOREIGN KEY (department_id)
 REFERENCES departments(department_id));

The foreign key definitions in both variations of this statement omit the ON DELETE
clause, causing Oracle to prevent the deletion of a department if any employee works
in that department.

ON DELETE Example

This statement creates the dept_20 table, defines and enables two referential integrity
constraints, and uses the ON DELETE clause:

CREATE TABLE dept_20
 (employee_id NUMBER(4) PRIMARY KEY,
 last_name VARCHAR2(10),
 job_id VARCHAR2(9),
 manager_id NUMBER(4) CONSTRAINT fk_mgr
 REFERENCES employees ON DELETE SET NULL,
 hire_date DATE,
 salary NUMBER(7,2),
 commission_pct NUMBER(7,2),
 department_id NUMBER(2) CONSTRAINT fk_deptno
 REFERENCES departments(department_id)
 ON DELETE CASCADE);

Because of the first ON DELETE clause, if manager number 2332 is deleted from the
employees table, then Oracle sets to null the value of manager_id for all employees in
the dept_20 table who previously had manager 2332.

Because of the second ON DELETE clause, Oracle cascades any deletion of a
department_id value in the departments table to the department_id values of its
dependent rows of the dept_20 table. For example, if Department 20 is deleted from

Chapter 8
constraint

8-26

the departments table, then Oracle deletes all of the employees in Department 20 from the
dept_20 table.

Composite Foreign Key Constraint Example

The following statement defines and enables a foreign key on the combination of the
employee_id and hire_date columns of the dept_20 table:

ALTER TABLE dept_20
 ADD CONSTRAINT fk_empid_hiredate
 FOREIGN KEY (employee_id, hire_date)
 REFERENCES hr.job_history(employee_id, start_date)
 EXCEPTIONS INTO wrong_emp;

The constraint fk_empid_hiredate ensures that all the employees in the dept_20 table have
employee_id and hire_date combinations that exist in the employees table. Before you
define and enable this constraint, you must define and enable a constraint that designates
the combination of the employee_id and hire_date columns of the employees table as a
primary or unique key.

The EXCEPTIONS INTO clause causes Oracle to write information to the wrong_emp table about
any rows in the dept_20 table that violate the constraint. If the wrong_emp exceptions table
does not already exist, then this statement will fail.

Check Constraint Examples

The following statement creates a divisions table and defines a check constraint in each
column of the table:

CREATE TABLE divisions
 (div_no NUMBER CONSTRAINT check_divno
 CHECK (div_no BETWEEN 10 AND 99)
 DISABLE,
 div_name VARCHAR2(9) CONSTRAINT check_divname
 CHECK (div_name = UPPER(div_name))
 DISABLE,
 office VARCHAR2(10) CONSTRAINT check_office
 CHECK (office IN ('DALLAS','BOSTON',
 'PARIS','TOKYO'))
 DISABLE);

Each constraint restricts the values of the column in which it is defined:

• check_divno ensures that no division numbers are less than 10 or greater than 99.

• check_divname ensures that all division names are in uppercase.

• check_office restricts office locations to Dallas, Boston, Paris, or Tokyo.

Because each CONSTRAINT clause contains the DISABLE clause, Oracle only defines the
constraints and does not enable them.

The following statement creates the dept_20 table, defining out of line and implicitly enabling
a check constraint:

CREATE TABLE dept_20
 (employee_id NUMBER(4) PRIMARY KEY,
 last_name VARCHAR2(10),
 job_id VARCHAR2(9),
 manager_id NUMBER(4),
 salary NUMBER(7,2),

Chapter 8
constraint

8-27

 commission_pct NUMBER(7,2),
 department_id NUMBER(2),
 CONSTRAINT check_sal CHECK (salary * commission_pct <= 5000));

This constraint uses an inequality condition to limit an employee's total commission,
the product of salary and commission_pct, to $5000:

• If an employee has non-null values for both salary and commission, then the
product of these values must not exceed $5000 to satisfy the constraint.

• If an employee has a null salary or commission, then the result of the condition is
unknown and the employee automatically satisfies the constraint.

Because the constraint clause in this example does not supply a constraint name,
Oracle generates a name for the constraint.

The following statement defines and enables a primary key constraint, two foreign key
constraints, a NOT NULL constraint, and two check constraints:

CREATE TABLE order_detail
 (CONSTRAINT pk_od PRIMARY KEY (order_id, part_no),
 order_id NUMBER
 CONSTRAINT fk_oid
 REFERENCES oe.orders(order_id),
 part_no NUMBER
 CONSTRAINT fk_pno
 REFERENCES oe.product_information(product_id),
 quantity NUMBER
 CONSTRAINT nn_qty NOT NULL
 CONSTRAINT check_qty CHECK (quantity > 0),
 cost NUMBER
 CONSTRAINT check_cost CHECK (cost > 0));

The constraints enable the following rules on table data:

• pk_od identifies the combination of the order_id and part_no columns as the
primary key of the table. To satisfy this constraint, no two rows in the table can
contain the same combination of values in the order_id and the part_no columns,
and no row in the table can have a null in either the order_id or the part_no
column.

• fk_oid identifies the order_id column as a foreign key that references the
order_id column in the orders table in the sample schema oe. All new values
added to the column order_detail.order_id must already appear in the column
oe.orders.order_id.

• fk_pno identifies the product_id column as a foreign key that references the
product_id column in the product_information table owned by oe. All new
values added to the column order_detail.product_id must already appear in the
column oe.product_information.product_id.

• nn_qty forbids nulls in the quantity column.

• check_qty ensures that values in the quantity column are always greater than
zero.

• check_cost ensures the values in the cost column are always greater than zero.

This example also illustrates the following points about constraint clauses and column
definitions:

Chapter 8
constraint

8-28

• Out-of-line constraint definition can appear before or after the column definitions. In this
example, the out-of-line definition of the pk_od constraint precedes the column
definitions.

• A column definition can contain multiple inline constraint definitions. In this example, the
definition of the quantity column contains the definitions of both the nn_qty and
check_qty constraints.

• A table can have multiple CHECK constraints. Multiple CHECK constraints, each with a
simple condition enforcing a single business rule, are preferable to a single CHECK
constraint with a complicated condition enforcing multiple business rules. When a
constraint is violated, Oracle returns an error identifying the constraint. Such an error
more precisely identifies the violated business rule if the identified constraint enables a
single business rule.

Case-Insensitive Constraints Example

The following statements create two tables in a parent-child relationship. The parent table is a
product description table and the child table is a product component description table. Unique
constraints are defined to assure that product and description values are unambiguous. For
illustrative purposes, the product and component ID are case-insensitive character values. (In
real-world applications, primary key IDs are usually numeric or case-normalized.)

CREATE TABLE products
 (product_id VARCHAR2(20) COLLATE BINARY_CI
 CONSTRAINT product_pk PRIMARY KEY
 , description VARCHAR2(1000) COLLATE BINARY_CI
 CONSTRAINT product_description_unq UNIQUE
);

CREATE TABLE product_components
 (component_id VARCHAR2(40) COLLATE BINARY_CI
 CONSTRAINT product_component_pk PRIMARY KEY
 , product_id CONSTRAINT product_component_fk REFERENCES products(product_id)
 , description VARCHAR2(1000) COLLATE BINARY_CI
 CONSTRAINT product_component_descr_unq UNIQUE
);

Note that if you do not specify the data type or the collation for a foreign key column, then
they are inherited from the parent key column.

The following statements add a product and its components into the tables:

INSERT INTO products(product_id, description)
 VALUES('BICY0001', 'Men''s bicycle, fr 21", wh 24", gear 3x7');
INSERT INTO product_components(component_id, product_id, description)
 VALUES('BICY0001_FRAME01', 'BICY0001', 'Aluminium frame 21"');
INSERT INTO product_components(component_id, product_id, description)
 VALUES('BICY0001_WHEEL01', 'bicy0001', 'Wheels 24"');
INSERT INTO product_components(component_id, product_id, description)
 VALUES('BICY0001_GEAR01', 'Bicy0001', 'Front derailleur 3 chainrings');
INSERT INTO product_components(component_id, product_id, description)
 VALUES('BICY0001_gear02', 'BiCy0001', 'Rear derailleur 7 chainrings');

Note the different case of the product ID in different component rows. Because the primary
key on the product ID is declared as case-insensitive, all possible letter case combinations of
the same ID are considered equal.

Chapter 8
constraint

8-29

The following statement demonstrates that it is not possible to enter another product
with the same description differing only by case. It fails with the error ORA-00001:
unique constraint (schema.PRODUCT_DESCRIPTION_UNQ) violated.

INSERT INTO products(product_id, description)
 VALUES('BICY0002', 'MEN''S BICYCLE, fr 21", wh 24", gear 3x7');

Similarly, the following statement demonstrates that the primary key contraint of the
product table is case-insensitive and does not allow values differing only by case. It
fails with the error ORA-00001: unique constraint (schema.PRODUCT_PK) violated.

INSERT INTO products(component_id, product_id, description)
 VALUES('bicy0001', 'Women''s bicycle, fr 21", wh 24", gear 2x6');

The following statement demonstrates that it is not possible to enter another
component with the same description differing only by case. It fails with the error
ORA-00001: unique constraint (schema.PRODUCT_COMPONENT_DESCR_UNQ) violated.

INSERT INTO product_components(component_id, product_id, description)
 VALUES('BICY0001_gear03', 'BiCy0001', 'REAR DERAILLEUR 7
CHAINRINGS');

Attribute-Level Constraints Example

The following example guarantees that a value exists for both the first_name and
last_name attributes of the name column in the students table:

CREATE TYPE person_name AS OBJECT
 (first_name VARCHAR2(30), last_name VARCHAR2(30));
/

CREATE TABLE students (name person_name, age INTEGER,
 CHECK (name.first_name IS NOT NULL AND
 name.last_name IS NOT NULL));

REF Constraint Examples

The following example creates a duplicate of the sample schema object type
cust_address_typ, and then creates a table containing a REF column with a SCOPE
constraint:

CREATE TYPE cust_address_typ_new AS OBJECT
 (street_address VARCHAR2(40)
 , postal_code VARCHAR2(10)
 , city VARCHAR2(30)
 , state_province VARCHAR2(10)
 , country_id CHAR(2)
);
/
CREATE TABLE address_table OF cust_address_typ_new;

CREATE TABLE customer_addresses (
 add_id NUMBER,
 address REF cust_address_typ_new
 SCOPE IS address_table);

The following example creates the same table but with a referential integrity constraint
on the REF column that references the object identifier column of the parent table:

Chapter 8
constraint

8-30

CREATE TABLE customer_addresses (
 add_id NUMBER,
 address REF cust_address_typ REFERENCES address_table);

The following example uses the type department_typ and the table departments_obj_t,
created in "Creating Object Tables: Examples". A table with a scoped REF is then created.

CREATE TABLE employees_obj
 (e_name VARCHAR2(100),
 e_number NUMBER,
 e_dept REF department_typ SCOPE IS departments_obj_t);

The following statement creates a table with a REF column which has a referential integrity
constraint defined on it:

CREATE TABLE employees_obj
 (e_name VARCHAR2(100),
 e_number NUMBER,
 e_dept REF department_typ REFERENCES departments_obj_t);

Explicit Index Control Example

The following statement shows another way to create a unique (or primary key) constraint
that gives you explicit control over the index (or indexes) Oracle uses to enforce the
constraint:

CREATE TABLE promotions_var3
 (promo_id NUMBER(6)
 , promo_name VARCHAR2(20)
 , promo_category VARCHAR2(15)
 , promo_cost NUMBER(10,2)
 , promo_begin_date DATE
 , promo_end_date DATE
 , CONSTRAINT promo_id_u UNIQUE (promo_id, promo_cost)
 USING INDEX (CREATE UNIQUE INDEX promo_ix1
 ON promotions_var3 (promo_id, promo_cost))
 , CONSTRAINT promo_id_u2 UNIQUE (promo_cost, promo_id)
 USING INDEX promo_ix1);

This example also shows that you can create an index for one constraint and use that index
to create and enable another constraint in the same statement.

DEFERRABLE Constraint Examples

The following statement creates table games with a NOT DEFERRABLE INITIALLY IMMEDIATE
constraint check (by default) on the scores column:

CREATE TABLE games (scores NUMBER CHECK (scores >= 0));

To define a unique constraint on a column as INITIALLY DEFERRED DEFERRABLE, issue the
following statement:

CREATE TABLE games
 (scores NUMBER, CONSTRAINT unq_num UNIQUE (scores)
 INITIALLY DEFERRED DEFERRABLE);

Chapter 8
constraint

8-31

deallocate_unused_clause
Purpose

Use the deallocate_unused_clause to explicitly deallocate unused space at the end
of a database object segment and make the space available for other segments in the
tablespace.

You can deallocate unused space using the following statements:

• ALTER CLUSTER (see ALTER CLUSTER)
• ALTER INDEX: to deallocate unused space from the index, an index partition, or an

index subpartition (see ALTER INDEX)
• ALTER MATERIALIZED VIEW: to deallocate unused space from the overflow segment

of an index-organized materialized view (see ALTER MATERIALIZED VIEW)

• ALTER TABLE: to deallocate unused space from the table, a table partition, a table
subpartition, the mapping table of an index-organized table, the overflow segment
of an index-organized table, or a LOB storage segment (see ALTER TABLE)

Syntax

deallocate_unused_clause::=

DEALLOCATE UNUSED

KEEP size_clause

(size_clause::=)

Semantics

This section describes the semantics of the deallocate_unused_clause. For additional
information, refer to the SQL statement in which you set or reset this clause for a
particular database object.

You cannot specify both the deallocate_unused_clause and the
allocate_extent_clause in the same statement.

Oracle Database frees only unused space above the high water mark (the point
beyond which database blocks have not yet been formatted to receive data). Oracle
deallocates unused space beginning from the end of the object and moving toward the
beginning of the object to the high water mark.

If an extent is completely contained in the deallocation, then the whole extent is freed
for reuse. If an extent is partially contained in the deallocation, then the used part up to
the high water mark becomes the extent, and the remaining unused space is freed for
reuse.

Oracle credits the amount of the released space to the user quota for the tablespace in
which the deallocation occurs.

Chapter 8
deallocate_unused_clause

8-32

The exact amount of space freed depends on the values of the INITIAL, MINEXTENTS, and
NEXT storage parameters. Refer to the storage_clause for a description of these parameters.

KEEP integer

Specify the number of bytes above the high water mark that the segment of the database
object is to have after deallocation.

• If you omit KEEP and the high water mark is above the size of INITIAL and MINEXTENTS,
then all unused space above the high water mark is freed. When the high water mark is
less than the size of INITIAL or MINEXTENTS, then all unused space above MINEXTENTS is
freed.

• If you specify KEEP, then the specified amount of space is kept and the remaining space
is freed. When the remaining number of extents is less than MINEXTENTS, then Oracle
adjusts MINEXTENTS to the new number of extents. If the initial extent becomes smaller
than INITIAL, then Oracle adjusts INITIAL to the new size.

• In either case, Oracle sets the value of the NEXT storage parameter to the size of the last
extent that was deallocated.

file_specification
Purpose

Use one of the file_specification forms to specify a file as a data file or temp file, or to
specify a group of one or more files as a redo log file group. If you are storing your files in
Oracle Automatic Storage Management (Oracle ASM) disk groups, then you can further
specify the file as a disk group file.

A file_specification can appear in the following statements:

• CREATE CONTROLFILE (see CREATE CONTROLFILE)

• CREATE DATABASE (see CREATE DATABASE)

• ALTER DATABASE (see ALTER DATABASE)

• CREATE TABLESPACE (see CREATE TABLESPACE)

• ALTER TABLESPACE (see ALTER TABLESPACE)

• ALTER DISKGROUP (see ALTER DISKGROUP)

Prerequisites

You must have the privileges necessary to issue the statement in which the file specification
appears.

Syntax

file_specification::=

datafile_tempfile_spec

redo_log_file_spec

Chapter 8
file_specification

8-33

datafile_tempfile_spec::=

’

filename

ASM_filename

’

SIZE size_clause REUSE autoextend_clause

(size_clause::=)

redo_log_file_spec::=

’
filename

ASM_filename
’

(’
filename

ASM_filename
’

,

)

SIZE size_clause BLOCKSIZE size_clause REUSE

(size_clause::=)

ASM_filename::=

fully_qualified_file_name

numeric_file_name

incomplete_file_name

alias_file_name

fully_qualified_file_name::=

+ diskgroup_name / db_name / file_type / file_type_tag . filenumber . incarnation_number

numeric_file_name::=

+ diskgroup_name . filenumber . incarnation_number

Chapter 8
file_specification

8-34

incomplete_file_name::=

+ diskgroup_name

(template_name)

alias_file_name::=

+ diskgroup_name

(template_name)

/ alias_name

autoextend_clause::=

AUTOEXTEND

OFF

ON

NEXT size_clause maxsize_clause

(size_clause::=)

maxsize_clause::=

MAXSIZE

UNLIMITED

size_clause

(size_clause::=)

Semantics

This section describes the semantics of file_specification. For additional information,
refer to the SQL statement in which you specify a data file, temp file, redo log file, or Oracle
ASM disk group or disk group file.

datafile_tempfile_spec

Use this clause to specify the attributes of data files and temp files if your database storage is
in a file system or in Oracle ASM disk groups.

redo_log_file_spec

Use this clause to specify the attributes of redo log files if your database storage is in a file
system or in Oracle ASM disk groups.

filename

Use filename for files stored in a file system. The filename can specify either a new file or
an existing file. For a new file:

Chapter 8
file_specification

8-35

• If you are not using Oracle Managed Files, then you must specify both filename
and the SIZE clause or the statement fails. When you specify a filename without a
size, Oracle attempts to reuse an existing file and returns an error if the file does
not exist.

• If you are using Oracle Managed Files, then filename is optional, as are the
remaining clauses of the specification. In this case, Oracle Database creates a
unique name for the file and saves it in the directory specified by one of the
following initialization parameters:

– The DB_RECOVERY_FILE_DEST (for logfiles and control files)

– The DB_CREATE_FILE_DEST initialization parameter (for any type of file)

– The DB_CREATE_ONLINE_LOG_DEST_n initialization parameter, which takes
precedence over DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST for log
files.

For an existing file, specify the name of either a data file, temp file, or a redo log file
member. The filename can contain only single-byte characters from 7-bit ASCII or
EBCDIC character sets. Multibyte characters are not valid.

The filename can include a path prefix. If you do not specify such a path prefix, then
the database adds the path prefix for the default storage location, which is platform
dependent.

A redo log file group can have one or more members (copies). Each filename must be
fully specified according to the conventions for your operating system.

The way the database interprets filename also depends on whether you specify it with
the SIZE and REUSE clauses.

• If you specify filename only, or with the REUSE clause but without the SIZE clause,
then the file must already exist.

• If you specify filename with SIZE but without REUSE, then the file must be a new
file.

• If you specify filename with both SIZE and REUSE, then the file can be either new
or existing. If the file exists, then it is reused with the new size. If it does not exist,
then the database ignores the REUSE keyword and creates a new file of the
specified size.

See Also:

Oracle Automatic Storage Management Administrator's Guide for more
information on Oracle Managed Files, "Specifying a Data File: Example", and
"Specifying a Log File: Example"

ASM_filename

Use a form of ASM_filename for files stored in Oracle ASM disk groups. You can create
or refer to data files, temp files, and redo log files with this syntax.

All forms of ASM_filename begin with the plus sign (+) followed by the name of the disk
group. You can determine the names of all Oracle ASM disk groups by querying the
V$ASM_DISKGROUP view.

Chapter 8
file_specification

8-36

See Also:

Oracle Automatic Storage Management Administrator's Guide for information on
using Oracle ASM

fully_qualified_file_name

When you create a file in an Oracle ASM disk group, the file receives a system-generated
fully qualified Oracle ASM filename. You can use this form only when referring to an existing
Oracle ASM file. Therefore, if you are using this form during file creation, you must also
specify REUSE.

• db_name is the value of the DB_UNIQUE_NAME initialization parameter. This name is
equivalent to the name of the database on which the file resides, but the parameter
distinguishes between primary and standby databases, if both exist.

• file_type and file_type_tag indicate the type of database file. Table 8-1 lists all of the
file types and their corresponding Oracle ASM tags.

• filenumber and incarnation_number are system-generated identifiers to guarantee
uniqueness.

You can determine the fully qualified names of Oracle ASM files by querying the dynamic
performance view appropriate for the file type (for example V$DATAFILE for data files,
V$CONTROLFILE for control files, and so on). You can also obtain the filenumber and
incarnation_number portions of the fully qualified names by querying the V$ASM_FILE view.

Table 8-1 Oracle File Types and Oracle ASM File Type Tags

Oracle ASM file_type Description Oracle ASM file_type_tag Comments

CONTROLFILE Control files and backup
control files

Current

Backup

—

DATAFILE Data files and data file
copies

tsname Tablespace into which the
file is added

ONLINELOG Online logs group_group# —

ARCHIVELOG Archive logs thread_thread#_seq_se
quence#

—

TEMPFILE Temp files tsname Tablespace into which the
file is added

BACKUPSET Data file and archive log
backup pieces; data file
incremental backup pieces

hasspfile_timestamp hasspfile can take one of
two values: s indicates that
the backup set includes the
spfile; n indicates that
the backup set does not
include the spfile.

PARAMETERFILE Persistent parameter files spfile —

DATAGUARDCONFIG Data Guard configuration
file

db_unique_name Data Guard uses the value
of the DB_UNIQUE_NAME
initialization parameter.

FLASHBACK Flashback logs log_log# —

Chapter 8
file_specification

8-37

Table 8-1 (Cont.) Oracle File Types and Oracle ASM File Type Tags

Oracle ASM file_type Description Oracle ASM file_type_tag Comments

CHANGETRACKING Block change tracking data ctf Used during incremental
backups

DUMPSET Data Pump dumpset user_obj#_file# Dump set files encode the
user name, the job number
that created the dump set,
and the file number as part
of the tag.

XTRANSPORT Data file convert tsname —

AUTOBACKUP Automatic backup files hasspfile_timestamp hasspfile can take one of
two values: s indicates that
the backup set includes the
spfile; n indicates that
the backup set does not
include the spfile.

numeric_file_name

A numeric Oracle ASM filename is similar to a fully qualified filename except that it
uses only the unique filenumber.incarnation_number string. You can use this form
only to refer to an existing file. Therefore, if you are using this form during file creation,
you must also specify REUSE.

incomplete_file_name

Incomplete Oracle ASM filenames are used during file creation only. If you specify the
disk group name alone, then Oracle ASM uses the appropriate default template for the
file type. For example, if you are creating a data file in a CREATE TABLESPACE statement,
Oracle ASM uses the default DATAFILE template to create an Oracle ASM data file. If
you specify the disk group name with a template, then Oracle ASM uses the specified
template to create the file. In both cases, Oracle ASM also creates a fully qualified
filename.

template_name

A template is a named collection of attributes. You can create templates and apply
them to files in a disk group. You can determine the names of all Oracle ASM template
names by querying the V$ASM_TEMPLATE data dictionary view. Refer to
diskgroup_template_clauses for instructions on creating Oracle ASM templates.

You can specify template only during file creation. It appears in the incomplete and
alias name forms of the ASM_filename diagram:

• If you specify template immediately after the disk group name, then Oracle ASM
uses the specified template to create the file, and gives the file a fully qualified
filename.

• If you specify template after specifying an alias, then Oracle ASM uses the
specified template to create the file, gives the file a fully qualified filename, and
also creates the alias so that you can subsequently use it to refer to the file. If the
alias you specify refers to an existing file, then Oracle ASM ignores the template
specification unless you also specify REUSE.

Chapter 8
file_specification

8-38

See Also:

diskgroup_template_clauses for information about the default templates

alias_file_name

An alias is a user-friendly name for an Oracle ASM file. You can use alias filenames during
file creation or reference. You can specify a template with an alias, but only during file
creation. To determine the alias names for Oracle ASM files, query the V$ASM_ALIAS data
dictionary view.

If you are specifying an alias during file creation, then refer to diskgroup_directory_clauses
and diskgroup_alias_clauses for instructions on specifying the full alias name.

SIZE Clause

Specify the size of the file in bytes. Use K, M, G, or T to specify the size in kilobytes,
megabytes, gigabytes, or terabytes.

• For undo tablespaces, you must specify the SIZE clause for each data file. For other
tablespaces, you can omit this parameter if the file already exists, or if you are creating
an Oracle Managed File.

• If you omit this clause when creating an Oracle Managed File, then Oracle creates a
100M file.

• The size of a tablespace must be one block greater than the sum of the sizes of the
objects contained in it.

See Also:

Oracle Database Administrator's Guide for information on automatic undo
management and undo tablespaces and "Adding a Log File: Example"

BLOCKSIZE Clause

Specify BLOCKSIZE to override the operating system-dependent sector size. If you omit this
clause, then the database uses the operating system-dependent sector size as the block
size.

When you add a redo log file to a 512-byte sector disk or to a 4KB sector disk with 512-byte
emulation, the blocksize of the new file must be the original platform base block size or 4KB.

• If the redo log file is being added to a 512-byte sector disk, then you must specify 512 or
1024 (or 1K) as the block size, depending on your platform.

• If the redo log file is being added to a 4KB sector disk (native), then you must specify
either 4096 or 4K as the block size.

• If the redo log file is being added to a 4KB sector disk with 512-byte emulation, then you
can specify either 512, 1024 (or 1K), or 4096 (or 4K) as the block size, depending on
your platform.

All logs within a log group must have the same block size. Two log groups created on
separate disks can have different block sizes. However, the mixed configuration introduces

Chapter 8
file_specification

8-39

overhead at every log switch. Oracle recommends that you create all log files with the
same block size.

This clause is useful when the 4K sector size is in use, but you want to optimize disk
space use rather than performance. In such a case you can override the operating
system sector size by specifying BLOCKSIZE 512 or, for HP-UX, BLOCKSIZE 1024.

See Also:

"Adding a Log File: Example"

REUSE

Specify REUSE to allow Oracle to reuse an existing file.

• If the file already exists, then Oracle reuses the filename and applies the new size
(if you specify SIZE) or retains the original size.

• If the file does not exist, then Oracle ignores this clause and creates the file.

Restriction on the REUSE Clause

You cannot specify REUSE unless you have specified filename.

Whenever Oracle uses an existing file, the previous contents of the file are lost.

See Also:

"Adding a Data File: Example" and "Adding a Log File: Example"

autoextend_clause

The autoextend_clause is valid for data files and temp files but not for redo log files.
Use this clause to enable or disable the automatic extension of a new or existing data
file or temp file. If you omit this clause, then:

• For Oracle Managed Files:

– If you specify SIZE, then Oracle Database creates a file of the specified size
with AUTOEXTEND disabled.

– If you do not specify SIZE, then the database creates a 100M file with
AUTOEXTEND enabled. When autoextension is required, the database extends
the file by its original size or 100MB, whichever is smaller. You can override
this default behavior by specifying the NEXT clause.

• For user-managed files, with or without SIZE specified, Oracle creates a file with
AUTOEXTEND disabled.

ON

Specify ON to enable autoextend.

OFF

Chapter 8
file_specification

8-40

Specify OFF to turn off autoextend if is turned on. When you turn off autoextend, the values of
NEXT and MAXSIZE are set to zero. If you turn autoextend back on in a subsequent statement,
then you must reset these values.

NEXT

Use the NEXT clause to specify the size in bytes of the next increment of disk space to be
allocated automatically when more extents are required. The default is the size of one data
block.

MAXSIZE

Use the MAXSIZE clause to specify the maximum disk space allowed for automatic extension
of the data file.

UNLIMITED

Use the UNLIMITED clause if you do not want to limit the disk space that Oracle can allocate to
the data file or temp file.

Restriction on the autoextend_clause

You cannot specify this clause as part of the datafile_tempfile_spec in a CREATE
CONTROLFILE statement or in an ALTER DATABASE CREATE DATAFILE clause.

Examples

Specifying a Log File: Example

The following statement creates a database named payable that has two redo log file groups,
each with two members, and one data file:

CREATE DATABASE payable
 LOGFILE GROUP 1 ('diska:log1.log', 'diskb:log1.log') SIZE 50K,
 GROUP 2 ('diska:log2.log', 'diskb:log2.log') SIZE 50K
 DATAFILE 'diskc:dbone.dbf' SIZE 30M;

The first file specification in the LOGFILE clause specifies a redo log file group with the GROUP
value 1. This group has members named 'diska:log1.log' and 'diskb:log1.log', each 50
kilobytes in size.

The second file specification in the LOGFILE clause specifies a redo log file group with the
GROUP value 2. This group has members named 'diska:log2.log' and 'diskb:log2.log', also
50 kilobytes in size.

The file specification in the DATAFILE clause specifies a data file named 'diskc:dbone.dbf',
30 megabytes in size.

Each file specification specifies a value for the SIZE parameter and omits the REUSE clause,
so none of these files can already exist. Oracle must create them.

Adding a Log File: Example

The following statement adds another redo log file group with two members to the payable
database:

ALTER DATABASE payable
 ADD LOGFILE GROUP 3 ('diska:log3.log', 'diskb:log3.log')
 SIZE 50K REUSE;

Chapter 8
file_specification

8-41

The file specification in the ADD LOGFILE clause specifies a new redo log file group with
the GROUP value 3. This new group has members named 'diska:log3.log' and
'diskb:log3.log', each 50 kilobytes in size. Because the file specification specifies the
REUSE clause, each member can (but need not) already exist.

The following statement adds a logfile group 5 with member log files on migration
target disks 4k_disk_a and 4k_disk_b. After executing this statement, you can switch
existing log files on disks with 512-byte block size to logs with 4K block size using the
switch_logfile_clause.

ALTER DATABASE ADD LOGFILE GROUP 5
 ('4k_disk_a:log5.log', '4k_disk_b:log5.log')
 SIZE 100M BLOCKSIZE 4096 REUSE;

Specifying a Data File: Example

The following statement creates a tablespace named stocks that has three data files:

CREATE TABLESPACE stocks
 DATAFILE 'stock1.dbf' SIZE 10M,
 'stock2.dbf' SIZE 10M,
 'stock3.dbf' SIZE 10M;

The file specifications for the data files specify files named 'diskc:stock1.dbf',
'diskc:stock2.dbf', and 'diskc:stock3.dbf'.

Adding a Data File: Example

The following statement alters the stocks tablespace and adds a new data file:

ALTER TABLESPACE stocks
 ADD DATAFILE 'stock4.dbf' SIZE 10M REUSE;

The file specification specifies a data file named 'stock4.dbf'. If the filename does not
exist, then Oracle simply ignores the REUSE keyword.

Using a Fully Qualified Oracle ASM Data File Name: Example

When using Oracle ASM, the following syntax shows how to use the
fully_qualified_file_name clause to bring online a data file in a hypothetical
database, testdb:

ALTER DATABASE testdb
 DATAFILE '+dgroup_01/testdb/datafile/system.261.1' ONLINE;

logging_clause
Purpose

The logging_clause lets you specify whether certain DML operations will be logged in
the redo log file (LOGGING) or not (NOLOGGING).

You can specify the logging_clause in the following statements:

• CREATE TABLE and ALTER TABLE: for logging of the table, a table partition, a LOB
segment, or the overflow segment of an index-organized table (see CREATE
TABLE and ALTER TABLE).

Chapter 8
logging_clause

8-42

Note:

Logging specified for a LOB column can differ from logging set at the table
level. If you specify LOGGING at the table level and NOLOGGING for a LOB column,
then DML changes to the base table row are logged, but DML changes to the
LOB data are not logged.

• CREATE INDEX and ALTER INDEX: for logging of the index or an index partition (see
CREATE INDEX and ALTER INDEX).

• CREATE MATERIALIZED VIEW and ALTER MATERIALIZED VIEW: for logging of the materialized
view, one of its partitions, or a LOB segment (see CREATE MATERIALIZED VIEW and
ALTER MATERIALIZED VIEW).

• CREATE MATERIALIZED VIEW LOG and ALTER MATERIALIZED VIEW LOG: for logging of the
materialized view log or one of its partitions (see CREATE MATERIALIZED VIEW LOG
and ALTER MATERIALIZED VIEW LOG).

• CREATE TABLESPACE and ALTER TABLESPACE: to set or modify the default logging
characteristics for all objects created in the tablespace (see CREATE TABLESPACE and
ALTER TABLESPACE).

• CREATE PLUGGABLE DATABASE and ALTER PLUGGABLE DATABASE: to set or modify the default
logging characteristics for all tablespaces created in the pluggable database (PDB) (see
CREATE PLUGGABLE DATABASE and ALTER PLUGGABLE DATABASE).

You can also specify LOGGING or NOLOGGING for the following operations:

• Rebuilding an index (using CREATE INDEX ... REBUILD)

• Moving a table (using ALTER TABLE ... MOVE)

Syntax

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

Semantics

This section describes the semantics of the logging_clause. For additional information, refer
to the SQL statement in which you set or reset logging characteristics for a particular
database object.

• If you specify LOGGING, then the creation of a database object, as well as subsequent
inserts into the object, will be logged in the redo log file.

• If you specify NOLOGGING, then the creation of a database object, as well as subsequent
conventional inserts, will be logged in the redo log file. Direct-path inserts will not be
logged.

– For a nonpartitioned object, the value specified for this clause is the actual physical
attribute of the segment associated with the object.

Chapter 8
logging_clause

8-43

– For partitioned objects, the value specified for this clause is the default
physical attribute of the segments associated with all partitions specified in the
CREATE statement (and in subsequent ALTER ... ADD PARTITION statements),
unless you specify the logging attribute in the PARTITION description.

– For SecureFiles LOBs, the NOLOGGING setting is converted internally to
FILESYSTEM_LIKE_LOGGING.

– CACHE NOLOGGING is not allowed for BasicFiles LOBs.

• The FILESYSTEM_LIKE_LOGGING clause is valid only for logging of SecureFiles LOB
segments. You cannot specify this setting for BasicFiles LOBs. Specify this setting
if you want to log only metadata changes. This setting is similar to the metadata
journaling of file systems, which reduces mean time to recovery from failures. The
LOGGING setting, for SecureFiles LOBs, is similar to the data journaling of file
systems. Both the LOGGING and FILESYSTEM_LIKE_LOGGING settings provide a
complete transactional file system by way of SecureFiles.

Note:

For LOB segments, with the NOLOGGING and FILESYSTEM_LIKE_LOGGING
settings it is possible for data to be changed on disk during a backup
operation, resulting in an inconsistent backup. To avoid this situation, ensure
that changes to LOB segments are saved in the redo log file by setting
LOGGING for LOB storage. Alternatively, change the database to FORCE
LOGGING mode so that changes to all LOB segments are saved in the redo.

If the object for which you are specifying the logging attributes resides in a database or
tablespace in force logging mode, then Oracle Database ignores any NOLOGGING
setting until the database or tablespace is taken out of force logging mode.

If the database is running in ARCHIVELOG mode, then media recovery from a backup
made before the LOGGING operation re-creates the object. However, media recovery
from a backup made before the NOLOGGING operation does not re-create the object.

The size of a redo log generated for an operation in NOLOGGING mode is significantly
smaller than the log generated in LOGGING mode.

In NOLOGGING mode, data is modified with minimal logging (to mark new extents
INVALID and to record dictionary changes). When applied during media recovery, the
extent invalidation records mark a range of blocks as logically corrupt, because the
redo data is not fully logged. Therefore, if you cannot afford to lose the database
object, then you should take a backup after the NOLOGGING operation.

NOLOGGING is supported in only a subset of the locations that support LOGGING. Only the
following operations support the NOLOGGING mode:

DML:

• Direct-path INSERT (serial or parallel) resulting either from an INSERT or a MERGE
statement. NOLOGGING is not applicable to any UPDATE operations resulting from the
MERGE statement.

• Direct Loader (SQL*Loader)

Chapter 8
logging_clause

8-44

DDL:

• CREATE TABLE ... AS SELECT (In NOLOGGING mode, the creation of the table will be logged,
but direct-path inserts will not be logged.)

• CREATE TABLE ... LOB_storage_clause ... LOB_parameters ... CACHE | NOCACHE | CACHE
READS

• ALTER TABLE ... LOB_storage_clause ... LOB_parameters ... CACHE | NOCACHE | CACHE READS
(to specify logging of newly created LOB columns)

• ALTER TABLE ... modify_LOB_storage_clause ... modify_LOB_parameters ... CACHE |
NOCACHE | CACHE READS (to change logging of existing LOB columns)

• ALTER TABLE ... MOVE
• ALTER TABLE ... (all partition operations that involve data movement)

– ALTER TABLE ... ADD PARTITION (hash partition only)

– ALTER TABLE ... MERGE PARTITIONS
– ALTER TABLE ... SPLIT PARTITION
– ALTER TABLE ... MOVE PARTITION
– ALTER TABLE ... MODIFY PARTITION ... ADD SUBPARTITION
– ALTER TABLE ... MODIFY PARTITION ... COALESCE SUBPARTITION

• CREATE INDEX
• ALTER INDEX ... REBUILD
• ALTER INDEX ... REBUILD [SUB]PARTITION
• ALTER INDEX ... SPLIT PARTITION
For objects other than LOBs, if you omit this clause, then the logging attribute of the object
defaults to the logging attribute of the tablespace in which it resides.

For LOBs, if you omit this clause, then:

• If you specify CACHE, then LOGGING is used (because you cannot have CACHE NOLOGGING).

• If you specify NOCACHE or CACHE READS, then the logging attribute defaults to the logging
attribute of the tablespace in which it resides.

NOLOGGING does not apply to LOBs that are stored internally (in the table with row data). If you
specify NOLOGGING for LOBs with values less than 4000 bytes and you have not disabled
STORAGE IN ROW, then Oracle ignores the NOLOGGING specification and treats the LOB data the
same as other table data.

parallel_clause
Purpose

The parallel_clause lets you parallelize the creation of a database object and set the
default degree of parallelism for subsequent queries of and DML operations on the object.

You can specify the parallel_clause in the following statements:

• CREATE TABLE: to set parallelism for the table (see CREATE TABLE).

Chapter 8
parallel_clause

8-45

• ALTER TABLE (see ALTER TABLE):

– To change parallelism for the table

– To parallelize the operations of adding, coalescing, exchanging, merging,
splitting, truncating, dropping, or moving a table partition

• CREATE CLUSTER and ALTER CLUSTER: to set or alter parallelism for a cluster (see
CREATE CLUSTER and ALTER CLUSTER).

• CREATE INDEX: to set parallelism for the index (see CREATE INDEX).

• ALTER INDEX (see ALTER INDEX):

– To change parallelism for the index

– To parallelize the rebuilding of the index or the splitting of an index partition

• CREATE MATERIALIZED VIEW: to set parallelism for the materialized view (see
CREATE MATERIALIZED VIEW).

• ALTER MATERIALIZED VIEW (see ALTER MATERIALIZED VIEW):

– To change parallelism for the materialized view

– To parallelize the operations of adding, coalescing, exchanging, merging,
splitting, truncating, dropping, or moving a materialized view partition

– To parallelize the operations of adding or moving materialized view
subpartitions

• CREATE MATERIALIZED VIEW LOG: to set parallelism for the materialized view log
(see CREATE MATERIALIZED VIEW LOG).

• ALTER MATERIALIZED VIEW LOG (see ALTER MATERIALIZED VIEW LOG):

– To change parallelism for the materialized view log

– To parallelize the operations of adding, coalescing, exchanging, merging,
splitting, truncating, dropping, or moving a materialized view log partition

• ALTER DATABASE ... RECOVER: to recover the database (see ALTER DATABASE).

• ALTER DATABASE ... standby_database_clauses: to parallelize operations on the
standby database (see ALTER DATABASE).

See Also:

Oracle Database PL/SQL Packages and Types Reference for information on
the DBMS_PARALLEL_EXECUTE package, which provides methods to apply table
changes in chunks of rows. Changes to each chunk are independently
committed when there are no errors.

Syntax

parallel_clause::=

NOPARALLEL

PARALLEL

integer

Chapter 8
parallel_clause

8-46

Semantics

This section describes the semantics of the parallel_clause. For additional information,
refer to the SQL statement in which you set or reset parallelism for a particular database
object or operation.

Note:

The syntax of the parallel_clause supersedes syntax appearing in earlier
releases of Oracle. The superseded syntax is still supported for backward
compatibility, but may result in slightly different behavior from that documented.

The database interprets the parallel_clause based on the setting of the
PARALLEL_DEGREE_POLICY initialization parameter. When that parameter is set to AUTO, the
parallel_clause is ignored entirely, and the optimizer determines the best degree of
parallelism for all statements. When PARALLEL_DEGREE_POLICY is set to either MANUAL or
LIMITED, the parallel_clause is interpreted as follows:

NOPARALLEL

Specify NOPARALLEL for serial execution. This is the default.

PARALLEL

Specify PARALLEL for parallel execution.

• If PARALLEL_DEGREE_POLICY is set to MANUAL, then the optimizer calculates a degree of
parallelism equal to the number of CPUs available on all participating instances times the
value of the PARALLEL_THREADS_PER_CPU initialization parameter.

• If PARALLEL_DEGREE_POLICY is set to LIMITED, then the optimizer determines the best
degree of parallelism.

PARALLEL integer

Specification of integer indicates the degree of parallelism, which is the number of parallel
threads used in the parallel operation. Each parallel thread may use one or two parallel
execution servers.

Notes on the parallel_clause

The following notes apply to the parallel_clause:

• Parallelism is disabled for DML operations on tables on which you have defined a trigger
or referential integrity constraint.

• Parallelism is not supported for UPDATE or DELETE operations on index-organized tables.

• When you specify the parallel_clause during creation of a table, if the table contains
any columns of LOB or user-defined object type, then subsequent INSERT, UPDATE,
DELETE or MERGE operations that modify the LOB or object type column are executed
serially without notification. Subsequent queries, however, will be executed in parallel.

• A parallel hint overrides the effect of the parallel_clause.

Chapter 8
parallel_clause

8-47

• DML statements and CREATE TABLE ... AS SELECT statements that reference remote
objects can run in parallel. However, the remote object must really be on a remote
database. The reference cannot loop back to an object on the local database, for
example, by way of a synonym on the remote database pointing back to an object
on the local database.

• DML operations on tables with LOB columns can be parallelized. However,
intrapartition parallelism is not supported.

See Also:

Oracle Database VLDB and Partitioning Guide for more information on
parallelized operations, and "Creating a Table: Parallelism Examples"

physical_attributes_clause
Purpose

The physical_attributes_clause lets you specify the value of the PCTFREE, PCTUSED,
and INITRANS parameters and the storage characteristics of a table, cluster, index, or
materialized view.

You can specify the physical_attributes_clause in the following statements:

• CREATE CLUSTER and ALTER CLUSTER: to set or change the physical attributes of the
cluster and all tables in the cluster (see CREATE CLUSTER and ALTER
CLUSTER).

• CREATE TABLE: to set the physical attributes of the table, a table partition, the
OIDINDEX of an object table, or the overflow segment of an index-organized table
(see CREATE TABLE).

• ALTER TABLE: to change the physical attributes of the table, the default physical
attributes of future table partitions, or the physical attributes of existing table
partitions (see ALTER TABLE). The following restrictions apply:

– You cannot specify physical attributes for a temporary table.

– You cannot specify physical attributes for a clustered table. Tables in a cluster
inherit the physical attributes of the cluster.

• CREATE INDEX: to set the physical attributes of an index or index partition (see
CREATE INDEX).

• ALTER INDEX: to change the physical attributes of the index, the default physical
attributes of future index partitions, or the physical attributes of existing index
partitions (see ALTER INDEX).

• CREATE MATERIALIZED VIEW: to set the physical attributes of the materialized view,
one of its partitions, or the index Oracle Database generates to maintain the
materialized view (see CREATE MATERIALIZED VIEW).

• ALTER MATERIALIZED VIEW: to change the physical attributes of the materialized
view, the default physical attributes of future partitions, the physical attributes of an
existing partition, or the index Oracle creates to maintain the materialized view
(see ALTER MATERIALIZED VIEW).

Chapter 8
physical_attributes_clause

8-48

• CREATE MATERIALIZED VIEW LOG and ALTER MATERIALIZED VIEW LOG: to set or change the
physical attributes of the materialized view log (see CREATE MATERIALIZED VIEW LOG
and ALTER MATERIALIZED VIEW LOG).

Syntax

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

Semantics

This section describes the parameters of the physical_attributes_clause. For additional
information, refer to the SQL statement in which you set or reset these parameters for a
particular database object.

PCTFREE integer

Specify a whole number representing the percentage of space in each data block of the
database object reserved for future updates to rows of the object. The value of PCTFREE must
be a value from 0 to 99. A value of 0 means that the entire block can be filled by inserts of
new rows. The default value is 10. This value reserves 10% of each block for updates to
existing rows and allows inserts of new rows to fill a maximum of 90% of each block.

PCTFREE has the same function in the statements that create and alter tables, partitions,
clusters, indexes, materialized views, materialized view logs, and zone maps. The
combination of PCTFREE and PCTUSED determines whether new rows will be inserted into
existing data blocks or into new blocks. See "How PCTFREE and PCTUSED Work Together".

Restriction on the PCTFREE Clause

When altering an index, you can specify this parameter only in the
modify_index_default_attrs clause and the split_index_partition clause.

PCTUSED integer

Specify a whole number representing the minimum percentage of used space that Oracle
maintains for each data block of the database object. PCTUSED is specified as a positive
integer from 0 to 99 and defaults to 40.

PCTUSED has the same function in the statements that create and alter tables, partitions,
clusters, materialized views, materialized view logs, and zone maps.

PCTUSED is not a valid table storage characteristic for an index-organized table.

The sum of PCTFREE and PCTUSED must be equal to or less than 100. You can use PCTFREE
and PCTUSED together to utilize space within a database object more efficiently. See "How
PCTFREE and PCTUSED Work Together".

Chapter 8
physical_attributes_clause

8-49

Restrictions on the PCTUSED Clause

The PCTUSED parameter is subject to the following restrictions:

• You cannot specify this parameter for an index or for the index segment of an
index-organized table.

• This parameter is not useful and is ignored for objects with automatic segment-
space management.

See Also:

Oracle Database Performance Tuning Guide for information on the
performance effects of different values of PCTUSED and PCTFREE and CREATE
TABLESPACE segment_management_clause for information on automatic
segment-space management

How PCTFREE and PCTUSED Work Together

In a newly allocated data block, the space available for inserts is the block size minus
the sum of the block overhead and free space (PCTFREE). Updates to existing data can
use any available space in the block. Therefore, updates can reduce the available
space of a block to less than PCTFREE.

After a data block is filled to the limit determined by PCTFREE, Oracle Database
considers the block unavailable for the insertion of new rows until the percentage of
that block falls beneath the parameter PCTUSED. Until this value is achieved, Oracle
Database uses the free space of the data block only for updates to rows already
contained in the data block. A block becomes a candidate for row insertion when its
used space falls below PCTUSED.

See Also:

FREELISTS for information on how PCTUSED and PCTFREE work with freelist
segment space management

INITRANS integer

Specify the initial number of concurrent transaction entries allocated within each data
block allocated to the database object. This value can range from 1 to 255 and
defaults to 1, with the following exceptions:

• The default INITRANS value for a cluster is 2 or the default INITRANS value of the
tablespace in which the cluster resides, whichever is greater.

• The default value for an index is 2.

In general, you should not change the INITRANS value from its default.

Each transaction that updates a block requires a transaction entry in the block. This
parameter ensures that a minimum number of concurrent transactions can update the
block and helps avoid the overhead of dynamically allocating a transaction entry.

Chapter 8
physical_attributes_clause

8-50

The INITRANS parameter serves the same purpose in the statements that create and alter
tables, partitions, clusters, indexes, materialized views, and materialized view logs.

MAXTRANS Parameter

In earlier releases, the MAXTRANS parameter determined the maximum number of concurrent
update transactions allowed for each data block in the segment. This parameter has been
deprecated. Oracle now automatically allows up to 255 concurrent update transactions for
any data block, depending on the available space in the block.

Existing objects for which a value of MAXTRANS has already been set retain that setting.
However, if you attempt to change the value for MAXTRANS, Oracle ignores the new
specification and substitutes the value 255 without returning an error.

storage_clause

The storage_clause lets you specify storage characteristics for the table, object table
OIDINDEX, partition, LOB data segment, or index-organized table overflow data segment. This
clause has performance ramifications for large tables. Storage should be allocated to
minimize dynamic allocation of additional space. Refer to the storage_clause for more
information.

size_clause
Purpose

The size_clause lets you specify a number of bytes, kilobytes (K), megabytes (M), gigabytes
(G), terabytes (T), petabytes (P), or exabytes (E) in any statement that lets you establish
amounts of disk or memory space.

Syntax

size_clause::=

integer

K

M

G

T

P

E

Semantics

Use the size_clause to specify a number or multiple of bytes. If you do not specify any of the
multiple abbreviations, then the integer is interpreted as bytes.

Chapter 8
size_clause

8-51

Note:

Not all multiples of bytes are appropriate in all cases, and context-sensitive
limitations may apply. In the latter case, Oracle issues an error message.

storage_clause
Purpose

The storage_clause lets you specify how Oracle Database should store a permanent
database object. Storage parameters for temporary segments always use the default
storage parameters for the associated tablespace. Storage parameters affect both how
long it takes to access data stored in the database and how efficiently space in the
database is used.

See Also:

Oracle Automatic Storage Management Administrator's Guide for a
discussion of the effects of the storage parameters

When you create a cluster, index, materialized view, materialized view log, rollback
segment, table, LOB, varray, nested table, or partition, you can specify values for the
storage parameters for the segments allocated to these objects. If you omit any
storage parameter, then Oracle uses the value of that parameter specified for the
tablespace in which the object resides. If no value was specified for the tablespace,
then the database uses default values.

Note:

The specification of storage parameters for objects in locally managed
tablespaces is supported for backward compatibility. If you are using locally
managed tablespaces, then you can omit these storage parameter when
creating objects in those tablespaces.

When you alter a cluster, index, materialized view, materialized view log, rollback
segment, table, varray, nested table, or partition, you can change the values of storage
parameters. The new values affect only future extent allocations.

The storage_clause is part of the physical_attributes_clause, so you can specify
this clause in any of the statements where you can specify the physical attributes
clause (see physical_attributes_clause). In addition, you can specify the
storage_clause in the following statements:

• CREATE CLUSTER and ALTER CLUSTER: to set or change the storage characteristics of
the cluster and all tables in the cluster (see CREATE CLUSTER and ALTER
CLUSTER).

Chapter 8
storage_clause

8-52

• CREATE INDEX and ALTER INDEX: to set or change the storage characteristics of an index
segment created for a table index or index partition or an index segment created for
an index used to enforce a primary key or unique constraint (see CREATE INDEX
and ALTER INDEX).

• The ENABLE ... USING INDEX clause of CREATE TABLE or ALTER TABLE: to set or change the
storage characteristics of an index created by the system to enforce a primary key or
unique constraint.

• CREATE MATERIALIZED VIEW and ALTER MATERIALIZED VIEW: to set or change the storage
characteristics of a materialized view, one of its partitions, or the index Oracle
generates to maintain the materialized view (see CREATE MATERIALIZED VIEW and
ALTER MATERIALIZED VIEW).

• CREATE MATERIALIZED VIEW LOG and ALTER MATERIALIZED VIEW LOG: to set or change the
storage characteristics of the materialized view log (see CREATE MATERIALIZED
VIEW LOG and ALTER MATERIALIZED VIEW LOG).

• CREATE ROLLBACK SEGMENT and ALTER ROLLBACK SEGMENT: to set or change the storage
characteristics of a rollback segment (see CREATE ROLLBACK SEGMENT and ALTER
ROLLBACK SEGMENT).

• CREATE TABLE and ALTER TABLE: to set the storage characteristics of a LOB or varray
data segment of the nonclustered table or one of its partitions or subpartitions, or the
storage table of a nested table (see CREATE TABLE and ALTER TABLE).

• CREATE TABLESPACE and ALTER TABLESPACE: to set or change the default storage
characteristics for objects created in the tablespace (see CREATE TABLESPACE and
ALTER TABLESPACE). Changes to tablespace storage parameters affect only new
objects created in the tablespace or new extents allocated for a segment.

• constraint: to specify storage for the index (and its partitions, if it is a partitioned
index) used to enforce the constraint (see constraint).

Prerequisites

To change the value of a STORAGE parameter, you must have the privileges necessary to use
the appropriate CREATE or ALTER statement.

Chapter 8
storage_clause

8-53

Syntax

storage_clause::=

STORAGE (

INITIAL size_clause

NEXT size_clause

MINEXTENTS integer

MAXEXTENTS
integer

UNLIMITED

maxsize_clause

PCTINCREASE integer

FREELISTS integer

FREELIST GROUPS integer

OPTIMAL

size_clause

NULL

BUFFER_POOL

KEEP

RECYCLE

DEFAULT

FLASH_CACHE

KEEP

NONE

DEFAULT

CELL_FLASH_CACHE

KEEP

NONE

DEFAULT

ENCRYPT

)

(size_clause::=)

maxsize_clause::=

MAXSIZE

UNLIMITED

size_clause

(size_clause::=)

Chapter 8
storage_clause

8-54

Semantics

This section describes the parameters of the storage_clause. For additional information,
refer to the SQL statement in which you set or reset these storage parameters for a particular
database object.

Note:

The storage_clause is interpreted differently for locally managed tablespaces. For
locally managed tablespaces, Oracle Database uses INITIAL, NEXT, PCTINCREASE,
and MINEXTENTS to compute how many extents are allocated when the object is first
created. After object creation, these parameters are ignored. For more information,
see CREATE TABLESPACE .

See Also:

"Specifying Table Storage Attributes: Example"

INITIAL

Specify the size of the first extent of the object. Oracle allocates space for this extent when
you create the schema object. Refer to size_clause for information on that clause.

In locally managed tablespaces, Oracle uses the value of INITIAL, in conjunction with the
type of local management—AUTOALLOCATE or UNIFORM—and the values of MINEXTENTS, NEXT
and PCTINCREASE, to determine the initial size of the segment.

• With AUTOALLOCATE extent management, Oracle uses the INITIAL setting to optimize the
number of extents allocated. Extents of 64K, 1M, 8M, and 64M can be allocated. During
segment creation, the system chooses the greatest of these four sizes that is equal to or
smaller than INITIAL, and allocates as many extents of that size as are needed to reach
the INITIAL setting. For example, if you set INITIAL to 4M, then the database creates
four 1M extents.

• For UNIFORM extent management, the number of extents is determined from initial
segment size and the uniform extent size specified at tablespace creation time. For
example, in a uniform locally managed tablespace with 1M extents, if you specify an
INITIAL value of 5M, then Oracle creates five 1M extents.

Consider this comparison: With AUTOALLOCATE, if you set INITAL to 72K, then the initial
segment size will be 128K (greater than INITIAL). The database cannot allocate an
extent smaller than 64K, so it must allocate two 64K extents. If you set INITIAL to 72K
with a UNIFORM extent size of 24K, then the database will allocate three 24K extents to
equal 72K.

In dictionary managed tablespaces, the default initial extent size is 5 blocks, and all
subsequent extents are rounded to 5 blocks. If MINIMUM EXTENT was specified at tablespace
creation time, then the extent sizes are rounded to the value of MINIMUM EXTENT.

Restriction on INITIAL

Chapter 8
storage_clause

8-55

You cannot specify INITIAL in an ALTER statement.

NEXT

Specify in bytes the size of the next extent to be allocated to the object. Refer to
size_clause for information on that clause.

In locally managed tablespaces, any user-supplied value for NEXT is ignored and the
size of NEXT is determined by Oracle if the tablespace is set for autoallocate extent
management. In UNIFORM tablespaces, the size of NEXT is the uniform extent size
specified at tablespace creation time.

In dictionary-managed tablespaces, the default value is the size of 5 data blocks. The
minimum value is the size of 1 data block. The maximum value depends on your
operating system. Oracle rounds values up to the next multiple of the data block size
for values less than 5 data blocks. For values greater than 5 data blocks, Oracle
rounds up to a value that minimizes fragmentation.

See Also:

Oracle Database Concepts for information on how Oracle minimizes
fragmentation

PCTINCREASE

In locally managed tablespaces, Oracle Database uses the value of PCTINCREASE
during segment creation to determine the initial segment size and ignores this
parameter during subsequent space allocation.

In dictionary-managed tablespaces, specify the percent by which the third and
subsequent extents grow over the preceding extent. The default value is 50, meaning
that each subsequent extent is 50% larger than the preceding extent. The minimum
value is 0, meaning all extents after the first are the same size. The maximum value
depends on your operating system. Oracle rounds the calculated size of each new
extent to the nearest multiple of the data block size. If you change the value of the
PCTINCREASE parameter by specifying it in an ALTER statement, then Oracle calculates
the size of the next extent using this new value and the size of the most recently
allocated extent.

Restriction on PCTINCREASE

You cannot specify PCTINCREASE for rollback segments. Rollback segments always
have a PCTINCREASE value of 0.

MINEXTENTS

In locally managed tablespaces, Oracle Database uses the value of MINEXTENTS in
conjunction with PCTINCREASE, INITIAL and NEXT to determine the initial segment size.

In dictionary-managed tablespaces, specify the total number of extents to allocate
when the object is created. The default and minimum value is 1, meaning that Oracle
allocates only the initial extent, except for rollback segments, for which the default and
minimum value is 2. The maximum value depends on your operating system.

Chapter 8
storage_clause

8-56

• In a locally managed tablespace, MINEXTENTS is used to compute the initial amount of
space allocated, which is equal to INITIAL * MINEXTENTS. Thereafter this value is set to 1,
which is reflected in the DBA_SEGMENTS view.

• In a dictionary-managed tablespace, MINEXTENTS is simply the minimum number of
extents that must be allocated to the segment.

If the MINEXTENTS value is greater than 1, then Oracle calculates the size of subsequent
extents based on the values of the INITIAL, NEXT, and PCTINCREASE storage parameters.

When changing the value of MINEXTENTS by specifying it in an ALTER statement, you can
reduce the value from its current value, but you cannot increase it. Resetting MINEXTENTS to a
smaller value might be useful, for example, before a TRUNCATE ... DROP STORAGE statement, if
you want to ensure that the segment will maintain a minimum number of extents after the
TRUNCATE operation.

Restrictions on MINEXTENTS

The MINEXTENTS storage parameter is subject to the following restrictions:

• MINEXTENTS is not applicable at the tablespace level.

• You cannot change the value of MINEXTENTS in an ALTER statement or for an object that
resides in a locally managed tablespace.

MAXEXTENTS

This storage parameter is valid only for objects in dictionary-managed tablespaces. Specify
the total number of extents, including the first, that Oracle can allocate for the object. The
minimum value is 1 except for rollback segments, which always have a minimum of 2. The
default value depends on your data block size.

Restriction on MAXEXTENTS

MAXEXTENTS is ignored for objects residing in a locally managed tablespace, unless the value
of ALLOCATION_TYPE is USER for the tablespace in the DBA_TABLESPACES data dictionary view.

See Also:

Oracle Database Reference for more information on the DBA_TABLESPACES data
dictionary view

UNLIMITED

Specify UNLIMITED if you want extents to be allocated automatically as needed. Oracle
recommends this setting as a way to minimize fragmentation.

Do not use this clause for rollback segments. Doing so allows the possibility that long-running
rogue DML transactions will continue to create new extents until a disk is full.

Chapter 8
storage_clause

8-57

Note:

A rollback segment that you create without specifying the storage_clause
has the same storage parameters as the tablespace in which the rollback
segment is created. Thus, if you create a tablespace with MAXEXTENTS
UNLIMITED, then the rollback segment will have this same default.

MAXSIZE

The MAXSIZE clause lets you specify the maximum size of the storage element. For
LOB storage, MAXSIZE has the following effects

• If you specify RETENTION MAX in LOB_parameters, then the LOB segment increases
to the specified size before any space can be reclaimed from undo space.

• If you specify RETENTION AUTO, MIN, or NONE in LOB_parameters, then the specified
size is a hard limit on the LOB segment size and has no bearing on undo
retention.

UNLIMITED

Use the UNLIMITED clause if you do not want to limit the disk space of the storage
element. This clause is not compatible with a specification of RETENTION MAX in
LOB_parameters. If you specify both, then the database uses RETENTION AUTO and
MAXSIZE UNLIMITED.

FREELISTS

In tablespaces with manual segment-space management, Oracle Database uses the
FREELISTS storage parameter to improve performance of space management in OLTP
systems by increasing the number of insert points in the segment. In tablespaces with
automatic segment-space management, this parameter is ignored, because the
database adapts to varying workload.

In tablespaces with manual segment-space management, for objects other than
tablespaces and rollback segments, specify the number of free lists for each of the
free list groups for the table, partition, cluster, or index. The default and minimum value
for this parameter is 1, meaning that each free list group contains one free list. The
maximum value of this parameter depends on the data block size. If you specify a
FREELISTS value that is too large, then Oracle returns an error indicating the maximum
value.

This clause is not valid or useful if you have specified the SECUREFILE parameter of
LOB_parameters. If you specify both the SECUREFILE parameter and FREELISTS, then
the database silently ignores the FREELISTS specification.

Restriction on FREELISTS

You can specify FREELISTS in the storage_clause of any statement except when
creating or altering a tablespace or rollback segment.

FREELIST GROUPS

In tablespaces with manual segment-space management, Oracle Database uses the
value of this storage parameter to statically partition the segment free space in an
Oracle Real Application Clusters environment. This partitioning improves the

Chapter 8
storage_clause

8-58

performance of space allocation and deallocation by avoiding inter instance transfer of
segment metadata. In tablespaces with automatic segment-space management, this
parameter is ignored, because Oracle dynamically adapts to inter instance workload.

In tablespaces with manual segment-space management, specify the number of groups of
free lists for the database object you are creating. The default and minimum value for this
parameter is 1. Oracle uses the instance number of Oracle Real Application Clusters (Oracle
RAC) instances to map each instance to one free list group.

Each free list group uses one database block. Therefore:

• If you do not specify a large enough value for INITIAL to cover the minimum value plus
one data block for each free list group, then Oracle increases the value of INITIAL the
necessary amount.

• If you are creating an object in a uniform locally managed tablespace, and the extent size
is not large enough to accommodate the number of freelist groups, then the create
operation will fail.

This clause is not valid or useful if you have specified the SECUREFILE parameter of
LOB_parameters. If you specify both the SECUREFILE parameter and FREELIST GROUPS, then
the database silently ignores the FREELIST GROUPS specification.

Restriction on FREELIST GROUPS

You can specify the FREELIST GROUPS parameter only in CREATE TABLE, CREATE CLUSTER,
CREATE MATERIALIZED VIEW, CREATE MATERIALIZED VIEW LOG, and CREATE INDEX statements.

OPTIMAL

The OPTIMAL keyword is relevant only to rollback segments. It specifies an optimal size in
bytes for a rollback segment. Refer to size_clause for information on that clause.

Oracle tries to maintain this size for the rollback segment by dynamically deallocating extents
when their data is no longer needed for active transactions. Oracle deallocates as many
extents as possible without reducing the total size of the rollback segment below the OPTIMAL
value.

The value of OPTIMAL cannot be less than the space initially allocated by the MINEXTENTS,
INITIAL, NEXT, and PCTINCREASE parameters. The maximum value depends on your
operating system. Oracle rounds values up to the next multiple of the data block size.

NULL

Specify NULL for no optimal size for the rollback segment, meaning that Oracle never
deallocates the extents of the rollback segment. This is the default behavior.

BUFFER_POOL

The BUFFER_POOL clause lets you specify a default buffer pool or cache for a schema object.
All blocks for the object are stored in the specified cache.

• If you define a buffer pool for a partitioned table or index, then the partitions inherit the
buffer pool from the table or index definition unless overridden by a partition-level
definition.

• For an index-organized table, you can specify a buffer pool separately for the index
segment and the overflow segment.

Restrictions on the BUFFER_POOL Parameter

Chapter 8
storage_clause

8-59

BUFFER_POOL is subject to the following restrictions:

• You cannot specify this clause for a cluster table. However, you can specify it for a
cluster.

• You cannot specify this clause for a tablespace or a rollback segment.

KEEP

Specify KEEP to put blocks from the segment into the KEEP buffer pool. Maintaining an
appropriately sized KEEP buffer pool lets Oracle retain the schema object in memory to
avoid I/O operations. KEEP takes precedence over any NOCACHE clause you specify for
a table, cluster, materialized view, or materialized view log.

RECYCLE

Specify RECYCLE to put blocks from the segment into the RECYCLE pool. An
appropriately sized RECYCLE pool reduces the number of objects whose default pool is
the RECYCLE pool from taking up unnecessary cache space.

DEFAULT

Specify DEFAULT to indicate the default buffer pool. This is the default for objects not
assigned to KEEP or RECYCLE.

See Also:

Oracle Database Performance Tuning Guide for more information about
using multiple buffer pools

FLASH_CACHE

The FLASH_CACHE clause lets you override the automatic buffer cache policy and
specify how specific schema objects are cached in flash memory. To use this clause,
Database Smart Flash Cache (flash cache) must be configured on your system. The
flash cache is an extension of the database buffer cache that is stored on a flash disk,
a storage device that uses flash memory. Because flash memory is faster than
magnetic disks, the database can improve performance by caching buffers in the flash
cache instead of reading from magnetic disk.

KEEP

Specify KEEP if you want the schema object buffers to remain cached in the flash cache
as long as the flash cache is large enough.

NONE

Specify NONE to ensure that the schema object buffers are never cached in the flash
cache. This allows you to reserve the flash cache space for more frequently accessed
objects.

DEFAULT

Specify DEFAULT if you want the schema object buffers to be written to the flash cache
when they are aged out of main memory, and then be aged out of the flash cache with

Chapter 8
storage_clause

8-60

the standard buffer cache replacement algorithm. This is the default if flash cache is
configured and you do not specify KEEP or NONE.

Note:

Database Smart Flash Cache is available only in Solaris and Oracle Linux.

See Also:

• Oracle Database Concepts for more information about Database Smart Flash
Cache

• Oracle Database Administrator's Guide to learn how to configure Database
Smart Flash Cache

ENCRYPT

This clause is valid only when you are creating a tablespace. Specify ENCRYPT to encrypt the
entire tablespace. You must also specify the ENCRYPTION clause in the CREATE TABLESPACE
statement.

Note:

The ENCRYPT clause is supported for backward compatibility. However, beginning
with Oracle Database 12c Release 2 (12.2), you can instead specify ENCRYPT in the
tablespace_encryption_clause. Refer to the tablespace_encryption_clause of
CREATE TABLESPACE for more information.

Example

Specifying Table Storage Attributes: Example

The following statement creates a table and provides storage parameter values:

CREATE TABLE divisions
 (div_no NUMBER(2),
 div_name VARCHAR2(14),
 location VARCHAR2(13))
 STORAGE (INITIAL 8M MAXSIZE 1G);

The following statement queries the table for the size of the first extent:

SELECT INITIAL_EXTENT FROM USER_TABLES WHERE TABLE_NAME='DIVISIONS';

INITIAL_EXTENT

 8388608

Oracle allocates space for the table based on the STORAGE parameter values as follows:

Chapter 8
storage_clause

8-61

• The INITIAL value is 8M, so the size of the first extent is 8 megabytes.

• The MAXSIZE value is 1G, so the maximum size of the storage element is 1
gigabyte.

Chapter 8
storage_clause

8-62

9
SQL Queries and Subqueries

This chapter describes SQL queries and subqueries.

This chapter contains these sections:

• About Queries and Subqueries

• Creating Simple Queries

• Hierarchical Queries

• The Set Operators

• Sorting Query Results

• Joins

• Using Subqueries

• Unnesting of Nested Subqueries

• Selecting from the DUAL Table

• Distributed Queries

About Queries and Subqueries
A query is an operation that retrieves data from one or more tables or views. In this
reference, a top-level SELECT statement is called a query, and a query nested within another
SQL statement is called a subquery.

This section describes some types of queries and subqueries and how to use them. The top
level of the syntax is shown in this chapter. Refer to SELECT for the full syntax of all the
clauses and the semantics of this statement.

select::=

subquery

for_update_clause

;

subquery::=

query_block

subquery

UNION

ALL

INTERSECT

MINUS

subquery

(subquery)

order_by_clause row_limiting_clause

9-1

query_block::=

with_clause

SELECT

hint

DISTINCT

UNIQUE

ALL

select_list

FROM

table_reference

join_clause

(join_clause)

inline_analytic_view

,

where_clause hierarchical_query_clause

group_by_clause model_clause window_clause

Creating Simple Queries
The list of expressions that appears after the SELECT keyword and before the FROM
clause is called the select list. Within the select list, you specify one or more columns
in the set of rows you want Oracle Database to return from one or more tables, views,
or materialized views. The number of columns, as well as their data type and length,
are determined by the elements of the select list.

If two or more tables have some column names in common, then you must qualify
column names with names of tables. Otherwise, fully qualified column names are
optional. However, it is always a good idea to qualify table and column references
explicitly. Oracle often does less work with fully qualified table and column names.

You can use a column alias, c_alias, to label the immediately preceding expression in
the select list so that the column is displayed with a new heading. The alias effectively
renames the select list item for the duration of the query. The alias can be used in the
ORDER BY clause, but not other clauses in the query.

You can use comments in a SELECT statement to pass instructions, or hints, to the
Oracle Database optimizer. The optimizer uses hints to choose an execution plan for
the statement. Refer to "Hints " for more information on hints.

Hierarchical Queries
If a table contains hierarchical data, then you can select rows in a hierarchical order
using the hierarchical query clause:

Chapter 9
Creating Simple Queries

9-2

hierarchical_query_clause::=

CONNECT BY

NOCYCLE

condition

START WITH condition

START WITH condition CONNECT BY

NOCYCLE

condition

condition can be any condition as described in Conditions.

START WITH specifies the root row(s) of the hierarchy.

CONNECT BY specifies the relationship between parent rows and child rows of the hierarchy.

• The NOCYCLE parameter instructs Oracle Database to return rows from a query even if a
CONNECT BY loop exists in the data. Use this parameter along with the
CONNECT_BY_ISCYCLE pseudocolumn to see which rows contain the loop. Refer to
CONNECT_BY_ISCYCLE Pseudocolumn for more information.

• In a hierarchical query, one expression in condition must be qualified with the PRIOR
operator to refer to the parent row. For example,

... PRIOR expr = expr
or
... expr = PRIOR expr

If the CONNECT BY condition is compound, then only one condition requires the PRIOR
operator, although you can have multiple PRIOR conditions. For example:

CONNECT BY last_name != 'King' AND PRIOR employee_id = manager_id ...
CONNECT BY PRIOR employee_id = manager_id and
 PRIOR account_mgr_id = customer_id ...

PRIOR is a unary operator and has the same precedence as the unary + and - arithmetic
operators. It evaluates the immediately following expression for the parent row of the
current row in a hierarchical query.

PRIOR is most commonly used when comparing column values with the equality operator.
(The PRIOR keyword can be on either side of the operator.) PRIOR causes Oracle to use
the value of the parent row in the column. Operators other than the equal sign (=) are
theoretically possible in CONNECT BY clauses. However, the conditions created by these
other operators can result in an infinite loop through the possible combinations. In this
case Oracle detects the loop at run time and returns an error.

Both the CONNECT BY condition and the PRIOR expression can take the form of an uncorrelated
subquery. However, CURRVAL and NEXTVAL are not valid PRIOR expressions, so the PRIOR
expression cannot refer to a sequence.

You can further refine a hierarchical query by using the CONNECT_BY_ROOT operator to qualify a
column in the select list. This operator extends the functionality of the CONNECT BY [PRIOR]
condition of hierarchical queries by returning not only the immediate parent row but all
ancestor rows in the hierarchy.

Chapter 9
Hierarchical Queries

9-3

See Also:

CONNECT_BY_ROOT for more information about this operator and
"Hierarchical Query Examples"

Oracle processes hierarchical queries as follows:

• A join, if present, is evaluated first, whether the join is specified in the FROM clause
or with WHERE clause predicates.

• The CONNECT BY condition is evaluated.

• Any remaining WHERE clause predicates are evaluated.

Oracle then uses the information from these evaluations to form the hierarchy using
the following steps:

1. Oracle selects the root row(s) of the hierarchy—those rows that satisfy the START
WITH condition.

2. Oracle selects the child rows of each root row. Each child row must satisfy the
condition of the CONNECT BY condition with respect to one of the root rows.

3. Oracle selects successive generations of child rows. Oracle first selects the
children of the rows returned in step 2, and then the children of those children, and
so on. Oracle always selects children by evaluating the CONNECT BY condition with
respect to a current parent row.

4. If the query contains a WHERE clause without a join, then Oracle eliminates all rows
from the hierarchy that do not satisfy the condition of the WHERE clause. Oracle
evaluates this condition for each row individually, rather than removing all the
children of a row that does not satisfy the condition.

5. Oracle returns the rows in the order shown in Figure 9-1. In the diagram, children
appear below their parents. For an explanation of hierarchical trees, see
Figure 3-1.

Figure 9-1 Hierarchical Queries

1 7 8

R
O

O
T

2
9

3
4

1
0

1
2

1
1

6
5

To find the children of a parent row, Oracle evaluates the PRIOR expression of the
CONNECT BY condition for the parent row and the other expression for each row in the
table. Rows for which the condition is true are the children of the parent. The CONNECT

Chapter 9
Hierarchical Queries

9-4

BY condition can contain other conditions to further filter the rows selected by the query.

If the CONNECT BY condition results in a loop in the hierarchy, then Oracle returns an error. A
loop occurs if one row is both the parent (or grandparent or direct ancestor) and a child (or a
grandchild or a direct descendent) of another row.

Note:

In a hierarchical query, do not specify either ORDER BY or GROUP BY, as they will
override the hierarchical order of the CONNECT BY results. If you want to order rows of
siblings of the same parent, then use the ORDER SIBLINGS BY clause. See
order_by_clause.

Hierarchical Query Examples
CONNECT BY Example

The following hierarchical query uses the CONNECT BY clause to define the relationship
between employees and managers:

SELECT employee_id, last_name, manager_id
 FROM employees
 CONNECT BY PRIOR employee_id = manager_id;

EMPLOYEE_ID LAST_NAME MANAGER_ID
----------- ------------------------- ----------
 101 Kochhar 100
 108 Greenberg 101
 109 Faviet 108
 110 Chen 108
 111 Sciarra 108
 112 Urman 108
 113 Popp 108
 200 Whalen 101
 203 Mavris 101
 204 Baer 101
. . .

LEVEL Example

The next example is similar to the preceding example, but uses the LEVEL pseudocolumn to
show parent and child rows:

SELECT employee_id, last_name, manager_id, LEVEL
 FROM employees
 CONNECT BY PRIOR employee_id = manager_id;

EMPLOYEE_ID LAST_NAME MANAGER_ID LEVEL
----------- ------------------------- ---------- ----------
 101 Kochhar 100 1
 108 Greenberg 101 2
 109 Faviet 108 3
 110 Chen 108 3
 111 Sciarra 108 3
 112 Urman 108 3
 113 Popp 108 3

Chapter 9
Hierarchical Queries

9-5

 200 Whalen 101 2
 203 Mavris 101 2
 204 Baer 101 2
 205 Higgins 101 2
 206 Gietz 205 3
 102 De Haan 100 1
...

START WITH Examples

The next example adds a START WITH clause to specify a root row for the hierarchy and
an ORDER BY clause using the SIBLINGS keyword to preserve ordering within the
hierarchy:

SELECT last_name, employee_id, manager_id, LEVEL
 FROM employees
 START WITH employee_id = 100
 CONNECT BY PRIOR employee_id = manager_id
 ORDER SIBLINGS BY last_name;

LAST_NAME EMPLOYEE_ID MANAGER_ID LEVEL
------------------------- ----------- ---------- ----------
King 100 1
Cambrault 148 100 2
Bates 172 148 3
Bloom 169 148 3
Fox 170 148 3
Kumar 173 148 3
Ozer 168 148 3
Smith 171 148 3
De Haan 102 100 2
Hunold 103 102 3
Austin 105 103 4
Ernst 104 103 4
Lorentz 107 103 4
Pataballa 106 103 4
Errazuriz 147 100 2
Ande 166 147 3
Banda 167 147 3
...

In the hr.employees table, the employee Steven King is the head of the company and
has no manager. Among his employees is John Russell, who is the manager of
department 80. If you update the employees table to set Russell as King's manager,
you create a loop in the data:

UPDATE employees SET manager_id = 145
 WHERE employee_id = 100;

SELECT last_name "Employee",
 LEVEL, SYS_CONNECT_BY_PATH(last_name, '/') "Path"
 FROM employees
 WHERE level <= 3 AND department_id = 80
 START WITH last_name = 'King'
 CONNECT BY PRIOR employee_id = manager_id AND LEVEL <= 4;

ERROR:
ORA-01436: CONNECT BY loop in user data

Chapter 9
Hierarchical Queries

9-6

The NOCYCLE parameter in the CONNECT BY condition causes Oracle to return the rows in spite
of the loop. The CONNECT_BY_ISCYCLE pseudocolumn shows you which rows contain the
cycle:

SELECT last_name "Employee", CONNECT_BY_ISCYCLE "Cycle",
 LEVEL, SYS_CONNECT_BY_PATH(last_name, '/') "Path"
 FROM employees
 WHERE level <= 3 AND department_id = 80
 START WITH last_name = 'King'
 CONNECT BY NOCYCLE PRIOR employee_id = manager_id AND LEVEL <= 4
 ORDER BY "Employee", "Cycle", LEVEL, "Path";

Employee Cycle LEVEL Path
------------------------- ---------- ---------- -------------------------
Abel 0 3 /King/Zlotkey/Abel
Ande 0 3 /King/Errazuriz/Ande
Banda 0 3 /King/Errazuriz/Banda
Bates 0 3 /King/Cambrault/Bates
Bernstein 0 3 /King/Russell/Bernstein
Bloom 0 3 /King/Cambrault/Bloom
Cambrault 0 2 /King/Cambrault
Cambrault 0 3 /King/Russell/Cambrault
Doran 0 3 /King/Partners/Doran
Errazuriz 0 2 /King/Errazuriz
Fox 0 3 /King/Cambrault/Fox
...

CONNECT_BY_ISLEAF Example

The following statement shows how you can use a hierarchical query to turn the values in a
column into a comma-delimited list:

SELECT LTRIM(SYS_CONNECT_BY_PATH (warehouse_id,','),',') FROM
 (SELECT ROWNUM r, warehouse_id FROM warehouses)
 WHERE CONNECT_BY_ISLEAF = 1
 START WITH r = 1
 CONNECT BY r = PRIOR r + 1
 ORDER BY warehouse_id;

LTRIM(SYS_CONNECT_BY_PATH(WAREHOUSE_ID,','),',')
--
1,2,3,4,5,6,7,8,9

CONNECT_BY_ROOT Examples

The following example returns the last name of each employee in department 110, each
manager at the highest level above that employee in the hierarchy, the number of levels
between manager and employee, and the path between the two:

SELECT last_name "Employee", CONNECT_BY_ROOT last_name "Manager",
 LEVEL-1 "Pathlen", SYS_CONNECT_BY_PATH(last_name, '/') "Path"
 FROM employees
 WHERE LEVEL > 1 and department_id = 110
 CONNECT BY PRIOR employee_id = manager_id
 ORDER BY "Employee", "Manager", "Pathlen", "Path";

Employee Manager Pathlen Path
--------------- --------------- ---------- ------------------------------
Gietz Higgins 1 /Higgins/Gietz
Gietz King 3 /King/Kochhar/Higgins/Gietz
Gietz Kochhar 2 /Kochhar/Higgins/Gietz

Chapter 9
Hierarchical Queries

9-7

Higgins King 2 /King/Kochhar/Higgins
Higgins Kochhar 1 /Kochhar/Higgins

The following example uses a GROUP BY clause to return the total salary of each
employee in department 110 and all employees above that employee in the hierarchy:

SELECT name, SUM(salary) "Total_Salary" FROM (
 SELECT CONNECT_BY_ROOT last_name as name, Salary
 FROM employees
 WHERE department_id = 110
 CONNECT BY PRIOR employee_id = manager_id)
 GROUP BY name
 ORDER BY name, "Total_Salary";

NAME Total_Salary
------------------------- ------------
Gietz 8300
Higgins 20300
King 20300
Kochhar 20300

See Also:

• LEVEL Pseudocolumn and CONNECT_BY_ISCYCLE Pseudocolumn for
a discussion of how these pseudocolumns operate in a hierarchical
query

• SYS_CONNECT_BY_PATH for information on retrieving the path of
column values from root to node

• order_by_clause for more information on the SIBLINGS keyword of ORDER
BY clauses

• subquery_factoring_clause, which supports recursive subquery factoring
(recursive WITH) and lets you query hierarchical data. This feature is
more powerful than CONNECT BY in that it provides depth-first search and
breadth-first search, and supports multiple recursive branches.

The Set Operators
You can combine multiple queries using the set operators UNION, UNION ALL,
INTERSECT, INTERSECT ALL, EXCEPT, EXCEPT ALL, MINUS, and MINUS ALL. All set
operators have equal precedence. If a SQL statement contains multiple set operators,
then Oracle Database evaluates them from the left to right unless parentheses
explicitly specify another order.

The corresponding expressions in the select lists of the component queries of a
compound query must match in number and must be in the same data type group
(such as numeric or character).

If component queries select character data, then the data type of the return values are
determined as follows:

Chapter 9
The Set Operators

9-8

• If both queries select values of data type CHAR of equal length, then the returned values
have data type CHAR of that length. If the queries select values of CHAR with different
lengths, then the returned value is VARCHAR2 with the length of the larger CHAR value.

• If either or both of the queries select values of data type VARCHAR2, then the returned
values have data type VARCHAR2.

If component queries select numeric data, then the data type of the return values is
determined by numeric precedence:

• If any query selects values of type BINARY_DOUBLE, then the returned values have data
type BINARY_DOUBLE.

• If no query selects values of type BINARY_DOUBLE but any query selects values of type
BINARY_FLOAT, then the returned values have data type BINARY_FLOAT.

• If all queries select values of type NUMBER, then the returned values have data type
NUMBER.

In queries using set operators, Oracle does not perform implicit conversion across data type
groups. Therefore, if the corresponding expressions of component queries resolve to both
character data and numeric data, Oracle returns an error.

The INTERSECT operator with the keyword ALL returns the result of two or more SELECT
statements in which rows appear in all result sets. Null values that are common across the
component queries of INTERSECT ALL are returned at the end of the result set.

The MINUS operator with the keyword ALL returns the result of two SELECT statements in which
rows appear in the first result set but not in the second result set.

If the first query has x nulls and the second query has y nulls, and x is greater than y, then x
minus y NULLS are returned at the end of the result query set. MINUS ALL returns no rows if
the result set returned by the first SELECTstatement is a subset of the result set returned by
the second SELECT.

The EXCEPT operator is a synonym for MINUS and has the exact same semantics. EXCEPT ALL
returns rows that are present in the first result set but not in the second. However, duplicates
may be present in the final result.

EXCEPT ALL, MINUS ALL INTERSECT ALL return equivalent instead of the original value, when
NLS_SORT=BINARY_CI[AI] is acceptable for the SQL standard.

See Also:

Table 2-8 for more information on implicit conversion and "Numeric Precedence "
for information on numeric precedence

Examples for Valid and Invalid Data Type Conversions for Set Operators

The following query is valid:

SELECT 3 FROM DUAL
 INTERSECT
SELECT 3f FROM DUAL;

This is implicitly converted to the following compound query:

Chapter 9
The Set Operators

9-9

SELECT TO_BINARY_FLOAT(3) FROM DUAL
 INTERSECT
SELECT 3f FROM DUAL;

The following query returns an error:

SELECT '3' FROM DUAL
 INTERSECT
SELECT 3f FROM DUAL;

Restrictions on the Set Operators

The set operators are subject to the following restrictions:

• The set operators are not valid on columns of type BLOB, CLOB, BFILE, VARRAY, or
nested table.

• The UNION, INTERSECT, EXCEPT, and MINUS operators are not valid on LONG
columns.

• If the select list preceding the set operator contains an expression, then you must
provide a column alias for the expression in order to refer to it in the
order_by_clause.

• You cannot also specify the for_update_clause with the set operators.

• You cannot specify the order_by_clause in the subquery of these operators.

• You cannot use these operators in SELECT statements containing TABLE collection
expressions.

Note:

To comply with emerging SQL standards, a future release of Oracle will give
the INTERSECT operator greater precedence than the other set operators.
Therefore, you should use parentheses to specify order of evaluation in
queries that use the INTERSECT operator with other set operators.

UNION Example

The following statement combines the results of two queries with the UNION operator,
which eliminates duplicate selected rows. This statement shows that you must match
data type (using the TO_CHAR function) when columns do not exist in one or the other
table:

SELECT location_id, department_name "Department",
 TO_CHAR(NULL) "Warehouse" FROM departments
 UNION
 SELECT location_id, TO_CHAR(NULL) "Department", warehouse_name
 FROM warehouses;

LOCATION_ID Department Warehouse
----------- ------------------------------ ---------------------------
 1400 IT
 1400 Southlake, Texas
 1500 Shipping
 1500 San Francisco
 1600 New Jersey

Chapter 9
The Set Operators

9-10

 1700 Accounting
 1700 Administration
 1700 Benefits
 1700 Construction
 1700 Contracting
 1700 Control And Credit
...

UNION ALL Example

The UNION operator returns only distinct rows that appear in either result, while the UNION ALL
operator returns all rows. The UNION ALL operator does not eliminate duplicate selected rows:

SELECT product_id FROM order_items
UNION
SELECT product_id FROM inventories
ORDER BY product_id;

SELECT location_id FROM locations
UNION ALL
SELECT location_id FROM departments
ORDER BY location_id;

A location_id value that appears multiple times in either or both queries (such as '1700') is
returned only once by the UNION operator, but multiple times by the UNION ALL operator.

INTERSECT Example

The following statement combines the results with the INTERSECT operator, which returns only
those unique rows returned by both queries:

SELECT product_id FROM inventories
INTERSECT
SELECT product_id FROM order_items
ORDER BY product_id;

MINUS Example

The following statement combines results with the MINUS operator, which returns only unique
rows returned by the first query but not by the second:

SELECT product_id FROM inventories
MINUS
SELECT product_id FROM order_items
ORDER BY product_id;

EXCEPT Example

You can use EXCEPT or MINUS when you want to exclude a result set from the final result set.
In this example, the result of the second query is ignored.

The following statement combines results with the EXCEPT operator, which returns only unique
rows returned by the first query but not by the second:

SELECT product_id FROM inventories
EXCEPT
SELECT product_id FROM order_items
ORDER BY product_id;

Chapter 9
The Set Operators

9-11

Sorting Query Results
Use the ORDER BY clause to order the rows selected by a query. Sorting by position is
useful in the following cases:

• To order by a lengthy select list expression, you can specify its position in the
ORDER BY clause rather than duplicate the entire expression.

• For compound queries containing set operators UNION, INTERSECT, MINUS, or UNION
ALL, the ORDER BY clause must specify positions or aliases rather than explicit
expressions. Also, the ORDER BY clause can appear only in the last component
query. The ORDER BY clause orders all rows returned by the entire compound query.

The ordering method by which Oracle Database sorts character values for the ORDER
BY clause, also known as the collation, is determined for each ORDER BY clause
expression separately using the collation derivation rules.

If the determined collation of an expression is not the collation BINARY, then the
character values are compared linguistically. In this case, they are first transformed to
collation keys and then compared like RAW values. The collation keys are generated
implicitly using the same method that the SQL function NLSSORT uses. Generated
collation keys are subject to the same restrictions that are described in "NLSSORT". As a
result of these restrictions, if the initialization parameter MAX_STRING_SIZE is set to
STANDARD, two values may compare as linguistically equal if they do not differ in the
prefix that was used to produce the collation key, even if they differ in the rest of the
value. If the parameter's value is EXTENDED, then the error "ORA-12742: unable to
create the collation key" may be reported under certain circumstances. See the
links below for further information on the restrictions.

See Also:

• Collation Derivation

• Linguistic Sorting and Matching

• Default Values for NLS Parameters in SQL Functions

• NLSSORT

Joins
A join is a query that combines rows from two or more tables, views, or materialized
views. Oracle Database performs a join whenever multiple tables appear in the FROM
clause of the query. The select list of the query can select any columns from any of
these tables. If any two of these tables have a column name in common, then you
must qualify all references to these columns throughout the query with table names to
avoid ambiguity.

Chapter 9
Sorting Query Results

9-12

Join Conditions
Most join queries contain at least one join condition, either in the FROM clause or in the WHERE
clause. The join condition compares two columns, each from a different table. To execute a
join, Oracle Database combines pairs of rows, each containing one row from each table, for
which the join condition evaluates to TRUE. The columns in the join conditions need not also
appear in the select list.

To execute a join of three or more tables, Oracle first joins two of the tables based on the join
conditions comparing their columns and then joins the result to another table based on join
conditions containing columns of the joined tables and the new table. Oracle continues this
process until all tables are joined into the result. The optimizer determines the order in which
Oracle joins tables based on the join conditions, indexes on the tables, and, any available
statistics for the tables.

A WHERE clause that contains a join condition can also contain other conditions that refer to
columns of only one table. These conditions can further restrict the rows returned by the join
query.

Note:

You cannot specify LOB columns in the WHERE clause if the WHERE clause contains
the join condition. The use of LOBs in WHERE clauses is also subject to other
restrictions. See Oracle Database SecureFiles and Large Objects Developer's
Guide for more information.

Equijoins
An equijoin is a join with a join condition containing an equality operator. An equijoin
combines rows that have equivalent values for the specified columns. Depending on the
internal algorithm the optimizer chooses to execute the join, the total size of the columns in
the equijoin condition in a single table may be limited to the size of a data block minus some
overhead. The size of a data block is specified by the initialization parameter DB_BLOCK_SIZE.

See Also:

"Using Join Queries: Examples"

Band Joins
A band join is a special type of nonequijoin in which key values in one data set must fall
within the specified range (“band”) of the second data set. The same table can serve as both
the first and second data sets.

Chapter 9
Joins

9-13

See Also:

• Database SQL Tuning Guide for more information on band joins

• USE_BAND Hint

• NO_USE_BAND Hint

Self Joins
A self join is a join of a table to itself. This table appears twice in the FROM clause and
is followed by table aliases that qualify column names in the join condition. To perform
a self join, Oracle Database combines and returns rows of the table that satisfy the join
condition.

See Also:

"Using Self Joins: Example"

Cartesian Products
If two tables in a join query have no join condition, then Oracle Database returns their
Cartesian product. Oracle combines each row of one table with each row of the
other. A Cartesian product always generates many rows and is rarely useful. For
example, the Cartesian product of two tables, each with 100 rows, has 10,000 rows.
Always include a join condition unless you specifically need a Cartesian product. If a
query joins three or more tables and you do not specify a join condition for a specific
pair, then the optimizer may choose a join order that avoids producing an intermediate
Cartesian product.

Inner Joins
An inner join (sometimes called a simple join) is a join of two or more tables that
returns only those rows that satisfy the join condition.

Outer Joins
An outer join extends the result of a simple join. An outer join returns all rows that
satisfy the join condition and also returns some or all of those rows from one table for
which no rows from the other satisfy the join condition.

• To write a query that performs an outer join of tables A and B and returns all rows
from A (a left outer join), use the LEFT [OUTER] JOIN syntax in the FROM clause, or
apply the outer join operator (+) to all columns of B in the join condition in the
WHERE clause. For all rows in A that have no matching rows in B, Oracle Database
returns null for any select list expressions containing columns of B.

• To write a query that performs an outer join of tables A and B and returns all rows
from B (a right outer join), use the RIGHT [OUTER] JOIN syntax in the FROM clause,

Chapter 9
Joins

9-14

or apply the outer join operator (+) to all columns of A in the join condition in the WHERE
clause. For all rows in B that have no matching rows in A, Oracle returns null for any
select list expressions containing columns of A.

• To write a query that performs an outer join and returns all rows from A and B, extended
with nulls if they do not satisfy the join condition (a full outer join), use the FULL [OUTER]
JOIN syntax in the FROM clause.

You cannot compare a column with a subquery in the WHERE clause of any outer join,
regardless which form you specify.

You can use outer joins to fill gaps in sparse data. Such a join is called a partitioned outer
join and is formed using the query_partition_clause of the join_clause syntax. Sparse
data is data that does not have rows for all possible values of a dimension such as time or
department. For example, tables of sales data typically do not have rows for products that
had no sales on a given date. Filling data gaps is useful in situations where data sparsity
complicates analytic computation or where some data might be missed if the sparse data is
queried directly.

See Also:

• join_clause for more information about using outer joins to fill gaps in sparse
data

• Oracle Database Data Warehousing Guide for a complete discussion of group
outer joins and filling gaps in sparse data

Oracle recommends that you use the FROM clause OUTER JOIN syntax rather than the Oracle
join operator. Outer join queries that use the Oracle join operator (+) are subject to the
following rules and restrictions, which do not apply to the FROM clause OUTER JOIN syntax:

• You cannot specify the (+) operator in a query block that also contains FROM clause join
syntax.

• The (+) operator can appear only in the WHERE clause or, in the context of left-correlation
(when specifying the TABLE clause) in the FROM clause, and can be applied only to a
column of a table or view.

• If A and B are joined by multiple join conditions, then you must use the (+) operator in all
of these conditions. If you do not, then Oracle Database will return only the rows resulting
from a simple join, but without a warning or error to advise you that you do not have the
results of an outer join.

• The (+) operator does not produce an outer join if you specify one table in the outer query
and the other table in an inner query.

• You cannot use the (+) operator to outer-join a table to itself, although self joins are valid.
For example, the following statement is not valid:

-- The following statement is not valid:
SELECT employee_id, manager_id
 FROM employees
 WHERE employees.manager_id(+) = employees.employee_id;

However, the following self join is valid:

Chapter 9
Joins

9-15

SELECT e1.employee_id, e1.manager_id, e2.employee_id
 FROM employees e1, employees e2
 WHERE e1.manager_id(+) = e2.employee_id
 ORDER BY e1.employee_id, e1.manager_id, e2.employee_id;

• The (+) operator can be applied only to a column, not to an arbitrary expression.
However, an arbitrary expression can contain one or more columns marked with
the (+) operator.

• A WHERE condition containing the (+) operator cannot be combined with another
condition using the OR logical operator.

• A WHERE condition cannot use the IN comparison condition to compare a column
marked with the (+) operator with an expression.

If the WHERE clause contains a condition that compares a column from table B with a
constant, then the (+) operator must be applied to the column so that Oracle returns
the rows from table A for which it has generated nulls for this column. Otherwise
Oracle returns only the results of a simple join.

In previous releases of Oracle Database, in a query that performed outer joins of more
than two pairs of tables, a single table could be the null-generated table for only one
other table. Beginning with Oracle Database 12c, a single table can be the null-
generated table for multiple tables. For example, the following statement is allowed in
Oracle Database 12c:

SELECT * FROM A, B, D
 WHERE A.c1 = B.c2(+) and D.c3 = B.c4(+);

In this example, B, the null-generated table, is outer-joined to two tables, A and D.
Refer to SELECT for the syntax for an outer join.

Antijoins
An antijoin returns rows from the left side of the predicate for which there are no
corresponding rows on the right side of the predicate. It returns rows that fail to match
(NOT IN) the subquery on the right side.

See Also:

"Using Antijoins: Example"

Semijoins
A semijoin returns rows that match an EXISTS subquery without duplicating rows from
the left side of the predicate when multiple rows on the right side satisfy the criteria of
the subquery.

Semijoin and antijoin transformation cannot be done if the subquery is on an OR branch
of the WHERE clause.

Chapter 9
Joins

9-16

See Also:

"Using Semijoins: Example"

Using Subqueries
A subquery answers multiple-part questions. For example, to determine who works in
Taylor's department, you can first use a subquery to determine the department in which
Taylor works. You can then answer the original question with the parent SELECT statement. A
subquery in the FROM clause of a SELECT statement is also called an inline view. you can nest
any number of subqueries in an inline view. A subquery in the WHERE clause of a SELECT
statement is also called a nested subquery. You can nest up to 255 levels of subqueries in
the a nested subquery.

A subquery can contain another subquery. Oracle Database imposes no limit on the number
of subquery levels in the FROM clause of the top-level query. You can nest up to 255 levels of
subqueries in the WHERE clause.

If columns in a subquery have the same name as columns in the containing statement, then
you must prefix any reference to the column of the table from the containing statement with
the table name or alias. To make your statements easier to read, always qualify the columns
in a subquery with the name or alias of the table, view, or materialized view.

Oracle performs a correlated subquery when a nested subquery references a column from
a table referred to a parent statement one or more levels above the subquery or nested
subquery. The parent statement can be a SELECT, UPDATE, or DELETE statement in which the
subquery is nested. A correlated subquery conceptually is evaluated once for each row
processed by the parent statement. However, the optimizer may choose to rewrite the query
as a join or use some other technique to formulate a query that is semantically equivalent.
Oracle resolves unqualified columns in the subquery by looking in the tables named in the
subquery and then in the tables named in the parent statement.

A correlated subquery answers a multiple-part question whose answer depends on the value
in each row processed by the parent statement. For example, you can use a correlated
subquery to determine which employees earn more than the average salaries for their
departments. In this case, the correlated subquery specifically computes the average salary
for each department.

See Also:

"Using Correlated Subqueries: Examples"

Use subqueries for the following purposes:

• To define the set of rows to be inserted into the target table of an INSERT or CREATE TABLE
statement

• To define the set of rows to be included in a view or materialized view in a CREATE VIEW or
CREATE MATERIALIZED VIEW statement

• To define one or more values to be assigned to existing rows in an UPDATE statement

Chapter 9
Using Subqueries

9-17

• To provide values for conditions in a WHERE clause, HAVING clause, or START WITH
clause of SELECT, UPDATE, and DELETE statements

• To define a table to be operated on by a containing query

You do this by placing the subquery in the FROM clause of the containing query as
you would a table name. You may use subqueries in place of tables in this way as
well in INSERT, UPDATE, and DELETE statements.

Subqueries so used can employ correlation variables, both defined within the
subquery itself and those defined in query blocks containing the subquery. Refer to
table_collection_expression for more information.

Scalar subqueries, which return a single column value from a single row, are a
valid form of expression. You can use scalar subquery expressions in most of the
places where expr is called for in syntax. Refer to "Scalar Subquery Expressions "
for more information.

Unnesting of Nested Subqueries
The term subquery refers to a sub-query block that appears in the WHERE and HAVING
clauses. A sub-query that appears in the FROM clause is called a view or derived table.

A WHERE clause subquery belongs to one of the following types: SINGLE-ROW, EXISTS,
NOT EXISTS, ANY, or ALL. A single-row subquery must return at most one row, whereas
the other types of subquery can return zero or more rows.

ANY and ALL subqueries are used with relational comparison operators: =, >,>=, <, <=,
and <>.

In SQL, the set operator IN is used as a shorthand for =ANY and the set operator NOT
IN is used as a shorthand for <>ALL.

Example: Correlated EXISTS Subquery

The subquery in the example is correlated, because the column C.cust_id comes
from the table customers, that is not defined by the subquery.

SELECT C.cust_last_name, C.country_id
 FROM customers C
 WHERE EXISTS (SELECT 1
 FROM sales S
 WHERE S.quantity_sold > 1000 and
 S.cust_id = C.cust_id);

Nested subqueries are those subqueries that appear in the WHERE and HAVING clauses
of a parent statement like SELECT. When Oracle Database evaluates a statement with
a nested subquery, it must evaluate the subquery portion multiple times and may
overlook more efficient access paths or joins.

Subquery unnesting is an optimization that converts a subquery into a join in the outer
query and allows the optimizer to consider subquery tables during access path, join
method, and join order selection. Unnesting either merges the subquery into the body
of the outer query block or turns it into an inline view.

When a subquery is unnested, it is merged into the statement that contains it, allowing
the optimizer to consider them together when evaluating access paths and joins. The

Chapter 9
Unnesting of Nested Subqueries

9-18

optimizer can unnest most subqueries, with some exceptions. Those exceptions include
hierarchical subqueries and subqueries that contain a ROWNUM pseudocolumn, one of the set
operators, a nested aggregate function, or a correlated reference to a query block that is not
the immediate outer query block of the subquery.

Assuming no restrictions exist, the optimizer automatically unnests some (but not all) of the
following nested subqueries:

• Uncorrelated IN subqueries

• IN and EXISTS correlated subqueries, as long as they do not contain aggregate functions
or a GROUP BY clause

You can enable extended subquery unnesting by instructing the optimizer to unnest
additional types of subqueries:

• You can unnest an uncorrelated NOT IN subquery by specifying the HASH_AJ or MERGE_AJ
hint in the subquery.

• You can unnest other subqueries by specifying the UNNEST hint in the subquery.

See Also:

"Hints " for information on hints

Example: Uncorrelated ANY Subquery

SELECT C.cust_last_name, C.country_id
 FROM customers C
 WHERE C.cust_id =ANY (SELECT S.cust_id
 FROM sales S
 WHERE S.quantity_sold > 1000);

Example: NOT EXISTS Subquery

SELECT C.cust_last_name, C.country_id
FROM customers C
WHERE NOT EXISTS (SELECT 1
 FROM sales S, products P
 WHERE P.prod_id = S.prod_id and
 P.prod_min_price > 90 and
 S.cust_id = C.cust_id);

Selecting from the DUAL Table
DUAL is a table automatically created by Oracle Database along with the data dictionary. DUAL
is in the schema of the user SYS but is accessible by the name DUAL to all users. It has one
column, DUMMY, defined to be VARCHAR2(1), and contains one row with a value X. Selecting
from the DUAL table is useful for computing a constant expression with the SELECT statement.

Chapter 9
Selecting from the DUAL Table

9-19

Because DUAL has only one row, the constant is returned only once. Alternatively, you
can select a constant, pseudocolumn, or expression from any table, but the value will
be returned as many times as there are rows in the table. Refer to "About SQL
Functions " for many examples of selecting a constant value from DUAL.

Note:

Beginning with Oracle Database 10g Release 1, logical I/O is not performed
on the DUAL table when computing an expression that does not include the
DUMMY column. This optimization is listed as FAST DUAL in the execution plan.
If you SELECT the DUMMY column from DUAL, then this optimization does not
take place and logical I/O occurs.

Distributed Queries
The Oracle distributed database management system architecture lets you access
data in remote databases using Oracle Net and an Oracle Database server. You can
identify a remote table, view, or materialized view by appending @dblink to the end of
its name. The dblink must be a complete or partial name for a database link to the
database containing the remote table, view, or materialized view.

See Also:

References to Objects in Remote Databases for more information on
referring to database links

Restrictions on Distributed Queries

Distributed queries are currently subject to the restriction that all tables locked by a FOR
UPDATE clause and all tables with LONG columns selected by the query must be located
on the same database. In addition, Oracle Database currently does not support
distributed queries that select user-defined types or object REF data types on remote
tables.

Chapter 9
Distributed Queries

9-20

10
SQL Statements: ADMINISTER KEY
MANAGEMENT to ALTER JAVA

This chapter lists the various types of SQL statements and then describes the first set (in
alphabetical order) of SQL statements. The remaining SQL statements appear in alphabetical
order in the subsequent chapters.

This chapter contains the following sections:

• Types of SQL Statements

• How the SQL Statement Chapters are Organized

• ADMINISTER KEY MANAGEMENT

• ALTER ANALYTIC VIEW

• ALTER ATTRIBUTE DIMENSION

• ALTER AUDIT POLICY (Unified Auditing)

• ALTER CLUSTER

• ALTER DATABASE

• ALTER DATABASE DICTIONARY

• ALTER DATABASE LINK

• ALTER DIMENSION

• ALTER DISKGROUP

• ALTER FLASHBACK ARCHIVE

• ALTER FUNCTION

• ALTER HIERARCHY

• ALTER INDEX

• ALTER INDEXTYPE

• ALTER INMEMORY JOIN GROUP

• ALTER JAVA

Types of SQL Statements
The lists in the following sections provide a functional summary of SQL statements and are
divided into these categories:

• Data Definition Language (DDL) Statements

• Data Manipulation Language (DML) Statements

• Transaction Control Statements

• Session Control Statements

10-1

• System Control Statement

• Embedded SQL Statements

Data Definition Language (DDL) Statements
Data definition language (DDL) statements let you to perform these tasks:

• Create, alter, and drop schema objects

• Grant and revoke privileges and roles

• Analyze information on a table, index, or cluster

• Establish auditing options

• Add comments to the data dictionary

The CREATE, ALTER, and DROP commands require exclusive access to the specified
object. For example, an ALTER TABLE statement fails if another user has an open
transaction on the specified table.

The GRANT, REVOKE, ANALYZE, AUDIT, and COMMENT commands do not require exclusive
access to the specified object. For example, you can analyze a table while other users
are updating the table.

Oracle Database implicitly commits the current transaction before and after every DDL
statement.

A DDL statement is either blocking or nonblocking, and both types of DDL statements
require exclusive locks on internal structures.

See Also:

Oracle Database Development Guide to learn about the difference between
blocking and nonblocking DDL

Many DDL statements may cause Oracle Database to recompile or reauthorize
schema objects. For information on how Oracle Database recompiles and reauthorizes
schema objects and the circumstances under which a DDL statement would cause
this, see Oracle Database Concepts.

DDL statements are supported by PL/SQL with the use of the DBMS_SQL package.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about this package

The DDL statements are:

ALTER ... (All statements beginning with ALTER, except ALTER SESSION and ALTER
SYSTEM—see "Session Control Statements " and "System Control Statement ")
ANALYZE

Chapter 10
Types of SQL Statements

10-2

ASSOCIATE STATISTICS
AUDIT
COMMENT
CREATE ... (All statements beginning with CREATE)
DISASSOCIATE STATISTICS
DROP ... (All statements beginning with DROP)
FLASHBACK ... (All statements beginning with FLASHBACK)
GRANT
NOAUDIT
PURGE
RENAME
REVOKE
TRUNCATE

Data Manipulation Language (DML) Statements
Data manipulation language (DML) statements access and manipulate data in existing
schema objects. These statements do not implicitly commit the current transaction. The data
manipulation language statements are:

CALL
DELETE
EXPLAIN PLAN
INSERT
LOCK TABLE
MERGE
SELECT
UPDATE

The SELECT statement is a limited form of DML statement in that it can only access data in the
database. It cannot manipulate data stored in the database, although it can manipulate the
accessed data before returning the results of the query.

The SELECT statement is supported in PL/SQL only when executed dynamically. However,
you can use the similar PL/SQL statement SELECT INTO in PL/SQL code, and you do not have
to execute it dynamically. The CALL and EXPLAIN PLAN statements are supported in PL/SQL
only when executed dynamically. All other DML statements are fully supported in PL/SQL.

Transaction Control Statements
Transaction control statements manage changes made by DML statements. The transaction
control statements are:

COMMIT
ROLLBACK
SAVEPOINT
SET TRANSACTION
SET CONSTRAINT

All transaction control statements, except certain forms of the COMMIT and ROLLBACK
commands, are supported in PL/SQL. For information on the restrictions, see COMMIT and
ROLLBACK .

Chapter 10
Types of SQL Statements

10-3

Session Control Statements
Session control statements dynamically manage the properties of a user session.
These statements do not implicitly commit the current transaction.

PL/SQL does not support session control statements. The session control statements
are:

ALTER SESSION
SET ROLE

System Control Statement
The single system control statement, ALTER SYSTEM, dynamically manages the
properties of an Oracle Database instance. This statement does not implicitly commit
the current transaction and is not supported in PL/SQL.

Embedded SQL Statements
Embedded SQL statements place DDL, DML, and transaction control statements
within a procedural language program. Embedded SQL is supported by the Oracle
precompilers and is documented in the following books:

• Pro*COBOL Programmer's Guide

• Pro*C/C++ Programmer's Guide

How the SQL Statement Chapters are Organized
All SQL statements in this book are organized into the following sections:

Syntax

The syntax diagrams show the keywords and parameters that make up the statement.

Note:

Not all keywords and parameters are valid in all circumstances. Be sure to
refer to the "Semantics" section of each statement and clause to learn about
any restrictions on the syntax.

Purpose

The "Purpose" section describes the basic uses of the statement.

Prerequisites

The "Prerequisites" section lists privileges you must have and steps that you must take
before using the statement. In addition to the prerequisites listed, most statements
also require that the database be opened by your instance, unless otherwise noted.

Chapter 10
How the SQL Statement Chapters are Organized

10-4

Semantics

The "Semantics" section describes the purpose of the keywords, parameters, and clauses
that make up the syntax, as well as restrictions and other usage notes that may apply to
them. (The conventions for keywords and parameters used in this chapter are explained in
the "Preface" of this reference.)

Examples

The "Examples" section shows how to use the various clauses and parameters of the
statement.

ADMINISTER KEY MANAGEMENT
Purpose

The ADMINISTER KEY MANAGEMENT statement provides a unified key management interface for
Transparent Data Encryption. Use this statement to:

• Manage software and hardware keystores

• Manage encryption keys

• Manage secrets

Prerequisites

You must have the ADMINISTER KEY MANAGEMENT or SYSKM system privilege.

To specify the CONTAINER clause, you must be connected to a multitenant container database
(CDB). To specify CONTAINER = ALL, the current container must be the root and you must have
the commonly granted ADMINISTER KEY MANAGEMENT or SYSKM privilege.

Syntax

administer_key_management::=

ADMINISTER KEY MANAGEMENT

keystore_management_clauses

key_management_clauses

secret_management_clauses

zero_downtime_software_patching_clauses

;

(keystore_management_clauses::=, key_management_clauses::=,
secret_management_clauses::=)

Chapter 10
ADMINISTER KEY MANAGEMENT

10-5

keystore_management_clauses::=

create_keystore

open_keystore

close_keystore

backup_keystore

alter_keystore_password

merge_into_new_keystore

merge_into_existing_keystore

isolate_keystore

unite_keystore

(create_keystore::=, open_keystore::=, close_keystore::=, backup_keystore::=,
alter_keystore_password::=, merge_into_new_keystore::=,
merge_into_existing_keystore::=)

create_keystore::=

CREATE

KEYSTORE ’ keystore_location ’

LOCAL

AUTO_LOGIN KEYSTORE FROM KEYSTORE ’ keystore_location ’

IDENTIFIED BY keystore_password

open_keystore::=

SET KEYSTORE OPEN

FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password

CONTAINER =
ALL

CURRENT

close_keystore::=

SET KEYSTORE CLOSE

IDENTIFIED BY
EXTERNAL STORE

keystore_password
CONTAINER =

ALL

CURRENT

Chapter 10
ADMINISTER KEY MANAGEMENT

10-6

backup_keystore::=

BACKUP KEYSTORE

USING ’ backup_identifier ’ FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password

TO ’ keystore_location ’

alter_keystore_password::=

ALTER KEYSTORE PASSWORD

FORCE KEYSTORE

IDENTIFIED BY old_keystore_password

SET new_keystore_password

WITH BACKUP

USING ’ backup_identifier ’

merge_into_new_keystore::=

MERGE KEYSTORE ’ keystore1_location ’

IDENTIFIED BY keystore1_password

AND KEYSTORE ’ keystore2_location ’

IDENTIFIED BY keystore2_password

INTO NEW KEYSTORE ’ keystore3_location ’ IDENTIFIED BY keystore3_password

merge_into_existing_keystore::=

MERGE KEYSTORE ’ keystore1_location ’

IDENTIFIED BY keystore1_password

INTO EXISTING KEYSTORE ’ keystore2_location ’ IDENTIFIED BY keystore2_password

WITH BACKUP

USING ’ backup_identifier ’

Chapter 10
ADMINISTER KEY MANAGEMENT

10-7

isolate_keystore::=

FORCE

ISOLATE KEYSTORE IDENTIFIED BY isolated_keystore_password FROM ROOT KEYSTORE

FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

united_keystore_password

WITH BACKUP

USING ’ backup_identifier ’

unite_keystore ::=

UNITE KEYSTORE IDENTIFIED BY isolated_keystore_password WITH ROOT KEYSTORE

FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

united_keystore_password

WITH BACKUP

USING ’ backup_identifier ’

key_management_clauses::=

set_key

create_key

use_key

set_key_tag

export_keys

import_keys

migrate_key

reverse_migrate_key

move_keys

(set_key::=, create_key::=, use_key::=, set_key_tag::=, export_keys::=,
import_keys::=, migrate_key::=, reverse_migrate_key::=)

Chapter 10
ADMINISTER KEY MANAGEMENT

10-8

set_key::=

SET

ENCRYPTION

KEY

mkid:mk

mk USING TAG ’ tag ’

USING ALGORITHM ’ encrypt_algorithm ’ FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password

WITH BACKUP

USING ’ backup_identifier ’

CONTAINER =
ALL

CURRENT

create_key::=

CREATE

ENCRYPTION

KEY

mkid:mk

mk USING TAG ’ tag ’

USING ALGORITHM ’ encrypt_algorithm ’ FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password

WITH BACKUP

USING ’ backup_identifier ’

CONTAINER =
ALL

CURRENT

use_key::=

USE

ENCRYPTION

KEY ’ key_id ’

USING TAG ’ tag ’ FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password

WITH BACKUP

USING ’ backup_identifier ’

Chapter 10
ADMINISTER KEY MANAGEMENT

10-9

set_key_tag::=

SET TAG ’ tag ’ FOR ’ key_id ’

FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password

WITH BACKUP

USING ’ backup_identifier ’

export_keys::=

EXPORT

ENCRYPTION

KEYS WITH SECRET secret TO ’ filename ’

FORCE KEYSTORE

IDENTIFIED BY keystore_password

WITH IDENTIFIER IN
’ key_id ’

,

(subquery)

import_keys::=

IMPORT

ENCRYPTION

KEYS WITH SECRET secret FROM ’ filename ’

FORCE KEYSTORE

IDENTIFIED BY keystore_password

WITH BACKUP

USING ’ backup_identifier ’

migrate_key::=

SET

ENCRYPTION

KEY IDENTIFIED BY HSM_auth_string

FORCE KEYSTORE

MIGRATE USING software_keystore_password

WITH BACKUP

USING ’ backup_identifier ’

Chapter 10
ADMINISTER KEY MANAGEMENT

10-10

reverse_migrate_key::=

SET

ENCRYPTION

KEY IDENTIFIED BY software_keystore_password

FORCE KEYSTORE

REVERSE MIGRATE USING HSM_auth_string

move_keys ::=

MOVE

ENCRYPTION

KEYS TO NEW KEYSTORE keystore_location1

IDENTIFIED BY keystore1_password FROM

FORCE

KEYSTORE IDENTIFIED BY keystore_password

WITH IDENTIFIER IN
’ key_identifier ’

,

subquery

WITH BACKUP

USING ’ backup_identifier ’

secret_management_clauses::=

add_update_secret

delete_secret

add_update_secret_seps

delete_secret_seps

(add_update_secret::=, delete_secret::=)

Chapter 10
ADMINISTER KEY MANAGEMENT

10-11

add_update_secret::=

ADD

UPDATE
SECRET ’ secret ’ FOR CLIENT ’ client_identifier ’

USING TAG ’ tag ’

FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password

WITH BACKUP

USING ’ backup_identifier ’

delete_secret::=

DELETE SECRET FOR CLIENT ’ client_identifier ’

FORCE KEYSTORE

IDENTIFIED BY
EXTERNAL STORE

keystore_password

WITH BACKUP

USING ’ backup_identifier ’

add_update_secret_seps::=

ADD

UPDATE
SECRET ’ secret ’ FOR CLIENT ’ client_identifier ’

USING TAG ’ tag ’

TO

LOCAL

AUTO_LOGIN KEYSTORE directory

delete_secret_seps::=

DELETE SECRET ’ secret ’ FOR CLIENT ’ client_identifier ’

FROM

LOCAL

AUTO_LOGIN KEYSTORE directory

Chapter 10
ADMINISTER KEY MANAGEMENT

10-12

zero_downtime_software_patching_clauses::=

SWITCHOVER LIBRARY path FOR ALL CONTAINERS

Semantics

keystore_management_clauses

Use these clauses to perform the following keystore management operations:

• Create a software keystore

• Open and close a software keystore or a hardware keystore

• Back up a password-protected software keystore

• Change the password of a password-protected software keystore

• Merge two existing software keystores into a new password-protected software keystore

• Merge one existing software keystore into an existing password-protected software
keystore

• Isolate the keystore of a Pluggable Database (PDB) from the Container Database (CDB)
so that the PDB can manage its own keystore.

• Unite the keystore of a PDB with the CDB.

create_keystore

This clause lets you create the following types of software keystores: password-protected
software keystores and auto-login software keystores. To issue this clause in a multitenant
environment, you must be connected to the root.

CREATE KEYSTORE

Specify this clause to create a password-protected software keystore.

• For keystore_location, specify the full path name of the software keystore directory.
The keystore will be created in this directory in a file named ewallet.p12. This clause is
optional if the WALLET_ROOT parameter has been set. Refer to Oracle Database Advanced
Security Guide to learn how to determine the software keystore directory for your system.

• Use the IDENTIFIED BY clause to set the password for the keystore. Refer to "Notes on
Specifying Keystore Passwords" for more information.

CREATE [LOCAL] AUTO_LOGIN KEYSTORE

Specify this clause to create an auto-login software keystore. An auto-login software keystore
is created from an existing password-protected software keystore. The auto-login keystore
has a system-generated password. It is stored in a PKCS#12-based file named cwallet.sso
in the same directory as the password-protected software keystore.

• By default, Oracle creates an auto-login keystore, which can be opened from computers
other than the computer on which the keystore resides. If you specify the LOCAL keyword,
then Oracle Database creates a local auto-login keystore, which can be opened only from
the computer on which the keystore resides.

Chapter 10
ADMINISTER KEY MANAGEMENT

10-13

• For keystore_location, specify the full path name of the directory in which the
existing password-protected software keystore resides. The password-protected
software keystore can be open or closed.

• Use the IDENTIFIED BY clause to specify the password for the existing password-
protected software keystore. Refer to "Notes on Specifying Keystore Passwords"
for more information.

Restriction on Creating Keystores

You can create at most one password-protected software keystore and one auto-login
software keystore, either local or not, in any single directory.

See Also:

Oracle Database Advanced Security Guide for more information on creating
software keystores

open_keystore

This clause lets you open a password-protected software keystore or a hardware
keystore.

Note:

You do not need to use this clause to open auto-login and local auto-login
software keystores because they are opened automatically when they are
required—that is, when the master encryption key is accessed.

• The FORCE KEYSTORE clause is useful when opening a keystore in a PDB. It
ensures that the CDB root keystore is open before opening the PDB keystore.
Refer to "Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore. Refer to
"Notes on Specifying Keystore Passwords" for more information.

• The CONTAINER clause applies when you are connected to a CDB.

If the current container is a pluggable database (PDB), then specify CONTAINER =
CURRENT to open the keystore in the PDB. The keystore must be open in the root
before you open it in the PDB.

If the current container is the root, then specify CONTAINER = CURRENT to open the
keystore in the root, or specify CONTAINER = ALL to open the keystore in the root
and in all PDBs.

If you omit this clause, then CONTAINER = CURRENT is the default.

Chapter 10
ADMINISTER KEY MANAGEMENT

10-14

See Also:

• Oracle Database Advanced Security Guide Managing Keystores and TDE
Master Encryption Keys in United Mode

• Oracle Database Advanced Security Guide Managing Keystores and TDE
Master Encryption Keys in Isolated Mode

• Oracle Database Advanced Security Guide for more information on opening
password-based software keystores and hardware keystores

close_keystore

This clause lets you close a password-protected software keystore, an auto-login software
keystore, or a hardware keystore. Closing a keystore disables all encryption and decryption
operations. Any attempt to encrypt or decrypt data or access encrypted data results in an
error.

• To close a password-protected software keystore or a hardware keystore, specify the
IDENTIFIED BY clause. Refer to "Notes on Specifying Keystore Passwords" for more
information.

• To close an auto-login keystore, do not specify the IDENTIFIED BY clause. Before you
close an auto-login keystore, check the WALLET_TYPE column of the
V$ENCRYPTION_WALLET view. If it returns AUTOLOGIN, then you can close the keystore.
Otherwise, if you attempt to close the keystore, then an error occurs.

• The CONTAINER clause applies when you are connected to a CDB.

If the current container is a PDB, then specify CONTAINER = CURRENT to close the keystore
in the PDB.

If the current container is the root, then the CONTAINER = CURRENT and CONTAINER = ALL
clauses have the same effect; both clauses close the keystore in the root and in all PDBs.

If you omit this clause, then CONTAINER = CURRENT is the default.

See Also:

Oracle Database Advanced Security Guide for more information on closing
keystores

backup_keystore

This clause lets you back up a password-protected software keystore. The keystore must be
open.

• By default, Oracle Database creates a backup file with a name of the form
ewallet_timestamp.p12, where timestamp is the file creation timestamp in UTC format.
The optional USING 'backup_identifier' clause lets you specify a backup identifier
which is added to the backup file name. For example, if you specify a backup identifier of
'Backup1', then Oracle Database creates a backup file with a name of the form
ewallet_timestamp_Backup1.p12.

Chapter 10
ADMINISTER KEY MANAGEMENT

10-15

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed.
Refer to "Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore. Refer to
"Notes on Specifying Keystore Passwords" for more information.

• The optional TO 'keystore_location' clause lets you specify the directory in which
the backup file is created. If you omit this clause, then the backup is created in the
same directory as the keystore that you are backing up.

See Also:

Oracle Database Advanced Security Guide for more information on backing
up password-based software keystores

alter_keystore_password

This clause lets you change the password for a password-protected software keystore.
The keystore must be open.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed.
Refer to "Notes on the FORCE KEYSTORE Clause" for more information.

• For old_keystore_password, specify the old password for the keystore. For
new_keystore_password, specify the new password for the keystore. Refer to
"Notes on Specifying Keystore Passwords" for more information.

• The optional WITH BACKUP clause instructs the database to create a backup of the
keystore before changing the password. Refer to "Notes on the WITH BACKUP
Clause" for more information.

See Also:

Oracle Database Advanced Security Guide for more information on changing
a password-based software keystore password

merge_into_new_keystore

This clause lets you merge two software keystores into a new keystore. The keys and
attributes in the two constituent keystores are added to the new keystore. The
constituent keystores can be password-based or auto-login (including local auto-login)
software keystores; they can be open or closed. The new keystore is a password-
protected software keystore. It is in a closed state when the merge completes. Any or
none of the keystores specified in this clause can be the keystore configured for use
by the database.

• For keystore1_location, specify the full path name of the directory in which the
first keystore resides.

• Specify IDENTIFIED BY keystore1_password only if the first keystore is a
password-based software keystore. Refer to "Notes on Specifying Keystore
Passwords" for more information.

Chapter 10
ADMINISTER KEY MANAGEMENT

10-16

• For keystore2_location, specify the full path name of the directory in which the second
keystore resides.

• Specify IDENTIFIED BY keystore2_password only if the second keystore is a password-
based software keystore.

• For keystore3_location, specify the full path name of the directory in which the new
keystore is created.

• For keystore3_password, specify the password for the new keystore.

See Also:

Oracle Database Advanced Security Guide for more information on merging
software keystores

merge_into_existing_keystore

This clause lets you merge a software keystore into another existing software keystore. The
keys and attributes in the keystore from which you merge are added to the keystore into
which you merge. The keystore from which you merge can be a password-protected or auto-
login (including local auto-login) software keystore; it can be open or closed. The keystore
into which you merge must be a password-based software keystore. It can be open or closed
when the merge begins. However, it will be in a closed state when the merge completes.
Either or neither of the keystores specified in this clause can be the keystore configured for
use by the database.

• For keystore1_location, specify the full path name of the directory in which the keystore
from which you merge resides.

• Specify IDENTIFIED BY keystore1_password only if the keystore from which you merge is
a password-based software keystore.

• For keystore2_location, specify the full path name of the directory in which the keystore
into which you merge resides.

• For keystore2_password, specify the password for the keystore into which you merge.

• The optional WITH BACKUP clause instructs the database to create a backup of the
keystore into which you merge before performing the merge. Refer to "Notes on the
WITH BACKUP Clause" for more information.

See Also:

Oracle Database Advanced Security Guide for more information on merging
software keystores

isolate_keystore

Pluggable Databases (PDB) within a Container Database (CDB) can create and manage
their own keystore. The isolate_keystore clause allows a tenant to:

• Manage its Transparent Data Encryption keys independently from those of the CDB.

Chapter 10
ADMINISTER KEY MANAGEMENT

10-17

• Create a password for its independent keystore.

Within the CDB environment you can choose how the keys of a given PDB are
protected. PDBs can either protect their keys with an independent password, or use
the united password of the CDB.

• Use the IDENTIFIED BY clause to specify the password for the keystore.

• The isolated_keystore_password refers to the independent password of the PDB
keystore.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed.
Refer to "Notes on the FORCE KEYSTORE Clause" for more information.

• The united_keystore_password refers to the password of the CDB keystore.

• The optional WITH BACKUP clause instructs the database to create a backup of the
keystore before changing the password. Refer to "Notes on the WITH BACKUP
Clause" for more information.

FORCE Clause with isolate_keystore

The FORCE clause of the ADMINISTER KEY MANAGEMENT FORCE ISOLATE KEYSTORE
command is used when a clone of the PDB is using the master key being isolated.
This command copies the keys from the CDB keystore into the isolated PDB keystore.
For example:

ADMINISTER KEY MANAGEMENT
FORCE ISOLATE KEYSTORE
IDENTIFIED BY <isolated_keystore_password>
FROM ROOT KEYSTORE
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | <united_keystore_password>]
[WITH BACKUP [USING <backup_identifier>]

unite_keystore

The unite_keystore clause allows a PDB that was independently managing its
keystore to change its keystore management mode to united. In united mode CDB$ROOT
keystore password is used to manage PDBs within the CDB.

• Use the IDENTIFIED BY clause to specify the password for the keystore.

• The isolated_keystore_password refers to the independent password of the PDB
keystore.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed.
Refer to "Notes on the FORCE KEYSTORE Clause" for more information.

• The united_keystore_password refers to the password of the CDB keystore.

• The optional WITH BACKUP clause instructs the database to create a backup of the
keystore before changing the password. Refer to "Notes on the WITH BACKUP
Clause" for more information.

For example:

ADMINISTER KEY MANAGEMENT
UNITE KEYSTORE
IDENTIFIED BY <isolated_keystore_password>

Chapter 10
ADMINISTER KEY MANAGEMENT

10-18

WITH ROOT KEYSTORE
[FORCE KEYSTORE]
IDENTIFIED BY [EXTERNAL STORE | <united_keystore_password>]
[WITH BACKUP [USING <backup_identifier>]

key_management_clauses

Use these clauses to perform the following key management operations:

• Create and activate a master encryption key

• Set the tag for an encryption key

• Export encryption keys from a keystore into a file

• Import encryption keys from a file into a keystore

• Migrate from a password-protected software keystore to a hardware keystore

• Migrate from a hardware keystore to a password-protected software keystore

set_key

This clause creates a new master encryption key and activates it. You can use this clause to
create the first master encryption key in a keystore or to rotate (change) the master
encryption key. If a master encryption key is active when you use this clause, then it is
deactivated before the new master encryption key is activated. The keystore that contains the
key can be a password-protected software keystore or a hardware keystore. The keystore
must be open.

Specify the desired value for your TDE Master Key ID (MKID) and desired value of the TDE
Master Encryption Key (MK) to create your own TDE Master Encryption Key.

• In TDE encrypted databases, the TDE Master Key ID(MKID) is used to keep track of
which TDE Master Encryption Key is in use. The MKID:MK option allows both the MKID and
the MK to be specified.

• If only the MK is specified, the database generates a MKID for you, so that you can keep
track of the TDE Master Encryption Key having the MK value that you specified.

• If the MKID is invalid, for example if it is the wrong length, or if it is a string of zeroes, you
will see the following error: ORA-46685: invalid master key identifier or master
key value.

• If the MKID you specified is the same as the MKID of an existing TDE Master Encryption
Key in the keystore, you will see the following error: ORA-46684: master key identifier
exists in the keystore.

• If either the MKID or the MK is invalid, you will see the following error: ORA-46685: invalid
master key identifier or master key value.

• You can specify the MKID:MK option for the set_key clause and create_key clause.

• The ENCRYPTION keyword is optional and is provided for semantic clarity.

• Specify the optional USING TAG clause to associate a tag to the new master encryption
key. Refer to "Notes on the USING TAG Clause" for more information.

• If you specify the USING ALGORITHM clause, then the database creates a master
encryption key that conforms to the specified encryption algorithm. For
encrypt_algorithm, you can specify AES256, ARIA256, GOST256, or SEED128. To specify

Chapter 10
ADMINISTER KEY MANAGEMENT

10-19

this clause, the COMPATIBLE initialization parameter must be set to 12.2 or higher. If
you omit this clause, then the default is AES256.

The ARIA, SEED, and GOST algorithms are country-specific national and
government standards for encryption and hashing. See Oracle Database Security
Guide for more information.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed.
Refer to "Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore. Refer to
"Notes on Specifying Keystore Passwords" for more information.

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier'
clause, to create a backup of the keystore before the new master encryption key is
created. Refer to "Notes on the WITH BACKUP Clause" for more information.

• The CONTAINER clause applies when you are connected to a CDB.

If the current container is a PDB, then specify CONTAINER = CURRENT to create and
activate a new master encryption key in the PDB. A master encryption key must
exist in the root before you create a master encryption key in the PDB.

If the current container is the root, then specify CONTAINER = CURRENT to create and
activate a new master encryption key in the root, or specify CONTAINER = ALL to
create and activate new master encryption keys in the root and in all PDBs.

If you omit this clause, then CONTAINER = CURRENT is the default.

See Also:

• Oracle Database Advanced Security Guide Managing Keystores and
TDE Master Encryption Keys in United Mode

• Oracle Database Advanced Security Guide Managing Keystores and
TDE Master Encryption Keys in Isolated Mode

• Oracle Database Advanced Security Guide for more information on
creating and activating a master encryption key

create_key

For details on specifying the MKID:MK option, see the semantics for the set_key
clause.

This clause lets you create a master encryption key for later use. You can
subsequently activate the key by using the use_key clause. The keystore that contains
the key can be a password-protected software keystore or a hardware keystore. The
keystore must be open.

• The ENCRYPTION keyword is optional and is provided for semantic clarity.

• Specify the optional USING TAG clause to associate a tag to the encryption key.
Refer to "Notes on the USING TAG Clause" for more information.

• If you specify the USING ALGORITHM clause, then the database creates a master
encryption key that conforms to the specified encryption algorithm. For
encrypt_algorithm, you can specify AES256, ARIA256, GOST256, or SEED128. To

Chapter 10
ADMINISTER KEY MANAGEMENT

10-20

specify this clause, the COMPATIBLE initialization parameter must be set to 12.2 or higher.
If you omit this clause, then the default is AES256.

The ARIA, SEED, and GOST algorithms are country-specific national and government
standards for encryption and hashing. See Oracle Database Security Guide for more
information.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed. Refer to
"Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore in which the key
will be created. Refer to "Notes on Specifying Keystore Passwords" for more information.

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier' clause,
to create a backup of the keystore before the key is created. Refer to "Notes on the WITH
BACKUP Clause" for more information.

• The CONTAINER clause applies when you are connected to a CDB.

If the current container is a PDB, then specify CONTAINER = CURRENT to create a master
encryption key in the PDB. A master encryption key must exist in the root before you
create a master encryption key in the PDB

If the current container is the root, then specify CONTAINER = CURRENT to create a master
encryption key in the root, or specify CONTAINER = ALL to create master encryption keys in
the root and in all PDBs.

If you omit this clause, then CONTAINER = CURRENT is the default.

See Also:

Oracle Database Advanced Security Guide for more information on creating a
master encryption key for later use

use_key

This clause lets you activate a master encryption key that has already been created. If a
master encryption key is active when you use this clause, then it is deactivated before the
new master encryption key is activated. The keystore that contains the key can be a
password-based software keystore or a hardware keystore. The keystore must be open

• The ENCRYPTION keyword is optional and is provided for semantic clarity.

• For key_id, specify the identifier of the key that you want to activate. You can find the key
identifier by querying the KEY_ID column of the V$ENCRYPTION_KEYS view.

• Specify the optional USING TAG clause to associate a tag to the encryption key. Refer to
"Notes on the USING TAG Clause" for more information.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed. Refer to
"Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore that contains the
key. Refer to "Notes on Specifying Keystore Passwords" for more information.

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier' clause,
to create a backup of the keystore before the key is activated. Refer to "Notes on the
WITH BACKUP Clause" for more information.

Chapter 10
ADMINISTER KEY MANAGEMENT

10-21

See Also:

Oracle Database Advanced Security Guide for more information on
activating a master encryption key

set_key_tag

This clause lets you set the tag for the specified encryption key. The tag is an optional,
user-defined descriptor for the key. If the key has no tag, then use this clause to create
a tag. If the key already has a tag, then use this clause to replace the tag. You can
view encryption key tags by querying the TAG column of the V$ENCRYPTION_KEYS view.
The keystore must be open.

• For tag, specify an alphanumeric string. Enclose tag in single quotation marks.

• For key_id, specify the identifier of the encryption key. You can find the key
identifier by querying the KEY_ID column of the V$ENCRYPTION_KEYS view.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed.
Refer to "Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore that
contains the key. Refer to "Notes on Specifying Keystore Passwords" for more
information.

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier'
clause, to create a backup of the keystore before you set the key tag. Refer to
"Notes on the WITH BACKUP Clause" for more information.

See Also:

Oracle Database Advanced Security Guide for more information on setting a
key tag

export_keys

Use this clause to export one or more encryption keys from a password-protected
software keystore into a file. The keystore must be open. Each encryption key is
exported together with its key identifier and key attributes. The exported keys are
protected in the file with a password (secret). You can subsequently import one or
more of the keys into a password-protected software keystore by using the
import_keys clause.

• The ENCRYPTION keyword is optional and is provided for semantic clarity.

• Specify secret to set the password (secret) that protects the keys in the file. The
secret is an alphanumeric string. You can optionally enclose the secret in double
quotation marks. Quoted and nonquoted secrets are case sensitive.

• For filename, specify the full path name of the file to which the keys are to be
exported. Enclose filename in single quotation marks.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed.
Refer to "Notes on the FORCE KEYSTORE Clause" for more information.

Chapter 10
ADMINISTER KEY MANAGEMENT

10-22

• Use the IDENTIFIED BY clause to specify the password for the keystore that contains the
keys you want to export. Refer to "Notes on the WITH BACKUP Clause" for more
information.

• Use the WITH IDENTIFIER IN clause to specify one or more encryption keys that you
would like to export using one of the following methods:

– Use key_id to specify the identifier of the encryption key you would like to export.
You can specify more than one key_id in a comma-separated list. You can find key
identifiers by querying the KEY_ID column of the V$ENCRYPTION_KEYS view.

– Use subquery to specify a query that returns a list of key identifiers for the encryption
keys you would like to export. For example, the following subquery returns the key
identifiers for all encryption keys in the database whose tags begin with the string
mytag:

SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE TAG LIKE 'mytag%'

Be aware that Oracle Database executes subquery within the current user's rights
and not with definer's rights.

– If you omit the WITH IDENTIFIER IN clause, then all encryption keys in the database
are exported.

Restriction on the WITH IDENTIFIER IN Clause

In a multitenant environment, you cannot specify WITH IDENTIFIER IN when exporting keys
from a PDB. This ensures that all of the keys in the PDB are exported, along with metadata
about the active encryption key. If you subsequently clone the PDB, or unplug and plug in the
PDB, then you can use the export file to import the keys into the cloned or newly plugged-in
PDB and preserve information about the active encryption key.

See Also:

Oracle Database Advanced Security Guide for more information on exporting
encryption keys

import_keys

Use this clause to import one or more encryption keys from a file into a password-based
software keystore. The keystore must be open. Each encryption key is imported together with
its key identifier and key attributes. The keys must have been previously exported to the file
by using the export_keys clause. You cannot re-import keys that have already been imported
into the keystore.

• The ENCRYPTION keyword is optional and is provided for semantic clarity.

• For secret, specify the password (secret) that protects the keys in the file. The secret is
an alphanumeric string. You can optionally enclose the secret in double quotation marks.
Quoted and nonquoted secrets are case sensitive.

• For filename, specify the full path name of the file from which the keys are to be
imported. Enclose filename in single quotation marks.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed. Refer to
"Notes on the FORCE KEYSTORE Clause" for more information.

Chapter 10
ADMINISTER KEY MANAGEMENT

10-23

• Use the IDENTIFIED BY clause to specify the password for the keystore into which
you want to import the keys. Refer to "Notes on the WITH BACKUP Clause" for
more information.

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier'
clause, to create a backup of the keystore before the keys are imported. Refer to
"Notes on the WITH BACKUP Clause" for more information.

See Also:

Oracle Database Advanced Security Guide for more information on importing
encryption keys

migrate_key

Use this clause to migrate from a password-protected software keystore to a hardware
keystore. This clause decrypts existing table encryption keys and tablespace
encryption keys with the master encryption key in the software keystore and then re-
encrypts them with the newly created master encryption key in the hardware keystore.

Note:

The use of this clause is only one step in a series of steps for migrating from
a password-protected software keystore to a hardware keystore. Refer to
Oracle Database Advanced Security Guide for the complete set of steps
before you use this clause.

• The ENCRYPTION keyword is optional and is provided for semantic clarity.

• For HSM_auth_string, specify the hardware keystore password. Refer to "Notes
on Specifying Keystore Passwords" for more information.

• The FORCE KEYSTORE clause enables this operation even if the keystores are
closed. Refer to "Notes on the FORCE KEYSTORE Clause" for more information.

• For software_keystore_password., specify the password-based software keystore
password. Refer to "Notes on Specifying Keystore Passwords" for more
information.

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier'
clause, to create a backup of the keystore before the migration occurs. Refer to
"Notes on the WITH BACKUP Clause" for more information.

reverse_migrate_key

Use this clause to migrate from a hardware keystore to a password-protected software
keystore. This clause decrypts existing table encryption keys and tablespace
encryption keys with the master encryption key in the hardware keystore and then re-
encrypts them with the newly created master encryption key in the password-protected
software keystore.

Chapter 10
ADMINISTER KEY MANAGEMENT

10-24

Note:

The use of this clause is only one step in a series of steps for migrating from a
hardware keystore to a password-protected software keystore. Refer to Oracle
Database Advanced Security Guide for the complete set of steps before you use
this clause.

• The ENCRYPTION keyword is optional and is provided for semantic clarity.

• For software_keystore_password., specify the password-based software keystore
password. Refer to "Notes on Specifying Keystore Passwords" for more information.

• The FORCE KEYSTORE clause enables this operation even if the keystores are closed. Refer
to "Notes on the FORCE KEYSTORE Clause" for more information.

• For HSM_auth_string, specify the hardware keystore password. Refer to "Notes on
Specifying Keystore Passwords" for more information.

move_keys

Use the move_keys clause to move an encryption key into a new keystore. You must be a
user with the ADMINISTER KEY MANAGEMENT or SYSKM privileges to log into the database. You
must query the KEY_IDcolumn of the V$ENCRYPTION_KEYS view to find the key identifier of the
keystore that you want to move the keys to.

keystore_location1 is the path to the wallet directory that will store the new keystore .p12
file. By default, this directory is in $ORACLE_BASE/admin/db_unique_name/wallet.

keystore1_password is the password for the new keystore.

keystore_password is the password for the keystore from which the key is moving.

key_identifier is the key identifier that you find from querying the KEY_ID column of the
V$ENCRYPTION_KEYS view. Enclose this setting in single quotation marks (' ').

subquery can be used to find the exact key identifier that you want.

backup_identifier is an optional description of the backup. Enclose backup_identifier in
single quotation marks (' ').

For example:

ADMINISTER KEY MANAGEMENT MOVE KEYS
TO NEW KEYSTORE $ORACLE_BASE/admin/orcl/wallet
IDENTIFIED BY keystore_password
FROM FORCE KEYSTORE
IDENTIFIED BY keystore_password
WITH IDENTIFIER IN
(SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE ROWNUM < 2);

secret_management_clauses

Use these clauses to add, update, and delete secrets in password-protected software
keystores or hardware keystores.

Chapter 10
ADMINISTER KEY MANAGEMENT

10-25

See Also:

Oracle Database Advanced Security Guide for more information on adding,
updating, and deleting secrets

add_update_secret

This clause lets you add a secret to a keystore or update an existing secret in a
keystore. The keystore must be open.

• Specify ADD to add a secret to a keystore.

• Specify UPDATE to update an existing secret in a keystore.

• For secret, specify the secret to be added or updated. The secret is an
alphanumeric string. Enclose the secret in single quotation marks.

• For client_identifier, specify an alphanumeric string used to identify the secret.
Enclose client_identifier in single quotation marks. This value is case-
sensitive.

• Specify the optional USING TAG clause to associate a tag to secret. The tag is an
optional, user-defined descriptor for the secret. Enclose the tag in single quotation
marks. You can view secret tags by querying the SECRET_TAG column of the
V$CLIENT_SECRETS view.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed.
Refer to "Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore. Refer to
"Notes on Specifying Keystore Passwords" for more information.

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier'
clause, to create a backup of the keystore before adding or updating the secret in
a password-based software keystore. Refer to "Notes on the WITH BACKUP
Clause" for more information.

delete_secret

This clause lets you delete a secret from a keystore. The keystore must be open.

• For client_identifier, specify an alphanumeric string used to identify the secret.
Enclose client_identifier in single quotation marks. You can view client
identifiers by querying the CLIENT column of the V$CLIENT_SECRETS view.

• The FORCE KEYSTORE clause enables this operation even if the keystore is closed.
Refer to "Notes on the FORCE KEYSTORE Clause" for more information.

• Use the IDENTIFIED BY clause to specify the password for the keystore. Refer to
"Notes on Specifying Keystore Passwords" for more information.

• Specify the WITH BACKUP clause, and optionally the USING 'backup_identifier'
clause, to create a backup of the keystore before deleting the secret from a
password-based software keystore. Refer to "Notes on the WITH BACKUP
Clause" for more information.

Notes on the USING TAG Clause

Chapter 10
ADMINISTER KEY MANAGEMENT

10-26

Many ADMINISTER KEY MANAGEMENT operations include the USING TAG clause, which lets you
associate a tag to an encryption key. The tag is an optional, user-defined descriptor for the
key. It is a character string enclosed in single quotation marks.

You can view encryption key tags by querying the TAG column of the V$ENCRYPTION_KEYS
view.

Notes on the FORCE KEYSTORE Clause

When a auto-login wallet exists, the FORCE KEYSTORE clause enables a keystore operation
even if the keystore is closed.. The behavior of this clause depends on whether you are
connected to a non-CDB, a CDB root, or a PDB.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 20c. While the documentation is being revised, legacy terminology may
persist. In most cases, "database" and "non-CDB" refer to a CDB or PDB,
depending on context. In some contexts, such as upgrades, "non-CDB" refers to a
non-CDB from a previous release.

• When you are connected to a non-CDB:

– If the password-protected software or hardware keystore is closed, then the database
opens the password-protected software or hardware keystore while the operation is
performed and leaves it open, and then updates the auto-login keystore, if one exists,
with the new information.

– If the auto-login keystore is open, then the database opens the password-protected
software or hardware keystore temporarily while the operation is performed and
updates the auto-login keystore with the new information, without switching out the
auto-login keystore.

– If the password-protected software or hardware keystore is open, then the FORCE
KEYSTORE clause is not necessary and has no effect.

• When you are connected to the CDB root:

– To perform an operation on the CDB root keystore (CONTAINER=CURRENT), the CDB
root keystore must be open. Therefore, the behavior described for a non-CDB applies
to the CDB root.

– To perform an operation on the CDB root keystore and all PDB keystores
(CONTAINER=ALL), the CDB root keystore and all PDB keystores must be open.
Therefore, the behavior described for a non-CDB applies to the CDB root and each
PDB.

• When you are connected to a PDB:

– To perform an operation on a PDB keystore, the CDB root keystore and the keystore
for that PDB must be open. Therefore, the behavior described for a non-CDB applies
to the CDB root and that PDB.

Notes on Specifying Keystore Passwords

Specify keystore passwords as follows:

Chapter 10
ADMINISTER KEY MANAGEMENT

10-27

• For a password-protected software keystore, specify the password as a character
string. You can optionally enclose the password in double quotation marks. Quoted
and nonquoted passwords are case sensitive. Keystore passwords adhere to the
same rules as database user passwords. Refer to the BY password clause of
CREATE USER for the complete details.

• For a hardware keystore, specify the password as a string of the form
"user_id:password" where:

– user_id is the user ID created for the database using the HSM management
interface

– password is the password created for the user ID using the HSM management
interface

Enclose the user_id:password string in double quotation marks (" ") and separate
user_id and password with a colon (:).

• If you specify EXTERNAL STORE, then the database uses the keystore password
stored in the external store to perform the operation. This feature enables you to
store the password in a separate location where it can be centrally managed and
accessed. To use this functionality, you must first set the
EXTERNAL_KEYSTORE_CREDENTIAL_LOCATION initialization parameter to a location
where the keystore password will be stored. Refer to Oracle Database Advanced
Security Guide for more information on configuring an external store for a keystore
password.

Notes on the WITH BACKUP Clause

Many ADMINISTER KEY MANAGEMENT operations include the WITH BACKUP clause. This
clause applies only to password-protected software keystores. It indicates that the
keystore must be backed up before the operation is performed. Therefore, you must
either specify the WITH BACKUP clause when performing the operation, or issue the
ADMINISTER KEY MANAGEMENT backup_clause statement immediately before performing
the operation.

When you specify the WITH BACKUP clause, Oracle Database creates a backup file with
a name of the form ewallet_timestamp.p12, where timestamp is the file creation
timestamp in UTC format. The backup file is created in the same directory as the
keystore you are backing up.

The optional USING 'backup_identifier' clause lets you specify a backup identifier,
which is added to the backup file name. For example, if you specify a backup identifier
of 'Backup1', then Oracle Database creates a backup file with a name of the form
ewallet_timestamp_Backup1.p12.

The WITH BACKUP is mandatory for password-protected software keystores, but optional
for hardware keystores.

add_update_secret_seps

Specify this clause to manage keys in a secure external password store (SEPS) also
known as a SEPS wallet. The semantics of this clause is the same as the
add_update_secret clause.

Chapter 10
ADMINISTER KEY MANAGEMENT

10-28

delete_secret_seps

Specify this clause to delete keys in a secure external password store (SEPS) also known as
a SEPS wallet. The semantics of this clause is the same as the delete_secret clause.

zero_downtime_software_patching_clauses

Specify this clause to switch over to a new PKCS#11 endpoint library. Afterward, you can
switch over to the updated PKCS#11 endpoint shared library by executing the following
statement:

ADMINISTER KEY MANAGEMENT SWITCHOVER TO LIBRARY
'updated_fully_qualified_file_name_of_library' FOR ALL CONTAINERS

See Also:

Managing Updates to the PKCS#11 Library

Examples

Creating a Keystore: Examples

The following statement creates a password-protected software keystore in directory /etc/
ORACLE/WALLETS/orcl:

ADMINISTER KEY MANAGEMENT
 CREATE KEYSTORE '/etc/ORACLE/WALLETS/orcl'
 IDENTIFIED BY password;

The following statement creates an auto-login software keystore from the keystore created in
the previous statement:

ADMINISTER KEY MANAGEMENT
 CREATE AUTO_LOGIN KEYSTORE FROM KEYSTORE '/etc/ORACLE/WALLETS/orcl'
 IDENTIFIED BY password;

Opening a Keystore: Examples

The following statement opens a password-protected software keystore:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE OPEN
 IDENTIFIED BY password;

If you are connected to a CDB, then the following statement opens a password-protected
software keystore in the current container:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE OPEN
 IDENTIFIED BY password
 CONTAINER = CURRENT;

The following statement opens a hardware keystore:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE OPEN
 IDENTIFIED BY "user_id:password";

Chapter 10
ADMINISTER KEY MANAGEMENT

10-29

The following statement opens a keystore whose password is stored in the external
store:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE OPEN
 IDENTIFIED BY EXTERNAL STORE;

Closing a Keystore: Examples

The following statement closes a password-protected software keystore:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE CLOSE
 IDENTIFIED BY password;

The following statement closes an auto-login software keystore:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE CLOSE;

The following statement closes a hardware keystore:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE CLOSE
 IDENTIFIED BY "user_id:password";

The following statement closes a keystore whose password is stored in the external
store:

ADMINISTER KEY MANAGEMENT
 SET KEYSTORE CLOSE
 IDENTIFIED BY EXTERNAL STORE;

Backing Up a Keystore: Example

The following statement creates a backup of a password-protected software keystore.
The backup is stored in directory /etc/ORACLE/KEYSTORE/DB1 and the backup file
name contains the tag hr.emp_keystore.

ADMINISTER KEY MANAGEMENT
 BACKUP KEYSTORE USING 'hr.emp_keystore'
 IDENTIFIED BY password
 TO '/etc/ORACLE/KEYSTORE/DB1/';

Changing a Keystore Password: Example

The following statement changes the password for a password-protected software
keystore. It also creates a backup of the keystore, with the tag pwd_change, before
changing the password.

ADMINISTER KEY MANAGEMENT
 ALTER KEYSTORE PASSWORD IDENTIFIED BY old_password
 SET new_password WITH BACKUP USING 'pwd_change';

Merging Two Keystores Into a New Keystore: Example

The following statement merges an auto-login software keystore with a password-
protected software keystore to create a new password-protected software keystore at
a new location:

ADMINISTER KEY MANAGEMENT
 MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1'

Chapter 10
ADMINISTER KEY MANAGEMENT

10-30

 AND KEYSTORE '/etc/ORACLE/KEYSTORE/DB2'
 IDENTIFIED BY existing_keystore_password
 INTO NEW KEYSTORE '/etc/ORACLE/KEYSTORE/DB3'
 IDENTIFIED BY new_keystore_password;

Merging a Keystore Into an Existing Keystore: Example

The following statement merges an auto-login software keystore into a password-protected
software keystore. It also creates a backup of the password-protected software keystore
before performing the merge.

ADMINISTER KEY MANAGEMENT
 MERGE KEYSTORE '/etc/ORACLE/KEYSTORE/DB1'
 INTO EXISTING KEYSTORE '/etc/ORACLE/KEYSTORE/DB2'
 IDENTIFIED BY existing_keystore_password
 WITH BACKUP;

Creating and Activating a Master Encryption Key: Examples

The following statement creates and activates a master encryption key in a password-
protected software keystore. It encrypts the key using the SEED128 algorithm. It also creates a
backup of the keystore before creating the new master encryption key.

ADMINISTER KEY MANAGEMENT
 SET KEY USING ALGORITHM 'SEED128'
 IDENTIFIED BY password
 WITH BACKUP;

The following statement creates a master encryption key in a password-protected software
keystore, but does not activate the key. It also creates a backup of the keystore before
creating the new master encryption key.

ADMINISTER KEY MANAGEMENT
 CREATE KEY USING TAG 'mykey1'
 IDENTIFIED BY password
 WITH BACKUP;

The following query displays the key identifier for the master encryption key that was created
in the previous statement:

SELECT TAG, KEY_ID
 FROM V$ENCRYPTION_KEYS
 WHERE TAG = 'mykey1';

TAG KEY_ID
--- --
mykey1 ARgEtzPxpE/Nv8WdPu8LJJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

The following statement activates the master encryption key that was queried in the previous
statement. It also creates a backup of the keystore before activating the new master
encryption key.

ADMINISTER KEY MANAGEMENT
 USE KEY 'ARgEtzPxpE/Nv8WdPu8LJJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'
 IDENTIFIED BY password
 WITH BACKUP;

Setting a Key Tag: Example

This example assumes that the keystore is closed. The following statement temporarily
opens the keystore and changes the tag to mykey2 for the master encryption key that was

Chapter 10
ADMINISTER KEY MANAGEMENT

10-31

activated in the previous example. It also creates a backup of the keystore before
changing the tag.

ADMINISTER KEY MANAGEMENT
 SET TAG 'mykey2' FOR 'ARgEtzPxpE/Nv8WdPu8LJJUAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'
 FORCE KEYSTORE
 IDENTIFIED BY password
 WITH BACKUP;

Exporting Keys: Examples

The following statement exports two master encryption keys from a password-
protected software keystore to file /etc/TDE/export.exp. The statement encrypts the
master encryption keys in the file using the secret my_secret. The identifiers of the
master encryption keys to be exported are provided as a comma-separated list.

ADMINISTER KEY MANAGEMENT
 EXPORT KEYS WITH SECRET "my_secret"
 TO '/etc/TDE/export.exp'
 IDENTIFIED BY password
 WITH IDENTIFIER IN 'AdoxnJ0uH08cv7xkz83ovwsAAAAAAAAAAAAAAAAAAAAAAAAAAAAA',
 'AW5z3CoyKE/yv3cNT5CWCXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAA';

The following statement exports master encryption keys from a password-protected
software keystore to file /etc/TDE/export.exp. Only the keys whose tags are mytag1
or mytag2 are exported. The master encryption keys in the file are encrypted using the
secret my_secret. The key identifiers are found by querying the V$ENCRYPTION_KEYS
view.

ADMINISTER KEY MANAGEMENT
 EXPORT KEYS WITH SECRET "my_secret"
 TO '/etc/TDE/export.exp'
 IDENTIFIED BY password
 WITH IDENTIFIER IN
 (SELECT KEY_ID FROM V$ENCRYPTION_KEYS WHERE TAG IN ('mytag1', 'mytag2'));

The following statement exports all master encryption keys of the database to
file /etc/TDE/export.exp. The master encryption keys in the file are encrypted using
the secret my_secret.

ADMINISTER KEY MANAGEMENT
 EXPORT KEYS WITH SECRET "my_secret"
 TO '/etc/TDE/export.exp'
 IDENTIFIED BY password;

In a multitenant environment, the following statements exports all master encryption
keys of the PDB salespdb, along with metadata, to file /etc/TDE/salespdb.exp. The
master encryption keys in the file are encrypted using the secret my_secret. If the PDB
is subsequently cloned, or unplugged and plugged back in, then the export file created
by this statement can be used to import the keys into the cloned or newly plugged-in
PDB.

ALTER SESSION SET CONTAINER = salespdb;
ADMINISTER KEY MANAGEMENT
 EXPORT KEYS WITH SECRET "my_secret"
 TO '/etc/TDE/salespdb.exp'
 IDENTIFIED BY password;

Importing Keys: Example

Chapter 10
ADMINISTER KEY MANAGEMENT

10-32

The following statement imports the master encryption keys, encrypted with secret
my_secret, from file /etc/TDE/export.exp to a password-protected software keystore. It also
creates a backup of the password-protected software keystore before importing the keys.

ADMINISTER KEY MANAGEMENT
 IMPORT KEYS WITH SECRET "my_secret"
 FROM '/etc/TDE/export.exp'
 IDENTIFIED BY password
 WITH BACKUP;

Migrating a Keystore: Example

The following statement migrates from a password-protected software keystore to a hardware
keystore. It also creates a backup of the password-protected software keystore before
performing the migration.

ADMINISTER KEY MANAGEMENT
 SET ENCRYPTION KEY IDENTIFIED BY "user_id:password"
 MIGRATE USING software_keystore_password
 WITH BACKUP;

Reverse Migrating a Keystore: Example

The following statement reverse migrates from a hardware keystore to a password-protected
software keystore:

ADMINISTER KEY MANAGEMENT
 SET ENCRYPTION KEY IDENTIFIED BY software_keystore_password
 REVERSE MIGRATE USING "user_id:password";

Adding a Secret to a Keystore: Examples

The following statement adds secret secret1, with the tag My first secret, for client
client1 to a password-protected software keystore. It also creates a backup of the
password-protected software keystore before adding the secret.

ADMINISTER KEY MANAGEMENT
 ADD SECRET 'secret1' FOR CLIENT 'client1'
 USING TAG 'My first secret'
 IDENTIFIED BY password
 WITH BACKUP;

The following statement adds a similar secret to a hardware keystore:

ADMINISTER KEY MANAGEMENT
 ADD SECRET 'secret2' FOR CLIENT 'client2'
 USING TAG 'My second secret'
 IDENTIFIED BY "user_id:password";

Updating a Secret in a Keystore: Examples

The following statement updates the secret that was created in the previous example in a
password-based software keystore. It also creates a backup of the password-protected
software keystore before updating the secret.

ADMINISTER KEY MANAGEMENT
 UPDATE SECRET 'secret1' FOR CLIENT 'client1'
 USING TAG 'New Tag 1'
 IDENTIFIED BY password
 WITH BACKUP;

Chapter 10
ADMINISTER KEY MANAGEMENT

10-33

The following statement updates the secret that was created in the previous example
in a hardware keystore:

ADMINISTER KEY MANAGEMENT
 UPDATE SECRET 'secret2' FOR CLIENT 'client2'
 USING TAG 'New Tag 2'
 IDENTIFIED BY "user_id:password";

Deleting a Secret from a Keystore: Examples

The following statement deletes the secret that was updated in the previous example
from a password-protected software keystore. It also creates a backup of the
password-protected software keystore before deleting the secret.

ADMINISTER KEY MANAGEMENT
 DELETE SECRET FOR CLIENT 'client1'
 IDENTIFIED BY password
 WITH BACKUP;

The following statement deletes the secret that was updated in the previous example
from a hardware keystore:

ADMINISTER KEY MANAGEMENT
 DELETE SECRET FOR CLIENT 'client2'
 IDENTIFIED BY "user_id:password";

ALTER ANALYTIC VIEW
Purpose

Use the ALTER ANALYTIC VIEW statement to rename or compile an analytic view.
Additionally, you can modify grouping level caches by adding or dropping a new level
grouping cache to a specifed analytic view.

For other alterations, use CREATE OR REPLACE ANALYTIC VIEW.

Prerequisites

To alter an analytic view in your own schema, you must have the ALTER ANALYTIC VIEW
system privilege. To alter an analytic view in another user's schema, you must have
the ALTER ANY ANALYTIC VIEW system privilege or ALTER ANY TABLE granted on the
analytic view.

Syntax

alter_analytic_view::=

ALTER ANALYTIC VIEW

schema .

analytic_view_name

RENAME TO new_av_name

COMPILE

alter_add_cache_clause

alter_drop_cache_clause

Chapter 10
ALTER ANALYTIC VIEW

10-34

alter_add_cache_clause::=

ADD CACHE MEASURE GROUP

ALL

meas_name

,

LEVELS

dim_alias .

hier_alias .

level

,

alter_drop_cache_clause::=

DROP CACHE MEASURE GROUP

ALL

meas_name

,

LEVELS

dim_alias .

hier_alias .

level

,

Semantics

schema

Specify the schema in which the analytic view exists. If you do not specify a schema, then
Oracle Database looks for the analytic view in your own schema.

analytic_view_name

Specify the name of the analytic view.

RENAME TO

Specify RENAME TO to change the name of the analytic view. For new_av_name, specify a new
name for the analytic view.

COMPILE

Specify COMPILE to compile the analytic view.

alter_add_cache_clause

Use this clause to add a new level grouping cache to a specified analytic view like the
measure group, level clause and the cache type. Before you add a new level grouping cache,

Chapter 10
ALTER ANALYTIC VIEW

10-35

you must ensure that it does not match a previously defined cache with the same
measures and levels.

alter_drop_cache_clause

Use this clause to drop an existent level grouping cache from an analytic view. You
must specify the attributes of the level grouping you are about to drop, like the
measure group and the level clause.

Example: Change the Name of an Analytic View

ALTER ANALYTIC VIEW sales_av RENAME TO mysales_av;

Example: Add a New Level Grouping Cache to an Analytic View

ALTER ANALYTIC VIEW TKHCSGL308_UNITS_AVIEW_CACHE ADD CACHE
 MEASURE GROUP (sales, units, cost)
 LEVELS (TIME.FISCAL.FISCAL_QUARTER, WAREHOUSE);

ALTER ATTRIBUTE DIMENSION
Purpose

Use the ALTER ATTRIBUTE DIMENSION statement to rename or compile an attribute
dimension. For other alterations, use CREATE OR REPLACE ATTRIBUTE DIMENSION.

Prerequisites

To alter an attribute dimension in your own schema, you must have the ALTER
ATTRIBUTE DIMENSION system privilege. To alter an attribute dimension in another
user's schema, you must have the ALTER ANY ATTRIBUTE DIMENSION system privilege or
have been granted ALTER on the attribute dimension directly.

Syntax

alter_attribute_dimension::=

ALTER ATTRIBUTE DIMENSION

schema .

attr_dim_name

RENAME TO new_attr_dim_name

COMPILE

;

Semantics

schema

Specify the schema in which the attribute dimension exists. If you do not specify a
schema, then Oracle Database looks for the attribute dimension in your own schema.

attr_dim_name

Specify the name of the attribute dimension.

Chapter 10
ALTER ATTRIBUTE DIMENSION

10-36

RENAME TO

Specify RENAME TO to change the name of the attribute dimension. For new_attr_dim_name,
specify a new name for the attribute dimension.

COMPILE

Specify COMPILE to compile the attribute dimension.

Example

The following statement changes the name of an attribute dimension:

ALTER ATTRIBUTE DIMENSION product_attr_dim RENAME TO my_product_attr_dim;

ALTER AUDIT POLICY (Unified Auditing)
This section describes the ALTER AUDIT POLICY statement for unified auditing. This type of
auditing is new beginning with Oracle Database 12c and provides a full set of enhanced
auditing features. Refer to Oracle Database Security Guide for more information on unified
auditing.

Purpose

Use the ALTER AUDIT POLICY statement to modify a unified audit policy.

See Also:

• CREATE AUDIT POLICY (Unified Auditing)

• DROP AUDIT POLICY (Unified Auditing)

• AUDIT (Unified Auditing)

• NOAUDIT (Unified Auditing)

Prerequisites

You must have the AUDIT SYSTEM system privilege or the AUDIT_ADMIN role.

If you are connected to a multitenant container database (CDB), then to modify a common
unified audit policy, the current container must be the root and you must have the commonly
granted AUDIT SYSTEM privilege or the AUDIT_ADMIN common role. To modify a local unified
audit policy, the current container must be the container in which the audit policy was created
and you must have the commonly granted AUDIT SYSTEM privilege or the AUDIT_ADMIN
common role, or you must have the locally granted AUDIT SYSTEM privilege or the
AUDIT_ADMIN local role in the container.

After you alter an unified audit policy with object audit options, the new audit settings take
place immediately, for both the active and subsequent user sessions. If you alter an unified
audit policy with system audit options, or audit conditions, then they become effective only for
new user sessions, but not for the current user session.

Chapter 10
ALTER AUDIT POLICY (Unified Auditing)

10-37

Syntax

alter_audit_policy::=

ALTER AUDIT POLICY policy

ADD

privilege_audit_clause action_audit_clause role_audit_clause

ONLY TOPLEVEL

DROP

privilege_audit_clause action_audit_clause role_audit_clause

ONLY TOPLEVEL

CONDITION

DROP

’ audit_condition ’ EVALUATE PER

STATEMENT

SESSION

INSTANCE

;

Note:

If you specify the ADD or DROP clause, then you must specify at least one of
the clauses privilege_audit_clause, action_audit_clause, or
role_audit_clause.

(privilege_audit_clause::=, action_audit_clause::=, role_audit_clause::=)

privilege_audit_clause::=

PRIVILEGES system_privilege

,

action_audit_clause::=

standard_actions

component_actions

Chapter 10
ALTER AUDIT POLICY (Unified Auditing)

10-38

standard_actions::=

ACTIONS

object_action

ALL
ON

DIRECTORY directory_name

MINING MODEL

schema .

object_name

schema .

object_name

system_action

ALL

,

component_actions::=

ACTIONS COMPONENT =

DATAPUMP

DIRECT_LOAD

OLS

XS

component_action

,

DV component_action ON object_name

,

PROTOCOL

FTP

HTTP

AUTHENTICATION

role_audit_clause::=

ROLES role

,

Semantics

policy

Specify the name of the unified audit policy to be modified. The policy must have been
created using the CREATE AUDIT POLICY statement. You can find descriptions of all unified
audit policies by querying the AUDIT_UNIFIED_POLICIES view.

Chapter 10
ALTER AUDIT POLICY (Unified Auditing)

10-39

See Also:

• CREATE AUDIT POLICY (Unified Auditing)

• Oracle Database Reference for more information on the
AUDIT_UNIFIED_POLICIES view

ADD | DROP

Use the ADD clause to add privileges to be audited to policy.

Use the DROP clause to remove privileges to be audited from policy.

Refer to privilege_audit_clause, action_audit_clause, and role_audit_clause of CREATE
AUDIT POLICY for the full semantics of these clauses.

CONDITION

Use this clause to drop, add, or replace the audit condition for policy.

Specify DROP to drop the audit condition from policy.

Specify 'audit_condition' ... to add or replace the audit condition for policy.

Refer to audit_condition, EVALUATE PER STATEMENT, EVALUATE PER SESSION,
and EVALUATE PER INSTANCE of CREATE AUDIT POLICY for the full semantics of
these clauses.

ONLY TOPLEVEL

Specify this clause to change the existing unified audit policy to audit only the top level
SQL statements issued by the user.

Example: Add Top Level Auditing

The example changes the HR audit policy hr_audit_policy to capture only top level
statements.

ALTER AUDIT POLICY hr_audit_policy ADD ONLY TOPLEVEL

You can drop top level auditing from an existing audit policy auditing the top level SQL
statements.

Example: Drop Top Level Auditing

ALTER AUDIT POLICY hr_audit_policy DROP ONLY TOPLEVEL

See Database Security Guide for more information.

Examples

The following examples modify unified audit policies that were created in the CREATE
AUDIT POLICY "Examples".

Adding Privileges, Actions, and Roles to a Unified Audit Policy: Examples

The following statement adds the system privileges CREATE ANY TABLE and DROP ANY
TABLE to unified audit policy dml_pol:

Chapter 10
ALTER AUDIT POLICY (Unified Auditing)

10-40

ALTER AUDIT POLICY dml_pol
 ADD PRIVILEGES CREATE ANY TABLE, DROP ANY TABLE;

The following statement adds the system actions CREATE JAVA, ALTER JAVA, and DROP JAVA to
unified audit policy java_pol:

ALTER AUDIT POLICY java_pol
 ADD ACTIONS CREATE JAVA, ALTER JAVA, DROP JAVA;

The following statement adds the role dba to unified audit policy table_pol:

ALTER AUDIT POLICY table_pol
 ADD ROLES dba;

The following statement adds multiple system privileges, actions, and roles to unified audit
policy security_pol:

ALTER AUDIT POLICY security_pol
 ADD PRIVILEGES CREATE ANY LIBRARY, DROP ANY LIBRARY
 ACTIONS DELETE on hr.employees,
 INSERT on hr.employees,
 UPDATE on hr.employees,
 ALL on hr.departments
 ROLES dba, connect;

Dropping Privileges, Actions, and Roles from a Unified Audit Policy: Examples

The following statement drops the system privilege CREATE ANY TABLE from unified audit policy
table_pol:

ALTER AUDIT POLICY table_pol
 DROP PRIVILEGES CREATE ANY TABLE;

The following statement drops the INSERT and UPDATE actions on hr.employees from unified
audit policy dml_pol:

ALTER AUDIT POLICY dml_pol
 DROP ACTIONS INSERT on hr.employees,
 UPDATE on hr.employees;

The following statement drops the role java_deploy from unified audit policy java_pol:

ALTER AUDIT POLICY java_pol
 DROP ROLES java_deploy;

The following statement drops a system privilege, an action, and a role from unified audit
policy hr_admin_pol:

ALTER AUDIT POLICY hr_admin_pol
 DROP PRIVILEGES CREATE ANY TABLE
 ACTIONS LOCK TABLE
 ROLES audit_viewer;

Adding and Dropping Actions for a Unified Audit Policy: Example

The following statement adds EXPORT actions for Oracle Data Pump to unified audit policy
dp_actions_pol and drops IMPORT actions for Oracle Data Pump:

ALTER AUDIT POLICY dp_actions_pol
 ADD ACTIONS COMPONENT = datapump EXPORT
 DROP ACTIONS COMPONENT = datapump IMPORT;

Chapter 10
ALTER AUDIT POLICY (Unified Auditing)

10-41

Dropping the Audit Condition from a Unified Audit Policy: Example

The following statement drops the audit condition from unified audit policy
order_updates_pol:

ALTER AUDIT POLICY order_updates_pol
 CONDITION DROP;

Modifying the Audit Condition for a Unified Audit Policy: Example

The following statement modifies the audit condition for unified audit policy
emp_updates_pol so that the policy is enforced only when the auditable statement is
issued by a user whose UID is 102:

ALTER AUDIT POLICY emp_updates_pol
 CONDITION 'UID = 102'
 EVALUATE PER STATEMENT;

ALTER CLUSTER
Purpose

Use the ALTER CLUSTER statement to redefine storage and parallelism characteristics of
a cluster.

Note:

You cannot use this statement to change the number or the name of columns
in the cluster key, and you cannot change the tablespace in which the cluster
is stored.

See Also:

CREATE CLUSTER for information on creating a cluster, DROP CLUSTER
and DROP TABLE for information on removing tables from a cluster, and
CREATE TABLE ... physical_properties for information on adding a table to a
cluster

Prerequisites

The cluster must be in your own schema or you must have the ALTER ANY CLUSTER
system privilege.

Chapter 10
ALTER CLUSTER

10-42

Syntax

alter_cluster::=

ALTER CLUSTER

schema .

cluster

physical_attributes_clause

SIZE size_clause

MODIFY PARTITION partition

allocate_extent_clause

deallocate_unused_clause

CACHE

NOCACHE

parallel_clause

;

(physical_attributes_clause::, size_clause::=, MODIFY PARTITION,
allocate_extent_clause::=, deallocate_unused_clause::=, parallel_clause::=)

physical_attributes_clause::

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

allocate_extent_clause::=

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

(size_clause::=)

deallocate_unused_clause::=

Chapter 10
ALTER CLUSTER

10-43

DEALLOCATE UNUSED

KEEP size_clause

(size_clause::=)

parallel_clause::=

NOPARALLEL

PARALLEL

integer

Semantics

schema

Specify the schema containing the cluster. If you omit schema, then Oracle Database
assumes the cluster is in your own schema.

cluster

Specify the name of the cluster to be altered.

physical_attributes_clause

Use this clause to change the values of the PCTUSED, PCTFREE, and INITRANS
parameters of the cluster.

Use the STORAGE clause to change the storage characteristics of the cluster.

See Also:

• physical_attributes_clause for information on the parameters

• storage_clause for a full description of that clause

Restriction on Physical Attributes

You cannot change the values of the storage parameters INITIAL and MINEXTENTS for
a cluster.

SIZE

integer

Use the SIZE clause to specify the number of cluster keys that will be stored in data
blocks allocated to the cluster.

Restriction on SIZE

You can change the SIZE parameter only for an indexed cluster, not for a hash cluster.

Chapter 10
ALTER CLUSTER

10-44

See Also:

CREATE CLUSTER for a description of the SIZE parameter and "Modifying a
Cluster: Example"

MODIFY PARTITION

Specify MODIFY PARTITION partition allocate_extent_clause to explicitly allocate a new
extent for a cluster partition. This operation is valid only for range-partitioned hash clusters.
For partition, specify the cluster partition name.

allocate_extent_clause

Specify allocate_extent_clause to explicitly allocate a new extent for a cluster. This
operation is valid only for indexed clusters and nonpartitioned hash clusters.

When you explicitly allocate an extent with the allocate_extent_clause, Oracle Database
does not evaluate the storage parameters of the cluster and determine a new size for the
next extent to be allocated (as it does when you create a table). Therefore, specify SIZE if you
do not want Oracle Database to use a default value.

See Also:

allocate_extent_clause for a full description of this clause

deallocate_unused_clause

Use the deallocate_unused_clause to explicitly deallocate unused space at the end of the
cluster and make the freed space available for other segments.

See Also:

deallocate_unused_clause for a full description of this clause and "Deallocating
Unused Space: Example"

parallel_clause

Specify the parallel_clause to change the default degree of parallelism for queries on the
cluster.

See Also:

parallel_clause in the documentation on CREATE TABLE for complete information on
this clause

Chapter 10
ALTER CLUSTER

10-45

Examples

The following examples modify the clusters that were created in the CREATE CLUSTER
"Examples".

Modifying a Cluster: Example

The next statement alters the personnel cluster:

ALTER CLUSTER personnel
 SIZE 1024 CACHE;

Oracle Database allocates 1024 bytes for each cluster key value and enables the
cache attribute. Assuming a data block size of 2 kilobytes, future data blocks within
this cluster contain 2 cluster keys in each data block, or 2 kilobytes divided by 1024
bytes.

Deallocating Unused Space: Example

The following statement deallocates unused space from the language cluster, keeping
30 kilobytes of unused space for future use:

ALTER CLUSTER language
 DEALLOCATE UNUSED KEEP 30 K;

Altering Clusters: Example

The following statement creates a cluster with the default key size (600):

CREATE CLUSTER EMP_DEPT (DEPTNO NUMBER(3))
 SIZE 600
 TABLESPACE USERS
 STORAGE (INITIAL 200K
 NEXT 300K
 MINEXTENTS 2
 PCTINCREASE 33);

The following statement queries USER_CLUSTERS to display the cluster metadata:

SELECT CLUSTER_NAME, TABLESPACE_NAME, KEY_SIZE, CLUSTER_TYPE,
AVG_BLOCKS_PER_KEY, MIN_EXTENTS, MAX_EXTENTS FROM USER_CLUSTERS;

CLUSTER_NAME TABLESPACE_NAME KEY_SIZE CLUST
AVG_BLOCKS_PER_KEY MIN_EXTENTS MAX_EXTENTS
--------------- ------------------------------ ---------- -----
------------------ ----------- -----------
EMP_DEPT USERS 600
INDEX 1 2147483645

The following statement modifies the cluster key size:

ALTER CLUSTER EMP_DEPT SIZE 1024;

Chapter 10
ALTER CLUSTER

10-46

The following statement displays the metadata of the modified cluster:

SELECT CLUSTER_NAME, TABLESPACE_NAME, KEY_SIZE, CLUSTER_TYPE,
AVG_BLOCKS_PER_KEY, MIN_EXTENTS, MAX_EXTENTS FROM USER_CLUSTERS;

CLUSTER_NAME TABLESPACE_NAME KEY_SIZE CLUST
AVG_BLOCKS_PER_KEY MIN_EXTENTS MAX_EXTENTS
--------------- ------------------------------ ---------- -----
------------------ ----------- -----------
EMP_DEPT USERS 1024
INDEX 1 2147483645

The following statement deallocates unused space from the EMP_DEPT cluster, keeping 30
kilobytes of unused space for future use:

ALTER CLUSTER EMP_DEPT DEALLOCATE UNUSED KEEP 30 K;

The following statement displays the metadata of the modified cluster:

SELECT CLUSTER_NAME, TABLESPACE_NAME, KEY_SIZE, CLUSTER_TYPE,
AVG_BLOCKS_PER_KEY, MIN_EXTENTS, MAX_EXTENTS FROM USER_CLUSTERS;

CLUSTER_NAME TABLESPACE_NAME KEY_SIZE CLUST
AVG_BLOCKS_PER_KEY MIN_EXTENTS MAX_EXTENTS
--------------- ------------------------------ ---------- -----
------------------ ----------- -----------
EMP_DEPT USERS 1024
INDEX 1 2147483645

Live SQL:

View and run a related example on Oracle Live SQL at Creating and Altering
Clusters

ALTER DATABASE
Purpose

Use the ALTER DATABASE statement to modify, maintain, or recover an existing database.

Chapter 10
ALTER DATABASE

10-47

https://livesql.oracle.com/apex/livesql/docs/sqlrf/alter-cluster/key-size.html
https://livesql.oracle.com/apex/livesql/docs/sqlrf/alter-cluster/key-size.html

See Also:

• Oracle Database Backup and Recovery User's Guide for examples of
performing media recovery

• Oracle Data Guard Concepts and Administration for additional
information on using the ALTER DATABASE statement to maintain standby
databases

• CREATE DATABASE for information on creating a database

Prerequisites

You must have the ALTER DATABASE system privilege.

To specify the startup_clauses, you must also be connected AS SYSDBA, AS SYSOPER,
AS SYSBACKUP, or AS SYSDG.

To specify the general_recovery clause, you must also have the SYSDBA or SYSBACKUP
system privilege.

To specify the DEFAULT EDITION clause, you must also have the USE object privilege
WITH GRANT OPTION on the specified edition.

If you are connected to a multitenant container database (CDB):

• To modify the entire CDB, the current container must be the root and you must
have the commonly granted ALTER DATABASE privilege.

• To modify a container, it must be the current container and you must have the
ALTER DATABASE privilege, either granted commonly or granted locally in the
container.

Notes on Using ALTER DATABASE in a CDB

When you issue the ALTER DATABASE statement while connected to a CDB, the
behavior of the statement depends on the current container and the clause(s) you
specify.

If the current container is the root, then ALTER DATABASE statements with the following
clauses modify the entire CDB. In order to specify these clauses, you must have the
commonly granted ALTER DATABASE privilege:

• startup_clauses

• recovery_clauses

Note: A subset of the recovery_clauses are supported to back up and recover an
individual pluggable database (PDB). In order to specify these clauses, you must
have the ALTER DATABASE privilege, either granted commonly or granted locally in
the PDB. Refer to "Notes on Using the recovery_clauses in a CDB" for more
information.

• logfile_clauses

• controlfile_clauses

• standby_database_clauses

Chapter 10
ALTER DATABASE

10-48

• instance_clauses

• security_clause

• RENAME GLOBAL_NAME TO
• ENABLE BLOCK CHANGE TRACKING
• DISABLE BLOCK CHANGE TRACKING
• undo_mode_clause

If the current container is the root, then ALTER DATABASE statements with the following clauses
modify only the root. In order to specify these clauses, you must have the ALTER DATABASE
privilege, either granted commonly or granted locally in the root:

• database_file_clauses

• DEFAULT EDITION
• DEFAULT TABLESPACE
If the current container is the root, then ALTER DATABASE statements with the following clauses
modify the root and set default values for the PDBs. In order to specify these clauses, you
must have the commonly granted ALTER DATABASE privilege:

• DEFAULT [LOCAL] TEMPORARY TABLESPACE
• flashback_mode_clause

• SET DEFAULT { BIGFILE | SMALLFILE } TABLESPACE
• set_time_zone_clause

If the current container is a PDB, then ALTER DATABASE statements modify that PDB. In this
case, you can issue only ALTER DATABASE clauses that are also supported by the ALTER
PLUGGABLE DATABASE statement. This functionality is provided to maintain backward
compatibility for applications that have been migrated to a CDB environment. The exception
is modifying PDB storage limits, for which you must use the pdb_storage_clause of ALTER
PLUGGABLE DATABASE. Refer to the documentation on ALTER PLUGGABLE DATABASE for
complete information on these clauses.

Chapter 10
ALTER DATABASE

10-49

Syntax

alter_database::=

ALTER database_clause

startup_clauses

recovery_clauses

database_file_clauses

logfile_clauses

controlfile_clauses

standby_database_clauses

default_settings_clauses

instance_clauses

security_clause

prepare_clause

drop_mirror_copy

lost_write_protection

cdb_fleet_clauses

property_clause

replay_upgrade_clause

;

Groups of ALTER DATABASE syntax:

• startup_clauses::=

• recovery_clauses::=

• database_file_clauses::=

• logfile_clauses::=

• controlfile_clauses::=

• standby_database_clauses::=

• default_settings_clauses::=

• instance_clauses::=

• security_clause::=

database_clause::=

DATABASE

db_name

PLUGGABLE DATABASE

pdb_name

Chapter 10
ALTER DATABASE

10-50

startup_clauses::=

MOUNT

STANDBY

CLONE

DATABASE

OPEN

READ WRITE

RESETLOGS

NORESETLOGS

UPGRADE

DOWNGRADE

READ ONLY

recovery_clauses::=

general_recovery

managed_standby_recovery

BEGIN

END
BACKUP

(general_recovery::=, managed_standby_recovery::=)

general_recovery::=

RECOVER

AUTOMATIC FROM ’ location ’

full_database_recovery

partial_database_recovery

LOGFILE ’ filename ’

TEST

ALLOW integer CORRUPTION

parallel_clause

CONTINUE

DEFAULT

CANCEL

(full_database_recovery::=, partial_database_recovery::=, parallel_clause::=)

Chapter 10
ALTER DATABASE

10-51

full_database_recovery::=

STANDBY

DATABASE

UNTIL

CANCEL

TIME date

CHANGE integer

CONSISTENT

USING BACKUP CONTROLFILE

SNAPSHOT TIME date

partial_database_recovery::=

TABLESPACE tablespace

,

DATAFILE
’ filename ’

filenumber

,

parallel_clause::=

NOPARALLEL

PARALLEL

integer

managed_standby_recovery::=

Chapter 10
ALTER DATABASE

10-52

RECOVER

MANAGED STANDBY DATABASE

USING ARCHIVED LOGFILE

DISCONNECT

FROM SESSION

NODELAY

UNTIL CHANGE integer

UNTIL CONSISTENT

USING INSTANCES
ALL

integer

parallel_clause

FINISH

CANCEL

TO LOGICAL STANDBY
db_name

KEEP IDENTITY

(parallel_clause::=)

Note:

Several subclauses of managed_standby_recovery are no longer needed and have
been deprecated. These clauses no longer appear in the syntax diagrams. Refer to
the semantics of managed_standby_recovery.

database_file_clauses::=

RENAME FILE ’ filename ’

,

TO ’ filename ’

create_datafile_clause

alter_datafile_clause

alter_tempfile_clause

move_datafile_clause

(create_datafile_clause::=, alter_datafile_clause::=, alter_tempfile_clause::=,
move_datafile_clause::=)

Chapter 10
ALTER DATABASE

10-53

create_datafile_clause::=

CREATE DATAFILE
’ filename ’

filenumber

,
AS

file_specification

,

NEW

(file_specification::=)

alter_datafile_clause::=

DATAFILE

’ filename ’

filenumber

,

ONLINE

OFFLINE

FOR DROP

RESIZE size_clause

autoextend_clause

END BACKUP

ENCRYPT

DECRYPT

(autoextend_clause::=, size_clause::=)

alter_tempfile_clause::=

TEMPFILE

’ filename ’

filenumber

,

RESIZE size_clause

autoextend_clause

DROP

INCLUDING DATAFILES

ONLINE

OFFLINE

(autoextend_clause::=, size_clause::=)

move_datafile_clause::=

MOVE DATAFILE

’

filename

ASM_filename

’

file_number

TO ’

filename

ASM_filename

’

REUSE KEEP

Chapter 10
ALTER DATABASE

10-54

ASM_filename::=

fully_qualified_file_name

numeric_file_name

incomplete_file_name

alias_file_name

autoextend_clause::=

AUTOEXTEND

OFF

ON

NEXT size_clause maxsize_clause

maxsize_clause::=

MAXSIZE

UNLIMITED

size_clause

(size_clause::=)

logfile_clauses::=

Chapter 10
ALTER DATABASE

10-55

ARCHIVELOG

MANUAL

NOARCHIVELOG

NO

FORCE LOGGING

SET STANDBY NOLOGGING FOR
DATA AVAILABILITY

LOAD PERFORMANCE

RENAME FILE ’ filename ’

,

TO ’ filename ’

CLEAR

UNARCHIVED

LOGFILE logfile_descriptor

,
UNRECOVERABLE DATAFILE

add_logfile_clauses

drop_logfile_clauses

switch_logfile_clause

supplemental_db_logging

(logfile_descriptor::=, add_logfile_clauses::=, drop_logfile_clauses::=,
switch_logfile_clause::=, supplemental_db_logging::=)

add_logfile_clauses::=

ADD

STANDBY

LOGFILE

INSTANCE ’ instance_name ’

THREAD integer GROUP integer

redo_logfile_spec

,

MEMBER ’ filename ’

REUSE

,

TO logfile_descriptor

,

(redo_log_file_spec::=, logfile_descriptor::=)

drop_logfile_clauses::=

DROP

STANDBY

LOGFILE

logfile_descriptor

,

MEMBER ’ filename ’

,

Chapter 10
ALTER DATABASE

10-56

(logfile_descriptor::=)

switch_logfile_clause::=

SWITCH ALL LOGFILES TO BLOCKSIZE integer

supplemental_db_logging::=

ADD

DROP
SUPPLEMENTAL LOG

DATA

supplemental_id_key_clause

supplemental_plsql_clause

supplemental_subset_replication_clause

(supplemental_id_key_clause::=)

supplemental_id_key_clause::=

DATA (

ALL

PRIMARY KEY

UNIQUE

FOREIGN KEY

,

) COLUMNS

supplemental_plsql_clause::=

DATA FOR PROCEDURAL REPLICATION

supplemental_subset_replication_clause

DATA SUBSET DATABASE REPLICATION

logfile_descriptor::=

GROUP integer

(’ filename ’

,

)

’ filename ’

Chapter 10
ALTER DATABASE

10-57

controlfile_clauses::=

CREATE

LOGICAL

PHYSICAL

STANDBY

FAR SYNC INSTANCE

CONTROLFILE AS ’ filename ’

REUSE

BACKUP CONTROLFILE TO

’ filename ’

REUSE

trace_file_clause

(trace_file_clause::=)

trace_file_clause::=

TRACE

AS ’ filename ’

REUSE
RESETLOGS

NORESETLOGS

standby_database_clauses::=

activate_standby_db_clause

maximize_standby_db_clause

register_logfile_clause

commit_switchover_clause

start_standby_clause

stop_standby_clause

convert_database_clause

parallel_clause

switchover_clause

failover_clause

(activate_standby_db_clause::=, maximize_standby_db_clause::=,
register_logfile_clause::=, commit_switchover_clause::=, start_standby_clause::=,
stop_standby_clause::=, convert_database_clause::=, parallel_clause::=,
switchover_clause::=, failover_clause::=)

Chapter 10
ALTER DATABASE

10-58

activate_standby_db_clause::=

ACTIVATE

PHYSICAL

LOGICAL

STANDBY DATABASE

FINISH APPLY

maximize_standby_db_clause::=

SET STANDBY DATABASE TO MAXIMIZE

PROTECTION

AVAILABILITY

PERFORMANCE

register_logfile_clause::=

REGISTER

OR REPLACE

PHYSICAL

LOGICAL

LOGFILE

file_specification

,

FOR logminer_session_name

(file_specification::=)

switchover_clause::=

SWITCHOVER TO target_db_name

VERIFY

FORCE

failover_clause::=

FAILOVER TO target_db_name

FORCE

Chapter 10
ALTER DATABASE

10-59

commit_switchover_clause::=

PREPARE

COMMIT

TO SWITCHOVER

TO

PHYSICAL

LOGICAL

PRIMARY

PHYSICAL

STANDBY

WITH

WITHOUT

SESSION SHUTDOWN

WAIT

NOWAIT

LOGICAL STANDBY

CANCEL

start_standby_clause::=

START LOGICAL STANDBY APPLY

IMMEDIATE NODELAY

NEW PRIMARY dblink

INITIAL

scn_value

SKIP FAILED TRANSACTION

FINISH

stop_standby_clause::=

STOP

ABORT

LOGICAL STANDBY APPLY

convert_database_clause::=

CONVERT TO

PHYSICAL

SNAPSHOT

STANDBY

Chapter 10
ALTER DATABASE

10-60

default_settings_clauses::=

DEFAULT EDITION = edition_name

SET DEFAULT
BIGFILE

SMALLFILE
TABLESPACE

DEFAULT TABLESPACE tablespace

DEFAULT

LOCAL

TEMPORARY TABLESPACE
tablespace

tablespace_group_name

RENAME GLOBAL_NAME TO database . domain

ENABLE BLOCK CHANGE TRACKING

USING FILE ’ filename ’

REUSE

DISABLE BLOCK CHANGE TRACKING

NO

FORCE FULL DATABASE CACHING

CONTAINERS DEFAULT TARGET =
(container_name)

NONE

flashback_mode_clause

undo_mode_clause

set_time_zone_clause

(flashback_mode_clause::=, undo_mode_clause::=, set_time_zone_clause::=)

flashback_mode_clause::=

FLASHBACK

ON

OFF

undo_mode_clause::=

LOCAL UNDO

ON

OFF

Chapter 10
ALTER DATABASE

10-61

set_time_zone_clause::=

SET TIME_ZONE = ’

+

–
hh : mi

time_zone_region

’

instance_clauses::=

ENABLE

DISABLE

INSTANCE ’ instance_name ’

security_clause::=

GUARD

ALL

STANDBY

NONE

prepare_clause::=

PREPARE MIRROR COPY copy_name

WITH

UNPROTECTED

MIRROR

HIGH

REDUNDANCY

FOR DATABASE target_cdb_name

drop_mirror_copy::=

DROP MIRROR COPY mirror_name

lost_write_protection ::=

ENABLE

DISABLE

REMOVE

SUSPEND

LOST WRITE PROTECTION

Chapter 10
ALTER DATABASE

10-62

cdb_fleet_clauses::=

lead_cdb_clause

lead_cdb_uri_clause

lead_cdb_clause::=

SET LEAD_CDB =

TRUE

FALSE

lead_cdb_uri_clause::=

SET LEAD_CDB_URI = uri_string

property_clause

PROPERTY
SET

REMOVE
DEFAULT_CREDENTIAL = qualified_credential_name

replay_upgrade_clause::=

UPGRADE SYNC

ON

OFF

Semantics

database_clause

Specify the DATABASE option for a non-container database.

db_name

Specify the name of the database to be altered. If you omit db_name, then Oracle Database
alters the database identified by the value of the initialization parameter DB_NAME. You can
alter only the database whose control files are specified by the initialization parameter
CONTROL_FILES. The database identifier is not related to the Oracle Net database
specification.

Chapter 10
ALTER DATABASE

10-63

startup_clauses

The startup_clauses let you mount and open the database so that it is accessible to
users.

MOUNT Clause

Use the MOUNT clause to mount the database. Do not use this clause when the
database is already mounted.

MOUNT STANDBY DATABASE

You can specify MOUNT STANDBY DATABASE to mount a physical standby database. The
keywords STANDBY DATABASE are optional, because Oracle Database determines
automatically whether the database to be mounted is a primary or standby database.
As soon as this statement executes, the standby instance can receive redo data from
the primary instance.

See Also:

Oracle Data Guard Concepts and Administration for more information on
standby databases

MOUNT CLONE DATABASE

Specify MOUNT CLONE DATABASE to mount the clone database.

OPEN Clause

Use the OPEN clause to make the database available for normal use. You must mount
the database before you can open it.

If you specify only OPEN without any other keywords, then the default is OPEN READ
WRITE NORESETLOGS on a primary database, logical standby database, or snapshot
standby database and OPEN READ ONLY on a physical standby database.

OPEN READ WRITE

Specify OPEN READ WRITE to open the database in read/write mode, allowing users to
generate redo logs. This is the default if you are opening a primary database. You
cannot specify this clause for a physical standby database.

See Also:

"READ ONLY / READ WRITE: Example"

RESETLOGS | NORESETLOGS

This clause determines whether Oracle Database resets the current log sequence
number to 1, archives any unarchived logs (including the current log), and discards
any redo information that was not applied during recovery, ensuring that it will never be

Chapter 10
ALTER DATABASE

10-64

applied. Oracle Database uses NORESETLOGS automatically except in the following specific
situations, which require a setting for this clause:

• You must specify RESETLOGS:

– After performing incomplete media recovery or media recovery using a backup
control file

– After a previous OPEN RESETLOGS operation that did not complete

– After a FLASHBACK DATABASE operation

• If a created control file is mounted, then you must specify RESETLOGS if the online logs are
lost, or you must specify NORESETLOGS if they are not lost.

UPGRADE | DOWNGRADE

Use these OPEN clause parameters only if you are upgrading or downgrading a database.
This clause instructs Oracle Database to modify system parameters dynamically as required
for upgrade and downgrade, respectively. You can achieve the same result using the
SQL*Plus STARTUP UPGRADE or STARTUP DOWNGRADE command.

When you use the UPGRADE or DOWNGRADE parameters for a CDB, the root container is opened
in the specified mode, but all other containers are opened in READ WRITE mode.

See Also:

• Oracle Database Upgrade Guide for information on the steps required to
upgrade or downgrade a database from one release to another

• SQL*Plus User's Guide and Reference for information on the SQL*Plus
STARTUP command

OPEN READ ONLY

Specify OPEN READ ONLY to restrict users to read-only transactions, preventing them from
generating redo logs. This setting is the default when you are opening a physical standby
database, so that the physical standby database is available for queries even while archive
logs are being copied from the primary database site.

Restrictions on Opening a Database

The following restrictions apply to opening a database:

• You cannot open a database in READ ONLY mode if it is currently opened in READ WRITE
mode by another instance.

• You cannot open a database in READ ONLY mode if it requires recovery.

• You cannot take tablespaces offline while the database is open in READ ONLY mode.
However, you can take data files offline and online, and you can recover offline data files
and tablespaces while the database is open in READ ONLY mode.

Chapter 10
ALTER DATABASE

10-65

See Also:

Oracle Data Guard Concepts and Administration for additional
information about opening a physical standby database

recovery_clauses

The recovery_clauses include post-backup operations. For all of these clauses,
Oracle Database recovers the database using any incarnations of data files and log
files that are known to the current control file.

See Also:

Oracle Database Backup and Recovery User's Guide for information on
backing up the database and "Database Recovery: Examples"

Notes on Using the recovery_clauses in a CDB

When the current container is the root, you can specify all of the recovery_clauses to
back up and recover the entire CDB.

When the current container is a PDB, you can specify the following subclauses of the
recovery_clauses to back up and recover the PDB:

• BEGIN BACKUP
• END BACKUP
• full_database_recovery: You can specify only the DATABASE keyword

• partial_database_recovery

• The LOGFILE and CONTINUE clauses of general_recovery

You can also specify the preceding subclauses using the pdb_recovery_clauses of
ALTER PLUGGABLE DATABASE. Refer to the syntax diagram pdb_recovery_clauses of
ALTER PLUGGABLE DATABASE.

general_recovery

The general_recovery clause lets you control media recovery for the database or
standby database or for specified tablespaces or files. You can use this clause when
your instance has the database mounted, open or closed, and the files involved are
not in use.

Chapter 10
ALTER DATABASE

10-66

Note:

Parallelism is enabled by default during full or partial database recovery and logfile
recovery. The database computes the degree of parallelism. You can disable
parallelism of these operations by specifying NOPARALLEL, or specify a degree of
parallelism with PARALLEL integer, as shown in the respective syntax diagrams.

Restrictions on General Database Recovery

General recovery is subject to the following restrictions:

• You can recover the entire database only when the database is closed.

• Your instance must have the database mounted in exclusive mode.

• You can recover tablespaces or data files when the database is open or closed, if the
tablespaces or data files to be recovered are offline.

• You cannot perform media recovery if you are connected to Oracle Database through the
shared server architecture.

See Also:

• Oracle Database Backup and Recovery User's Guide for more information on
RMAN media recovery and user-defined media recovery

• SQL*Plus User's Guide and Reference for information on the SQL*Plus
RECOVER command

AUTOMATIC

Specify AUTOMATIC if you want Oracle Database to automatically generate the name of the
next archived redo log file needed to continue the recovery operation. If the
LOG_ARCHIVE_DEST_n parameters are defined, then Oracle Database scans those that are
valid and enabled for the first local destination. It uses that destination in conjunction with
LOG_ARCHIVE_FORMAT to generate the target redo log filename. If the LOG_ARCHIVE_DEST_n
parameters are not defined, then Oracle Database uses the value of the LOG_ARCHIVE_DEST
parameter instead.

If the resulting file is found, then Oracle Database applies the redo contained in that file. If the
file is not found, then Oracle Database prompts you for a filename, displaying the generated
filename as a suggestion.

If you specify neither AUTOMATIC nor LOGFILE, then Oracle Database prompts you for a
filename, displaying the generated filename as a suggestion. You can then accept the
generated filename or replace it with a fully qualified filename. If you know that the archived
filename differs from what Oracle Database would generate, then you can save time by using
the LOGFILE clause.

FROM 'location'

Specify FROM 'location' to indicate the location from which the archived redo log file group
is read. The value of location must be a fully specified file location following the conventions

Chapter 10
ALTER DATABASE

10-67

of your operating system. If you omit this parameter, then Oracle Database assumes
that the archived redo log file group is in the location specified by the initialization
parameter LOG_ARCHIVE_DEST or LOG_ARCHIVE_DEST_1.

full_database_recovery

The full_database_recovery clause lets you recover an entire database.

DATABASE

Specify the DATABASE clause to recover the entire database. This is the default. You
can use this clause only when the database is closed.

STANDBY DATABASE

Specify the STANDBY DATABASE clause to manually recover a physical standby database
using the control file and archived redo log files copied from the primary database. The
standby database must be mounted but not open.

This clause recovers only online data files.

• Use the UNTIL clause to specify the duration of the recovery operation.

– CANCEL indicates cancel-based recovery. This clause recovers the database
until you issue the ALTER DATABASE statement with the RECOVER CANCEL clause.

– TIME indicates time-based recovery. This parameter recovers the database to
the time specified by the date. The date must be a character literal in the
format 'YYYY-MM-DD:HH24:MI:SS'.

– CHANGE indicates change-based recovery. This parameter recovers the
database to a transaction-consistent state immediately before the system
change number specified by integer.

– CONSISTENT recovers the database until all online files are brought to a
consistent SCN point so that the database can be open in read only mode.
This clauses requires the controlfile to be a backup controlfile.

• Specify USING BACKUP CONTROLFILE if you want to use a backup control file instead
of the current control file.

• Specify the SNAPSHOT TIME clause to recover the database with a storage snapshot
using Storage Snapshot Optimization. This clause can be used in cases where the
database was not placed in backup mode when the storage snapshot was
created.

– date must be a character literal in the format 'YYYY-MM-DD:HH24:MI:SS'. It
must represent a time that is immediately after the snapshot was completed. If
you specify the UNTIL TIME clause, then SNAPSHOT TIME date must be earlier
than UNTIL TIME date.

See Also:

Oracle Database Backup and Recovery User's Guide for more
information on recovery using Storage Snapshot Optimization

Chapter 10
ALTER DATABASE

10-68

partial_database_recovery

The partial_database_recovery clause lets you recover individual tablespaces and data
files.

TABLESPACE

Specify the TABLESPACE clause to recover only the specified tablespaces. You can use this
clause if the database is open or closed, provided the tablespaces to be recovered are offline.

See Also:

"Using Parallel Recovery Processes: Example"

DATAFILE

Specify the DATAFILE clause to recover the specified data files. You can use this clause when
the database is open or closed, provided the data files to be recovered are offline.

You can identify the data file by name or by number. If you identify it by number, then
filenumber is an integer representing the number found in the FILE# column of the
V$DATAFILE dynamic performance view or in the FILE_ID column of the DBA_DATA_FILES data
dictionary view.

STANDBY {TABLESPACE | DATAFILE}

In earlier releases, you could specify STANDBY TABLESPACE or STANDBY DATAFILE to recover
older backups of a specific tablespace or a specific data file on the standby to be consistent
with the rest of the standby database. These two clauses are now desupported. Instead, to
recover the standby database to a consistent point, but no further, use the statement ALTER
DATABASE RECOVER MANAGED STANDBY DATABASE UNTIL CONSISTENT.

LOGFILE

Specify the LOGFILE 'filename' to continue media recovery by applying the specified redo log
file.

TEST

Use the TEST clause to conduct a trial recovery. A trial recovery is useful if a normal recovery
procedure has encountered some problem. It lets you look ahead into the redo stream to
detect possible additional problems. The trial recovery applies redo in a way similar to normal
recovery, but it does not write changes to disk, and it rolls back its changes at the end of the
trial recovery.

You can use this clause only if you have restored a backup taken since the last RESETLOGS
operation. Otherwise, Oracle Database returns an error.

ALLOW ... CORRUPTION

The ALLOW integer CORRUPTION clause lets you specify, in the event of logfile corruption, the
number of corrupt blocks that can be tolerated while allowing recovery to proceed.

Chapter 10
ALTER DATABASE

10-69

See Also:

• Oracle Database Backup and Recovery User's Guide for information on
database recovery in general

• Oracle Data Guard Concepts and Administration for information on
managed recovery of standby databases

CONTINUE

Specify CONTINUE to continue multi-instance recovery after it has been interrupted to
disable a thread.

Specify CONTINUE DEFAULT to continue recovery using the redo log file that Oracle
Database would automatically generate if no other logfile were specified. This clause
is equivalent to specifying AUTOMATIC, except that Oracle Database does not prompt
for a filename.

CANCEL

Specify CANCEL to terminate cancel-based recovery.

managed_standby_recovery

Use the managed_standby_recovery clause to start and stop Redo Apply on a physical
standby database. Redo Apply keeps the standby database transactionally consistent
with the primary database by continuously applying redo received from the primary
database.

A primary database transmits its redo data to standby sites. As the redo data is written
to redo log files at the physical standby site, the log files become available for use by
Redo Apply. You can use the managed_standby_recovery clause when your standby
instance has the database mounted or is opened read-only.

Note:

Beginning with Oracle Database 12c, real-time apply is enabled by default
during Redo Apply. Real-time apply recovers redo from the standby redo log
files as soon as they are written, without requiring them to be archived first at
the physical standby database. You can disable real-time apply with the
USING ARCHIVED LOGFILE clause. Refer to:

• Oracle Data Guard Concepts and Administration for more information on
real-time apply

• USING ARCHIVED LOGFILE Clause

Chapter 10
ALTER DATABASE

10-70

Note:

Parallelism is enabled by default during Redo Apply. The database computes the
degree of parallelism. You can disable parallelism of these operations by specifying
NOPARALLEL, or specify a degree of parallelism with PARALLEL integer, as shown in
the respective syntax diagrams.

Restrictions on Managed Standby Recovery

The same restrictions listed under general_recovery apply to this clause.

See Also:

Oracle Data Guard Concepts and Administration for more information on the use of
this clause

USING ARCHIVED LOGFILE Clause

Specify USING ARCHIVED LOGFILE to start Redo Apply without enabling real-time apply.

DISCONNECT

Specify DISCONNECT to indicate that Redo Apply should be performed in the background,
leaving the current session available for other tasks. The FROM SESSION keywords are optional
and are provided for semantic clarity.

NODELAY

The NODELAY clause overrides the DELAY attribute on the LOG_ARCHIVE_DEST_n parameter on
the primary database. If you do not specify the NODELAY clause, then application of the
archived redo log file is delayed according to the DELAY attribute of the LOG_ARCHIVE_DEST_n
setting (if any). If the DELAY attribute was not specified on that parameter, then the archived
redo log file is applied immediately to the standby database.

If you specify real-time apply with the USING CURRENT LOGFILE clause, then any DELAY value
specified for the LOG_ARCHIVE_DEST_n parameter at the primary for this standby is ignored,
and NODELAY is the default.

UNTIL CHANGE Clause

Use this clause to instruct Redo Apply to recover redo data up to, but not including, the
specified system change number.

UNTIL CONSISTENT

Use this clause to recover the standby database to a consistent SCN point so that the
standby database can be opened in read only mode.

USING INSTANCES

This clause is applicable only for Oracle Real Application Clusters (Oracle RAC) or Oracle
RAC One Node databases and allows you to start apply processes on multiple instances of
the standby that are started in the same mode (MOUNTED or READ ONLY) as the instance on

Chapter 10
ALTER DATABASE

10-71

which the command is executed. Specify USING INSTANCES ALL to perform Redo Apply
on all instances in an Oracle RAC standby database started in the same mode.
Specify USING INSTANCES integer to perform Redo Apply on the specified number of
instances that are started in the same mode. For integer, specify an integer value
from 1 to the number of instances in the standby database. The database chooses the
instances on which to perform Redo Apply; you cannot specify particular instances.
For example, if you specify 4 instances from an instance that is MOUNTED and only 3
instances of the standby are running in the MOUNTED mode, then Redo Apply will only
be started on 3 instances. If you omit the USING INSTANCES clause, then Oracle
Database performs Redo Apply only on the instance where the command was
executed.

FINISH

Specify FINISH to complete applying all available redo data in preparation for a
failover.

Use the FINISH clause only in the event of the failure of the primary database. This
clause overrides any specified delay intervals and applies all available redo
immediately. After the FINISH command completes, this database can no longer run in
the standby database role, and it must be converted to a primary database by issuing
the ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY statement.

CANCEL

Specify CANCEL to stop Redo Apply immediately. Control is returned as soon as Redo
Apply stops.

TO LOGICAL STANDBY Clause

Use this clause to convert a physical standby database into a logical standby
database.

db_name

Specify a database name to identify the new logical standby database. If you are using
a server parameter file (spfile) at the time you issue this statement, then the database
will update the file with appropriate information about the new logical standby
database. If you are not using an spfile, then the database issues a message
reminding you to set the name of the DB_NAME parameter after shutting down the
database. In addition, you must invoke the DBMS_LOGSTDBY.BUILD PL/SQL procedure
on the primary database before using this clause on the standby database.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about the DBMS_LOGSTDBY.BUILD procedure

KEEP IDENTITY

Use this clause if you want to use the rolling upgrade feature provided by a logical
standby and also revert to the original configuration of a primary database and a
physical standby. A logical standby database created using this clause provides only
limited support for switchover and failover. Therefore, do not use this clause create a
general-purpose logical standby database.

Chapter 10
ALTER DATABASE

10-72

See Also:

Oracle Data Guard Concepts and Administration for more information on rolling
upgrade

Deprecated Managed Standby Recovery Clauses

The following clauses appeared in the syntax of earlier releases. They have been deprecated
and are no longer needed. Oracle recommends that you do not use these clauses.

FINISH FORCE, FINISH WAIT, FINISH NOWAIT

These optional forms of the FINISH clause are deprecated. Their semantics are presented
here for backward compatibility:

• FORCE terminates inactive redo transport sessions that would otherwise prevent FINISH
processing from beginning.

• NOWAIT returns control to the foreground process before the recovery completes

• WAIT (the default) returns control to the foreground process after recovery completes

When specified, these clauses are ignored. Terminal recovery now runs in the foreground
and always terminates all redo transport sessions. Therefore control is not returned to the
user until recovery completes.

CANCEL IMMEDIATE, CANCEL WAIT, CANCEL NOWAIT

These optional forms of the CANCEL clause are deprecated. Their semantics are presented
here for backward compatibility:

• Include the IMMEDIATE keyword to stop Redo Apply before completely applying the
current redo log file. Session control returns when Redo Apply actually stops.

• Include the NOWAIT keyword to return session control without waiting for the CANCEL
operation to complete.

When specified, these clauses are ignored. Redo Apply is now always cancelled immediately
and control returns to the session only after the operation completes.

USING CURRENT LOGFILE Clause

The USING CURRENT LOGFILE clause is deprecated. It invokes real-time apply during Redo
Apply. However, this is now the default behavior and this clause is no longer useful.

BACKUP Clauses

Use these clauses to move all the data files in the database into or out of online backup
mode (also called hot backup mode).

See Also:

ALTER TABLESPACE for information on moving all data files in an individual
tablespace into and out of online backup mode

BEGIN BACKUP Clause

Chapter 10
ALTER DATABASE

10-73

Specify BEGIN BACKUP to move all data files in the database into online backup mode.
The database must be mounted and open, and media recovery must be enabled (the
database must be in ARCHIVELOG mode).

While the database is in online backup mode, you cannot shut down the instance
normally, begin backup of an individual tablespace, or take any tablespace offline or
make it read only.

This clause has no effect on data files that are in offline or on read-only tablespaces.

END BACKUP Clause

Specify END BACKUP to take out of online backup mode any data files in the database
currently in online backup mode. The database must be mounted (either open or
closed) when you perform this operation.

After a system failure, instance failure, or SHUTDOWN ABORT operation, Oracle Database
does not know whether the files in online backup mode match the files at the time the
system crashed. If you know the files are consistent, then you can take either
individual data files or all data files out of online backup mode. Doing so avoids media
recovery of the files upon startup.

• To take an individual data file out of online backup mode, use the ALTER DATABASE
DATAFILE ... END BACKUP statement. See database_file_clauses .

• To take all data files in a tablespace out of online backup mode, use an ALTER
TABLESPACE ... END BACKUP statement.

database_file_clauses

The database_file_clauses let you modify data files and temp files. You can use any
of the following clauses when your instance has the database mounted, open or
closed, and the files involved are not in use. The exception is the
move_datafile_clause, which allows you to move a data file that is in use.

RENAME FILE Clause

Use the RENAME FILE clause to rename data files, temp files, or redo log file members.
You must create each filename using the conventions for filenames on your operating
system before specifying this clause.

• To use this clause for a data file or temp file, the database must be mounted. The
database can also be open, but the data file or temp file being renamed must be
offline. In addition, you must first rename the file on the file system to the new
name.

• To use this clause for logfiles, the database must be mounted but not open.

• If you have enabled block change tracking, then you can use this clause to
rename the block change tracking file. The database must be mounted but not
open when you rename the block change tracking file.

This clause renames only files in the control file. It does not actually rename them on
your operating system. The operating system files continue to exist, but Oracle
Database no longer uses them.

Chapter 10
ALTER DATABASE

10-74

See Also:

• Oracle Database Backup and Recovery User's Guide for information on
recovery of data files and temp files

• "Renaming a Log File Member: Example" and "Manipulating Temp Files:
Example"

create_datafile_clause

Use the CREATE DATAFILE clause to create a new empty data file in place of an old one. You
can use this clause to re-create a data file that was lost with no backup. The filename or
filenumber must identify a file that is or was once part of the database. If you identify the file
by number, then filenumber is an integer representing the number found in the FILE# column
of the V$DATAFILE dynamic performance view or in the FILE_ID column of the
DBA_DATA_FILES data dictionary view.

• Specify AS NEW to create an Oracle-managed data file with a system-generated filename,
the same size as the file being replaced, in the default file system location for data files.

• Specify AS file_specification to assign a file name (and optional size) to the new data
file. Use the datafile_tempfile_spec form of file_specification (see
file_specification) to list regular data files and temp files in an operating system file
system or to list Oracle Automatic Storage Management (Oracle ASM) disk group files.

If the original file (filename or filenumber) is an existing Oracle-managed data file, then
Oracle Database attempts to delete the original file after creating the new file. If the original
file is an existing user-managed data file, then Oracle Database does not attempt to delete
the original file.

If you omit the AS clause entirely, then Oracle Database creates the new file with the same
name and size as the file specified by filename or filenumber.

During recovery, all archived redo logs written to since the original data file was created must
be applied to the new, empty version of the lost data file.

Oracle Database creates the new file in the same state as the old file when it was created.
You must perform media recovery on the new file to return it to the state of the old file at the
time it was lost.

Restrictions on Creating New Data Files

The creation of new data files is subject to the following restrictions:

• You cannot create a new file based on the first data file of the SYSTEM tablespace.

• You cannot specify the autoextend_clause of datafile_tempfile_spec in this CREATE
DATAFILE clause.

Chapter 10
ALTER DATABASE

10-75

See Also:

• "DATAFILE Clause" of CREATE DATABASE for information on the result of
this clause if you do not specify a name for the new data file

• file_specification for a full description of the file specification
(datafile_tempfile_spec) and "Creating a New Data File: Example"

alter_datafile_clause

The DATAFILE clause lets you manipulate a file that you identify by name or by number.
If you identify it by number, then filenumber is an integer representing the number
found in the FILE# column of the V$DATAFILE dynamic performance view or in the
FILE_ID column of the DBA_DATA_FILES data dictionary view. The DATAFILE clauses
affect your database files as follows:

ONLINE

Specify ONLINE to bring the data file online.

OFFLINE

Specify OFFLINE to take the data file offline. If the database is open, then you must
perform media recovery on the data file before bringing it back online, because a
checkpoint is not performed on the data file before it is taken offline.

FOR DROP

If the database is in NOARCHIVELOG mode, then you must specify FOR DROP clause to
take a data file offline. However, this clause does not remove the data file from the
database. To do that, you must use an operating system command or drop the
tablespace in which the data file resides. Until you do so, the data file remains in the
data dictionary with the status RECOVER or OFFLINE.

If the database is in ARCHIVELOG mode, then Oracle Database ignores the FOR DROP
clause.

RESIZE

Specify RESIZE if you want Oracle Database to attempt to increase or decrease the
size of the data file to the specified absolute size in bytes. There is no default, so you
must specify a size. You can also use this command to resize datafiles in shadow
tablespaces, that store lost write data.

If sufficient disk space is not available for the increased size, or if the file contains data
beyond the specified decreased size, then Oracle Database returns an error.

See Also:

"Resizing a Data File: Example"

END BACKUP

Chapter 10
ALTER DATABASE

10-76

Specify END BACKUP to take the data file out of online backup mode. The END BACKUP clause is
described more fully at the top level of the syntax of ALTER DATABASE. See "END BACKUP
Clause".

ENCRYPT | DECRYPT

Use these clauses to perform offline encryption or decryption of the data file using
Transparent Data Encryption (TDE). In any given tablespace, either all data files must be
encrypted or all data files must be unencrypted.

Before issuing either of these clauses, the database must be mounted. The database can
also be open, but the tablespace that contains the data file being encrypted or decrypted
must be offline. The TDE master key must be loaded into database memory.

• Specify ENCRYPT to encrypt an unencrypted data file. The data file is encrypted using the
AES128 algorithm.

• Specify DECRYPT to decrypt a data file. The data file must have been previously encrypted
with the ALTER DATABASE DATAFILE ... ENCRYPT statement.

Restrictions on Encrypting and Decrypting Data Files

The following restrictions apply to the ENCRYPT and DECRYPT clauses:

• You cannot encrypt or decrypt a temporary data file of a temporary tablespace. Instead,
you must drop the temporary tablespace and recreate it as an encrypted tablespace.

• Oracle recommends against encrypting the data files of an undo tablespace. Doing so
prevents the keystore from being closed, which prevents the database from functioning.
Furthermore, this practice is unnecessary because all undo records that are associated
with an encrypted tablespace are already automatically encrypted in the undo
tablespace.

Note:

The use of the ENCRYPT or DECRYPT clause is only one step in a series of steps for
performing offline encryption or decryption of a data file. Refer to Oracle Database
Advanced Security Guide for the complete set of steps before you use either of
these clauses.

alter_tempfile_clause

Use the TEMPFILE clause to resize your temporary data file or specify the
autoextend_clause, with the same effect as for a permanent data file. The database must be
open. You can identify the temp file by name or by number. If you identify it by number, then
filenumber is an integer representing the number found in the FILE# column of the
V$TEMPFILE dynamic performance view.

Chapter 10
ALTER DATABASE

10-77

Note:

On some operating systems, Oracle does not allocate space for a temp file
until the temp file blocks are actually accessed. This delay in space
allocation results in faster creation and resizing of temp files, but it requires
that sufficient disk space is available when the temp files are later used. To
avoid potential problems, before you create or resize a temp file, ensure that
the available disk space exceeds the size of the new temp file or the
increased size of a resized temp file. The excess space should allow for
anticipated increases in disk space use by unrelated operations as well.
Then proceed with the creation or resizing operation.

DROP

Specify DROP to drop tempfile from the database. The tablespace remains.

If you specify INCLUDING DATAFILES, then Oracle Database also deletes the associated
operating system files and writes a message to the alert log for each such deleted file.
You can achieve the same result using an ALTER TABLESPACE ... DROP TEMPFILE
statement. Refer to the ALTER TABLESPACE DROP Clause for more information.

move_datafile_clause

Use the MOVE DATAFILE clause to move an online data file to a new location. The
database can be open and accessing the data file when you perform this operation.
The database creates a copy of the data file when it is performing this operation.
Ensure that there is adequate disk space for the original data file and the copy before
using this clause.

You can specify the original data file using the file_name, ASM_filename, or
file_number. Refer to ASM_filename for information on ASM file names. If you identify
the file by number, then file_number is an integer representing the number found in
the FILE# column of the V$DATAFILE dynamic performance view or in the FILE_ID
column of the DBA_DATA_FILES data dictionary view.

Use the TO clause to specify the new file_name or ASM_filename. If you are using
Oracle Managed Files, then you can omit the TO clause. In this case, Oracle Database
creates a unique name for the data file and saves it in the directory specified by the
DB_CREATE_FILE_DEST initialization parameter.

If you specify REUSE, then the new data file is created even if it already exists.

If you specify KEEP, then the original data file will be kept after the MOVE DATAFILE
operation. You cannot specify KEEP if the original data file is an Oracle Managed File.
You can specify KEEP if the new data file is an Oracle Managed File.

autoextend_clause

Use the autoextend_clause to enable or disable the automatic extension of a new or
existing data file or temp file. Refer to file_specification for information about this
clause.

logfile_clauses

The logfile clauses let you add, drop, or modify log files.

Chapter 10
ALTER DATABASE

10-78

ARCHIVELOG

Specify ARCHIVELOG if you want the contents of a redo log file group to be archived before the
group can be reused. This mode prepares for the possibility of media recovery. Use this
clause only after shutting down your instance normally, or immediately with no errors, and
then restarting it and mounting the database.

MANUAL

Specify MANUAL to indicate that Oracle Database should create redo log files, but the archiving
of the redo log files is controlled entirely by the user. This clause is provided for backward
compatibility, for example for users who archive directly to tape. If you specify MANUAL, then:

• Oracle Database does not archive redo log files when a log switch occurs. You must
handle this manually.

• You cannot have specified a standby database as an archivelog destinations. As a result,
the database cannot be in MAXIMUM PROTECTION or MAXIMUM AVAILABILITY standby
protection mode.

If you omit this clause, then Oracle Database automatically archives the redo log files to the
destination specified in the LOG_ARCHIVE_DEST_n initialization parameters.

NOARCHIVELOG

Specify NOARCHIVELOG if you do not want the contents of a redo log file group to be archived
so that the group can be reused. This mode does not prepare for recovery after media failure.
Use this clause only if your instance has the database mounted but not open.

[NO] FORCE LOGGING

Use this clause to put the database into or take the database out of FORCE LOGGING mode.
The database must be mounted or open.

In FORCE LOGGING mode, Oracle Database logs all changes in the database except changes in
temporary tablespaces and temporary segments. This setting takes precedence over and is
independent of any NOLOGGING or FORCE LOGGING settings you specify for individual
tablespaces and any NOLOGGING settings you specify for individual database objects.

If you specify FORCE LOGGING, then Oracle Database waits for all ongoing unlogged operations
to finish.

See Also:

Oracle Database Administrator's Guide for information on when to use FORCE
LOGGING mode

SET STANDBY NOLOGGING

Standby nologging instructs the database to not log operations that qualify to be done without
logging. The database sends the data blocks created by the operation to each qualifying
standby database in the Data Guard configuration, to prevent missed data on the standby
and keep it in sync with the primary.

Chapter 10
ALTER DATABASE

10-79

Use this clause to determine how nonlogged tasks are handled . You can choose one
of two logging modes for a database when you create the database, and you can
change the logging mode of a database from one mode to the other.

• SET STANDBY NOLOGGING FOR LOAD PERFORMANCE to put the database into standby
nologging for load performance mode. In this mode, the data loaded as part of the
nonlogged task is sent to the qualifying standbys via a private network connection,
provided that doing so will not slow down the load process. If the load process
slows, then the data is not sent but automatically fetched from the primary as each
standby encounters the invalidation redo and will be retried until the data blocks
are eventually received.

• Specify SET STANDBY NOLOGGING FOR DATA AVAILABILITY to put the database into
standby nologging for data availability mode. In this mode the data loaded as part
of the nonlogged task is sent to the qualifying standbys either via a network
connection or via block images in the redo, in case the network connection fails.
That is to say, in this mode the load will switch to be done in a logged fashion if the
network connection or related processes prevent the sending of the data over the
private network connection.

For the standby nologging modes, a qualifying standby is one that is open for read,
running managed recovery and receiving redo into standby redo logs.

Restrictions on Setting Standby Nologging

TheSET STANDBY NOLOGGING clause cannot be used at the same time as FORCE
LOGGING.

RENAME FILE Clause

This clause has the same function for logfiles that it has for data files and temp files.
See "RENAME FILE Clause".

CLEAR LOGFILE Clause

Use the CLEAR LOGFILE clause to reinitialize an online redo log, optionally without
archiving the redo log. CLEAR LOGFILE is similar to adding and dropping a redo log,
except that the statement may be issued even if there are only two logs for the thread
and may be issued for the current redo log of a closed thread.

For a standby database, if the STANDBY_FILE_MANAGEMENT initialization parameter is set
to AUTO, and if any of the log files are Oracle Managed Files, Oracle Database will
create as many Oracle-managed log files as are in the control file. The log file
members will reside in the current default log file destination.

• You must specify UNARCHIVED if you want to reuse a redo log that was not
archived.

Note:

Specifying UNARCHIVED makes backups unusable if the redo log is
needed for recovery.

• You must specify UNRECOVERABLE DATAFILE if you have taken the data file offline
with the database in ARCHIVELOG mode (that is, you specified ALTER DATABASE ...
DATAFILE OFFLINE without the DROP keyword), and if the unarchived log to be

Chapter 10
ALTER DATABASE

10-80

cleared is needed to recover the data file before bringing it back online. In this case, you
must drop the data file and the entire tablespace once the CLEAR LOGFILE statement
completes.

Do not use CLEAR LOGFILE to clear a log needed for media recovery. If it is necessary to
clear a log containing redo after the database checkpoint, then you must first perform
incomplete media recovery. The current redo log of an open thread can be cleared. The
current log of a closed thread can be cleared by switching logs in the closed thread.

If the CLEAR LOGFILE statement is interrupted by a system or instance failure, then the
database may hang. In this case, reissue the statement after the database is restarted. If
the failure occurred because of I/O errors accessing one member of a log group, then
that member can be dropped and other members added.

See Also:

"Clearing a Log File: Example"

add_logfile_clauses

Use these clauses to add redo log file groups to the database and to add new members to
existing redo log file groups.

ADD LOGFILE Clause

Use the ADD LOGFILE clause to add one or more redo log file groups to the online redo log or
standby redo log.

See Also:

• "LOGFILE Clause" of CREATE DATABASE for information on the result of this
clause for Oracle Managed Files if you do not specify a name for the new log
file group

• "Adding Redo Log File Groups: Examples"

• Oracle Data Guard Concepts and Administration for more information on
standby redo logs

STANDBY

Use the STANDBY clause to add a redo log file group to the standby redo log. If you do not
specify this clause, then a log file group is added to the online redo log.

INSTANCE

The INSTANCE clause is applicable only for Oracle Real Application Clusters (Oracle RAC) or
Oracle RAC One Node databases. Specify the name of the instance for which you want to
add a redo log file group. The instance name is a string of up to 80 characters. Oracle
Database automatically uses the thread that is mapped to the specified instance. If no thread
is mapped to the specified instance, then Oracle Database automatically acquires an
available unmapped thread and assigns it to that instance. If you do not specify this clause,
then Oracle Database executes the command as if you had specified the current instance. If

Chapter 10
ALTER DATABASE

10-81

the specified instance has no current thread mapping and there are no available
unmapped threads, then Oracle Database returns an error.

THREAD

When adding a redo log file group to the standby redo log, use the THREAD clause to
assign the log file group to a specific primary database redo thread. Query the
V$INSTANCE view on the primary database to determine which redo threads have been
opened, and specify one of these thread numbers.

You can also use the THREAD clause to assign a log file group to a specific redo thread
when adding the log file group to the online redo log. This usage has been deprecated.
The INSTANCE clause achieves the same purpose and is easier to use.

GROUP

The GROUP clause uniquely identifies the redo log file group among all groups in all
threads and can range from 1 to the value specified for MAXLOGFILES in the CREATE
DATABASE statement. You cannot add multiple redo log file groups having the same
GROUP value. If you omit this parameter, then Oracle Database generates its value
automatically. You can examine the GROUP value for a redo log file group through the
dynamic performance view V$LOG.

redo_log_file_spec

Each redo_log_file_spec specifies a redo log file group containing one or more
members (copies). If you do not specify a filename for the new log file, then Oracle
Database creates Oracle Managed Files according to the rules described in the
"LOGFILE Clause" of CREATE DATABASE.

See Also:

• file_specification

• Oracle Database Reference for information on dynamic performance
views

ADD LOGFILE MEMBER Clause

Use the ADD LOGFILE MEMBER clause to add new members to existing redo log file
groups. Each new member is specified by 'filename'. If the file already exists, then it
must be the same size as the other group members and you must specify REUSE. If the
file does not exist, then Oracle Database creates a file of the correct size. You cannot
add a member to a group if all of the members of the group have been lost through
media failure.

STANDBY

You must specify STANDBY when adding a member to a standby redo log file group.
Otherwise, Oracle Database returns an error.

You can use the logfile_descriptor clause to specify an existing redo log file group
in one of two ways:

GROUP integer

Chapter 10
ALTER DATABASE

10-82

Specify the value of the GROUP parameter that identifies the redo log file group.

filename(s)

List all members of the redo log file group. You must fully specify each filename according to
the conventions of your operating system.

See Also:

• "LOGFILE Clause" of CREATE DATABASE for information on the result of this
clause for Oracle Managed Files if you do not specify a name for the new log
file group

• "Adding Redo Log File Group Members: Example"

drop_logfile_clauses

Use these clauses to drop redo log file groups or redo log file members.

DROP LOGFILE Clause

Use the DROP LOGFILE clause to drop all members of a redo log file group. If you use this
clause to drop Oracle Managed Files, then Oracle Database also removes all log file
members from disk. Specify a redo log file group as indicated for the ADD LOGFILE MEMBER
clause.

• To drop the current log file group, you must first issue an ALTER SYSTEM SWITCH LOGFILE
statement.

• You cannot drop a redo log file group if it needs archiving.

• You cannot drop a redo log file group if doing so would cause the redo thread to contain
less than two redo log file groups.

See Also:

ALTER SYSTEM and "Dropping Log File Members: Example"

DROP LOGFILE MEMBER Clause

Use the DROP LOGFILE MEMBER clause to drop one or more redo log file members. Each
'filename' must fully specify a member using the conventions for filenames on your
operating system.

• To drop a log file in the current log, you must first issue an ALTER SYSTEM SWITCH LOGFILE
statement. Refer to ALTER SYSTEM for more information.

• You cannot use this clause to drop all members of a redo log file group that contains valid
data. To perform that operation, use the DROP LOGFILE clause.

Chapter 10
ALTER DATABASE

10-83

See Also:

"Dropping Log File Members: Example"

switch_logfile_clause

This clause is useful when you are migrating the database to disks with a different
block size that the block size of the current database. Use this clause to switch logfiles
to a different block size for all externally enabled threads, including both open and
closed threads. If you are migrating the database to use 4KB sector disks, then you
must specify 4096 for integer. If you are unmigrating the database back to using
512B sector disks, then you must specify 512 for integer.

This clause is an extension of the existing ALTER SYSTEM SWITCH LOGFILE statement.
That statement switches logs for a single thread. This clause switches logfiles for all
externally enabled threads, including both open and closed threads.

Before using this clause, you must already have created at least two redo log groups
with the same target block size on the migration target disk.

See Also:

Oracle Database Administrator's Guide for more information on migrating the
database to disks with a different block size, and "Adding a Log File:
Example"

supplemental_db_logging

Use these clauses to instruct Oracle Database to add or stop adding supplemental
data into the log stream.

ADD SUPPLEMENTAL LOG Clause

Specify ADD SUPPLEMENTAL LOG DATA to enable minimal supplemental logging.
Specify ADD SUPPLEMENTAL LOG supplemental_id_key_clause to enable column data
logging in addition to minimal supplemental logging. Specify ADD SUPPLEMENTAL LOG
supplemental_plsql_clause to enable supplemental logging of PL/SQL calls. Oracle
Database does not enable either minimal supplemental logging or supplemental
logging by default.

Minimal supplemental logging ensures that LogMiner (and any products building on
LogMiner technology) will have sufficient information to support chained rows and
various storage arrangements such as cluster tables.

If the redo generated on one database is to be the source of changes (to be mined
and applied) at another database, as is the case with logical standby, then the affected
rows need to be identified using column data (as opposed to rowids). In this case, you
should specify the supplemental_id_key_clause.

You can query the appropriate columns in the V$DATABASE view to determine whether
any supplemental logging has already been enabled.

Chapter 10
ALTER DATABASE

10-84

You can use this clause when the database is open. However, Oracle Database will invalidate
all DML cursors in the cursor cache, which will have an effect on performance until the cache
is repopulated.

If you use this clause in a CDB, then the current container must be the root and the operation
will be performed on the entire CDB.

For a full discussion of the supplemental_id_clause, refer to supplemental_id_key_clause in
the documentation on CREATE TABLE.

See Also:

• Oracle Data Guard Concepts and Administration for information on
supplemental logging on the primary database to support a logical standby
database

• Oracle Database Utilities for examples using the supplemental_db_logging
clause syntax

DROP SUPPLEMENTAL LOG Clause

Use this clause to stop supplemental logging.

• Specify DROP SUPPLEMENTAL LOG DATA to instruct Oracle Database to stop placing minimal
additional log information into the redo log stream whenever an update operation occurs.
If Oracle Database is doing column data supplemental logging specified with the
supplemental_id_key_clause, then you must first stop the column data supplemental
logging with the DROP SUPPLEMENTAL LOG supplemental_id_key_clause and then specify
this clause.

• Specify DROP SUPPLEMENTAL LOG supplemental_id_key_clause to drop some or all of the
system-generated supplemental log groups. You must specify the
supplemental_id_key_clause if the supplemental log groups you want to drop were
added using that clause.

• Specify DROP SUPPLEMENTAL LOG supplemental_plsql_clause disable supplemental
logging of PL/SQL calls.

If you use this clause in a CDB, then the current container must be the root and the operation
will be performed on the entire CDB.

ADD SUPPLEMENTAL LOG DATA SUBSET DATABASE REPLICATION of ALTER
DATABASE enables low impact minimal supplemental logging.

• You can execute this DDL only when the enable_goldengate_replication parameter is
TRUE, and database compatible is 19.0 or higher.

• This DDL implicitly adds DB-level minimal supplemental logging, similar to other DB-level
supplemental logging DDLs.

• In case of CDB, this DDL can be executed in both CDB$ROOT and pluggable databases.

• When executed in CDB$ROOT, it enables low impact minimal supplemental logging for
entire database. Low impact minimal supplemental logging will be enabled for all the
pluggable databases regardless of the PDB level setting for subset database replication.

Chapter 10
ALTER DATABASE

10-85

• When executed in pluggable database, it’s same as ALTER PLUGGABLE DATABASE
ADD SUPPLEMENTAL LOG DATA SUBSET DATABASE REPLICATION. See ALTER
PLUGGABLE DATABASE for details.

DROP SUPPLEMENTAL LOG DATA SUBSET DATABASE REPLICATION of ALTER
DATABASE disables low impact minimal supplemental logging.

• You can execute this DDL only when theenable_goldengate_replication
parameter is TRUE, and database compatible should be 19.0 or higher.

• You must have explicitly enabled other supplemental log data. This restriction
ensures that disabling low impact minimal supplemental logging never disables
minimal supplemental logging.

• Once this DDL is executed, the minimal supplemental logging will go back to its
current behavior.

• In case of CDB, this DDL can be executed in both CDB$ROOT and pluggable
databases.

• When executed in CDB$ROOT , it disables low impact minimal supplemental logging
at the database level. For each pluggable database, whether low impact
supplemental logging is enabled depends on the PDB-level setting for subset
database replication.

• When executed in pluggable database, the behavior is the same as ALTER
PLUGGABLE DATABASE DROP SUPPLEMENTAL LOG DATA SUBSET DATABASE
REPLICATION. See ALTER PLUGGABLE DATABASE for details.

See Also:

Oracle Data Guard Concepts and Administration for information on
supplemental logging

controlfile_clauses

The controlfile_clauses let you create or back up a control file.

CREATE CONTROLFILE Clause

The CREATE CONTROLFILE clause lets you create a control file.

• Specify PHYSICAL STANDBY to create a control file to be used to maintain a physical
database. This is the default if you specify STANDBY and do not specify PHYSICAL or
LOGICAL.

• Specify LOGICAL STANDBY to create a control file to be used to maintain a logical
database.

• Specify FAR SYNC INSTANCE to create a control file to be used to maintain a Data
Guard far sync instance.

If the file already exists, then you must specify REUSE. In an Oracle RAC environment,
the control file must be on shared storage.

Chapter 10
ALTER DATABASE

10-86

See Also:

Oracle Data Guard Concepts and Administration for more information on creating
control files

BACKUP CONTROLFILE Clause

Use the BACKUP CONTROLFILE clause to back up the current control file. The database must be
open or mounted when you specify this clause.

TO 'filename'

Use this clause to specify a binary backup of the control file. You must fully specify the
filename using the conventions for your operating system. If the specified file already exists,
then you must specify REUSE. In an Oracle RAC environment, filename must be on shared
storage.

A binary backup contains information that is not captured if you specify TO TRACE, such as the
archived log history, offline range for read-only and offline tablespaces, and backup sets and
copies (if you use RMAN). If the COMPATIBLE initialization parameter is 10.2 or higher, binary
control file backups include temp file entries.

TO TRACE

Specify TO TRACE if you want Oracle Database to write SQL statements to a trace file rather
than making a physical backup of the control file. You can use SQL statements written to the
trace file to start up the database, re-create the control file, and recover and open the
database appropriately, based on the created control file. If you issue an ALTER DATABASE
BACKUP CONTROLFILE TO TRACE statement while block change tracking is enabled, then the
resulting trace file will contain a command to reenable block change tracking.

This statement issues an implicit ALTER DATABASE REGISTER LOGFILE statement, which creates
incarnation records if the archived log files reside in the current archivelog destinations.

The trace file will also include ALTER DATABASE REGISTER LOGFILE statements for existing
logfiles that reside in the current archivelog destinations. This will implicitly create database
incarnation records for the branches of redo to which the logfiles apply.

You can copy the statements from the trace file into a script file, edit the statements as
necessary, and use the script if all copies of the control file are lost (or to change the size of
the control file).

• Specify AS filename if you want Oracle Database to place the trace output into a file
called filename rather than into the standard trace file.

• Specify REUSE to allow Oracle Database to overwrite any existing file called filename.

• RESETLOGS indicates that the SQL statement written to the trace file for starting the
database is ALTER DATABASE OPEN RESETLOGS. This setting is valid only if the online logs
are unavailable.

• NORESETLOGS indicates that the SQL statement written to the trace file for starting the
database is ALTER DATABASE OPEN NORESETLOGS. This setting is valid only if all the online
logs are available.

Chapter 10
ALTER DATABASE

10-87

If you cannot predict the future state of the online logs, then specify neither RESETLOGS
nor NORESETLOGS. In this case, Oracle Database puts both versions of the script into
the trace file, and you can choose which version is appropriate when the script
becomes necessary.

The trace files are stored in a subdirectory determined by the DIAGNOSTIC_DEST
initialization parameter. You can find the name and location of the trace file to which
the CREATE CONTROLFILE statements were written by looking in the alert log. You can
also find the directory for trace files by querying the NAME and VALUE columns of the
V$DIAG_INFO dynamic performance view.

See Also:

Oracle Database Administrator's Guide for information on viewing the alert
log

standby_database_clauses

Use these clauses to activate the standby database or to specify whether it is in
protected or unprotected mode.

See Also:

Oracle Data Guard Concepts and Administration for descriptions of the
physical and logical standby database and for information on maintaining
and using standby databases

activate_standby_db_clause

Use the ACTIVATE STANDBY DATABASE clause to convert a standby database into a
primary database.

Note:

Before using this command, refer to Oracle Data Guard Concepts and
Administration for important usage information.

PHYSICAL

Specify PHYSICAL to activate a physical standby database. This is the default.

LOGICAL

Specify LOGICAL to activate a logical standby database. If you have more than one
logical standby database, then you should first ensure that the same log data is
available on all the standby systems.

FINISH APPLY

Chapter 10
ALTER DATABASE

10-88

This clause applies only to logical standby databases. Use it to initiate terminal apply, which
is the application of any remaining redo to bring the logical standby database to the same
state as the primary database. When terminal apply is complete, the database completes the
switchover from logical standby to primary database.

If you require immediate restoration of the database in spite of data loss, then omit this
clause. The database will execute the switchover from logical standby to primary database
immediately without terminal apply.

maximize_standby_db_clause

Use this clause to specify the level of protection for the data in your database environment.
You specify this clause from the primary database.

Note:

The PROTECTED and UNPROTECTED keywords have been replaced for clarity but are
still supported. PROTECTED is equivalent to TO MAXIMIZE PROTECTION. UNPROTECTED is
equivalent to TO MAXIMIZE PERFORMANCE.

TO MAXIMIZE PROTECTION

This setting establishes maximum protection mode and offers the highest level of data
protection. A transaction does not commit until all data needed to recover that transaction has
been written to at least one physical standby database that is configured to use the SYNC log
transport mode. If the primary database is unable to write the redo records to at least one
such standby database, then the primary database is shut down. This mode guarantees zero
data loss, but it has the greatest potential impact on the performance and availability of the
primary database.

Restriction on Establishing Maximum Protection Mode

You can specify TO MAXIMIZE PROTECTION on an open database only if the current data
protection mode is MAXIMUM AVAILABILITY and there is at least one synchronized standby
database.

TO MAXIMIZE AVAILABILITY

This setting establishes maximum availability mode and offers the next highest level of data
protection. A transaction does not commit until all data needed to recover that transaction has
been written to at least one physical or logical standby database that is configured to use the
SYNC log transport mode. Unlike maximum protection mode, the primary database does not
shut down if it is unable to write the redo records to at least one such standby database.
Instead, the protection is lowered to maximum performance mode until the fault has been
corrected and the standby database has caught up with the primary database. This mode
guarantees zero data loss unless the primary database fails while in maximum performance
mode. Maximum availability mode provides the highest level of data protection that is
possible without affecting the availability of the primary database.

TO MAXIMIZE PERFORMANCE

This setting establishes maximum performance mode and is the default setting. A
transaction commits before the data needed to recover that transaction has been written to a
standby database. Therefore, some transactions may be lost if the primary database fails and
you are unable to recover the redo records from the primary database. This mode provides

Chapter 10
ALTER DATABASE

10-89

the highest level of data protection that is possible without affecting the performance of
the primary database.

To determine the current mode of the database, query the PROTECTION_MODE column of
the V$DATABASE dynamic performance view.

See Also:

Oracle Data Guard Concepts and Administration for full information on using
these standby database settings

register_logfile_clause

Specify the REGISTER LOGFILE clause from the standby database to manually register
log files from the failed primary. Use the redo_log_file_spec form of
file_specification (see file_specification) to list regular redo log files in an
operating system file system or to list Oracle ASM disk group redo log files.

When a log file is from an unknown incarnation, the REGISTER LOGFILE clause causes
an incarnation record to be added to the V$DATABASE_INCARNATION view. If the newly
registered log file belongs to an incarnation having a higher RESETLOGS_TIME than the
current RECOVERY_TARGET_INCARNATION#, then the REGISTER LOGFILE clause also
causes RECOVERY_TARGET_INCARNATION# to be changed to correspond to the newly
added incarnation record.

OR REPLACE

Specify OR REPLACE to allow an existing archivelog entry in the standby database to be
updated, for example, when its location or file specification changes. The system
change numbers of the entries must match exactly, and the original entry must have
been created by the managed standby log transmittal mechanism.

FOR logminer_session_name

This clause is useful in a Streams environment. It lets you register the log file with one
specified LogMiner session.

switchover_clause

Caution:

Before using this command, refer to Oracle Data Guard Concepts and
Administration for complete usage information.

Use this clause to perform a switchover to a physical standby database. Specify this
clause from the primary database. For target_db_name, specify the DB_UNIQUE_NAME of
the standby database.

VERIFY

Use this clause to verify that a physical standby database is ready for a switchover.
Specify this clause from the primary database. For target_db_name, specify the

Chapter 10
ALTER DATABASE

10-90

DB_UNIQUE_NAME of the standby database. If the standby database is ready for a switchover,
then the "Database Altered" message is returned. Otherwise, an error message that will
assist you in preparing the standby database for a switchover is returned.

FORCE

Use this clause if a previous switchover command failed and created a configuration with no
primary database. Specify this clause from the physical standby database that you want to
convert to the primary database. For target_db_name, specify the DB_UNIQUE_NAME of the
database that you want to convert to the primary database.

failover_clause

Caution:

Before using this command, refer to Oracle Data Guard Concepts and
Administration for complete usage information.

Use this clause to perform a failover to a physical standby database. Specify this clause from
the standby database. For target_db_name, specify the DB_UNIQUE_NAME of the standby
database.

FORCE

This clause has meaning only when the failover target is serviced by a Data Guard far sync
instance. Use this clause when a previous failover command failed and the reason for the
failure cannot be resolved. It instructs the failover to ignore any failures encountered when
interacting with the Data Guard far sync instance and proceed with the failover, if at all
possible.

commit_switchover_clause

Use this clause to perform database role transitions in a Data Guard configuration.

Caution:

Before using this command, refer to Oracle Data Guard Concepts and
Administration for complete usage information.

PREPARE TO SWITCHOVER

This clause prepares a primary database to become a logical standby database or a logical
standby database to become a primary database.

• Specify PREPARE TO SWITCHOVER TO LOGICAL STANDBY on a primary database.

• Specify PREPARE TO SWITCHOVER TO PRIMARY DATABASE on a logical standby database.

COMMIT TO SWITCHOVER

This clause switches a primary database to a standby database role or switches a standby
database to the primary database role.

Chapter 10
ALTER DATABASE

10-91

• Specify COMMIT TO SWITCHOVER TO PHYSICAL STANDBY or COMMIT TO SWITCHOVER TO
LOGICAL STANDBY on a primary database.

• Specify COMMIT TO SWITCHOVER TO PRIMARY DATABASE on a standby database.

PHYSICAL

This clause is always optional. Use of this clause with the COMMIT TO SWITCHOVER TO
PRIMARY clause has been deprecated.

LOGICAL

This clause is specified with the PREPARE TO SWITCHOVER or COMMIT TO SWITCHOVER
clauses when switching a primary database to the logical standby database role. Use
of this clause with the COMMIT TO SWITCHOVER TO PRIMARY clause has been deprecated.

WITH SESSION SHUTDOWN

This clause causes all database sessions to be closed and uncommitted transactions
to be rolled back before performing a database role transition.

WITHOUT SESSION SHUTDOWN

This clause prevents a requested role transition from occurring if there are any
database sessions. This is the default.

WAIT

Specify this clause to wait for a role transition to complete before returning control to
the user.

NOWAIT

Specify this clause to return control to the user without waiting for a role transition to
complete. This is the default.

CANCEL

Specify this clause to reverse the effect of a previously specified PREPARE TO
SWITCHOVER statement.

See Also:

Oracle Data Guard Concepts and Administration for full information on
switchover between primary and standby databases

start_standby_clause

Specify the START LOGICAL STANDBY APPLY clause to begin applying redo logs to a
logical standby database. This clause enables primary key, unique index, and unique
constraint supplemental logging as well as PL/SQL call logging.

• Specify IMMEDIATE to apply redo data from the current standby redo log file.

• Specify NODELAY if you want Oracle Database to ignore a delay for this apply. This
is useful if the primary database is no longer present, which would otherwise
require a PL/SQL call to be made.

• Specify INITIAL the first time you apply the logs to the standby database.

Chapter 10
ALTER DATABASE

10-92

• The NEW PRIMARY clause is needed in two situations:

– On a failover to a logical standby, specify this clause on a logical standby not
participating in the failover operation, and on the old primary database after it has
been reinstated as a logical standby database.

– During a rolling upgrade using a logical standby database (which uses an
unprepared switchover operation), specify this clause after the original primary
database has been upgraded to the new database software.

• Specify SKIP FAILED [TRANSACTION] to skip the last transaction in the events table and
restart the apply.

• Specify FINISH to force the standby redo logfile information into archived logs. If the
primary database becomes disabled, then you can then apply the data in the redo log
files.

stop_standby_clause

Use this clause to stop the log apply services. This clause applies only to logical standby
databases, not to physical standby databases. Use the STOP clause to stop the apply in an
orderly fashion.

convert_database_clause

Use this clause to convert a database from one form to another.

• Specify CONVERT TO PHYSICAL STANDBY to convert a primary database, a logical standby
database, or a snapshot standby database into a physical standby database.

Perform these steps before specifying this clause:

– On an Oracle Real Application Clusters (Oracle RAC) database, shut down all but
one instance.

– Ensure that the database is mounted, but not open.

The database is dismounted after conversion and must be restarted.

• Specify CONVERT TO SNAPSHOT STANDBY to convert a physical standby database into a
snapshot standby database.

Ensure that redo apply is stopped before specifying this clause.

Note:

A snapshot standby database must be opened at least once in read/write mode
before it can be converted into a physical standby database.

See Also:

Oracle Data Guard Concepts and Administration for more information about
standby databases

Chapter 10
ALTER DATABASE

10-93

default_settings_clauses

Use these clauses to modify the default settings of the database.

DEFAULT EDITION Clause

Use this clause to designate the specified edition as the default edition for the
database. The specified edition must already have been created and must be USABLE.
The change takes place immediately and is visible to all nodes in an Oracle RAC
environment. New database sessions automatically start out in the specified edition.
The new setting persists across database shutdown and startup.

When you designate an edition as the database default edition, all users can use the
edition, as though the USE object privilege were granted on the specified edition to the
role PUBLIC.

You can determine the current default edition of the database with the following query:

SELECT PROPERTY_VALUE FROM DATABASE_PROPERTIES
 WHERE PROPERTY_NAME = 'DEFAULT_EDITION';

See Also:

CREATE EDITION for more information on editions and Oracle Database
PL/SQL Language Reference for information on how editions are designated
as USABLE

CHARACTER SET, NATIONAL CHARACTER SET

You can no longer change the database character set or the national character set
using the ALTER DATABASE statement. Refer to Oracle Database Globalization Support
Guide for information on database character set migration.

SET DEFAULT TABLESPACE Clause

Use this clause to specify or change the default type of subsequently created
tablespaces. Specify BIGFILE or SMALLFILE to indicate whether the tablespaces should
be bigfile or smallfile tablespaces.

• A bigfile tablespace contains only one data file or temp file, which can contain up
to approximately 4 billion (232) blocks. The maximum size of the single data file or
temp file is 128 terabytes (TB) for a tablespace with 32K blocks and 32TB for a
tablespace with 8K blocks.

• A smallfile tablespace is a traditional Oracle tablespace, which can contain 1022
data files or temp files, each of which can contain up to approximately 4 million
(222) blocks.

Chapter 10
ALTER DATABASE

10-94

See Also:

• Oracle Database Administrator's Guide for more information about bigfile
tablespaces

• "Setting the Default Type of Tablespaces: Example"

DEFAULT TABLESPACE Clause

Specify this clause to establish or change the default permanent tablespace of the database.
The tablespace you specify must already have been created. After this operation completes,
Oracle Database automatically reassigns to the new default tablespace all non-SYSTEM users.
All objects subsequently created by those users will by default be stored in the new default
tablespace. If you are replacing a previously specified default tablespace, then you can move
the previously created objects from the old to the new default tablespace, and then drop the
old default tablespace if you want to.

DEFAULT [LOCAL] TEMPORARY TABLESPACE Clause

Specify this clause to change the default shared temporary tablespace of the database to a
new tablespace or tablespace group, or to change the default local temporary tablespace to a
new tablespace.

• Specify tablespace to indicate the new default temporary tablespace for the database.
After this operation completes, Oracle Database automatically reassigns to the new
default temporary tablespace all users who had been assigned to the old default
temporary tablespace. You can then drop the old default temporary tablespace if you
want to. Specify DEFAULT TEMPORARY TABLESPACE to change the default shared temporary
tablespace. Specify DEFAULT LOCAL TEMPORARY TABLESPACE to change the default local
temporary tablespace.

• Specify tablespace_group_name to indicate that all tablespaces in the tablespace group
specified by tablespace_group_name are now default shared temporary tablespaces for
the database. After this operation completes, users who have not been explicitly
assigned a default temporary tablespace can create temporary segments in any of the
tablespaces that are part of tablespace_group_name. You cannot drop an old default
temporary tablespace if it is part of the default temporary tablespace group. Local
temporary tablespaces cannot be part of a tablespace group.

To learn the name of the current default temporary tablespace or default temporary
tablespace group, query the TEMPORARY_TABLESPACE column of the ALL_, DBA_, or USER_USERS
data dictionary views.

Restrictions on Default Temporary Tablespaces

Default temporary tablespaces are subject to the following restrictions:

• The tablespace you assign or reassign as the default temporary tablespace must have a
standard block size.

• If the SYSTEM tablespace is locally managed, then the tablespace you specify as the
default temporary tablespace must also be locally managed.

Chapter 10
ALTER DATABASE

10-95

See Also:

• Oracle Database Administrator's Guide for information on tablespace
groups

• "Changing the Default Temporary Tablespace: Examples"

instance_clauses

In an Oracle Real Application Clusters environment, specify ENABLE INSTANCE to
enable the thread that is mapped to the specified database instance. The thread must
have at least two redo log file groups, and the database must be open.

Specify DISABLE INSTANCE to disable the thread that is mapped to the specified
database instance. The name of the instance is a string of up to 80 characters. If no
thread is currently mapped to the specified instance, then Oracle Database returns an
error. The database must be open, but you cannot disable a thread if an instance
using it has the database mounted.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide for
more information on enabling and disabling instances

RENAME GLOBAL_NAME Clause

Specify RENAME GLOBAL_NAME to change the global name of the database. The
database must be open. The database is the new database name and can be as long
as eight bytes. The optional domain specifies where the database is effectively located
in the network hierarchy. If you specify a domain name, then the components of the
domain name must be legal identifiers. See "Database Object Naming Rules " for
information on valid identifiers.

Note:

Renaming your database does not change global references to your
database from existing database links, synonyms, and stored procedures
and functions on remote databases. Changing such references is the
responsibility of the administrator of the remote databases.

See Also:

"Changing the Global Database Name: Example"

BLOCK CHANGE TRACKING Clauses

Chapter 10
ALTER DATABASE

10-96

The block change tracking feature causes Oracle Database to keep track of the physical
locations of all database updates on both the primary database and any physical standby
database. You must enable block change tracking on each database for which you want
tracking to be performed. The tracking information is maintained in a separate file called the
block change tracking file. If you are using Oracle Managed Files, then Oracle Database
automatically creates the block change tracking file in the location specified by
DB_CREATE_FILE_DEST. If you are not using Oracle Managed Files, then you must specify the
change tracking filename. Oracle Database uses change tracking data for some internal
tasks, such as increasing the performance of incremental backups. You can enable or disable
block change tracking with the database either open or mounted, in either archivelog or
NOARCHIVELOG mode.

ENABLE BLOCK CHANGE TRACKING

This clause enables block change tracking and causes Oracle Database to create a block
change tracking file.

• Specify USING FILE 'filename' if you want to name the block change tracking file instead
of letting Oracle Database generate a name for it. You must specify this clause if you are
not using Oracle Managed Files.

• Specify REUSE to allow Oracle Database to overwrite an existing block change tracking file
of the same name.

DISABLE BLOCK CHANGE TRACKING

Specify this clause if you want Oracle Database to stop tracking changes and delete the
existing block change tracking file.

See Also:

Oracle Database Backup and Recovery User's Guide for information on setting up
block change tracking and "Enabling and Disabling Block Change Tracking:
Examples"

[NO] FORCE FULL DATABASE CACHING

Use this clause to enable or disable the force full database caching mode. In contrast to the
default mode, which is automatic, the force full database caching mode considers the entire
database, including NOCACHE LOBs, as eligible for caching in the buffer cache.

The database must be mounted but not open. In an Oracle RAC environment, the database
must be mounted but not open in the current instance and unmounted in all other instances.

• Specify FORCE FULL DATABASE CACHING to enable the force full database caching mode.

• Specify NO FORCE FULL DATABASE CACHING to disable the force full database caching mode.
This is the default mode.

You can determine whether the force full database caching mode is enabled by querying the
FORCE_FULL_DB_CACHING column of the V$DATABASE dynamic performance view.

Chapter 10
ALTER DATABASE

10-97

See Also:

• Oracle Database Concepts for more information on the force full
database caching mode

• Oracle Database Administrator's Guide to learn how to enable the force
full database caching mode

• Oracle Database Reference for more information on the V$DATABASE
dynamic performance view

CONTAINERS DEFAULT TARGET

Use this clause to specify the default container for DML statements in a CDB. You
must be connect to the CDB root.

• For container_name, specify the name of the default container. The default
container can be any container in the CDB, including the CDB root, a PDB, an
application root, or an application PDB. You can specify only one default container.

• If you specify NONE, then the default container is the CDB root. This is the default.

When a DML statement is issued in a CDB root without specifying containers in the
WHERE clause, the DML statement affects the default container for the CDB.

flashback_mode_clause

Use this clause to put the database in or take the database out of FLASHBACK mode.
You can specify this clause only if the database is in ARCHIVELOG mode and you have
already prepared a fast recovery area for the database. You can specify this clause
when the database is mounted or open. This clause cannot be specified on a physical
standby database if redo apply is active.

See Also:

Oracle Database Backup and Recovery User's Guide for information on
preparing the fast recovery area for Flashback operations

FLASHBACK ON

Use this clause to put the database in FLASHBACK mode. When the database is in
FLASHBACK mode, Oracle Database automatically creates and manages Flashback
Database logs in the fast recovery area. Users with SYSDBA system privilege can then
issue a FLASHBACK DATABASE statement.

FLASHBACK OFF

Use this clause to take the database out of FLASHBACK mode. Oracle Database stops
logging Flashback data and deletes all existing Flashback Database logs. Any attempt
to issue a FLASHBACK DATABASE will fail with an error.

Chapter 10
ALTER DATABASE

10-98

undo_mode_clause

This clause is valid only when you are connected to a CDB. It lets you change the undo mode
for the CDB. The CDB must be in OPEN UPGRADE mode.

• Specify LOCAL UNDO ON to change the CDB to use local undo mode.

• Specify LOCAL UNDO OFF to change the CDB to use shared undo mode.

See Also:

• CREATE DATABASE undo_mode_clause for the full semantics of this clause

• Oracle Database Administrator's Guide for the complete steps for configuring a
CDB to use local undo mode or shared undo mode

set_time_zone_clause

This clause has the same semantics in CREATE DATABASE and ALTER DATABASE statements.
When used in with ALTER DATABASE, this clause resets the time zone of the database. To
determine the time zone of the database, query the built-in function DBTIMEZONE . After
setting or changing the time zone with this clause, you must restart the database for the new
time zone to take effect.

Oracle Database normalizes all new TIMESTAMP WITH LOCAL TIME ZONE data to the time zone
of the database when the data is stored on disk.Oracle Database does not automatically
update existing data in the database to the new time zone. Therefore, you cannot reset the
database time zone if there is any TIMESTAMP WITH LOCAL TIME ZONE data in the database. You
must first delete or export the TIMESTAMP WITH LOCAL TIME ZONE data and then reset the
database time zone. For this reason, Oracle does not encourage you to change the time
zone of a database that contains data.

For a full description of this clause, refer to set_time_zone_clause in the documentation on
CREATE DATABASE.

security_clause

Use the security_clause (GUARD) to protect data in the database from being changed. You
can override this setting for a current session using the ALTER SESSION DISABLE GUARD
statement. Refer to ALTER SESSION for more information.

ALL

Specify ALL to prevent all users other than SYS from making any changes to the database.

STANDBY

Specify STANDBY to prevent all users other than SYS from making changes to any database
object being maintained by logical standby. This setting is useful if you want report operations
to be able to modify data as long as it is not being replicated by logical standby.

Chapter 10
ALTER DATABASE

10-99

See Also:

Oracle Data Guard Concepts and Administration for information on logical
standby

NONE

Specify NONE if you want normal security for all data in the database.

Note:

Oracle strongly recommends that you not use this setting on a logical
standby database.

prepare_clause

• Use this clause to prepare mirror copies of the database. You must provide a
mirror_name to identify the filegroup that is created. The filegroup contains all the
prepared files.

• Specify the number of copies to be prepared by the REDUNDANCY options: EXTERNAL,
NORMAL, or HIGH.

• If you do not specify the redundancy of the mirror, the redundancy of the source
database is used.

Prepare a Database : Example

ALTER DATABASE db_name PREPARE MIRROR COPY mirror_name WITH HIGH REDUNDANCY

drop_mirror_copy

Use this clause to discard mirror copies of data created by the prepare statement. You
must specify the same mirror name that you used for the prepare operation.

You cannot use this clause to drop a database that has already been split by the
CREATE DATABASE or CREATE PLUGGABLE DATABASE statement.

lost_write_protection

Specify this clause to enable lost write protection for data files. You can enable,
remove, and suspend lost write protection for data files.

Example: Turn on Lost Write for a Datafile

The example turns on lost write on datafile td_file.df.

 ALTER DATABASE DATAFILE td_file.df ENABLE LOST WRITE PROTECTION

Note that the lost write database is zeroed out. It is not initialized with the contents of
the current data file.

You can turn off lost write protection for a datafile in two ways, with the REMOVE or
SUSPEND options.

Chapter 10
ALTER DATABASE

10-100

1. The REMOVE option stops lost write protection for the data file. Additionally, it removes all
references to lost write protection including tracking data from the shadow tablespace.

Example: Remove Lost Write for a Datafile

 ALTER DATABASE DATAFILE td_file.df REMOVE LOST WRITE PROTECTION
2. The SUSPEND option disables updates and lost write checking, but leaves the tracking data

in the shadow tablespace. If you suspend lost write protection for a short time, lost write
protection for the data file is stopped during the suspended period. This means that no
lost write data is gathered, and no blocks are checked. If you turn on lost write protection
for the data file later, there will be no records of SCN updates made to the blocks in the
datafile during the suspended period. Note that the SUSPEND option does not deallocate
the lost write storage.

Example: Suspend Lost Write for a Datafile

 ALTER DATABASE DATAFILE td_file.df SUSPEND LOST WRITE PROTECTION
You can enable lost write protection for container databases and pluggable databases.

Example: Turn on Lost Write for a Database

 ALTER DATABASE ENABLE LOST WRITE PROTECTION

Example: Turn off Lost Write for a Database

 ALTER DATABASE DISABLE LOST WRITE PROTECTION

Note that disabling lost write for the database does not deallocate the lost write storage. You
must use the DROP TABLESPACE statement to deallocate lost write storage.

cdb_fleet_clauses

Specify the cdb_fleet_clauses to set a Lead CDB in a collection of different CDBs.

lead_cdb_clause

Use this clause to designate a CDB as the Lead CDB in a CDB fleet. The database property
LEAD_CDB indicates that the current CDB is a Lead CDB, and can be found in
DATABASE_PROPERTIES view.

There is a new parameter in SYS_CONTEXT named IS_LEAD_CDB which can be used to
determine if the current session is connected to a Lead CDB in a CDB fleet.

lead_cdb_uri_clause

Use this clause to specify the connection URI for the Lead CDB in a CDB fleet. It is used to
register a Member CDB with the Lead CDB of the fleet.

The database link name specified in dblink must exist in the CDB ROOT of the Member
CDB joining the CDB fleet. It is used to synchronize PDB metadata with the Lead CDB in the
fleet.

The uri_string specified is stored as a database property named LEAD_CDB_URI and can be
found in DATABASE_PROPERTIES view.

There is a new parameter in SYS_CONTEXT named IS_LEAD_CDB which can be used to
determine if the current session is connected to a Member CDB in a CDB fleet.

Chapter 10
ALTER DATABASE

10-101

property_clause

Specify this clause to set or remove database properties visible through
DATABASE_PROPERTIES or CDB_PROPERTIES views.

replay_upgrade_clause

Use this clause to enable or disable replay upgrade on the database.

If UPGRADE SYNC is ON, then replay upgrade and upgrade on open is enabled.

Examples

READ ONLY / READ WRITE: Example

The following statement opens the database in read-only mode:

ALTER DATABASE OPEN READ ONLY;

The following statement opens the database in read/write mode and clears the online
redo logs:

ALTER DATABASE OPEN READ WRITE RESETLOGS;

Using Parallel Recovery Processes: Example

The following statement performs tablespace recovery using parallel recovery
processes:

ALTER DATABASE
 RECOVER TABLESPACE tbs_03
 PARALLEL;

Adding Redo Log File Groups: Examples

The following statement adds a redo log file group with two members and identifies it
with a GROUP parameter value of 3:

ALTER DATABASE
 ADD LOGFILE GROUP 3
 ('diska:log3.log' ,
 'diskb:log3.log') SIZE 50K;

The following statement adds a redo log file group containing two members to thread 5
(in a Real Application Clusters environment) and assigns it a GROUP parameter value of
4:

ALTER DATABASE
 ADD LOGFILE THREAD 5 GROUP 4
 ('diska:log4.log',
 'diskb:log4:log');

Adding Redo Log File Group Members: Example

The following statement adds a member to the redo log file group added in the
previous example:

ALTER DATABASE
 ADD LOGFILE MEMBER 'diskc:log3.log'
 TO GROUP 3;

Chapter 10
ALTER DATABASE

10-102

Dropping Log File Members: Example

The following statement drops one redo log file member added in the previous example:

ALTER DATABASE
 DROP LOGFILE MEMBER 'diskb:log3.log';

The following statement drops all members of the redo log file group 3:

ALTER DATABASE DROP LOGFILE GROUP 3;

Renaming a Log File Member: Example

The following statement renames a redo log file member:

ALTER DATABASE
 RENAME FILE 'diskc:log3.log' TO 'diskb:log3.log';

The preceding statement only changes the member of the redo log group from one file to
another. The statement does not actually change the name of the file diskc:log3.log to
diskb:log3.log. Before issuing this statement, you must change the name of the file through
your operating system.

Setting the Default Type of Tablespaces: Example

The following statement specifies that subsequently created tablespaces be created as bigfile
tablespaces by default:

ALTER DATABASE
 SET DEFAULT BIGFILE TABLESPACE;

Changing the Default Temporary Tablespace: Examples

The following statement makes the tbs_05 tablespace (created in "Creating a Temporary
Tablespace: Example") the default temporary tablespace of the database. This statement
either establishes a default temporary tablespace if none was specified at create time, or
replaces an existing default temporary tablespace with tbs_05:

ALTER DATABASE
 DEFAULT TEMPORARY TABLESPACE tbs_05;

Alternatively, a group of tablespaces can be defined as the default temporary tablespace by
using a tablespace group. The following statement makes the tablespaces in the tablespace
group tbs_group_01 (created in "Adding a Temporary Tablespace to a Tablespace Group:
Example") the default temporary tablespaces of the database:

ALTER DATABASE
 DEFAULT TEMPORARY TABLESPACE tbs_grp_01;

Creating a New Data File: Example

The following statement creates a new data file tbs_f04.dbf based on the file tbs_f03.dbf.
Before creating the new data file, you must take the existing data file (or the tablespace in
which it resides) offline.

ALTER DATABASE
 CREATE DATAFILE 'tbs_f03.dbf'
 AS 'tbs_f04.dbf';

Manipulating Temp Files: Example

Chapter 10
ALTER DATABASE

10-103

The following takes offline the temp file temp02.dbf created in Adding and Dropping
Data Files and Temp Files: Examples and then renames the temp file:

ALTER DATABASE TEMPFILE 'temp02.dbf' OFFLINE;

ALTER DATABASE RENAME FILE 'temp02.dbf' TO 'temp03.dbf';

The statement renaming the temp file requires that you first create the file temp03.dbf
on the operating system.

Changing the Global Database Name: Example

The following statement changes the global name of the database and includes both
the database name and domain:

ALTER DATABASE
 RENAME GLOBAL_NAME TO demo.world.example.com;

Enabling and Disabling Block Change Tracking: Examples

The following statement enables block change tracking and causes Oracle Database
to create a block change tracking file named tracking_file and overwrite the file if it
already exists:

ALTER DATABASE
 ENABLE BLOCK CHANGE TRACKING
 USING FILE 'tracking_file' REUSE;

The following statement disables block change tracking and deletes the existing block
change tracking file:

ALTER DATABASE
 DISABLE BLOCK CHANGE TRACKING;

Resizing a Data File: Example

The following statement attempts to change the size of data file diskb:tbs_f5.dbf:

ALTER DATABASE
 DATAFILE 'diskb:tbs_f5.dbf' RESIZE 10 M;

Clearing a Log File: Example

The following statement clears a log file:

ALTER DATABASE
 CLEAR LOGFILE 'diskc:log3.log';

Database Recovery: Examples

The following statement performs complete recovery of the entire database, letting
Oracle Database generate the name of the next archived redo log file needed:

ALTER DATABASE
 RECOVER AUTOMATIC DATABASE;

The following statement explicitly names a redo log file for Oracle Database to apply:

ALTER DATABASE
 RECOVER LOGFILE 'diskc:log3.log';

The following statement performs time-based recovery of the database:

Chapter 10
ALTER DATABASE

10-104

ALTER DATABASE
 RECOVER AUTOMATIC UNTIL TIME '2001-10-27:14:00:00';

Oracle Database recovers the database until 2:00 p.m. on October 27, 2001.

For an example of recovering a tablespace, see "Using Parallel Recovery Processes:
Example".

ALTER DATABASE DICTIONARY
Purpose

To encrypt obfuscated database link passwords and use the TDE framework to manage the
encryption key.

A LOB locator (pointer to the location of a large object (LOB) value) can be assigned a
signature to secure the LOB.

Prerequisites

• The TDE keystore must exist. The DDL first checks that the TDE:

– Keystore exists.

– Keystore is open.

– Master Encryption Key exists in the TDE keystore.

If any of the checks fail, the DDL fails. When this happens you must create a TDE
keystore and provision a TDE Master Key. For more see the Database Security
Guide.

• The instance initialization parameter COMPATIBLE must be set to 12.2.0.2.

• You must have SYSKM privileges to execute the command.

Syntax

alter_database_dictionary::=

ALTER DATABASE DICTIONARY

ENCRYPT CREDENTIALS

REKEY CREDENTIALS

DELETE CREDENTIALS KEY

;

Semantics

alter_database_dictionary_encrypt_credentials::=

This DDL encrypts existing and future obfuscated sensitive information in data dictionaries,
for example database link passwords stored in SYS.LINKS$.

It performs the following actions:

• Inserts a new entry in ENC$ corresponding to SYS.LINK$.

• It creates and initializes the SGA variable.

Chapter 10
ALTER DATABASE DICTIONARY

10-105

• De-obfuscates obfuscated passwords in SYS.LINK$.

• Encrypts the de-obfuscated passwords using the generated encryption key in ENC$
for SYS.LINK$.

• Sets the flag to indicate a valid/usable dblink entry in SYS.LINK$.

When you use this DDL with LOB locator signature keys, they are always encrypted. A
LOB locator (pointer to the location of a large object (LOB) value) can be assigned a
signature to secure the LOB.

alter_database_dictionary_rekey_credentials::=

This DDL is used to change the data encryption key. It is applied to SYS.LINK$ and any
other tables covered under the data dictionary encryption framework.

You can also use this DDL to regenerate the LOB locator signature key for LOB
locators. If the database is in restricted mode, then Oracle Database regenerates a
new LOB signature key and encrypts it with the new encryption key. If the database is
in non-restricted mode, then a new signature key is not regenerated but instead,
Oracle Database uses a new encryption key to encrypt the existing LOB signature key.

alter_database_dictionary_delete_credentials_key::=

This DDL marks encrypted passwords unusuable. That means that current password
entries in SYS.LINK$ are marked unusable. It deletes the key in ENC$ that was used to
encrypt the credentials, and clears the SGA variable to prevent future encryption.

You can also use this DDL to delete the encrypted LOB locator signature key and then
regenerate a new LOB signature key in obfuscated form.

See Also:

Managing Security for Application Developers in the Database Security
Guide

ALTER DATABASE LINK
Purpose

Use the ALTER DATABASE LINK statement to modify a fixed-user database link when the
password of the connection or authentication user changes.

Chapter 10
ALTER DATABASE LINK

10-106

Note:

• You cannot use this statement to change the connection or authentication user
associated with the database link. To change user, you must re-create the
database link.

• You cannot use this statement to change the password of a connection or
authentication user. You must use the ALTER USER statement for this purpose,
and then alter the database link with the ALTER DATABASE LINK statement.

• This statement is valid only for fixed-user database links, not for connected-
user or current user database links. See CREATE DATABASE LINK for more
information on these two types of database links.

Prerequisites

To alter a private database link, you must have the ALTER DATABASE LINK system privilege. To
alter a public database link, you must have the ALTER PUBLIC DATABASE LINK system privilege.

Syntax

alter_database_link::=

ALTER

SHARED PUBLIC

DATABASE LINK dblink_name

CONNECT
TO user IDENTIFIED BY password

dblink_authentication

WITH credential

dblink_authentication

;

dblink_authentication

AUTHENTICATED BY user IDENTIFIED BY password

Semantics

The ALTER DATABASE LINK statement is intended only to update fixed-user database links with
the current passwords of connection and authentication users. Therefore, any clauses valid in
a CREATE DATABASE LINK statement that do not appear in the syntax diagram above are not
valid in an ALTER DATABASE LINK statement. The semantics of all of the clauses permitted in
this statement are the same as the semantics for those clauses in CREATE DATABASE LINK.
Refer to CREATE DATABASE LINK for this information.

Examples

The following statements show the valid variations of the ALTER DATABASE LINK statement:

Chapter 10
ALTER DATABASE LINK

10-107

ALTER DATABASE LINK private_link
 CONNECT TO hr IDENTIFIED BY hr_new_password;

ALTER PUBLIC DATABASE LINK public_link
 CONNECT TO scott IDENTIFIED BY scott_new_password;

ALTER SHARED PUBLIC DATABASE LINK shared_pub_link
 CONNECT TO scott IDENTIFIED BY scott_new_password
 AUTHENTICATED BY hr IDENTIFIED BY hr_new_password;

ALTER SHARED DATABASE LINK shared_pub_link
 CONNECT TO scott IDENTIFIED BY scott_new_password;

ALTER DIMENSION
Purpose

Use the ALTER DIMENSION statement to change the hierarchical relationships or
dimension attributes of a dimension.

See Also:

CREATE DIMENSION and DROP DIMENSION

Prerequisites

The dimension must be in your schema or you must have the ALTER ANY DIMENSION
system privilege to use this statement.

A dimension is always altered under the rights of the owner.

Chapter 10
ALTER DIMENSION

10-108

Syntax

alter_dimension::=

ALTER DIMENSION

schema .

dimension

ADD

level_clause

hierarchy_clause

attribute_clause

extended_attribute_clause

DROP

LEVEL level

RESTRICT

CASCADE

HIERARCHY hierarchy

ATTRIBUTE attribute

LEVEL level

COLUMN column

,

COMPILE

;

(level_clause::=, hierarchy_clause::=, attribute_clause::=, extended_attribute_clause::=)

level_clause::=

LEVEL level IS

level_table . level_column

(level_table . level_column

,

)

SKIP WHEN NULL

hierarchy_clause::=

HIERARCHY hierarchy (child_level CHILD OF parent_level

dimension_join_clause

)

(dimension_join_clause::=)

dimension_join_clause::=

Chapter 10
ALTER DIMENSION

10-109

JOIN KEY

child_key_column

(child_key_column

,

)

REFERENCES parent_level

attribute_clause::=

ATTRIBUTE level DETERMINES

dependent_column

(dependent_column

,

)

extended_attribute_clause::=

ATTRIBUTE attribute LEVEL level DETERMINES

dependent_column

(dependent_column

,

)

Semantics

The following keywords, parameters, and clauses have meaning unique to ALTER
DIMENSION. Keywords, parameters, and clauses that do not appear here have the
same functionality that they have in the CREATE DIMENSION statement. Refer to
CREATE DIMENSION for more information.

schema

Specify the schema of the dimension you want to modify. If you do not specify schema,
then Oracle Database assumes the dimension is in your own schema.

dimension

Specify the name of the dimension. This dimension must already exist.

ADD

The ADD clauses let you add a level, hierarchy, or attribute to the dimension. Adding
one of these elements does not invalidate any existing materialized view.

Oracle Database processes ADD LEVEL clauses prior to any other ADD clauses.

DROP

The DROP clauses let you drop a level, hierarchy, or attribute from the dimension. Any
level, hierarchy, or attribute you specify must already exist.

Chapter 10
ALTER DIMENSION

10-110

Within one attribute, you can drop one or more level-to-column relationships associated with
one level.

Restriction on DROP

If any attributes or hierarchies reference a level, then you cannot drop the level until you
either drop all the referencing attributes and hierarchies or specify CASCADE.

CASCADE

Specify CASCADE if you want Oracle Database to drop any attributes or hierarchies that
reference the level, along with the level itself.

RESTRICT

Specify RESTRICT if you want to prevent Oracle Database from dropping a level that is
referenced by any attributes or hierarchies. This is the default.

COMPILE

Specify COMPILE to explicitly recompile an invalidated dimension. Oracle Database
automatically compiles a dimension when you issue an ADD clause or DROP clause. However,
if you alter an object referenced by the dimension (for example, if you drop and then re-create
a table referenced in the dimension), Oracle Database invalidates, and you must recompile it
explicitly.

Examples

Modifying a Dimension: Examples

The following examples modify the customers_dim dimension in the sample schema sh:

ALTER DIMENSION customers_dim
 DROP ATTRIBUTE country;

ALTER DIMENSION customers_dim
 ADD LEVEL zone IS customers.cust_postal_code
 ADD ATTRIBUTE zone DETERMINES (cust_city);

ALTER DISKGROUP

Note:

This SQL statement is valid only if you are using Oracle ASM and you have started
an Oracle ASM instance. You must issue this statement from within the Oracle ASM
instance, not from a normal database instance. For information on starting an
Oracle ASM instance, refer to Oracle Automatic Storage Management
Administrator's Guide.

Purpose

The ALTER DISKGROUP statement lets you perform a number of operations on a disk group or
on the disks in a disk group.

Chapter 10
ALTER DISKGROUP

10-111

See Also:

• CREATE DISKGROUP for information on creating disk groups

• Oracle Automatic Storage Management Administrator's Guide for
information on Oracle ASM and using disk groups to simplify database
administration

Prerequisites

You must have an Oracle ASM instance started from which you issue this statement.
The disk group to be modified must be mounted.

You can issue all ALTER DISKGROUP clauses if you have the SYSASM system privilege.
You can issue specific clauses as follows:

• The SYSOPER privilege permits the following subset of the ALTER DISKGROUP
operations: diskgroup_availability, rebalance_diskgroup_clause,
check_diskgroup_clause (without the REPAIR option).

• If you are connected as SYSDBA, you have limited privileges to use this statement.
The following operations are always granted to users connected as SYSDBA:

– ALTER DISKGROUP ... ADD DIRECTORY
– ALTER DISKGROUP ... ADD/ALTER/DROP TEMPLATE (nonsystem templates only)

– ALTER DISKGROUP ... ADD USERGROUP
– SELECT
– SHOW PARAMETER

Table 10-1 shows additional privileges granted to users connected as SYSDBA under
the conditions shown:

Table 10-1 Conditional Diskgroup Privileges for SYSDBA

ALTER DISKGROUP
Operation

Condition

DROP FILE User must have read-write permission on the file.

ADD ALIAS User must have read-write permission on the related file.

RENAME ALIAS User must have read-write permission on the related file.

DROP ALIAS User must have read-write permission on the related file.

RENAME DIRECTORY Directory must contain only aliases and no files. User must have
DROP ALIAS permissions on all aliases under the directory.

DROP DIRECTORY Directory must contain only aliases and no files. User must have
DROP ALIAS permissions on all aliases under the directory.

DROP USERGROUP User must be the owner of the user group.

MODIFY USERGROUP ADD
MEMBER

User must be the owner of the user group.

Chapter 10
ALTER DISKGROUP

10-112

Table 10-1 (Cont.) Conditional Diskgroup Privileges for SYSDBA

ALTER DISKGROUP
Operation

Condition

MODIFY USERGROUP DROP
MEMBER

User must be the owner of the user group.

SET PERMISSION User must be the owner of the file.

SET OWNER GROUP User must be the owner of the file and a member of the user
group.

Chapter 10
ALTER DISKGROUP

10-113

Syntax

alter_diskgroup::=

ALTER DISKGROUP

diskgroup_name

add_disk_clause

drop_disk_clause

resize_disk_clause

rebalance_diskgroup_clause

replace_disk_clause

rename_disk_clause

disk_online_clause

disk_offline_clause

rebalance_diskgroup_clause

check_diskgroup_clause

diskgroup_template_clauses

diskgroup_directory_clauses

diskgroup_alias_clauses

diskgroup_volume_clauses

diskgroup_attributes

drop_diskgroup_file_clause

convert_redundancy_clause

usergroup_clauses

user_clauses

file_permissions_clause

file_owner_clause

scrub_clause

quotagroup_clauses

filegroup_clauses

diskgroup_name

,

ALL

undrop_disk_clause

diskgroup_availability

enable_disable_volume

;

(add_disk_clause::=, drop_disk_clause::=, resize_disk_clause::=,
replace_disk_clause::=, rename_disk_clause::=, disk_online_clause::=,
disk_offline_clause::=, rebalance_diskgroup_clause::=, check_diskgroup_clause::=,
diskgroup_template_clauses::=, diskgroup_directory_clauses::=,
diskgroup_alias_clauses::=, diskgroup_volume_clauses::=, diskgroup_attributes::=,
modify_diskgroup_file::=, drop_diskgroup_file_clause::=,

Chapter 10
ALTER DISKGROUP

10-114

convert_redundancy_clause::=, usergroup_clauses::=, user_clauses::=,
file_permissions_clause::=, file_owner_clause::=, scrub_clause::=, quotagroup_clauses::=,
filegroup_clauses::=, undrop_disk_clause::=, diskgroup_availability::=,
enable_disable_volume::=)

add_disk_clause::=

ADD

SITE site_name

QUORUM

REGULAR FAILGROUP failgroup_name

DISK qualified_disk_clause

,

(qualified_disk_clause::=)

qualified_disk_clause::=

search_string

NAME disk_name SIZE size_clause

FORCE

NOFORCE

(size_clause::=)

drop_disk_clause::=

DROP

QUORUM

REGULAR

DISK disk_name

FORCE

NOFORCE

,

DISKS IN

QUORUM

REGULAR

FAILGROUP failgroup_name

FORCE

NOFORCE

,

resize_disk_clause::=

RESIZE ALL

SIZE size_clause

(size_clause::=)

Chapter 10
ALTER DISKGROUP

10-115

replace_disk_clause::=

REPLACE DISK disk_name WITH ’ path_name ’

FORCE

NOFORCE

,

POWER integer

WAIT

NOWAIT

rename_disk_clause::=

RENAME

DISK old_disk_name TO new_disk_name

,

DISKS ALL

disk_online_clause::=

ONLINE

QUORUM

REGULAR

DISK disk_name

,

DISKS IN

QUORUM

REGULAR

FAILGROUP failgroup_name

,

ALL

POWER integer

WAIT

NOWAIT

disk_offline_clause::=

OFFLINE

QUORUM

REGULAR

DISK disk_name

,

DISKS IN

QUORUM

REGULAR

FAILGROUP failgroup_name

,

timeout_clause

Chapter 10
ALTER DISKGROUP

10-116

timeout_clause::=

DROP AFTER integer
M

H

rebalance_diskgroup_clause::=

REBALANCE

WITH

WITHOUT
phase

POWER integer

WAIT

NOWAIT

MODIFY POWER

integer

check_diskgroup_clause::=

CHECK

REPAIR

NOREPAIR

diskgroup_template_clauses::=

ADD

MODIFY
TEMPLATE template_name qualified_template_clause

,

DROP TEMPLATE template_name

,

(qualified_template_clause::=)

qualified_template_clause::=

ATTRIBUTE (redundancy_clause striping_clause)

redundancy_clause::=

MIRROR

HIGH

UNPROTECTED

PARITY

DOUBLE

Chapter 10
ALTER DISKGROUP

10-117

striping_clause::=

FINE

COARSE

diskgroup_directory_clauses::=

ADD DIRECTORY ’ filename ’

,

DROP DIRECTORY ’ filename ’

FORCE

NOFORCE

,

RENAME DIRECTORY ’ old_dir_name ’ TO ’ new_dir_name ’

,

diskgroup_alias_clauses::=

ADD ALIAS ’ alias_name ’ FOR ’ filename ’

,

DROP ALIAS ’ alias_name ’

,

RENAME ALIAS ’ old_alias_name ’ TO ’ new_alias_name ’

,

diskgroup_volume_clauses::=

add_volume_clause

modify_volume_clause

RESIZE VOLUME asm_volume SIZE size_clause

DROP VOLUME asm_volume

(add_volume_clause::=, modify_volume_clause::=

Chapter 10
ALTER DISKGROUP

10-118

add_volume_clause::=

ADD VOLUME asm_volume SIZE size_clause

redundancy_clause

STRIPE_WIDTH integer
K

M STRIPE_COLUMNS integer

(size_clause::=, redundancy_clause::=,)

size_clause::=

integer

K

M

G

T

P

E

modify_volume_clause::=

MODIFY VOLUME asm_volume

MOUNTPATH ’ mountpath_name ’

USAGE ’ usage_name ’

diskgroup_attributes::=

SET ATTRIBUTE ’ attribute_name ’ = ’ attribute_value ’

modify_diskgroup_file::=

MODIFY FILE ’ filename ’ ATTRIBUTE (disk_region_clause)

,

Chapter 10
ALTER DISKGROUP

10-119

drop_diskgroup_file_clause::=

DROP FILE ’ filename ’

,

convert_redundancy_clause::=

CONVERT REDUNDANCY TO FLEX

usergroup_clauses::=

ADD USERGROUP ’ usergroup ’ WITH MEMBER ’ user ’

,

MODIFY USERGROUP ’ usergroup ’
ADD

DROP
MEMBER ’ user ’

,

DROP USERGROUP ’ usergroup ’

user_clauses::=

ADD USER ’ user ’

,

DROP USER ’ user ’

,
CASCADE

REPLACE USER ’ old_user ’ WITH ’ new_user ’

,

file_permissions_clause::=

SET PERMISSION

OWNER

GROUP

OTHER

=

NONE

READ ONLY

READ WRITE

,

FOR FILE ’ filename ’

,

Chapter 10
ALTER DISKGROUP

10-120

file_owner_clause::=

SET OWNERSHIP
OWNER = ’ user ’

GROUP = ’ usergroup ’

,

FOR FILE ’ filename ’

,

scrub_clause::=

SCRUB

FILE ’ ASM_filename ’

DISK disk_name

REPAIR

NOREPAIR

POWER

AUTO

LOW

HIGH

MAX

WAIT

NOWAIT

FORCE

NOFORCE STOP

quotagroup_clauses::=

ADD QUOTAGROUP quotagroup_name

SET property_name = property_value

MODIFY QUOTAGROUP quotagroup_name SET property_name = property_value

MOVE FILEGROUP filegroup_name TO quotagroup_name

DROP QUOTAGROUP quotagroup_name

filegroup_clauses::=

add_filegroup_clause

modify_filegroup_clause

move_to_filegroup_clause

drop_filegroup_clause

(add_filegroup_clause::=, modify_filegroup_clause::=, move_to_filegroup_clause::=,
drop_filegroup_clause::=)

Chapter 10
ALTER DISKGROUP

10-121

add_filegroup_clause::=

ADD FILEGROUP filegroup_name

DATABASE database_name

CLUSTER cluster_name

VOLUME asm_volume

TEMPLATE

FROM TEMPLATE template_name

SET ’

file_type .

property_name ’ = ’ property_value ’

modify_filegroup_clause::=

MODIFY FILEGROUP filegroup_name

SET ’

file_type .

property_name ’ = ’ property_value ’

move_to_filegroup_clause::=

MOVE FILE ’ ASM_filename ’ TO FILEGROUP filegroup_name

drop_filegroup_clause::=

DROP FILEGROUP filegroup_name

CASCADE

undrop_disk_clause::=

UNDROP DISKS

diskgroup_availability::=

MOUNT

RESTRICTED

NORMAL

FORCE

NOFORCE

DISMOUNT

FORCE

NOFORCE

Chapter 10
ALTER DISKGROUP

10-122

enable_disable_volume::=

ENABLE

DISABLE

VOLUME

asm_volume

,

ALL

Semantics

diskgroup_name

Specify the name of the disk group you want to modify. To determine the names of existing
disk groups, query the V$ASM_DISKGROUP dynamic performance view.

add_disk_clause

Use this clause to add one or more disks to the disk group and specify attributes for the
newly added disk. Oracle ASM automatically rebalances the disk group as part of this
operation.

You cannot use this clause to change the failure group of a disk. Instead you must drop the
disk from the disk group and then add the disk back into the disk group as part of the new
failure group.

To determine the names of the disks already in this disk group, query the V$ASM_DISK
dynamic performance view.

QUORUM | REGULAR

The semantics of these keyword are the same as the semantics in a CREATE DISKGROUP
statement. See QUORUM | REGULAR for more information on these keywords.

You cannot change this qualifier for an existing disk or disk group. Therefore, you cannot
specify in this clause a keyword different from the keyword that was specified when the disk
group was created.

See Also:

Oracle Automatic Storage Management Administrator's Guide for more information
about the use of these keywords

FAILGROUP Clause

Use this clause to assign the newly added disk to a failure group. If you omit this clause and
you are adding the disk to a normal or high redundancy disk group, then Oracle Database
automatically adds the newly added disk to its own failure group. The implicit name of the
failure group is the same as the operating system independent disk name (see "NAME
Clause").

You cannot specify this clause if you are creating an external redundancy disk group.

Chapter 10
ALTER DISKGROUP

10-123

qualified_disk_clause

This clause has the same semantics in CREATE DISKGROUP and ALTER DISKGROUP
statements. For complete information on this clause, refer to qualified_disk_clause in
the documentation on CREATE DISKGROUP.

drop_disk_clause

Use this clause to drop one or more disks from the disk group.

DROP DISK

The DROP DISK clause lets you drop one or more disks from the disk group and
automatically rebalance the disk group. When you drop a disk, Oracle ASM relocates
all the data from the disk and clears the disk header so that it no longer is part of the
disk group. The disk header is not cleared if you specify the FORCE keyword.

Specify disk_name as shown in the NAME column of the V$ASM_DISK dynamic
performance view.

If a disk to be dropped is a quorum disk or belongs to a quorum failure group, then you
must specify QUORUM in order to drop the disk. See QUORUM | REGULAR.

DROP DISKS IN FAILGROUP

The DROP DISKS IN FAILGROUP clause lets you drop all the disks in the specified failure
group. The behavior is otherwise the same as that for the DROP DISK clause.

If the specified failure group is a quorum failure group, then you must specify the
QUORUM keyword in order to drop the disks. See QUORUM | REGULAR.

FORCE | NOFORCE

These keywords let you specify when the disk is considered to be no longer part of the
disk group. The default and recommended setting is NOFORCE.

• When you specify NOFORCE, Oracle ASM reallocates all of the extents of the disk to
other disks and then expels the disk from the disk group and rebalances the disk
group.

Note:

DROP DISK ... NOFORCE returns control to the user before the disk can be
safely reused or removed from the system. To ensure that the drop disk
operation has completed, query the V$ASM_DISK view to verify that
HEADER_STATUS has the value FORMER. Do not attempt to remove or reuse
a disk if STATE has the value DROPPING. Query the V$ASM_OPERATION view
for approximate information on how long it will take to complete the
rebalance resulting from dropping the disk.If you also specify
REBALANCE ... WAIT (see rebalance_diskgroup_clause), then the
statement will not return until the rebalance operation is complete and
the disk has been cleared. However, you should always verify that the
HEADER_STATUS column of V$ASM_DISK is FORMER, because of the unlikely
event the rebalance operations fails.

Chapter 10
ALTER DISKGROUP

10-124

• When you specify FORCE, Oracle Database expels the disk from the disk group
immediately. It then reconstructs the data from the redundant copies on other disks,
reallocates the data to other disks, and rebalances the disk group.

The FORCE clause can be useful, for example, if Oracle ASM can no longer read the disk
to be dropped. However, it is more time consuming than a NOFORCE drop, and it can leave
portions of a file with reduced protection. You cannot specify FORCE for an external
redundancy disk group at all, because in the absence of redundant data on the disk,
Oracle ASM must read the data from the disk before it can be dropped.

The rebalance operation invoked when a disk is dropped is time consuming, whether or not
you specify FORCE or NOFORCE. You can monitor the progress by querying the
V$ASM_OPERATION dynamic performance view. Refer to rebalance_diskgroup_clause for more
information on rebalance operations.

resize_disk_clause

Use this clause to specify a new size for every disk in a disk group. This clause lets you
override the size returned by the operating system or the size you specified previously for the
disks.

SIZE

Specify the new size in kilobytes, megabytes, gigabytes, or terabytes. You cannot specify a
size greater than the capacity of the disk. If you specify a size smaller than the disk capacity,
then you limit the amount of disk space Oracle ASM will use. If you omit this clause, then
Oracle ASM attempts programatically to determine the size of the disks.

replace_disk_clause

Use this clause to replace one or more disks in the disk group. This clause allows you to
replace disks with a single operation, which is more efficient than dropping and adding each
disk.

For disk_name, specify the name of the disk you want to replace. This name is assigned to
the replacement disk. You can view disk names by querying the NAME column of the
V$ASM_DISK dynamic performance view.

For path_name, specify the full path name for the replacement disk.

FORCE

Specify FORCE if you want Oracle ASM to add the replacement disk to the disk group even if
the replacement disk is already a member of a disk group.

Note:

Using FORCE in this way may destroy existing disk groups.

NOFORCE

Specify NOFORCE if you want Oracle ASM to return an error if the replacement disk is already a
member of a disk group. NOFORCE is the default.

POWER

Chapter 10
ALTER DISKGROUP

10-125

The POWER clause has the same semantics here as for a manual rebalancing of a disk
group, except that the power value cannot be set to 0. See POWER.

WAIT | NOWAIT

The WAIT and NOWAIT keywords have the same semantics here as for a manual
rebalancing of a disk group. See WAIT | NOWAIT.

rename_disk_clause

Use this clause to rename one or more disks in the disk group. The disk group must
be in the MOUNT RESTRICTED state and all disks in the disk group must be online.

RENAME DISK

Specify this clause to rename one or more disks. For each disk, specify the
old_disk_name and new_disk_name. If new_disk_name already exists, then this
operation fails.

RENAME DISKS ALL

Specify this clause to rename all disks in the disk group to a name of the form
diskgroupname_####, where #### is the disk number. Disk names that are already in
the diskgroupname_#### format are not changed.

disk_online_clause

Use this clause to bring one or more disks online and rebalance the disk group.

ONLINE DISK

The ONLINE DISK clause lets you bring one or more specified disks online and
rebalance the disk group.

Specify disk_name as shown in the NAME column of the V$ASM_DISK dynamic
performance view.

The QUORUM and REGULAR keywords have the same semantics here as they have when
adding a disk to a disk group. See QUORUM | REGULAR.

ONLINE DISKS IN FAILGROUP

The ONLINE DISKS IN FAILGROUP clause lets you bring all disks in the specified failure
group online and rebalance the disk group.

If the specified failure group is a quorum failure group, then you must specify the
QUORUM keyword in order to bring the disks online. See QUORUM | REGULAR.

ALL

The ALL clause lets you bring all disks in the disk group online and rebalance the disk
group.

POWER

The POWER clause has the same semantics here as for a manual rebalancing of a disk
group. See POWER

WAIT | NOWAIT

Chapter 10
ALTER DISKGROUP

10-126

The WAIT and NOWAIT keywords have the same semantics here as for a manual rebalancing
of a disk group. See WAIT | NOWAIT.

disk_offline_clause

Use the disk_offline_clause to take one or more disks offline. This clause fails if the
redundancy level of the disk group would be violated by taking the specified disks offline.

OFFLINE DISK

The OFFLINE DISK clause lets you take one or more specified disks offline.

Specify disk_name as shown in the NAME column of the V$ASM_DISK dynamic performance
view.

The QUORUM and REGULAR keywords have the same semantics here as they have when adding
a disk to a disk group. See QUORUM | REGULAR.

OFFLINE DISKS IN FAILGROUP

The OFFLINE DISKS IN FAILGROUP clause lets you take all disks in the specified failure group
offline.

If the specified failure group is a quorum failure group, then you must specify the QUORUM
keyword in order to take the disks offline. See QUORUM | REGULAR.

timeout_clause

By default, Oracle ASM drops a disk shortly after it is taken offline. You can delay this
operation by specifying the timeout_clause, which gives you the opportunity to repair the
disk and bring it back online. You can specify the timeout value in units of minute or hour. If
you omit the unit, then the default is hour.

You can change the timeout period by specifying this clause multiple times. Each time you
specify it, Oracle ASM measures the time from the most recent previous
disk_offline_clause while the disk group is mounted. To learn how much time remains
before Oracle ASM will drop an offline disk, query the REPAIR_TIMER column of V$ASM_DISK.

This clause overrides any previous setting of the disk_repair_time attribute. Refer to
Table 13-2 for more information about disk group attributes.

See Also:

Oracle Automatic Storage Management Administrator's Guide for more information
about taking Oracle ASM disks online and offline

rebalance_diskgroup_clause

Use this clause to manually rebalance the disk group. During a rebalance operation, Oracle
ASM redistributes data files evenly across all drives. This clause is rarely necessary, because
Oracle ASM allocates files evenly and automatically rebalances disk groups when the
storage configuration changes. However, it is useful if you want to perform a controlled
rebalance operation. It allows you to include or exclude certain phases of a rebalance
operation, pause and restart a rebalance operation, and adjust the power of a rebalance
operation.

Chapter 10
ALTER DISKGROUP

10-127

WITH | WITHOUT

A rebalance operation consists of the following phases: RESTORE (includes the RESYNC,
RESILVER, or REBUILD phases), BALANCE, PREPARE, and COMPACT.

You can use the WITH or WITHOUT clause to instruct Oracle ASM to include or exclude
specific phases of a rebalance operation. For example, if you have time constraints,
you can include only the RESTORE phase. Or, if you are using flash storage disk groups
or disk groups with flash cache, you can exclude the COMPACT phase, which is not
beneficial for such disk groups.

• Use the WITH clause to include only the specified phases of a rebalance operation.
You can specify any of phases RESTORE, BALANCE, PREPARE, and COMPACT. It is
acceptable, but not necessary, to specify RESTORE, because the RESTORE phase
always occurs.

• Use the WITHOUT clause to exclude the specified phases of a rebalance operation.
You can specify any of the phases BALANCE, PREPARE, and COMPACT. You cannot
specify RESTORE, because the RESTORE phase must always occur.

The order in which you specify multiple phases in the WITH or WITHOUT clause does not
matter. Oracle ASM will perform the phases of the rebalance operation in the proper
order. You cannot specify the RESYNC, RESILVER, or REBUILD phases; they are part of
the RESTORE phase.

If you omit the WITH and WITHOUT clauses, then Oracle ASM performs all phases of the
rebalance operation.

You can monitor the progress of the rebalance operation by querying the
V$ASM_OPERATION dynamic performance view.

See Oracle Automatic Storage Management Administrator's Guide for more
information on the phases of a rebalance operation.

POWER

This clause lets you specify the power, or speed, of the rebalance operation. It also
lets you stop the rebalance operation.

For integer, specify a value from 0 to 1024:

• A value of 1 through 1024 specifies the power at which Oracle ASM is to perform
the rebalance operation, with 1 representing the lowest possible power and 1024
representing the highest possible power.

• A value of 0 stops an active rebalance operation. No further rebalancing will occur
until the start of another manual or automatic rebalance operation on the disk
group, and at that time the rebalance operation will start from the beginning. If you
would like to have the option of later resuming the rebalance operation from where
it left off, then instead stop the rebalance operation by specifying MODIFY POWER 0.
See the clause MODIFY POWER for more information.

If you omit the POWER clause, then the default power is determined as follows:

• For flex disk groups, Oracle ASM rebalances each file group according the value
of its POWER_LIMIT property. If the POWER_LIMIT property is not set for a file group,
then Oracle ASM uses the value of the ASM_POWER_LIMIT initialization parameter
for the file group.

Chapter 10
ALTER DISKGROUP

10-128

• For all other types of disk groups, if you omit the POWER clause, then Oracle ASM
rebalances the disk group according to the value of the ASM_POWER_LIMIT initialization
parameter.

WAIT | NOWAIT

Use this clause to specify when, in the course of the rebalance operation, control should be
returned to the user.

• Specify WAIT if you want control returned to the user after the rebalance operation has
finished. You can explicitly terminate a rebalance operation running in WAIT mode,
although doing so does not undo any completed disk add, drop, or resize operations in
the same statement.

• Specify NOWAIT if you want control returned to the user immediately after the statement is
issued. This is the default.

MODIFY POWER

Use this clause to pause, resume, or change the power of an active rebalance operation.

You can specify integer as follows:

• Specify 0 to pause the rebalance operation. When you pause a rebalance operation in
this manner, you can subsequently resume the operation from the phase where it left off
by issuing an ALTER DISKGROUP ... MODIFY POWER ... statement. If you subsequently start a
manual rebalance operation on the disk group using the clause POWER, or an automatic
rebalance operation for the disk group occurs, then the rebalance operation will start at
the beginning.

• Specify 1 through 1024 to specify the power of the rebalance operation, with 1
representing the lowest possible power and 1024 representing the highest possible
power. If a rebalance operation is running, then Oracle ASM changes the power without
interrupting the operation. If a rebalance operation was previously paused with the
MODIFY POWER 0 clause, then the rebalance operation resumes at the specified power.

• Omit integer to specify the default power. If a rebalance operation is running, then
Oracle ASM changes the power to the default power without interrupting the operation. If
a rebalance operation was previously paused with the MODIFY POWER 0 clause, then the
rebalance operation resumes at the default power. Refer to the clause POWER for
information on how the default power is determined.

See Also:

• Oracle Database Reference for more information on the ASM_POWER_LIMIT
initialization parameter and the V$ASM_OPERATION dynamic performance view

• Rebalancing a Disk Group: Example

check_diskgroup_clause

The check_diskgroup_clause lets you verify the internal consistency of Oracle ASM disk
group metadata. The disk group must be mounted. Oracle ASM displays summary errors and
writes the details of the detected errors in the alert log.

The CHECK keyword performs the following operations:

Chapter 10
ALTER DISKGROUP

10-129

• Checks the consistency of the disk.

• Cross checks all the file extent maps and allocation tables for consistency.

• Checks that the alias metadata directory and file directory are linked correctly.

• Checks that the alias directory tree is linked correctly.

• Checks that Oracle ASM metadata directories do not have unreachable allocated
blocks.

REPAIR | NOREPAIR

This clause lets you instruct Oracle ASM whether or not to attempt to repair any errors
found during the consistency check. The default is NOREPAIR. The NOREPAIR setting is
useful if you want to be alerted to any inconsistencies but do not want Oracle ASM to
take any automatic action to resolve them.

Deprecated Clauses

In earlier releases, you could specify CHECK for ALL, DISK, DISKS IN FAILGROUP, or FILE.
Those clauses have been deprecated as they are no longer needed. If you specify
them, then their behavior is the same as in earlier releases and a message is added to
the alert log. However, Oracle recommends that you do not introduce these clauses
into your new code, as they are scheduled for desupport. The deprecated clauses are
these:

• ALL checks all disks and files in the disk group.

• DISK checks one or more specified disks in the disk group.

• DISKS IN FAILGROUP checks all disks in a specified failure group.

• FILE checks one or more specified files in the disk group. You must use one of the
reference forms of the filename. Refer to ASM_filename for information on the
reference forms of Oracle ASM filenames.

diskgroup_template_clauses

A template is a named collection of attributes. When you create a disk group, Oracle
ASM associates a set of initial system default templates with that disk group. The
attributes defined by the template are applied to all files in the disk group. Table 10-2
lists the system default templates and the attributes they apply to the various file types.
The diskgroup_template_clauses described following the table let you change the
template attributes and create new templates.

You cannot use this clause to change the attributes of a disk group file after it has
been created. Instead, you must use Recovery Manager (RMAN) to copy the file into a
new file with the new attributes.

Table 10-2 Oracle Automatic Storage Management System Default File Group Templates

Template Name File Type Mirroring
Level in
External
Redundancy
Disk Groups

Mirroring
Level in
Normal
Redundancy
Disk Groups

Mirroring
Level in High
Redundancy
Disk Groups

Striped

CONTROLFILE Control files Unprotected 3-way mirror 3-way mirror FINE
DATAFILE Data Files and copies Unprotected 2-way mirror 3-way mirror COARSE

Chapter 10
ALTER DISKGROUP

10-130

Table 10-2 (Cont.) Oracle Automatic Storage Management System Default File Group Templates

Template Name File Type Mirroring
Level in
External
Redundancy
Disk Groups

Mirroring
Level in
Normal
Redundancy
Disk Groups

Mirroring
Level in High
Redundancy
Disk Groups

Striped

ONLINELOG Online logs Unprotected 2-way mirror 3-way mirror COARSE
ARCHIVELOG Archive logs Unprotected 2-way mirror 3-way mirror COARSE
TEMPFILE Temp files Unprotected 2-way mirror 3-way mirror COARSE
BACKUPSET Data File backup

pieces, data file
incremental backup
pieces, and archive log
backup pieces

Unprotected 2-way mirror 3-way mirror COARSE

PARAMETERFILE SPFILE Unprotected 2-way mirror 3-way mirror COARSE
DATAGUARDCONFIG Disaster recovery

configurations (used in
standby databases)

Unprotected 2-way mirror 3-way mirror COARSE

FLASHBACK Flashback logs Unprotected 2-way mirror 3-way mirror COARSE
CHANGETRACKING Block change tracking

data (used during
incremental backups)

Unprotected 2-way mirror 3-way mirror COARSE

DUMPSET Data Pump dumpset Unprotected 2-way mirror 3-way mirror COARSE
XTRANSPORT Cross-platform

converted data file
Unprotected 2-way mirror 3-way mirror COARSE

AUTOBACKUP Automatic backup files Unprotected 2-way mirror 3-way mirror COARSE
ASMPARAMETERFILE SPFILE Unprotected 2-way mirror 3-way mirror COARSE
OCRFILE Oracle Cluster Registry

file
Unprotected 2-way mirror 3-way mirror COARSE

ADD TEMPLATE

Use this clause to add one or more named templates to a disk group. To determine the
names of existing templates, query the V$ASM_TEMPLATE dynamic performance view.

MODIFY TEMPLATE

Use this clause to modify the attributes of a system default or user-defined disk group
template. Only the specified attributes are altered. Unspecified properties retain their current
values.

Note:

In earlier releases, the keywords ALTER TEMPLATE were used instead of MODIFY
TEMPLATE. The ALTER keyword is still supported for backward compatibility, but is
replaced with MODIFY for consistency with other Oracle SQL.

Chapter 10
ALTER DISKGROUP

10-131

template_name

Specify the name of the template to be added or modified. The maximum length of a
template name is 30 characters. The name must satisfy the requirements listed in
"Database Object Naming Rules ".

redundancy_clause

Specify PARITY for single parity protection for write-once file types like archive logs and
backup sets. If parity protection is not specified, the default redundancy for write-once
file types will continue to be derived from system templates.

Specify DOUBLE for double parity for write-once file types like archive logs and backup
sets. If parity protection is not specified, the default redundancy for write-once file
types will continue to be derived from system templates.

Example:

ALTER DISKGROUP <diskgroup_name> MODIFY TEMPLATE <archivelog> ATTRIBUTE (DOUBLE)

The redundancy of write-once file types may be changed to support parity protection
later as needed.

Specify the redundancy level of the newly added or modified template:

• MIRROR: Files to which this template are applied are protected by mirroring their
data blocks. In normal redundancy disk groups, each primary extent has one
mirror extent (2-way mirroring). For high redundancy disk groups, each primary
extent has two mirror extents (3-way mirroring). You cannot specify MIRROR for
templates in external redundancy disk groups.

• HIGH: Files to which this template are applied are protected by mirroring their data
blocks. Each primary extent has two mirror extents (3-way mirroring) for both
normal redundancy and high redundancy disk groups. You cannot specify HIGH for
templates in external redundancy disk groups.

• UNPROTECTED: Files to which this template are applied are not protected by
Automated Storage Management from media failures. Disks taken offline, either
through system action or by user command, can cause loss of unprotected files.
UNPROTECTED is the only valid setting for external redundancy disk groups.
UNPROTECTED may not be specified for templates in high redundancy disk groups.
Oracle discourages the use of unprotected files in high and normal redundancy
disk groups.

• PARITY: Specify the property PARITY for single parity for write-once file types only.

If you omit the redundancy clause, then the value defaults to MIRROR for a normal
redundancy disk group, HIGH for a high redundancy disk group, and UNPROTECTED for
an external redundancy disk group.

striping_clause

Specify how the files to which this template are applied will be striped:

• FINE: Files to which this template are applied are striped every 128KB. This
striping mode is not valid for an Oracle ASM spfile.

• COARSE: Files to which this template are applied are striped every 1MB. This is the
default value.

DROP TEMPLATE

Chapter 10
ALTER DISKGROUP

10-132

Use this clause to drop one or more templates from the disk group. You can use this clause
to drop only user-defined templates, not system default templates.

diskgroup_directory_clauses

Before you can create alias names for Oracle ASM filenames (see diskgroup_alias_clauses),
you must specify the full directory structure in which the alias name will reside. The
diskgroup_directory_clauses let you create and manipulate such a directory structure.

ADD DIRECTORY

Use this clause to create a new directory path for hierarchically named aliases. Use a slash
(/) to separate components of the directory. Each directory component can be up to 48 bytes
in length and must not contain the slash character. You cannot use a space for the first or last
character of any component. The total length of the directory path cannot exceed 256 bytes
minus the length of any alias name you intend to create in this directory (see
diskgroup_alias_clauses).

DROP DIRECTORY

Use this clause to drop a directory for hierarchically named aliases. Oracle ASM will not drop
the directory if it contains any alias definitions unless you also specify FORCE. This clause is
not valid for dropping directories created as part of a system alias. Such directories are
labeled with the value Y in the SYSTEM_CREATED column of the V$ASM_ALIAS dynamic
performance view.

RENAME DIRECTORY

Use this clause to change the name of a directory for hierarchically named aliases. This
clause is not valid for renaming directories created as part of a system alias. Such directories
are labeled with the value Y in the SYSTEM_CREATED column of the V$ASM_ALIAS dynamic
performance view.

diskgroup_alias_clauses

When an Oracle ASM file is created, either implicitly or by user specification, Oracle ASM
assigns to the file a fully qualified name ending in a dotted pair of numbers (see
file_specification). The diskgroup_alias_clauses let you create more user-friendly alias
names for the Oracle ASM filenames. You cannot specify an alias name that ends in a dotted
pair of numbers, as this format is indistinguishable from an Oracle ASM filename.

Before specifying this clause, you must first create the directory structure appropriate for your
naming conventions (see diskgroup_directory_clauses). The total length of the alias name,
including the directory prefix, is limited to 256 bytes. Alias names are case insensitive but
case retentive.

ADD ALIAS

Use this clause to create an alias name for an Oracle ASM filename. The alias_name
consists of the full directory path and the alias itself. To determine the names of existing
Oracle ASM aliases, query the V$ASM_ALIAS dynamic performance view. Refer to
ASM_filename for information on Oracle ASM filenames.

DROP ALIAS

Use this clause to remove an alias name from the disk group directory. Each alias name
consists of the full directory path and the alias itself. The underlying file to which the alias
refers remains unchanged.

Chapter 10
ALTER DISKGROUP

10-133

RENAME ALIAS

Use this clause to change the name of an existing alias. The alias_name consists of
the full directory path and the alias itself.

Restriction on Dropping and Renaming Aliases

You cannot drop or rename a system-generated alias. To determine whether an alias
was system generated, query the SYSTEM_CREATED column of the V$ASM_ALIAS
dynamic performance view.

diskgroup_volume_clauses

Use these clauses to manipulate logical Oracle ASM Dynamic Volume Manager
(Oracle ADVM) volumes corresponding to physical volume devices. To use these
clauses, Oracle ASM must be started and the disk group being modified must be
mounted.

See Also:

Oracle Automatic Storage Management Administrator's Guide for more
information about disk group volumes, including examples

add_volume_clause

Use this clause to add a volume to the disk group.

For asm_volume, specify the name of the volume. The name can contain only
alphanumeric characters and the first character must be alphabetic. The maximum
length of the name is platform dependent. Refer to Oracle Automatic Storage
Management Administrator's Guide for more information.

For size_clause, specify the size of the Oracle ADVM volume. The Oracle ASM
instance determines whether sufficient space exists to create the volume. If sufficient
space does not exist, then the Oracle ASM instance returns an error. If sufficient space
does exist, then all nodes in the cluster with an Oracle ASM instance running and the
disk group mounted are notified of the addition. Oracle ASM creates and enables on
those nodes a volume device that can be used to create and mount file systems.

The following optional settings are also available:

• In the redundancy_clause, specify the redundancy level of the Oracle ADVM
volume. You can specify this clause only when creating a volume in a normal
redundancy disk group. You can specify the following volume redundancy levels:

– MIRROR: 2-way mirroring of the volume. This is the default.

– HIGH: 3-way mirroring of the volume.

– UNPROTECTED: No mirroring of the volume.

You cannot specify the redundancy_clause when creating a volume in a high
redundancy disk group or an external redundancy disk group. If you do so, then an
error will result. In high redundancy disk groups, Oracle Database automatically
sets the volume redundancy to HIGH (3-way mirroring). In external redundancy disk
groups, Oracle Database automatically sets the volume redundancy to
UNPROTECTED (no mirroring).

Chapter 10
ALTER DISKGROUP

10-134

• In the STRIPE_WIDTH clause, specify a stripe width for the Oracle ADVM volume. The valid
range is from 4KB to 1MB, at intervals of the power of 2. The default value is 128K.

• In the STRIPE_COLUMNS clause, specify the number of stripes in a stripe set of the Oracle
ADVM volume. The valid range is 1 to 8. The default is 4. If STRIPE_COLUMNS is set to 1,
then striping becomes disabled. In this case, the stripe width is the extent size of the
volume. This volume extent size is 64 times the allocation unit (AU) size of the disk
group.

modify_volume_clause

Use this clause to modify the characteristics of an existing Oracle ADVM volume. You must
specify at least one of the following clauses:

• In the MOUNTPATH clause, specify the mountpath name associated with the volume. The
mountpath_name can be up to 1024 characters.

• In the USAGE clause, specify the usage name associated with the volume. The
usage_name can be up to 30 characters.

RESIZE VOLUME Clause

Use this clause to change the size of an existing Oracle ADVM volume. In an Oracle ASM
cluster, the new size is propagated to all nodes. If an Oracle Advanced Cluster File System
(ACFS) exists on the volume, then you must use the acfsutil size command instead of the
ALTER DISKGROUP statement.

See Also:

Oracle Automatic Storage Management Administrator's Guide for more information
about the acfsutil size command

DROP VOLUME Clause

Use this clause to remove the Oracle ASM file that is the storage container for an existing
Oracle ADVM volume. In an Oracle ASM cluster, all nodes with an Oracle ASM instance
running and with this disk group open are notified of the drop operation, which results in
removal of the volume device. If the volume file is open, then this clause returns an error.

diskgroup_attributes

Use this clause to specify attributes for the disk group. Table 13-2 lists the attributes you can
set with this clause. Refer to the CREATE DISKGROUP "ATTRIBUTE Clause " for information on
the behavior of this clause.

drop_diskgroup_file_clause

Use this clause to drop a file from the disk group. Oracle ASM also drops all aliases
associated with the file being dropped. You must use one of the reference forms of the
filename. Most Oracle ASM files do not need to be manually deleted because, as Oracle
Managed Files, they are removed automatically when they are no longer needed. Refer to
ASM_filename for information on the reference forms of Oracle ASM filenames.

You cannot drop a disk group file it if is the spfile that was used to start up the current
instance or any instance in the Oracle ASM cluster.

Chapter 10
ALTER DISKGROUP

10-135

convert_redundancy_clause

You can use this clause to convert a NORMAL REDUNDANCY or HIGH REDUNDANCY disk
group to a FLEX REDUNDANCY disk group. The disk group must have at least three failure
groups before you start the conversion.

usergroup_clauses

Use these clauses to add a user group to the disk group, remove a user group from
the disk group, or to add a member to or drop a member from an existing user group.

See Also:

Oracle Automatic Storage Management Administrator's Guide for detailed
information about user groups and members, including examples

ADD USERGROUP

Use this clause to add a user group to the disk group. You must have SYSASM or
SYSDBA privilege to create a user group. The maximum length of a user group name is
63 bytes. If you specify the user name, then it must be in the OS password file and its
length cannot exceed 32 characters.

MODIFY USERGROUP

Use these clauses to add a member to or drop a member from an existing user group.
You must be an Oracle ASM administrator (with SYSASM privilege) or the creator
(with SYSDBA privilege) of the user group to use these clauses. The user name must
be an existing user in the OS password file.

DROP USERGROUP

Use this clause to drop an existing user group from the disk group. You must be an
Oracle ASM administrator (with SYSASM privilege) or the creator (with SYSDBA
privilege) of the user group to use this clause. Dropping a user group may leave a disk
group file without a valid user group. In this case, you can update the disk group file
manually to add a new, valid group using the file_permissions_clause.

user_clauses

Use these clauses to add a user to, drop a user from, or replace a user in a disk
group.

Note:

When administering users with SQL*Plus, the users must be existing
operating system users and their user names must have corresponding
operating system user IDs. However, only users in the same cluster as the
Oracle ASM instance can be validated.

ADD USER

Chapter 10
ALTER DISKGROUP

10-136

Use this clause to add one or more operating system (OS) users to an Oracle ASM disk
group and give those users access privileges on the disk group. A user name must be an
existing user in the OS password file and its length cannot exceed 32 characters. If a
specified user already exists in the disk group, as shown by V$ASM_USER, then the command
records an error and continues to add other users, if any have been specified. This command
is seldom needed, because the OS user running the database instance is added to a disk
group automatically when the instance accesses the disk group. However, this clause is
useful when adding users that are not associated with a particular database instance.

DROP USER

Use this clause to drop one or more users from the disk group. If a specified user is not in the
disk group, then this clause records an error and continues to drop other users, if any are
specified. If the user owns any files, then you must specify the CASCADE keyword, which drops
the user and all the user's files. If any files owned by the user are open, then DROP USER
CASCADE fails with an error.

To delete a user without deleting the files owned by that user, change the owner of each of
these files to another user and then issue an ALTER DISKGROUP ... DROP USER statement on the
user. Alternatively, you can issue an ALTER DISKGROUP ... REPLACE USER statement to replace
the user you want to drop with a user that currently does not exist in the disk group. This
operation has the side effect of making the new user the owner of files that were previously
owned by the dropped user.

REPLACE USER

Use this clause to replace old_user with new_user in the disk group. All files that are
currently owned by old_user will become owned by new_user, and old_user will be dropped
from the disk group. old_user must exist in the disk group and new_user must not exist in the
disk group.

file_permissions_clause

Use this clause to change the permission settings of a disk group file. The three classes of
permissions are owner, user group, and other. You must be the file owner or the Oracle ASM
administrator to use this clause.

If you change the permission settings of an open file, then the operation currently running on
the file will complete using the old permission settings. The new permission settings will take
effect when re-authentication is required.

file_owner_clause

Use this clause to set the owner or user group for a specified file. You must be the Oracle
ASM administrator to change the owner of the file. You must be the owner of the file or the
Oracle ASM administrator to change the user group of a file. In addition, to change the
associated user group of a file, the specified user group must already exist in the disk group,
and the owner of the file must be a member of that user group.

If you use this clause on an open file, then the following conditions apply:

• If you change the owner or user group of an open file, then the operation currently
running on the file will complete using the old owner or user group. The new owner or
user group will take effect when re-authentication is required.

• If you change the owner of an open file, then the new owner of the file cannot be dropped
from the disk group until the instance has been restarted. In an Oracle ASM cluster, the

Chapter 10
ALTER DISKGROUP

10-137

new owner of the file cannot be dropped until all instances in the cluster have been
restarted.

• If you change the owner of an open file, then the old owner cannot be dropped
while the file is still open, even after the ownership of the file has changed.

scrub_clause

Use this clause to scrub a disk group. The scrub operation checks for logical data
corruptions and repairs the corruptions automatically in normal and high redundancy
disks groups.

• Use the FILE clause to scrub the specified Oracle ASM file in the disk group. You
must use one of the reference forms of the ASM_filename. Refer to ASM_filename
for information on the reference forms of Oracle ASM filenames.

• Use the DISK clause to scrub the specified disk in the disk group.

• If you do not specify FILE or DISK, then all files and disks in the disk group are
scrubbed.

REPAIR | NOREPAIR

Specify REPAIR to attempt to repair any errors found during the logical data corruption
check. Specify NOREPAIR to be alerted of any corruptions; Oracle ASM will not take any
action to resolve them. The default is NOREPAIR.

POWER

Use the POWER clause to specify the power level of the scrub operation. Valid values
are AUTO, LOW, HIGH, and MAX. If you omit this clause, then the power level defaults to
AUTO and the power adjusts to the optimum level for the system.

WAIT | NOWAIT

Specify WAIT to allow the scrub operation to complete before returning control to the
user. Specify NOWAIT to add the operation to the scrubbing queue and return control to
the user immediately. The default is NOWAIT.

FORCE | NOFORCE

Specify FORCE to process the command even if the system I/O load is high or
scrubbing has been disabled at the system level. Specify NOFORCE to process the
command normally. The default is NOFORCE.

STOP

Specify STOP if you want to stop an ongoing scrub operation.

You can monitor the progress of the scrub operation by querying the V$ASM_
OPERATION dynamic performance view.

See Also:

Oracle Automatic Storage Management Administrator's Guide for more
information on scrubbing disk groups and "Scrubbing a Disk Group:
Example"

Chapter 10
ALTER DISKGROUP

10-138

quotagroup_clauses

Use these clauses to add a quota group to the disk group, modify a quota group, move a file
group into a quota group, or drop a quota group.

A quota group is a collection of file groups. A file group is a container for all files of a
database within one disk group. A quota group has a specified quota limit, which is the
maximum amount of storage space that its file groups can collectively use. Therefore, a
quota group enables you to define the quota limit for a group of databases within a disk
group. The sum of the quota limits for all quota groups in a disk group can exceed the
storage capacity of the disk group.

Each disk group contains a default quota group named GENERIC. If you create a file group and
do not specify its quota group, then the file group belongs to the GENERIC quota group. Oracle
ASM automatically creates the GENERIC quota group when you create a disk group with the
compatible.asm attribute set to 12.2 or higher, or when you set compatible.asm to 12.2 or
higher for an existing disk group. Initially, the quota limit for GENERIC is UNLIMITED. You can
subsequently modify this quota limit with the MODIFY QUOTAGROUP clause.

ADD QUOTAGROUP

Use this clause to create a quota group and add it to the disk group. For quotagroup_name,
specify the name of the new quota group.

The SET clause allows you to set the quota limit for the quota group.

• For property_name, specify QUOTA.

• For property_value, specify one of the following clauses:

– Specify size_clause to set a number of bytes for the quota limit. The minimum value
you can specify is 1 byte. You can specify a value that is greater than the storage
size of the disk group. In this case, storage use is limited by the current size of the
disk group. However, if you subsequently increase the storage space for the disk
group to a size that exceeds the quota limit, then the quota limit will be enforced.
Refer to size_clause for the syntax and semantics of this clause. Note that specifying
0 bytes is equivalent to specifying UNLIMITED.

– Specify UNLIMITED if you do not want to set a quota limit. In this case, storage use is
limited by the storage size of the disk group.

If you omit the SET clause, then the default is SET QUOTA=UNLIMITED.

MODIFY QUOTAGROUP

Use this clause to modify the quota limit for a quota group. For quotagroup_name, specify the
name of the quota group you want to modify. You can modify the quota limit for any quota
group, including the GENERIC quota group. The SET clause has the same semantics here as
for the ADD QUOTAGROUP clause. The quota limit can be set below the amount of space
currently used by the quota group. This action prevents any additional space from being
allocated for files described by file groups associated with this quota group.

MOVE FILEGROUP

Use this clause to move a file group from one quota group to another. For filegroup_name,
specify the file group you want to move. For quotagroup_name, specify the name of the
destination quota group. If the move operation causes the amount of used storage space in
the destination quota group to exceed the quota limit, then the operation succeeds, but no

Chapter 10
ALTER DISKGROUP

10-139

new storage allocations can take place in the file groups within the quota group. This
capability enables you to stop any files described by a specific file group from
allocating additional space.

DROP QUOTAGROUP

Use this clause to drop a quota group from the disk group. For quotagroup_name,
specify the quota group you want to drop. The quota group must not contain any file
groups. You cannot drop the quota group GENERIC.

See Also:

Automatic Storage Management Administrator's Guide for more information
on quota groups

filegroup_clauses

The filegroup_clauses are valid only for flex disk groups. Use these clauses to
create a file group, modify a file group, move a file into a file group, or drop a file
group. A file group is a container for all files of a database within one disk group. A file
group must belong to a quota group.

Each disk group has a default file group with FILEGROUP_NUMBER = 0.

add_filegroup_clause

Use this clause to create a file group.

For filegroup_name, specify the name of the new file group. The maximum length of a
file group name is 127 characters. The name must satisfy the requirements listed in
"Database Object Naming Rules ", with the following addition: File group names are
not case sensitive, even if you specify them with quotation marks. They are always
stored internally as uppercase. File group names must be unique within a disk group.

• Use the DATABASE clause to specify the database (non-CDB, CDB, or PDB) with
which the file group is associated.

• Use the CLUSTER clause to specify the cluster with which the file group is
associated.

• Use the VOLUME clause to specify the volume with which the file group is
associated.

• Use the TEMPLATE clause to create a file group template with which the file group is
associated. You can use the template to customize a set of file group properties,
that can then be inherited by one or more databases.

You cannot associate more than one file group in the same disk group with the same
database, cluster, volume, or template. If the database, cluster, volume, or template
does not exist at the time of file group creation, then the file group will be automatically
associated with it when it is subsequently created. Database, cluster, volume, and
template names must satisfy the requirements listed in "Database Object Naming
Rules ".

The SET clause allows you to set properties for the file group. If you do not specify the
SET clause for a property, then the default value is assigned. You can specify the

Chapter 10
ALTER DISKGROUP

10-140

file_type for any property for which a file type applies. If you do not specify file_type for
such a property, then the property applies to all file types. For complete information on file
group properties and their default values, see Oracle Automatic Storage Management
Administrator's Guide.

Example 1: Create a file group from a file group template to inherit properties from the
template

ALTER DISKGROUP hmdg ADD FILEGROUP fgtem TEMPLATE SET
'datafile.redundancy'='unprotected'
 ALTER DISKGROUP hmdg ADD FILEGROUP fgdb DATABASE NONE FROM TEMPLATE fgtem

Example 2: Create a file group or a tablespace from a file group template to inherit
properties from the template

ALTER DISKGROUP hmdg ADD FILEGROUP fgtem2 TEMPLATE
 CREATE TABLESPACE tbs1 datafile '+hmdg(fg$fgtem2)/dbs/tbs1.f' size 1M

modify_filegroup_clause

 Use this clause to modify file group properties. For filegroup_name, specify the name of the
file group you want to modify. You can modify properties for any file group, including the
default file group. Any that you do not specify with this clause remain unchanged. The SET
clause has the same semantics here as for the add_filegroup_clause.

move_to_filegroup_clause

Use this clause to move a file to a file group. If the file is currently associated with a different
file group, then it is disassociated from that file group. The target file group must have enough
space available to contain the file. You must be the owner of the file and the target file group.

drop_filegroup_clause

Use this clause to drop an empty file group. For filegroup_name, specify the name of the file
group you want to drop.

CASCADE

Use the keyword CASCADE to drop a file group that is not empty. When a file group is dropped
with the keyword CASCADE, every file associated with the file group is automatically dropped.

See Also:

Automatic Storage Management Administrator's Guide for more information on file
groups

undrop_disk_clause

Use this clause to cancel the drop of disks from the disk group. You can cancel the pending
drop of all the disks in one or more disk groups (by specifying diskgroup_name) or of all the
disks in all disk groups (by specifying ALL).

This clause is not relevant for disks that have already been completely dropped from the disk
group or for disk groups that have been completely dropped. This clause results in a long-
running operation. You can see the status of the operation by querying the V$ASM_OPERATION
dynamic performance view.

Chapter 10
ALTER DISKGROUP

10-141

See Also:

V$ASM_OPERATION for more information on the details of long-running Oracle
ASM operations

diskgroup_availability

Use this clause to make one or more disk groups available or unavailable to the
database instances running on the same node as the Oracle ASM instance. This
clause does not affect the status of the disk group on other nodes in a cluster.

MOUNT

Specify MOUNT to mount the disk groups in the local Oracle ASM instance. Specify ALL
MOUNT to mount all disk groups specified in the ASM_DISKGROUPS initialization parameter.
File operations can only be performed when a disk group is mounted. If Oracle ASM is
running in a cluster or a standalone server managed by Oracle Grid Infrastructure for a
standalone server, then the MOUNT clause automatically brings the corresponding
resource online.

RESTRICTED | NORMAL

Use these clauses to determine the manner in which the disk groups are mounted.

• In the RESTRICTED mode, the disk group is mounted in single-instance exclusive
mode. No other Oracle ASM instance in the same cluster can mount that disk
group. In this mode the disk group is not usable by any Oracle ASM client.

• In the NORMAL mode, the disk group is mounted in shared mode, so that other
Oracle ASM instances and clients can access the disk group. This is the default.

FORCE | NOFORCE

Use these clauses to determine the circumstances under which the disk groups are
mounted.

• In the FORCE mode, Oracle ASM attempts to mount the disk group even if it cannot
discover all of the devices that belong to the disk group. This setting is useful if
some of the disks in a normal or high redundancy disk group became unavailable
while the disk group was dismounted. When MOUNT FORCE succeeds, Oracle ASM
takes the missing disks offline.

If Oracle ASM discovers all of the disks in the disk group, then MOUNT FORCE fails.
Therefore, use the MOUNT FORCE setting only if some disks are unavailable.
Otherwise, use NOFORCE.

In normal- and high-redundancy disk groups, disks from one failure group can be
unavailable and MOUNT FORCE will succeed. Also in high-redundancy disk groups,
two disks in two different failure groups can be unavailable and MOUNT FORCE will
succeed. Any other combination of unavailable disks causes the operation to fail,
because Oracle ASM cannot guarantee that a valid copy of all user data or
metadata exists on the available disks.

• In the NOFORCE mode, Oracle ASM does not attempt to mount the disk group
unless it can discover all the member disks. This is the default.

Chapter 10
ALTER DISKGROUP

10-142

See Also:

ASM_DISKGROUPS for more information about adding disk group names to the
initialization parameter file

DISMOUNT

Specify DISMOUNT to dismount the specified disk groups. Oracle ASM returns an error if any
file in the disk group is open unless you also specify FORCE. Specify ALL DISMOUNT to dismount
all currently mounted disk groups. File operations can only be performed when a disk group
is mounted. If Oracle ASM is running in a cluster or a standalone server managed by Oracle
Grid Infrastructure for a standalone server, then the DISMOUNT clause automatically takes the
corresponding resource offline.

FORCE

Specify FORCE if you want Oracle ASM to dismount the disk groups even if some files in the
disk group are open.

enable_disable_volume

Use this clause to enable or disable one or more volumes in the disk group.

• For each volume you enable, Oracle ASM creates a volume device file on the local node
that can be used to create or mount the file system.

• For each volume you disable, Oracle ASM deletes the device file on the local node. If the
volume file is open on the local node, then the DISABLE clause returns an error.

Use the ALL keyword to enable or disable all volumes in the disk group. If you specify ALTER
DISKGROUP ALL ..., then you must use the ALL keyword in this clause as well.

See Also:

Oracle Automatic Storage Management Administrator's Guide for more information
about disk group volumes

Examples

The following examples require a disk group called dgroup_01. They assume that
ASM_DISKSTRING is set to /devices/disks/*. In addition, they assume the Oracle user has
read/write permission to /devices/disks/d100. Refer to "Creating a Diskgroup: Example" to
create dgroup_01.

Adding a Disk to a Disk Group: Example

To add a disk, d100, to a disk group, dgroup_01, issue the following statement:

ALTER DISKGROUP dgroup_01
 ADD DISK '/devices/disks/d100';

Dropping a Disk from a Disk Group: Example

To drop a disk, dgroup_01_0000, from a disk group, dgroup_01, issue the following statement:

Chapter 10
ALTER DISKGROUP

10-143

ALTER DISKGROUP dgroup_01
 DROP DISK dgroup_01_0000;

Undropping a Disk from a Disk Group: Example

To cancel the drop of disks from a disk group, dgroup_01, issue the following
statement:

ALTER DISKGROUP dgroup_01
 UNDROP DISKS;

Resizing a Disk Group: Example

To resize every disk in a disk group, dgroup_01, issue the following statement:

ALTER DISKGROUP dgroup_01
 RESIZE ALL
 SIZE 36G;

Rebalancing a Disk Group: Example

To manually rebalance a disk group, dgroup_01, and permit Oracle ASM to execute
the rebalance as fast as possible, issue the following statement:

ALTER DISKGROUP dgroup_01
 REBALANCE POWER 11 WAIT;

The WAIT keyword causes the database to wait for the disk group to be rebalanced
before returning control to the user.

Verifying the Internal Consistency of Disk Group Metadata: Example

To verify the internal consistency of Oracle ASM disk group metadata and instruct
Oracle ASM to repair any errors found, issue the following statement:

ALTER DISKGROUP dgroup_01
 CHECK ALL
 REPAIR;

Adding a Named Template to a Disk Group: Example

To add a named template, template_01 to a disk group, dgroup_01, issue the following
statement:

ALTER DISKGROUP dgroup_01
 ADD TEMPLATE template_01
 ATTRIBUTES (UNPROTECTED COARSE);

Changing the Attributes of a Disk Group Template: Example

To modify the attributes of a system default or user-defined disk group template,
template_01, issue the following statement:

ALTER DISKGROUP dgroup_01
 MODIFY TEMPLATE template_01
 ATTRIBUTES (FINE);

Dropping a User-Defined Template from a Disk Group: Example

To drop a user-defined template, template_01, from a disk group, dgroup_01, issue the
following statement:

Chapter 10
ALTER DISKGROUP

10-144

ALTER DISKGROUP dgroup_01
 DROP TEMPLATE template_01;

Creating a Directory Path for Hierarchically Named Aliases: Example

To specify the directory structure in which alias names will reside, issue the following
statement:

ALTER DISKGROUP dgroup_01
 ADD DIRECTORY '+dgroup_01/alias_dir';

Creating an Alias Name for an Oracle ASM Filename: Example

To create a user alias by specifying the numeric Oracle ASM filename, issue the following
statement:

ALTER DISKGROUP dgroup_01
 ADD ALIAS '+dgroup_01/alias_dir/datafile.dbf'
 FOR '+dgroup_01.261.1';

Scrubbing a Disk Group: Example

To scrub a disk group, dgroup_01, issue the following statement. This statement attempts to
repair any errors found during the logical data corruption check and allows the scrub
operation to complete before returning control to the user.

ALTER DISKGROUP dgroup_01
 SCRUB REPAIR WAIT;

Dismounting a Disk Group: Example

To dismount a disk group, dgroup_01, issue the following statement. This statement
dismounts the disk group even if one or more files are active:

ALTER DISKGROUP dgroup_01
 DISMOUNT FORCE;

Mounting a Disk Group: Example

To mount a disk group, dgroup_01, issue the following statement:

ALTER DISKGROUP dgroup_01
 MOUNT;

ALTER FLASHBACK ARCHIVE
Purpose

Use the ALTER FLASHBACK ARCHIVE statement for these operations:

• Designate a flashback archive as the default flashback archive for the system

• Add a tablespace for use by the flashback archive

• Change the quota of a tablespace used by the flashback archive

• Remove a tablespace from use by the flashback archive

• Change the retention period of the flashback archive

• Purge the flashback archive of old data that is no longer needed

Chapter 10
ALTER FLASHBACK ARCHIVE

10-145

See Also:

Oracle Database Development Guide and CREATE FLASHBACK ARCHIVE
for more information on using Flashback Time Travel

Prerequisites

You must have the FLASHBACK ARCHIVE ADMINISTER system privilege to alter a
flashback archive in any way. You must also have appropriate privileges on the
affected tablespaces to add, modify, or remove a flashback archive tablespace.

Syntax

alter_flashback_archive::=

ALTER FLASHBACK ARCHIVE flashback_archive

SET DEFAULT

ADD

MODIFY
TABLESPACE tablespace

flashback_archive_quota

REMOVE TABLESPACE tablespace_name

MODIFY RETENTION flashback_archive_retention

PURGE

ALL

BEFORE
SCN expr

TIMESTAMP expr

NO

OPTIMIZE DATA

;

flashback_archive_quota::=

QUOTA integer

M

G

T

P

E

flashback_archive_retention::=

RETENTION integer

YEAR

MONTH

DAY

Chapter 10
ALTER FLASHBACK ARCHIVE

10-146

Semantics

flashback_archive

Specify the name of an existing flashback archive.

SET DEFAULT

You must be logged in as SYSDBA to specify this clause. Use this clause to designate this
flashback archive as the default flashback archive for the system. When a CREATE TABLE or
ALTER TABLE statement specifies the flashback_archive_clause without specifying a
flashback archive name, the database uses the default flashback archive to store data from
that table.

This statement overrides any previous designation of a different flashback archive as the
default.

See Also:

The CREATE TABLE flashback_archive_clause for more information

ADD TABLESPACE

Use this clause to add a tablespace to the flashback archive. You can use the
flashback_archive_quota clause to specify the amount of space that can be used by the
flashback archive in the new tablespace. If you omit that clause, then the flashback archive
has unlimited space in the newly added tablespace.

MODIFY TABLESPACE

Use this clause to change the tablespace quota of a tablespace already used by the
flashback archive.

REMOVE TABLESPACE

Use this clause to remove a tablespace from use by the flashback archive. You cannot
remove the last remaining tablespace used by the flashback archive.

If the tablespace to be removed contains any data within the retention period of the flashback
archive, then that data will be dropped as well. Therefore, you should move your data to
another tablespace before removing the tablespace with this clause.

MODIFY RETENTION

Use this clause to change the retention period of the flashback archive.

PURGE

Use this clause to purge data from the flashback archive.

• Specify PURGE ALL to remove all data from the flashback archive. This historical
information can be retrieved using a flashback query only if the SCN or timestamp
specified in the flashback query is within the undo retention duration.

Chapter 10
ALTER FLASHBACK ARCHIVE

10-147

• Specify PURGE BEFORE SCN to remove all data from the flashback archive before the
specified system change number.

• Specify PURGE BEFORE TIMESTAMP to remove all data from the flashback archive
before the specified timestamp.

[NO] OPTIMIZE DATA

This clause has the same semantics as the [NO] OPTIMIZE DATA clause of CREATE
FLASHBACK ARCHIVE.

See Also:

CREATE FLASHBACK ARCHIVE for information on creating flashback
archives and for some simple examples of using flashback archives

ALTER FUNCTION
Purpose

Functions are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of
syntax and semantics.

Use the ALTER FUNCTION statement to recompile an invalid standalone stored function.
Explicit recompilation eliminates the need for implicit run-time recompilation and
prevents associated run-time compilation errors and performance overhead.

This statement does not change the declaration or definition of an existing function. To
redeclare or redefine a function, use the CREATE FUNCTION statement with the OR
REPLACE clause. See CREATE FUNCTION .

Prerequisites

The function must be in your own schema or you must have ALTER ANY PROCEDURE
system privilege.

Syntax

alter_function::=

ALTER FUNCTION

schema .

function_name

function_compile_clause

EDITIONABLE

NONEDITIONABLE

(function_compile_clause: See Oracle Database PL/SQL Language Reference for
the syntax of this clause.)

Chapter 10
ALTER FUNCTION

10-148

Semantics

schema

Specify the schema containing the function. If you omit schema, then Oracle Database
assumes the function is in your own schema.

function_name

Specify the name of the function to be recompiled.

function_compile_clause

See Oracle Database PL/SQL Language Reference for the syntax and semantics of this
clause and for complete information on creating and compiling functions.

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the function becomes an editioned or noneditioned
object if editioning is later enabled for the schema object type FUNCTION in schema. The
default is EDITIONABLE. For information about altering editioned and noneditioned objects,
see Oracle Database Development Guide.

ALTER HIERARCHY
Purpose

Use the ALTER HIERARCHY statement to rename or compile a hierarchy. For other alterations,
use CREATE OR REPLACE HIERARCHY.

Prerequisites

To alter a hierarchy in your own schema, you must have the ALTER HIERARCHY system
privilege. To alter a hierarchy in another user's schema, you must have the ALTER ANY
HIERARCHY system privilege or have been granted ALTER directly on the hierarchy.

Syntax

alter_hierarchy::=

ALTER HIERARCHY

schema .

hierarchy_name
RENAME TO new_hier_name

COMPILE
;

Semantics

schema

Specify the schema in which the hierarchy exists. If you do not specify a schema, then Oracle
Database looks for the hierarchy in your own schema.

hierarchy_name

Specify the name of the hierarchy.

Chapter 10
ALTER HIERARCHY

10-149

RENAME TO

Specify RENAME TO to change the name of the hierarchy.

COMPILE

Specify COMPILE to compile the hierarchy.

new_hier_name

Specify a new name for the hierarchy.

Example

The following statement changes the name of a hierarchy:

ALTER HIERARCHY product_hier RENAME TO myproduct_hier;

ALTER INDEX
Purpose

Use the ALTER INDEX statement to change or rebuild an existing index.

See Also:

CREATE INDEX for information on creating an index

Prerequisites

The index must be in your own schema or you must have the ALTER ANY INDEX system
privilege.

To execute the MONITORING USAGE clause, the index must be in your own schema.

To modify a domain index, you must have EXECUTE object privilege on the indextype of
the index.

Object privileges are granted on the parent index, not on individual index partitions or
subpartitions.

You must have tablespace quota to modify, rebuild, or split an index partition or to
modify or rebuild an index subpartition.

Chapter 10
ALTER INDEX

10-150

Syntax

alter_index::=

ALTER INDEX

schema .

index_name

index_ilm_clause

deallocate_unused_clause

allocate_extent_clause

shrink_clause

parallel_clause

physical_attributes_clause

logging_clause

partial_index_clause

rebuild_clause

DEFERRED

IMMEDIATE
INVALIDATION

PARAMETERS (’ ODCI_parameters ’)

COMPILE

ENABLE

DISABLE

UNUSABLE

ONLINE

DEFERRED

IMMEDIATE
INVALIDATION

VISIBLE

INVISIBLE

RENAME TO new_name

COALESCE

CLEANUP ONLY parallel_clause

MONITORING

NOMONITORING
USAGE

UPDATE BLOCK REFERENCES

alter_index_partitioning

;

(deallocate_unused_clause::=, allocate_extent_clause::=, shrink_clause::=,
parallel_clause::=, physical_attributes_clause::=, logging_clause::=, partial_index_clause::=,
rebuild_clause::=, alter_index_partitioning::=)

(The ODCI_parameters are documented in Oracle Database Data Cartridge Developer's
Guide.)

Chapter 10
ALTER INDEX

10-151

index_ilm_clause::=

ILM

ADD POLICY

policy_clause

DELETE POLICY policy_name

policy_clause::=

OPTIMIZE condition_clause

tiering_clause

PLSQL_function_name

tiering_clause::=

TIER TO LOW_COST_TBS

condition_clause::=

tracking_statistics_clause

ON PLSQL_function_name

tracking_statistics_clause::=

AFTER time_interval

DAYS

MONTHS

YEARS

OF

NO
ACCESS

MODIFICATION

CREATION

deallocate_unused_clause::=

DEALLOCATE UNUSED

KEEP size_clause

(size_clause::=)

Chapter 10
ALTER INDEX

10-152

allocate_extent_clause::=

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

(size_clause::=)

shrink_clause::=

SHRINK SPACE

COMPACT CASCADE

parallel_clause::=

NOPARALLEL

PARALLEL

integer

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

Chapter 10
ALTER INDEX

10-153

partial_index_clause::=

INDEXING

PARTIAL

FULL

rebuild_clause::=

REBUILD

PARTITION partition

SUBPARTITION subpartition

REVERSE

NOREVERSE

parallel_clause

TABLESPACE tablespace

PARAMETERS (’ ODCI_parameters ’)

XMLIndex_parameters_clause

ONLINE

physical_attributes_clause

index_compression

logging_clause

partial_index_clause

(parallel_clause::=, physical_attributes_clause::=, index_compression::=,
logging_clause::=, partial_index_clause::=)

(The ODCI_parameters are documented in Oracle Database Data Cartridge
Developer's Guide. The XMLIndex_parameters_clause is documented in Oracle XML
DB Developer's Guide.

index_compression::=

prefix_compression

advanced_index_compression

Chapter 10
ALTER INDEX

10-154

prefix_compression::=

COMPRESS

integer

NOCOMPRESS

advanced_index_compression::=

COMPRESS ADVANCED

LOW

HIGH

NOCOMPRESS

alter_index_partitioning::=

modify_index_default_attrs

add_hash_index_partition

modify_index_partition

rename_index_partition

drop_index_partition

split_index_partition

coalesce_index_partition

modify_index_subpartition

(modify_index_default_attrs::=, add_hash_index_partition::=, modify_index_partition::=,
rename_index_partition::=, drop_index_partition::=, split_index_partition::=,
coalesce_index_partition::=, modify_index_subpartition::=)

modify_index_default_attrs::=

MODIFY DEFAULT ATTRIBUTES

FOR PARTITION partition

physical_attributes_clause

TABLESPACE
tablespace

DEFAULT

logging_clause

Chapter 10
ALTER INDEX

10-155

(physical_attributes_clause::=, logging_clause::=)

add_hash_index_partition::=

ADD PARTITION

partition TABLESPACE tablespace index_compression parallel_clause

(index_compression::=, parallel_clause::=)

coalesce_index_partition::=

COALESCE PARTITION

parallel_clause

(parallel_clause::=)

modify_index_partition::=

MODIFY PARTITION partition

deallocate_unused_clause

allocate_extent_clause

physical_attributes_clause

logging_clause

index_compression

PARAMETERS (’ ODCI_parameters ’)

COALESCE

CLEANUP ONLY parallel_clause

UPDATE BLOCK REFERENCES

UNUSABLE

(deallocate_unused_clause::=, allocate_extent_clause::=,
physical_attributes_clause::=, logging_clause::=, index_compression::=)

rename_index_partition::=

RENAME
PARTITION partition

SUBPARTITION subpartition
TO new_name

Chapter 10
ALTER INDEX

10-156

drop_index_partition::=

DROP PARTITION partition_name

split_index_partition::=

SPLIT PARTITION partition_name_old AT (literal

,

)

INTO (index_partition_description , index_partition_description) parallel_clause

(parallel_clause::=)

index_partition_description::=

PARTITION

partition

segment_attributes_clause

index_compression

PARAMETERS (’ ODCI_parameters ’)

USABLE

UNUSABLE

(segment_attributes_clause::=, index_compression::=)

Note:

The USABLE and UNUSABLE keywords are not supported when
index_partition_description is specified for the split_index_partition clause.

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE tablespace

TABLESPACE SET tablespace_set

logging_clause

Chapter 10
ALTER INDEX

10-157

(physical_attributes_clause::=, TABLESPACE SET: not supported with ALTER INDEX,
logging_clause::=)

modify_index_subpartition::=

MODIFY SUBPARTITION subpartition

UNUSABLE

allocate_extent_clause

deallocate_unused_clause

(allocate_extent_clause::=, deallocate_unused_clause::=)

Semantics

schema

Specify the schema containing the index. If you omit schema, then Oracle Database
assumes the index is in your own schema.

index_name

Specify the name of the index to be altered.

Restrictions on Modifying Indexes

The modification of indexes is subject to the following restrictions:

• If index is a domain index, then you can specify only the PARAMETERS clause, the
RENAME clause, the rebuild_clause (with or without the PARAMETERS clause), the
parallel_clause, or the UNUSABLE clause. No other clauses are valid.

• You cannot alter or rename a domain index that is marked LOADING or FAILED. If an
index is marked FAILED, then the only clause you can specify is REBUILD.

See Also:

Oracle Database Data Cartridge Developer's Guide for information on the
LOADING and FAILED states of domain indexes

index_ilm_clause

Please refer to index_ilm_clause in CREATE INDEX for full semantics.

deallocate_unused_clause

Use the deallocate_unused_clause to explicitly deallocate unused space at the end
of the index and make the freed space available for other segments in the tablespace.

If index is range-partitioned or hash-partitioned, then Oracle Database deallocates
unused space from each index partition. If index is a local index on a composite-
partitioned table, then Oracle Database deallocates unused space from each index
subpartition.

Chapter 10
ALTER INDEX

10-158

Restrictions on Deallocating Space

Deallocation of space is subject to the following restrictions:

• You cannot specify this clause for an index on a temporary table.

• You cannot specify this clause and also specify the rebuild_clause.

Refer to deallocate_unused_clause for a full description of this clause.

KEEP integer

The KEEP clause lets you specify the number of bytes above the high water mark that the
index will have after deallocation. If the number of remaining extents is less than MINEXTENTS,
then MINEXTENTS is set to the current number of extents. If the initial extent becomes smaller
than INITIAL, then INITIAL is set to the value of the current initial extent. If you omit KEEP,
then all unused space is freed.

Refer to ALTER TABLE for a complete description of this clause.

allocate_extent_clause

The allocate_extent_clause lets you explicitly allocate a new extent for the index. For a
local index on a hash-partitioned table, Oracle Database allocates a new extent for each
partition of the index.

Restriction on Allocating Extents

You cannot specify this clause for an index on a temporary table or for a range-partitioned or
composite-partitioned index.

Refer to allocate_extent_clause for a full description of this clause.

shrink_clause

Use this clause to compact the index segments. Specifying ALTER INDEX ... SHRINK SPACE
COMPACT is equivalent to specifying ALTER INDEX ... COALESCE.

For complete information on this clause, refer to shrink_clause in the documentation on
CREATE TABLE.

Restriction on Shrinking Index Segments

You cannot specify this clause for a bitmap join index or for a function-based index.

parallel_clause

Use the PARALLEL clause to change the default degree of parallelism for queries and DML on
the index.

Restriction on Parallelizing Indexes

You cannot specify this clause for an index on a temporary table.

For complete information on this clause, refer to parallel_clause in the documentation on
CREATE TABLE.

Chapter 10
ALTER INDEX

10-159

See Also:

"Enabling Parallel Queries: Example"

physical_attributes_clause

Use the physical_attributes_clause to change the values of parameters for a
nonpartitioned index, all partitions and subpartitions of a partitioned index, a specified
partition, or all subpartitions of a specified partition.

See Also:

• the physical attributes parameters in CREATE TABLE

• "Modifying Real Index Attributes: Example" and "Changing
MAXEXTENTS: Example"

Restrictions on Index Physical Attributes

Index physical attributes are subject to the following restrictions:

• You cannot specify this clause for an index on a temporary table.

• You cannot specify the PCTUSED parameter at all when altering an index.

• You can specify the PCTFREE parameter only as part of the rebuild_clause, the
modify_index_default_attrs clause, or the split_index_partition clause.

storage_clause

Use the storage_clause to change the storage parameters for a nonpartitioned index,
index partition, or all partitions of a partitioned index, or default values of these
parameters for a partitioned index. Refer to storage_clause for complete information
on this clause.

logging_clause

Use the logging_clause to change the logging attribute of the index. If you also
specify the REBUILD clause, then this new setting affects the rebuild operation. If you
specify a different value for logging in the REBUILD clause, then Oracle Database uses
the last logging value specified as the logging attribute of the index and of the rebuild
operation.

An index segment can have logging attributes different from those of the base table
and different from those of other index segments for the same base table.

Restriction on Index Logging

You cannot specify this clause for an index on a temporary table.

Chapter 10
ALTER INDEX

10-160

See Also:

• logging_clause for a full description of this clause

• Oracle Database VLDB and Partitioning Guide for more information about
parallel DML

partial_index_clause

Use the partial_index_clause to change the index to a full index or a partial index. Specify
INDEXING FULL to change the index to a full index. Specify INDEXING PARTIAL to change the
index to a partial index. This clause is valid only for indexes on partitioned tables. Refer to the
partial_index_clause of CREATE INDEX for the full semantics of this clause.

RECOVERABLE | UNRECOVERABLE

These keywords are deprecated and have been replaced with LOGGING and NOLOGGING,
respectively. Although RECOVERABLE and UNRECOVERABLE are supported for backward
compatibility, Oracle strongly recommends that you use the LOGGING and NOLOGGING
keywords.

RECOVERABLE is not a valid keyword for creating partitioned tables or LOB storage
characteristics. UNRECOVERABLE is not a valid keyword for creating partitioned or index-
organized tables. Also, it can be specified only with the AS subquery clause of CREATE INDEX.

rebuild_clause

Use the rebuild_clause to re-create an existing index or one of its partitions or subpartitions.
If index is marked UNUSABLE, then a successful rebuild will mark it USABLE. For a function-
based index, this clause also enables the index. If the function on which the index is based
does not exist, then the rebuild statement will fail.

Note:

When you rebuild the secondary index of an index-organized table, Oracle
Database preserves the primary key columns contained in the logical rowid when
the index was created. Therefore, if the index was created with the COMPATIBLE
initialization parameter set to less than 10.0.0, the rebuilt index will contain the
index key and any of the primary key columns of the table that are not also in the
index key. If the index was created with the COMPATIBLE initialization parameter set
to 10.0.0 or greater, then the rebuilt index will contain the index key and all the
primary key columns of the table, including those also in the index key.

Restrictions on Rebuilding Indexes

The rebuilding of indexes is subject to the following restrictions:

• You cannot rebuild an index on a temporary table.

• You cannot rebuild a bitmap index that is marked INVALID. Instead, you must drop and
then re-create it.

Chapter 10
ALTER INDEX

10-161

• You cannot rebuild an entire partitioned index. You must rebuild each partition or
subpartition, as described for the PARTITION clause.

• You cannot specify the deallocate_unused_clause in the same statement as the
rebuild_clause.

• You cannot change the value of the PCTFREE parameter for the index as a whole
(ALTER INDEX) or for a partition (ALTER INDEX ... MODIFY PARTITION). You can
specify PCTFREE in all other forms of the ALTER INDEX statement.

• For a domain index:

– You can specify only the PARAMETERS clause (either for the index or for a
partition of the index) or the parallel_clause. No other rebuild clauses are
valid.

– You can rebuild an index only if the index is not marked IN_PROGRESS.

– You can rebuild an index partition only if the index is not marked IN_PROGRESS
or FAILED and the partition is not marked IN_PROGRESS.

• You cannot rebuild a local index, but you can rebuild a partition of a local index
(ALTER INDEX ... REBUILD PARTITION).

• For a local index on a hash partition or subpartition, the only parameter you can
specify is TABLESPACE.

• You cannot rebuild an online index that is used to enforce a deferrable unique
constraint.

PARTITION Clause

Use the PARTITION clause to rebuild one partition of an index. You can also use this
clause to move an index partition to another tablespace or to change a create-time
physical attribute.

The storage of partitioned database entities in tablespaces of different block sizes is
subject to several restrictions. Refer to Oracle Database VLDB and Partitioning Guide
for a discussion of these restrictions.

Restriction on Rebuilding Partitions

You cannot specify this clause for a local index on a composite-partitioned table.
Instead, use the REBUILD SUBPARTITION clause.

See Also:

Oracle Database VLDB and Partitioning Guide for more information about
partition maintenance operations and "Rebuilding Unusable Index Partitions:
Example"

SUBPARTITION Clause

Use the SUBPARTITION clause to rebuild one subpartition of an index. You can also use
this clause to move an index subpartition to another tablespace. If you do not specify
TABLESPACE, then the subpartition is rebuilt in the same tablespace.

Chapter 10
ALTER INDEX

10-162

The storage of partitioned database entities in tablespaces of different block sizes is subject
to several restrictions. Refer to Oracle Database VLDB and Partitioning Guide for a
discussion of these restrictions.

Restriction on Modifying Index Subpartitions

The only parameters you can specify for a subpartition are TABLESPACE, ONLINE, and the
parallel_clause.

REVERSE | NOREVERSE

Indicate whether the bytes of the index block are stored in reverse order:

• REVERSE stores the bytes of the index block in reverse order and excludes the rowid when
the index is rebuilt.

• NOREVERSE stores the bytes of the index block without reversing the order when the index
is rebuilt. Rebuilding a REVERSE index without the NOREVERSE keyword produces a rebuilt,
reverse-keyed index.

Restrictions on Reverse Indexes

Reverse indexes are subject to the following restrictions:

• You cannot reverse a bitmap index or an index-organized table.

• You cannot specify REVERSE or NOREVERSE for a partition or subpartition.

See Also:

"Storing Index Blocks in Reverse Order: Example"

parallel_clause

Use the parallel_clause to parallelize the rebuilding of the index and to change the degree
of parallelism for the index itself. All subsequent operations on the index will be executed with
the degree of parallelism specified by this clause, unless overridden by a subsequent data
definition language (DDL) statement with the parallel_clause. The following exceptions
apply:

• If ALTER SESSION DISABLE PARALLEL DDL was specified before rebuilding the index, then
the index will be rebuilt serially and the degree of parallelism for the index will be
changed to 1.

• If ALTER SESSION FORCE PARALLEL DDL was specified before rebuilding the index, then the
index will be rebuilt in parallel and the degree of parallelism for the index will be changed
to the value that was specified in the ALTER SESSION statement, or DEFAULT if no value
was specified.

See Also:

"Rebuilding an Index in Parallel: Example"

Chapter 10
ALTER INDEX

10-163

TABLESPACE Clause

Specify the tablespace where the rebuilt index, index partition, or index subpartition
will be stored. The default is the default tablespace where the index or partition resided
before you rebuilt it.

index_compression

Use the index_compression clauses to enable or disable index compression for the
index. Specify the prefix_compression clause to enable or disable prefix compression
for the index. Specify the advanced_index_compression clause to enable or disable
advanced index compression for the index.

The index_compression clauses have the same semantics for CREATE INDEX and
ALTER INDEX. For full information on these clauses, refer to index_compression in the
documentation on CREATE INDEX.

ONLINE Clause

Specify ONLINE to allow DML operations on the table or partition during rebuilding of
the index.

Restrictions on Online Indexes

Online indexes are subject to the following restrictions:

• Parallel DML is not supported during online index building. If you specify ONLINE
and subsequently issue parallel DML statements, then Oracle Database returns an
error.

• You cannot specify ONLINE for a bitmap join index or a cluster index.

• For a nonunique secondary index on an index-organized table, the number of
index key columns plus the number of primary key columns that are included in
the logical rowid in the index-organized table cannot exceed 32. The logical rowid
excludes columns that are part of the index key.

logging_clause

Specify whether the ALTER INDEX ... REBUILD operation will be logged.

Refer to the logging_clause for a full description of this clause.

PARAMETERS Clause

This clause is valid only for domain indexes in a top-level ALTER INDEX statement and
in the rebuild_clause. This clause specifies the parameter string that is passed
uninterpreted to the appropriate ODCI indextype routine.

The maximum length of the parameter string is 1000 characters.

If you are altering or rebuilding an entire index, then the string must refer to index-level
parameters. If you are rebuilding a partition of the index, then the string must refer to
partition-level parameters.

If index is marked UNUSABLE, then modifying the parameters alone does not make it
USABLE. You must also rebuild the UNUSABLE index to make it usable.

Chapter 10
ALTER INDEX

10-164

If you have installed Oracle Text, then you can rebuild your Oracle Text domain indexes using
parameters specific to that product. For more information on those parameters, refer to
Oracle Text Reference.

Restriction on the PARAMETERS Clause

You can modify index partitions only if index is not marked IN_PROGRESS or FAILED, no index
partitions are marked IN_PROGRESS, and the partition being modified is not marked FAILED.

See Also:

• Oracle Database Data Cartridge Developer's Guide for more information on
indextype routines for domain indexes

• CREATE INDEX for more information on domain indexes

XMLIndex_parameters_clause

This clause is valid only for XMLIndex indexes. This clause specifies the parameter string
that defines the XMLIndex implementation.

The maximum length of the parameter string is 1000 characters.

If you are altering or rebuilding an entire index, then the string must refer to index-level
parameters. If you are rebuilding a partition of the index, then the string must refer to
partition-level parameters.

If index is marked UNUSABLE, then modifying the parameters alone does not make it USABLE.
You must also rebuild the UNUSABLE index to make it usable.

See Also:

Oracle XML DB Developer's Guide for more information on XMLIndex, including the
syntax and semantics of the XMLIndex_parameters_clause

Restriction on the XMLIndex_parameters_clause

You can modify index partitions only if index is not marked IN_PROGRESS or FAILED, no index
partitions are marked IN_PROGRESS, and the partition being modified is not marked FAILED.

{ DEFERRED | IMMEDIATE } INVALIDATION

This clause lets you control when the database invalidates dependent cursors while
rebuilding an index or while marking an index UNUSABLE.

• If you specify DEFERRED INVALIDATION, then the database avoids or defers invalidating
dependent cursors, when possible.

• If you specify IMMEDIATE INVALIDATION, then the database immediately invalidates
dependent cursors, as it did in Oracle Database 12c Release 1 (12.1) and prior releases.
This is the default.

Chapter 10
ALTER INDEX

10-165

If you omit this clause, then the value of the CURSOR_INVALIDATION initialization
parameter determines when cursors are invalidated.

See Also:

• Oracle Database SQL Tuning Guide for more information on cursor
invalidation

• Oracle Database Reference for more information in the
CURSOR_INVALIDATION initialization parameter

COMPILE Clause

Use this clause to recompile an invalid index explicitly. For domain indexes, this clause
is useful when the underlying indextype has been altered to support system-managed
domain indexes, so that the existing domain index has been marked INVALID. In this
situation, this ALTER INDEX statement migrates the domain index from a user-managed
domain index to a system-managed domain index. For all types of indexes, this clause
is useful when an index has been marked INVALID by an ALTER TABLE statement. In
this situation, this ALTER INDEX statement revalidates the index without rebuilding it.

See Also:

The CREATE INDEXTYPE storage_table_clause and Oracle Database Data
Cartridge Developer's Guide for information on creating system-managed
domain indexes

ENABLE Clause

ENABLE applies only to a function-based index that has been disabled, either by an
ALTER INDEX ... DISABLE statement, or because a user-defined function used by the
index was dropped or replaced. This clause enables such an index if these conditions
are true:

• The function is currently valid.

• The signature of the current function matches the signature of the function when
the index was created.

• The function is currently marked as DETERMINISTIC.

Restrictions on Enabling Function-based Indexes

The ENABLE clause is subject to the following restrictions:

• You cannot specify any other clauses of ALTER INDEX in the same statement with
ENABLE.

• You cannot specify this clause for an index on a temporary table. Instead, you
must drop and recreate the index. You can retrieve the creation DDL for the index
using the DBMS_METADATA package.

Chapter 10
ALTER INDEX

10-166

DISABLE Clause

DISABLE applies only to a function-based index. This clause lets you disable the use of a
function-based index. You might want to do so, for example, while working on the body of the
function. Afterward you can either rebuild the index or specify another ALTER INDEX statement
with the ENABLE keyword.

USABLE | UNUSABLE

Specify UNUSABLE to mark the index or index partition(s) or index subpartition(s) UNUSABLE.
The space allocated for an index or index partition or subpartition is freed immediately when
the object is marked UNUSABLE. An unusable index must be rebuilt, or dropped and re-
created, before it can be used. While one partition is marked UNUSABLE, the other partitions of
the index are still valid. You can execute statements that require the index if the statements
do not access the unusable partition. You can also split or rename the unusable partition
before rebuilding it. Refer to CREATE INDEX ... USABLE | UNUSABLE for more information.

ONLINE

Specify ONLINE to indicate that DML operations on the table or partition will be allowed while
marking the index UNUSABLE. If you specify this clause, then the database will not drop the
index segments.

Restrictions on Marking Indexes Unusable

The following restrictions apply to marking indexes unusable:

• You cannot specify UNUSABLE for an index on a temporary table.

• When a global index is marked UNUSABLE during a partition maintenance operation, the
database does not drop the unusable index segments.

VISIBLE | INVISIBLE

Use this clause to specify whether the index is visible or invisible to the optimizer. Refer to
"VISIBLE | INVISIBLE" in CREATE INDEX for a full description of this clause.

RENAME Clause

Use this clause to rename an index. The new_index_name is a single identifier and does not
include the schema name.

Restriction on Renaming Indexes

For a domain index, neither index nor any partitions of index should be in IN_PROGRESS or
FAILED state.

See Also:

"Renaming an Index: Example"

COALESCE Clause

Specify COALESCE to instruct Oracle Database to merge the contents of index blocks where
possible to free blocks for reuse.

Chapter 10
ALTER INDEX

10-167

CLEANUP

Specify CLEANUP to remove orphaned index entries for records that were previously
dropped or truncated by a table partition maintenance operation.

To determine whether an index contains orphaned index entries, you can query the
ORPHANED_ENTRIES column of the USER_, DBA_, ALL_INDEXES data dictionary views.
Refer to Oracle Database Reference for more information.

ONLY

Specify ONLY when you want to clean up the index without coalescing the index blocks.

parallel_clause

Use the parallel_clause to specify whether to parallelize the coalesce operation.

For complete information on this clause, refer to parallel_clause in the documentation
on CREATE TABLE.

Restrictions on Coalescing Index Blocks

Coalescing of index blocks is subject to the following restrictions:

• You cannot specify this clause for an index on a temporary table.

• Do not specify this clause for the primary key index of an index-organized table.
Instead use the COALESCE clause of ALTER TABLE.

See Also:

• Oracle Database Administrator's Guide for more information on space
management and coalescing indexes

• COALESCE Clause for information on coalescing the space of an index-
organized table

• shrink_clause for an alternative method of compacting index segments

MONITORING USAGE | NOMONITORING USAGE

Use this clause to determine whether Oracle Database should monitor index use.

• Specify MONITORING USAGE to begin monitoring the index. Oracle Database first
clears existing information on index use, and then monitors the index for use until
a subsequent ALTER INDEX ... NOMONITORING USAGE statement is executed.

• To terminate monitoring of the index, specify NOMONITORING USAGE.

To see whether the index has been used since this ALTER INDEX ... NOMONITORING
USAGE statement was issued, query the USED column of the USER_OBJECT_USAGE data
dictionary view.

Chapter 10
ALTER INDEX

10-168

See Also:

Oracle Database Reference for information on the USER_OBJECT_USAGE data
dictionary view

UPDATE BLOCK REFERENCES Clause

The UPDATE BLOCK REFERENCES clause is valid only for normal and domain indexes on index-
organized tables. Specify this clause to update all the stale guess data block addresses
stored as part of the index row with the correct database address for the corresponding block
identified by the primary key.

For a domain index, Oracle Database executes the ODCIIndexAlter routine with the
alter_option parameter set to AlterIndexUpdBlockRefs. This routine enables the cartridge
code to update the stale guess data block addresses in the index.

Restriction on UPDATE BLOCK REFERENCES

You cannot combine this clause with any other clause of ALTER INDEX.

alter_index_partitioning

The partitioning clauses of the ALTER INDEX statement are valid only for partitioned indexes.

The storage of partitioned database entities in tablespaces of different block sizes is subject
to several restrictions. Refer to Oracle Database VLDB and Partitioning Guide for a
discussion of these restrictions.

Restrictions on Modifying Index Partitions

Modifying index partitions is subject to the following restrictions:

• You cannot specify any of these clauses for an index on a temporary table.

• You can combine several operations on the base index into one ALTER INDEX statement
(except RENAME and REBUILD), but you cannot combine partition operations with other
partition operations or with operations on the base index.

modify_index_default_attrs

Specify new values for the default attributes of a partitioned index.

Restriction on Modifying Partition Default Attributes

The only attribute you can specify for a hash-partitioned global index or for an index on a
hash-partitioned table is TABLESPACE.

TABLESPACE

Specify the default tablespace for new partitions of an index or subpartitions of an index
partition.

logging_clause

Specify the default logging attribute of a partitioned index or an index partition.

Refer to logging_clause for a full description of this clause.

FOR PARTITION

Chapter 10
ALTER INDEX

10-169

Use the FOR PARTITION clause to specify the default attributes for the subpartitions of a
partition of a local index on a composite-partitioned table.

Restriction on FOR PARTITION

You cannot specify FOR PARTITION for a list partition.

See Also:

"Modifying Default Attributes: Example"

add_hash_index_partition

Use this clause to add a partition to a global hash-partitioned index. Oracle Database
adds hash partitions and populates them with index entries rehashed from an existing
hash partition of the index, as determined by the hash function. If you omit the partition
name, then Oracle Database assigns a name of the form SYS_Pn. If you omit the
TABLESPACE clause, then Oracle Database places the partition in the tablespace
specified for the index. If no tablespace is specified for the index, then Oracle
Database places the partition in the default tablespace of the user, if one has been
specified, or in the system default tablespace.

modify_index_partition

Use the modify_index_partition clause to modify the real physical attributes, logging
attribute, or storage characteristics of index partition partition or its subpartitions. For
a hash-partitioned global index, the only subclause of this clause you can specify is
UNUSABLE.

COALESCE

Specify this clause to merge the contents of index partition blocks where possible to
free blocks for reuse.

CLEANUP

Specify CLEANUP to remove orphaned index entries for records that were previously
dropped or truncated by a table partition maintenance operation.

To determine whether an index partition contains orphaned index entries, you can
query the ORPHANED_ENTRIES column of the USER_, DBA_, ALL_PART_INDEXES data
dictionary views. Refer to Oracle Database Reference for more information.

UPDATE BLOCK REFERENCES

The UPDATE BLOCK REFERENCES clause is valid only for normal indexes on index-
organized tables. Use this clause to update all stale guess data block addresses
stored in the secondary index partition.

Restrictions on UPDATE BLOCK REFERENCES

This clause is subject to the following restrictions:

• You cannot specify the physical_attributes_clause for an index on a hash-
partitioned table.

Chapter 10
ALTER INDEX

10-170

• You cannot specify UPDATE BLOCK REFERENCES with any other clause in ALTER INDEX.

Note:

If the index is a local index on a composite-partitioned table, then the changes you
specify here will override any attributes specified earlier for the subpartitions of
index, as well as establish default values of attributes for future subpartitions of that
partition. To change the default attributes of the partition without overriding the
attributes of subpartitions, use ALTER TABLE ... MODIFY DEFAULT ATTRIBUTES FOR
PARTITION.

See Also:

"Marking an Index Unusable: Examples"

UNUSABLE Clause

This clause has the same function for index partitions that it has for the index as a whole.
Refer to "USABLE | UNUSABLE".

index_compression

This clause is relevant for composite-partitioned indexes. Use this clause to change the
compression attribute for the partition and every subpartition in that partition. Oracle
Database marks each index subpartition in the partition UNUSABLE and you must then rebuild
these subpartitions. Prefix compression must already have been specified for the index
before you can specify the prefix_compression clause for a partition, or advanced index
compression must have already been specified for the index before you can specify the
advanced_index_compression clause for a partition. You can specify this clause only at the
partition level. You cannot change the compression attribute for an individual subpartition.

You can use this clause for noncomposite index partitions. However, it is more efficient to use
the rebuild_clause for noncomposite partitions, which lets you rebuild and set the
compression attribute in one step.

rename_index_partition

Use the rename_index_partition clauses to rename index partition or subpartition to
new_name.

Restrictions on Renaming Index Partitions

Renaming index partitions is subject to the following restrictions:

• You cannot rename the subpartition of a list partition.

• For a partition of a domain index, index cannot be marked IN_PROGRESS or FAILED, none
of the partitions can be marked IN_PROGRESS, and the partition you are renaming cannot
be marked FAILED.

Chapter 10
ALTER INDEX

10-171

See Also:

"Renaming an Index Partition: Example"

drop_index_partition

Use the drop_index_partition clause to remove a partition and the data in it from a
partitioned global index. When you drop a partition of a global index, Oracle Database
marks the next index partition UNUSABLE. You cannot drop the highest partition of a
global index.

See Also:

"Dropping an Index Partition: Example"

split_index_partition

Use the split_index_partition clause to split a partition of a global range-partitioned
index into two partitions, adding a new partition to the index. This clause is not valid for
hash-partitioned global indexes. Instead, use the add_hash_index_partition clause.

Splitting a partition marked UNUSABLE results in two partitions, both marked UNUSABLE.
You must rebuild the partitions before you can use them.

Splitting a partition marked USABLE results in two partitions populated with index data.
Both new partitions are marked USABLE.

AT Clause

Specify the new noninclusive upper bound for split_partition_1. The value_list
must evaluate to less than the presplit partition bound for partition_name_old and
greater than the partition bound for the next lowest partition (if there is one).

INTO Clause

Specify (optionally) the name and physical attributes of each of the two partitions
resulting from the split.

See Also:

"Splitting a Partition: Example"

coalesce_index_partition

This clause is valid only for hash-partitioned global indexes. Oracle Database reduces
by one the number of index partitions. Oracle Database selects the partition to
coalesce based on the requirements of the hash function. Use this clause if you want
to distribute index entries of a selected partition into one of the remaining partitions
and then remove the selected partition.

Chapter 10
ALTER INDEX

10-172

modify_index_subpartition

Use the modify_index_subpartition clause to mark UNUSABLE or allocate or deallocate
storage for a subpartition of a local index on a composite-partitioned table. All other attributes
of such a subpartition are inherited from partition-level default attributes.

Examples

Storing Index Blocks in Reverse Order: Example

The following statement rebuilds index ord_customer_ix (created in "Creating an Index:
Example") so that the bytes of the index block are stored in reverse order:

ALTER INDEX ord_customer_ix REBUILD REVERSE;

Rebuilding an Index in Parallel: Example

The following statement causes the index to be rebuilt from the existing index by using
parallel execution processes to scan the old and to build the new index:

ALTER INDEX ord_customer_ix REBUILD PARALLEL;

Modifying Real Index Attributes: Example

The following statement alters the oe.cust_lname_ix index so that future data blocks within
this index use 5 initial transaction entries:

ALTER INDEX oe.cust_lname_ix
 INITRANS 5;

If the oe.cust_lname_ix index were partitioned, then this statement would also alter the
default attributes of future partitions of the index. Partitions added in the future would then
use 5 initial transaction entries and an incremental extent of 100K.

Enabling Parallel Queries: Example

The following statement sets the parallel attributes for index upper_ix (created in "Creating a
Function-Based Index: Example") so that scans on the index will be parallelized:

ALTER INDEX upper_ix PARALLEL;

Renaming an Index: Example

The following statement renames an index:

ALTER INDEX upper_ix RENAME TO upper_name_ix;

Marking an Index Unusable: Examples

The following statements use the cost_ix index, which was created in "Creating a Range-
Partitioned Global Index: Example". Partition p1 of that index was dropped in "Dropping an
Index Partition: Example". The first statement marks index partition p2 as UNUSABLE:

ALTER INDEX cost_ix
 MODIFY PARTITION p2 UNUSABLE;

The next statement marks the entire index cost_ix as UNUSABLE:

ALTER INDEX cost_ix UNUSABLE;

Chapter 10
ALTER INDEX

10-173

Rebuilding Unusable Index Partitions: Example

The following statements rebuild partitions p2 and p3 of the cost_ix index, making the
index once more usable: The rebuilding of partition p3 will not be logged:

ALTER INDEX cost_ix
 REBUILD PARTITION p2;
ALTER INDEX cost_ix
 REBUILD PARTITION p3 NOLOGGING;

Changing MAXEXTENTS: Example

The following statement changes the maximum number of extents for partition p3 and
changes the logging attribute:

/* This example will fail if the tablespace in which partition p3
 resides is locally managed.
*/
ALTER INDEX cost_ix MODIFY PARTITION p3
 STORAGE(MAXEXTENTS 30) LOGGING;

Renaming an Index Partition: Example

The following statement renames an index partition of the cost_ix index (created in
"Creating a Range-Partitioned Global Index: Example"):

ALTER INDEX cost_ix
 RENAME PARTITION p3 TO p3_Q3;

Splitting a Partition: Example

The following statement splits partition p2 of index cost_ix (created in "Creating a
Range-Partitioned Global Index: Example") into p2a and p2b:

ALTER INDEX cost_ix
 SPLIT PARTITION p2 AT (1500)
 INTO (PARTITION p2a TABLESPACE tbs_01 LOGGING,
 PARTITION p2b TABLESPACE tbs_02);

Dropping an Index Partition: Example

The following statement drops index partition p1 from the cost_ix index:

ALTER INDEX cost_ix
 DROP PARTITION p1;

Modifying Default Attributes: Example

The following statement alters the default attributes of local partitioned index prod_idx,
which was created in "Creating an Index on a Hash-Partitioned Table: Example".
Partitions added in the future will use 5 initial transaction entries:

ALTER INDEX prod_idx
 MODIFY DEFAULT ATTRIBUTES INITRANS 5;

Chapter 10
ALTER INDEX

10-174

ALTER INDEXTYPE
Purpose

Use the ALTER INDEXTYPE statement to add or drop an operator of the indextype or to modify
the implementation type or change the properties of the indextype.

Prerequisites

The indextype must be in your own schema or you must have the ALTER ANY INDEXTYPE
system privilege.

To add a new operator, you must have the EXECUTE object privilege on the operator.

To change the implementation type, you must have the EXECUTE object privilege on the new
implementation type.

Syntax

alter_indextype::=

ALTER INDEXTYPE

schema .

indextype

ADD

DROP

schema .

operator (parameter_types)

,

using_type_clause

COMPILE

WITH LOCAL

RANGE

PARTITION storage_table_clause

;

(using_type_clause::=, storage_table_clause)

using_type_clause::=

USING

schema .

implementation_type

array_DML_clause

(array_DML_clause)

Chapter 10
ALTER INDEXTYPE

10-175

array_DML_clause

WITH

WITHOUT

ARRAY DML

(

schema .

type

,

schema .

varray_type

)

,

storage_table_clause

WITH

SYSTEM

USER

MANAGED STORAGE TABLES

Semantics

schema

Specify the name of the schema in which the indextype resides. If you omit schema,
then Oracle Database assumes the indextype is in your own schema.

indextype

Specify the name of the indextype to be modified.

ADD | DROP

Use the ADD or DROP clause to add or drop an operator.

No special privilege needed to drop.

• For schema, specify the schema containing the operator. If you omit schema, then
Oracle assumes the operator is in your own schema.

• For operator, specify the name of the operator supported by the indextype.

All the operators listed in this clause must be valid operators.

• For parameter_type, list the types of parameters to the operator.

using_type_clause

The USING clause lets you specify a new type to provide the implementation for the
indextype.

Chapter 10
ALTER INDEXTYPE

10-176

array_DML_clause

Use this clause to modify the indextype to support the array interface for the
ODCIIndexInsert method.

type and varray_type

If the data type of the column to be indexed is a user-defined object type, then you must
specify this clause to identify the varray varray_type that Oracle should use to hold column
values of type. If the indextype supports a list of types, then you can specify a corresponding
list of varray types. If you omit schema for either type or varray_type, then Oracle assumes
the type is in your own schema.

If the data type of the column to be indexed is a built-in system type, then any varray type
specified for the indextype takes precedence over the ODCI types defined by the system.

COMPILE

Use this clause to recompile the indextype explicitly. This clause is required only after some
upgrade operations, because Oracle Database normally recompiles the indextype
automatically.

storage_table_clause

This clause has the same behavior when altering an indextype that it has when you are
creating an indextype. Refer to the CREATE INDEXTYPE storage_table_clause for more
information.

WITH LOCAL PARTITION

This clause has the same behavior when altering an indextype that it has when you create an
indextype. Refer to the CREATE INDEXTYPE clause WITH LOCAL PARTITION for more
information.

Examples

Altering an Indextype: Example

The following example compiles the position_indextype indextype created in "Creating an
Indextype: Example".

ALTER INDEXTYPE position_indextype COMPILE;

ALTER INMEMORY JOIN GROUP
Purpose

Use the ALTER INMEMORY JOIN GROUP statement to add a table column to a join group or
remove a table column from a join group.

Chapter 10
ALTER INMEMORY JOIN GROUP

10-177

See Also:

• CREATE INMEMORY JOIN GROUP and DROP INMEMORY JOIN
GROUP

• Oracle Database In-Memory Guide for more information on join groups

Prerequisites

If the join group is not in your own schema, or if the column you want to add to or
remove from the join group is in a table that is not in your own schema, then you must
have the ALTER ANY TABLE system privilege.

Syntax

alter_inmemory_join_group::=

ALTER INMEMORY JOIN GROUP

schema .

join_group

ADD

REMOVE
(

schema .

table (column)) ;

Semantics

schema

Specify the schema containing the join group. If you omit schema, then the database
assumes the join group is in your own schema.

join_group

Specify the name of the join group to be modified.

You can view existing join groups by querying the DBA_JOINGROUPS or
USER_JOINGROUPS data dictionary view. Refer to Oracle Database Reference for more
information on these views.

ADD

Specify ADD to add a table column to the join group. A join group can contain a
maximum of 255 columns.

REMOVE

Specify REMOVE to remove a table column from the join group. A join group must
contain at least 2 columns.

Chapter 10
ALTER INMEMORY JOIN GROUP

10-178

schema

Specify the schema of the table that contains the column to be added to or removed from the
join group. If you omit schema, then Oracle Database assumes the table is in your own
schema.

table

Specify the name of the table that contains the column to be added to or removed from the
join group.

column

Specify the name of the column to be added to or removed from the join group.

Examples

The following example adds a column to the prod_id1 join group created in Examples in the
documentation on CREATE INMEMORY JOIN GROUP:

ALTER INMEMORY JOIN GROUP prod_id1
 ADD(product_descriptions(product_id));

The following example removes a column from the prod_id1 join group:

ALTER INMEMORY JOIN GROUP prod_id1
 REMOVE(product_descriptions(product_id));

ALTER JAVA
Purpose

Use the ALTER JAVA statement to force the resolution of a Java class schema object or
compilation of a Java source schema object. (You cannot call the methods of a Java class
before all its external references to Java names are associated with other classes.)

See Also:

Oracle Database Java Developer's Guide for more information on resolving Java
classes and compiling Java sources

Prerequisites

The Java source or class must be in your own schema, or you must have the ALTER ANY
PROCEDURE system privilege. You must also have the EXECUTE object privilege on Java
classes.

Chapter 10
ALTER JAVA

10-179

Syntax

alter_java::=

ALTER JAVA
SOURCE

CLASS

schema .

object_name

RESOLVER ((match_string

, schema_name

–
))

COMPILE

RESOLVE

invoker_rights_clause

;

(invoker_rights_clause::=)

invoker_rights_clause::=

AUTHID

CURRENT_USER

DEFINER

Semantics

JAVA SOURCE

Use ALTER JAVA SOURCE to compile a Java source schema object.

JAVA CLASS

Use ALTER JAVA CLASS to resolve a Java class schema object.

object_name

Specify a previously created Java class or source schema object. Use double
quotation marks to preserve lower- or mixed-case names.

RESOLVER

The RESOLVER clause lets you specify how schemas are searched for referenced fully
specified Java names, using the mapping pairs specified when the Java class or
source was created.

See Also:

CREATE JAVA and "Resolving a Java Class: Example"

Chapter 10
ALTER JAVA

10-180

RESOLVE | COMPILE

RESOLVE and COMPILE are synonymous keywords. They let you specify that Oracle Database
should attempt to resolve the primary Java class schema object.

• When applied to a class, resolution of referenced names to other class schema objects
occurs.

• When applied to a source, source compilation occurs.

invoker_rights_clause

The invoker_rights_clause lets you specify whether the methods of the class execute with
the privileges and in the schema of the user who defined it or with the privileges and in the
schema of CURRENT_USER.

This clause also determines how Oracle Database resolves external names in queries, DML
operations, and dynamic SQL statements in the member functions and procedures of the
type.

AUTHID CURRENT_USER

Specify CURRENT_USER if you want the methods of the class to execute with the privileges of
CURRENT_USER. This clause is the default and creates an invoker-rights class.

This clause also specifies that external names in queries, DML operations, and dynamic SQL
statements resolve in the schema of CURRENT_USER. External names in all other statements
resolve in the schema in which the methods reside.

AUTHID DEFINER

Specify DEFINER if you want the methods of the class to execute with the privileges of the
user who defined the class.

This clause also specifies that external names resolve in the schema where the methods
reside.

See Also:

Oracle Database PL/SQL Language Reference for information on how
CURRENT_USER is determined

Examples

Resolving a Java Class: Example

The following statement forces the resolution of a Java class:

ALTER JAVA CLASS "Agent"
 RESOLVER (("/usr/bin/bfile_dir/*" pm)(* public))
 RESOLVE;

Chapter 10
ALTER JAVA

10-181

11
SQL Statements: ALTER LIBRARY to ALTER
SESSION

This chapter contains the following SQL statements:

• ALTER LIBRARY

• ALTER LOCKDOWN PROFILE

• ALTER MATERIALIZED VIEW

• ALTER MATERIALIZED VIEW LOG

• ALTER MATERIALIZED ZONEMAP

• ALTER OPERATOR

• ALTER OUTLINE

• ALTER PACKAGE

• ALTER PLUGGABLE DATABASE

• ALTER PROCEDURE

• ALTER PROFILE

• ALTER RESOURCE COST

• ALTER ROLE

• ALTER ROLLBACK SEGMENT

• ALTER SEQUENCE

• ALTER SESSION

ALTER LIBRARY
Purpose

The ALTER LIBRARY statement explicitly recompiles a library. Explicit recompilation eliminates
the need for implicit run-time recompilation and prevents associated run-time compilation
errors and performance overhead.

Note:

This statement does not change the declaration or definition of an existing library.
To redeclare or redefine a library, use the "CREATE LIBRARY " with the OR REPLACE
clause.

11-1

Prerequisites

If the library is in the SYS schema, you must be connected as SYSDBA. Otherwise, the
library must be in your own schema or you must have the ALTER ANY LIBRARY system
privilege.

Syntax

alter_library::=

ALTER LIBRARY

schema .

library_name

library_compile_clause

EDITIONABLE

NONEDITIONABLE

(library_compile_clause: See Oracle Database PL/SQL Language Reference for the
syntax of this clause.)

Semantics

schema

Specify the schema containing the library. If you omit schema, then Oracle Database
assumes the procedure is in your own schema.

library_name

Specify the name of the library to be recompiled.

library_compile_clause

See Oracle Database PL/SQL Language Reference for the syntax and semantics of
this clause and for complete information on creating and compiling libraries.

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the library becomes an editioned or
noneditioned object if editioning is later enabled for the schema object type LIBRARY in
schema. The default is EDITIONABLE. For information about altering editioned and
noneditioned objects, see Oracle Database Development Guide.

ALTER LOCKDOWN PROFILE
Purpose

Use the ALTER LOCKDOWN PROFILE statement to alter a PDB lockdown profile. You can
use PDB lockdown profiles in a multitenant environment to restrict user operations in
pluggable databases (PDBs).

Immediately after you create a lockdown profile with the CREATE LOCKDOWN PROFILE
statement, all user operations are enabled for the profile. You can then use the ALTER
LOCKDOWN PROFILE statement to disable certain user operations for the profile. When a
lockdown profile is applied to a CDB, application container, or PDB, users cannot

Chapter 11
ALTER LOCKDOWN PROFILE

11-2

perform the operations that are the disabled for the profile. If you later would like to reenable
some of the disabled user operations, you can use the ALTER LOCKDOWN PROFILE statement to
do so.

The ALTER LOCKDOWN PROFILE statement allows you to disable or enable:

• User operations associated with certain database features (using the lockdown_features
clause)

• User operations associated with certain database options (using the lockdown_options
clause)

• The issuance of certain SQL statements (using the lockdown_statements clause)

See Also:

• CREATE LOCKDOWN PROFILE and DROP LOCKDOWN PROFILE

• Oracle Database Security Guide for more information on PDB lockdown profiles

Prerequisites

• You must issue the ALTER LOCKDOWN PROFILE statement from the CDB Root or Application
Root.

• You must have the ALTER LOCKDOWN PROFILE system privilege in the container in which
you issue the statement.

Syntax

alter_lockdown_profile::=

ALTER LOCKDOWN PROFILE profile_name

lockdown_features

lockdown_options

lockdown_statements

USERS =

ALL

COMMON

LOCAL

;

lockdown_features::=

DISABLE

ENABLE
FEATURE

= (’ feature ’

,

)

ALL

EXCEPT = (’ feature ’

,

)

Chapter 11
ALTER LOCKDOWN PROFILE

11-3

lockdown_options::=

DISABLE

ENABLE
OPTION

= (’ option ’

,

)

ALL

EXCEPT = (’ option ’

,

)

lockdown_statements::=

DISABLE

ENABLE
STATEMENT

= (’ SQL_statement ’

,

)

= (’ SQL_statement ’) statement_clauses

ALL

EXCEPT = (’ SQL_statement ’

,

)

statement_clauses::=

CLAUSE

= (’ clause ’

,

)

= (’ clause ’) clause_options

ALL

EXCEPT = (’ clause ’

,

)

clause_options::=

OPTION

= (’
clause_option

clause_option_pattern ’

,

)

= (’ clause_option ’) option_values

ALL

EXCEPT = (’
clause_option

clause_option_pattern
’

,

)

Chapter 11
ALTER LOCKDOWN PROFILE

11-4

option_values::=

VALUE = (’ option_value ’

,

)

MINVALUE = ’ option_value ’

MAXVALUE = ’ option_value ’

Semantics

profile_name

Specify the name of the PDB lockdown profile to be altered.

You can find the names of existing PDB lockdown profiles by querying the
DBA_LOCKDOWN_PROFILES data dictionary view.

lockdown_features

This clause lets you disable or enable user operations associated with certain database
features.

• Specify DISABLE to add a restriction for the specified features. Users will be restricted
from performing these operations in any PDB to which the profile applies.

• Specify ENABLE to remove a restriction for the specified features. Users will be allowed to
perform these operations in any PDB to which the profile applies.

• Use feature to specify the features whose operations you want to disable or enable.
Table 11-1 lists the features you can specify and describes the operations associated with
each feature. The table also indicates a feature bundle for each feature. For feature, you
can specify a feature bundle name to disable or enable user operations for all features in
that bundle, or you can specify an individual feature name. You can specify feature
bundle names and feature names in any combination of uppercase and lowercase letters.

• Use ALL to specify all features listed in the table.

• Use ALL EXCEPT to specify all features listed in the table except the specified features.

If you omit this clause, then the default is ENABLE ALL.

Note:

• The Oracle Text type FILE_DATASTORE is deprecated. Oracle recommends that
you replace FILE_DATASTORE indexes with the DIRECTORY_DATASTORE index type
for greater security as it enables file access to be based on directory objects.

• The Oracle Text type URL_DATASTORE is deprecated. Oracle recommeds that you
replace URL_DATASTORE with NETWORK_DATASTORE, which uses ACLs to control
access to specific servers.

Chapter 11
ALTER LOCKDOWN PROFILE

11-5

Table 11-1 PDB Lockdown Profile Features

Feature Bundle Feature Operations

AWR_ACCESS AWR_ACCESS The PDB taking manual and automatic
Automatic Workload Repository (AWR)
snapshots

COMMON_SCHEMA_ACCESS COMMON_USER_LOCAL_SCHEMA_ACC
ESS

A common user invoking an invoker’s
rights code unit or accessing a BEQUEATH
CURRENT_USER view owned by any local
user in the PDB

COMMON_SCHEMA_ACCESS LOCAL_USER_COMMON_SCHEMA_ACC
ESS

• A local user with an ANY system
privilege (for example, CREATE ANY
TABLE) creating or accessing objects
in a common user’s schema for which
the privilege applies. Note: Disabling
the
LOCAL_USER_COMMON_SCHEMA_ACCE
SS feature does not prevent a local
user with the SYSDBA privilege or
specific object privileges from creating
or accessing objects in a common
user’s schema. Therefore, Oracle
recommends against granting such
privileges to local users.

• A local user with the BECOME USER
system privilege becoming a common
user

• A local user altering a common user
by issuing an ALTER USER statement

• A local user using a common user for
proxy connections

COMMON_SCHEMA_ACCESS SECURITY_POLICIES Creation of certain security policies by a
local user on a common object, including:

• Data Redaction
• Fine Grained Auditing (FGA)
• Real Application Security (RAS)
• Virtual Private Database (VPD)

CONNECTIONS COMMON_USER_CONNECT A common user connecting to the PDB
directly. If this feature is disabled, then in
order to connect to the PDB, a common
user must first connect to the CDB root
and then switch to the desired PDB using
the ALTER SESSION SET CONTAINER
statement.

CONNECTIONS LOCAL_SYSOPER_RESTRICTED_MOD
E_CONNECT

A local user with the SYSOPER privilege
connecting to a PDB that is open in
RESTRICTED mode

CTX_LOGGING CTX_LOGGING Use logging in Oracle Text PL/SQL
procedures such as
CTX_OUTPUT.START_LOG and
CTX_OUTPUT.START_QUERY_LOG

Chapter 11
ALTER LOCKDOWN PROFILE

11-6

Table 11-1 (Cont.) PDB Lockdown Profile Features

Feature Bundle Feature Operations

JAVA JAVA Java as a whole. If this feature is disabled,
then all options and features of the
database that depend on Java will be
disabled.

JAVA_RUNTIME JAVA_RUNTIME Operations through Java that require
java.lang.RuntimePermission

NETWORK_ACCESS AQ_PROTOCOLS Using HTTP, SMTP, and OCI notification
features.

NETWORK_ACCESS CTX_PROTOCOLS • Operations that access the Oracle
Text datastore types
DIRECTORY_DATASTORE and
NETWORK_DATASTORE.

The type DIRECTORY_DATASTORE
has an attribute called DIRECTORY
which is the directory object whose
data is to be indexed. The default
value of this attribute is null.

The DIRECTORY_DATASTORE type
replaces the FILE_DATASTORE type,
which is deprecated.

The NETWORK_DATASTORE type
replaces the URL_DATASTORE type,
which is deprecated.

The type NETWORK_DATASTORE
conforms to the standard database
security model for providing URL
access based on access control lists
(ACLs), which support the HTTP and
HTTPS protocols.

The URL_DATASTORE type did not
support HTTPS.

• Printing tokens as part of CTX logging
with events
EVENT_INDEX_PRINT_TOKEN and
EVENT_OPT_PRINT_TOKEN

NETWORK_ACCESS DBMS_DEBUG_JDWP Using the DBMS_DEBUG_JDWP PL/SQL
package

NETWORK_ACCESS UTL_HTTP Using the UTL_HTTP PL/SQL package

NETWORK_ACCESS UTL_INADDR Using the UTL_INADDR PL/SQL package

NETWORK_ACCESS UTL_SMTP Using the UTL_SMTP PL/SQL package

NETWORK_ACCESS UTL_TCP Using the UTL_TCP PL/SQL package

NETWORK_ACCESS XDB_PROTOCOLS Using HTTP, FTP, and other network
protocols through XDB

OS_ACCESS DROP_TABLESPACE_KEEP_DATAFIL
ES

Dropping a tablespace in the PDB without
specifying the INCLUDING CONTENTS AND
DATAFILES clause in DROP TABLESPACE
statement

Chapter 11
ALTER LOCKDOWN PROFILE

11-7

Table 11-1 (Cont.) PDB Lockdown Profile Features

Feature Bundle Feature Operations

OS_ACCESS EXTERNAL_FILE_ACCESS Using external files or directory objects in
the PDB when PATH_PREFIX is not set for
the PDB

OS_ACCESS EXTERNAL_PROCEDURES Using external procedure agent extproc
in the PDB

OS_ACCESS FILE_TRANSFER Using the DBMS_FILE_TRANSFER package

OS_ACCESS JAVA_OS_ACCESS Using java.io.FilePermission from
Java

OS_ACCESS LOB_FILE_ACCESS Using BFILE and CFILE data types

OS_ACCESS TRACE_VIEW_ACCESS Using the following trace views:

• [G]V$DIAG_OPT_TRACE_RECORDS
• [G]V$DIAG_SQL_TRACE_RECORDS
• [G]V$DIAG_TRACE_FILE_CONTENTS
• V$DIAG_SESS_OPT_TRACE_RECORDS
• V$DIAG_SESS_SQL_TRACE_RECORDS

OS_ACCESS UTL_FILE Using UTL_FILE. If this feature is
disabled, then the database blocks use of
the UTL_FILE.FOPEN function.

lockdown_options

This clause lets you disable or enable user operations associate with certain database
options.

• Specify DISABLE to disable user operations for the specified options. Users will be
restricted from performing these operations in any PDB to which the profile
applies.

• Specify ENABLE to enable user operations for the specified options. Users will be
allowed to perform these operations in any PDB to which the profile applies.

• For option, you can specify the following database options in any combination of
uppercase and lowercase letters:

– DATABASE QUEUING – Represents user operations associated with the Oracle
Database Advanced Queuing option

– PARTITIONING – Represents user operations associated with the Oracle
Partitioning option

• Use ALL to specify all options in the preceding list.

• Use ALL EXCEPT to specify all options in the preceding list except the specified
options.

If you omit this clause, then the default is ENABLE OPTION ALL.

lockdown_statements

This clause lets you disable or enable the issuance of certain SQL statements.

Chapter 11
ALTER LOCKDOWN PROFILE

11-8

• Specify DISABLE to disable the issuance of the specified SQL statements. Users will be
restricted from issuing these statements in any PDB to which the profile applies.

• Specify ENABLE to enable the issuance of the specified SQL statements. Users will be
allowed to issue these statements in any PDB to which the profile applies.

• For SQL_statement, you can specify the following statements in any combination of
uppercase and lowercase letters:

– ADMINISTER KEY MANAGEMENT
– ALTER DATABASE
– ALTER PLUGGABLE DATABASE
– ALTER SESSION
– ALTER SYSTEM
– ALTER TABLE
– ALTER INDEX
– ALTER TABLESPACE
– ALTER PROFILE
– CREATE TABLE
– CREATE INDEX
– CREATE TABLESPACE
– CREATE PROFILE
– CREATE DATABASE LINK
– DROP TABLE
– DROP INDEX
– DROP TABLESPACE
– DROP PROFILE

• Use ALL to specify all statements in the preceding list.

• Use ALL EXCEPT to specify all statements in the preceding list except the specified
statements.

If you omit this clause, then the default is ENABLE STATEMENT ALL.

statement_clauses

This clause lets you disable or enable specific clauses of the specified SQL statement.

• Use clause to specify the SQL keywords that form the clause you want to disable or
enable. You can specify a clause in any combination of uppercase and lowercase letters.

• Use ALL to specify all clauses for the SQL statement.

• Use ALL EXCEPT to specify all clauses for the SQL statement except the specified clauses.

For clause, you must specify at least enough keywords to unambiguously identify a single
clause for the SQL statement. The following are some examples of how to specify clause for
the ALTER SYSTEM statement:

Chapter 11
ALTER LOCKDOWN PROFILE

11-9

• To specify the archive_log_clause::=, specify ARCHIVE. This is sufficient because
no other ALTER SYSTEM clause begins with the keyword ARCHIVE. Alternatively, you
can specify ARCHIVE LOG for semantic clarity, but the LOG keyword is unnecessary.

• To specify either of the rolling_migration_clauses::=, you must specify START
ROLLING MIGRATION or STOP ROLLING MIGRATION in order to distinguish these
clauses from the similarly named rolling_patch_clauses::= START ROLLING PATCH
and STOP ROLLING PATCH.

• You cannot specify the single keyword FLUSH, because several ALTER SYSTEM
clauses begin with this keyword. You must instead specify each clause separately,
such as FLUSH SHARED_POOL or FLUSH GLOBAL CONTEXT.

There is no need to specify optional keywords within a clause, because they have no
effect. For example:

• The archive_log_clause::= has an optional INSTANCE keyword. However, you
cannot enable or disable only ARCHIVE LOG clauses that contain the INSTANCE
keyword. Specifying ARCHIVE LOG INSTANCE is equivalent to specifying ARCHIVE or
ARCHIVE LOG.

There is no need to specify parameter values within a clause, because they have no
effect. For example:

• The shutdown_dispatcher_clause::= requires you to specify a dispatcher_name.
However, you cannot enable or disable SHUTDOWN clauses that contain a specific
dispatcher name. Specifying SHUTDOWN dispatcher1 is equivalent to specifying
SHUTDOWN.

See Also:

ALTER DATABASE , ALTER PLUGGABLE DATABASE, ALTER SESSION ,
and ALTER SYSTEM for complete information on the clauses for these
statements

clause_options

This clause is valid only when you specify one of the following for
lockdown_statements and statement_clauses:

{ DISABLE | ENABLE } STATEMENT = ('ALTER SESSION') CLAUSE = ('SET')
{ DISABLE | ENABLE } STATEMENT = ('ALTER SYSTEM') CLAUSE = ('SET')

This clause lets you disable or enable the setting or modification of specific options
with the ALTER SESSION SET or ALTER SYSTEM SET statements.

• Use clause_option to specify the option you want to disable or enable.

• Use clause_option_pattern to specify a pattern that matches multiple options.
Within the pattern, specify a percent sign (%) to match zero or more characters in
an option name. For example, specifying 'QUERY_REWRITE_%' is equivalent to
specifying both the QUERY_REWRITE_ENABLED and QUERY_REWRITE_INTEGRITY
options.

Chapter 11
ALTER LOCKDOWN PROFILE

11-10

• You can specify clause_option and clause_option_pattern in any combination of
uppercase and lowercase letters.

• Use ALL to specify all options.

• Use ALL EXCEPT to specify all options except the specified options.

See Also:

The alter_session_set_clause clause of ALTER SESSION and the
alter_system_set_clause clause of ALTER SYSTEM for complete information on the
options you can specify for these statements

option_values

This clause is valid only when you specify one of the following for lockdown_statements,
statement_clauses, and clause_options:

DISABLE STATEMENT = ('ALTER SESSION') CLAUSE = ('SET') OPTION = clause_option
DISABLE STATEMENT = ('ALTER SYSTEM') CLAUSE = ('SET') OPTION = clause_option

This clause lets you specify a default value for an option when disabling the setting of that
option. For options that take numeric values, this clause also lets you restrict users from
setting an option to certain values.

• The VALUE clause lets you specify a default option_value for clause_option, which will
go into effect for any PDB to which the profile applies after you close and reopen the
PDB. If clause_option accepts multiple default values, then you can specify more than
one option_value in a comma-separated list. The purpose of using this clause is to
simultaneously set a default value for an option and restrict users from setting or
modifying the value.

• The MINVALUE clause lets you restricts users from setting the value of clause_option to a
value less than option_value. You can specify this clause only for options that take a
numeric value.

• The MAXVALUE clause lets you restricts users from setting the value of clause_option to a
value greater than option_value. You can specify this clause only for options that take a
numeric value.

• You can specify both the MINVALUE and MAXVALUE clauses together to restrict users from
setting the value of clause_options to any value less than MINVALUE or greater than
MAXVALUE.

• MINVALUE and MAXVALUE settings take effect immediately when the lockdown profile is
assigned to a PDB; you need not close and reopen the PDB.

See Also:

Oracle Database Reference for complete information on the values allowed for the
various options

Chapter 11
ALTER LOCKDOWN PROFILE

11-11

USERS Clause

As a CDB administrator or an Application administrator you can use the USERS clause
to configure lockdown rules for a specific set of users.

The values for USERS in a CDB$ROOT lockdown profile are as follows:

• USERS = ALL means that the lockdown rule applies to all users in the PDB.

• USERS = COMMON means that the lockdown rule applies only to CDB COMMON users
in the PDB.

• USERS = LOCAL means that the lockdown rule applies only to local users in the
PDB. Application common users are considered local users at the CDB level.

The values for USERS in an Application ROOT lockdown profile are as follows:

• USERS = ALL means that the lockdown rule applies to all users in the PDB.

• USERS = COMMON means that the lockdown rule applies only to Application COMMON
users in the PDB.

• USERS = LOCAL means that the lockdown rule applies only to local users in the
PDB.

Note that the Application lockdown profile rules should not affect CDB common users.

• ALL users means Application common users and local users in the PDB.

• COMMON users means Application common users in the PDB.

Examples

The following statement creates PDB lockdown profile hr_prof:

CREATE LOCKDOWN PROFILE hr_prof;

The remaining examples in this section alter hr_prof.

Disabling Features for PDB Lockdown Profiles: Examples

The following statement disables all features in the feature bundle NETWORK_ACCESS:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE FEATURE = ('NETWORK_ACCESS');

The following statement disables the LOB_FILE_ACCESS and TRACE_VIEW ACCESS
features:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE FEATURE = ('LOB_FILE_ACCESS', 'TRACE_VIEW_ACCESS');

Chapter 11
ALTER LOCKDOWN PROFILE

11-12

The following statement disables all features except the COMMON_USER_LOCAL_SCHEMA_ACCESS
and LOCAL_USER_COMMON_SCHEMA_ACCESS features:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE FEATURE ALL EXCEPT = ('COMMON_USER_LOCAL_SCHEMA_ACCESS',
'LOCAL_USER_COMMON_SCHEMA_ACCESS');

The following statement disables all features:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE FEATURE ALL;

Enabling Features for PDB Lockdown Profiles: Examples

The following statement enables the UTL_HTTP and UTL_SMTP features, as well as all features
in the feature bundle OS_ACCESS:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE FEATURE = ('UTL_HTTP', 'UTL_SMTP', 'OS_ACCESS');

The following statement enables all features except the AQ_PROTOCOLS and CTX_PROTOCOLS
features:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE FEATURE ALL EXCEPT = ('AQ_PROTOCOLS', 'CTX_PROTOCOLS');

The following statement enables all features:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE FEATURE ALL;

Disabling Options for PDB Lockdown Profiles: Examples

The following statement disables user operations associated with the Oracle Database
Advanced Queuing option:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE OPTION = ('DATABASE QUEUING');

The following statement disables user operations associated with the Oracle Partitioning
option:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE OPTION = ('PARTITIONING');

Enabling Options for PDB Lockdown Profiles: Examples

Chapter 11
ALTER LOCKDOWN PROFILE

11-13

The following statement enables user operations associated with the Oracle Database
Advanced Queuing option:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE OPTION = ('DATABASE QUEUING');

The following statement enables user operations associated both with the Oracle
Database Advanced Queuing option and the Oracle Partitioning option:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE OPTION ALL;

Disabling SQL Statements for PBB Lockdown Profiles: Examples

The following statement disables the ALTER DATABASE statement:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER DATABASE');

The following statement disables the ALTER SYSTEM SUSPEND and ALTER SYSTEM RESUME
statements:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER SYSTEM')
 CLAUSE = ('SUSPEND', 'RESUME');

The following statement disables all clauses of the ALTER PLUGGABLE DATABASE
statement, except DEFAULT TABLESPACE and DEFAULT TEMPORARY TABLESPACE:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER PLUGGABLE DATABASE')
 CLAUSE ALL EXCEPT = ('DEFAULT TABLESPACE', 'DEFAULT
TEMPORARY TABLESPACE');

The following statement disables using the ALTER SESSION statement to set or modify
COMMIT_WAIT or CURSOR_SHARING:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER SESSION')
 CLAUSE = ('SET')
 OPTION = ('COMMIT_WAIT', 'CURSOR_SHARING');

The following statement disables using the ALTER SYSTEM statement to set or modify
the value of PDB_FILE_NAME_CONVERT. It also sets the default value for
PDB_FILE_NAME_CONVERT to 'cdb1_pdb0', 'cdb1_pdb1'. This default value will take
effect the next time the PDB is closed and reopened.

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER SYSTEM')
 CLAUSE = ('SET')

Chapter 11
ALTER LOCKDOWN PROFILE

11-14

 OPTION = ('PDB_FILE_NAME_CONVERT')
 VALUE = ('cdb1_pdb0', 'cdb1_pdb1');

The following statement disables using the ALTER SYSTEM statement to set or modify the value
of CPU_COUNT to a value less than 8:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER SYSTEM')
 CLAUSE = ('SET')
 OPTION = ('CPU_COUNT')
 MINVALUE = '8';

The following statement disables using the ALTER SYSTEM statement to set or modify the value
of CPU_COUNT to a value greater than 2:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER SYSTEM')
 CLAUSE = ('SET')
 OPTION = ('CPU_COUNT')
 MAXVALUE = '2';

The following statement disables using the ALTER SYSTEM statement to set or modify the value
of CPU_COUNT to a value less than 2 or greater than 6:

ALTER LOCKDOWN PROFILE hr_prof
 DISABLE STATEMENT = ('ALTER SYSTEM')
 CLAUSE = ('SET')
 OPTION = ('CPU_COUNT')
 MINVALUE = '2'
 MAXVALUE = '6';

Enabling SQL Statements for PBB Lockdown Profiles: Examples

The following statement enables all statements except ALTER DATABASE:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE STATEMENT ALL EXCEPT = ('ALTER DATABASE');

The following statement enables the ALTER DATABASE MOUNT and ALTER DATABASE OPEN
statements:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE STATEMENT = ('ALTER DATABASE')
 CLAUSE = ('MOUNT', 'OPEN');

The following statement enables all clauses of the ALTER PLUGGABLE DATABASE statement,
except DEFAULT TABLESPACE and DEFAULT TEMPORARY TABLESPACE:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE STATEMENT = ('ALTER PLUGGABLE DATABASE')

Chapter 11
ALTER LOCKDOWN PROFILE

11-15

 CLAUSE ALL EXCEPT = ('DEFAULT TABLESPACE', 'DEFAULT TEMPORARY
TABLESPACE');

The following statement enables using the ALTER SESSION statement to set or modify
COMMIT_WAIT or CURSOR_SHARING:

ALTER LOCKDOWN PROFILE hr_prof
 ENABLE STATEMENT = ('ALTER SESSION')
 CLAUSE = ('SET')
 OPTION = ('COMMIT_WAIT', 'CURSOR_SHARING');

ALTER MATERIALIZED VIEW
Purpose

A materialized view is a database object that contains the results of a query. The FROM
clause of the query can name tables, views, and other materialized views. Collectively
these source objects are called master tables (a replication term) or detail tables (a
data warehousing term). This reference uses the term master tables for consistency.
The databases containing the master tables are called the master databases.

Use the ALTER MATERIALIZED VIEW statement to modify an existing materialized view in
one or more of the following ways:

• To change its storage characteristics

• To change its refresh method, mode, or time

• To alter its structure so that it is a different type of materialized view

• To enable or disable query rewrite

Note:

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for
backward compatibility.

See Also:

• CREATE MATERIALIZED VIEW for more information on creating
materialized views

• Oracle Database Administrator’s Guide for information on materialized
views in a replication environment

• Oracle Database Data Warehousing Guide for information on
materialized views in a data warehousing environment

Chapter 11
ALTER MATERIALIZED VIEW

11-16

Prerequisites

The materialized view must be in your own schema, or you must have the ALTER ANY
MATERIALIZED VIEW system privilege.

To enable a materialized view for query rewrite:

• If all of the master tables in the materialized view are in your schema, then you must
have the QUERY REWRITE privilege.

• If any of the master tables are in another schema, then you must have the GLOBAL QUERY
REWRITE privilege.

• If the materialized view is in another user's schema, then both you and the owner of that
schema must have the appropriate QUERY REWRITE privilege, as described in the
preceding two items. In addition, the owner of the materialized view must have SELECT
access to any master tables that the materialized view owner does not own.

To specify an edition in the evaluation_edition_clause or the unusable_editions_clause,
you must have the USE privilege on the edition.

Chapter 11
ALTER MATERIALIZED VIEW

11-17

Syntax

alter_materialized_view::=

ALTER MATERIALIZED VIEW

schema .

materialized_view

physical_attributes_clause

modify_mv_column_clause

table_compression

inmemory_table_clause

LOB_storage_clause

,

modify_LOB_storage_clause

,

alter_table_partitioning

parallel_clause

logging_clause

allocate_extent_clause

deallocate_unused_clause

shrink_clause

CACHE

NOCACHE alter_iot_clauses USING INDEX physical_attributes_clause

MODIFY scoped_table_ref_constraint

alter_mv_refresh evaluation_edition_clause

ENABLE

DISABLE
ON QUERY COMPUTATION

alter_query_rewrite_clause

COMPILE

CONSIDER FRESH

;

(physical_attributes_clause::=, modify_mv_column_clause::=, table_compression::=,
inmemory_table_clause::=, LOB_storage_clause::= , modify_LOB_storage_clause::=,
alter_table_partitioning::= (part of ALTER TABLE), parallel_clause::=, logging_clause::=,
allocate_extent_clause::=, deallocate_unused_clause::=, shrink_clause::=,
alter_iot_clauses::=, scoped_table_ref_constraint::=, alter_mv_refresh::=,
evaluation_edition_clause::=, alter_query_rewrite_clause::=)

Chapter 11
ALTER MATERIALIZED VIEW

11-18

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

modify_mv_column_clause::=

MODIFY (column

ENCRYPT encryption_spec

DECRYPT

)

table_compression::=

COMPRESS

ROW STORE COMPRESS

BASIC

ADVANCED

COLUMN STORE COMPRESS

FOR

QUERY

ARCHIVE

LOW

HIGH

NO

ROW LEVEL LOCKING

NOCOMPRESS

inmemory_table_clause::=

INMEMORY

inmemory_attributes

NO INMEMORY inmemory_column_clause

(inmemory_attributes::=, inmemory_column_clause::=)

Chapter 11
ALTER MATERIALIZED VIEW

11-19

inmemory_attributes::=

inmemory_memcompress inmemory_priority inmemory_distribute

inmemory_duplicate inmemory_spatial

(inmemory_memcompress::=, inmemory_priority::=, inmemory_distribute::=,
inmemory_duplicate::=)

inmemory_memcompress::=

MEMCOMPRESS FOR

DML

QUERY

CAPACITY

LOW

HIGH

NO MEMCOMPRESS

MEMCOMPRESS AUTO

inmemory_priority::=

PRIORITY

NONE

LOW

MEDIUM

HIGH

CRITICAL

inmemory_distribute::=

DISTRIBUTE

AUTO

BY

ROWID RANGE

PARTITION

SUBPARTITION

FOR SERVICE

DEFAULT

ALL

service_name

NONE

Chapter 11
ALTER MATERIALIZED VIEW

11-20

inmemory_duplicate::=

DUPLICATE

ALL

NO DUPLICATE

inmemory_column_clause::=

INMEMORY

inmemory_memcompress

NO INMEMORY
(column

,

)

(inmemory_memcompress::=)

LOB_storage_clause::=

LOB

(LOB_item

,

) STORE AS

SECUREFILE

BASICFILE

(LOB_storage_parameters)

(LOB_item) STORE AS

SECUREFILE

BASICFILE

LOB_segname

(LOB_storage_parameters)

(LOB_storage_parameters::=)

LOB_storage_parameters::=

TABLESPACE tablespace

TABLESPACE SET tablespace_set

LOB_parameters

storage_clause

storage_clause

Chapter 11
ALTER MATERIALIZED VIEW

11-21

(TABLESPACE SET: not supported with ALTER MATERIALIZED VIEW, LOB_parameters::=,
storage_clause::=)

LOB_parameters::=

ENABLE

DISABLE
STORAGE IN ROW

CHUNK integer

PCTVERSION integer

FREEPOOLS integer

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

(storage_clause::=, logging_clause::=)

modify_LOB_storage_clause::=

MODIFY LOB (LOB_item) (modify_LOB_parameters)

(modify_LOB_parameters::=)

Chapter 11
ALTER MATERIALIZED VIEW

11-22

modify_LOB_parameters::=

storage_clause

PCTVERSION

FREEPOOLS
integer

REBUILD FREEPOOLS

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

allocate_extent_clause

shrink_clause

deallocate_unused_clause

(storage_clause::=, LOB_retention_clause::=, LOB_compression_clause::=,
logging_clause::=, allocate_extent_clause::=, shrink_clause::=, deallocate_unused_clause::=)

parallel_clause::=

NOPARALLEL

PARALLEL

integer

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

allocate_extent_clause::=

Chapter 11
ALTER MATERIALIZED VIEW

11-23

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

(size_clause::=)

deallocate_unused_clause::=

DEALLOCATE UNUSED

KEEP size_clause

(size_clause::=)

shrink_clause::=

SHRINK SPACE

COMPACT CASCADE

alter_iot_clauses::=

index_org_table_clause

alter_overflow_clause

alter_mapping_table_clauses

COALESCE

(index_org_table_clause::=, alter_overflow_clause::=, alter_mapping_table_clauses:
not supported with materialized views)

index_org_table_clause::=

mapping_table_clause

PCTTHRESHOLD integer

prefix_compression index_org_overflow_clause

(mapping_table_clause: not supported with materialized views, prefix_compression:
not supported for altering materialized views, index_org_overflow_clause::=)

Chapter 11
ALTER MATERIALIZED VIEW

11-24

index_org_overflow_clause::=

INCLUDING column_name

OVERFLOW

segment_attributes_clause

(segment_attributes_clause::=—part of ALTER TABLE)

alter_overflow_clause::=

add_overflow_clause

OVERFLOW

segment_attributes_clause

allocate_extent_clause

shrink_clause

deallocate_unused_clause

(allocate_extent_clause::=, shrink_clause::=, deallocate_unused_clause::=)

add_overflow_clause::=

ADD OVERFLOW

segment_attributes_clause (PARTITION

segment_attributes_clause

,

)

(segment_attributes_clause::=--part of ALTER TABLE)

scoped_table_ref_constraint::=

SCOPE FOR (
ref_column

ref_attribute
) IS

schema . scope_table_name

c_alias

alter_mv_refresh::=

Chapter 11
ALTER MATERIALIZED VIEW

11-25

REFRESH

FAST

COMPLETE

FORCE

ON
DEMAND

COMMIT

START WITH

NEXT
date

WITH PRIMARY KEY

USING
DEFAULT MASTER ROLLBACK SEGMENT

MASTER ROLLBACK SEGMENT rollback_segment

USING
ENFORCED

TRUSTED
CONSTRAINTS

evaluation_edition_clause::=

EVALUATE USING

CURRENT EDITION

EDITION edition

NULL EDITION

alter_query_rewrite_clause::=

ENABLE

DISABLE

QUERY REWRITE

unusable_editions_clause

Note:

You cannot specify only QUERY REWRITE. You must specify at least one of the
following: ENABLE, DISABLE, or a subclause of the
unusable_editions_clause.

Chapter 11
ALTER MATERIALIZED VIEW

11-26

unusable_editions_clause::=

UNUSABLE BEFORE

CURRENT EDITION

EDITION edition

UNUSABLE BEGINNING WITH

CURRENT EDITION

EDITION edition

NULL EDITION

Semantics

schema

Specify the schema containing the materialized view. If you omit schema, then Oracle
Database assumes the materialized view is in your own schema.

materialized_view

Specify the name of the materialized view to be altered.

physical_attributes_clause

Specify new values for the PCTFREE, PCTUSED, and INITRANS parameters (or, when used in the
USING INDEX clause, for the INITRANS parameter only) and the storage characteristics for the
materialized view. Refer to ALTER TABLE for information on the PCTFREE, PCTUSED, and
INITRANS parameters and to storage_clause for information about storage characteristics.

modify_mv_column_clause

Use this clause to encrypt or decrypt this column of the materialized view. Refer to the CREATE
TABLE clause encryption_spec for information on this clause.

table_compression

Use the table_compression clause to instruct Oracle Database whether to compress data
segments to reduce disk and memory use. Refer to the table_compression clause of CREATE
TABLE for the full semantics of this clause.

inmemory_table_clause

Use the inmemory_table_clause to enable or disable the materialized view or its columns for
the In-Memory Column Store (IM column store), or to change the In-Memory attributes for the
materialized view or its columns. This clause has the same semantics here as it has for the
ALTER TABLE statement. Refer to the inmemory_table_clause of ALTER TABLE for the full
semantics of this clause.

Chapter 11
ALTER MATERIALIZED VIEW

11-27

LOB_storage_clause

The LOB_storage_clause lets you specify the storage characteristics of a new LOB.
LOB storage behaves for materialized views exactly as it does for tables. Refer to the
LOB_storage_clause (in CREATE TABLE) for information on the LOB storage
parameters.

modify_LOB_storage_clause

The modify_LOB_storage_clause lets you modify the physical attributes of the LOB
attribute LOB_item or the LOB object attribute. Modification of LOB storage behaves for
materialized views exactly as it does for tables.

See Also:

The modify_LOB_storage_clause of ALTER TABLE for information on the LOB
storage parameters that can be modified

alter_table_partitioning

The syntax and general functioning of the partitioning clauses for materialized views is
the same as for partitioned tables. Refer to alter_table_partitioning in the
documentation on ALTER TABLE.

Restriction on Altering Materialized View Partitions

You cannot specify the LOB_storage_clause or modify_LOB_storage_clause within
any of the partitioning_clauses.

Note:

If you want to keep the contents of the materialized view synchronized with
those of the master table, then Oracle recommends that you manually
perform a complete refresh of all materialized views dependent on the table
after dropping or truncating a table partition.

MODIFY PARTITION UNUSABLE LOCAL INDEXES

Use this clause to mark UNUSABLE all the local index partitions associated with
partition.

MODIFY PARTITION REBUILD UNUSABLE LOCAL INDEXES

Use this clause to rebuild the unusable local index partitions associated with
partition.

parallel_clause

The parallel_clause lets you change the default degree of parallelism for the
materialized view.

Chapter 11
ALTER MATERIALIZED VIEW

11-28

For complete information on this clause, refer to parallel_clause in the documentation on
CREATE TABLE.

logging_clause

Specify or change the logging characteristics of the materialized view. Refer to the
logging_clause for a full description of this clause.

allocate_extent_clause

The allocate_extent_clause lets you explicitly allocate a new extent for the materialized
view. Refer to the allocate_extent_clause for a full description of this clause.

deallocate_unused_clause

Use the deallocate_unused_clause to explicitly deallocate unused space at the end of the
materialized view and make the freed space available for other segments. Refer to the
deallocate_unused_clause for a full description of this clause.

shrink_clause

Use this clause to compact the materialized view segments. For complete information on this
clause, refer to shrink_clause in the documentation on CREATE TABLE.

CACHE | NOCACHE

For data that will be accessed frequently, CACHE specifies that the blocks retrieved for this
table are placed at the most recently used end of the LRU list in the buffer cache when a full
table scan is performed. This attribute is useful for small lookup tables. NOCACHE specifies that
the blocks are placed at the least recently used end of the LRU list. Refer to "CACHE |
NOCACHE | CACHE READS" in the documentation on CREATE TABLE for more information
about this clause.

alter_iot_clauses

Use the alter_iot_clauses to change the characteristics of an index-organized materialized
view. The keywords and parameters of the components of the alter_iot_clauses have the
same semantics as in ALTER TABLE, with the restrictions that follow.

Restrictions on Altering Index-Organized Materialized Views

You cannot specify the mapping_table_clause or the prefix_compression clause of the
index_org_table_clause.

See Also:

index_org_table_clause of CREATE MATERIALIZED VIEW for information on creating
an index-organized materialized view

USING INDEX Clause

Use this clause to change the value of INITRANS and STORAGE parameters for the index
Oracle Database uses to maintain the materialized view data.

Restriction on the USING INDEX clause

Chapter 11
ALTER MATERIALIZED VIEW

11-29

You cannot specify the PCTUSED or PCTFREE parameters in this clause.

MODIFY scoped_table_ref_constraint

Use the MODIFY scoped_table_ref_constraint clause to rescope a REF column or
attribute to a new table or to an alias for a new column.

Restrictions on Rescoping REF Columns

You can rescope only one REF column or attribute in each ALTER MATERIALIZED VIEW
statement, and this must be the only clause in this statement.

alter_mv_refresh

Use the alter_mv_refresh clause to change the default method and mode and the
default times for automatic refreshes. If the contents of the master tables of a
materialized view are modified, then the data in the materialized view must be updated
to make the materialized view accurately reflect the data currently in its master
table(s). This clause lets you schedule the times and specify the method and mode for
Oracle Database to refresh the materialized view.

See Also:

• This clause only sets the default refresh options. For instructions on
actually implementing the refresh, refer to Oracle Database
Administrator’s Guide and Oracle Database Data Warehousing Guide.

• Oracle Database Data Warehousing Guide to learn how to use refresh
statistics to monitor the performance of materialized view refresh
operations

FAST Clause

Specify FAST for the fast refresh method, which performs the refresh according to the
changes that have occurred to the master tables. The changes are stored either in the
materialized view log associated with the master table (for conventional DML changes)
or in the direct loader log (for direct-path INSERT operations).

For both conventional DML changes and for direct-path INSERT operations, other
conditions may restrict the eligibility of a materialized view for fast refresh.

When you change the refresh method to FAST in an ALTER MATERIALIZED VIEW
statement, Oracle Database does not perform this verification. If the materialized view
is not eligible for fast refresh, then Oracle Database returns an error when you attempt
to refresh this view.

Chapter 11
ALTER MATERIALIZED VIEW

11-30

See Also:

• Oracle Database Administrator’s Guide for restrictions on fast refresh in
replication environments

• Oracle Database Data Warehousing Guide for restrictions on fast refresh in
data warehouse environments

• "Automatic Refresh: Examples"

COMPLETE Clause

Specify COMPLETE for the complete refresh method, which is implemented by executing the
defining query of the materialized view. If you specify a complete refresh, then Oracle
Database performs a complete refresh even if a fast refresh is possible.

See Also:

"Complete Refresh: Example"

FORCE Clause

Specify FORCE if, when a refresh occurs, you want Oracle Database to perform a fast refresh if
one is possible or a complete refresh otherwise.

ON COMMIT Clause

Specify ON COMMIT if you want a refresh to occur whenever Oracle Database commits a
transaction that operates on a master table of the materialized view.

You cannot specify both ON COMMIT and ON DEMAND. If you specify ON COMMIT, then you cannot
also specify START WITH or NEXT.

Restriction on ON COMMIT

This clause is supported only for materialized join views and single-table materialized
aggregate views.

ON DEMAND Clause

Specify ON DEMAND if you want the materialized view to be refreshed on demand by calling one
of the three DBMS_MVIEW refresh procedures. If you omit both ON COMMIT and ON DEMAND, then
ON DEMAND is the default.

You cannot specify both ON COMMIT and ON DEMAND. START WITH and NEXT take precedence
over ON DEMAND. Therefore, in most circumstances it is not meaningful to specify ON DEMAND
when you have specified START WITH or NEXT.

Chapter 11
ALTER MATERIALIZED VIEW

11-31

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information on these procedures

• Oracle Database Data Warehousing Guide on the types of materialized
views you can create by specifying REFRESH ON DEMAND

START WITH Clause

Specify START WITH date to indicate a date for the first automatic refresh time.

NEXT Clause

Specify NEXT to indicate a date expression for calculating the interval between
automatic refreshes.

Both the START WITH and NEXT values must evaluate to a time in the future. If you omit
the START WITH value, then Oracle Database determines the first automatic refresh
time by evaluating the NEXT expression with respect to the creation time of the
materialized view. If you specify a START WITH value but omit the NEXT value, then
Oracle Database refreshes the materialized view only once. If you omit both the START
WITH and NEXT values, or if you omit the alter_mv_refresh entirely, then Oracle
Database does not automatically refresh the materialized view.

WITH PRIMARY KEY Clause

Specify WITH PRIMARY KEY to change a rowid materialized view to a primary key
materialized view. Primary key materialized views allow materialized view master
tables to be reorganized without affecting the ability of the materialized view to
continue to fast refresh.

For you to specify this clause, the master table must contain an enabled primary key
constraint and must have defined on it a materialized view log that logs primary key
information.

See Also:

• Oracle Database Administrator’s Guide for detailed information about
primary key materialized views

• "Primary Key Materialized View: Example"

USING ROLLBACK SEGMENT Clause

This clause is not valid if your database is in automatic undo mode, because in that
mode Oracle Database uses undo tablespaces instead of rollback segments. Oracle
strongly recommends that you use automatic undo mode. This clause is supported for
backward compatibility with replication environments containing older versions of
Oracle Database that still use rollback segments.

For complete information on this clause, refer to CREATE MATERIALIZED VIEW ... "USING
ROLLBACK SEGMENT Clause".

Chapter 11
ALTER MATERIALIZED VIEW

11-32

USING ... CONSTRAINTS Clause

This clause has the same semantics in CREATE MATERIALIZED VIEW and ALTER MATERIALIZED
VIEW statements. For complete information, refer to "USING ... CONSTRAINTS Clause" in the
documentation on CREATE MATERIALIZED VIEW.

evaluation_edition_clause

Use this clause to change the evaluation edition for the materialized view. This clause has the
same semantics in CREATE MATERIALIZED VIEW and ALTER MATERIALIZED VIEW statements. For
complete information on this clause, refer to evaluation_edition_clause in the documentation
on CREATE MATERIALIZED VIEW.

Notes on Changing the Evaluation Edition of a Materialized View

The following notes apply when changing the evaluation edition of a materialized view:

• If you change the evaluation edition of a refresh-on-commit materialized view, then
Oracle Database performs a complete refresh of the materialized view unless you specify
CONSIDER FRESH.

• If you change the evaluation edition of a refresh-on-demand materialized view, then
Oracle Database sets the staleness state of the materialized view to STALE unless you
specify CONSIDER FRESH.

• For both refresh-on-commit and refresh-on-demand materialized views: If you change the
evaluation edition and specify CONSIDER FRESH, then Oracle Database does not update
the staleness state of the materialized view and does not rebuild the materialized view.
Therefore, you can specify CONSIDER FRESH to indicate that, although the evaluation
edition has changed, there is no difference in the results that subquery will produce. If the
materialized view is stale and in need of either a fast refresh or a complete refresh before
this statement is issued, then the state will not be changed and the materialized view may
contain bad data.

{ ENABLE | DISABLE } ON QUERY COMPUTATION

This clause lets you control whether the materialized view is a real-time materialized view or
a regular materialized view.

• Specify ENABLE ON QUERY COMPUTATION to convert a regular materialized view into a real-
time materialized view by enabling on-query computation.

• Specify DISABLE ON QUERY COMPUTATION to convert a real-time materialized view into a
regular materialized view by disabling on-query computation.

This clause has the same semantics in CREATE MATERIALIZED VIEW and ALTER MATERIALIZED
VIEW statements. For complete information on this clause, refer to { ENABLE | DISABLE } ON
QUERY COMPUTATION in the documentation on CREATE MATERIALIZED VIEW.

alter_query_rewrite_clause

Use this clause to specify whether the materialized view is eligible to be used for query
rewrite.

ENABLE Clause

Specify ENABLE to enable the materialized view for query rewrite. If you currently specify, or
previously specified, the unusable_editions_clause for the materialized view, then it is not
enabled for query rewrite in the unusable editions.

Chapter 11
ALTER MATERIALIZED VIEW

11-33

See Also:

• "Enabling Query Rewrite: Example"

• Oracle Database Data Warehousing Guide to learn how to use refresh
statistics to monitor the performance of materialized view refresh
operations

Restrictions on Enabling Materialized Views

Enabling materialized views is subject to the following restrictions:

• If the materialized view is in an invalid or unusable state, then it is not eligible for
query rewrite in spite of the ENABLE mode.

• You cannot enable query rewrite if the materialized view was created totally or in
part from a view.

• You can enable query rewrite only if all user-defined functions in the materialized
view are DETERMINISTIC.

See Also:

CREATE FUNCTION

• You can enable query rewrite only if expressions in the statement are repeatable.
For example, you cannot include CURRENT_TIME or USER.

See Also:

Oracle Database Data Warehousing Guide for more information on query
rewrite

DISABLE Clause

Specify DISABLE if you do not want the materialized view to be eligible for use by query
rewrite. If a materialized view is in the invalid state, then it is not eligible for use by
query rewrite, whether or not it is disabled. However, a disabled materialized view can
be refreshed.

unusable_editions_clause

Use this clause to specify the editions in which the materialized view is not eligible for
query rewrite. This clause has the same semantics in CREATE MATERIALIZED VIEW and
ALTER MATERIALIZED VIEW statements. For complete information on this clause, refer to
unusable_editions_clause in the documentation on CREATE MATERIALIZED VIEW.

Cursors that use the materialized view for query rewrite and were compiled in an
edition that is made unusable will be invalidated.

Chapter 11
ALTER MATERIALIZED VIEW

11-34

COMPILE

Specify COMPILE to explicitly revalidate a materialized view. If an object upon which the
materialized view depends is dropped or altered, then the materialized view remains
accessible, but it is invalid for query rewrite. You can use this clause to explicitly revalidate
the materialized view to make it eligible for query rewrite.

If the materialized view fails to revalidate, then it cannot be refreshed or used for query
rewrite.

See Also:

"Compiling a Materialized View: Example"

CONSIDER FRESH

This clause lets you manage the staleness state of a materialized view after changes have
been made to its master tables. CONSIDER FRESH directs Oracle Database to consider the
materialized view fresh and therefore eligible for query rewrite in the TRUSTED or
STALE_TOLERATED modes.

Caution:

The CONSIDER FRESH clause also directs Oracle Database to no longer apply any
rows in a materialized view log or Partition Change Tracking changes to the
materialized view prior to the issuance of the CONSIDER FRESH clause. In other
words, the pending changes will be ignored and deleted, not applied to the
materialized view. This may result in the materialized view containing more or less
data than the base table.

Because Oracle Database cannot guarantee the freshness of the materialized view, query
rewrite in ENFORCED mode is not supported. This clause also sets the staleness state of the
materialized view to UNKNOWN. The staleness state is displayed in the STALENESS column of the
ALL_MVIEWS, DBA_MVIEWS, and USER_MVIEWS data dictionary views.

A materialized view is stale if changes have been made to the contents of any of its master
tables. This clause directs Oracle Database to assume that the materialized view is fresh and
that no such changes have been made. Therefore, actual updates to those tables pending
refresh are purged with respect to the materialized view.

See Also:

• Oracle Database Data Warehousing Guide for more information on query
rewrite and the implications of performing partition maintenance operations on
master tables

• "CONSIDER FRESH: Example"

Chapter 11
ALTER MATERIALIZED VIEW

11-35

Examples

Automatic Refresh: Examples

The following statement changes the default refresh method for the
sales_by_month_by_state materialized view (created in "Creating Materialized
Aggregate Views: Example") to FAST:

ALTER MATERIALIZED VIEW sales_by_month_by_state
 REFRESH FAST;

The next automatic refresh of the materialized view will be a fast refresh provided it is
a simple materialized view and its master table has a materialized view log that was
created before the materialized view was created or last refreshed.

Because the REFRESH clause does not specify START WITH or NEXT values, Oracle
Database will use the refresh intervals established by the REFRESH clause when the
sales_by_month_by_state materialized view was created or last altered.

The following statement establishes a new interval between automatic refreshes for
the sales_by_month_by_state materialized view:

ALTER MATERIALIZED VIEW sales_by_month_by_state
 REFRESH NEXT SYSDATE+7;

Because the REFRESH clause does not specify a START WITH value, the next automatic
refresh occurs at the time established by the START WITH and NEXT values specified
when the sales_by_month_by_state materialized view was created or last altered.

At the time of the next automatic refresh, Oracle Database refreshes the materialized
view, evaluates the NEXT expression SYSDATE+7 to determine the next automatic
refresh time, and continues to refresh the materialized view automatically once a
week. Because the REFRESH clause does not explicitly specify a refresh method,
Oracle Database continues to use the refresh method specified by the REFRESH clause
of the CREATE MATERIALIZED VIEW or most recent ALTER MATERIALIZED VIEW statement.

CONSIDER FRESH: Example

The following statement instructs Oracle Database that materialized view
sales_by_month_by_state should be considered fresh. This statement allows
sales_by_month_by_state to be eligible for query rewrite in TRUSTED mode even after
you have performed partition maintenance operations on the master tables of
sales_by_month_by_state:

ALTER MATERIALIZED VIEW sales_by_month_by_state CONSIDER FRESH;

As a result of the preceding statement, any partition maintenance operations that were
done to the base table since the last refresh of the materialized view will not be applied
to the materialized view. For example, the add, drop, or change of data in a partition in
the base table will not be reflected in the materialized view if CONSIDER FRESH is used
before the next refresh of the materialized view. Refer to CONSIDER FRESH for more
information.

Chapter 11
ALTER MATERIALIZED VIEW

11-36

See Also:

"Splitting Table Partitions: Examples" for a partitioning maintenance example that
would require this ALTER MATERIALIZED VIEW example

Complete Refresh: Example

The following statement specifies a new refresh method, a new NEXT refresh time, and a new
interval between automatic refreshes of the emp_data materialized view (created in "Periodic
Refresh of Materialized Views: Example"):

ALTER MATERIALIZED VIEW emp_data
 REFRESH COMPLETE
 START WITH TRUNC(SYSDATE+1) + 9/24
 NEXT SYSDATE+7;

The START WITH value establishes the next automatic refresh for the materialized view to be
9:00 a.m. tomorrow. At that point, Oracle Database performs a complete refresh of the
materialized view, evaluates the NEXT expression, and subsequently refreshes the
materialized view every week.

Enabling Query Rewrite: Example

The following statement enables query rewrite on the materialized view emp_data and
implicitly revalidates it:

ALTER MATERIALIZED VIEW emp_data
 ENABLE QUERY REWRITE;

Primary Key Materialized View: Example

The following statement changes the rowid materialized view order_data (created in
"Creating Rowid Materialized Views: Example") to a primary key materialized view. This
example requires that you have already defined a materialized view log with a primary key on
order_data.

ALTER MATERIALIZED VIEW order_data
 REFRESH WITH PRIMARY KEY;

Compiling a Materialized View: Example

The following statement revalidates the materialized view store_mv:

ALTER MATERIALIZED VIEW order_data COMPILE;

ALTER MATERIALIZED VIEW LOG
Purpose

A materialized view log is a table associated with the master table of a materialized view.
Use the ALTER MATERIALIZED VIEW LOG statement to alter the storage characteristics or type of
an existing materialized view log.

Chapter 11
ALTER MATERIALIZED VIEW LOG

11-37

Note:

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for
backward compatibility.

See Also:

• CREATE MATERIALIZED VIEW LOG for information on creating a
materialized view log

• ALTER MATERIALIZED VIEW for more information on materialized
views, including refreshing them

• CREATE MATERIALIZED VIEW for a description of the various types of
materialized views

Prerequisites

You must be the owner of the master table, or you must have the READ or SELECT
privilege on the master table and the ALTER privilege on the materialized view log.

See Also:

Oracle Database Administrator’s Guide for detailed information about the
prerequisites for ALTER MATERIALIZED VIEW LOG

Chapter 11
ALTER MATERIALIZED VIEW LOG

11-38

Syntax

alter_materialized_view_log::=

ALTER MATERIALIZED VIEW LOG

FORCE

ON

schema .

table

physical_attributes_clause

add_mv_log_column_clause

alter_table_partitioning

parallel_clause

logging_clause

allocate_extent_clause

shrink_clause

move_mv_log_clause

CACHE

NOCACHE mv_log_augmentation mv_log_purge_clause for_refresh_clause

;

(physical_attributes_clause::=, add_mv_log_column_clause::=, alter_table_partitioning::= (in
ALTER TABLE), parallel_clause::=, logging_clause::=, allocate_extent_clause::=,
shrink_clause::=, move_mv_log_clause::=, mv_log_augmentation::=,
mv_log_purge_clause::=, for_refresh_clause::=)

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

storage_clause::=

add_mv_log_column_clause::=

ADD (column)

Chapter 11
ALTER MATERIALIZED VIEW LOG

11-39

allocate_extent_clause::=

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

(size_clause::=)

shrink_clause::=

SHRINK SPACE

COMPACT CASCADE

move_mv_log_clause::=

MOVE segment_attributes_clause

parallel_clause

parallel_clause::=

NOPARALLEL

PARALLEL

integer

mv_log_augmentation::=

ADD

OBJECT ID

PRIMARY KEY

ROWID

SEQUENCE

(column

,

)

(column

,

)

,

new_values_clause

Chapter 11
ALTER MATERIALIZED VIEW LOG

11-40

(new_values_clause::=

new_values_clause::=

INCLUDING

EXCLUDING

NEW VALUES

mv_log_purge_clause::=

PURGE

IMMEDIATE

SYNCHRONOUS

ASYNCHRONOUS

START WITH datetime_expr

NEXT datetime_expr

REPEAT INTERVAL interval_expr

START WITH datetime_expr NEXT datetime_expr

REPEAT INTERVAL interval_expr

for_refresh_clause::=

FOR
SYNCHRONOUS REFRESH USING staging_log_name

FAST REFRESH

Semantics

FORCE

If you specify FORCE and any items specified with the ADD clause have already been specified
for the materialized view log, then Oracle Database does not return an error, but silently
ignores the existing elements and adds to the materialized view log any items that do not
already exist in the log. Likewise, if you specify INCLUDING NEW VALUES and that attribute has
already been specified for the materialized view log, Oracle Database ignores the
redundancy and does not return an error.

schema

Specify the schema containing the master table. If you omit schema, then Oracle Database
assumes the materialized view log is in your own schema.

table

Specify the name of the master table associated with the materialized view log to be altered.

Chapter 11
ALTER MATERIALIZED VIEW LOG

11-41

physical_attributes_clause

The physical_attributes_clause lets you change the value of the PCTFREE, PCTUSED,
and INITRANS parameters and the storage characteristics for the materialized view log,
the partition, the overflow data segment, or the default characteristics of a partitioned
materialized view log.

Restriction on Materialized View Log Physical Attributes

You cannot use the storage_clause to modify extent parameters if the materialized
view log resides in a locally managed tablespace. Refer to CREATE TABLE for a
description of these parameters.

add_mv_log_column_clause

When you add a column to the master table of the materialized view log, the database
does not automatically add a column to the materialized view log. Therefore, use this
clause to add a column to the materialized view log. Oracle Database will encrypt the
newly added column if the corresponding column of the master table is encrypted.

alter_table_partitioning

The syntax and general functioning of the partitioning clauses is the same as
described for the ALTER TABLE statement. Refer to alter_table_partitioning in the
documentation on ALTER TABLE.

Restrictions on Altering Materialized View Log Partitions

Altering materialized view log partitions is subject to the following restrictions:

• You cannot use the LOB_storage_clause or modify_LOB_storage_clause when
modifying partitions of a materialized view log.

• If you attempt to drop, truncate, or exchange a materialized view log partition, then
Oracle Database raises an error.

parallel_clause

The parallel_clause lets you specify whether parallel operations will be supported for
the materialized view log.

For complete information on this clause, refer to parallel_clause in the documentation
on CREATE TABLE.

logging_clause

Specify the logging attribute of the materialized view log. Refer to the logging_clause
for a full description of this clause.

allocate_extent_clause

Use the allocate_extent_clause to explicitly allocate a new extent for the
materialized view log. Refer to allocate_extent_clause for a full description of this
clause.

Chapter 11
ALTER MATERIALIZED VIEW LOG

11-42

shrink_clause

Use this clause to compact the materialized view log segments. For complete information on
this clause, refer to shrink_clause in the documentation on CREATE TABLE.

move_mv_log_clause

Use the MOVE clause to move the materialized view log table to a different tablespace, to
change other segment or storage attributes of the materialized view log, or to change the
parallelism of the materialized view log.

Restriction on Moving Materialized View Logs

The ENCRYPT clause of the storage_clause of segment_attributes is not valid for
materialized view logs.

CACHE | NOCACHE Clause

For data that will be accessed frequently, CACHE specifies that the blocks retrieved for this log
are placed at the most recently used end of the LRU list in the buffer cache when a full table
scan is performed. This attribute is useful for small lookup tables. NOCACHE specifies that the
blocks are placed at the least recently used end of the LRU list. Refer to "CACHE |
NOCACHE | CACHE READS" in the documentation on CREATE TABLE for more information
about this clause.

mv_log_augmentation

Use the ADD clause to augment the materialized view log so that it records the primary key
values, rowid values, object ID values, or a sequence when rows in the materialized view
master table are changed. This clause can also be used to record additional columns.

To stop recording any of this information, you must first drop the materialized view log and
then re-create it. Dropping the materialized view log and then re-creating it forces a complete
refresh for each of the existing materialized views that depend on the master table on its next
refresh.

Restriction on Augmenting Materialized View Logs

You can specify only one PRIMARY KEY, one ROWID, one OBJECT ID, one SEQUENCE, and each
column in the column list once for each materialized view log. You can specify only a single
occurrence of PRIMARY KEY, ROWID, OBJECT ID, SEQUENCE, and column list within this ALTER
statement. Also, if any of these values was specified at create time (either implicitly or
explicitly), you cannot specify that value in this ALTER statement unless you use the FORCE
option.

OBJECT ID

Specify OBJECT ID if you want the appropriate object identifier of all rows that are changed to
be recorded in the materialized view log.

Restriction on the OBJECT ID clause

You can specify OBJECT ID only for logs on object tables, and you cannot specify it for storage
tables.

PRIMARY KEY

Chapter 11
ALTER MATERIALIZED VIEW LOG

11-43

Specify PRIMARY KEY if you want the primary key values of all rows that are changed to
be recorded in the materialized view log.

ROWID

Specify ROWID if you want the rowid values of all rows that are changed to be recorded
in the materialized view log.

SEQUENCE

Specify SEQUENCE to indicate that a sequence value providing additional ordering
information should be recorded in the materialized view log.

column

Specify the additional columns whose values you want to be recorded in the
materialized view log for all rows that are changed. Typically these columns are filter
columns (non-primary-key columns referenced by subquery materialized views) and
join columns (non-primary-key columns that define a join in the WHERE clause of the
subquery).

See Also:

• CREATE MATERIALIZED VIEW for details on explicit and implicit
inclusion of materialized view log values

• Oracle Database Administrator’s Guide for more information about filter
columns and join columns

• "Rowid Materialized View Log: Example"

NEW VALUES Clause

The NEW VALUES clause lets you specify whether Oracle Database saves both old and
new values for update DML operations in the materialized view log. The value you set
in this clause applies to all columns in the log, not only to columns you may have
added in this ALTER MATERIALIZED VIEW LOG statement.

INCLUDING

Specify INCLUDING to save both new and old values in the log. If this log is for a table
on which you have a single-table materialized aggregate view, and if you want the
materialized view to be eligible for fast refresh, then you must specify INCLUDING.

EXCLUDING

Specify EXCLUDING to disable the recording of new values in the log. You can use this
clause to avoid the overhead of recording new values.

If you have a fast-refreshable single-table materialized aggregate view defined on this
table, then do not specify EXCLUDING NEW VALUES unless you first change the refresh
mode of the materialized view to something other than FAST.

Chapter 11
ALTER MATERIALIZED VIEW LOG

11-44

See Also:

"Materialized View Log EXCLUDING NEW VALUES: Example"

mv_log_purge_clause

Use this clause alter the purge attributes of the materialized view log in the following ways:

• Change the purge from IMMEDIATE SYNCHRONOUS to IMMEDIATE ASYNCHRONOUS or from
IMMEDIATE ASYNCHRONOUS to IMMEDIATE SYNCHRONOUS

• Change the purge from IMMEDIATE to scheduled or from scheduled to IMMEDIATE
• Specify a new start time and a new next time and interval
If you are altering purge from scheduled to IMMEDIATE, then the scheduled purged job
associated with that materialized view log is dropped. If you are altering purge from
IMMEDIATE to scheduled, then a purge job is created with the attributes provided. If you are
altering scheduled purge attributes, then only those attributes specified will be changed in the
scheduler purge job.

You must specify FORCE if you are altering log purge to its current state (that is, you are not
making any change), unless you are changing scheduled purge attributes.

To learn whether the purge time or interval has already been set for this materialized view
log, query the *_MVIEW_LOGS data dictionary views. See the CREATE MATERIALIZED VIEW LOG
clause mv_log_purge_clause for the full semantics of this clause.

for_refresh_clause

Use this clause to change the refresh method for which the materialized view log will be
used.

FOR SYNCHRONOUS REFRESH

Specify this clause to change from fast refresh to synchronous refresh, or complete refresh to
synchronous refresh. A staging log will be created.

If you are changing from fast refresh, then ensure that the following conditions are satisfied
before using this clause:

• All changes in the materialized view log have been consumed.

• Any refresh-on-demand materialized views associated with the master table have been
refreshed.

• Any refresh-on-commit materialized views associated with the master table have been
converted to refresh-on-demand materialized views.

After you use this clause, you cannot perform DML operations directly on the master table.
You must use the procedures in the DBMS_SYNC_REFRESH package to prepare and execute
change data operations.

FOR FAST REFRESH

Specify this clause to change from synchronous refresh to fast refresh, or complete refresh to
fast refresh. A materialized view log will be created.

Chapter 11
ALTER MATERIALIZED VIEW LOG

11-45

If you are changing from synchronous refresh to fast refresh, then ensure that all
changes in the staging log have been consumed before using this clause.

After you use this clause, you can perform DML operations directly on the master
table.

See the CREATE MATERIALIZED VIEW LOG clause for_refresh_clause for the full
semantics of this clause.

Examples

Rowid Materialized View Log: Example

The following statement alters an existing primary key materialized view log to also
record rowid information:

ALTER MATERIALIZED VIEW LOG ON order_items ADD ROWID;

Materialized View Log EXCLUDING NEW VALUES: Example

The following statement alters the materialized view log on hr.employees by adding a
filter column and excluding new values. Any materialized aggregate views that use this
log will no longer be fast refreshable. However, if fast refresh is no longer needed, this
action avoids the overhead of recording new values:

ALTER MATERIALIZED VIEW LOG ON employees
 ADD (commission_pct)
 EXCLUDING NEW VALUES;

ALTER MATERIALIZED ZONEMAP
Purpose

Use the ALTER MATERIALIZED ZONEMAP statement to modify an existing zone map in one
of the following ways:

• To change its attributes

• To change its default refresh method and mode

• To enable or disable its use for pruning

• To compile it, rebuild it, or make it unusable

See Also:

• CREATE MATERIALIZED ZONEMAP for information on creating zone
maps

• Oracle Database Data Warehousing Guide for more information on zone
maps

Prerequisites

The zone map must be in your own schema or you must have the ALTER ANY
MATERIALIZED VIEW system privilege.

Chapter 11
ALTER MATERIALIZED ZONEMAP

11-46

The user who owns the schema containing the zone map must have access to any base
tables of the zone map that reside outside of that schema, either through a READ or SELECT
object privilege on each of the tables, or through the READ ANY TABLE or SELECT ANY TABLE
system privilege.

Syntax

alter_materialized_zonemap::=

ALTER MATERIALIZED ZONEMAP

schema .

zonemap_name

alter_zonemap_attributes

zonemap_refresh_clause

ENABLE

DISABLE
PRUNING

COMPILE

REBUILD

UNUSABLE

;

alter_zonemap_attributes::=

PCTFREE integer

PCTUSED integer

CACHE

NOCACHE

zonemap_refresh_clause::=

REFRESH

FAST

COMPLETE

FORCE

ON

DEMAND

COMMIT

LOAD

DATA MOVEMENT

LOAD DATA MOVEMENT

Note:

When specifying the zonemap_refresh_clause, you must specify at least one
clause after the REFRESH keyword.

Chapter 11
ALTER MATERIALIZED ZONEMAP

11-47

Semantics

schema

Specify the schema containing the zone map. If you omit schema, then Oracle
Database assumes the zone map is in your own schema.

zonemap_name

Specify the name of the zone map to be altered.

alter_zonemap_attributes

Use this clause to modify the following attributes for the zone map: PCTFREE, PCTUSED,
and CACHE or NOCACHE. These attributes have the same semantics for ALTER
MATERIALIZED ZONEMAP and CREATE MATERIALIZED ZONEMAP. For complete information
on these attributes, refer to PCTFREE, PCTUSED, and CACHE | NOCACHE in the
documentation on CREATE MATERIALIZED ZONEMAP.

zonemap_refresh_clause

Use this clause to modify the default refresh method and mode for the zone map. This
clause has the same semantics for ALTER MATERIALIZED ZONEMAP and CREATE
MATERIALIZED ZONEMAP. For complete information on this clause, refer to
zonemap_refresh_clause in the documentation on CREATE MATERIALIZED ZONEMAP.

ENABLE | DISABLE PRUNING

Use this clause to enable or disable use of the zone map for pruning. This clause has
the same semantics for ALTER MATERIALIZED ZONEMAP and CREATE MATERIALIZED
ZONEMAP. For complete information on this clause, refer to ENABLE | DISABLE
PRUNING in the documentation on CREATE MATERIALIZED ZONEMAP

COMPILE

This clause lets you explicitly compile the zone map. This operation validates the zone
map after a DDL operation changes the structure of one or more of its base tables. It is
usually not necessary to issue this clause because Oracle database automatically
compiles a zone map that requires compilation before using it. However, if you would
like to explicitly compile a zone map, then you can use this clause to do so.

The result of compiling a zone map depends on whether a base table is changed in a
way that affects the zone map. For example, if a column is added to a base table, then
the zone map will be valid after compilation because the change does not affect the
zone map. However, if a column that is included in the defining subquery of the zone
map is dropped from a base table, then the zone map will be invalid after compilation.

You can determine if a zone map requires compilation by querying the COMPILE_STATE
column of the ALL_, DBA_, and USER_ZONEMAPS data dictionary views. If the value of the
column is NEEDS_COMPILE, then the zone map requires compilation.

REBUILD

This clause lets you explicitly rebuild the zone map. This operation refreshes the data
in the zone map. This clause is useful in the following situations:

Chapter 11
ALTER MATERIALIZED ZONEMAP

11-48

• You can use this clause to refresh the data for a refresh-on-demand zone map. Refer to
the ON DEMAND clause in the documentation on CREATE MATERIALIZED ZONEMAP for
more information.

• You must issue this clause after an EXCHANGE PARTITION operation on one of the base
tables of a zone map, regardless of the default refresh mode of the zone map.

• If a zone map is marked unusable, then you must issue this clause to mark it usable. You
can determine if a zone map is marked unusable by querying the UNUSABLE column of the
ALL_, DBA_, and USER_ZONEMAPS data dictionary views.

UNUSABLE

Specify this clause to make the zone map unusable. Subsequent queries will not use the
zone map and the database will no longer maintain the zone map. You can make the zone
map usable again by issuing an ALTER MATERIALIZED ZONEMAP ... REBUILD statement.

Examples

Modifying Zone Map Attributes: Example

The following statement modifies the PCTFREE and PCTUSED attributes of zone map
sales_zmap, and modifies the zone map so that it does not use caching:

ALTER MATERIALIZED ZONEMAP sales_zmap
 PCTFREE 20 PCTUSED 50 NOCACHE;

Modifying the Default Refresh Method and Mode for a Zone Map: Example

The following statement changes the default refresh method to FAST and the default refresh
mode to ON COMMIT for zone map sales_zmap:

ALTER MATERIALIZED ZONEMAP sales_zmap
 REFRESH FAST ON COMMIT;

Disabling Use of a Zone Map for Pruning: Example

The following statement disables use of zone map sales_zmap for pruning:

ALTER MATERIALIZED ZONEMAP sales_zmap
 DISABLE PRUNING;

Compiling a Zone Map: Example

The following statement compiles zone map sales_zmap:

ALTER MATERIALIZED ZONEMAP sales_zmap
 COMPILE;

Rebuilding a Zone Map: Example

The following statement rebuilds zone map sales_zmap:

ALTER MATERIALIZED ZONEMAP sales_zmap
 REBUILD;

Making a Zone Map Unusable: Example

The following statement makes zone map sales_zmap unusable:

ALTER MATERIALIZED ZONEMAP sales_zmap
 UNUSABLE;

Chapter 11
ALTER MATERIALIZED ZONEMAP

11-49

ALTER OPERATOR
Purpose

Use the ALTER OPERATOR statement to add bindings to, drop bindings from, or compile
an existing operator.

See Also:

CREATE OPERATOR

Prerequisites

The operator must already have been created by a previous CREATE OPERATOR
statement. The operator must be in your own schema or you must have the ALTER ANY
OPERATOR system privilege. You must have the EXECUTE object privilege on the
operators and functions referenced in the ALTER OPERATOR statement.

Syntax

alter_operator::=

ALTER OPERATOR

schema .

operator

add binding_clause

drop_binding_clause

COMPILE

;

(add_binding_clause::=, drop_binding_clause::=)

add_binding_clause::=

ADD BINDING (parameter_type

,

) RETURN (return_type)

implementation_clause

using_function_clause

(implementation_clause::=, using_function_clause::=)

implementation_clause::=

ANCILLARY TO primary_operator (parameter_type

,

)

,

context_clause

Chapter 11
ALTER OPERATOR

11-50

(context_clause::=)

context_clause::=

WITH INDEX CONTEXT , SCAN CONTEXT implementation_type

COMPUTE ANCILLARY DATA

WITH COLUMN CONTEXT

using_function_clause::=

USING

schema .

package .

type .

function_name

drop_binding_clause::=

DROP BINDING (parameter_type

,

)

FORCE

Semantics

schema

Specify the schema containing the operator. If you omit this clause, then Oracle Database
assumes the operator is in your own schema.

operator

Specify the name of the operator to be altered.

add_binding_clause

Use this clause to add an operator binding and specify its parameter data types and return
type. The signature must be different from the signature of any existing binding for this
operator.

If a binding of an operator is associated with an indextype and you add another binding to the
operator, then Oracle Database does not automatically associate the new binding with the
indextype. If you want to make such an association, then you must issue an explicit ALTER
INDEXTYPE ... ADD OPERATOR statement.

implementation_clause

This clause has the same semantics in CREATE OPERATOR and ALTER OPERATOR statements. For
full information, refer to implementation_clause in the documentation on CREATE OPERATOR.

Chapter 11
ALTER OPERATOR

11-51

context_clause

This clause has the same semantics in CREATE OPERATOR and ALTER OPERATOR
statements. For full information, refer to context_clause in the documentation on
CREATE OPERATOR.

using_function_clause

This clause has the same semantics in CREATE OPERATOR and ALTER OPERATOR
statements. For full information, refer to using_function_clause in the documentation
on CREATE OPERATOR.

drop_binding_clause

Use this clause to specify the list of parameter data types of the binding you want to
drop from the operator. You must specify FORCE if the binding has any dependent
objects, such as an indextype or an ancillary operator binding. If you specify FORCE,
then Oracle Database marks INVALID all objects that are dependent on the binding.
The dependent objects are revalidated the next time they are referenced in a DDL or
DML statement or a query.

You cannot use this clause to drop the only binding associated with this operator.
Instead you must use the DROP OPERATOR statement. Refer to DROP OPERATOR for
more information.

COMPILE

Specify COMPILE to cause Oracle Database to recompile the operator.

Examples

Compiling a User-defined Operator: Example

The following example compiles the operator eq_op (which was created in "Creating
User-Defined Operators: Example"):

ALTER OPERATOR eq_op COMPILE;

Chapter 11
ALTER OPERATOR

11-52

ALTER OUTLINE
Purpose

Note:

Stored outlines are deprecated. They are still supported for backward compatibility.
However, Oracle recommends that you use SQL plan management instead. SQL
plan management creates SQL plan baselines, which offer superior SQL
performance stability compared with stored outlines.

You can migrate existing stored outlines to SQL plan baselines by using the
MIGRATE_STORED_OUTLINE function of the DBMS_SPM package or Enterprise Manager
Cloud Control. When the migration is complete, the stored outlines are marked as
migrated and can be removed. You can drop all migrated stored outlines on your
system by using the DROP_MIGRATED_STORED_OUTLINE function of the DBMS_SPM
package.

See Also: Oracle Database SQL Tuning Guide for more information about SQL
plan management and Oracle Database PL/SQL Packages and Types Reference
for information about the DBMS_SPM package

Use the ALTER OUTLINE statement to rename a stored outline, reassign it to a different
category, or regenerate it by compiling the outline's SQL statement and replacing the old
outline data with the outline created under current conditions.

See Also:

CREATE OUTLINE for information on creating an outline

Prerequisites

To modify an outline, you must have the ALTER ANY OUTLINE system privilege.

Syntax

alter_outline::=

ALTER OUTLINE

PUBLIC

PRIVATE

outline

REBUILD

RENAME TO new_outline_name

CHANGE CATEGORY TO new_category_name

ENABLE

DISABLE

;

Chapter 11
ALTER OUTLINE

11-53

Semantics

PUBLIC | PRIVATE

Specify PUBLIC if you want to modify the public version of this outline. This is the
default.

Specify PRIVATE if you want to modify an outline that is private to the current session
and whose data is stored in the current parsing schema.

outline

Specify the name of the outline to be modified.

REBUILD

Specify REBUILD to regenerate the execution plan for outline using current conditions.

See Also:

"Rebuilding an Outline: Example"

RENAME TO Clause

Use the RENAME TO clause to specify an outline name to replace outline.

CHANGE CATEGORY TO Clause

Use the CHANGE CATEGORY TO clause to specify the name of the category into which the
outline will be moved.

ENABLE | DISABLE

Use this clause to selectively enable or disable this outline. Outlines are enabled by
default. The DISABLE keyword lets you disable one outline without affecting the use of
other outlines.

Examples

Rebuilding an Outline: Example

The following statement regenerates a stored outline called salaries by compiling the
text of the outline and replacing the old outline data with the outline created under
current conditions.

ALTER OUTLINE salaries REBUILD;

ALTER PACKAGE
Purpose

Packages are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of
syntax and semantics.

Chapter 11
ALTER PACKAGE

11-54

Use the ALTER PACKAGE statement to explicitly recompile a package specification, body, or
both. Explicit recompilation eliminates the need for implicit run-time recompilation and
prevents associated run-time compilation errors and performance overhead.

Because all objects in a package are stored as a unit, the ALTER PACKAGE statement
recompiles all package objects together. You cannot use the ALTER PROCEDURE statement or
ALTER FUNCTION statement to recompile individually a procedure or function that is part of a
package.

Note:

This statement does not change the declaration or definition of an existing package.
To redeclare or redefine a package, use the CREATE PACKAGE or the CREATE
PACKAGE BODY statement with the OR REPLACE clause.

Prerequisites

For you to modify a package, the package must be in your own schema or you must have
ALTER ANY PROCEDURE system privilege.

Syntax

alter_package::=

ALTER PACKAGE

schema .

package_name

package_compile_clause

EDITIONABLE

NONEDITIONABLE

(package_compile_clause: See Oracle Database PL/SQL Language Reference for the
syntax of this clause.)

Semantics

schema

Specify the schema containing the package. If you omit schema, then Oracle Database
assumes the package is in your own schema.

package_name

Specify the name of the package to be recompiled.

package_compile_clause

See Oracle Database PL/SQL Language Reference for the syntax and semantics of this
clause and for complete information on creating and compiling packages.

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the package becomes an editioned or noneditioned
object if editioning is later enabled for the schema object type PACKAGE in schema. The default

Chapter 11
ALTER PACKAGE

11-55

is EDITIONABLE. For information about altering editioned and noneditioned objects, see
Oracle Database Development Guide.

ALTER PLUGGABLE DATABASE
Purpose

Use the ALTER PLUGGABLE DATABASE statement to modify a pluggable database (PDB).
The PDB can be a traditional PDB, an application container, or an application PDB.

This statement enables you to perform the following tasks:

• Unplug a PDB from a multitenant container database (CDB) (using the
pdb_unplug_clause)

• Modify the settings of a PDB (using the pdb_settings_clauses)

• Bring PDB data files online or take them offline (using the pdb_datafile_clause)

• Back up and recover a PDB (using the pdb_recovery_clauses)

• Modify the state of a PDB (using the pdb_change_state clause)

• Modify the state of multiple PDBs within a CDB (using the
pdb_change_state_from_root clause)

• Perform operations on applications in an application container (using the
application_clauses)

• Create and manage PDB snapshots using the snapshot_clauses

Note:

You can perform all ALTER PLUGGABLE DATABASE tasks by connecting to a PDB
and running the corresponding ALTER DATABASE statement. This functionality
is provided to maintain backward compatibility for applications that have
been migrated to a CDB environment. The exception is modifying PDB
storage limits, for which you must use the pdb_storage_clause of ALTER
PLUGGABLE DATABASE.

See Also:

CREATE PLUGGABLE DATABASE for information on creating PDBs

Prerequisites

You must be connected to a CDB.

To specify the pdb_unplug_clause, the current container must be the root or the
application root, you must be authenticated AS SYSDBA or AS SYSOPER, and the SYSDBA
or SYSOPER privilege must be either granted to you commonly, or granted to you locally
in the root and locally in the PDB you want to unplug.

Chapter 11
ALTER PLUGGABLE DATABASE

11-56

To specify the pdb_settings_clauses, the current container must be the PDB whose settings
you want to modify and you must have the ALTER DATABASE privilege, either granted
commonly or granted locally in the PDB. To specify the pdb_logging_clauses or the RENAME
GLOBAL_NAME clause, you must also have the RESTRICTED SESSION privilege, either granted
commonly or granted locally in the PDB being renamed, and the PDB must be in READ WRITE
RESTRICTED mode.

To specify the pdb_datafile_clause, the current container must be the PDB whose datafiles
you want to bring online or take offline and you must have the ALTER DATABASE privilege,
either granted commonly or granted locally in the PDB.

To specify the pdb_recovery_clauses, the current container must be the PDB you want to
back up or recover and you must have the ALTER DATABASE privilege, either granted
commonly or granted locally in the PDB.

To specify the pdb_change_state clause, the current container must be the PDB whose state
you want to change and you must be authenticated AS SYSBACKUP, AS SYSDBA, AS SYSDG, or AS
SYSOPER.

To specify the pdb_change_state_from_root clause, the current container must be the root or
the application root, you must be authenticated AS SYSBACKUP, AS SYSDBA, AS SYSDG, or AS
SYSOPER, and the SYSBACKUP, SYSDBA, SYSDG, or SYSOPER privilege must be either granted to
you commonly, or granted to you locally in the root or application root, and locally in the
PDB(s) whose state(s) you want to change.

To specify the application_clauses, the current container must be an application container,
you must be authenticated AS SYSBACKUP or AS SYSDBA, and the SYSBACKUP or SYSDBA privilege
must be either granted to you commonly, or granted to you locally in the application root and
locally in the application PDB(s) in which you want to perform application operations.

Syntax

alter_pluggable_database::=

ALTER database_clause

pdb_unplug_clause

pdb_settings_clauses

pdb_datafile_clause

pdb_recovery_clauses

pdb_change_state

pdb_change_state_from_root

application_clauses

snapshot_clauses

prepare_clause

drop_mirror_copy

lost_write_protection

pdb_managed_recovery

;

Chapter 11
ALTER PLUGGABLE DATABASE

11-57

(pdb_unplug_clause::=, pdb_settings_clauses::=, pdb_datafile_clause::=,
pdb_recovery_clauses, pdb_change_state::=, pdb_change_state_from_root::=,
application_clauses::=)

database_clause::=

DATABASE

db_name

PLUGGABLE DATABASE

pdb_name

pdb_unplug_clause::=

pdb_name UNPLUG INTO ’ filename ’

pdb_unplug_encrypt

pdb_unplug_encrypt::=

ENCRYPT USING transport_secret

Chapter 11
ALTER PLUGGABLE DATABASE

11-58

pdb_settings_clauses::=

pdb_name

DEFAULT EDITION = edition_name

SET DEFAULT
BIGFILE

SMALLFILE
TABLESPACE

DEFAULT TABLESPACE tablespace_name

DEFAULT TEMPORARY TABLESPACE
tablespace

tablespace_group_name

RENAME GLOBAL_NAME TO database . domain

set_time_zone_clause

database_file_clauses

supplemental_db_logging

pdb_storage_clause

pdb_logging_clauses

pdb_refresh_mode_clause

pdb_refresh_switchover_clause

REFRESH

SET CONTAINER_MAP = ’ map_object ’

CONTAINERS

DEFAULT TARGET =
(container_name)

NONE

HOST = ’ hostname ’

PORT = number

(set_time_zone_clause::=, database_file_clauses::=, supplemental_db_logging::=,
pdb_storage_clause::=, pdb_logging_clauses::=, pdb_refresh_mode_clause::=)

pdb_storage_clause::=

STORAGE

(

MAXSIZE

MAX_AUDIT_SIZE

MAX_DIAG_SIZE

UNLIMITED

size_clause
)

UNLIMITED

(size_clause::=)

Chapter 11
ALTER PLUGGABLE DATABASE

11-59

pdb_logging_clauses::=

logging_clause

pdb_force_logging_clause

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

pdb_force_logging_clause::=

ENABLE

DISABLE

FORCE

LOGGING

NOLOGGING

SET STANDBY NOLOGGING FOR

DATA AVAILABILITY

LOAD PERFORMANCE

pdb_refresh_mode_clause::=

REFRESH MODE

MANUAL

EVERY refresh_interval

HOURS

MINUTES

NONE

pdb_refresh_switchover_clause ::=

FROM source_pdb_name @ dblink SWITCHOVER

pdb_datafile_clause::=

pdb_name

DATAFILE

’ filename ’

filenumber

,

ALL

ONLINE

OFFLINE

Chapter 11
ALTER PLUGGABLE DATABASE

11-60

pdb_recovery_clauses

pdb_name

pdb_general_recovery

BEGIN

END
BACKUP

ENABLE

DISABLE
RECOVERY

pdb_general_recovery::=

RECOVER

AUTOMATIC FROM ’ location ’

DATABASE

TABLESPACE tablespace

,

DATAFILE
’ filename ’

filenumber

,

LOGFILE ’ filename ’

CONTINUE

DEFAULT

pdb_change_state::=

pdb_name
pdb_open

pdb_close

pdb_save_or_discard_state

(pdb_open::=, pdb_close::=, pdb_save_or_discard_state::=)

pdb_open::=

OPEN

READ WRITE

READ ONLY RESTRICTED FORCE

READ WRITE

UPGRADE

RESTRICTED

RESETLOGS

instances_clause

Chapter 11
ALTER PLUGGABLE DATABASE

11-61

instances_clause::=

INSTANCES =

(’ instance_name ’

,

)

ALL

EXCEPT (’ instance_name ’

,

)

pdb_close::=

CLOSE

IMMEDIATE

instances_clause

relocate_clause

ABORT instances_clause

relocate_clause::=

RELOCATE

TO ’ instance_name ’

NORELOCATE

pdb_save_or_discard_state::=

SAVE

DISCARD

STATE

instances_clause

pdb_change_state_from_root::=

pdb_name

,

ALL

EXCEPT pdb_name

,

pdb_open

pdb_close

pdb_save_or_discard_state

(pdb_open::=, pdb_close::=, pdb_save_or_discard_state::=)

Chapter 11
ALTER PLUGGABLE DATABASE

11-62

application_clauses::=

APPLICATION

app_name

BEGIN INSTALL ’ app_version ’

COMMENT ’ comment ’

END INSTALL

’ app_version ’

BEGIN PATCH number

MINIMUM VERSION ’ app_version ’ COMMENT ’ comment ’

END PATCH

number

BEGIN UPGRADE

’ start_app_version ’

TO ’ end_app_version ’

COMMENT ’ comment ’

END UPGRADE

TO ’ end_app_version ’

BEGIN UNINSTALL

END UNINSTALL

SET PATCH number

SET VERSION ’ app_version ’

SET COMPATIBILITY VERSION
’ app_version ’

CURRENT

SYNC TO
’ app_version ’

PATCH patch_number

app_name

,

SYNC

ALL

EXCEPT app_name

,

SYNC

snapshot_clauses ::=

pdb_snapshot_clause

materialize_clause

create_snapshot_clause

drop_snapshot_clause

set_max_pdb_snapshots_clause

pdb_snapshot_clause ::=

SNAPSHOT

MANUAL

EVERY snapshot_interval
HOURS

MINUTES

NONE

Chapter 11
ALTER PLUGGABLE DATABASE

11-63

materialize_clause::=

MATERIALIZE

create_snapshot_clause::=

SNAPSHOT snapshot_name

drop_snapshot_clause::=

DROP SNAPSHOT snapshot_name

set_max_pdb_snapshots::=

SET max_pdb_snapshots = max_number_of_snapshots

prepare_clause::=

PREPARE MIRROR COPY copy_name

WITH

UNPROTECTED

MIRROR

HIGH

REDUNDANCY

FOR DATABASE target_cdb_name

drop_mirror_copy::=

DROP MIRROR COPY mirror_name

lost_write_protection ::=

The usage for the lost_write_protection clause with the ALTER PLUGGABLE
DATABASE statement is identical to the ALTER DATABASE statement. Look here ALTER
DATABASE for syntax details.

Chapter 11
ALTER PLUGGABLE DATABASE

11-64

pdb_managed_recovery ::=

RECOVER MANAGED STANDBY DATABASE

CANCEL

Semantics

database_clause

Specify the PLUGGABLE DATABASE option for a container database.

pdb_name

Specify the name of the database to be altered. If you omit db_name, then Oracle Database
alters the database identified by the value of the initialization parameter DB_NAME. You can
alter only the database whose control files are specified by the initialization parameter
CONTROL_FILES. The database identifier is not related to the Oracle Net database
specification.

pdb_unplug_clause

This clause lets you unplug a PDB from a CDB. When you unplug a PDB, Oracle stores
information about the PDB in a file on your operating system. You can subsequently use this
file to plug the PDB into a CDB.

For pdb_name, specify the name of the PDB you want to unplug. The PDB must be closed—
that is, the open mode must be MOUNTED. In an Oracle Real Application Clusters (Oracle RAC)
environment, the PDB must be closed in all Oracle RAC instances

For filename, specify the full path name of the operating system file in which to store
information about the PDB. The file name that you specify determines the type of information
stored and how it is stored.

• If you specify a file name that ends with the extension .xml, then Oracle creates an XML
file containing metadata about the PDB. You can then copy the XML file and the PDB's
data files to a new location and specify the XML file name when plugging the PDB into a
CDB. In this case, you must copy the PDB's data files separately.

• If you specify a file name that ends with the extension .pdb, then Oracle creates a .pdb
archive file. This is a compressed file that includes an XML file containing metadata about
the PDB, as well as the PDB's data files. You can then copy this single archive file to a
new location and specify the archive file name when plugging the PDB into a CDB. This
eliminates having to copy the PDB's data files separately. When you use a .pdb archive
file when plugging in a PDB, this file is extracted when you plug in the PDB, and the
PDB’s files are placed in the same directory as the .pdb archive file.

After a PDB is unplugged, it remains in the CDB with an open mode of MOUNTED and a status
of UNPLUGGED. The only operation you can perform on an unplugged PDB is DROP PLUGGABLE
DATABASE, which will remove it from the CDB. You must drop the PDB before you can plug it
into the same CDB or another CDB.

Chapter 11
ALTER PLUGGABLE DATABASE

11-65

See Also:

• Oracle Database Administrator's Guide for more information on
unplugging a PDB

• The create_pdb_from_xml clause of CREATE PLUGGABLE DATABASE for
information on plugging a PDB into a CDB

pdb_unplug_encrypt

You must have the SYSKM privilege to execute this command.

United PDBs

• ENCRYPT USING transport_secret is optional.

• If TDE is in use, you must specify this clause. If TDE is not in use, the statement
throws the following error ORA-46680:master keys of the container database
must be exported.

• The wallet must be open in ROOT if TDE is in use.

• Keys are encrypted using the provided transport secret and exported into
the .XML or archive file

Unplugging a PDB Into an XML Metadata File: Example

ALTER PLUGGABLE DATABASE CDB1_PDB2 UNPLUG INTO '/tmp/cdb1_pdb2.xml' ENCRYPT
USING transport_secret

Unplugging a PDB Into an Archive File: Example

ALTER PLUGGABLE DATABASE CDB1_PDB1_1 UNPLUG INTO '/tmp/CDB1_PDB1_1.pdb' ENCRYPT
USING transport_secret

For PDBs in isolated mode, you need not specify ENCRYPT USING transport_secret.
This is not required because the wallet file of the PDB is copied during the creation of
the pluggable database from an XML file. If you are unplugging a PDB as an archive
file, the wallet file of the PDB is added to the zipped archive with the .pdb extension.

If the ewallet.p12 file already exists at the destination, a backup is automatically
initiated. The backup file has the following format:
ewallet_PLGDB_2017090517455564.p12.

pdb_settings_clauses

These clauses lets you modify various settings for a PDB.

pdb_name

You can optionally use pdb_name to specify the name of the PDB whose settings you
want to modify.

Chapter 11
ALTER PLUGGABLE DATABASE

11-66

DEFAULT EDITION Clause

Use this clause to designate the specified edition as the default edition for the PDB. For the
full semantics of this clause, refer to "DEFAULT EDITION Clause" in the ALTER DATABASE
documentation.

SET DEFAULT TABLESPACE Clause

Use this clause to specify or change the default type of tablespaces subsequently created in
the PDB. For the full semantics of this clause, refer to "SET DEFAULT TABLESPACE Clause"
in the ALTER DATABASE documentation.

DEFAULT TABLESPACE Clause

Use this clause to establish or change the default permanent tablespace of the PDB. For the
full semantics of this clause, refer to "DEFAULT TABLESPACE Clause" in the ALTER DATABASE
documentation.

DEFAULT TEMPORARY TABLESPACE Clause

Use this clause to change the default temporary tablespace of the PDB to a new tablespace
or tablespace group. For the full semantics of this clause, refer to "DEFAULT [LOCAL]
TEMPORARY TABLESPACE Clause" in the ALTER DATABASE documentation.

RENAME GLOBAL_NAME TO Clause

Use this clause to change the global name of the PDB. The new global name must be unique
within the CDB. For an Oracle Real Application Clusters (Oracle RAC) database, the PDB
must be open in READ WRITE RESTRICTED mode on the current instance only. The PDB must
be closed on all other instances. For the full semantics of this clause, refer to "RENAME
GLOBAL_NAME Clause" in the ALTER DATABASE documentation.

Note:

When you change the global name of a PDB, be sure to change the PLUGGABLE
DATABASE property for database services that are used to connect to the PDB.

set_time_zone_clauses

Use this clause to modify the time zone setting for the PDB. For the full semantics of this
clause, refer to set_time_zone_clause in the ALTER DATABASE documentation.

database_file_clauses

Use this clause to modify data files and temp files for the PDB. For the full semantics of this
clause, refer to database_file_clauses in the ALTER DATABASE documentation.

supplemental_db_logging

Use these clauses to instruct Oracle Database to add or stop adding supplemental data into
the log stream for the PDB.

• Specify the ADD SUPPLEMENTAL LOG clause to add supplemental data into the log stream
for the PDB. In order to issue this clause, supplemental logging must have been enabled

Chapter 11
ALTER PLUGGABLE DATABASE

11-67

for the CDB root with the ALTER DATABASE ... ADD SUPPLEMENTAL LOG ... statement.
The level of supplemental logging that you specify for the PDB does not need to
match that of the CDB root. That is, you can specify any of the clauses DATA,
supplemental_id_key_clause, or supplemental_plsql_clause for the PDB,
regardless of which clause was specified when enabling supplemental logging for
the CDB root.

• Specify the DROP SUPPLEMENTAL LOG clause to stop adding supplemental data into
the log stream for the PDB.

ADD SUPPLEMENTAL LOG DATA SUBSET DATABASE REPLICATION, of ALTER
PLUGGABLE DATABASE enables low impact minimal supplemental logging on the PDB.

• You can only execute this DDL on a pluggable database.

• You can execute this DDL only when the enable_goldengate_replication
parameter is TRUE, and database compatible is 19.0 or higher.

• You must enable minimal supplemental logging in CDB$ROOT to run this command.

• After you execute this DDL, minimal supplemental logging will become low impact
for the pluggable database. SYS.PROP$ will be updated to indicate that low impact
minimal supplemental logging is enabled at the PDB level for this pluggable
database.

DROP SUPPLEMENTAL LOG DATA SUBSET DATABASE REPLICATION, of ALTER
PLUGGABLE DATABASE disables low impact minimal supplemental logging on the PDB.

• You can only execute this DDL on a pluggable database.

• You can execute this DDL only when the enable_goldengate_replication
parameter is TRUE, and database compatible is 19.0 or higher.

• You must enable minimal supplemental logging in CDB$ROOT to run this command.

• SYS.PROP$ will be updated to indicate that supplemental logging for subset
database replication is disabled at the PDB level for this pluggable database. If
supplemental logging for subset database replication is also disabled at CDB$ROOT
(CDB level), then low impact minimal supplemental logging will be disabled for this
pluggable database.

For the full semantics of this clause, refer to supplemental_db_logging in the ALTER
DATABASE documentation.

pdb_storage_clause

Use this clause to modify the storage limits for a PDB.

This clause has the same semantics as the pdb_storage_clause in the CREATE
PLUGGABLE DATABASE documentation, with the following additions:

• If you specify MAXSIZE size_clause, then the value you specify for size_clause
must be greater than or equal to the combined size of the existing tablespaces
belonging to the PDB. Otherwise, an error occurs.

• If you specify MAX_AUDIT_SIZE size_clause, then the value you specify for
size_clause must be greater than or equal to the amount of storage used by the
existing unified audit OS spillover (.bin format) files in the PDB. Otherwise, an
error occurs.

Chapter 11
ALTER PLUGGABLE DATABASE

11-68

• If you specify MAX_DIAG_SIZE size_clause, then the value you specify for size_clause
must be greater than or equal to the amount of storage for diagnostics in the Automatic
Diagnostic Repository (ADR) that is currently used by the PDB. Otherwise an error
occurs.

pdb_logging_clauses

Use these clauses to set or change the logging characteristics of the PDB.

logging_clause

Use this clause to change the default logging attribute for tablespaces subsequently created
within the PDB. This clause has the same semantics as the logging_clause in the CREATE
PLUGGABLE DATABASE documentation.

pdb_force_logging_clause

Use this clause to place a PDB into, or take it out of, one of four logging modes.

Force logging mode instructs the database to log all changes in the PDB, except changes in
temporary tablespaces and temporary segments. Force nologging mode instructs the
database to not log any changes in the PDB.

Standby nologging instructs the database to not log operations that qualify to be done without
logging. The database sends the data blocks that were created by the operation to each
qualifying standby database in the Data Guard configuration, typically resulting in those
standbys not having invalid blocks.

CDB-wide force logging mode takes precedence over any other setting. PDB-level force
logging mode and force nologging mode take precedence over and are independent of any
LOGGING, NOLOGGING, or FORCE LOGGING settings you specify for individual tablespaces in the
PDB and any LOGGING or NOLOGGING settings you specify for individual database objects in the
PDB.

• Specify ENABLE FORCE LOGGING to place the PDB in force logging mode. If the PDB is
currently in force nologging mode, then specifying this clause results in an error. You
must first specify DISABLE FORCE NOLOGGING.

• Specify DISABLE FORCE LOGGING to take the PDB out of force logging mode. If the PDB is
not currently in force logging mode, then specifying this clause results in an error.

• Specify ENABLE FORCE NOLOGGING to place the PDB in force nologging mode. If the PDB is
currently in force logging mode, then specifying this clause results in an error. You must
first specify DISABLE FORCE LOGGING. The nonlogged operations will use classic
invalidation redo, even if the CDB has a standby nologging mode set.

• Specify DISABLE FORCE NOLOGGING to take the PDB out of force nologging mode. If the
PDB is not currently in force nologging mode, then specifying this clause results in an
error.

• Specify SET STANDBY NOLOGGING FOR LOAD PERFORMANCE to put the PDB into standby
nologging for load performance mode. In this mode the data loaded as part of the
nonlogged task is sent to the qualifying standbys via a private network connection,
provided that doing so will not slow down the load process. If a slow down occurs, then
the data is not sent but fetched automatically from the primary as each standby
encounters the invalidation redo and will be retried until the data blocks are eventually
received.

Chapter 11
ALTER PLUGGABLE DATABASE

11-69

• Specify SET STANDBY NOLOGGING FOR DATA AVAILABILITY to put the PDB into
standby nologging for data availability mode. In this mode the data loaded as part
of the nonlogged task is sent to the qualifying standbys either via a network
connection to them, or if that fails, via block images in the redo. That is to say, in
this mode the load will switch to be done in a logged fashion if the network
connection or related processes prevent the sending of the data over the private
network connection.

For the standby nologging modes a qualifying standby is one that is open for read,
running managed recovery, and receiving redo into standby redo logs.

This clause does not change the default LOGGING or NOLOGGING mode of the PDB
specified by the logging_clause.

pdb_refresh_mode_clause

Use this clause to change the refresh mode of a PDB. You can specify this clause only
for a refreshable PDB, that is, a PDB whose current refresh mode is MANUAL or EVERY
refresh_interval MINUTES or HOURS. You can switch a PDB from manual refresh to
automatic refresh, or from automatic refresh to manual refresh. You can also use this
clause to change the number of minutes between automatic refreshes. You can switch
a PDB from manual or automatic refresh to no refresh, but you cannot enable manual
or automatic refresh for a PDB that is not refreshable. For the complete semantics of
this clause, refer to the pdb_refresh_mode_clause in the documentation on CREATE
PLUGGABLE DATABASE.

REFRESH

Specify this clause to perform a manual refresh of a refreshable PDB, that is, a PDB
whose current refresh mode is MANUAL or EVERY number MINUTES. The PDB must be
closed. For more information on refreshable PDBs, refer to the
pdb_refresh_mode_clause in the documentation on CREATE PLUGGABLE DATABASE.

pdb_refresh_switchover_clause

Use this clause to reverse roles between a refreshable clone PDB and a primary PDB.
This clause makes the refreshable clone PDB into a primary PDB, which can be
opened in read write mode. The former primary PDB becomes the refreshable clone..

• This command must be executed from the primary PDB .

• REFRESH MODE NONE may not be specified when issuing this statement.

• The dblink should point to the Root of the CDB where the refreshable clone PDB
currently resides.

• After this operation, the current PDB will become the refreshable clone and can
only be opened in READ ONLY mode.

• The database link user must exist in the primary PDB, if the refreshable clone
exists in a different CDB.

SET CONTAINER_MAP

Use this clause to specify the CONTAINER_MAP database property for an application
container. The current container must be the application root. The map_object is of the
form [schema.]table. For schema, specify the schema containing table. If you omit
schema, then the database assumed that the table is in your own schema. For table,
specify a range-, list-, or hash-partitioned table.

Chapter 11
ALTER PLUGGABLE DATABASE

11-70

CONTAINERS DEFAULT TARGET

Use this clause to specify the default container for DML statements in an application
container. You must be connect to the application root.

• For container_name, specify the name of the default container. The default container can
be any container in the application container, including the application root or an
application PDB. You can specify only one default container.

• If you specify NONE, then the default container is the CDB root. This is the default.

When a DML statement is issued in the application root without specifying containers in the
WHERE clause, the DML statement affects the default container for the application container.

CONTAINERS HOST and PORT

Use the HOST and PORT clauses if you want to create a PDB that you plan to reference from a
proxy PDB. This type of PDB is called a referenced PDB.

The following statements can be executed within a PDB:

ALTER PLUGGABLE DATABASE CONTAINERS HOST='myhost.example.com';

ALTER PLUGGABLE DATABASE CONTAINERS PORT=1599;

The following statements can be executed within CDB Root, Application Root, or within a
PDB :

ALTER PLUGGABLE DATABASE <pdbname> CONTAINERS HOST='myhost.example.com';

ALTER PLUGGABLE DATABASE <pdbname> CONTAINERS PORT=1599;

pdbname must meet the following criteria:

• If the statement is executed in Application Root, then pdbname has to match the name of
Application Root or the name of one of its Application PDBs.

• If the statement is executed in CDB Root, then pdbname has to match the name of one of
the PDBs in the CDB.

• If the statement is executed in a PDB, then pdbname has to match the name of the current
PDB.

See Also:

HOST and PORT of CREATE PLUGGABLE DATABASE for the full semantics of HOST and
PORT

pdb_datafile_clause

This clause lets you bring data files associated with a PDB online or take them offline. The
PDB must be closed when you issue this clause.

• For pdb_name, specify the name of the PDB. If the current container is the PDB, then you
can omit pdb_name.

Chapter 11
ALTER PLUGGABLE DATABASE

11-71

• The DATAFILE clauses let you specify the data files you want to bring online or take
offline. Use filename or filenumber to identify specific data files by name or by
number. You can view data file names and numbers by querying the NAME and
FILE# columns of the V$DATAFILE dynamic performance view. Use ALL to specify
all datafiles associated with the PDB.

• Specify ONLINE to bring the data files online or OFFLINE to take the data files
offline.

pdb_recovery_clauses

Use the pdb_recovery_clauses to back up and recover a PDB.

pdb_name

You can optionally use pdb_name to specify the name of the PDB you want to back up
or recover.

pdb_general_recovery

This clause lets you control media recovery for the PDB or standby database or for
specified tablespaces or files. The pdb_general_recovery clause has the same
semantics as the general_recovery clause of ALTER DATABASE. Refer to the
general_recovery clause of ALTER DATABASE for more information.

BACKUP Clauses

Use these clauses to move all of the data files in the PDB into or out of online backup
mode (also called hot backup mode). These clauses have the same semantics in
ALTER PLUGGABLE DATABASE and ALTER DATABASE. Refer to the "BACKUP Clauses" of
ALTER DATABASE for more information.

RECOVERY Clauses

Use these clauses to enable or disable a PDB for recovery. The PDB must be closed
—that is, the open mode must be MOUNTED.

• Specify ENABLE RECOVERY to bring all data files that belong to a PDB online and
enable the PDB for recovery.

• Specify DISABLE RECOVERY to take all data files that belong to a PDB offline and
disable the PDB for recovery.

See Also:

Oracle Data Guard Concepts and Administration for more information on the
RECOVERY clauses

pdb_change_state

This clause enables you to change the state, or open mode, of a PDB. Table 11-2 lists
the open modes of a PDB.

• Specify the pdb_open clause to change the open mode to READ WRITE, READ ONLY,
or MIGRATE.

• Specify the pdb_close clause to change the open mode to MOUNTED.

Chapter 11
ALTER PLUGGABLE DATABASE

11-72

Table 11-2 PDB Open Modes

Open Mode Description

READ WRITE A PDB in open read/write mode allows queries and user transactions
to proceed and allows users to generate redo logs.

READ ONLY A PDB in open read-only mode allows queries but does not allow user
changes.

MIGRATE When a PDB is in open migrate mode, you can run database upgrade
scripts on the PDB.

MOUNTED When a PDB is in mounted mode, it behaves like a non-CDB in
mounted mode. It does not allow changes to any objects, and it is
accessible only to database administrators. It cannot read from or
write to data files. Information about the PDB is removed from
memory caches. Cold backups of the PDB are possible.

You can view the open mode of a PDB by querying the OPEN_MODE column of the V$PDBS view.

See Also:

Oracle Database Administrator's Guide for a complete description of PDB open
modes

pdb_name

You can optionally use pdb_name to specify the name of the PDB whose open mode you want
to change.

pdb_open

This clause lets you change the open mode of a PDB to READ WRITE, READ ONLY, or MIGRATE.
When you specify this clause, the PDB must be in MOUNTED mode unless you specify the
FORCE keyword.

If you do not specify READ WRITE or READ ONLY, then the default is READ WRITE. The exception
is when the PDB belongs to a CDB that is used as a physical standby database, in which
case the default is READ ONLY.

READ WRITE

Specify this clause to change the open mode to READ WRITE.

READ ONLY

Specify this clause to change the open mode to READ ONLY.

[READ WRITE] UPGRADE

Specify this clause to change the open mode to MIGRATE. The READ WRITE keywords are
optional and are provided for semantic clarity.

RESTRICTED

Chapter 11
ALTER PLUGGABLE DATABASE

11-73

If you specify the optional RESTRICTED keyword, then the PDB is accessible only to
users with the RESTRICTED SESSION privilege in the PDB.

If the PDB is in READ WRITE or READ ONLY mode, and you specify the RESTRICTED and
FORCE keywords while changing the open mode, then all sessions connected to the
PDB that do not have the RESTRICTED SESSION privilege in the PDB are terminated,
and their transactions are rolled back.

FORCE

Specify this keyword to change the open mode of a PDB from READ WRITE to READ
ONLY, or from READ ONLY to READ WRITE. The FORCE keyword allows users to remain
connected to the PDB while the open mode is changed.

When you specify FORCE to change the open mode of a PDB from READ WRITE to READ
ONLY, any READ WRITE transaction that is open when you change the open mode will
not be allowed to perform any more DML operations or to COMMIT.

Restriction on FORCE

You cannot specify the FORCE keyword if the PDB is currently in MIGRATE mode, and
you cannot specify the FORCE keyword to change a currently open PDB to MIGRATE
mode.

RESETLOGS

Specify this clause to create a new PDB incarnation and open the PDB in READ WRITE
mode after point-in-time recovery of the PDB.

See Also:

Oracle Database Backup and Recovery User's Guide for more information
on performing point-in-time recovery of CDBs and PDBs

instances_clause

In an Oracle Real Application Clusters environment, use this clause to modify the state
of the PDB in the specified Oracle RAC instances. If you omit this clause, then the
state of the PDB is modified only in the current instance.

• Use instance_name to specify one or more instance names, in a comma-
separated list enclosed in parenthesis. This modifies the state of the PDB only in
those instances.

• Specify ALL to modify the state of the PDB in all instances.

• Specify ALL EXCEPT to modify the state of the PDB in all instances except the
specified instances.

If the PDB is already open in one or more instances, then you can open it in additional
instances, but it must be opened in the same mode as in the instances in which it is
already open.

pdb_close

Chapter 11
ALTER PLUGGABLE DATABASE

11-74

This clause lets you change the open mode of a PDB to MOUNTED. When you specify this
clause, the PDB must be in READ WRITE, READ ONLY, or MIGRATE mode. This clause is the PDB
equivalent of the SQL*Plus SHUTDOWN command.

IMMEDIATE

If you specify the optional IMMEDIATE keyword, then this clause is the PDB equivalent of the
SQL*Plus SHUTDOWN command with the immediate mode. Otherwise, the PDB is shut down
with the normal mode.

See Also:

SQL*Plus User's Guide and Reference for more information on the SQL*Plus
SHUTDOWN command

ABORT

Specify ABORT to forcibly shut down the PDB.

instances_clause

In an Oracle Real Application Clusters environment, use this clause to modify the state of the
PDB in the specified Oracle RAC instances. You can close a PDB in some instances and
leave it open in others. Refer to the instances_clause for the full semantics of this clause.

relocate_clause

In an Oracle Real Application Clusters environment, use this clause to instruct the database
to reopen the PDB on a different Oracle RAC instance.

• Specify RELOCATE to reopen the PDB on a different instance that is selected by Oracle
Database.

• Specify RELOCATE TO 'instance_name' to reopen the PDB in the specified instance.

• Specify NORELOCATE to close the PDB in the current instance. This is the default.

pdb_save_or_discard_state

Use this clause to instruct the database to save or discard the open mode of the PDB when
the CDB restarts.

• If you specify SAVE, then the PDB's open mode after the CDB restarts will be identical to
its open mode just before the CDB restarted.

• If you specify DISCARD, then the PDB's open mode after the CDB restarts will be MOUNTED.
This is the default.

instances_clause

In an Oracle Real Application Clusters environment, use this clause to instruct the database
to save or discard the open mode of the PDB in the specified Oracle RAC instances. If you
omit this clause, then the database applies the SAVE or DISCARD setting only to the PDB in the
current instance.

• Use instance_name to specify one or more instance names, in a comma-separated list
enclosed in parenthesis. This applies the SAVE or DISCARD setting to the PDB only in
those instances.

Chapter 11
ALTER PLUGGABLE DATABASE

11-75

• Specify ALL to apply the SAVE or DISCARD setting to the PDB in all instances.

• Specify ALL EXCEPT to apply the SAVE or DISCARD setting to the PDB in all instances
except the specified instances.

pdb_change_state_from_root

This clause enables you to modify the state of one or more PDBs.

• Specify the pdb_name for one or more PDBs whose state you want to modify.

• Specify ALL to modify the state of all PDBs in the CDB.

• Specify ALL EXCEPT to modify the state of all PDBs in the CDB except those
specified by using pdb_name.

If a PDB is already in the specified state, then the PDB's state is unchanged and no
error is returned. If the state of a PDB cannot be changed, then an error occurs only
for that PDB.

application_clauses

Use the APPLICATION clauses to:

• Install, patch, upgrade, and uninstall applications

• Register application versions and patch numbers

• Sync operations on applications

See Also:

Oracle Database Administrator’s Guide for more information on
administering application containers

Specifying Application Names

Most of the application_clauses require you to specify an application name. The
maximum length of an application name is 30 bytes. The name must satisfy the
requirements listed in "Database Object Naming Rules ". The application name must
be unique within an application container.

Specifying Application Versions

Several of the application_clauses require you to specify an application version. The
application version can be up to 30 bytes in length and can contain alphanumeric
characters, punctuations marks, and spaces. The application version is case-sensitive
and must be enclosed in single quotation marks.

Specifying Comments

Several of the application_clauses allow you to specify a comment to associate with
an application install, patch, or upgrade operation. For comment, enter a character
string enclosed in single quotation marks.

INSTALL Clauses

Chapter 11
ALTER PLUGGABLE DATABASE

11-76

Use the INSTALL clauses when installing an application in an application container. The
current container must be the application root, not an application PDB.

• Specify the BEGIN INSTALL clause before you start installing the application.

– Use app_name to assign a name to the application.

– Use app_version to assign a version to the application.

– The optional COMMENT clause allows you to enter a comment to be associated with the
application version created by this installation.

• Specify the END INSTALL clause after you have finished installing the application.

– You must specify the same app_name that you specified for the corresponding BEGIN
INSTALL clause.

– You need not specify app_version, but if you do, then you must specify the same
version that you specified for the corresponding BEGIN INSTALL clause.

PATCH Clauses

Use the PATCH clauses when patching an application in an application container. The current
container must be the application root, not an application PDB.

• Specify the BEGIN PATCH clause before you start patching the application.

– For app_name, specify the name of the application you want to patch.

– For number, specify the patch number.

– The optional MINIMUM VERSION clause allows you to specify the minimum version at
which the application must be before the patch can be applied. For app_version,
specify the minimum application version. If the current application version is lower
than the minimum application version, then an error occurs. If you omit this clause,
then the minimum version is the current application version.

– The optional COMMENT clause allows you to enter a comment to be associated with the
patch.

• Specify the END PATCH clause after you finish patching the application.

– You must specify the same app_name that you specified for the corresponding BEGIN
PATCH clause.

– You need not specify number, but if you do, then you must specify the same value
that you specified for the corresponding BEGIN PATCH clause.

UPGRADE Clauses

Use the UPGRADE clauses when upgrading an application in an application container. The
current container must be the application root, not an application PDB.

If the application root is using TDE, then you must configure an external store before
upgrading the application.

• Specify the BEGIN UPGRADE clause before you start upgrading the application.

– For app_name, specify the name of the application you want to upgrade.

– For start_app_version, specify the version from which you are upgrading the
application. If this version does not match the current application version, then an
error occurs.

Chapter 11
ALTER PLUGGABLE DATABASE

11-77

– For end_app_version, specify the version to which you are upgrading the
application.

– The optional COMMENT clause allows you to enter a comment to be associated
with the upgrade.

• Specify the END UPGRADE clause after you finish upgrading the application.

– You must specify the same app_name that you specified for the corresponding
BEGIN UPGRADE clause.

– You need not specify TO end_app_version, but if you do, then you must
specify the same version that you specified for the corresponding BEGIN
UPGRADE clause.

UNINSTALL Clauses

Use the UNINSTALL clauses when uninstalling an application from an application
container. The current container must be the application root, not an application PDB.

• Specify the BEGIN UNINSTALL clause before you start uninstalling the application.

– For app_name, specify the name of the application you want to uninstall.

• Specify the END UNINSTALL clause after you have finished uninstalling the
application.

– You must specify the same app_name that you specified for the corresponding
BEGIN UNINSTALL clause.

SET PATCH

Use the SET PATCH clause to register the patch number of an application that is already
installed in an application container. This clause allows you to assign a patch number
to an application that was not patched using the PATCH clauses. This is useful if the
application was migrated from a PDB in an earlier Oracle Database release, when the
PATCH clauses were not available. The current container can be the application root or
an application PDB.

• For app_name, specify the name of an existing application.

• Use number to assign a patch number to the existing application.

SET VERSION

Use the SET VERSION clause to register the version of an application that is already
installed in an application container. This clause allows you to assign a name and a
version to an application that was not installed using the INSTALL clauses. This is
useful if the application was migrated from a PDB in an earlier Oracle Database
release, when the INSTALL clauses were not available. The current container can be
the application root or an application PDB.

• Use app_name to assign a name to the existing application.

• Use app_version to assign a version to the existing application.

SET COMPATIBILITY VERSION

Use the SET COMPATIBILITY VERSION clause to set the compatibility version for an
application.

Chapter 11
ALTER PLUGGABLE DATABASE

11-78

The compatibility version of an application is the earliest version of the application possible
for the application PDBs that belong to the application container. The current container must
be the application root, not an application PDB.

Note:

You cannot plug in an application PDB that uses an application version earlier than
the compatibility setting of the application container.

• Use app_name to specify the name of the application.

• Use app_version to specify the compatibility version for the application.

• If you specify CURRENT, then the compatibility version is set to the version of the
application in the application root.

The compatibility version is enforced when the compatibility version is set and when an
application PDB is created. If there are application root clones that resulted from application
upgrades, then all application root clones that correspond to versions earlier than the
compatibility version are implicitly dropped.

SYNC TO

You can synchronize an application to a particular version or a patch number. There are two
variations:

1. SYNC TO version_string

2. SYNC TO PATCH patch_number

Example

Assume that you perform the following operations on application salesapp :

1. Install version 1.0

2. Patch 101

3. Upgrade to version 2.0

4. Patch 102

5. Upgrade to 3.0

ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC TO 2.0 replays all statements up
to and including ' Upgrade to version 2.0'.

ALTER PLUGGABLE DATABASE APPLICATION salesapp SYNC TO PATCH 102 replays all
statements up to and including ' Patch 102'.

Restrictions on SYNC TO

You can use SYNC TO only with an individual application.

You cannot use SYNC TO with the ALL SYNC clause.

You cannot use SYNC TO with the SYNC clause, in the case when you are synchronizing
multiple applications in a single statement.

Chapter 11
ALTER PLUGGABLE DATABASE

11-79

SYNC

Use the SYNC clause to synchronize an application in an application PDB to the version
and patch level of the same application in the application root. The current container
must be an application PDB.

app_name specifies the name of an application that exists in the application root. The
application may or may not exist in the application PDB.

Starting with Oracle Database Release 21c you can synchronize mutiple applications
in one statement with SYNC . This is necessary to preserve functional correctness for
applications that depend on one another.

Example

ALTER PLUGGABLE DATABASE APPLICATION hrapp payrollapp employeesapp SYNC

Restrictions on Synchronizing Multiple Applications Using SYNC

• You cannot use the SYNC TO version_string clause while synchronizing multiple
applications with SYNC.

• You cannot use the SYNC TO PATCH patch_number clause while synchronizing
multiple applications with SYNC.

ALL SYNC

Use the ALL SYNC clause to sync all applications in an application PDB with all
applications in the application root. This clause is useful, if you have recently added
the application PDB to the CDB and would like to sync its applications with the CDB.
The current container must be an application PDB.

With Release 21c you can use EXCEPT to exclude applications from ALL SYNC.

Example

ALTER PLUGGABLE DATABASE APPLICATION ALL EXCEPT hrapp payrollapp SYNC

Restrictions on Excluding Multiple Applications Using ALL SYNC

• You cannot use the SYNC TO version_string clause while excluding multiple
applications with ALL EXCEPT SYNC.

• You cannot use the SYNC TO PATCH patch_number clause while excluding multiple
applications with ALL EXCEPT SYNC.

snapshot_clauses

The snapshot clauses allow you to create and manage snapshots of the PDB for the
lifetime of the PDB.

pdb_snapshot_clause

Specify this clause to enable the creation of PDB snapshots. You can also specify this
clause in the CREATE PLUGGABLE DATABASE statement.

• NONE is the default and means that no snapshots of the PDB can be created.

• MANUAL means that a snapshot of the PDB can be created only manually.

Chapter 11
ALTER PLUGGABLE DATABASE

11-80

• If snapshot_interval is specified, PDB snapshots will be created automatically at the
interval specified. In addition, a user will also be able to create PDB snapshots manually.

• If expressed in minutes, the snapshot_interval must be less than 3000.

• If expressed in hours, the snapshot_interval must be less than 2000.

materialize_clause

Use this clause to convert a snapshot PDB into a full PDB clone. You can delete and purge a
PDB snapshot using the clause in this way.

• This clause can only be specified for PDBs created as a snapshot.

• All blocks in all datafiles belonging to the PDB will be copied.

create_snapshot_clause

Use this clause to manually create a PDB snapshot after connecting to the PDB.

• This statement may be issued even if the PDB was set to have PDB snapshots created
automatically.

• If a PDB Snapshot with the specified name already exists, an error will be reported.

• A PDB Snapshot with specified name will be created.

drop_snapshot_clause

Use this clause to manually drop a PDB snapshot after connecting to the PDB.

• If this snapshot is being used by some PDB, an error will be reported.

set_max_pdb_snapshots

Use this clause to increase or decrease the maximum number of snapshots for a given PDB.
You must first connect to the PDB.

• If the PDB is not open in read/write mode when issuing the statement, an error is raised.

• You can drop all PDB snapshots by setting the the max number to 0.

• The maximum number of snapshots that you can set per PDB is 8.

prepare_clause

• Use this clause to prepare mirror copies of the database. You must provide a
mirror_name to identify the filegroup that is created. The created filegroup contains all the
prepared files.

• Specify the number of copies to be prepared by the REDUNDANCY options: EXTERNAL,
NORMAL, or HIGH.

• If you do not specify the redundancy of the mirror, the redundancy of the source database
is used.

• Use the FOR DATABASE clause to specify the new name of the CDB. This name should be
unique. It will be used in the create_pdb_from_mirror_copy clause of the CREATE
PLUGGABLE DATABASE statement.

Prepare a Pluggable Database By Name: Example

Chapter 11
ALTER PLUGGABLE DATABASE

11-81

If you specify the name (pdb_name) of the pluggable database, it checks if pdb_name
matches with the current PDB. If it matches, it runs.

ALTER PLUGGABLE DATABASE pdb_name PREPARE MIRROR COPY mirror_name WITH HIGH
REDUNDANCY

Prepare a Pluggable Database Without a Name: Example

If you do not specify the name (pdb_name) of the pluggable database, the statement
runs on the current PDB.

ALTER PLUGGABLE DATABASE PREPARE MIRROR COPY mirror_name WITH HIGH REDUNDANCY

drop_mirror_copy

Use this clause to discard mirror copies of data and metadata created by the prepare
statement. You must specify the same mirror name that you used for the prepare
operation.

You cannot use this clause to drop a database that has already been split by the
CREATE DATABASE or CREATE PLUGGABLE DATABASE statement.

lost_write_protection

Turn on Lost Write for a Pluggable Database : Example

 ALTER PLUGGABLE DATABASE
 ENABLE LOST WRITE PROTECTION

Turn off Lost Write for a Pluggable Database : Example

 ALTER PLUGGABLE DATABASE
 DISABLE LOST WRITE PROTECTION

Note that disabling lost write for the database does not deallocate the lost write
storage. You must use the DROP TABLESPACE statement to deallocate lost write storage.

pdb_managed_recovery

Specify this clause to recover a PDB in instances where the PDB is within a physical
standby CDB.

Examples

Unplugging a PDB from a CDB: Example

The following statement unplugs PDB pdb1 and stores metadata for the PDB into XML
file /oracle/data/pdb1.xml:

ALTER PLUGGABLE DATABASE pdb1
 UNPLUG INTO '/oracle/data/pdb1.xml';

Modifying the Settings of a PDB: Example

The following statement changes the limit for the amount of storage used by all
tablespaces in PDB pdb2 to 500M:

ALTER PLUGGABLE DATABASE pdb2
 STORAGE (MAXSIZE 500M);

Taking the Data Files of a PDB Offline: Example

Chapter 11
ALTER PLUGGABLE DATABASE

11-82

The following statement takes the data files associated with PDB pdb3 offline:

ALTER PLUGGABLE DATABASE pdb3
 DATAFILE ALL OFFLINE;

Changing the State of a PDB: Examples

Assume that PDB pdb4 is closed—that is, its open mode is MOUNTED. The following statement
opens pdb4 with open mode READ ONLY:

ALTER PLUGGABLE DATABASE pdb4
 OPEN READ ONLY;

The following statement uses the FORCE keyword to change the open mode of pdb4 from READ
ONLY to READ WRITE:

ALTER PLUGGABLE DATABASE pdb4
 OPEN READ WRITE FORCE;

The following statement closes PDB pdb4:

ALTER PLUGGABLE DATABASE pdb4
 CLOSE;

The following statement opens PDB pdb4 with open mode READ ONLY. Because the
RESTRICTED keyword is specified, the PDB is accessible only to users with the RESTRICTED
SESSION privilege in the PDB.

ALTER PLUGGABLE DATABASE pdb4
 OPEN READ ONLY RESTRICTED;

Assume that PDB pdb5 is closed—that is, its open mode is MOUNTED. In an Oracle Real
Application Clusters environment, the following statement opens PDB pdb5 with open mode
READ WRITE in instances ORCLDB_1 and ORCLDB_2:

ALTER PLUGGABLE DATABASE pdb5
 OPEN READ WRITE INSTANCES = ('ORCLDB_1', 'ORCLDB_2');

In an Oracle Real Application Clusters environment, the following statement closes PDB pdb6
in the current instance and instructs the database to reopen pdb6 in instance ORCLDB_3:

ALTER PLUGGABLE DATABASE pdb6
 CLOSE RELOCATE TO 'ORCLDB_3';

Changing the State of All PDBs in a CDB: Example

Assume that the current container is the root. The following statement opens all PDBs in the
CDB with open mode READ ONLY:

ALTER PLUGGABLE DATABASE ALL
 OPEN READ ONLY;

ALTER PMEM FILESTORE
Purpose

Use this command to change the attributes of a PMEM file store.

Chapter 11
ALTER PMEM FILESTORE

11-83

Prerequisites

You cannot change the block size of a PMEM file store.

Syntax

alter_pmem_filestore

ALTER PMEM FILESTORE filestore_name

RESIZE size_clause

autoextend_clause

MOUNT

MOUNTPOINT file_path

BACKINGFILE file_name FORCE

DISMOUNT

Semantics

MOUNT

Use this command to mount a PMEM file store. If you have already specified the
mount point and backing file paths in the init.ora file you can issue the command like
this:

ALTER PMEM FILESTORE 'filestore_name' MOUNT

You can also specify the mount point and backing file paths in the command line. In
this case, you must ensure that there is no mismatch between the values in the
init.ora file and the values you specify in the command line. The command fails
when a mismatch occurs, unless you specify FORCE to override the values in the
init.ora file. The paths on the command line become the new paths for the PMEM
file store.

If you use a spfile, then the parameters are automatically updated with the new paths
specified on the command line.

Use the mount PMEM file store command in cases when the PMEM file store was not
already automatically mounted during database startup.

Specify the mount point path or the backing file path on the command line when:

• You have not specified either the mount point path or the backing file path in the
init.ora file

• You want to specify new values for either the mount point path or the backing file
path

Before you can change the mount point and the backing file, you must first dismount
the file store.

DISMOUNT

Use this command to dismount a PMEM file store. You must ensure that the database
instance is in NOMOUNT mode.

Chapter 11
ALTER PMEM FILESTORE

11-84

Examples

Example 1: Resize File Store Named cloud_db_1

ALTER PMEM FILESTORE cloud_db_1 RESIZE 5T

Example 2: Mount File Store Named cloud_db_1

ALTER PMEM FILESTORE cloud_db_1 MOUNT MOUNTPOINT ‘/corp/db/cloud_db_1’
 BACKINGFILE ‘/var/pmem/foo_1’

Example 3: Dismount File Store Named cloud_db_1

ALTER PMEM FILESTORE cloud_db_1 DISMOUNT

ALTER PROCEDURE
Purpose

Packages are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of syntax
and semantics.

Use the ALTER PROCEDURE statement to explicitly recompile a standalone stored procedure.
Explicit recompilation eliminates the need for implicit run-time recompilation and prevents
associated run-time compilation errors and performance overhead.

To recompile a procedure that is part of a package, recompile the entire package using the
ALTER PACKAGE statement (see ALTER PACKAGE).

Note:

This statement does not change the declaration or definition of an existing
procedure. To redeclare or redefine a procedure, use the CREATE PROCEDURE
statement with the OR REPLACE clause (see CREATE PROCEDURE).

The ALTER PROCEDURE statement is quite similar to the ALTER FUNCTION statement. Refer to
ALTER FUNCTION for more information.

Prerequisites

The procedure must be in your own schema or you must have ALTER ANY PROCEDURE system
privilege.

Syntax

alter_procedure::=

ALTER PROCEDURE

schema .

procedure_name

procedure_compile_clause

EDITIONABLE

NONEDITIONABLE

Chapter 11
ALTER PROCEDURE

11-85

(procedure_compile_clause: See Oracle Database PL/SQL Language Reference for
the syntax of this clause.)

Semantics

schema

Specify the schema containing the procedure. If you omit schema, then Oracle
Database assumes the procedure is in your own schema.

procedure_name

Specify the name of the procedure to be recompiled.

procedure_compile_clause

See Oracle Database PL/SQL Language Reference for the syntax and semantics of
this clause and for complete information on creating and compiling procedures.

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the procedure becomes an editioned or
noneditioned object if editioning is later enabled for the schema object type PROCEDURE
in schema. The default is EDITIONABLE. For information about altering editioned and
noneditioned objects, see Oracle Database Development Guide.

ALTER PROFILE
Purpose

Use the ALTER PROFILE statement to add, modify, or remove a resource limit or
password management parameter in a profile.

Changes made to a profile with an ALTER PROFILE statement affect users only in their
subsequent sessions, not in their current sessions.

See Also:

CREATE PROFILE for information on creating a profile

Prerequisites

You must have the ALTER PROFILE system privilege.

To specify the CONTAINER clause, you must be connected to a multitenant container
database (CDB). To specify CONTAINER = ALL, the current container must be the root.
To specify CONTAINER = CURRENT, the current container must be a pluggable database
(PDB).

Chapter 11
ALTER PROFILE

11-86

Syntax

alter_profile::=

ALTER PROFILE profile LIMIT
resource_parameters

password_parameters

CONTAINER =
CURRENT

ALL

;

(resource_parameters::=, password_parameters::=)

resource_parameters::=

SESSIONS_PER_USER

CPU_PER_SESSION

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

COMPOSITE_LIMIT

integer

UNLIMITED

DEFAULT

PRIVATE_SGA

size_clause

UNLIMITED

DEFAULT

(size_clause::=)

password_parameters::=

Chapter 11
ALTER PROFILE

11-87

FAILED_LOGIN_ATTEMPTS

PASSWORD_LIFE_TIME

PASSWORD_REUSE_TIME

PASSWORD_REUSE_MAX

PASSWORD_LOCK_TIME

PASSWORD_GRACE_TIME

INACTIVE_ACCOUNT_TIME

expr

UNLIMITED

DEFAULT

PASSWORD_VERIFY_FUNCTION

function

NULL

DEFAULT

PASSWORD_ROLLOVER_TIME
expr

DEFAULT

Semantics

The keywords, parameters, and clauses common to ALTER PROFILE and CREATE
PROFILE have the same meaning. For full semantics of these keywords, parameters,
and clauses refer to CREATE PROFILE .

Only common users who have been commonly granted the ALTER PROFILE system
privilege can alter or drop the mandatory profile, and only from the CDB root.

You cannot remove a limit from the DEFAULT profile.

Examples

Making a Password Unavailable: Example

The following statement makes the password of the new_profile profile (created in
"Creating a Profile: Example") unavailable for reuse for 90 days:

ALTER PROFILE new_profile
 LIMIT PASSWORD_REUSE_TIME 90
 PASSWORD_REUSE_MAX UNLIMITED;

Setting Default Password Values: Example

The following statement defaults the PASSWORD_REUSE_TIME value of the app_user
profile (created in "Setting Profile Resource Limits: Example") to its defined value in
the DEFAULT profile:

ALTER PROFILE app_user
 LIMIT PASSWORD_REUSE_TIME DEFAULT
 PASSWORD_REUSE_MAX UNLIMITED;

Limiting Login Attempts and Password Lock Time: Example

The following statement alters profile app_user with FAILED_LOGIN_ATTEMPTS set to 5
and PASSWORD_LOCK_TIME set to 1:

Chapter 11
ALTER PROFILE

11-88

ALTER PROFILE app_user LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LOCK_TIME 1;

This statement causes any user account to which the app_user profile is assigned to become
locked for one day after five consecutive unsuccessful login attempts.

Changing Password Lifetime and Grace Period: Example

The following statement modifies the profile app_user2 PASSWORD_LIFE_TIME to 90 days and
PASSWORD_GRACE_TIME to 5 days:

ALTER PROFILE app_user2 LIMIT
 PASSWORD_LIFE_TIME 90
 PASSWORD_GRACE_TIME 5;

Limiting Account Inactivity: Example

The following statement modifies the profile app_user2 INACTIVE_ACCOUNT_TIME to 30
consecutive days:

ALTER PROFILE app_user2 LIMIT
 INACTIVE_ACCOUNT_TIME 30;

If the account has already been inactive for a certain number of days, then those days count
toward the new 30 day limit.

Limiting Concurrent Sessions: Example

This statement defines a new limit of 5 concurrent sessions for the app_user profile:

ALTER PROFILE app_user LIMIT SESSIONS_PER_USER 5;

If the app_user profile does not currently define a limit for SESSIONS_PER_USER, then the
preceding statement adds the limit of 5 to the profile. If the profile already defines a limit, then
the preceding statement redefines it to 5. Any user assigned the app_user profile is
subsequently limited to 5 concurrent sessions.

Removing Profile Limits: Example

This statement removes the IDLE_TIME limit from the app_user profile:

ALTER PROFILE app_user LIMIT IDLE_TIME DEFAULT;

Any user assigned the app_user profile is subject in their subsequent sessions to the
IDLE_TIME limit defined in the DEFAULT profile.

Limiting Profile Idle Time: Example

This statement defines a limit of 2 minutes of idle time for the DEFAULT profile:

ALTER PROFILE default LIMIT IDLE_TIME 2;

This IDLE_TIME limit applies to these users:

• Users who are not explicitly assigned any profile

• Users who are explicitly assigned a profile that does not define an IDLE_TIME limit

This statement defines unlimited idle time for the app_user2 profile:

ALTER PROFILE app_user2 LIMIT IDLE_TIME UNLIMITED;

Chapter 11
ALTER PROFILE

11-89

Any user assigned the app_user2 profile is subsequently permitted unlimited idle time.

Enable Gradual Password Rollover: Example

This statement sets the password rollover time to 2 days in the profile usr_prof:

ALTER PROFILE usr_prof LIMIT PASSWORD_ROLLOVER_TIME 2 ;

ALTER RESOURCE COST
Purpose

Use the ALTER RESOURCE COST statement to specify or change the formula by which
Oracle Database calculates the total resource cost used in a session.

Although Oracle Database monitors the use of other resources, only the four
resources shown in the syntax can contribute to the total resource cost for a session.

This statement lets you apply weights to the four resources. Oracle Database then
applies the weights to the value of these resources that were specified for a profile to
establish a formula for calculating total resource cost. You can limit this cost for a
session with the COMPOSITE_LIMIT parameter of the CREATE PROFILE statement. If the
resource cost of a session exceeds the limit, then Oracle Database aborts the session
and returns an error. If you use the ALTER RESOURCE COST statement to change the
weight assigned to each resource, then Oracle Database uses these new weights to
calculate the total resource cost for all current and subsequent sessions.

See Also:

CREATE PROFILE for information on all resources and on establishing
resource limits

Prerequisites

You must have the ALTER RESOURCE COST system privilege.

Syntax

alter_resource_cost::=

ALTER RESOURCE COST

CPU_PER_SESSION

CONNECT_TIME

LOGICAL_READS_PER_SESSION

PRIVATE_SGA

integer ;

Semantics

Oracle Database calculates the total resource cost by first multiplying the amount of
each resource used in the session by the weight of the resource, and then summing
the products for all four resources. For any session, this cost is limited by the value of

Chapter 11
ALTER RESOURCE COST

11-90

the COMPOSITE_LIMIT parameter in the user's profile. Both the products and the total cost are
expressed in units called service units.

CPU_PER_SESSION

Use this keyword to apply a weight to the CPU_PER_SESSION resource.

CONNECT_TIME

Use this keyword to apply a weight to the CONNECT_TIME resource.

LOGICAL_READS_PER_SESSION

Use this clause to apply a weight to the LOGICAL_READS_PER_SESSION resource. Logical reads
include blocks read from both memory and disk.

PRIVATE_SGA

Use this clause to apply a weight to the PRIVATE_SGA resource. This limit applies only if you
are using shared server architecture and allocating private space in the SGA for your
session.

integer

Specify the weight of each resource. The weight that you assign to each resource determines
how much the use of that resource contributes to the total resource cost. If you do not assign
a weight to a resource, then the weight defaults to 0, and use of the resource subsequently
does not contribute to the cost. The weights you assign apply to all subsequent sessions in
the database.

Examples

Altering Resource Costs: Examples

The following statement assigns weights to the resources CPU_PER_SESSION and
CONNECT_TIME:

ALTER RESOURCE COST
 CPU_PER_SESSION 100
 CONNECT_TIME 1;

The weights establish this cost formula for a session:

cost = (100 * CPU_PER_SESSION) + (1 * CONNECT_TIME)

In this example, the values of CPU_PER_SESSION and CONNECT_TIME are either values in the
DEFAULT profile or in the profile of the user of the session.

Because the preceding statement assigns no weight to the resources
LOGICAL_READS_PER_SESSION and PRIVATE_SGA, these resources do not appear in the
formula.

If a user is assigned a profile with a COMPOSITE_LIMIT value of 500, then a session exceeds
this limit whenever cost exceeds 500. For example, a session using 0.04 seconds of CPU
time and 101 minutes of elapsed time exceeds the limit. A session using 0.0301 seconds of
CPU time and 200 minutes of elapsed time also exceeds the limit.

You can subsequently change the weights with another ALTER RESOURCE statement:

Chapter 11
ALTER RESOURCE COST

11-91

ALTER RESOURCE COST
 LOGICAL_READS_PER_SESSION 2
 CONNECT_TIME 0;

These new weights establish a new cost formula:

cost = (100 * CPU_PER_SESSION) + (2 * LOGICAL_READ_PER_SECOND)

where the values of CPU_PER_SESSION and LOGICAL_READS_PER_SECOND are either the
values in the DEFAULT profile or in the profile of the user of this session.

This ALTER RESOURCE COST statement changes the formula in these ways:

• The statement omits a weight for the CPU_PER_SESSION resource. That resource
was already assigned a weight, so the resource remains in the formula with its
original weight.

• The statement assigns a weight to the LOGICAL_READS_PER_SESSION resource, so
this resource now appears in the formula.

• The statement assigns a weight of 0 to the CONNECT_TIME resource, so this
resource no longer appears in the formula.

• The statement omits a weight for the PRIVATE_SGA resource. That resource was
not already assigned a weight, so the resource still does not appear in the formula.

ALTER ROLE
Purpose

Use the ALTER ROLE statement to change the authorization needed to enable a role.

See Also:

• CREATE ROLE for information on creating a role

• SET ROLE for information on enabling or disabling a role for your
session

Prerequisites

You must either have been granted the role with the ADMIN OPTION or have ALTER ANY
ROLE system privilege.

Before you alter a role to IDENTIFIED GLOBALLY, you must:

• Revoke all grants of roles identified externally to the role and

• Revoke the grant of the role from all users, roles, and PUBLIC.

The one exception to this rule is that you should not revoke the role from the user who
is currently altering the role.

To specify the CONTAINER clause, you must be connected to a multitenant container
database (CDB). To specify CONTAINER = ALL, the current container must be the root.

Chapter 11
ALTER ROLE

11-92

To specify CONTAINER = CURRENT, the current container must be a pluggable database (PDB).

Syntax

alter_role::=

ALTER ROLE role

NOT IDENTIFIED

IDENTIFIED

BY password

USING

schema .

package

EXTERNALLY

GLOBALLY AS domain_name_of_directory_group

CONTAINER =
CURRENT

ALL

;

Semantics

The keywords, parameters, and clauses in the ALTER ROLE statement all have the same
meaning as in the CREATE ROLE statement.

Specify GLOBALLY with AS to map a directory group to a global role when using centrally
managed users. The directory group is identified by its domain name.

Restriction on Altering a Role

You cannot alter a NOT IDENTIFIED role to any of the IDENTIFIED types if it is granted to
another role.

Notes on Altering a Role:

• User sessions in which the role is already enabled are not affected.

• If you change a role identified by password to an application role (with the USING package
clause), then password information associated with the role is lost. Oracle Database will
use the new authentication mechanism the next time the role is to be enabled.

• If you have the ALTER ANY ROLE system privilege and you change a role that is IDENTIFIED
GLOBALLY to IDENTIFIED BY password, IDENTIFIED EXTERNALLY, or NOT IDENTIFIED, then
Oracle Database grants you the altered role with the ADMIN OPTION, as it would have if
you had created the role identified nonglobally.

For more information, refer to CREATE ROLE and to the examples that follow.

Examples

Changing Role Identification: Example

The following statement changes the role warehouse_user (created in "Creating a Role:
Example") to NOT IDENTIFIED:

ALTER ROLE warehouse_user NOT IDENTIFIED;

Changing a Role Password: Example

This statement changes the password on the dw_manager role (created in "Creating a Role:
Example") to data:

Chapter 11
ALTER ROLE

11-93

ALTER ROLE dw_manager
 IDENTIFIED BY data;

Users granted the dw_manager role must subsequently use the new password data to
enable the role.

Application Roles: Example

The following example changes the dw_manager role to an application role using the
hr.admin package:

ALTER ROLE dw_manager IDENTIFIED USING hr.admin;

ALTER ROLLBACK SEGMENT

Note:

Oracle strongly recommends that you run your database in automatic undo
management mode instead of using rollback segments. Do not use rollback
segments unless you must do so for compatibility with earlier versions of
Oracle Database. Refer to Oracle Database Administrator's Guide for
information on automatic undo management.

Purpose

Use the ALTER ROLLBACK SEGMENT statement to bring a rollback segment online or
offline, change its storage characteristics, or shrink it to an optimal or specified size.

This section assumes that your database is running in rollback undo mode (the
UNDO_MANAGEMENT initialization parameter is set to MANUAL or not set at all). If your
database is running in automatic undo mode (the UNDO_MANAGEMENT initialization
parameter is set to AUTO, which is the default), then user-created rollback segments
are irrelevant.

See Also:

• CREATE ROLLBACK SEGMENT for information on creating a rollback
segment

• Oracle Database Reference for information on the UNDO_MANAGEMENT
parameter

Prerequisites

You must have the ALTER ROLLBACK SEGMENT system privilege.

Chapter 11
ALTER ROLLBACK SEGMENT

11-94

Syntax

alter_rollback_segment::=

ALTER ROLLBACK SEGMENT rollback_segment

ONLINE

OFFLINE

storage_clause

SHRINK

TO size_clause

;

(storage_clause , size_clause::=)

Semantics

rollback_segment

Specify the name of an existing rollback segment.

ONLINE

Specify ONLINE to bring the rollback segment online. When you create a rollback segment, it
is initially offline and not available for transactions. This clause brings the rollback segment
online, making it available for transactions by your instance. You can also bring a rollback
segment online when you start your instance with the initialization parameter
ROLLBACK_SEGMENTS.

See Also:

"Bringing a Rollback Segment Online: Example"

OFFLINE

Specify OFFLINE to take the rollback segment offline.

• If the rollback segment does not contain any information needed to roll back an active
transaction, then Oracle Database takes it offline immediately.

• If the rollback segment does contain information for active transactions, then the
database makes the rollback segment unavailable for future transactions and takes it
offline after all the active transactions are committed or rolled back.

When the rollback segment is offline, it can be brought online by any instance.

To see whether a rollback segment is online or offline, query STATUS column of the data
dictionary view DBA_ROLLBACK_SEGS. Online rollback segments have a value of IN_USE. Offline
rollback segments have a value of AVAILABLE.

Restriction on Taking Rollback Segments Offline

You cannot take the SYSTEM rollback segment offline.

Chapter 11
ALTER ROLLBACK SEGMENT

11-95

storage_clause

Use the storage_clause to change the storage characteristics of the rollback
segment.

Restrictions on Rollback Segment Storage

You cannot change the value of INITIAL parameter. If the rollback segment is in a
locally managed tablespace, then the only storage parameter you can change is
OPTIMAL. If the rollback segment is in a dictionary-managed tablespace, then the only
storage parameters you can change are NEXT, MINEXTENTS, MAXEXTENTS and OPTIMAL.

See Also:

storage_clause for syntax and additional information

SHRINK Clause

Specify SHRINK if you want Oracle Database to attempt to shrink the rollback segment
to an optimal or specified size. The success and amount of shrinkage depend on the
available free space in the rollback segment and how active transactions are holding
space in the rollback segment.

If you do not specify TO size_clause, then the size defaults to the OPTIMAL value of the
storage_clause of the CREATE ROLLBACK SEGMENT statement that created the rollback
segment. If OPTIMAL was not specified, then the size defaults to the MINEXTENTS value
of the storage_clause of the CREATE ROLLBACK SEGMENT statement.

Regardless of whether you specify TO size_clause:

• The value to which Oracle Database shrinks the rollback segment is valid for the
execution of the statement. Thereafter, the size reverts to the OPTIMAL value of the
CREATE ROLLBACK SEGMENT statement.

• The rollback segment cannot shrink to less than two extents.

To determine the actual size of a rollback segment after attempting to shrink it, query
the BYTES, BLOCKS, and EXTENTS columns of the DBA_SEGMENTS view.

Restriction on Shrinking Rollback Segments

In an Oracle Real Application Clusters environment, you can shrink only rollback
segments that are online to your instance.

See Also:

size_clause for information on that clause, and "Resizing a Rollback
Segment: Example"

Chapter 11
ALTER ROLLBACK SEGMENT

11-96

Examples

The following examples use the rbs_one rollback segment, which was created in "Creating a
Rollback Segment: Example".

Bringing a Rollback Segment Online: Example

This statement brings the rollback segment rbs_one online:

ALTER ROLLBACK SEGMENT rbs_one ONLINE;

Resizing a Rollback Segment: Example

This statement shrinks the rollback segment rbs_one:

ALTER ROLLBACK SEGMENT rbs_one
 SHRINK TO 100M;

ALTER SEQUENCE
Purpose

Use the ALTER SEQUENCE statement to change the increment, minimum and maximum values,
cached numbers, and behavior of an existing sequence. This statement affects only future
sequence numbers.

See Also:

CREATE SEQUENCE for additional information on sequences

Prerequisites

The sequence must be in your own schema, or you must have the ALTER object privilege on
the sequence, or you must have the ALTER ANY SEQUENCE system privilege.

Chapter 11
ALTER SEQUENCE

11-97

Syntax

alter_sequence::=

ALTER SEQUENCE

schema .

sequence

INCREMENT BY

START WITH
integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

RESTART

CYCLE

NOCYCLE

CACHE integer

NOCACHE

ORDER

NOORDER

KEEP

NOKEEP

SCALE
EXTEND

NOEXTEND

NOSCALE

SHARD
EXTEND

NOEXTEND

NOSHARD

SESSION

GLOBAL

;

Semantics

The keywords and parameters in this statement serve the same purposes they serve
when you create a sequence.

• If you change the INCREMENT BY value before the first invocation of NEXTVAL, then
some sequence numbers will be skipped. Therefore, if you want to retain the
original START WITH value, you must drop the sequence and re-create it with the
original START WITH value and the new INCREMENT BY value.

• Specify RESTART to reset NEXTVAL to MINVALUE for an ascending sequence. For a
descending sequence RESTART resets NEXTVAL to MAXVALUE.

Chapter 11
ALTER SEQUENCE

11-98

• To restart the sequence at a different number, specify RESTART with the START WITH clause
to set the value at which the sequence restarts.

• If you alter the sequence by specifying the KEEP or NOKEEP clause between runtime and
failover of a request, then the original value of NEXTVAL is not retained during replay for
Application Continuity for that request.

• Oracle Database performs some validations. For example, a new MAXVALUE cannot be
imposed that is less than the current sequence number.

See Also:

CREATE SEQUENCE for information on creating a sequence and DROP
SEQUENCE for information on dropping and re-creating a sequence

SCALE

Use SCALE to enable sequence scalability. When SCALE is specified, a numeric offset is affixed
to the beginning of the sequence which removes all duplicates in generated values.

EXTEND

If you specify EXTEND with SCALE the generated sequence values are all of length (x+y),
where x is the length of the scalable offset (default value is 6), and y is the maximum number
of digits in the sequence (maxvalue/minvalue).

When you use SCALE it is highly recommended that you not use ORDER simultaneously on the
sequence.

NOEXTEND

NOEXTEND is the default setting for the SCALE clause. With the NOEXTEND setting, the generated
sequence values are at most as wide as the maximum number of digits in the sequence
(maxvalue/minvalue). This setting is useful for integration with existing applications where
sequences are used to populate fixed width columns.

SHARD

Use this clause to generate unique sequence numbers across shards.

The sequence object is created as a global, all-shards sharded object that returns unique
sequence values across all shards. The sequence object is also created at the catalog
database that returns unique sequence values relative to the shard databases.

The EXTEND and NOEXTEND keywords define the behavior of a sharded sequence.

EXTEND

When you specify EXTEND with the SHARD clause, the generated sequence values are all of
length (x + y), where x is the length of an(a) SHARD offset of size 4. The size 4 corresponds
to the width of the maximum number of shards i.e. 1000 affixed at the beginning of the
sequence values. y is the maximum number of digits in the sequence maxvalue/minvalue.

NOEXTEND

The default setting for the SHARD clause is NOEXTEND.

Chapter 11
ALTER SEQUENCE

11-99

When you specify NOEXTEND, the generated sequence values are at most as wide as
the maximum number of digits in the sequence maxvalue/minvalue. This setting is
useful for integration with existing applications where sequences are used to populate
fixed width columns.

If you call NEXTVAL on a sequence with SHARD NOEXTEND specified, a user error is
thrown, if the generated value requires more digits of representation than the
maxvalue/minvalue of the sequence.

Sequence with SHARD and SCALE

If you specify the SCALE and the SHARD clauses together, the sequence generates
scalable, globally unique values within a shard database for multiple instances and
sessions.

If you specify EXTEND with the SCALE and SHARD clauses, the generated sequence
values are all of length (x+y+z), where x is the length of a SHARD offset with a default
value of size 4, y is the length of the scalable offset with a default value of 6(5), and z
is the maximum number of digits in the sequence maxvalue/minvalue .

If you specify EXTEND or NOEXTEND with the SHARD and SCALE clauses, it applies to both
SHARD and SCALE. You do not need to specify EXTEND or NOEXTEND separately. If you
specify the EXTEND or NOEXTEND option separately for both the SHARD and SCALE
clauses, with the same or different value, a parsing error results, with a message of a
duplicate or conflicting EXTEND clause.

When you use SHARD it is highly recommended that you not use ORDER simultaneously
on the sequence.

You can use SHARD with CACHE and NOCACHE modes of operation.

Examples

Modifying a Sequence: Examples

This statement sets a new maximum value for the customers_seq sequence, which
was created in "Creating a Sequence: Example":

ALTER SEQUENCE customers_seq
 MAXVALUE 1500;

This statement turns on CYCLE and CACHE for the customers_seq sequence:

ALTER SEQUENCE customers_seq
 CYCLE
 CACHE 5;

ALTER SESSION
Purpose

Use the ALTER SESSION statement to set or modify any of the conditions or parameters
that affect your connection to the database. The statement stays in effect until you
disconnect from the database.

Chapter 11
ALTER SESSION

11-100

Prerequisites

To enable and disable the SQL trace facility, you must have ALTER SESSION system privilege.

To enable or disable resumable space allocation, you must have the RESUMABLE system
privilege.

You do not need any privileges to perform the other operations of this statement unless
otherwise indicated.

Syntax

alter_session::=

ALTER SESSION

ADVISE

COMMIT

ROLLBACK

NOTHING

CLOSE DATABASE LINK dblink

ENABLE

DISABLE
COMMIT IN PROCEDURE

ENABLE

DISABLE
GUARD

ENABLE

DISABLE

FORCE

PARALLEL

DML

DDL

QUERY

PARALLEL integer

ENABLE RESUMABLE

TIMEOUT integer NAME string

DISABLE RESUMABLE

ENABLE

DISABLE
SHARD DDL

SYNC WITH PRIMARY

alter_session_set_clause

;

Chapter 11
ALTER SESSION

11-101

alter_session_set_clause::=

SET

parameter_name = parameter_value

EDITION = edition_name

CONTAINER = container_name

SERVICE = service_name

ROW ARCHIVAL VISIBILITY =
ACTIVE

ALL

DEFAULT_COLLATION =
collation_name

NONE

Semantics

ADVISE Clause

The ADVISE clause sends advice to a remote database to force a distributed
transaction. The advice appears in the ADVICE column of the DBA_2PC_PENDING view on
the remote database (the values are 'C' for COMMIT, 'R' for ROLLBACK, and ' ' for
NOTHING). If the transaction becomes in doubt, then the administrator of that database
can use this advice to decide whether to commit or roll back the transaction.

You can send different advice to different remote databases by issuing multiple ALTER
SESSION statements with the ADVISE clause in a single transaction. Each such
statement sends advice to the databases referenced in the following statements in the
transaction until another such statement is issued.

See Also:

"Forcing a Distributed Transaction: Example"

CLOSE DATABASE LINK Clause

Specify CLOSE DATABASE LINK to close the database link dblink. When you issue a
statement that uses a database link, Oracle Database creates a session for you on the
remote database using that link. The connection remains open until you end your local
session or until the number of database links for your session exceeds the value of the
initialization parameter OPEN_LINKS. If you want to reduce the network overhead
associated with keeping the link open, then use this clause to close the link explicitly if
you do not plan to use it again in your session.

See Also:

Closing a Database Link: Example

Chapter 11
ALTER SESSION

11-102

ENABLE | DISABLE COMMIT IN PROCEDURE

Procedures and stored functions written in PL/SQL can issue COMMIT and ROLLBACK
statements. If your application would be disrupted by a COMMIT or ROLLBACK statement not
issued directly by the application itself, then specify DISABLE COMMIT IN PROCEDURE clause to
prevent procedures and stored functions called during your session from issuing these
statements.

You can subsequently allow procedures and stored functions to issue COMMIT and ROLLBACK
statements in your session by issuing the ENABLE COMMIT IN PROCEDURE.

Some applications automatically prohibit COMMIT and ROLLBACK statements in procedures and
stored functions. Refer to your application documentation for more information.

ENABLE | DISABLE GUARD

The security_clause of ALTER DATABASE lets you prevent anyone other than the SYS user
from making any changes to data or database objects on the primary or standby database.
This clause lets you override that setting for the current session.

See Also:

security_clause for more information on the GUARD setting

PARALLEL DML | DDL | QUERY

The PARALLEL parameter determines whether all subsequent DML, DDL, or query statements
in the session will be considered for parallel execution. This clause enables you to override
the degree of parallelism of tables during the current session without changing the tables
themselves. Uncommitted transactions must either be committed or rolled back prior to
executing this clause for DML.

See Also:

"Enabling Parallel DML: Example"

ENABLE Clause

Specify ENABLE to execute subsequent statements in the session in parallel. This is the
default for DDL and query statements.

• DML: DML statements are executed in parallel mode if a parallel hint or a parallel clause is
specified.

• DDL: DDL statements are executed in parallel mode if a parallel clause is specified.

• QUERY: Queries are executed in parallel mode if a parallel hint or a parallel clause is
specified.

Restriction on the ENABLE clause

You cannot specify the optional PARALLEL integer with ENABLE.

Chapter 11
ALTER SESSION

11-103

DISABLE Clause

Specify DISABLE to execute subsequent statements in the session serially. This is the
default for DML statements.

• DML: DML statements are executed serially.

• DDL: DDL statements are executed serially.

• QUERY: Queries are executed serially.

Restriction on the DISABLE clause

You cannot specify the optional PARALLEL integer with DISABLE.

FORCE Clause

FORCE forces parallel execution of subsequent statements in the session. If no parallel
clause or hint is specified, then a default degree of parallelism is used. This clause
overrides any parallel_clause specified in subsequent statements in the session but
is overridden by a parallel hint.

• DML: Provided no parallel DML restrictions are violated, subsequent DML
statements in the session are executed with the default degree of parallelism,
unless a degree is specified in this clause.

• DDL: Subsequent DDL statements in the session are executed with the default
degree of parallelism, unless a degree is specified in this clause. Resulting
database objects will have associated with them the prevailing degree of
parallelism.

Specifying FORCE DDL automatically causes all tables created in this session to be
created with a default level of parallelism. The effect is the same as if you had
specified the parallel_clause (with the default degree) in the CREATE TABLE
statement.

• QUERY: Subsequent queries are executed with the default degree of parallelism,
unless a degree is specified in this clause.

PARALLEL integer

Specify an integer to explicitly specify a degree of parallelism:

• For FORCE DDL, the degree overrides any parallel clause in subsequent DDL
statements.

• For FORCE DML and QUERY, the degree overrides the degree currently stored for the
table in the data dictionary.

• A degree specified in a statement through a hint will override the degree being
forced.

The following types of DML operations are not parallelized regardless of this clause:

• Operations on cluster tables

• Operations with embedded functions that either write or read database or package
states

• Operations on tables with triggers that could fire

• Operations on tables or schema objects containing object types, or LONG or LOB
data types

Chapter 11
ALTER SESSION

11-104

RESUMABLE Clauses

These clauses let you enable and disable resumable space allocation. This feature allows an
operation to be suspended in the event of an out-of-space error condition and to resume
automatically from the point of interruption when the error condition is fixed.

Note:

Resumable space allocation is fully supported for operations on locally managed
tablespaces. Some restrictions apply if you are using dictionary-managed
tablespaces. For information on these restrictions, refer to Oracle Database
Administrator's Guide.

ENABLE RESUMABLE

This clause enables resumable space allocation for the session.

TIMEOUT

TIMEOUT lets you specify (in seconds) the time during which an operation can remain
suspended while waiting for the error condition to be fixed. If the error condition is not fixed
within the TIMEOUT period, then Oracle Database aborts the suspended operation.

NAME

NAME lets you specify a user-defined text string to help users identify the statements issued
during the session while the session is in resumable mode. Oracle Database inserts the text
string into the USER_RESUMABLE and DBA_RESUMABLE data dictionary views. If you do not
specify NAME, then Oracle Database inserts the default string 'User username(userid),
Session sessionid, Instance instanceid'.

See Also:

Oracle Database Reference for information on the data dictionary views

DISABLE RESUMABLE

This clause disables resumable space allocation for the session.

SHARD DDL Clauses

These clauses are valid only if you are connected to a sharded database. They let you
control whether DDLs issued in the session are issued against the shard catalog database
and all shards, or against only the shard catalog database.

• If you specify ENABLE SHARD DDL, then DDLs issued in the session are issued against the
shard catalog database and all shards. This mode is the default for the SDB user—a user
that exists in the shard catalog database and in all shards.

• If you specify DISABLE SHARD DDL, then DDLs issued in the session are issued against
only the shard catalog database. This mode is the default for a local user—a user that
exists only in the shard catalog database.

Chapter 11
ALTER SESSION

11-105

See Also:

Using Oracle Sharding

SYNC WITH PRIMARY

Use this clause to synchronize redo apply on a physical standby database with the
primary database. An ALTER SESSION statement with this clause blocks until redo apply
has applied all redo data received by the standby at the time the statement is issued.
This clause returns an error, and synchronization does not occur, if the redo transport
state for the standby database is not SYNCHRONIZED or if redo apply is not active.

See Also:

Oracle Data Guard Concepts and Administration for more information on this
session parameter

alter_session_set_clause

Use the alter_session_set_clause to set initialization parameter values or to set an
edition for the current session.

Initialization Parameters

You can set two types of parameters using this clause:

• Initialization parameters that are dynamic in the scope of the ALTER SESSION
statement (listed in "Initialization Parameters and ALTER SESSION")

• Session parameters (listed in "Session Parameters and ALTER SESSION ")

You can set values for multiple parameters in the same alter_session_set_clause.

EDITION

Specify EDITION = edition to set the specified edition as the edition in the database
session. You must have the USE object privilege on edition, edition must already
have been created, and it must be USABLE.

When this statement is successful, the database discards PL/SQL package state
corresponding to editionable packages but retains package state corresponding to
packages that are not editionable.

You can also set the edition for the current session at startup with the EDITION
parameter of the SQL*Plus CONNECT command. However, you cannot specify an ALTER
SESSION SET EDITION statement in a recursive SQL or PL/SQL block.

You can determine the edition in use by the current session with the following query:

SELECT SYS_CONTEXT('USERENV', 'CURRENT_EDITION_NAME') FROM DUAL;

Chapter 11
ALTER SESSION

11-106

See Also:

CREATE EDITION for more information on editions and Oracle Database PL/SQL
Language Reference for information on how editions are designated as USABLE

CONTAINER

Use this clause in a multitenant container database (CDB) to switch to the container specified
by container_name.

To use this clause, you must be a common user with the SET CONTAINER privilege, either
granted commonly or granted locally in container_name.

For container_name, specify one of the following:

• CDB$ROOT to switch to the root

• PDB$SEED to switch to the seed

• A pluggable database (PDB) name to switch to that PDB. You can view the names of the
PDBs in a CDB by querying the DBA_PDBS view.

You can determine the container to which the current session is connected by using the
SQL*Plus SHOW CON_NAME command or with the following SQL query:

SELECT SYS_CONTEXT('USERENV', 'CON_NAME') FROM DUAL;

SERVICE

By default, when you switch to a container, the session uses the default service for the
container. Specify the SERVICE clause to use a different service for the container. For
service_name, specify the name of the service you want to use.

See Also:

Oracle Database Administrator's Guide for more information on switching to a
container

ROW ARCHIVAL VISIBILITY

Use this clause to configure row archival visibility for the session. This clause lets you
implement In-Database Archiving, which allows you to designate table rows as active or
archived. You can then perform queries on only the active rows within the table.

• If you specify ACTIVE, then the database will consider only active rows when performing
queries on tables that are enabled for row archival. This is the default.

• If you specify ALL, then the database will consider all rows when performing queries on
tables that are enabled for row archival.

This clause has no effect on queries on tables that are not enabled for row archival.

Chapter 11
ALTER SESSION

11-107

See Also:

• The CREATE TABLE ROW ARCHIVAL clause to learn how to enable a new
table for row archival

• The ALTER TABLE [NO] ROW ARCHIVAL clause to learn how to enable or
disable an existing table for row archival

• Oracle Database VLDB and Partitioning Guide for more information on
In-Database Archiving

DEFAULT_COLLATION

Use this clause to set the default collation for the session.

• Use collation_name to specify the default collation for the session. You can
specify the name of any valid named collation or pseudo-collation. This collation
becomes the effective schema default collation. This collation is assigned to
tables, views, and materialized views that are subsequently created in any schema
for the duration of the session. The default collation for the session does not get
propagated to any remote sessions connected to the current session using DB
links.

• If you specify NONE, then there is no default collation for the session. In this case,
the default collation for a particular schema becomes the effective schema default
collation for that schema. That default collation is assigned to tables, views, and
materialized views that are subsequently created in the schema for the duration of
the session.

In either of the preceding cases, you can override the effective schema default
collation and assign a default collation to a particular table, materialized view, or view
by specifying the DEFAULT COLLATION clause of the CREATE or ALTER statement for the
table, materialized view, or view.

The effective schema default collation also affects the DDL statements CREATE
FUNCTION, CREATE PACKAGE, CREATE PROCEDURE, CREATE TRIGGER, and CREATE TYPE.
Refer to Oracle Database PL/SQL Language Reference for more details on these
statements.

You can query the default collation for a session with the following statement:

SELECT SYS_CONTEXT('USERENV', 'SESSION_DEFAULT_COLLATION') FROM DUAL;

You can specify the SET DEFAULT_COLLATION clause only if the COMPATIBLE initialization
parameter is set to 12.2 or greater, and the MAX_STRING_SIZE initialization parameter is
set to EXTENDED.

See Also:

The DEFAULT COLLATION Clause clause of CREATE USER for more
information on the default collation of a schema

Chapter 11
ALTER SESSION

11-108

Note:

The effective schema default collation for a session should not be confused with the
session parameter NLS_SORT. The effective schema default collation is used by DDL
statements to decide the default data-bound collation of tables, views, and
materialized views when they are created. The session parameter NLS_SORT points
to a named collation that is used when Oracle executes a query, a DML statement,
or PL/SQL code containing a SQL operation whose determined collation is a
pseudo-collation, such as USING_NLS_COMP or USING_NLS_SORT. Refer to Oracle
Database Globalization Support Guide for more information.

Initialization Parameters and ALTER SESSION
Some initialization parameter are dynamic in the scope of ALTER SESSION. When you set
these parameters using ALTER SESSION, the value you set persists only for the duration of the
current session.To determine whether a parameter can be altered using an ALTER SESSION
statement, query the ISSES_MODIFIABLE column of the V$PARAMETER dynamic performance
view.

Note:

Before changing the values of initialization parameters, refer to their full description
in Oracle Database Reference.

A number of parameters that can be set using ALTER SESSION are not initialization
parameters. You can set them only with ALTER SESSION, not in an initialization parameter file.
Those session parameters are described in "Session Parameters and ALTER SESSION ".

Session Parameters and ALTER SESSION
The following parameters are session parameters only, not initialization parameters:

CONSTRAINT[S]

Syntax:
CONSTRAINT[S] = { IMMEDIATE | DEFERRED | DEFAULT }

The CONSTRAINT[S] parameter determines when conditions specified by a deferrable
constraint are enforced.

• IMMEDIATE indicates that the conditions specified by the deferrable constraint are
checked immediately after each DML statement. This setting is equivalent to issuing the
SET CONSTRAINTS ALL IMMEDIATE statement at the beginning of each transaction in your
session.

• DEFERRED indicates that the conditions specified by the deferrable constraint are checked
when the transaction is committed. This setting is equivalent to issuing the SET

Chapter 11
ALTER SESSION

11-109

CONSTRAINTS ALL DEFERRED statement at the beginning of each transaction in your
session.

• DEFAULT restores all constraints at the beginning of each transaction to their initial
state of DEFERRED or IMMEDIATE.

CURRENT_SCHEMA

Syntax:
CURRENT_SCHEMA = schema

The CURRENT_SCHEMA parameter changes the current schema of the session to the
specified schema. Subsequent unqualified references to schema objects during the
session will resolve to objects in the specified schema. The setting persists for the
duration of the session or until you issue another ALTER SESSION SET CURRENT_SCHEMA
statement.

This setting offers a convenient way to perform operations on objects in a schema
other than that of the current user without having to qualify the objects with the
schema name. This setting changes the current schema, but it does not change the
session user or the current user, nor does it give the session user any additional
system or object privileges for the session.

ERROR_ON_OVERLAP_TIME

Syntax:
ERROR_ON_OVERLAP_TIME = {TRUE | FALSE}

The ERROR_ON_OVERLAP_TIME parameter determines how Oracle Database should
handle an ambiguous boundary datetime value—a case in which it is not clear whether
the datetime is in standard or daylight saving time.

• Specify TRUE to return an error for the ambiguous overlap timestamp.

• Specify FALSE to default the ambiguous overlap timestamp to the standard time.
This is the default.

Refer to "Support for Daylight Saving Times " for more information on boundary
datetime values.

FLAGGER

Syntax:
FLAGGER = { ENTRY | OFF }

The FLAGGER parameter specifies FIPS flagging (as specified in Federal Information
Processing Standard 127-2), which causes an error message to be generated when a
SQL statement issued is an extension of the Entry Level of SQL-92 (officially, ANSI
X3.135-1992, a standard that is now superseded by SQL:2016). FLAGGER is a session
parameter only, not an initialization parameter.

After flagging is set in a session, a subsequent ALTER SESSION SET FLAGGER statement
will work, but generates the message, ORA-00097. This allows FIPS flagging to be
altered without disconnecting the session. OFF turns off flagging.

Chapter 11
ALTER SESSION

11-110

See Also:

Oracle and Standard SQL, for more information about Oracle compliance with
current ANSI SQL standards

INSTANCE

Syntax:
INSTANCE = integer

Setting the INSTANCE parameter lets you access another instance as if you were connected to
your own instance. INSTANCE is a session parameter only, not an initialization parameter. In
an Oracle Real Application Clusters (Oracle RAC) environment, each Oracle RAC instance
retains static or dynamic ownership of disk space for optimal DML performance based on the
setting of this parameter.

ISOLATION_LEVEL

Syntax:
ISOLATION_LEVEL = {SERIALIZABLE | READ COMMITTED}

The ISOLATION_LEVEL parameter specifies how transactions containing database
modifications are handled. ISOLATION_LEVEL is a session parameter only, not an initialization
parameter.

• SERIALIZABLE indicates that transactions in the session use the serializable transaction
isolation mode as specified in the SQL standard. If a serializable transaction attempts to
execute a DML statement that updates rows currently being updated by another
uncommitted transaction at the start of the serializable transaction, then the DML
statement fails. A serializable transaction can see its own updates.

• READ COMMITTED indicates that transactions in the session will use the default Oracle
Database transaction behavior. If the transaction contains DML that requires row locks
held by another transaction, then the DML statement will wait until the row locks are
released.

Note:

Serializable transactions do not work with deferred segment creation or interval
partitioning. Trying to insert data into an empty table with no segment created, or
into a partition of an interval partitioned table that does not yet have a segment,
causes an error.

STANDBY_MAX_DATA_DELAY

Syntax:
STANDBY_MAX_DATA_DELAY = { integer | NONE }

Chapter 11
ALTER SESSION

11-111

In an Active Data Guard environment, this session parameter can be used to specify a
session-specific apply lag tolerance, measured in seconds, for queries issued by non-
administrative users to a physical standby database that is in real-time query mode.
This capability allows queries to be safely offloaded from the primary database to a
physical standby database, because it is possible to detect if the standby database
has become unacceptably stale.

If STANDBY_MAX_DATA_DELAY is set to the default value of NONE, queries issued to a
physical standby database will be executed regardless of the apply lag on that
database.

If STANDBY_MAX_DATA_DELAY is set to a nonzero value, a query issued to a physical
standby database will be executed only if the apply lag is less than or equal to
STANDBY_MAX_DATA_DELAY. Otherwise, an ORA-3172 error is returned to alert the client
that the apply lag is too large.

If STANDBY_MAX_DATA_DELAY is set to 0, a query issued to a physical standby database
is guaranteed to return the exact same result as if the query were issued on the
primary database, unless the standby database is lagging behind the primary
database, in which case an ORA-3172 error is returned.

See Also:

Oracle Data Guard Concepts and Administration for more information on
Active Data Guard and using this session parameter

TIME_ZONE

Syntax:
TIME_ZONE = '[+ | -] hh:mi'
 | LOCAL
 | DBTIMEZONE
 | 'time_zone_region'

The TIME_ZONE parameter specifies the default local time zone offset or region name
for the current SQL session. TIME_ZONE is a session parameter only, not an
initialization parameter. To determine the time zone of the current session, query the
built-in function SESSIONTIMEZONE (see SESSIONTIMEZONE).

• Specify a format mask ('[+|-]hh:mi') indicating the hours and minutes before or
after UTC (Coordinated Universal Time—formerly Greenwich Mean Time). The
valid range for hh:mi is -12:00 to +14:00.

• Specify LOCAL to set the default local time zone offset of the current SQL session
to the original default local time zone offset that was established when the current
SQL session was started.

• Specify DBTIMEZONE to set the current session time zone to match the value set for
the database time zone. If you specify this setting, then the DBTIMEZONE function
will return the database time zone as a UTC offset or a time zone region,
depending on how the database time zone has been set.

• Specify a valid time_zone_region. To see a listing of valid time zone region
names, query the TZNAME column of the V$TIMEZONE_NAMES dynamic performance

Chapter 11
ALTER SESSION

11-112

view. If you specify this setting, then the SESSIONTIMEZONE function will return the region
name.

Note:

Time zone region names are needed by the daylight saving feature. These names
are stored in two types of time zone files: one large and one small. One of these
files is the default file, depending on your environment and the release of Oracle
Database you are using. For more information regarding time zone files and names,
see Oracle Database Globalization Support Guide.

See Also:

Oracle Database Globalization Support Guide for a complete listing of the time zone
region names in both files

Note:

You can also set the default client session time zone using the ORA_SDTZ
environment variable. Refer to Oracle Database Globalization Support Guide for
more information on this variable.

USE_PRIVATE_OUTLINES

Syntax:
USE_PRIVATE_OUTLINES = { TRUE | FALSE | category_name }

The USE_PRIVATE_OUTLINES parameter lets you control the use of private outlines. When this
parameter is enabled and an outlined SQL statement is issued, the optimizer retrieves the
outline from the session private area rather than the public area used when
USE_STORED_OUTLINES is enabled. If no outline exists in the session private area, then the
optimizer will not use an outline to compile the statement. USE_PRIVATE_OUTLINES is not an
initialization parameter.

• TRUE causes the optimizer to use private outlines stored in the DEFAULT category when
compiling requests.

• FALSE specifies that the optimizer should not use stored private outlines. This is the
default. If USE_STORED_OUTLINES is enabled, then the optimizer will use stored public
outlines.

• category_name causes the optimizer to use outlines stored in the category_name
category when compiling requests.

Restriction on USE_PRIVATE_OUTLINES

You cannot enable this parameter if USE_STORED_OUTLINES is enabled.

Chapter 11
ALTER SESSION

11-113

USE_STORED_OUTLINES

Note:

Stored outlines are deprecated. They are still supported for backward
compatibility. However, Oracle recommends that you use SQL plan
management instead. Refer to Oracle Database SQL Tuning Guide for more
information about SQL plan management.

Syntax:

USE_STORED_OUTLINES = { TRUE | FALSE | category_name }

The USE_STORED_OUTLINES parameter determines whether the optimizer will use stored
public outlines to generate execution plans. USE_STORED_OUTLINES is not an
initialization parameter.

• TRUE causes the optimizer to use outlines stored in the DEFAULT category when
compiling requests.

• FALSE specifies that the optimizer should not use stored outlines. This is the
default.

• category_name causes the optimizer to use outlines stored in the category_name
category when compiling requests.

Restriction on USED_STORED_OUTLINES

You cannot enable this parameter if USE_PRIVATE_OUTLINES is enabled.

Examples

Enabling Parallel DML: Example

Issue the following statement to enable parallel DML mode for the current session:

ALTER SESSION ENABLE PARALLEL DML;

Forcing a Distributed Transaction: Example

The following transaction inserts an employee record into the employees table on the
database identified by the database link remote and deletes an employee record from
the employees table on the database identified by local:

ALTER SESSION
 ADVISE COMMIT;

INSERT INTO employees@remote
 VALUES (8002, 'Juan', 'Fernandez', 'juanf@example.com', NULL,
 TO_DATE('04-OCT-1992', 'DD-MON-YYYY'), 'SA_CLERK', 3000,
 NULL, 121, 20);

ALTER SESSION
 ADVISE ROLLBACK;

DELETE FROM employees@local

Chapter 11
ALTER SESSION

11-114

 WHERE employee_id = 8002;

COMMIT;

This transaction has two ALTER SESSION statements with the ADVISE clause. If the transaction
becomes in doubt, then remote is sent the advice 'COMMIT' by virtue of the first ALTER SESSION
statement and local is sent the advice 'ROLLBACK' by virtue of the second statement.

Closing a Database Link: Example

This statement updates the jobs table on the local database using a database link, commits
the transaction, and explicitly closes the database link:

UPDATE jobs@local SET min_salary = 3000
 WHERE job_id = 'SH_CLERK';

COMMIT;

ALTER SESSION
 CLOSE DATABASE LINK local;

Changing the Date Format Dynamically: Example

The following statement dynamically changes the default date format for your session to
'YYYY MM DD-HH24:MI:SS':

ALTER SESSION
 SET NLS_DATE_FORMAT = 'YYYY MM DD HH24:MI:SS';

Oracle Database uses the new default date format:

SELECT TO_CHAR(SYSDATE) Today
 FROM DUAL;

TODAY

2001 04 12 12:30:38

Changing the Date Language Dynamically: Example

The following statement changes the language for date format elements to French:

ALTER SESSION
 SET NLS_DATE_LANGUAGE = French;

SELECT TO_CHAR(SYSDATE, 'Day DD Month YYYY') Today
 FROM DUAL;

TODAY

Jeudi 12 Avril 2001

Changing the ISO Currency: Example

The following statement dynamically changes the ISO currency symbol to the ISO currency
symbol for the territory America:

ALTER SESSION
 SET NLS_ISO_CURRENCY = America;

SELECT TO_CHAR(SUM(salary), 'C999G999D99') Total
 FROM employees;

Chapter 11
ALTER SESSION

11-115

TOTAL

 USD694,900.00

Changing the Decimal Character and Group Separator: Example

The following statement dynamically changes the decimal character to comma (,) and
the group separator to period (.):

ALTER SESSION SET NLS_NUMERIC_CHARACTERS = ',.' ;

Oracle Database returns these new characters when you use their number format
elements:

ALTER SESSION SET NLS_CURRENCY = 'FF';

SELECT TO_CHAR(SUM(salary), 'L999G999D99') Total FROM employees;

TOTAL

 FF694.900,00

Changing the NLS Currency: Example

The following statement dynamically changes the local currency symbol to 'DM':

ALTER SESSION
 SET NLS_CURRENCY = 'DM';

SELECT TO_CHAR(SUM(salary), 'L999G999D99') Total
 FROM employees;

TOTAL

 DM694.900,00

Changing the NLS Language: Example

The following statement dynamically changes to French the language in which error
messages are displayed:

ALTER SESSION
 SET NLS_LANGUAGE = FRENCH;

Session modifiee.

SELECT * FROM DMP;

ORA-00942: Table ou vue inexistante

Changing the Linguistic Sort Sequence: Example

The following statement dynamically changes the linguistic sort sequence to Spanish:

ALTER SESSION
 SET NLS_SORT = XSpanish;

Oracle Database sorts character values based on their position in the Spanish
linguistic sort sequence.

Enabling Query Rewrite: Example

Chapter 11
ALTER SESSION

11-116

This statement enables query rewrite in the current session for all materialized views that
have not been explicitly disabled:

ALTER SESSION
 SET QUERY_REWRITE_ENABLED = TRUE;

Chapter 11
ALTER SESSION

11-117

12
SQL Statements: ALTER SYNONYM to
COMMENT

This chapter contains the following SQL statements:

• ALTER SYNONYM

• ALTER SYSTEM

• ALTER TABLE

• ALTER TABLESPACE

• ALTER TABLESPACE SET

• ALTER TRIGGER

• ALTER TYPE

• ALTER USER

• ALTER VIEW

• ANALYZE

• ASSOCIATE STATISTICS

• AUDIT (Traditional Auditing)

• AUDIT (Unified Auditing)

• CALL

• COMMENT

ALTER SYNONYM

Purpose

Use the ALTER SYNONYM statement to modify an existing synonym.

Prerequisites

To modify a private synonym in another user's schema, you must have the CREATE ANY
SYNONYM and DROP ANY SYNONYM system privileges.

To modify a PUBLIC synonym, you must have the CREATE PUBLIC SYNONYM and DROP PUBLIC
SYNONYM system privileges.

12-1

Syntax

alter_synonym::=

ALTER

PUBLIC

SYNONYM

schema .

synonym

EDITIONABLE

NONEDITIONABLE

COMPILE

;

Semantics

PUBLIC

Specify PUBLIC if synonym is a public synonym. You cannot use this clause to change a
public synonym to a private synonym, or vice versa.

schema

Specify the schema containing the synonym. If you omit schema, then Oracle Database
assumes the synonym is in your own schema.

synonym

Specify the name of the synonym to be altered.

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the synonym becomes an editioned or
noneditioned object if editioning is later enabled for the schema object type SYNONYM in
schema. The default is EDITIONABLE. For information about altering editioned and
noneditioned objects, see Oracle Database Development Guide.

Restriction on EDITIONABLE | NONEDITIONABLE

You cannot specify these clauses for a public synonym because editioning is always
enabled for the object type SYNONYM in the PUBLIC schema.

COMPILE

Use this clause to compile synonym. A synonym places a dependency on its target
object and becomes invalid if the target object is changed or dropped. When you
compile an invalid synonym, it becomes valid again.

Note:

You can determine if a synonym is valid or invalid by querying the STATUS
column of the ALL_, DBA_, and USER_OBJECTS data dictionary views.

Examples

The following examples modify synonyms that were created in the CREATE SYNONYM
"Examples".

Chapter 12
ALTER SYNONYM

12-2

The following statement compiles synonym offices:

ALTER SYNONYM offices COMPILE;

The following statement compiles public synonym emp_table:

ALTER PUBLIC SYNONYM emp_table COMPILE;

The following statement causes synonym offices to remain a noneditioned object if
editioning is later enabled for schema object type SYNONYM in the schema that contains the
synonym offices:

ALTER SYNONYM offices NONEDITIONABLE;

ALTER SYSTEM
Purpose

Use the ALTER SYSTEM statement to dynamically alter your Oracle Database instance. The
settings stay in effect as long as the database is mounted.

When you use the ALTER SYSTEM statement in a multitenant container database (CDB), you
can specify some clauses to alter the CDB as a whole and other clauses to alter a specific
pluggable database (PDB).

See Also:

Oracle Database Administrator's Guide for complete information on using the ALTER
SYSTEM statement in a CDB

Prerequisites

To specify the RELOCATE CLIENT clause, you must be authenticated AS SYSASM.

To specify all other clauses, you must have the ALTER SYSTEM system privilege.

If you are connected to a CDB:

• To alter the CDB as a whole, the current container must be the root and you must have
the commonly granted ALTER SYSTEM privilege.

• To alter a PDB, the current container must be the PDB and you must have the ALTER
SYSTEM privilege, either granted commonly or granted locally in the PDB.

Chapter 12
ALTER SYSTEM

12-3

Syntax

alter_system::=

ALTER SYSTEM

archive_log_clause

checkpoint_clause

check_datafiles_clause

distributed_recov_clauses

FLUSH

SHARED_POOL

GLOBAL CONTEXT

BUFFER_CACHE

FLASH_CACHE

REDO TO target_db_name

NO

CONFIRM APPLY

end_session_clauses

SWITCH LOGFILE

SUSPEND

RESUME

quiesce_clauses

rolling_migration_clauses

rolling_patch_clauses

security_clauses

affinity_clauses

shutdown_dispatcher_clause

REGISTER

SET alter_system_set_clause

RESET alter_system_reset_clause

RELOCATE CLIENT client_id

cancel_sql_clause

FLUSH PASSWORDFILE_METADATA_CACHE

;

(archive_log_clause::=, checkpoint_clause::=, check_datafiles_clause::=,
distributed_recov_clauses::=, end_session_clauses::=, quiesce_clauses::=,
rolling_migration_clauses::=, rolling_patch_clauses::=, security_clauses::=,
shutdown_dispatcher_clause::=, alter_system_set_clause::=,
alter_system_reset_clause::=)

Chapter 12
ALTER SYSTEM

12-4

archive_log_clause::=

ARCHIVE LOG

INSTANCE ’ instance_name ’

SEQUENCE integer

CHANGE integer

CURRENT

NOSWITCH

GROUP integer

LOGFILE ’ filename ’

USING BACKUP CONTROLFILE

NEXT

ALL

TO ’ location ’

checkpoint_clause::=

CHECKPOINT

GLOBAL

LOCAL

check_datafiles_clause::=

CHECK DATAFILES

GLOBAL

LOCAL

distributed_recov_clauses::=

ENABLE

DISABLE

DISTRIBUTED RECOVERY

end_session_clauses::=

DISCONNECT SESSION ’ session_id , serial_number ’

POST_TRANSACTION

KILL SESSION ’ session_id , serial_number

, @ instance_id

’

IMMEDIATE

NOREPLAY

Chapter 12
ALTER SYSTEM

12-5

quiesce_clauses::=

QUIESCE RESTRICTED

UNQUIESCE

rolling_migration_clauses::=

START ROLLING MIGRATION TO ’ ASM_version ’

STOP ROLLING MIGRATION

rolling_patch_clauses::=

START ROLLING PATCH

STOP ROLLING PATCH

security_clauses::=

ENABLE

DISABLE
RESTRICTED SESSION

SET ENCRYPTION WALLET OPEN IDENTIFIED BY ’’
wallet_password

HSM_auth_string
 ’’

SET ENCRYPTION WALLET CLOSE

IDENTIFIED BY ’’
wallet_password

HSM_auth_string
 ’’

set_encryption_key

affinity_clauses::=

ENABLE AFFINITY

schema .

table

SERVICE service_name

DISABLE AFFINITY

schema .

table

Chapter 12
ALTER SYSTEM

12-6

set_encryption_key::=

SET ENCRYPTION KEY

 ’’ certificate_id ’’

IDENTIFIED BY ’’ wallet_password ’’

IDENTIFIED BY ’’ HSM_auth_string ’’

MIGRATE USING ’’ wallet_password ’’

shutdown_dispatcher_clause::=

SHUTDOWN

IMMEDIATE

dispatcher_name

alter_system_set_clause::=

set_parameter_clause

USE_STORED_OUTLINES =

TRUE

FALSE

category_name

GLOBAL_TOPIC_ENABLED =
TRUE

FALSE

set_parameter_clause::=

parameter_name = parameter_value

,
COMMENT = string DEFERRED

CONTAINER =
CURRENT

ALL

SCOPE =

MEMORY

SPFILE

BOTH

SID =
’ sid ’

’ * ’

Chapter 12
ALTER SYSTEM

12-7

alter_system_reset_clause::=

parameter_name

SCOPE =

MEMORY

SPFILE

BOTH

SID =
’ sid ’

’ * ’

cancel_sql_clause::=

CANCEL SQL ’ session_id , serial_number

, @ instance_id , sql_id

’

Semantics

archive_log_clause

The archive_log_clause manually archives redo log files or enables or disables
automatic archiving. To use this clause, your instance must have the database
mounted. The database can be either open or closed unless otherwise noted.

INSTANCE Clause

This clause is relevant only if you are using Oracle Real Application Clusters (Oracle
RAC). Specify the name of the instance for which you want the redo log file group to
be archived. The instance name is a string of up to 80 characters. Oracle Database
automatically determines the thread that is mapped to the specified instance and
archives the corresponding redo log file group. If no thread is mapped to the specified
instance, then Oracle Database returns an error.

SEQUENCE Clause

Specify SEQUENCE to manually archive the online redo log file group identified by the log
sequence number integer in the specified thread. If you omit the THREAD parameter,
then Oracle Database archives the specified group from the thread assigned to your
instance.

CHANGE Clause

Specify CHANGE to manually archive the online redo log file group containing the redo
log entry with the system change number (SCN) specified by integer in the specified
thread. If the SCN is in the current redo log file group, then Oracle Database performs
a log switch. If you omit the THREAD parameter, then Oracle Database archives the
groups containing this SCN from all enabled threads.

You can use this clause only when your instance has the database open.

CURRENT Clause

Chapter 12
ALTER SYSTEM

12-8

Specify CURRENT to manually archive the current redo log file group of the specified thread,
forcing a log switch. If you omit the THREAD parameter, then Oracle Database archives all redo
log file groups from all enabled threads, including logs previous to current logs. You can
specify CURRENT only when the database is open.

NOSWITCH

Specify NOSWITCH if you want to manually archive the current redo log file group without
forcing a log switch. This setting is used primarily with standby databases to prevent data
divergence when the primary database shuts down. Divergence implies the possibility of data
loss in case of primary database failure.

You can use the NOSWITCH clause only when your instance has the database mounted but not
open. If the database is open, then this operation closes the database automatically. You
must then manually shut down the database before you can reopen it.

GROUP Clause

Specify GROUP to manually archive the online redo log file group with the GROUP value
specified by integer. You can determine the GROUP value for a redo log file group by querying
the dynamic performance view V$LOG. If you specify both the THREAD and GROUP parameters,
then the specified redo log file group must be in the specified thread.

LOGFILE Clause

Specify LOGFILE to manually archive the online redo log file group containing the redo log file
member identified by 'filename'. If you specify both the THREAD and LOGFILE parameters,
then the specified redo log file group must be in the specified thread.

If the database was mounted with a backup control file, then specify USING BACKUP
CONTROLFILE to permit archiving of all online logfiles, including the current logfile.

Restriction on the LOGFILE clause

You must archive redo log file groups in the order in which they are filled. If you specify a redo
log file group for archiving with the LOGFILE parameter, and earlier redo log file groups are not
yet archived, then Oracle Database returns an error.

NEXT Clause

Specify NEXT to manually archive the next online redo log file group from the specified thread
that is full but has not yet been archived. If you omit the THREAD parameter, then Oracle
Database archives the earliest unarchived redo log file group from any enabled thread.

ALL Clause

Specify ALL to manually archive all online redo log file groups from the specified thread that
are full but have not been archived. If you omit the THREAD parameter, then Oracle Database
archives all full unarchived redo log file groups from all enabled threads.

TO location Clause

Specify TO 'location' to indicate the primary location to which the redo log file groups are
archived. The value of this parameter must be a fully specified file location following the
conventions of your operating system. If you omit this parameter, then Oracle Database
archives the redo log file group to the location specified by the initialization parameters
LOG_ARCHIVE_DEST or LOG_ARCHIVE_DEST_n.

Chapter 12
ALTER SYSTEM

12-9

checkpoint_clause

Specify CHECKPOINT to explicitly force Oracle Database to perform a checkpoint,
ensuring that all changes made by committed transactions are written to data files on
disk. You can specify this clause only when your instance has the database open.
Oracle Database does not return control to you until the checkpoint is complete.

GLOBAL

In an Oracle Real Application Clusters (Oracle RAC) environment, this setting causes
Oracle Database to perform a checkpoint for all instances that have opened the
database. This is the default.

LOCAL

In an Oracle RAC environment, this setting causes Oracle Database to perform a
checkpoint only for the thread of redo log file groups for the instance from which you
issue the statement.

See Also:

"Forcing a Checkpoint: Example"

check_datafiles_clause

In a distributed database system, such as an Oracle RAC environment, this clause
updates an instance's SGA from the database control file to reflect information on all
online data files.

• Specify GLOBAL to perform this synchronization for all instances that have opened
the database. This is the default.

• Specify LOCAL to perform this synchronization only for the local instance.

Your instance should have the database open.

distributed_recov_clauses

The DISTRIBUTED RECOVERY clause lets you enable or disable distributed recovery. To
use this clause, your instance must have the database open.

ENABLE

Specify ENABLE to enable distributed recovery. In a single-process environment, you
must use this clause to initiate distributed recovery.

You may need to issue the ENABLE DISTRIBUTED RECOVERY statement more than once
to recover an in-doubt transaction if the remote node involved in the transaction is not
accessible. In-doubt transactions appear in the data dictionary view DBA_2PC_PENDING.

See Also:

"Enabling Distributed Recovery: Example"

Chapter 12
ALTER SYSTEM

12-10

DISABLE

Specify DISABLE to disable distributed recovery.

FLUSH SHARED_POOL Clause

The FLUSH SHARED_POOL clause lets you clear data from the shared pool in the system global
area (SGA). The shared pool stores:

• Cached data dictionary information and

• Shared SQL and PL/SQL areas for SQL statements, stored procedures, functions,
packages, and triggers.

This statement does not clear global application context information, nor does it clear shared
SQL and PL/SQL areas for items that are currently being executed. You can use this clause
regardless of whether your instance has the database dismounted or mounted, open or
closed.

See Also:

"Clearing the Shared Pool: Example"

FLUSH GLOBAL CONTEXT Clause

The FLUSH GLOBAL CONTEXT clause lets you flush all global application context information
from the shared pool in the system global area (SGA). You can use this clause regardless of
whether your instance has the database dismounted or mounted, open or closed.

FLUSH BUFFER_CACHE Clause

The FLUSH BUFFER_CACHE clause lets you clear all data from the buffer cache in the system
global area (SGA), including the KEEP, RECYCLE, and DEFAULT buffer pools.

Note:

This clause is intended for use only on a test database. Do not use this clause on a
production database, because as a result of this statement, subsequent queries will
have no hits, only misses.

This clause is useful if you need to measure the performance of rewritten queries or a suite of
queries from identical starting points.

FLUSH FLASH_CACHE Clause

Use the FLUSH FLASH_CACHE clause to flush the Database Smart Flash Cache. This clause
can be useful if you need to measure the performance of rewritten queries or a suite of
queries from identical starting points, or if there might be corruption in the cache.

Chapter 12
ALTER SYSTEM

12-11

FLUSH REDO Clause

Use the FLUSH REDO clause to flush redo data from a primary database to a standby
database and to optionally wait for the flushed redo data to be applied to a physical or
logical standby database.

This clause can allow a failover to be performed on the target standby database
without data loss, even if the primary database is not in a zero data loss data
protection mode, provided that all redo data that has been generated by the primary
database can be flushed to the standby database.

The FLUSH REDO clause must be issued on a mounted, but not open, primary database.

target_db_name

For target_db_name, specify the DB_UNIQUE_NAME of the standby database that is to
receive the redo data flushed from the primary database.

The value of the LOG_ARCHIVE_DEST_n database initialization parameter that
corresponds to the target standby database must contain the DB_UNIQUE_NAME
attribute, and the value of that attribute must match the DB_UNIQUE_NAME of the target
standby database.

NO CONFIRM APPLY

If you specify this clause, then the ALTER SYSTEM statement will not complete until the
standby database has received all of the flushed redo data. You must specify this
clause if the target standby database is a snapshot standby database.

CONFIRM APPLY

If you specify this clause, then the ALTER SYSTEM statement will not complete until the
target standby database has received and applied all flushed redo data. This is the
default behavior unless you specify NO CONFIRM APPLY. You cannot specify this clause if
the target standby database is a snapshot standby database.

See Also:

Oracle Data Guard Concepts and Administration for more information about
the FLUSH REDO clause and failovers

end_session_clauses

The end_session_clauses give you several ways to end the current session.

DISCONNECT SESSION Clause

Use the DISCONNECT SESSION clause to disconnect the current session by destroying
the dedicated server process (or virtual circuit if the connection was made by way of a
Shared Server). To use this clause, your instance must have the database open. You
must identify the session with both of the following values from the V$SESSION view:

• For session_id, specify the value of the SID column.

• For serial_number, specify the value of the SERIAL# column.

Chapter 12
ALTER SYSTEM

12-12

If system parameters are appropriately configured, then application failover will take effect.

• The POST_TRANSACTION setting allows ongoing transactions to complete before the
session is disconnected. If the session has no ongoing transactions, then this clause has
the same effect described for as KILL SESSION.

• The IMMEDIATE setting disconnects the session and recovers the entire session state
immediately, without waiting for ongoing transactions to complete.

– If you also specify POST_TRANSACTION and the session has ongoing transactions, then
the IMMEDIATE keyword is ignored.

– If you do not specify POST_TRANSACTION, or you specify POST_TRANSACTION but the
session has no ongoing transactions, then this clause has the same effect as
described for KILL SESSION IMMEDIATE.

See Also:

"Disconnecting a Session: Example"

KILL SESSION Clause

The KILL SESSION clause lets you mark a session as terminated, roll back ongoing
transactions, release all session locks, and partially recover session resources. To use this
clause, your instance must have the database open. Your session and the session to be
terminated must be on the same instance unless you specify integer3.You must identify the
session with the following values from the V$SESSION view:

• For session_id, specify the value of the SID column.

• For serial_number, specify the value of the SERIAL# column.

• For the optional instance_id, specify the ID of the instance where the target session to
be killed exists. You can find the instance ID by querying the GV$ tables.

If the session is performing some activity that must be completed, such as waiting for a reply
from a remote database or rolling back a transaction, then Oracle Database waits for this
activity to complete, marks the session as terminated, and then returns control to you. If the
waiting lasts a minute, then Oracle Database marks the session to be terminated and returns
control to you with a message that the session is marked to be terminated. The PMON
background process then marks the session as terminated when the activity is complete.

Whether or not the session has an ongoing transaction, Oracle Database does not recover
the entire session state until the session user issues a request to the session and receives a
message that the session has been terminated.

See Also:

"Terminating a Session: Example"

IMMEDIATE

Specify IMMEDIATE to instruct Oracle Database to roll back ongoing transactions, release all
session locks, recover the entire session state, and return control to you immediately.

Chapter 12
ALTER SYSTEM

12-13

NOREPLAY

This clause is valid if you are using Application Continuity. When connected to a
service with Application Continuity enabled (that is, FAILOVER_TYPE = TRANSACTION),
the session is recovered after the session fails or is killed. If you do not want to recover
a session after it is terminated, then specify NOREPLAY.

SWITCH LOGFILE Clause

The SWITCH LOGFILE clause lets you explicitly force Oracle Database to begin writing to
a new redo log file group, regardless of whether the files in the current redo log file
group are full. When you force a log switch, Oracle Database begins to perform a
checkpoint but returns control to you immediately rather than when the checkpoint is
complete. To use this clause, your instance must have the database open.

See Also:

"Forcing a Log Switch: Example"

SUSPEND | RESUME

The SUSPEND clause lets you suspend all I/O (data file, control file, and file header) as
well as queries, in all instances, enabling you to make copies of the database without
having to handle ongoing transactions.

Restrictions on SUSPEND and RESUME

SUSPEND and RESUME are subject to the following restrictions:

• Do not use this clause unless you have put the database tablespaces in hot
backup mode.

• Do not terminate the session that issued the ALTER SYSTEM SUSPEND statement. An
attempt to reconnect while the system is suspended may fail because of recursive
SQL that is running during the SYS login.

• If you start a new instance while the system is suspended, then that new instance
will not be suspended.

The RESUME clause lets you make the database available once again for queries and
I/O.

quiesce_clauses

Use the QUIESCE RESTRICTED and UNQUIESCE clauses to put the database in and take it
out of the quiesced state. This state enables database administrators to perform
administrative operations that cannot be safely performed in the presence of
concurrent transactions, queries, or PL/SQL operations.

Chapter 12
ALTER SYSTEM

12-14

Note:

The QUIESCE RESTRICTED clause is valid only if the Database Resource Manager is
installed and only if the Resource Manager has been on continuously since
database startup in any instances that have opened the database.

If multiple QUIESCE RESTRICTED or UNQUIESCE statements issue at the same time from different
sessions or instances, then all but one will receive an error.

QUIESCE RESTRICTED

Specify QUIESCE RESTRICTED to put the database in the quiesced state. For all instances with
the database open, this clause has the following effect:

• Oracle Database instructs the Database Resource Manager in all instances to prevent all
inactive sessions (other than SYS and SYSTEM) from becoming active. No user other than
SYS and SYSTEM can start a new transaction, a new query, a new fetch, or a new PL/SQL
operation.

• Oracle Database waits for all existing transactions in all instances that were initiated by a
user other than SYS or SYSTEM to finish (either commit or abort). Oracle Database also
waits for all running queries, fetches, and PL/SQL procedures in all instances that were
initiated by users other than SYS or SYSTEM and that are not inside transactions to finish. If
a query is carried out by multiple successive OCI fetches, then Oracle Database does not
wait for all fetches to finish. It waits for the current fetch to finish and then blocks the next
fetch. Oracle Database also waits for all sessions (other than those of SYS or SYSTEM) that
hold any shared resources (such as enqueues) to release those resources. After all these
operations finish, Oracle Database places the database into quiesced state and finishes
executing the QUIESCE RESTRICTED statement.

• If an instance is running in shared server mode, then Oracle Database instructs the
Database Resource Manager to block logins (other than SYS or SYSTEM) on that instance.
If an instance is running in non-shared-server mode, then Oracle Database does not
impose any restrictions on user logins in that instance.

During the quiesced state, you cannot change the Resource Manager plan in any instance.

UNQUIESCE

Specify UNQUIESCE to take the database out of quiesced state. Doing so permits transactions,
queries, fetches, and PL/SQL procedures that were initiated by users other than SYS or
SYSTEM to be undertaken once again. The UNQUIESCE statement does not have to originate in
the same session that issued the QUIESCE RESTRICTED statement.

rolling_migration_clauses

Use these clauses in a clustered Oracle Automatic Storage Management (Oracle ASM)
environment to migrate one node at a time to a different Oracle ASM version without affecting
the overall availability of the Oracle ASM cluster or the database clusters using Oracle ASM
for storage.

START ROLLING MIGRATION

When starting rolling upgrade, for ASM_version, you must specify the following string:

'<version_num>, <release_num>, <update_num>,<port_release_num>,<port_update_num>'

Chapter 12
ALTER SYSTEM

12-15

ASM_version must be equal to or greater than 11.1.0.0.0. The surrounding single
quotation marks are required. Oracle ASM first verifies that the current release is
compatible for migration to the specified release, and then goes into limited
functionality mode. Oracle ASM then determines whether any rebalance operations
are under way anywhere in the cluster. If there are any such operations, then the
statement fails and must be reissued after the rebalance operations are complete.

Rolling upgrade mode is a cluster-wide In-Memory persistent state. The cluster
continues to be in this state until there is at least one Oracle ASM instance running in
the cluster. Any new instance joining the cluster switches to migration mode
immediately upon startup. If all the instances in the cluster terminate, then subsequent
startup of any Oracle ASM instance will not be in rolling upgrade mode until you
reissue this statement to restart rolling upgrade of the Oracle ASM instances.

STOP ROLLING MIGRATION

Use this clause to stop rolling upgrade and bring the cluster back into normal
operation. Specify this clause only after all instances in the cluster have migrated to
the same software version. The statement will fail if the cluster is not in rolling upgrade
mode.

When you specify this clause, the Oracle ASM instance validates that all the members
of the cluster are at the same software version, takes the instance out of rolling
upgrade mode, and returns to full functionality of the Oracle ASM cluster. If any
rebalance operations are pending because disks have gone offline, then those
operations are restarted if the ASM_POWER_LIMIT parameter would not be violated by
such a restart.

See Also:

Oracle Automatic Storage Management Administrator's Guide for more
information about rolling upgrade

rolling_patch_clauses

Use these clauses in a clustered Oracle Automatic Storage Management (Oracle
ASM) environment to update one node at a time to the latest patch level without
affecting the overall availability of the Oracle ASM cluster or the database clusters
using Oracle ASM for storage.

START ROLLING PATCH

Use this clause to start the rolling patch operation. Oracle ASM first verifies that all live
nodes in the cluster are at the same version, and then goes into rolling patch mode,
which is a cluster-wide In-Memory persistent state. The cluster continues to be in this
state until all live nodes have been patched to the latest patch level.

Any nodes that are down during this operation are not patched. This does not affect
the success of the rolling patch operation. However, you must patch these nodes
before they are started. Otherwise, they will not be allowed to join the cluster.

STOP ROLLING PATCH

use this clause to stop the rolling patch operation and bring the cluster back into
normal operation. Specify this clause only after all live nodes in the cluster have been

Chapter 12
ALTER SYSTEM

12-16

patched to the latest patch level. The statement will fail if the cluster is not in rolling patch
mode.

When you specify this clause, the Oracle ASM instance validates that all members of the
cluster are at the same patch level, takes the instance out of rolling patch mode, and returns
full functionality of the Oracle ASM cluster. If any members of the cluster are not at the latest
patch level, then this operation fails and the cluster goes into limited functionality mode.

The following queries display information about rolling patches. In order to run these queries,
you must be connected to the Oracle ASM instance in the Grid home, and the Grid
Infrastructure home must be configured with the Oracle Clusterware option for an Oracle
RAC environment.

• You can determine whether a cluster is in rolling patch mode with the following query:

SELECT SYS_CONTEXT('SYS_CLUSTER_PROPERTIES', 'CLUSTER_STATE') FROM DUAL;
• You can determine the patch level of a cluster with the following query:

SELECT SYS_CONTEXT('SYS_CLUSTER_PROPERTIES', 'CURRENT_PATCHLVL') FROM DUAL;
• You can display a list of patches applied on the Oracle ASM instance, by querying the

V$PATCHES dynamic performance view. Refer to Oracle Database Reference for more
information.

See Also:

Oracle Automatic Storage Management Administrator's Guide for more information
about rolling patches

security_clauses

The security_clauses let you control access to the instance. They also allow you to enable
or disable access to the encrypted data in the instance.

RESTRICTED SESSION

The RESTRICTED SESSION clause lets you restrict logon to Oracle Database. You can use this
clause regardless of whether your instance has the database dismounted or mounted, open
or closed.

• Specify ENABLE to allow only users with RESTRICTED SESSION system privilege to log on to
Oracle Database. Existing sessions are not terminated.

This clause applies only to the current instance. Therefore, in an Oracle RAC
environment, authorized users without the RESTRICTED SESSION system privilege can still
access the database by way of other instances.

• Specify DISABLE to reverse the effect of the ENABLE RESTRICTED SESSION clause, allowing
all users with CREATE SESSION system privilege to log on to Oracle Database. This is the
default.

See Also:

"Restricting Sessions: Example"

Chapter 12
ALTER SYSTEM

12-17

SET ENCRYPTION WALLET Clause

Use this clause to manage database access to the Transparent Data Encryption (TDE)
master encryption key. The TDE master encryption key is stored in an external security
module, which can be an encryption wallet or Hardware Security Module (HSM).

Although this statement begins with the keyword ALTER, an ALTER SYSTEM SET
ENCRYPTION WALLET statement is not a DDL clause. However, you cannot roll back
such a statement.

Although this clause begins with the SET keyword, do not confuse it with the
alter_system_set_clause, which allows you to use the SET keyword to set the value of
initialization parameters. ENCRYPTION WALLET is not an initialization parameter.

OPEN

When you specify this clause, the database uses the specified password to open the
wallet and load the TDE master key into database memory for the duration of the
instance, or establish a connection to the HSM in order to send the encrypted table
and tablespace keys to the HSM and receive then back decrypted.

• Specify wallet_password to retrieve the master encryption key from the encryption
wallet. If the wallet is not available or is already open, then the database returns
an error. The double quotation marks around wallet_password are required.

• Specify HSM_auth_string to make the HSM accessible. HSM_auth_string is of the
form "user_id:password" where:

– user_id is the user ID created for the database using the HSM management
interface

– password is the password created for the user ID using the HSM management
interface

The double quotation marks around HSM_auth_string are required

CLOSE

Use this clause to disable encryption and decryption in your database. The
wallet_password is required to close an encryption wallet. HSM_auth_string is
required to disable access to the HSM. Refer to OPEN for details on specifying
HSM_auth_string.

A password is not required to close an auto-open wallet when only an auto-open wallet
is present. The password is required to close an auto-open wallet when both an auto-
open wallet and an encryption wallet are open. In this case, using CLOSE with a
password will close the auto-open wallet and the encryption wallet.

See Also:

Oracle Real Application Clusters Administration and Deployment Guide for
information on setting encryption wallets in an Oracle Real Application
Clusters (Oracle RAC) environment

set_encryption_key

Chapter 12
ALTER SYSTEM

12-18

Use this clause to generate a new TDE master encryption key, if none exists. If there are
existing master keys in the HSM or keystore, then this clause rekeys the existing table and
tablespace keys, that is, it decrypts all table and tablespace keys with the old master key and
reencrypts them with the new master key.

An ALTER SYSTEM SET ENCRYPTION KEY statement is a DDL statement and will automatically
commit any pending transactions in the schema.

Although this clause begins with the SET keyword, do not confuse it with the
alter_system_set_clause, which allows you to use the SET keyword to set the value of
initialization parameters. ENCRYPTION KEY is not an initialization parameter.

IDENTIFIED BY wallet_password

This clause loads the TDE master encryption key from the encryption wallet into memory for
access to encrypted data.

• The certificate_id is required if you are using PKI asymmetric key pairs as master
encryption keys. Specify the integer that identifies the certificate. You can find this value
by querying the CERT_ID column of the V$WALLET dynamic performance view. Do not
specify certificate_id if you are using symmetric keys, which are the default.

• For wallet_password, specify the password used to connect to the security module.

If you specify an invalid certificate_id or wallet_password, then the database returns an
error. The double quotation marks around certificate_id and wallet_password are
required.

Restriction on IDENTIFIED BY wallet_password

PKI-based master keys, including unified master encryption keys, can only be used with TDE
column encryption and an Oracle Wallet, not with HSM.

Note:

The use of PKI encryption with Transparent Data Encryption is deprecated. To
configure Transparent Data Encryption, use the ADMINISTER KEY
MANAGEMENT statement. See Oracle Database Advanced Security Guide for
more information.

IDENTIFIED BY HSM_auth_string

This clause creates a master encryption key that will be stored inside the HSM. The master
encryption key is used to encrypt or decrypt table keys inside the HSM.

HSM_auth_string is of the form "user_id:password" where:

• user_id is the user ID created for the database using the HSM management interface

• password is the password created for the user ID using the HSM management interface

The double quotation marks around HSM_auth_string are required.

If you are already using Transparent Data Encryption with an Oracle Wallet and you would
like to migrate to an HSM, then specify the MIGRATE USING wallet_password clause. This
decrypts the existing table and tablespace keys, and then reencrypts them with the newly
created, HSM-based, master encryption key. Note that the wallet is still in use after you

Chapter 12
ALTER SYSTEM

12-19

migrate to an HSM, because it may contain master encryption keys that were used for
export files, RMAN backups, or encrypted data in temporary or undo tablespaces or
redo log files. After migrating, perform one of the following steps:

• Change the wallet password to the HSM_auth_string using Oracle Wallet Manager
or the orapki command-line tool.

• Create a local auto-open wallet from the encryption wallet and either rename the
encryption wallet, or move it out of the directory specified in
ENCRYPTION_WALLET_LOCATION in sqlnet.ora. Do not delete the encryption wallet
and do not forget the wallet password.

See Also:

• Oracle Wallet Manager (OWM) is deprecated with Oracle Database 21c.
Instead of using Oracle Wallet Manager, Oracle recommends that you
use the command line tools orapki and mkstore.

• ENCRYPTION_WALLET_LOCATION parameter is being deprecated. The
recommended path forward is to use the WALLET_ROOT static initialization
parameter and the TDE_CONFIGURATION dynamic initialization parameter.

• Oracle Database Advanced Security Guide for more information on
using Transparent Data Encryption

• The description of the CREATE TABLE "encryption_spec " for information
on using that feature to encrypt table columns

• "Establishing a Wallet and Encryption Key: Examples"

affinity_clauses

Use the affinity clauses to enable data-dependent routing to provide cache affinity on a
RAC database. The affinity logically partitions data across RAC instances so that a
distinct subset of data is assigned to each instance. When data is accessed with a
sharding key, the request will be routed to the instance that holds the corresponding
subset of data. The benefits of affinity are:

• Sharded access for shard-aware applications and transparency for non-sharded
applications

• Better cache utilization and reduced block pings

shutdown_dispatcher_clause

The SHUTDOWN clause is relevant only if your system is using the shared server
architecture of Oracle Database. It shuts down a dispatcher identified by
dispatcher_name.

Note:

Do not confuse this clause with the SQL*Plus command SHUTDOWN, which is
used to shut down the entire database.

Chapter 12
ALTER SYSTEM

12-20

The dispatcher_name must be a string of the form 'Dxxx', where xxx indicates the number of
the dispatcher. For a listing of dispatcher names, query the NAME column of the V$DISPATCHER
dynamic performance view.

• If you specify IMMEDIATE, then the dispatcher stops accepting new connections
immediately and Oracle Database terminates all existing connections through that
dispatcher. After all sessions are cleaned up, the dispatcher process shuts down.

• If you do not specify IMMEDIATE, then the dispatcher stops accepting new connections
immediately but waits for all its users to disconnect and for all its database links to
terminate. Then it shuts down.

REGISTER Clause

Specify REGISTER to instruct the PMON background process to register the instance with the
listeners immediately. If you do not specify this clause, then registration of the instance does
not occur until the next time PMON executes the discovery routine. As a result, clients may not
be able to access the services for as long as 60 seconds after the listener is started.

See Also:

Oracle Database Concepts and Oracle Database Net Services Administrator's
Guide for information on the PMON background process and listeners

alter_system_set_clause

This clause allows you to change parameter values. The set_parameter_clause allows you
to change the value of a specified initialization parameter. The USE_STORED_OUTLINES and
GLOBAL_TOPIC_ENABLED clauses allow you to change the value of those system parameters.

set_parameter_clause

You can change the value of many initialization parameters for the current instance, whether
you have started the database with a traditional plain-text parameter file (pfile) or with a
server parameter file (spfile). Oracle Database Reference indicates these parameters in the
"Modifiable" category of each parameter description. If you are using a pfile, then the change
will persist only for the duration of the instance. However, if you have started the database
with an spfile, then you can change the value of the parameter in the spfile itself, so that the
new value will occur in subsequent instances.

Oracle Database Reference documents all initialization parameters in full. The parameters
fall into three categories:

• Basic parameters: Database administrators should be familiar with and consider the
setting for all of the basic parameters.

• Functional categories: Oracle Database Reference also lists the initialization
parameters by their functional category.

• Alphabetical listing: The Table of Contents of Oracle Database Reference contains all
initialization parameters in alphabetical order.

The ability to change initialization parameter values depends on whether you have started up
the database with a traditional plain-text initialization parameter file (pfile) or with a server
parameter file (spfile). To determine whether you can change the value of a particular

Chapter 12
ALTER SYSTEM

12-21

parameter, query the ISSYS_MODIFIABLE column of the V$PARAMETER dynamic
performance view.

If you want to enforce case on parameter values that are string literals, you must
enclose them within single quotes.

You can enforce the minimum password length for database user accounts across the
entire CDB or individual PDBs by setting the MANDATORY_USER_PROFILE parameter in
the init.ora file.

Example

This statement sets the MANDATORY_USER_PROFILE parameter to the mandatory profile
c##cdb_profile for all the PDBs in the CDB:

ALTER SYSTEM SET MANDATORY_USER_PROFILE=c##cdb_profile;

Only a common user who has been commonly granted the ALTER SYSTEM privilege or
has theSYSDBA administrative privilege can modify the MANDTORY_USER_PROFILE in the
init.ora file.

See Also:

• CREATE PROFILE

• Managing Security for Oracle Databases

When setting a parameter value, you can specify additional settings as follows:

COMMENT

The COMMENT clause lets you associate a comment string with this change in the value
of the parameter. The comment string cannot contain control characters or a line
break. If you also specify SPFILE, then this comment will appear in the parameter file to
indicate the most recent change made to this parameter.

DEFERRED

The DEFERRED keyword sets or modifies the value of the parameter for future sessions
that connect to the database. Current sessions retain the old value.

You must specify DEFERRED if the value of the ISSYS_MODIFIABLE column of
V$PARAMETER for this parameter is DEFERRED. If the value of that column is IMMEDIATE,
then the DEFERRED keyword in this clause is optional. If the value of that column is
FALSE, then you cannot specify DEFERRED in this ALTER SYSTEM statement.

See Also:

Oracle Database Reference for information on the V$PARAMETER dynamic
performance view

CONTAINER

Chapter 12
ALTER SYSTEM

12-22

You can specify the CONTAINER clause when you set a parameter value in a CDB. A CDB
uses an inheritance model for initialization parameters in which PDBs inherit initialization
parameter values from the root. In this case, inheritance means that the value of a particular
parameter in the root applies to a particular PDB.

A PDB can override the root's setting for some parameters, which means that a PDB has an
inheritance property for each initialization parameter that is either true or false. The
inheritance property is true for a parameter when the PDB inherits the root's value for the
parameter. The inheritance property is false for a parameter when the PDB does not inherit
the root's value for the parameter.

The inheritance property for some parameters must be true. For other parameters, you can
change the inheritance property by running the ALTER SYSTEM SET statement to set the
parameter when the current container is the PDB. If ISPDB_MODIFIABLE is TRUE for an
initialization parameter in the V$SYSTEM_PARAMETER view, then the inheritance property can be
false for the parameter.

• If you specify CONTAINER = ALL, then the parameter setting applies to all containers in the
CDB, including the root and all of the PDBs. The current container must be the root.

Specifying ALL sets the inheritance property to true for the parameter in all PDBs.

• If you specify CONTAINER = CURRENT, then the parameter setting applies only to the current
container. When the current container is the root, the parameter setting applies to the root
and to any PDB with an inheritance property of true for the parameter.

If you omit this clause, then CONTAINER = CURRENT is the default.

See Also:

Oracle Database Administrator's Guide for more information on modifying
parameters in a CDB

SCOPE

The SCOPE clause lets you specify when the change takes effect. The behavior of this clause
depends on whether you are connected to a non-CDB, a CDB root, or a PDB.

When you issue the ALTER SYSTEM statement while connected to a non-CDB or a
CDB root, the scope depends on whether you started up the database using a traditional
plain-text parameter file (pfile) or server parameter file (spfile).

• MEMORY indicates that the change is made in memory, takes effect immediately, and
persists until the database is shut down. If you started up the database using a parameter
file (pfile), then this is the only scope you can specify.

• SPFILE indicates that the change is made in the server parameter file. The new setting
takes effect when the database is next shut down and started up again. You must specify
SPFILE when changing the value of a static parameter that is described as not modifiable
in Oracle Database Reference.

• BOTH indicates that the change is made in memory and in the server parameter file. The
new setting takes effect immediately and persists after the database is shut down and
started up again.

Chapter 12
ALTER SYSTEM

12-23

If a server parameter file was used to start up the database, then BOTH is the default. If
a parameter file was used to start up the database, then MEMORY is the default, as well
as the only scope you can specify.

When you issue the ALTER SYSTEM statement while connected to a PDB, you
can modify only initialization parameters for which the ISPDB_MODIFIABLE column is
TRUE in the V$SYSTEM_PARAMETER view. The initialization parameter value takes effect
only for the PDB. For any initialization parameter that is not set explicitly for a PDB, the
PDB inherits the CDB root's parameter value.

• MEMORY indicates that the change is made in memory and takes effect immediately
in the PDB. The setting reverts to the value set in the CDB root in the any of the
following cases:

– An ALTER SYSTEM SET statement sets the value of the parameter in the root with
SCOPE equal to BOTH or MEMORY, and the PDB is closed and reopened. The
parameter value in the PDB is not changed if SCOPE is equal to SPFILE, and
the PDB is closed and reopened.

– The PDB is closed and reopened.

– The CDB is shut down and reopened.

• SPFILE indicates that the change is made for the PDB and stored persistently. The
new setting affects only the PDB and takes effect in either of the following cases:

– The PDB is closed and reopened.

– The CDB is shut down and reopened.

• BOTH indicates that the change is made in memory, made for the PDB, and stored
persistently. The new setting takes effect immediately in the PDB and persists after
the PDB is closed and reopened or the CDB is shut down and reopened. The new
setting affects only the PDB.

When a PDB is unplugged from a CDB, the values of the initialization parameters that
were specified for the PDB with SCOPE=BOTH or SCOPE=SPFILE are added to the PDB's
XML metadata file. These values are restored for the PDB when it is plugged in to a
CDB.

Note:

Oracle may internally adjust the parameter value passed in ALTER SYSTEM
SET before it is set in memory or the spfile. For example, if you input a non-
prime number when the paramenter value should be a prime number, Oracle
will adjust the value to the next prime number. You can query the parameter
value from parameter views V$PARAMETER, V$SYSTEM_PARAMETER, and
V$SPPARAMETER.

SID

The SID clause lets you specify the SID of the instance where the value will take effect.

• Specify SID = '*' if you want Oracle Database to change the value of the
parameter for all instances that do not already have an explicit setting for this
parameter.

Chapter 12
ALTER SYSTEM

12-24

• Specify SID = 'sid' if you want Oracle Database to change the value of the parameter
only for the instance sid. This setting takes precedence over previous and subsequent
ALTER SYSTEM SET statements that specify SID = '*'.

If you do not specify this clause, then:

• If the instance was started up with a pfile (traditional plain-text initialization parameter
file), then Oracle Database assumes the SID of the current instance.

• If the instance was started up with an spfile (server parameter file), then Oracle Database
assumes SID = '*'.

If you specify an instance other than the current instance, then Oracle Database sends a
message to that instance to change the parameter value in the memory of that instance.

USE_STORED_OUTLINES Clause

Note:

Stored outlines are deprecated. They are still supported for backward compatibility.
However, Oracle recommends that you use SQL plan management instead. Refer
to Oracle Database SQL Tuning Guide for more information about SQL plan
management.

USE_STORED_OUTLINES is a system parameter, not an initialization parameter. You cannot set it
in a pfile or spfile, but you can set it with an ALTER SYSTEM statement. This parameter
determines whether the optimizer will use stored public outlines to generate execution plans.

• TRUE causes the optimizer to use outlines stored in the DEFAULT category when compiling
requests.

• FALSE specifies that the optimizer should not use stored outlines. This is the default.

• category_name causes the optimizer to use outlines stored in the category_name
category when compiling requests.

GLOBAL_TOPIC_ENABLED

GLOBAL_TOPIC_ENABLED is a system parameter, not an initialization parameter. You cannot set
it in a pfile or spfile, but you can set it with an ALTER SYSTEM statement. If
GLOBAL_TOPIC_ENABLED = TRUE when a queue table is created, altered, or dropped, then the
corresponding Lightweight Directory Access Protocol (LDAP) entry is also created, altered or
dropped.

The parameter works the same way for the Java Message Service (JMS). If a database has
been configured to use LDAP and the GLOBAL_TOPIC_ENABLED parameter has been set to
TRUE, then all JMS queues and topics are automatically registered with the LDAP server
when they are created. The administrator can also create aliases to the queues and topics
registered in LDAP. Queues and topics that are registered in LDAP can be looked up through
JNDI using the name or alias of the queue or topic.

Shared Server Parameters

When you start your instance, Oracle Database creates shared server processes and
dispatcher processes for the shared server architecture based on the values of the
SHARED_SERVERS and DISPATCHERS initialization parameters. You can also set the

Chapter 12
ALTER SYSTEM

12-25

SHARED_SERVERS and DISPATCHERS parameters with ALTER SYSTEM to perform one of the
following operations while the instance is running:

• Create additional shared server processes by increasing the minimum number of
shared server processes.

• Terminate existing shared server processes after their current calls finish
processing.

• Create more dispatcher processes for a specific protocol, up to a maximum across
all protocols specified by the initialization parameter MAX_DISPATCHERS.

• Terminate existing dispatcher processes for a specific protocol after their current
user processes disconnect from the instance.

See Also:

• Oracle Real Application Clusters Administration and Deployment Guide
for information on setting parameter values for an individual instance in
an Oracle Real Application Clusters environment

• The following examples of using the ALTER SYSTEM statement: "Changing
Licensing Parameters: Examples", "Enabling Query Rewrite: Example",
"Enabling Resource Limits: Example", "Shared Server Parameters", and
"Changing Shared Server Settings: Examples"

alter_system_reset_clause

This clause lets you reset an initialization parameter.

The semantics of this clause are similar to the set_parameter_clause, except instead
of changing the value of an initialization parameter, this clause removes the setting of
an initialization parameter. Refer to the set_parameter_clause to learn about the
parameters you can reset, and for the full semantics of the SCOPE and SID clauses.

RELOCATE CLIENT

This clause is valid only if you are using Oracle Flex ASM. You must issue this clause
from within an Oracle ASM instance, not from a normal database instance.

Use this clause to relocate the specified client to the least loaded Oracle ASM
instance. When you issue this clause, the connection to the client is terminated and
the client fails over to the least loaded instance. If the client is currently connected to
the least loaded instance, then the connection to the client is terminated and the client
fails over to that same instance.

For client_id, specify a string of the following form enclosed in single quotation
marks:

instance_name:db_name

where instance_name is the identifier for the client and db_name is the database name
for the client. You can find these values by querying the INSTANCE_NAME and DB_NAME
columns of the V$ASM_CLIENT dynamic performance view.

Chapter 12
ALTER SYSTEM

12-26

See Also:

• Oracle Automatic Storage Management Administrator's Guide for more
information on managing Oracle Flex ASM

• Oracle Database Reference for more information on the V$ASM_CLIENT dynamic
performance view

cancel_sql_clause

Use this clause to terminate a SQL operation that is consuming excessive resources,
including parallel servers. You must provide the session id and the session serial number of
the session whose active SQL statement you want to cancel. If the session is idle (no actively
running SQL statement), the next SQL statement will be canceled. To avoid the next SQL
statement from getting canceled, specify the sql_id in the arguments to identify the SQL
statement to be canceled.

• session_id is required and stands for the session identifier.

• serial_number is required and stands for the serial number of the session.

• instance_id is optional. If this argument is omitted, the instance id of the current session
is used.

• sql_id is optional. If this argument is specified, the sql_id will be matched with the
actively-running SQL statement in the session before terminating the SQL. If the session
is executing a SQL statement other than the one specified in the sql_id argument, an
error is raised.

FLUSH PASSWORDFILE_METADATA_CACHE

If the location or the name of the password file changes, you must notify the database that a
change has occurred. The command ALTER SYSTEM FLUSH PASSWORDFILE_METADATA_CACHE
flushes the password file metadata cache stored in the SGA and informs the database that a
change has occurred.

The command also flushes the cache from all the RAC instances if it is run in a cluster
environment. Note the delay in propagating the change across all instances. Until the flush is
fully propagated, some instances might continue to use the old password file.

Examples

Archiving Redo Logs Manually: Examples

The following statement manually archives the redo log file group containing the redo log
entry with the SCN 9356083:

ALTER SYSTEM ARCHIVE LOG CHANGE 9356083;

The following statement manually archives the redo log file group containing a member
named 'diskl:log6.log' to an archived redo log file in the location 'diska:[arch$]':

ALTER SYSTEM ARCHIVE LOG
 LOGFILE 'diskl:log6.log'
 TO 'diska:[arch$]';

Enabling Query Rewrite: Example

Chapter 12
ALTER SYSTEM

12-27

This statement enables query rewrite in all sessions for all materialized views for which
query rewrite has not been explicitly disabled:

ALTER SYSTEM SET QUERY_REWRITE_ENABLED = TRUE;

Restricting Sessions: Example

You might want to restrict sessions if you are performing application maintenance and
you want only application developers with RESTRICTED SESSION system privilege to log
on. To restrict sessions, issue the following statement:

ALTER SYSTEM
 ENABLE RESTRICTED SESSION;

You can then terminate any existing sessions using the KILL SESSION clause of the
ALTER SYSTEM statement.

After performing maintenance on your application, issue the following statement to
allow any user with CREATE SESSION system privilege to log on:

ALTER SYSTEM
 DISABLE RESTRICTED SESSION;

Establishing a Wallet and Encryption Key: Examples

The following statements load information from the server wallet into memory and set
the Transparent Data Encryption master key:

ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "password";
ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY "password";

These statements assume that you have initialized the security module and created a
wallet with password.

Closing a Wallet: Examples

The following statement removes password-based wallet information from memory:

ALTER SYSTEM SET ENCRYPTION WALLET CLOSE IDENTIFIED BY "password";

The following statement removes password-based wallet information and auto-login
information, if present, from memory:

ALTER SYSTEM SET ENCRYPTION WALLET CLOSE;

Clearing the Shared Pool: Example

You might want to clear the shared pool before beginning performance analysis. To
clear the shared pool, issue the following statement:

ALTER SYSTEM FLUSH SHARED_POOL;

Forcing a Checkpoint: Example

The following statement forces a checkpoint:

ALTER SYSTEM CHECKPOINT;

Enabling Resource Limits: Example

This ALTER SYSTEM statement dynamically enables resource limits:

Chapter 12
ALTER SYSTEM

12-28

ALTER SYSTEM SET RESOURCE_LIMIT = TRUE;

Changing Shared Server Settings: Examples

The following statement changes the minimum number of shared server processes to 25:

ALTER SYSTEM SET SHARED_SERVERS = 25;

If there are currently fewer than 25 shared server processes, then Oracle Database creates
more. If there are currently more than 25, then Oracle Database terminates some of them
when they are finished processing their current calls if the load could be managed by the
remaining 25.

The following statement dynamically changes the number of dispatcher processes for the
TCP/IP protocol to 5 and the number of dispatcher processes for the ipc protocol to 10:

ALTER SYSTEM
 SET DISPATCHERS =
 '(INDEX=0)(PROTOCOL=TCP)(DISPATCHERS=5)',
 '(INDEX=1)(PROTOCOL=ipc)(DISPATCHERS=10)';

If there are currently fewer than 5 dispatcher processes for TCP, then Oracle Database
creates new ones. If there are currently more than 5, then Oracle Database terminates some
of them after the connected users disconnect.

If there are currently fewer than 10 dispatcher processes for ipc, then Oracle Database
creates new ones. If there are currently more than 10, then Oracle Database terminates
some of them after the connected users disconnect.

If there are currently existing dispatchers for another protocol, then the preceding statement
does not affect the number of dispatchers for that protocol.

Changing Licensing Parameters: Examples

The following statement dynamically changes the limit on sessions for your instance to 64
and the warning threshold for sessions on your instance to 54:

ALTER SYSTEM
 SET LICENSE_MAX_SESSIONS = 64
 LICENSE_SESSIONS_WARNING = 54;

If the number of sessions reaches 54, then Oracle Database writes a warning message to the
ALERT file for each subsequent session. Also, users with RESTRICTED SESSION system
privilege receive warning messages when they begin subsequent sessions.

If the number of sessions reaches 64, then only users with RESTRICTED SESSION system
privilege can begin new sessions until the number of sessions falls below 64 again.

The following statement dynamically disables the limit for sessions on your instance. After
you issue this statement, Oracle Database no longer limits the number of sessions on your
instance.

ALTER SYSTEM SET LICENSE_MAX_SESSIONS = 0;

The following statement dynamically changes the limit on the number of users in the
database to 200. After you issue the preceding statement, Oracle Database prevents the
number of users in the database from exceeding 200.

ALTER SYSTEM SET LICENSE_MAX_USERS = 200;

Forcing a Log Switch: Example

Chapter 12
ALTER SYSTEM

12-29

You might want to force a log switch to drop or rename the current redo log file group
or one of its members, because you cannot drop or rename a file while Oracle
Database is writing to it. The forced log switch affects only the redo log thread of your
instance. The following statement forces a log switch:

ALTER SYSTEM SWITCH LOGFILE;

Enabling Distributed Recovery: Example

The following statement enables distributed recovery:

ALTER SYSTEM ENABLE DISTRIBUTED RECOVERY;

You might want to disable distributed recovery for demonstration or testing purposes.
You can disable distributed recovery in both single-process and multiprocess mode
with the following statement:

ALTER SYSTEM DISABLE DISTRIBUTED RECOVERY;

When your demonstration or testing is complete, you can then enable distributed
recovery again by issuing an ALTER SYSTEM statement with the ENABLE DISTRIBUTED
RECOVERY clause.

Terminating a Session: Example

You might want to terminate the session of a user that is holding resources needed by
other users. The user receives an error message indicating that the session has been
terminated. That user can no longer make calls to the database without beginning a
new session. Consider this data from the V$SESSION dynamic performance table, when
the users SYS and oe both have open sessions:

SELECT sid, serial#, username
 FROM V$SESSION;

 SID SERIAL# USERNAME
---------- ---------- ------------------------------
 29 85 SYS
 33 1
 35 8
 39 23 OE
 40 1
. . .

The following statement terminates the session of the user scott using the SID and
SERIAL# values from V$SESSION:

ALTER SYSTEM KILL SESSION '39, 23';

Disconnecting a Session: Example

The following statement disconnects user scott's session, using the SID and SERIAL#
values from V$SESSION:

ALTER SYSTEM DISCONNECT SESSION '13, 8' POST_TRANSACTION;

Chapter 12
ALTER SYSTEM

12-30

ALTER TABLE
Purpose

Use the ALTER TABLE statement to alter the definition of a nonpartitioned table, a partitioned
table, a table partition, or a table subpartition. For object tables or relational tables with object
columns, use ALTER TABLE to convert the table to the latest definition of its referenced type
after the type has been altered.

Note:

Oracle recommends that you use the ALTER MATERIALIZED VIEW LOG statement,
rather than ALTER TABLE, whenever possible for operations on materialized view log
tables.

See Also:

• CREATE TABLE for information on creating tables

• Oracle Text Reference for information on ALTER TABLE statements in conjunction
with Oracle Text

Prerequisites

The table must be in your own schema, or you must have ALTER object privilege on the table,
or you must have ALTER ANY TABLE system privilege.

Additional Prerequisites for Partitioning Operations

If you are not the owner of the table, then you need the DROP ANY TABLE privilege in order to
use the d_table_partition or truncate_table_partition clause.

You must also have space quota in the tablespace in which space is to be acquired in order
to use the add_table_partition, modify_table_partition, move_table_partition, and
split_table_partition clauses.

When a partitioning operation cascades to reference-partitioned child tables, privileges are
not required on the reference-partitioned child tables.

When using the exchange_partition_subpart clause, if the table data being exchanged
contains an identity column and you are not the owner of both tables involved in the
exchange, then you must have the ALTER ANY SEQUENCE system privilege.

You cannot partition a non-partitioned table that has an object type.

Additional Prerequisites for Constraints and Triggers

To enable a unique or primary key constraint, you must have the privileges necessary to
create an index on the table. You need these privileges because Oracle Database creates an
index on the columns of the unique or primary key in the schema containing the table.

Chapter 12
ALTER TABLE

12-31

To enable or disable triggers, the triggers must be in your schema or you must have
the ALTER ANY TRIGGER system privilege.

See Also:

CREATE INDEX for information on the privileges needed to create indexes

Additional Prerequisites When Using Object Types

To use an object type in a column definition when modifying a table, either that object
must belong to the same schema as the table being altered, or you must have either
the EXECUTE ANY TYPE system privilege or the EXECUTE object privilege for the object
type.

Additional Prerequisites for Flashback Data Archive Operations

To use the flashback_archive_clause to enable historical tracking for the table, you
must have the FLASHBACK ARCHIVE object privilege on the flashback data archive that
will contain the historical data. To use the flashback_archive_clause to disable
historical tracking for the table, you must have the FLASHBACK ARCHIVE ADMINSTER
system privilege or you must be logged in as SYSDBA.

Additional Prerequisite for Referring to Editioned Objects

To specify an edition in the evaluation_edition_clause or the
unusable_editions_clause, you must have the USE privilege on the edition.

Syntax

alter_table::=

ALTER TABLE

schema .

table

memoptimize_read_clause memoptimize_write_clause

alter_table_properties

column_clauses

constraint_clauses

alter_table_partitioning

DEFERRED

IMMEDIATE
INVALIDATION

alter_external_table

move_table_clause

modify_to_partitioned

modify_opaque_type

immutable_table_clauses

 blockchain_table_clauses

enable_disable_clause

ENABLE

DISABLE

TABLE LOCK

ALL TRIGGERS

CONTAINER_MAP

CONTAINERS_DEFAULT

;

Chapter 12
ALTER TABLE

12-32

Note:

You must specify some clause after table. None of the clauses after table are
required, but you must specify at least one of them.

Groups of ALTER TABLE syntax:

• alter_table_properties::=

• column_clauses::=

• constraint_clauses::=

• alter_table_partitioning::=

• alter_external_table::=

• move_table_clause::=

• modify_to_partitioned::=

• modify_opaque_type::=

• immutable_table_clauses

• blockchain_table_clauses

• enable_disable_clause::=

After each clause you will find links to its component subclauses.

memoptimize_read_clause::=

MEMOPTIMIZE FOR READ

NO MEMOPTIMIZE FOR READ

memoptimize_write_clause

MEMOPTIMIZE FOR WRITE

NO MEMOPTIMIZE FOR WRITE

Chapter 12
ALTER TABLE

12-33

alter_table_properties::=

physical_attributes_clause

logging_clause

table_compression

inmemory_table_clause

ilm_clause

supplemental_table_logging

allocate_extent_clause

deallocate_unused_clause

CACHE

NOCACHE

result_cache_clause

upgrade_table_clause

records_per_block_clause

parallel_clause

row_movement_clause

logical_replication_clause

flashback_archive_clause

RENAME TO new_table_name

alter_iot_clauses alter_XMLSchema_clause

shrink_clause

READ ONLY

READ WRITE

REKEY encryption_spec

DEFAULT COLLATION collation_name

NO

ROW ARCHIVAL

ADD attribute_clustering_clause

MODIFY CLUSTERING

clustering_when zonemap_clause

DROP CLUSTERING

Note:

If you specify the MODIFY CLUSTERING clause, then you must specify at least
one of the clauses clustering_when or zonemap_clause.

Chapter 12
ALTER TABLE

12-34

(physical_attributes_clause::=, logging_clause::=, table_compression::=,
inmemory_table_clause::=, ilm_clause::=, supplemental_table_logging::=,
allocate_extent_clause::=, deallocate_unused_clause::= , upgrade_table_clause::=,
records_per_block_clause::=, parallel_clause::=, row_movement_clause::=,
logical_replication_clause::=, flashback_archive_clause::=, shrink_clause::=,
attribute_clustering_clause::=, clustering_when::=, zonemap_clause::=, alter_iot_clauses::=,
alter_XMLSchema_clause::=)

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

table_compression::=

COMPRESS

ROW STORE COMPRESS

BASIC

ADVANCED

COLUMN STORE COMPRESS

FOR

QUERY

ARCHIVE

LOW

HIGH

NO

ROW LEVEL LOCKING

NOCOMPRESS

inmemory_table_clause::=

INMEMORY

inmemory_attributes

NO INMEMORY inmemory_column_clause

Chapter 12
ALTER TABLE

12-35

(inmemory_attributes::=, inmemory_column_clause::=)

inmemory_attributes::=

inmemory_memcompress inmemory_priority inmemory_distribute

inmemory_duplicate inmemory_spatial

(inmemory_memcompress::=, inmemory_priority::=, inmemory_distribute::=,
inmemory_duplicate::=)

inmemory_memcompress::=

MEMCOMPRESS FOR

DML

QUERY

CAPACITY

LOW

HIGH

NO MEMCOMPRESS

MEMCOMPRESS AUTO

inmemory_priority::=

PRIORITY

NONE

LOW

MEDIUM

HIGH

CRITICAL

inmemory_distribute::=

DISTRIBUTE

AUTO

BY

ROWID RANGE

PARTITION

SUBPARTITION

FOR SERVICE

DEFAULT

ALL

service_name

NONE

Chapter 12
ALTER TABLE

12-36

inmemory_duplicate::=

DUPLICATE

ALL

NO DUPLICATE

inmemory_spatial::=

SPATIAL column

inmemory_column_clause::=

INMEMORY

inmemory_memcompress

NO INMEMORY
(column

,

)

(inmemory_memcompress::=)

ilm_clause::=

ILM

ADD POLICY ilm_policy_clause

DELETE

ENABLE

DISABLE

POLICY ilm_policy_name

DELETE_ALL

ENABLE_ALL

DISABLE_ALL

ilm_policy_clause::=

ilm_compression_policy

ilm_tiering_policy

ilm_inmemory_policy

(ilm_compression_policy::=, ilm_tiering_policy::=, ilm_inmemory_policy::=)

Chapter 12
ALTER TABLE

12-37

ilm_compression_policy::=

table_compression
SEGMENT

GROUP

AFTER ilm_time_period OF

NO ACCESS

NO MODIFICATION

CREATION

ON function_name

ROW STORE COMPRESS ADVANCED

COLUMN STORE COMPRESS FOR QUERY
ROW AFTER ilm_time_period OF NO MODIFICATION

(table_compression::=, ilm_time_period::=)

ilm_tiering_policy::=

TIER TO tablespace

SEGMENT

GROUP ON function_name

TIER TO tablespace READ ONLY

SEGMENT

GROUP
AFTER ilm_time_period OF

NO ACCESS

NO MODIFICATION

CREATION

ON function_name

(ilm_time_period::=)

ilm_inmemory_policy::=

SET INMEMORY

inmemory_attributes

MODIFY INMEMORY inmemory_memcompress

NO INMEMORY

SEGMENT

AFTER ilm_time_period OF

NO ACCESS

NO MODIFICATION

CREATION

ON function_name

Chapter 12
ALTER TABLE

12-38

ilm_time_period::=

integer

DAY

DAYS

MONTH

MONTHS

YEAR

YEARS

supplemental_table_logging::=

ADD SUPPLEMENTAL LOG
supplemental_log_grp_clause

supplemental_id_key_clause

,

DROP SUPPLEMENTAL LOG
supplemental_id_key_clause

GROUP log_group

,

supplemental_log_grp_clause::=

GROUP log_group (column

NO LOG

,

)

ALWAYS

supplemental_id_key_clause::=

DATA (

ALL

PRIMARY KEY

UNIQUE

FOREIGN KEY

,

) COLUMNS

allocate_extent_clause::=

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

Chapter 12
ALTER TABLE

12-39

(size_clause::=)

deallocate_unused_clause::=

DEALLOCATE UNUSED

KEEP size_clause

(size_clause::=)

result_cache_clause::=

RESULT_CACHE

(

MODE
DEFAULT

FORCE
, STANDBY

ENABLE

DISABLE

STANDBY
ENABLE

DISABLE
, MODE

DEFAULT

FORCE

)

upgrade_table_clause::=

UPGRADE

NOT

INCLUDING DATA column_properties

(column_properties::=)

records_per_block_clause::=

MINIMIZE

NOMINIMIZE

RECORDS_PER_BLOCK

row_movement_clause::=

ENABLE

DISABLE

ROW MOVEMENT

logical_replication_clause::=

DISABLE LOGICAL REPLICATION

ENABLE LOGICAL REPLICATION

ALL

ALLOW NOVALIDATE

KEYS

Chapter 12
ALTER TABLE

12-40

flashback_archive_clause::=

FLASHBACK ARCHIVE

flashback_archive

NO FLASHBACK ARCHIVE

alter_iot_clauses::=

index_org_table_clause

alter_overflow_clause

alter_mapping_table_clauses

COALESCE

(alter_overflow_clause::=, alter_mapping_table_clauses::=)

index_org_table_clause::=

mapping_table_clause

PCTTHRESHOLD integer

prefix_compression index_org_overflow_clause

(mapping_table_clauses::=, prefix_compression::=, index_org_overflow_clause::=)

mapping_table_clauses::=

MAPPING TABLE

NOMAPPING

index_compression::=

prefix_compression

advanced_index_compression

Chapter 12
ALTER TABLE

12-41

prefix_compression::=

COMPRESS

integer

NOCOMPRESS

advanced_index_compression::=

COMPRESS ADVANCED

LOW

HIGH

NOCOMPRESS

index_org_overflow_clause::=

INCLUDING column_name

OVERFLOW

segment_attributes_clause

(segment_attributes_clause::=)

partition_extended_name::=

PARTITION partition

PARTITION FOR (partition_key_value

,

)

subpartition_extended_name::=

SUBPARTITION subpartition

SUBPARTITION FOR (subpartition_key_value

,

)

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE tablespace

TABLESPACE SET tablespace_set

logging_clause

Chapter 12
ALTER TABLE

12-42

(physical_attributes_clause::=, TABLESPACE SET: not supported with ALTER TABLE,
logging_clause::=)

alter_overflow_clause::=

add_overflow_clause

OVERFLOW

segment_attributes_clause

allocate_extent_clause

shrink_clause

deallocate_unused_clause

(segment_attributes_clause::=, allocate_extent_clause::=, shrink_clause::=,
deallocate_unused_clause::=)

add_overflow_clause::=

ADD OVERFLOW

segment_attributes_clause (PARTITION

segment_attributes_clause

,

)

(segment_attributes_clause::=)

alter_mapping_table_clauses::=

MAPPING TABLE

allocate_extent_clause

deallocate_unused_clause

(allocate_extent_clause::=, deallocate_unused_clause::=)

shrink_clause::=

SHRINK SPACE

COMPACT CASCADE

attribute_clustering_clause::=

CLUSTERING

clustering_join

cluster_clause

clustering_when zonemap_clause

Chapter 12
ALTER TABLE

12-43

(clustering_join::=, cluster_clause::=, clustering_when::=, zonemap_clause::=)

clustering_join::=

schema .

table JOIN

schema .

table ON (equijoin_condition)

,

cluster_clause::=

BY

LINEAR

INTERLEAVED

ORDER clustering_columns

clustering_columns::=

clustering_column_group

(clustering_column_group

,

)

clustering_column_group::=

(column

,

)

clustering_when::=

YES

NO

ON LOAD

YES

NO

ON DATA MOVEMENT

zonemap_clause::=

WITH MATERIALIZED ZONEMAP

(zonemap_name)

WITHOUT MATERIALIZED ZONEMAP

Chapter 12
ALTER TABLE

12-44

column_clauses::=

add_column_clause

modify_column_clauses

drop_column_clause

add_period_clause

drop_period_clause

rename_column_clause

modify_collection_retrieval

modify_LOB_storage_clause

alter_varray_col_properties

(add_column_clause::=, modify_column_clauses::=, drop_column_clause::=,
add_period_clause::=, drop_period_clause::=, rename_column_clause::=,
modify_collection_retrieval::=, modify_LOB_storage_clause::=,
alter_varray_col_properties::=)

add_column_clause::=

ADD (
column_definition

virtual_column_definition

,

)

column_properties (out_of_line_part_storage

,

)

(column_definition::=, virtual_column_definition::=, column_properties::=,
out_of_line_part_storage::=)

column_definition::=

column

datatype

COLLATE column_collation_name

SORT

VISIBLE

INVISIBLE

DEFAULT

ON NULL

expr

identity_clause ENCRYPT encryption_spec

inline_constraint

inline_ref_constraint

Chapter 12
ALTER TABLE

12-45

(identity_clause::=, encryption_spec::=, inline_constraint and
inline_ref_constraint: constraint::=)

identity_clause::=

GENERATED

ALWAYS

BY DEFAULT

ON NULL

AS IDENTITY

(identity_options)

identity_options::=

START WITH
integer

LIMIT VALUE

INCREMENT BY integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE

ORDER

NOORDER

virtual_column_definition::=

column

datatype

COLLATE column_collation_name
VISIBLE

INVISIBLE

GENERATED ALWAYS

AS (column_expression)

VIRTUAL evaluation_edition_clause

unusable_editions_clause inline_constraint

Chapter 12
ALTER TABLE

12-46

(evaluation_edition_clause::=, unusable_editions_clause::=, constraint::=)

evaluation_edition_clause::=

EVALUATE USING

CURRENT EDITION

EDITION edition

NULL EDITION

unusable_editions_clause::=

UNUSABLE BEFORE

CURRENT EDITION

EDITION edition

UNUSABLE BEGINNING WITH

CURRENT EDITION

EDITION edition

NULL EDITION

modify_column_clauses::=

MODIFY

(
modify_col_properties

modify_virtcol_properties

,

)

(modify_col_visibility

,

)

modify_col_substitutable

(modify_col_properties::=, modify_virtcol_properties::=, modify_col_visibility::=,
modify_col_substitutable::=)

modify_col_properties::=

column

datatype COLLATE column_collation_name

DEFAULT

ON NULL

expr

identity_clause

DROP IDENTITY

ENCRYPT encryption_spec

DECRYPT

inline_constraint LOB_storage_clause alter_XMLSchema_clause

Chapter 12
ALTER TABLE

12-47

(identity_clause::=, encryption_spec::=, inline_constraint: constraint::=,
LOB_storage_clause::=, alter_XMLSchema_clause::=)

encryption_spec::=

USING ’ encrypt_algorithm ’ IDENTIFIED BY password

’ integrity_algorithm ’

NO

SALT

modify_virtcol_properties::=

column

datatype COLLATE column_collation_name GENERATED ALWAYS

AS (column_expression)

VIRTUAL

evaluation_edition_clause

unusable_editions_clause

(evaluation_edition_clause::=, unusable_editions_clause::=)

modify_col_visibility::=

column

VISIBLE

INVISIBLE

modify_col_substitutable::=

COLUMN column

NOT

SUBSTITUTABLE AT ALL LEVELS

FORCE

Chapter 12
ALTER TABLE

12-48

drop_column_clause::=

SET UNUSED

COLUMN column

(column

,

)

CASCADE CONSTRAINTS

INVALIDATE ONLINE

DROP

COLUMN column

(column

,

)

CASCADE CONSTRAINTS

INVALIDATE CHECKPOINT integer

DROP
UNUSED COLUMNS

COLUMNS CONTINUE

CHECKPOINT integer

add_period_clause::=

ADD (period_definition)

period_definition::=

PERIOD FOR valid_time_column

(start_time_column , end_time_column)

drop_period_clause::=

DROP (PERIOD FOR valid_time_column)

rename_column_clause::=

RENAME COLUMN old_name TO new_name

modify_collection_retrieval::=

MODIFY NESTED TABLE collection_item RETURN AS

LOCATOR

VALUE

Chapter 12
ALTER TABLE

12-49

constraint_clauses::=

ADD
out_of_line_constraint

out_of_line_ref_constraint

MODIFY

CONSTRAINT constraint_name

PRIMARY KEY

UNIQUE (column

,

)

constraint_state

CASCADE

RENAME CONSTRAINT old_name TO new_name

drop_constraint_clause

(out_of_line_constraint::=, out_of_line_ref_constraint::=, constraint_state::=)

drop_constraint_clause::=

DROP

PRIMARY KEY

UNIQUE (column

,

)

CONSTRAINT constraint_name

CASCADE

KEEP

DROP
INDEX

ONLINE

column_properties::=

object_type_col_properties

nested_table_col_properties

varray_col_properties

LOB_storage_clause

(LOB_partition_storage

,

)

XMLType_column_properties

json_storage_clause

Chapter 12
ALTER TABLE

12-50

out_of_line_part_storage::=

PARTITION partition

nested_table_col_properties

LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition

nested_table_col_properties

LOB_storage_clause

varray_col_properties

,

)

object_type_col_properties::=

COLUMN column substitutable_column_clause

substitutable_column_clause::=

ELEMENT

IS OF

TYPE

(ONLY type)

NOT

SUBSTITUTABLE AT ALL LEVELS

nested_table_col_properties::=

NESTED TABLE
nested_item

COLUMN_VALUE

substitutable_column_clause

LOCAL

GLOBAL

STORE AS storage_table

(

(object_properties)

physical_properties

column_properties

)

RETURN

AS LOCATOR

VALUE

Chapter 12
ALTER TABLE

12-51

object_properties::=

column

attribute

DEFAULT expr

inline_constraint

inline_ref_constraint

out_of_line_constraint

out_of_line_ref_constraint

supplemental_logging_props

(inline_constraint, inline_ref_constraint, out_of_line_constraint,
out_of_line_ref_constraint: constraint::=)

supplemental_logging_props::=

SUPPLEMENTAL LOG
supplemental_log_grp_clause

supplemental_id_key_clause

(supplemental_log_grp_clause::=, supplemental_id_key_clause::=)

physical_properties::=

deferred_segment_creation

segment_attributes_clause

table_compression inmemory_table_clause ilm_clause

deferred_segment_creation

ORGANIZATION

HEAP

segment_attributes_clause

heap_org_table_clause

INDEX

segment_attributes_clause

index_org_table_clause

EXTERNAL external_table_clause

EXTERNAL PARTITION ATTRIBUTES external_table_clause

REJECT LIMIT

CLUSTER cluster (column

,

)

(deferred_segment_creation::= , segment_attributes_clause::=, table_compression::=,
inmemory_table_clause::=—part of CREATE TABLE syntax, ilm_clause::=,
heap_org_table_clause::=, index_org_table_clause::=, external_table_clause::=—part
of CREATE TABLE syntax)

Chapter 12
ALTER TABLE

12-52

deferred_segment_creation::=

SEGMENT CREATION

IMMEDIATE

DEFERRED

heap_org_table_clause::=

table_compression inmemory_table_clause ilm_clause

(table_compression::=, inmemory_table_clause::=—part of CREATE TABLE syntax,
ilm_clause::=)

varray_col_properties::=

VARRAY varray_item

substitutable_column_clause

varray_storage_clause

substitutable_column_clause

(substitutable_column_clause::=, varray_storage_clause::=)

varray_storage_clause::=

STORE AS

SECUREFILE

BASICFILE

LOB

LOB_segname

(LOB_storage_parameters)

LOB_segname

(LOB_parameters::=)

LOB_storage_clause::=

Chapter 12
ALTER TABLE

12-53

LOB

(LOB_item

,

) STORE AS

SECUREFILE

BASICFILE

(LOB_storage_parameters)

(LOB_item) STORE AS

SECUREFILE

BASICFILE

LOB_segname

(LOB_storage_parameters)

(LOB_storage_parameters::=)

LOB_storage_parameters::=

TABLESPACE tablespace

TABLESPACE SET tablespace_set

LOB_parameters

storage_clause

storage_clause

(TABLESPACE SET: not supported with ALTER TABLE, LOB_parameters::=,
storage_clause::=)

LOB_parameters::=

ENABLE

DISABLE
STORAGE IN ROW

CHUNK integer

PCTVERSION integer

FREEPOOLS integer

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

Chapter 12
ALTER TABLE

12-54

(LOB_retention_clause::=, LOB_deduplicate_clause::=, LOB_compression_clause::=,
encryption_spec::=, logging_clause::=)

modify_LOB_storage_clause::=

MODIFY LOB (LOB_item) (modify_LOB_parameters)

modify_LOB_parameters::=

storage_clause

PCTVERSION

FREEPOOLS
integer

REBUILD FREEPOOLS

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

allocate_extent_clause

shrink_clause

deallocate_unused_clause

(storage_clause::=, LOB_retention_clause::=, LOB_compression_clause::=,
encryption_spec::=, logging_clause::=, allocate_extent_clause::=, shrink_clause::=,
deallocate_unused_clause::=)

LOB_retention_clause::=

RETENTION

MAX

MIN integer

AUTO

NONE

Chapter 12
ALTER TABLE

12-55

LOB_deduplicate_clause::=

DEDUPLICATE

KEEP_DUPLICATES

LOB_compression_clause::=

COMPRESS

HIGH

MEDIUM

LOW

NOCOMPRESS

alter_varray_col_properties::=

MODIFY VARRAY varray_item (modify_LOB_parameters)

(modify_LOB_parameters::=)

LOB_partition_storage::=

PARTITION partition
LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition
LOB_partitioning_storage

varray_col_properties
)

(LOB_storage_clause::=, varray_col_properties::=, LOB_partitioning_storage::=)

LOB_partitioning_storage::=

LOB (LOB_item)

STORE AS

BASICFILE

SECUREFILE

LOB_segname

(
TABLESPACE tablespace

TABLESPACE SET tablespace_set
)

(
TABLESPACE tablespace

TABLESPACE SET tablespace_set
)

Chapter 12
ALTER TABLE

12-56

(TABLESPACE SET: not supported with ALTER TABLE)

XMLType_column_properties::=

XMLTYPE

COLUMN

column

XMLType_storage XMLSchema_spec

XMLType_storage::=

STORE

AS

OBJECT RELATIONAL

SECUREFILE

BASICFILE CLOB

BINARY XML

LOB_segname

(LOB_parameters)

(LOB_parameters)

ALL VARRAYS AS
LOBS

TABLES

XMLSchema_spec::=

XMLSCHEMA XMLSchema_URL

ELEMENT

element

XMLSchema_URL # element

STORE ALL VARRAYS AS

LOBS

TABLES

ALLOW

DISALLOW

NONSCHEMA

ALLOW

DISALLOW

ANYSCHEMA

alter_XMLSchema_clause::=

ALLOW

ANYSCHEMA

NONSCHEMA

DISALLOW NONSCHEMA

Chapter 12
ALTER TABLE

12-57

JSON_storage_clause::=

JSON (json_column

,

) STORE AS

(json_parameters)

LOB_segname (json_parameters)

JSON_parameters ::=

TABLESPACE tablespace

storage_clause

CHUNK

PCTVERSION

FREEPOOLS

integer

RETENTION

,

alter_external_table::=

add_column_clause

modify_column_clauses

drop_column_clause

parallel_clause

external_table_data_props

REJECT LIMIT
integer

UNLIMITED

PROJECT COLUMN
ALL

REFERENCED

(add_column_clause::=, modify_column_clauses::=, drop_column_clause::=,
parallel_clause::=, external_table_data_props::=)

Chapter 12
ALTER TABLE

12-58

external_table_data_props::=

DEFAULT DIRECTORY directory

ACCESS PARAMETERS

(’opaque_format_spec’)

(opaque_format_spec)

USING CLOB subquery

LOCATION (

directory :

’ location_specifier ’

,

)

external_part_subpart_data_props::=

DEFAULT DIRECTORY directory LOCATION (

directory :

’ location_specifier ’

,

)

Chapter 12
ALTER TABLE

12-59

alter_table_partitioning::=

modify_table_default_attrs

alter_automatic_partitioning

alter_interval_partitioning

set_subpartition_template

modify_table_partition

modify_table_subpartition

move_table_partition

move_table_subpartition

add_external_partition_attrs

add_table_partition

coalesce_table_partition

drop_external_partition_attrs

drop_table_partition

drop_table_subpartition

rename_partition_subpart

truncate_partition_subpart

split_table_partition

split_table_subpartition

merge_table_partitions

merge_table_subpartitions

exchange_partition_subpart

(modify_table_default_attrs::=, alter_automatic_partitioning::=,
alter_interval_partitioning::=, set_subpartition_template::=, modify_table_partition::=,
modify_table_subpartition::=, move_table_partition::=, move_table_subpartition::=,
add_table_partition::=, coalesce_table_partition::=, drop_table_partition::=,
drop_table_subpartition::=, rename_partition_subpart::=, truncate_partition_subpart::=,
split_table_partition::=, split_table_subpartition::=, merge_table_partitions::=,
merge_table_subpartitions::=, exchange_partition_subpart::=

Chapter 12
ALTER TABLE

12-60

modify_table_default_attrs::=

MODIFY DEFAULT ATTRIBUTES

FOR partition_extended_name DEFAULT DIRECTORY directory

deferred_segment_creation read_only_clause indexing_clause segment_attributes_clause

table_compression inmemory_clause PCTTHRESHOLD integer prefix_compression

alter_overflow_clause

LOB (LOB_item)

VARRAY varray
(LOB_parameters)

(partition_extended_name::=, deferred_segment_creation::= , read_only_clause::=,
indexing_clause::=, segment_attributes_clause::=, table_compression::=,
inmemory_clause::=, prefix_compression::=, alter_overflow_clause::=, LOB_parameters::=)

read_only_clause::=

READ ONLY

READ WRITE

indexing_clause::=

INDEXING

ON

OFF

inmemory_clause::=

INMEMORY

inmemory_attributes

TEXT

column_name

,

column_name USING policy_name

,

NO INMEMORY

(inmemory_attributes::=)

Chapter 12
ALTER TABLE

12-61

alter_automatic_partitioning::=

SET PARTITIONING
AUTOMATIC

MANUAL

SET STORE IN (tablespace

,

)

alter_interval_partitioning::=

SET INTERVAL (

expr

)

SET STORE IN (tablespace

,

)

set_subpartition_template::=

SET SUBPARTITION TEMPLATE
(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subpartition_quantity

(range_subpartition_desc::=, list_subpartition_desc::=, individual_hash_subparts::=)

modify_table_partition::=

modify_range_partition

modify_hash_partition

modify_list_partition

(modify_range_partition::=, modify_hash_partition::=, modify_list_partition::=)

Chapter 12
ALTER TABLE

12-62

modify_range_partition::=

MODIFY partition_extended_name

partition_attributes

add_range_subpartition

add_hash_subpartition

add_list_subpartition

coalesce_table_subpartition

alter_mapping_table_clause

REBUILD

UNUSABLE LOCAL INDEXES

read_only_clause

indexing_clause

(partition_extended_name::=, partition_attributes::=, add_range_subpartition::=,
add_hash_subpartition::=, add_list_subpartition::=, coalesce_table_subpartition::=,
alter_mapping_table_clauses::=, read_only_clause::=, indexing_clause::=)

modify_hash_partition::=

MODIFY partition_extended_name

partition_attributes

coalesce_table_subpartition

alter_mapping_table_clause

REBUILD

UNUSABLE LOCAL INDEXES

read_only_clause

indexing_clause

(partition_extended_name::=, coalesce_table_subpartition::=, partition_attributes::=,
alter_mapping_table_clauses::=, read_only_clause::=, indexing_clause::=)

Chapter 12
ALTER TABLE

12-63

modify_list_partition::=

MODIFY partition_extended_name

partition_attributes

ADD

DROP
VALUES (list_values)

add_range_subpartition

add_list_subpartition

add_hash_subpartition

coalesce_table_subpartition

REBUILD

UNUSABLE LOCAL INDEXES

read_only_clause

indexing_clause

(partition_extended_name::=, partition_attributes::=, list_values::=,
add_range_subpartition::=, add_list_subpartition::=, add_hash_subpartition::=,
coalesce_table_subpartition::=, read_only_clause::=, indexing_clause::=)

modify_table_subpartition::=

MODIFY subpartition_extended_name

allocate_extent_clause

deallocate_unused_clause

shrink_clause

LOB LOB_item

VARRAY varray
(modify_LOB_parameters)

REBUILD

UNUSABLE LOCAL INDEXES

ADD

DROP
VALUES (list_values)

read_only_clause

indexing_clause

(subpartition_extended_name::=, allocate_extent_clause::=,
deallocate_unused_clause::=, shrink_clause::=, modify_LOB_parameters::=,
list_values::=, read_only_clause::=, indexing_clause::=)

Chapter 12
ALTER TABLE

12-64

move_table_partition::=

MOVE partition_extended_name

MAPPING TABLE table_partition_description

filter_condition update_index_clauses parallel_clause allow_disallow_clustering

ONLINE

(partition_extended_name::=, table_partition_description::=, filter_condition::=,
update_index_clauses::=, parallel_clause::=, allow_disallow_clustering::=)

filter_condition::=

INCLUDING ROWS where_clause

allow_disallow_clustering::=

ALLOW

DISALLOW

CLUSTERING

move_table_subpartition::=

MOVE subpartition_extended_name

indexing_clause partitioning_storage_clause

update_index_clauses filter_condition parallel_clause allow_disallow_clustering

ONLINE

(subpartition_extended_name::=, indexing_clause::=, partitioning_storage_clause::=,
update_index_clauses::=, filter_condition::=, parallel_clause::=, allow_disallow_clustering::=)

add_external_partition_attrs

ADD EXTERNAL PARTITION ATTRIBUTES external_table_clause

REJECT LIMIT

Chapter 12
ALTER TABLE

12-65

add_table_partition::=

ADD

PARTITION

partition

add_range_partition_clause

,

PARTITION

partition

add_list_partition_clause

,

PARTITION

partition

add_system_partition_clause

,
BEFORE

partition_name

partition_number

PARTITION

partition

add_hash_partition_clause

dependent_tables_clause

(add_range_partition_clause::=, add_list_partition_clause::=,
add_system_partition_clause::=, add_hash_partition_clause::=,
dependent_tables_clause:=)

add_range_partition_clause::=

range_values_clause

table_partition_description external_part_subpart_data_props

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity update_index_clauses

(range_values_clause::=, table_partition_description::=,
external_part_subpart_data_props::=, range_subpartition_desc::=,
list_subpartition_desc::=, individual_hash_subparts::=, hash_subparts_by_quantity::=,
update_index_clauses::=)

Chapter 12
ALTER TABLE

12-66

add_hash_partition_clause::=

partitioning_storage_clause

update_index_clauses parallel_clause read_only_clause indexing_clause

(partitioning_storage_clause::=, update_index_clauses::=, parallel_clause::=,
read_only_clause::=, indexing_clause::=)

add_list_partition_clause::=

list_values_clause

table_partition_description external_part_subpart_data_props

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity update_index_clauses

(list_values_clause::=, table_partition_description::=, external_part_subpart_data_props::=,
range_subpartition_desc::=, list_subpartition_desc::=, individual_hash_subparts::=,
hash_subparts_by_quantity::=, update_index_clauses::=)

add_system_partition_clause::=

table_partition_description update_index_clauses

(table_partition_description::=, update_index_clauses::=)

add_range_subpartition::=

ADD range_subpartition_desc

,
dependent_tables_clause update_index_clauses

(range_subpartition_desc::=, dependent_tables_clause:=, update_index_clauses::=)

Chapter 12
ALTER TABLE

12-67

add_hash_subpartition::=

ADD individual_hash_subparts

dependent_tables_clause update_index_clauses parallel_clause

(individual_hash_subparts::=, dependent_tables_clause:=, update_index_clauses::=,
parallel_clause::=)

add_list_subpartition::=

ADD list_subpartition_desc

,
dependent_tables_clause update_index_clauses

(list_subpartition_desc::=, dependent_tables_clause:=, update_index_clauses::=)

dependent_tables_clause:=

DEPENDENT TABLES (table (partition_spec

,

)

,

)

(partition_spec::=)

coalesce_table_partition::=

COALESCE PARTITION

update_index_clauses parallel_clause allow_disallow_clustering

(update_index_clauses::=, parallel_clause::=, allow_disallow_clustering::=)

coalesce_table_subpartition::=

COALESCE SUBPARTITION subpartition

update_index_clauses parallel_clause allow_disallow_clustering

(update_index_clauses::=, parallel_clause::=, allow_disallow_clustering::=)

drop_external_partition_attrs::=

DROP EXTERNAL PARTITION ATTRIBUTES

Chapter 12
ALTER TABLE

12-68

drop_table_partition::=

DROP partition_extended_names

update_index_clauses

parallel_clause

(partition_extended_names::=, update_index_clauses::=, parallel_clause::=)

drop_table_subpartition::=

DROP subpartition_extended_names

update_index_clauses

parallel_clause

(subpartition_extended_names::=, update_index_clauses::=, parallel_clause::=)

rename_partition_subpart::=

RENAME
partition_extended_name

subpartition_extended_name
TO new_name

(partition_extended_name::=, subpartition_extended_name::=)

truncate_partition_subpart::=

TRUNCATE
partition_extended_names

subpartition_extended_names

DROP

ALL

REUSE
STORAGE

CASCADE update_index_clauses

parallel_clause

(partition_extended_names::=, subpartition_extended_names::=, update_index_clauses::=,
parallel_clause::=)

partition_extended_names::=

PARTITION

PARTITIONS

partition

FOR (partition_key_value

,

)

,

Chapter 12
ALTER TABLE

12-69

subpartition_extended_names::=

SUBPARTITION

SUBPARTITIONS

subpartition

FOR (subpartition_key_value

,

)

,

split_table_partition::=

SPLIT partition_extended_name

AT (literal

,

)

INTO (range_partition_desc , range_partition_desc)

VALUES (list_values)

INTO (list_partition_desc , list_partition_desc)

INTO (

range_partition_desc

,

list_partition_desc

, , partition_spec)

split_nested_table_part filter_condition dependent_tables_clause update_index_clauses

parallel_clause allow_disallow_clustering ONLINE

(partition_extended_name::=, range_partition_desc::=, list_values::=,
list_partition_desc::=, partition_spec::=, split_nested_table_part::=, filter_condition::=,
dependent_tables_clause:=, update_index_clauses::=, parallel_clause::=,
allow_disallow_clustering::=)

split_nested_table_part::=

NESTED TABLE column INTO

(nested_table_partition_spec , nested_table_partition_spec

split_nested_table_part

)

split_nested_table_part

Chapter 12
ALTER TABLE

12-70

nested_table_partition_spec::=

PARTITION partition

segment_attributes_clause

split_table_subpartition::=

SPLIT subpartition_extended_name

AT (literal

,

)

INTO (range_subpartition_desc , range_subpartition_desc)

VALUES (list_values)

INTO (list_subpartition_desc , list_subpartition_desc)

INTO (

range_subpartition_desc

,

list_subpartition_desc

, , subpartition_spec)

filter_condition dependent_tables_clause update_index_clauses parallel_clause

allow_disallow_clustering ONLINE

(subpartition_extended_name::=, range_subpartition_desc::=, list_values::=,
list_subpartition_desc::=, subpartition_spec::=, filter_condition::=,
dependent_tables_clause:=, update_index_clauses::=, parallel_clause::=,
allow_disallow_clustering::=

subpartition_spec::=

SUBPARTITION

subpartition partitioning_storage_clause

merge_table_partitions::=

MERGE PARTITIONS partition_or_key_value
, partition_or_key_value

TO partition_or_key_value

INTO partition_spec

filter_condition dependent_tables_clause update_index_clauses parallel_clause ONLINE

allow_disallow_clustering

Chapter 12
ALTER TABLE

12-71

(partition_or_key_value::=, partition_spec::=, filter_condition::=,
dependent_tables_clause:=, update_index_clauses::=, parallel_clause::=,
allow_disallow_clustering::=)

partition_or_key_value::=

partition

FOR (partition_key_value

,

)

merge_table_subpartitions::=

MERGE SUBPARTITIONS subpartition_or_key_value
, subpartition_or_key_value

TO subpartition_or_key_value

INTO
range_subpartition_desc

list_subpartition_desc filter_condition dependent_tables_clause

update_index_clauses parallel_clause ONLINE allow_disallow_clustering

(subpartition_or_key_value::=, range_subpartition_desc::=, list_subpartition_desc::=,
filter_condition::=, dependent_tables_clause:=, update_index_clauses::=,
parallel_clause::=, allow_disallow_clustering::=)

subpartition_or_key_value::=

subpartition

FOR (subpartition_key_value

,

)

exchange_partition_subpart::=

Chapter 12
ALTER TABLE

12-72

EXCHANGE
partition_extended_name

subpartition_extended_name
WITH TABLE

schema .

table

INCLUDING

EXCLUDING
INDEXES

WITH

WITHOUT
VALIDATION

exceptions_clause update_index_clauses

parallel_clause

CASCADE

(partition_extended_name::=, subpartition_extended_name::=, exceptions_clause::=,
update_index_clauses::=, parallel_clause::=)

exceptions_clause::=

EXCEPTIONS INTO

schema .

table

range_values_clause::=

VALUES LESS THAN (
literal

MAXVALUE

,

)

list_values_clause::=

VALUES (
list_values

DEFAULT
)

(list_values::=)

list_values::=

literal

NULL

,

(
literal

NULL

,

)

,

Chapter 12
ALTER TABLE

12-73

table_partition_description::=

INTERNAL

EXTERNAL deferred_segment_creation read_only_clause indexing_clause

segment_attributes_clause

table_compression

prefix_compression inmemory_clause ilm_clause

OVERFLOW

segment_attributes_clause

json_storage_clause

LOB_storage_clause

varray_col_properties

nested_table_col_properties

(deferred_segment_creation::= , read_only_clause::=, indexing_clause::=,
segment_attributes_clause::=, table_compression::=, prefix_compression::=,
inmemory_clause::=, LOB_storage_clause::=, varray_col_properties::=)

range_partition_desc::=

PARTITION

partition

range_values_clause table_partition_description

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity

(range_values_clause::=, table_partition_description::=, range_subpartition_desc::=,
list_subpartition_desc::=)

Chapter 12
ALTER TABLE

12-74

list_partition_desc::=

PARTITION

partition

list_values_clause table_partition_description

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity

(list_values_clause::=, table_partition_description::=, range_subpartition_desc::=,
list_subpartition_desc::=)

range_subpartition_desc::=

SUBPARTITION

subpartition

range_values_clause

read_only_clause indexing_clause

partitioning_storage_clause external_part_subpart_data_props

(range_values_clause::=, read_only_clause::=, indexing_clause::=,
partitioning_storage_clause::=, external_part_subpart_data_props::=)

list_subpartition_desc::=

SUBPARTITION

subpartition

list_values_clause

read_only_clause indexing_clause

partitioning_storage_clause external_part_subpart_data_props

(list_values_clause::=, read_only_clause::=, indexing_clause::=,
partitioning_storage_clause::=, external_part_subpart_data_props::=)

individual_hash_subparts::=

SUBPARTITION

subpartition read_only_clause indexing_clause partitioning_storage_clause

Chapter 12
ALTER TABLE

12-75

(read_only_clause::=, indexing_clause::=, partitioning_storage_clause::=)

hash_subparts_by_quantity::=

SUBPARTITIONS integer

STORE IN (tablespace

,

)

partitioning_storage_clause::=

TABLESPACE tablespace

TABLESPACE SET tablespace_set

OVERFLOW

TABLESPACE tablespace

TABLESPACE SET tablespace_set

table_compression

index_compression

inmemory_clause

ilm_clause

LOB_partitioning_storage

VARRAY varray_item STORE AS

SECUREFILE

BASICFILE

LOB LOB_segname

json_storage_clause

(TABLESPACE SET: not supported with ALTER TABLE, table_compression::=,
index_compression::=, inmemory_clause::=, LOB_partitioning_storage::=)

partition_attributes::=

physical_attributes_clause

logging_clause

allocate_extent_clause

deallocate_unused_clause

shrink_clause

OVERFLOW

physical_attributes_clause

logging_clause

allocate_extent_clause

deallocate_unused_clause

table_compression inmemory_clause

LOB LOB_item

VARRAY varray
(modify_LOB_parameters)

Chapter 12
ALTER TABLE

12-76

(physical_attributes_clause::=, logging_clause::=, allocate_extent_clause::=,
deallocate_unused_clause::=, shrink_clause::=, table_compression::=, inmemory_clause::=,
modify_LOB_parameters::=)

partition_spec::=

PARTITION

partition table_partition_description

(table_partition_description::=)

update_index_clauses::=

update_global_index_clause

update_all_indexes_clause

(update_global_index_clause::=, update_all_indexes_clause::=)

update_global_index_clause::=

UPDATE

INVALIDATE

GLOBAL INDEXES

update_all_indexes_clause::=

UPDATE INDEXES

(index (
update_index_partition

update_index_subpartition
)

,

)

(update_index_partition::=, update_index_subpartition::=)

update_index_partition::=

index_partition_description

index_subpartition_clause

,

(index_partition_description::=, index_subpartition_clause::=)

Chapter 12
ALTER TABLE

12-77

update_index_subpartition::=

SUBPARTITION

subpartition TABLESPACE tablespace

,

index_partition_description::=

PARTITION

partition

segment_attributes_clause

index_compression

PARAMETERS (’ ODCI_parameters ’)

USABLE

UNUSABLE

(segment_attributes_clause::=, index_compression::=)

index_subpartition_clause::=

STORE IN (tablespace

,

)

(SUBPARTITION

subpartition TABLESPACE tablespace index_compression

USABLE

UNUSABLE

,

)

(index_compression::=)

parallel_clause::=

NOPARALLEL

PARALLEL

integer

move_table_clause::=

Chapter 12
ALTER TABLE

12-78

MOVE

filter_condition ONLINE segment_attributes_clause table_compression

index_org_table_clause

LOB_storage_clause

varray_col_properties parallel_clause

allow_disallow_clustering UPDATE INDEXES

(index
segment_attributes_clause

update_index_partition

,

)

(filter_condition::=, segment_attributes_clause::=, table_compression::=,
index_org_table_clause::=, LOB_storage_clause::=, varray_col_properties::=,
parallel_clause::=, allow_disallow_clustering::=, update_index_partition::=)

modify_to_partitioned::=

MODIFY table_partitioning_clauses

filter_condition ONLINE

UPDATE INDEXES

(index

local_partitioned_index

global_partitioned_index

GLOBAL

,

)

modify_opaque_type::=

MODIFY OPAQUE TYPE anydata_column STORE (type_name

,

) UNPACKED

immutable_table_clauses::=

immutable_table_no_drop_clause immutable_table_no_delete_clause

blockchain_table_clauses::=

Chapter 12
ALTER TABLE

12-79

blockchain_drop_table_clause blockchain_row_retention_clause blockchain_hash_and_data_format_clause

enable_disable_clause::=

ENABLE

DISABLE

VALIDATE

NOVALIDATE
UNIQUE (column

,

)

PRIMARY KEY

CONSTRAINT constraint_name

using_index_clause exceptions_clause CASCADE

KEEP

DROP
INDEX

(using_index_clause::=, exceptions_clause::=,)

using_index_clause::=

USING INDEX

schema .

index

(create_index_statement)

index_properties

(create_index::=, index_properties::=)

index_properties::=

global_partitioned_index

local_partitioned_index

index_attributes

INDEXTYPE IS
domain_index_clause

XMLIndex_clause

(global_partitioned_index::=, local_partitioned_index::=—part of CREATE INDEX,
index_attributes::=, domain_index_clause: not supported in using_index_clause)

Chapter 12
ALTER TABLE

12-80

index_attributes::=

physical_attributes_clause

logging_clause

ONLINE

TABLESPACE
tablespace

DEFAULT

index_compression

SORT

NOSORT

REVERSE

VISIBLE

INVISIBLE

partial_index_clause

parallel_clause

(physical_attributes_clause::=, logging_clause::=, index_compression::=,
partial_index_clause and parallel_clause: not supported in using_index_clause)

Semantics

Many clauses of the ALTER TABLE statement have the same functionality they have in a
CREATE TABLE statement. For more information on such clauses, see CREATE TABLE.

Note:

Operations performed by the ALTER TABLE statement can cause Oracle Database to
invalidate procedures and stored functions that access the table. For information on
how and when the database invalidates such objects, see Oracle Database
Development Guide.

schema

Specify the schema containing the table. If you omit schema, then Oracle Database assumes
the table is in your own schema.

table

Specify the name of the table to be altered.

Chapter 12
ALTER TABLE

12-81

Note:

If you alter a table that is a master table for one or more materialized views,
then Oracle Database marks the materialized views INVALID. Invalid
materialized views cannot be used by query rewrite and cannot be refreshed.
For information on revalidating a materialized view, see ALTER
MATERIALIZED VIEW .

See Also:

Oracle Database Data Warehousing Guide for more information on
materialized views in general

Restrictions on Altering Temporary Tables

You can modify, drop columns from, or rename a temporary table. However, for a
temporary table you cannot:

• Add columns of nested table type. You can add columns of other types.

• Specify referential integrity (foreign key) constraints for an added or modified
column.

• Specify the following clauses of the LOB_storage_clause for an added or modified
LOB column: TABLESPACE, storage_clause, logging_clause,
allocate_extent_clause, or deallocate_unused_clause.

• Specify the physical_attributes_clause, nested_table_col_properties,
parallel_clause, allocate_extent_clause, deallocate_unused_clause, or any
of the index-organized table clauses.

• Exchange partitions between a partition and a temporary table.

• Specify the logging_clause.

• Specify MOVE.
• Add an INVISIBLE column or modify an existing column to be INVISIBLE.

Restrictions on Altering External Tables

You can add, drop, or modify the columns of an external table. However, for an
external table you cannot:

• Add a LONG, LOB, or object type column or change the data type of an external
table column to any of these data types.

• Modify the storage parameters of an external table.

• Specify the logging_clause.

• Specify MOVE.

• Add an INVISIBLE column or modify an existing column to be INVISIBLE.

Chapter 12
ALTER TABLE

12-82

memoptimize_read_clause

Use this clause to improve the performance high frequency data query operations. The
MEMOPTIMIZE_POOL_SIZE initialization parameter controls the size of the memoptimize pool.
Note that the feature uses additional memory from the SGA.

• You must specify this clause as a top-level attribute of the table, it cannot be specified at
the partition or subpartition level.

• You must explicitly enable the table for MEMOPTIMIZE FOR READ before you can read data
from the table.

• You must explicitly disable the table for NO MEMOPTIMIZE FOR READ when you no longer
need it.

memoptimize_write_clause

Use this clause to enable fast ingest. Fast ingest optimizes the processing of high frequency
single row data inserts from Internet of Things (IoT) applications by using a large buffering
pool to store the inserts before writing them to disk.

alter_table_properties

Use the alter_table_clauses to modify a database table.

physical_attributes_clause

The physical_attributes_clause lets you change the value of the PCTFREE, PCTUSED, and
INITRANS parameters and storage characteristics. Refer to physical_attributes_clause and
storage_clause for a full description of these parameters and characteristics.

Restrictions on Altering Table Physical Attributes

Altering physical attributes is subject to the following restrictions:

• You cannot specify the PCTUSED parameter for the index segment of an index-organized
table.

• If you attempt to alter the storage attributes of tables in locally managed tablespaces,
then Oracle Database raises an error. However, if some segments of a partitioned table
reside in a locally managed tablespace and other segments reside in a dictionary-
managed tablespace, then the database alters the storage attributes of the segments in
the dictionary-managed tablespace but does not alter the attributes of the segments in
the locally managed tablespace, and does not raise an error.

• For segments with automatic segment-space management, the database ignores
attempts to change the PCTUSED setting. If you alter the PCTFREE setting, then you must
subsequently run the DBMS_REPAIR.SEGMENT_FIX_STATUS procedure to implement the
new setting on blocks already allocated to the segment.

Cautions on Altering Tables Physical Attributes

The values you specify in this clause affect the table as follows:

• For a nonpartitioned table, the values you specify override any values specified for the
table at create time.

• For a range-, list-, or hash-partitioned table, the values you specify are the default values
for the table and the actual values for every existing partition, overriding any values

Chapter 12
ALTER TABLE

12-83

already set for the partitions. To change default table attributes without overriding
existing partition values, use the modify_table_default_attrs clause.

• For a composite-partitioned table, the values you specify are the default values for
the table and all partitions of the table and the actual values for all subpartitions of
the table, overriding any values already set for the subpartitions. To change default
partition attributes without overriding existing subpartition values, use the
modify_table_default_attrs clause with the FOR PARTITION clause.

logging_clause

Use the logging_clause to change the logging attribute of the table. The
logging_clause specifies whether subsequent ALTER TABLE ... MOVE and ALTER
TABLE ... SPLIT operations will be logged or not logged.

When used with the modify_table_default_attrs clause, this clause affects the
logging attribute of a partitioned table.

See Also:

• logging_clause for a full description of this clause

• Oracle Database VLDB and Partitioning Guide for more information
about the logging_clause and parallel DML

table_compression

The table_compression clause is valid only for heap-organized tables. Use this clause
to instruct Oracle Database whether to compress data segments to reduce disk and
memory use. Refer to the CREATE TABLE table_compression for the full semantics of
this clause and for information on creating objects with table compression.

Note:

The first time a table is altered in such a way that compressed data will be
added, all bitmap indexes and bitmap index partitions on that table must be
marked UNUSABLE.

inmemory_table_clause

Use this clause to enable or disable a table or table column for the In-Memory Column
Store (IM column store), or to change the In-Memory attributes for a table or table
column.

• Specify INMEMORY to enable a table for the IM column store, or to change the
inmemory_attributes for a table that is already enabled for the IM column store.

• Specify NO INMEMORY to disable a table for the IM column store.

• Specify the inmemory_column_clause to enable or disable a table column for the
IM column store, or to change the inmemory_memcompress setting for a table
column. If you specify this clause when the table or partition is disabled for the IM

Chapter 12
ALTER TABLE

12-84

column store, then the column settings will take effect when the table or partition is
subsequently enabled for the IM column store. Regardless of whether the table or
partition is enabled or disabled for the IM column store, when you specify NO INMEMORY for
a column, any previously specified inmemory_memcompress setting for the column is lost.
Refer to the inmemory_column_clause of CREATE TABLE for the full semantics of this
clause.

This inmemory_table_clause has the same semantics as the inmemory_table_clause of
CREATE TABLE, with the following additions:

• When you specify the inmemory_memcompress clause to change the data compression
method for a table that is already enabled for the IM column store, any columns that were
previously assigned a specific data compression method will retain that data compression
method. Refer to the inmemory_memcompress clause of CREATE TABLE for more
information on this clause.

• When you specify the inmemory_distribute clause, if you omit one subclause, then its
setting remains unchanged. That is, if you specify only the AUTO or BY clause, then the
FOR SERVICE setting for the table remains unchanged, and if you specify only the FOR
SERVICE clause, then the AUTO or BY setting for the table remains unchanged. If you omit
both subclauses and specify only the DISTRIBUTE keyword, then the table is assigned the
DISTRIBUTE AUTO setting and its FOR SERVICE setting remains unchanged. Refer to the
inmemory_distribute clause of CREATE TABLE for more information on this clause.

• When you specify NO INMEMORY to disable a partitioned or nonpartitioned table for the IM
column store, any column-level In-Memory settings are lost. If you subsequently enable
the table for the IM column store, then all columns will use the In-Memory settings for the
table, unless you specify otherwise when enabling the table.

• When you specify NO INMEMORY to disable a partition for the IM column store, the column-
level In-Memory settings are retained, even if all partitions in the table are disabled. If you
subsequently enable the table or a partition for the IM column store, then the column-
level In-Memory settings will go into effect, unless you specify otherwise when enabling
the table or partition.

• If a table is currently populated in the IM column store and you change any
inmemory_attribute of the table other than PRIORITY, then the database evicts the table
from the IM column store. The repopulation behavior depends on the PRIORITY setting.

inmemory_clause

Use this clause to enable or disable a table partition for the IM column store, or to change the
In-Memory parameters for a table partition. This clause has the same semantics in CREATE
TABLE and ALTER TABLE. Refer to the inmemory_clause in the documentation on CREATE TABLE
for the full semantics of this clause.

You can specify IMEMORY on non-partitioned tables using the ORACLE_HIVE, ORACLE_HDFS, and
ORACLE_BIGDATA driver types.

For more details on the In-Memory column architecture see Oracle Database In-Memory
Guide

Restriction

If a segment on disk is 64 KB or less, then it is not populated in the IM column store.
Therefore, some small database objects that were enabled for the IM column store might not
be populated.

Chapter 12
ALTER TABLE

12-85

ilm_clause

Use this clause to add, delete, enable, or disable Automatic Data Optimization policies
for the table.

ADD POLICY

Specify this clause to add a policy for the table.

Use ilm_policy_clause to specify the policy. Refer to the ilm_policy_clause for the full
semantics of this clause

Oracle Database assigns a name to the policy of the form Pn where n is an integer
value

{ DELETE | ENABLE | DISABLE } POLICY

Specify these clauses to delete a policy for the table, enable a policy for the table, or
disable a policy for the table, respectively.

For ilm_policy_name, specify the name of the policy. You can view policy names by
querying the POLICY_NAME column of the DBA_ILMPOLICIES view.

{ DELETE_ALL, ENABLE_ALL, DISABLE_ALL }

Specify these clauses to delete all policies for the table, enable all policies for the
table, or disable all policies for the table, respectively.

See Also:

Oracle Database VLDB and Partitioning Guide for more information on
managing policies for Automatic Data Optimization

ilm_policy_clause

This clause lets you specify an Automatic Data Optimization policy. You can use the
ilm_compression_policy clause to specify a compression policy, the
ilm_tiering_policy clause to specify a storage tiering policy, or the
ilm_inmemory_policy clause to specify an In-Memory Column Store policy.

ilm_compression_policy

Use this clause to specify a compression policy. This type of policy instructs the
database to compress data when a specified condition is met. Use the SEGMENT, GROUP,
or ROW clause to specify a segment-level, group-level, or row-level compression policy.

table_compression

Use the table_compression clause to specify the compression type. This clause
applies to segment-level and group-level compression policies.

You must specify a compression type that is higher than the current compression type.
The order of compression types from lowest to highest is:

NOCOMPRESS
ROW STORE COMPRESS BASIC

Chapter 12
ALTER TABLE

12-86

ROW STORE COMPRESS ADVANCED
COLUMN STORE COMPRESS FOR QUERY LOW
COLUMN STORE COMPRESS FOR QUERY HIGH
COLUMN STORE COMPRESS FOR ARCHIVE LOW
COLUMN STORE COMPRESS FOR ARCHIVE HIGH

Refer to table_compression for the full semantics of this clause.

SEGMENT

Specify SEGMENT to create a segment-level compression policy. This type of policy instructs
the database to compress table segments when the condition specified in the AFTER clause is
met or when the PL/SQL function specified in the ON clause returns TRUE.

GROUP

Specify GROUP to create a group-level compression policy. This type of policy instructs the
database to compress the table and its dependent objects, such as indexes and SecureFiles
LOBs, when the condition specified in the AFTER clause is met or when the PL/SQL function
specified in the ON clause returns TRUE.

ROW

Specify ROW to create a row-level compression policy. This type of policy instructs the
database to compress database blocks in which all the rows have not been modified for a
specified period of time. When creating a row-level policy, you must specify ROW STORE
COMPRESS ADVANCED or COLUMN STORE COMPRESS FOR QUERY compression, and you must specify
AFTER ilm_time_period OF NO MODIFICATION. Refer to table_compression for the full
semantics of the ROW STORE COMPRESS ADVANCED and COLUMN STORE COMPRESS FOR QUERY
clauses.

AFTER

Use this clause to describe the condition that must be met in order for the policy to take
effect. The condition consists of a length of time, specified with the ilm_time_period clause,
and one of the following condition types:

• OF NO ACCESS: The policy will take effect after table has not been accessed for the
specified length of time.

• OF NO MODIFICATION: The policy will take effect after table has not been modified for the
specified length of time.

• OF CREATION: The policy will take effect when the specified length of time has passed
since table was created.

ilm_time_period

Specify a length of time in days, months, or years after which the condition must be met. For
integer, specify a positive integer. The DAY and DAYS keywords can be used interchangeably
and are provided for semantic clarity. This is also the case for the MONTH and MONTHS
keywords, and the YEAR and YEARS keywords.

ON

Use this clause to specify a PL/SQL function that returns a boolean value. For
function_name, specify the name of the function. The policy will take effect when the function
returns TRUE.

Chapter 12
ALTER TABLE

12-87

Note:

The ON function_name clause is not supported for tablespaces.

ilm_tiering_policy

Use this clause to specify a storage tiering policy. This type of policy instructs the
database to migrate data to a specified tablespace, either when a specified condition
is met or when data usage reaches a specified limit. Use the SEGMENT or GROUP clause
to specify a segment-level or group-level policy. You can migrate data to a read/write
tablespace or a read-only tablespace.

TIER TO tablespace

Use this clause to migrate data to a read/write tablespace.

• If you specify the ON function clause, then data will be migrated when function
returns TRUE. Refer to the ON clause for the full semantics of this clause.

• If you omit the ON function clause, then data will be migrated when data usage of
the tablespace quota reaches the percentage defined by TBS_PERCENT_USED. The
database will make a best effort to migrate enough data so that the amount of free
space within the tablespace quota reaches the percentage defined by
TBS_PERCENT_FREE. Refer to Oracle Database PL/SQL Packages and Types
Reference for more information on TBS_PERCENT_USED and TBS_PERCENT_FREE,
which are constants in the DBMS_ILM_ADMIN package.

TIER TO tablespace READ ONLY

Use this clause to migrate data to a read-only tablespace. When migrating data to the
tablespace, the database temporarily places the tablespace in read/write mode,
migrates the data, and then places the tablespace back in read-only mode.

• If you specify the AFTER clause, then data will be migrated when the specified
condition is met. Refer to the AFTER clause for the full semantics of this clause

• If you specify the ON function clause, then data will be migrated when function
returns TRUE. Refer to the ON clause for the full semantics of this clause.

SEGMENT | GROUP

Specify SEGMENT to create a segment-level storage tiering policy. This type of policy
instructs the database to migrate table segments to tablespace. Specify GROUP to
create a group-level storage tiering policy. This type of policy instructs the database to
migrate the table and its dependent objects, such as indexes and SecureFiles LOBs,
to tablespace. The default is SEGMENT.

Note:

The ON function_name clause is not supported for tablespaces.

Chapter 12
ALTER TABLE

12-88

ilm_inmemory_policy

Use this clause to specify an In-Memory Column Store (IM column store) policy. This type of
policy instructs the database to enable or disable the table for the IM column store, or to
change the compression method for the table in the IM column store, when a specified
condition is met.

SET INMEMORY

Use this clause to enable the table for the IM column store when the specified condition is
met. You can optionally use the inmemory_attributes clause to specify how table data will
be stored in the IM column store. Refer to inmemory_attributes for the full semantics of this
clause.

MODIFY INMEMORY

Use this clause to change the compression method for table data stored in the IM column
store when the specified condition is met. The table must be enabled for the IM column store.

You must specify a compression method that his higher than the current compression
method. The order of compression methods from lowest to highest is:

NO INMEMORY
MEMCOMPRESS FOR DML
MEMCOMPRESS FOR QUERY LOW
MEMCOMPRESS FOR QUERY HIGH
MEMCOMPRESS FOR CAPACITY LOW
MEMCOMPRESS FOR CAPACITY HIGH

Refer to inmemory_memcompress for the full semantics of this clause.

NO INMEMORY

Use this clause to disable the table for the IM column store when the specified condition is
met.

SEGMENT

The SEGMENT keyword is optional and is provided for semantic clarity. IM column store policies
are always segment-level policies.

AFTER | ON

The AFTER and ON clauses enable you to specify the condition that must be met in order for
the IM column store policy to take effect:

• If you specify the AFTER clause, then the policy will take effect when the specified
condition is met. Refer to the AFTER clause for the full semantics of this clause

• If you specify the ON function clause, then the policy will take effect when function returns
TRUE. Refer to the ON clause for the full semantics of this clause.

Note:

The ON function_name clause is not supported for tablespaces.

Chapter 12
ALTER TABLE

12-89

See Also:

Oracle Database In-Memory Guide for more information on using Automatic
Data Optimization policies with the IM column store

supplemental_table_logging

Use the supplemental_table_logging clause to add or drop a redo log group or one
or more supplementally logged columns in a redo log group.

• In the ADD clause, use supplemental_log_grp_clause to create named
supplemental log group. Use the supplemental_id_key_clause to create a
system-generated log group.

• On the DROP clause, use GROUP log_group syntax to drop a named supplemental
log group and use the supplemental_id_key_clause to drop a system-generated
log group.

The supplemental_log_grp_clause and the supplemental_id_key_clause have the
same semantics in CREATE TABLE and ALTER TABLE statements. For full information on
these clauses, refer to supplemental_log_grp_clause and
supplemental_id_key_clause in the documentation on CREATE TABLE.

See Also:

Oracle Data Guard Concepts and Administration for information on
supplemental redo log groups

allocate_extent_clause

Use the allocate_extent_clause to explicitly allocate a new extent for the table, the
partition or subpartition, the overflow data segment, the LOB data segment, or the
LOB index.

Restriction on Allocating Table Extents

You cannot allocate an extent for a temporary table or for a range- or composite-
partitioned table.

See Also:

allocate_extent_clause for a full description of this clause and "Allocating
Extents: Example"

deallocate_unused_clause

deallocate_unused_clause Use the deallocate_unused_clause to explicitly deallocate
unused space at the end of the table, partition or subpartition, overflow data segment,
LOB data segment, or LOB index and make the space available for other segments in
the tablespace.

Chapter 12
ALTER TABLE

12-90

See Also:

deallocate_unused_clause for a full description of this clause and "Deallocating
Unused Space: Example"

CACHE | NOCACHE

The CACHE and NOCACHE clauses have the same semantics in CREATE TABLE and ALTER TABLE
statements. For complete information on these clauses, refer to "CACHE | NOCACHE |
CACHE READS" in the documentation on CREATE TABLE. If you omit both of these clauses in
an ALTER TABLE statement, then the existing value is unchanged.

result_cache_clause

The result_cache_clause clause has the same semantics in CREATE TABLE and ALTER TABLE
statements. For complete information on this clause, refer to "result_cache_clause" in the
documentation on CREATE TABLE. If you omit this clause in an ALTER TABLE statement, then the
existing setting is unchanged.

Examples

ALTER TABLE employee RESULT_CACHE (MODE DEFAULT)
 ALTER TABLE employee RESULT_CACHE (STANDBY ENABLE)
 ALTER TABLE employee RESULT_CACHE (MODE DEFAULT, STANDBY ENABLE)
 ALTER TABLE employee RESULT_CACHE (STANDBY ENABLE, MODE FORCE)

upgrade_table_clause

The upgrade_table_clause is relevant for object tables and for relational tables with object
columns. It lets you instruct Oracle Database to convert the metadata of the target table to
conform with the latest version of each referenced type. If table is already valid, then the table
metadata remains unchanged.

Restriction on Upgrading Object Tables and Columns

Within this clause, you cannot specify object_type_col_properties as a clause of
column_properties.

INCLUDING DATA

Specify INCLUDING DATA if you want Oracle Database to convert the data in the table to the
latest type version format. You can define the storage for any new column while upgrading
the table by using the column_properties and the LOB_partition_storage . This is the default.

You can convert data in the table at the time you upgrade the type by specifying CASCADE
INCLUDING TABLE DATA in the dependent_handling_clause of the ALTER TYPE statement. See
Oracle Database PL/SQL Language Reference for information on this clause. For information
on whether a table contains data based on an older type version, refer to the DATA_UPGRADED
column of the USER_TAB_COLUMNS data dictionary view.

NOT INCLUDING DATA

Specify NOT INCLUDING DATA if you want Oracle Database to leave column data unchanged.

Restriction on NOT INCLUDING DATA

Chapter 12
ALTER TABLE

12-91

You cannot specify NOT INCLUDING DATA if the table contains columns in Oracle8
release 8.0.x image format. To determine whether the table contains such columns,
refer to the V80_FMT_IMAGE column of the USER_TAB_COLUMNS data dictionary view.

See Also:

• Oracle Database Reference for information on the data dictionary views

• ALTER TYPE for information on converting dependent table data when
modifying a type upon which the table depends

records_per_block_clause

The records_per_block_clause lets you specify whether Oracle Database restricts
the number of records that can be stored in a block. This clause ensures that any
bitmap indexes subsequently created on the table will be as compressed as possible.

Restrictions on Records in a Block

The record_per_block_clause is subject to the following restrictions:

• You cannot specify either MINIMIZE or NOMINIMIZE if a bitmap index has already
been defined on table. You must first drop the bitmap index.

• You cannot specify this clause for an index-organized table or a nested table.

MINIMIZE

Specify MINIMIZE to instruct Oracle Database to calculate the largest number of
records in any block in the table and to limit future inserts so that no block can contain
more than that number of records.

Oracle recommends that a representative set of data already exist in the table before
you specify MINIMIZE. If you are using table compression (see table_compression),
then a representative set of compressed data should already exist in the table.

Restriction on MINIMIZE

You cannot specify MINIMIZE for an empty table.

NOMINIMIZE

Specify NOMINIMIZE to disable the MINIMIZE feature. This is the default.

row_movement_clause

You cannot disable row movement in a reference-partitioned table unless row
movement is also disabled in the parent table. Otherwise, this clause has the same
semantics in CREATE TABLE and ALTER TABLE statements. For complete information on
these clauses, refer to row_movement_clause in the documentation on CREATE TABLE.

logical_replication_clause

You can perform partial database replication for users such as Oracle GoldenGate,
and reduce the supplemental logging overhead of uninteresting tables in interesting
schema where supplemental logging is enabled. CREATE TABLE has the full semantics

Chapter 12
ALTER TABLE

12-92

of the clause: #unique_98/unique_98_Connect_42_GUID-B1C6057D-
FFF0-4DDA-9E35-6F9F7FD11964

flashback_archive_clause

You must have the FLASHBACK ARCHIVE object privilege on the specified flashback archive to
specify this clause. Use this clause to enable or disable historical tracking for the table.

• Specify FLASHBACK ARCHIVE to enable tracking for the table. You can specify
flashback_archive to designate a particular flashback archive for this table. The
flashback archive you specify must already exist.

If you omit the archive name, then the database uses the default flashback archive
designated for the system. If no default flashback archive has been designated for the
system, then you must specify flashback_archive.

You cannot specify FLASHBACK ARCHIVE to change the flashback archive for this table.
Instead you must first issue an ALTER TABLE statement with the NO FLASHBACK ARCHIVE
clause and then issue an ALTER TABLE statement with the FLASHBACK ARCHIVE clause.

• Specify NO FLASHBACK ARCHIVE to disable tracking for the table.

See Also:

The CREATE TABLE flashback_archive_clause for information on creating a table with
tracking enabled and CREATE FLASHBACK ARCHIVE for information on creating
default flashback archives

RENAME TO

Use the RENAME clause to rename table to new_table_name.

Using this clause invalidates any dependent materialized views. For more information on
materialized views, see CREATE MATERIALIZED VIEW and Oracle Database Data
Warehousing Guide.

If a domain index is defined on the table, then the database invokes the ODCIIndexAlter()
method with the RENAME option. This operation establishes correspondence between the
indextype metadata and the base table.

Restriction on Renaming Tables

You cannot rename a sharded table or a duplicated table.

shrink_clause

The shrink clause lets you manually shrink space in a table, index-organized table or its
overflow segment, index, partition, subpartition, LOB segment, materialized view, or
materialized view log. This clause is valid only for segments in tablespaces with automatic
segment management. By default, Oracle Database compacts the segment, adjusts the high
water mark, and releases the recuperated space immediately.

Compacting the segment requires row movement. Therefore, you must enable row
movement for the object you want to shrink before specifying this clause. Further, if your
application has any rowid-based triggers, you should disable them before issuing this clause.

Chapter 12
ALTER TABLE

12-93

With release 21c, you can use the shrink_clause on SecureFile LOB segments.
There are two ways to invoke the shrink_clause:

1. This command targets a specific LOB column and all its partitions.

ALTER TABLE <table_name> MODIFY LOB <lob_column> SHRINK SPACE
2. This command cascades the shrink operation for all the LOB columns and its

partitions for the given table .

ALTER TABLE <table_name> SHRINK SPACE CASCADE

Restrictions:

The shrink_clause is not supported on IOT partition tables.

Note:

Do not attempt to enable row movement for an index-organized table before
specifying the shrink_clause. The ROWID of an index-organized table is its
primary key, which never changes. Therefore, row movement is neither
relevant nor valid for such tables.

COMPACT

If you specify COMPACT, then Oracle Database only defragments the segment space
and compacts the table rows for subsequent release. The database does not readjust
the high water mark and does not release the space immediately. You must issue
another ALTER TABLE ... SHRINK SPACE statement later to complete the operation. This
clause is useful if you want to accomplish the shrink operation in two shorter steps
rather than one longer step.

For an index or index-organized table, specifying ALTER [INDEX | TABLE] ... SHRINK
SPACE COMPACT is equivalent to specifying ALTER [INDEX | TABLE ... COALESCE. The
shrink_clause can be cascaded (refer to the CASCADE clause, which follows) and
compacts the segment more densely than does a coalesce operation, which can
improve performance. However, if you do not want to release the unused space, then
you can use the appropriate COALESCE clause.

CASCADE

If you specify CASCADE, then Oracle Database performs the same operations on all
dependent objects of table, including secondary indexes on index-organized tables.

Restrictions on the shrink_clause

The shrink_clause is subject to the following restrictions:

• You cannot combine this clause with any other clauses in the same ALTER TABLE
statement.

You cannot specify this clause for a cluster, a clustered table, or any object with a
LONG column.

• Segment shrink is not supported for tables with function-based indexes, domain
indexes, or bitmap join indexes.

Chapter 12
ALTER TABLE

12-94

• This clause does not shrink mapping tables of index-organized tables, even if you specify
CASCADE.

• You can specify this clause for a table with Advanced Row Compression enabled (ROW
STORE COMPRESS ADVANCED). You cannot specify this clause for a table with any other type
of table compression enabled.

• You cannot shrink a table that is the master table of an ON COMMIT materialized view.
Rowid materialized views must be rebuilt after the shrink operation.

READ ONLY | READ WRITE

Specify READ ONLY to put the table in read-only mode. When the table is in READ ONLY mode,
you cannot issue any DML statements that affect the table or any SELECT ... FOR UPDATE
statements. You can issue DDL statements as long as they do not modify any table data.
Operations on indexes associated with the table are allowed when the table is in READ ONLY
mode. See Oracle Database Administrator’s Guide for the complete list of operations that are
allowed and disallowed on read-only tables.

Specify READ WRITE to return a read-only table to read/write mode.

REKEY encryption_spec

Use the REKEY clause to generate a new encryption key or to switch between different
algorithms. This operation returns only after all encrypted columns in the table, including LOB
columns, have been reencrypted.

DEFAULT COLLATION

This clause lets you change the default collation for the table. For collation_name, specify a
valid named collation or pseudo-collation.

The new default collation for the table is assigned to columns of a character data type that
are subsequently added to the table with an ALTER TABLE ADD statement or modified from a
non-character data type with an ALTER TABLE MODIFY statement. The collations for existing
columns in the table are not changed. Refer to the DEFAULT COLLATION clause of CREATE
TABLE for the full semantics of this clause.

[NO] ROW ARCHIVAL

Specify this clause to enable or disable table for row archival.

• Specify ROW ARCHIVAL to enable table for row archival. A hidden column
ORA_ARCHIVE_STATE is created in the table. If the table is already populated with data,
then the value of ORA_ARCHIVE_STATE is set to 0 for each existing row in the table. You
can subsequently use the UPDATE statement to set the value of ORA_ARCHIVE_STATE to 1
for rows you want to archive.

• Specify NO ROW ARCHIVAL to disable table for row archival. The hidden column
ORA_ARCHIVE_STATE is dropped from the table.

Restrictions on [NO] ROW ARCHIVAL

The following restrictions apply to this clause:

• You cannot specify the ROW ARCHIVAL clause for a table that already contains a column
named ORA_ARCHIVE_STATE.

• You cannot specify the NO ROW ARCHIVAL clause for tables owned by SYS.

Chapter 12
ALTER TABLE

12-95

See Also:

• The CREATE TABLE ROW ARCHIVAL clause for the full semantics of this
clause

• Oracle Database VLDB and Partitioning Guide for more information on
In-Database Archiving

attribute_clustering_clause

Use the ADD attribute_clustering_clause to enable the table for attribute clustering.
The attribute_clustering_clause has the same semantics for ALTER TABLE and
CREATE TABLE. Refer to the attribute_clustering_clause in the documentation on CREATE
TABLE.

MODIFY CLUSTERING

Use this clause to allow or disallow attribute clustering for the table during direct-path
insert operations or data movement operations. The table must be enabled for
attribute clustering. The clustering_when clause and the zonemap_clause have the
same semantics for ALTER TABLE and CREATE TABLE. Refer to the clustering_when
clause and the zonemap_clause in the documentation on CREATE TABLE.

DROP CLUSTERING

Use this clause to disable the table for attribute clustering.

If a zone map on the table was created using the WITH MATERIALIZED ZONEMAP clause
of CREATE TABLE or ALTER TABLE, then the zone map will be dropped. If a zone map on
the table was created using the CREATE MATERIALIZED ZONEMAP statement, then the
zone map will not be dropped.

alter_iot_clauses

index_org_table_clause

This clause lets you alter some of the characteristics of an existing index-organized
table. Index-organized tables keep data sorted on the primary key and are therefore
best suited for primary-key-based access and manipulation. See
index_org_table_clause in the context of CREATE TABLE.

See Also:

"Modifying Index-Organized Tables: Examples"

prefix_compression

Use the prefix_compression clause to enable prefix compression for the table.
Specify COMPRESS to instruct Oracle Database to combine the primary key index blocks
of the index-organized table where possible to free blocks for reuse. You can specify

Chapter 12
ALTER TABLE

12-96

this clause with the parallel_clause. Specify NOCOMPRESS to disable prefix compression for
the table.

PCTTHRESHOLD integer

Refer to "PCTTHRESHOLD integer" in the documentation on CREATE TABLE.

INCLUDING column_name

Refer to "INCLUDING column_name" in the documentation on CREATE TABLE.

overflow_attributes

The overflow_attributes let you specify the overflow data segment physical storage and
logging attributes to be modified for the index-organized table. Parameter values specified in
this clause apply only to the overflow data segment.

See Also:

CREATE TABLE

add_overflow_clause

The add_overflow_clause lets you add an overflow data segment to the specified index-
organized table. You can also use this clause to explicitly allocate an extent to or deallocate
unused space from an existing overflow segment.

Use the STORE IN tablespace clause to specify tablespace storage for the entire overflow
segment. Use the PARTITION clause to specify tablespace storage for the segment by
partition.

For a partitioned index-organized table:

• If you do not specify PARTITION, then Oracle Database automatically allocates an
overflow segment for each partition. The physical attributes of these segments are
inherited from the table level.

• If you want to specify separate physical attributes for one or more partitions, then you
must specify such attributes for every partition in the table. You need not specify the
name of the partitions, but you must specify their attributes in the order in which they
were created.

You can find the order of the partitions by querying the PARTITION_NAME and
PARTITION_POSITION columns of the USER_IND_PARTITIONS view.

If you do not specify TABLESPACE for a particular partition, then the database uses the
tablespace specified for the table. If you do not specify TABLESPACE at the table level, then the
database uses the tablespace of the partition primary key index segment.

Restrictions on Overflow Attributes

Within the segment_attributes_clause:

• You cannot specify the OPTIMAL parameter of the physical_attributes_clause.

• You cannot specify tablespace storage for the overflow segment using this clause. For a
nonpartitioned table, you can use ALTER TABLE ... MOVE ... OVERFLOW to move the segment

Chapter 12
ALTER TABLE

12-97

to a different tablespace. For a partitioned table, use ALTER TABLE ... MODIFY
DEFAULT ATTRIBUTES ... OVERFLOW to change the default tablespace of the overflow
segment.

Additional restrictions apply if table is in a locally managed tablespace, because in
such tablespaces several segment attributes are managed automatically by the
database.

See Also:

allocate_extent_clause and deallocate_unused_clause for full descriptions of
these clauses of the add_overflow_clause

alter_overflow_clause

The alter_overflow_clause lets you change the definition of the overflow segment of
an existing index-organized table.

The restrictions that apply to the add_overflow_clause also apply to the
alter_overflow_clause.

Note:

When you add a column to an index-organized table, Oracle Database
evaluates the maximum size of each column to estimate the largest possible
row. If an overflow segment is needed but you have not specified OVERFLOW,
then the database raises an error and does not execute the ALTER TABLE
statement. This checking function guarantees that subsequent DML
operations on the index-organized table will not fail because an overflow
segment is lacking.

alter_mapping_table_clauses

The alter_mapping_table_clauses is valid only if table is index organized and has a
mapping table.

allocate_extent_clause

Use the allocate_extent_clause to allocate a new extent at the end of the mapping
table for the index-organized table. Refer to allocate_extent_clause for a full
description of this clause.

deallocate_unused_clause

Specify the deallocate_unused_clause to deallocate unused space at the end of the
mapping table of the index-organized table. Refer to deallocate_unused_clause for a
full description of this clause.

Oracle Database automatically maintains all other attributes of the mapping table or its
partitions.

Chapter 12
ALTER TABLE

12-98

COALESCE Clause

Specify COALESCE to instruct Oracle Database to merge the contents of index blocks of the
index the database uses to maintain the index-organized table where possible to free blocks
for reuse. Refer to the shrink_clause for information on the relationship between these two
clauses.

alter_XMLSchema_clause

This clause is valid as part of alter_table_properties only if you are modifying an XMLType
table with BINARY XML storage. Refer to XMLSchema_spec in the documentation on CREATE
TABLE for more information on the ALLOW and DISALLOW clauses.

column_clauses

Use these clauses to add, drop, or otherwise modify a column.

add_column_clause

The add_column_clause lets you add a column to a table.

See Also:

CREATE TABLE for a description of the keywords and parameters of this clause
and "Adding a Table Column: Example"

column_definition

Unless otherwise noted in this section, the elements of column_definition have the same
behavior when adding a column to an existing table as they do when creating a new table.
Refer to thecolumn_definition clause of CREATE TABLE for information.

Restriction on column_definition

The SORT parameter is valid only when creating a new table. You cannot specify SORT in the
column_definition of an ALTER TABLE ... ADD statement.

When you add a column, the initial value of each row for the new column is null, unless you
specify the DEFAULT clause.

You can add an overflow data segment to each partition of a partitioned index-organized
table.

You can add LOB columns to nonpartitioned and partitioned tables. You can specify LOB
storage at the table and at the partition or subpartition level.

If you previously created a view with a query that used the SELECT * syntax to select all
columns from table, and you now add a column to table, then the database does not
automatically add the new column to the view. To add the new column to the view, re-create
the view using the CREATE VIEW statement with the OR REPLACE clause. Refer to CREATE
VIEW for more information.

Restrictions on Adding Columns

The addition of columns is subject to the following restrictions:

Chapter 12
ALTER TABLE

12-99

• You cannot add a LOB column or an INVISIBLE column to a cluster table.

• If you add a LOB column to a hash-partitioned table, then the only attribute you
can specify for the new partition is TABLESPACE.

• You cannot add a column with a NOT NULL constraint if table has any rows unless
you also specify the DEFAULT clause.

• If you specify this clause for an index-organized table, then you cannot specify any
other clauses in the same statement.

• You cannot add a column to a duplicated table.

DEFAULT

Use the DEFAULT clause to specify a default for a new column or a new default for an
existing column. Oracle Database assigns this value to the column if a subsequent
INSERT statement omits a value for the column.

The data type of the expression must match the data type specified for the column.
The column must also be large enough to hold this expression.

The DEFAULT expression can include any SQL function as long as the function does
not return a literal argument, a column reference, or a nested function invocation.

The DEFAULT expression can include the sequence pseudocolumns CURRVAL and
NEXTVAL, as long as the sequence exists and you have the privileges necessary to
access it. Users who perform subsequent inserts that use the DEFAULT expression
must have the INSERT privilege on the table and the SELECT privilege on the sequence.
If the sequence is later dropped, then subsequent insert statements where the
DEFAULT expression is used will result in an error. If you are adding a new column to a
table, then the order in which NEXTVAL is assigned to each existing row is
nondeterministic. If you do not fully qualify the sequence by specifying the sequence
owner, for example, SCOTT.SEQ1, then Oracle Database will default the sequence
owner to be the user who issues the ALTER TABLE statement. For example, if user MARY
adds a column to SCOTT.TABLE and refers to a sequence that is not fully qualified, such
as SEQ2, then the column will use sequence MARY.SEQ2. Synonyms on sequences
undergo a full name resolution and are stored as the fully qualified sequence in the
data dictionary; this is true for public and private synonyms. For example, if user BETH
adds a column referring to public or private synonym SYN1 and the synonym refers to
PETER.SEQ7, then the column will store PETER.SEQ7 as the default.

If you specify the DEFAULT clause for a column, then the default value is stored as
metadata but the column itself is not populated with data. However, subsequent
queries that specify the new column are rewritten so that the default value is returned
in the result set. This optimized behavior is subject to the following restrictions:

• The table cannot have any LOB columns. It cannot be index-organized, temporary,
or part of a cluster. It also cannot be a queue table, an object table, or the
container table of a materialized view.

• If the table has a Virtual Private Database (VPD) policy on it, then the optimized
behavior will not take place unless the user who issues the ALTER TABLE ... ADD
statement has the EXEMPT ACCESS POLICY system privilege.

• The column being added cannot be encrypted, and cannot be an object column,
nested table column, or a LOB column.

Chapter 12
ALTER TABLE

12-100

• The DEFAULT expression cannot include the sequence pseudocolumns CURRVAL or
NEXTVAL.

If the optimized behavior cannot take place due to the preceding restrictions, then Oracle
Database updates each row in the newly created column with the default value. In this case,
the database does not fire any UPDATE triggers that are defined on the table.

Restrictions on Default Column Values

Default column values are subject to the following restrictions:

• A DEFAULT expression cannot contain references to PL/SQL functions or to other
columns, the pseudocolumns LEVEL, PRIOR, and ROWNUM, or date constants that are not
fully specified.

• The expression can be of any form except a scalar subquery expression.

ON NULL

If you specify the ON NULL clause, then Oracle Database assigns the DEFAULT column value
when a subsequent INSERT statement attempts to assign a value that evaluates to NULL.

When you specify ON NULL, the NOT NULL constraint and NOT DEFERRABLE constraint state are
implicitly specified. If you specify an inline constraint that conflicts with NOT NULL and NOT
DEFERRABLE, then an error is raised.

See Also:

"Specifying a Default Column Value: Examples"

identity_clause

The identity_clause has the same semantics when you add an identity column that it has
when you create an identity column. Refer to CREATE TABLE identity_clause for more
information.

When you add a new identity column to a table, all existing rows are updated using the
sequence generator. The order in which a value is assigned to each existing row is
nondeterministic.

identity_options

Use the identity_options clause to configure the sequence generator. The
identity_options clause has the same parameters as the CREATE SEQUENCE statement.
Refer to CREATE SEQUENCE for a full description of these parameters and characteristics.
The exception is START WITH LIMIT VALUE, which is specific to identity_options and can
only be used with ALTER TABLE MODIFY. Refer to identity_options for more information.

inline_constraint

Use inline_constraint to add a constraint to the new column.

inline_ref_constraint

This clause lets you describe a new column of type REF. Refer to constraint for syntax and
description of this type of constraint, including restrictions.

Chapter 12
ALTER TABLE

12-101

virtual_column_definition

The virtual_column_definition has the same semantics when you add a column
that it has when you create a column.

See Also:

The CREATE TABLE virtual_column_definition and "Adding a Virtual Table
Column: Example" for more information

Restriction on Adding a Virtual Column

You cannot add a virtual column when the SQL expression for the virtual column
involves a column on which an Oracle Data Redaction policy is defined.

column_properties

The clauses of column_properties determine the storage characteristics of an object
type, nested table, varray, or LOB column.

object_type_col_properties

This clause is valid only when you are adding a new object type column or attribute. To
modify the properties of an existing object type column, use the
modify_column_clauses. The semantics of this clause are the same as for CREATE
TABLE unless otherwise noted.

Use the object_type_col_properties clause to specify storage characteristics for a
new object column or attribute or an element of a collection column or attribute.

For complete information on this clause, refer to object_type_col_properties in the
documentation on CREATE TABLE.

nested_table_col_properties

The nested_table_col_properties clause lets you specify separate storage
characteristics for a nested table, which in turn lets you to define the nested table as
an index-organized table. You must include this clause when creating a table with
columns or column attributes whose type is a nested table. (Clauses within this clause
that function the same way they function for parent object tables are not repeated
here. See the CREATE TABLE clause nested_table_col_properties for more information
about these clauses.)

• For nested_item, specify the name of a column (or a top-level attribute of the
nested table object type) whose type is a nested table.

If the nested table is a multilevel collection, and the inner nested table does not
have a name, then specify COLUMN_VALUE in place of the nested_item name.

• For storage_table, specify the name of the table where the rows of nested_item
reside. The storage table is created in the same schema and the same tablespace
as the parent table.

Restrictions on Nested Table Column Properties

Chapter 12
ALTER TABLE

12-102

Nested table column properties are subject to the following restrictions:

• You cannot specify the parallel_clause.

• You cannot specify CLUSTER as part of the physical_properties clause.

See Also:

"Nested Tables: Examples"

varray_col_properties

The varray_col_properties clause lets you specify separate storage characteristics for the
LOB in which a varray will be stored. If you specify this clause, then Oracle Database will
always store the varray in a LOB, even if it is small enough to be stored inline. If varray_item
is a multilevel collection, then the database stores all collection items nested within
varray_item in the same LOB in which varray_item is stored.

Restriction on Varray Column Properties

You cannot specify TABLESPACE as part of LOB_parameters for a varray column. The LOB
tablespace for a varray defaults to the tablespace of the containing table.

out_of_line_part_storage

This clause lets you specify storage attributes the newly added column for each partition or
subpartition in a partitioned table. For any partition or subpartition you do not name in this
clause, the storage attributes for the new column are the same as those specified in the
nested_table_col_properties at the table level.

LOB_storage_clause

Use the LOB_storage_clause to specify the LOB storage characteristics for a newly added
LOB column, LOB partition, or LOB subpartition, or when you are converting a LONG column
into a LOB column. You cannot use this clause to modify an existing LOB. Instead, you must
use the modify_LOB_storage_clause.

Unless otherwise noted in this section, all LOB parameters, in both the LOB_storage_clause
and the modify_LOB_storage_clause, have the same semantics in an ALTER TABLE statement
that they have in a CREATE TABLE statement. Refer to the CREATE TABLE LOB_storage_clause
for complete information on this clause.

Restriction on LOB Parameters

The only parameter of LOB_parameters you can specify for a hash partition or hash
subpartition is TABLESPACE.

CACHE READS Clause

When you add a new LOB column, you can specify the logging attribute with CACHE READS, as
you can when defining a LOB column at create time. Refer to the CREATE TABLE clause
CACHE READS for full information on this clause.

Chapter 12
ALTER TABLE

12-103

ENABLE | DISABLE STORAGE IN ROW

You cannot change STORAGE IN ROW once it is set. Therefore, you cannot specify this
clause as part of the modify_col_properties clause. However, you can change this
setting when adding a new column (add_column_clause) or when moving the table
(move_table_clause). Refer to the CREATE TABLE clause ENABLE STORAGE IN ROW
for complete information on this clause.

CHUNK integer

You use cannot use the modify_col_properties clause to change the value of CHUNK
after it has been set. If you require a different CHUNK value for a column after it has
been created, use ALTER TABLE … MOVE. Refer to the CREATE TABLE clause CHUNK
integer for more information.

RETENTION

For BasicFiles LOBs, if the database is in automatic undo mode, then you can specify
RETENTION instead of PCTVERSION to instruct Oracle Database to retain old versions of
this LOB. This clause overrides any prior setting of PCTVERSION. Refer to the CREATE
TABLE clause LOB_retention_clause for a full description of this parameter.

FREEPOOLS integer

For BasicFiles LOBs, if the database is in automatic undo mode, then you can use this
clause to specify the number of freelist groups for this LOB. This clause overrides any
prior setting of FREELIST GROUPS. Refer to the CREATE TABLE clause FREEPOOLS
integer for a full description of this parameter. The database ignores this parameter for
SecureFiles LOBs.

LOB_partition_storage

You can specify only one list of LOB_partition_storage clauses in a single ALTER
TABLE statement, and all LOB_storage_clauses and varray_col_properties clause
must precede the list of LOB_partition_storage clauses. Refer to the CREATE TABLE
clause LOB_partition_storage for full information on this clause, including restrictions.

XMLType_column_properties

Refer to the CREATE TABLE clause XMLType_column_properties for a full description of
this clause.

See Also:

• LOB_storage_clause for information on the LOB_segname and
LOB_parameters clauses

• "XMLType Column Examples" for an example of XMLType columns in
object-relational tables and "Using XML in SQL Statements " for an
example of creating an XMLSchema

• Oracle XML DB Developer's Guide for more information on XMLType
columns and tables and on creating an XMLSchema

Chapter 12
ALTER TABLE

12-104

JSON_storage_clause

With 21c you can define a column of JSON data type using the JSON_storage_clause.

Example

ALTER TABLE t ADD (jcol JSON)

modify_column_clauses

Use the modify_column_clauses to modify the properties of an existing column, the visibility
of an existing column, or the substitutability of an existing object type column.

See Also:

"Modifying Table Columns: Examples"

modify_col_properties

Use this clause to modify the properties of the column. Any of the optional parts of the
column definition (data type, default value, or constraint) that you omit from this clause
remain unchanged.

datatype

You can change the data type of any column if all rows of the column contain nulls. However,
if you change the data type of a column in a materialized view container table, then Oracle
Database invalidates the corresponding materialized view.

You can omit the data type only if the statement also designates the column as part of the
foreign key of a referential integrity constraint. The database automatically assigns the
column the same data type as the corresponding column of the referenced key of the
referential integrity constraint.

You can always increase the size of a character or raw column or the precision of a numeric
column, whether or not all the rows contain nulls. You can reduce the size of a data type of a
column as long as the change does not require data to be modified. The database scans
existing data and returns an error if data exists that exceeds the new length limit.

When you increase the size of a VARCHAR2, NVARCHAR2, or RAW column to exceed 4000 bytes,
Oracle Database performs an in-place length extension and does not migrate the inline
storage to external LOB storage. This enables uninterrupted migration of large tables,
especially after migration, to leverage extended data types. However, the inline storage of the
column will not be preserved during table reorganization operations, such as CREATE TABLE ...
AS SELECT, export, import, or online redefinition. To migrate to the new out-of-line storage of
extended data type columns, you must recreate the table using one of the aforementioned
methods. The inline storage of the column will be preserved during table or partition
movement operations, such as ALTER TABLE MOVE [[SUB]PARTITION], and partition
maintenance operations, such as ALTER TABLE SPLIT [SUB]PARTITION, ALTER TABLE MERGE
[SUB]PARTITIONS, and ALTER TABLE COALESCE [SUB]PARTITIONS.

Chapter 12
ALTER TABLE

12-105

Note:

Oracle recommends against excessively increasing the size of a VARCHAR2,
NVARCHAR2, or RAW column beyond 4000 bytes for the following reasons:

• Row chaining may occur.

• Data that is stored inline must be read in its entirety, whether a column is
selected or not. Therefore, extended data type columns that are stored
inline can have a negative impact on performance.

You can reduce the size of a data type of a column as long as the change does not
require data to be modified. The database scans existing data and returns an error if
data exists that exceeds the new length limit.

You can change a DATE column to a TIMESTAMP or TIMESTAMP WITH LOCAL TIME ZONE
column, and you can change a TIMESTAMP or TIMESTAMP WITH LOCAL TIME ZONE column
to a DATE column. The following rules apply:

• When you change a TIMESTAMP or TIMESTAMP WITH LOCAL TIME ZONE column to a
DATE column, Oracle Database updates each column value that has nonzero
fractional seconds by rounding the value to the nearest second. If, while updating
such a value, Oracle Database encounters a minute field greater than or equal to
60 (which can occur in a boundary case when the daylight saving rule switches),
then it updates the minute field by subtracting 60 from it.

• After you change a TIMESTAMP WITH LOCAL TIME ZONE column to a DATE column, the
values in the column still represent the local time that they represented in the
database time zone. However, the database time zone is no longer associated
with the values. When queried in SQL*Plus, the values are no longer automatically
adjusted to the session time zone. It is now the responsibility of applications
processing the column values to interpret them in a particular time zone.

If the table is empty, then you can increase or decrease the leading field or the
fractional second value of a datetime or interval column. If the table is not empty, then
you can only increase the leading field or fractional second of a datetime or interval
column.

You can use the TO_LOB function to change a LONG column to a CLOB or NCLOB column,
and a LONG RAW column to a BLOB column. However, you cannot use the TO_LOB
function from within a PL/SQL package. Instead use the TO_CLOB (character) or
TO_BLOB (raw) functions.

• The modified LOB column inherits all constraints and triggers that were defined on
the original LONG column. If you want to change any constraints, then you must do
so in a subsequent ALTER TABLE statement.

• If any domain indexes are defined on the LONG column, then you must drop them
before modifying the column to a LOB.

• After the modification, you will have to rebuild all other indexes on all columns of
the table.

You can use the TO_CLOB (character) function to convert NCLOB columns CLOB columns.

Chapter 12
ALTER TABLE

12-106

See Also:

• Oracle Database SecureFiles and Large Objects Developer's Guide for
information on LONG to LOB migration

• ALTER INDEX for information on dropping and rebuilding indexes

For CHAR and VARCHAR2 columns, you can change the length semantics by specifying CHAR (to
indicate character semantics for a column that was originally specified in bytes) or BYTE (to
indicate byte semantics for a column that was originally specified in characters). To learn the
length semantics of existing columns, query the CHAR_USED column of the ALL_, USER_, or
DBA_TAB_COLUMNS data dictionary view.

See Also:

• Oracle Database Globalization Support Guide for information on byte and
character semantics

• Oracle Database Reference for information on the data dictionary views

You can specify a user-defined datatype as non-persistable when creating or altering the
datatype. Instances of non-persistable types cannot persist on disk. See CREATE TYPE for
more on user-defined datatypes declared as non-persistable types.

COLLATE

Use this clause to set or change the data-bound collation for a column. For
column_collation_name, specify a valid named collation or pseudo-collation. Refer to the
DEFAULT COLLATION clause of CREATE TABLE for more information on data-bound
collations.

Restrictions on Changing Column Collation

The modification of the column collation is subject to the following restrictions:

• If the column belongs to an index key, then its collation can only be changed:

– among collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, and
USING_NLS_SORT_CS

– between collations BINARY_CI and USING_NLS_SORT_CI
– between collations BINARY_AI and USING_NLS_SORT_AI

• If the column belongs to a range- or list-partitioning key, is referenced by a bitmap join
index, belongs to the primary key of an index-organized table, or to the key of a domain
index, including an Oracle Text index, then its collation can only be changed among the
collations BINARY, USING_NLS_COMP, USING_NLS_SORT, and USING_NLS_SORT_CS.

• If the column belongs to an attribute clustering key, then its collation can only be changed
between the collations BINARY and USING_NLS_COMP.

Chapter 12
ALTER TABLE

12-107

See Also:

Modifying the Collation of a Column for Fine-Grained Case-Insensitivity:
Example

identity_clause

Use identity_clause to modify the properties of an identity column. You cannot
specify this clause on a column that is not an identity column. If you do not specify
ALWAYS or BY DEFAULT, then the current generation type is retained. Refer to CREATE
TABLE identity_clause for more information on ALWAYS and BY DEFAULT.

identity_options

Use the identity_options clause to configure the sequence generator. The
identity_options clause has the same parameters as the CREATE SEQUENCE
statement. Refer to CREATE SEQUENCE for a full description of these parameters
and characteristics. The exceptions are:

• START WITH LIMIT VALUE, which is specific to identity_options, can only be used
with ALTER TABLE MODIFY. If you specify START WITH LIMIT VALUE, then Oracle
Database locks the table and finds the maximum identity column value in the table
(for increasing sequences) or the minimum identity column value (for decreasing
sequences) and assigns the value as the sequence generator's high water mark.
The next value returned by the sequence generator will be the high water mark +
INCREMENT BY integer for increasing sequences, or the high water mark -
INCREMENT BY integer for decreasing sequences.

• If you change the value of START WITH, then the default values will be used for all
other parameters in this clause unless you specify otherwise.

DROP IDENTITY

Use this clause to remove the identity property from a column, including the sequence
generator and NOT NULL and NOT DEFERRABLE constraints. Identity column values in
existing rows are not affected.

ENCRYPT encryption_spec | DECRYPT

Use this clause to decrypt an encrypted column, to encrypt an unencrypted column, or
to change the integrity algorithm or the SALT option of an encrypted column.

When encrypting an existing column, if you specify encryption_spec, it must match
the encryption specification of any other encrypted columns in the same table. Refer to
the CREATE TABLE clause encryption_spec for additional information and restrictions on
the encryption_spec.

If a materialized view log is defined on the table, then Oracle Database encrypts or
decrypts in the materialized view log any columns you encrypt or decrypt in this
clause.

Restrictions on ENCRYPT encryption_spec | DECRYPT

This clause is subject to the following restrictions:

• If the new or existing column is a LOB column, then it must be stored as a
SecureFiles LOB, and you cannot specify the SALT option.

Chapter 12
ALTER TABLE

12-108

• You cannot encrypt or decrypt a column on which a fine-grained audit policy for the
UPDATE statement is enabled. However, you can disable the fine-grained audit policy,
encrypt or decrypt the column, and then enable the fine-grained audit policy.

See Also:

"Data Encryption: Examples"

inline_constraint

This clause lets you add a constraint to a column you are modifying. To change the state of
existing constraints on existing columns, use the constraint_clauses.

LOB_storage_clause

The LOB_storage_clause is permitted within modify_col_properties only if you are
converting a LONG column to a LOB column. In this case only, you can specify LOB storage
for the column using the LOB_storage_clause. However, you can specify only the single
column as a LOB_item. Default LOB storage attributes are used for any attributes you omit in
the LOB_storage_clause.

alter_XMLSchema_clause

This clause is valid within modify_col_properties only for XMLType tables with BINARY XML
storage. Refer to XMLSchema_spec in the documentation on CREATE TABLE for more
information on the ALLOW and DISALLOW clauses.

Restrictions on Modifying Column Properties

The modification of column properties is subject to the following restrictions:

• You cannot change the data type of a LOB column.

• You cannot modify a column of a table if a domain index is defined on the column. You
must first drop the domain index and then modify the column.

• You cannot modify the data type or length of a column that is part of the partitioning or
subpartitioning key of a table or index.

• You can change a CHAR column to VARCHAR2 (or VARCHAR) and a VARCHAR2 (or VARCHAR)
column to CHAR only if the BLANK_TRIMMING initialization parameter is set to TRUE and the
column size stays the same or increases. If the BLANK_TRIMMING initialization parameter is
set to TRUE, then you can also reduce the column size to any size greater than or equal to
the maximum trimmed data value.

• You cannot change a LONG or LONG RAW column to a LOB if the table is part of a cluster. If
you do change a LONG or LONG RAW column to a LOB, then the only other clauses you can
specify in this ALTER TABLE statement are the DEFAULT clause and the
LOB_storage_clause.

• You can specify the LOB_storage_clause as part of modify_col_properties only when
you are changing a LONG or LONG RAW column to a LOB.

• You cannot specify a column of data type ROWID for an index-organized table, but you can
specify a column of type UROWID.

• You cannot change the data type of a column to REF.

Chapter 12
ALTER TABLE

12-109

• You cannot modify the properties of a column in a duplicated table.

See Also:

ALTER MATERIALIZED VIEW for information on revalidating a materialized
view

modify_virtcol_properties

This clause lets you modify a virtual column in the following ways:

• Specify the COLLATE clause to set or change the data-bound collation for a virtual
column. For column_collation_name, specify a valid named collation or pseudo-
collation. Refer to the DEFAULT COLLATION clause of CREATE TABLE for more
information on data-bound collations.

• If the virtual column refers to an editioned PL/SQL function, then you can modify
the evaluation edition or the unusable editions for a virtual column. The
evaluation_edition_clause and the unusable_editions_clause have the same
semantics when you modify a virtual column that they have when you create a
virtual column. For complete information, refer to evaluation_edition_clause and
unusable_editions_clause in the documentation on CREATE TABLE.

Restrictions on Modifying Virtual Columns

The following restrictions apply to modifying virtual columns:

• Specifying the COLLATE clause to set or change the data-bound collation for a
virtual column is subject to the restrictions listed in Restrictions on Changing
Column Collation.

• If an index is defined on a virtual column and you modify its evaluation edition or
unusable editions, then the database will invalidate all indexes on the virtual
column. If you attempt to modify any other properties of the virtual column, then an
error occurs.

modify_col_visibility

Use this clause to change the visibility of column. For complete information, refer to
"VISIBLE | INVISIBLE" in the documentation on CREATE TABLE.

Restriction on Modifying Column Visibility

You cannot change a VISIBLE column to INVISIBLE in a table owned by SYS.

modify_col_substitutable

Use this clause to set or change the substitutability of an existing object type column.

The FORCE keyword drops any hidden columns containing typeid information or data for
subtype attributes. You must specify FORCE if the column or any attributes of its type
are not FINAL.

Restrictions on Modifying Column Substitutability

The modification of column substitutability is subject to the following restrictions:

Chapter 12
ALTER TABLE

12-110

• You can specify this clause only once in any ALTER TABLE statement.

• You cannot modify the substitutability of a column in an object table if the substitutability
of the table itself has been set.

• You cannot specify this clause if the column was created or added using the IS OF TYPE
syntax, which limits the range of subtypes permitted in an object column or attribute to a
particular subtype. Refer to substitutable_column_clause in the documentation on CREATE
TABLE for information on the IS OF TYPE syntax.

• You cannot change a varray column to NOT SUBSTITUTABLE, even by specifying FORCE, if
any of its attributes are nested object types that are not FINAL.

drop_column_clause

The drop_column_clause lets you free space in the database by dropping columns you no
longer need or by marking them to be dropped at a future time when the demand on system
resources is less.

• If you drop a nested table column, then its storage table is removed.

• If you drop a LOB column, then the LOB data and its corresponding LOB index segment
are removed.

• If you drop a BFILE column, then only the locators stored in that column are removed, not
the files referenced by the locators.

• If you drop or mark unused a column defined as an INCLUDING column, then the column
stored immediately before this column will become the new INCLUDING column.

SET UNUSED Clause

Specify SET UNUSED to mark one or more columns as unused. For an internal heap-organized
table, specifying this clause does not actually remove the target columns from each row in
the table. It does not restore the disk space used by these columns. Therefore, the response
time is faster than when you execute the DROP clause.

When you specify this clause for a column in an external table, the clause is transparently
converted to an ALTER TABLE ... DROP COLUMN statement. The reason for this is that any
operation on an external table is a metadata-only operation, so there is no difference in the
performance of the two commands.

You can view all tables with columns marked UNUSED in the data dictionary views
USER_UNUSED_COL_TABS, DBA_UNUSED_COL_TABS, and ALL_UNUSED_COL_TABS.

See Also:

Oracle Database Reference for information on the data dictionary views

Unused columns are treated as if they were dropped, even though their column data remains
in the table rows. After a column has been marked UNUSED, you have no access to that
column. A SELECT * query will not retrieve data from unused columns. In addition, the names
and types of columns marked UNUSED will not be displayed during a DESCRIBE, and you can
add to the table a new column with the same name as an unused column.

Chapter 12
ALTER TABLE

12-111

Note:

Until you actually drop these columns, they continue to count toward the
absolute limit of 1000 columns in a single table. However, as with all DDL
statements, you cannot roll back the results of this clause. You cannot issue
SET USED counterpart to retrieve a column that you have SET UNUSED. Refer to
CREATE TABLE for more information on the 1000-column limit.

Also, if you mark a LONG column as UNUSED, then you cannot add another
LONG column to the table until you actually drop the unused LONG column.

ONLINE

Specify ONLINE to indicate that DML operations on the table will be allowed while
marking the column or columns UNUSED.

Restrictions on Marking Columns Unused

The following restrictions apply to the SET UNUSED clause:

• You cannot specify the ONLINE clause when marking a column with a DEFERRABLE
constraint as UNUSED.

• Columns in tables owned by SYS cannot be marked as UNUSED.

DROP Clause

Specify DROP to remove the column descriptor and the data associated with the target
column from each row in the table. If you explicitly drop a particular column, then all
columns currently marked UNUSED in the target table are dropped at the same time.

When the column data is dropped:

• All indexes defined on any of the target columns are also dropped.

• All constraints that reference a target column are removed.

• If any statistics types are associated with the target columns, then Oracle
Database disassociates the statistics from the column with the FORCE option and
drops any statistics collected using the statistics type.

Note:

If the target column is a parent key of a nontarget column, or if a check
constraint references both the target and nontarget columns, then Oracle
Database returns an error and does not drop the column unless you have
specified the CASCADE CONSTRAINTS clause. If you have specified that clause,
then the database removes all constraints that reference any of the target
columns.

Chapter 12
ALTER TABLE

12-112

See Also:

DISASSOCIATE STATISTICS for more information on disassociating statistics
types

DROP UNUSED COLUMNS Clause

Specify DROP UNUSED COLUMNS to remove from the table all columns currently marked as
unused. Use this statement when you want to reclaim the extra disk space from unused
columns in the table. If the table contains no unused columns, then the statement returns with
no errors.

column

Specify one or more columns to be set as unused or dropped. Use the COLUMN keyword only if
you are specifying only one column. If you specify a column list, then it cannot contain
duplicates.

CASCADE CONSTRAINTS

Specify CASCADE CONSTRAINTS if you want to drop all foreign key constraints that refer to the
primary and unique keys defined on the dropped columns as well as all multicolumn
constraints defined on the dropped columns. If any constraint is referenced by columns from
other tables or remaining columns in the target table, then you must specify CASCADE
CONSTRAINTS. Otherwise, the statement aborts and an error is returned.

INVALIDATE

The INVALIDATE keyword is optional. Oracle Database automatically invalidates all
dependent objects, such as views, triggers, and stored program units. Object invalidation is a
recursive process. Therefore, all directly dependent and indirectly dependent objects are
invalidated. However, only local dependencies are invalidated, because the database
manages remote dependencies differently from local dependencies.

An object invalidated by this statement is automatically revalidated when next referenced.
You must then correct any errors that exist in that object before referencing it.

See Also:

Oracle Database Concepts for more information on dependencies

CHECKPOINT

Specify CHECKPOINT if you want Oracle Database to apply a checkpoint for the DROP COLUMN
operation after processing integer rows; integer is optional and must be greater than zero.
If integer is greater than the number of rows in the table, then the database applies a
checkpoint after all the rows have been processed. If you do not specify integer, then the
database sets the default of 512. Checkpointing cuts down the amount of undo logs
accumulated during the DROP COLUMN operation to avoid running out of undo space. However,
if this statement is interrupted after a checkpoint has been applied, then the table remains in
an unusable state. While the table is unusable, the only operations allowed on it are DROP

Chapter 12
ALTER TABLE

12-113

TABLE, TRUNCATE TABLE, and ALTER TABLE DROP ... COLUMNS CONTINUE (described in
sections that follow).

You cannot use this clause with SET UNUSED, because that clause does not remove
column data.

DROP COLUMNS CONTINUE Clause

Specify DROP COLUMNS CONTINUE to continue the drop column operation from the point
at which it was interrupted. Submitting this statement while the table is in an invalid
state results in an error.

Restrictions on Dropping Columns

Dropping columns is subject to the following restrictions:

• Each of the parts of this clause can be specified only once in the statement and
cannot be mixed with any other ALTER TABLE clauses. For example, the following
statements are not allowed:

ALTER TABLE t1 DROP COLUMN f1 DROP (f2);
ALTER TABLE t1 DROP COLUMN f1 SET UNUSED (f2);
ALTER TABLE t1 DROP (f1) ADD (f2 NUMBER);
ALTER TABLE t1 SET UNUSED (f3)
 ADD (CONSTRAINT ck1 CHECK (f2 > 0));

• You can drop an object type column only as an entity. To drop an attribute from an
object type column, use the ALTER TYPE ... DROP ATTRIBUTE statement with the
CASCADE INCLUDING TABLE DATA clause. Be aware that dropping an attribute affects
all dependent objects. See Oracle Database PL/SQL Language Reference for
more information.

• You can drop a column from an index-organized table only if it is not a primary key
column. The primary key constraint of an index-organized table can never be
dropped, so you cannot drop a primary key column even if you have specified
CASCADE CONSTRAINTS.

• You can export tables with dropped or unused columns. However, you can import
a table only if all the columns specified in the export files are present in the table
(none of those columns has been dropped or marked unused). Otherwise, Oracle
Database returns an error.

• You can set unused a column from a table that uses COMPRESS BASIC, but you
cannot drop the column. However, all clauses of the drop_column_clause are valid
for tables that use ROW STORE COMPRESS ADVANCED. See the semantics for
table_compression for more information.

• You cannot drop a column on which a domain index has been built.

• You cannot drop a SCOPE table constraint or a WITH ROWID constraint on a REF
column.

• You cannot use this clause to drop:

– A pseudocolumn, cluster column, or partitioning column. You can drop
nonpartitioning columns from a partitioned table if all the tablespaces where
the partitions were created are online and in read/write mode.

– A column from a nested table, an object table, a duplicated table, or a table
owned by SYS.

Chapter 12
ALTER TABLE

12-114

See Also:

"Dropping a Column: Example"

add_period_clause

Use the add_period_clause to add a valid time dimension to table.

The period_definition clause of ALTER TABLE has the same semantics as in CREATE TABLE,
with the following exceptions and additions:

• valid_time_column must not already exist in table.

• If you specify start_time_column and end_time_column, then these columns must
already exist in table or you must specify the add_column_clause for each of these
columns.

• If you specify start_time_column and end_time_column and these columns already exist
in table and are populated with data, then for all rows where both columns have non-
NULL values, the value of start_time_column must be earlier than the value of
end_time_column.

See Also:

CREATE TABLE period_definition for the full semantics of this clause

drop_period_clause

Use the drop_period_clause to drop a valid time dimension from table.

For valid_time_column, specify the name of the valid time dimension you want to drop.

This clause has the following effects:

• The valid_time_column will be dropped from table.

• If the start time column and end time column were automatically created by Oracle
Database when the valid time dimension was created, either with CREATE TABLE ...
period_definition or ALTER TABLE ... add_period_clause, then they will be dropped.
Otherwise, these columns will remain in table and revert to regular table columns.

See Also:

CREATE TABLE period_definition for more information on the valid_time_column,
start time column, and end time column

rename_column_clause

Use the rename_column_clause to rename a column of table. The new column name must
not be the same as any other column name in table.

Chapter 12
ALTER TABLE

12-115

When you rename a column, Oracle Database handles dependent objects as follows:

• Function-based indexes and check constraints that depend on the renamed
column remain valid.

• Dependent views, triggers, functions, procedures, and packages are invalidated.
Oracle Database attempts to revalidate them when they are next accessed, but
you may need to alter these objects with the new column name if revalidation fails.

• If a domain index is defined on the column being renamed, then the database
invokes the ODCIIndexAlter method with the RENAME option. This operation
establishes correspondence between the indextype metadata and the base table

Restrictions on Renaming Columns

Renaming columns is subject to the following restrictions:

• You cannot combine this clause with any of the other column_clauses in the same
statement.

• You cannot rename a column that is used to define a join index. Instead you must
drop the index, rename the column, and re-create the index.

• You cannot rename a column in a duplicated table.

See Also:

"Renaming a Column: Example"

modify_collection_retrieval

Use the modify_collection_retrieval clause to change what Oracle Database
returns when a collection item is retrieved from the database.

collection_item

Specify the name of a column-qualified attribute whose type is nested table or varray.

RETURN AS

Specify what Oracle Database should return as the result of a query:

• LOCATOR specifies that a unique locator for the nested table is returned.

• VALUE specifies that a copy of the nested table itself is returned.

See Also:

"Collection Retrieval: Example"

modify_LOB_storage_clause

The modify_LOB_storage_clause lets you change the physical attributes of LOB_item.
You can specify only one LOB_item for each modify_LOB_storage_clause.

Chapter 12
ALTER TABLE

12-116

The sections that follow describe the semantics of parameters specific to
modify_LOB_parameters. Unless otherwise documented in this section, the remaining LOB
parameters have the same semantics when altering a table that they have when you are
creating a table. Refer to the restrictions at the end of this section and to the CREATE TABLE
clause LOB_storage_parameters for more information.

Note:

• You can modify LOB storage with an ALTER TABLE statement or with online
redefinition by using the DBMS_REDEFINITION package. If you have not enabled
LOB encryption, compression, or deduplication at create time, Oracle
recommends that you use online redefinition to enable them after creation, as
this process is more disk space efficient for changes to these three parameters.
See Oracle Database PL/SQL Packages and Types Reference for more
information on DBMS_REDEFINITION.

• You cannot convert a LOB from one type of storage to the other. Instead you
must migrate to SecureFiles or BasicFiles by using online redefinition or
partition exchange.

PCTVERSION integer

Refer to the CREATE TABLE clause PCTVERSION integer for information on this clause.

LOB_retention_clause

If the database is in automatic undo mode, then you can specify RETENTION instead of
PCTVERSION to instruct Oracle Database to retain old versions of this LOB. This clause
overrides any prior setting of PCTVERSION.

FREEPOOLS integer

For BasicFiles LOBs, if the database is in automatic undo mode, then you can use this clause
to specify the number of freelist groups for this LOB. This clause overrides any prior setting of
FREELIST GROUPS. Refer to the CREATE TABLE clause FREEPOOLS integer for a full description
of this parameter. The database ignores this parameter for SecureFiles LOBs.

REBUILD FREEPOOLS

This clause applies only to BasicFiles LOBs, not to SecureFiles LOBs. The REBUILD
FREEPOOLS clause removes all the old versions of data from the LOB column. This clause is
useful for removing all retained old version space in a LOB segment, freeing that space to be
used immediately by new LOB data.

LOB_deduplicate_clause

This clause is valid only for SecureFiles LOBs. KEEP_DUPLICATES disables LOB deduplication.
DEDUPLICATE enables LOB deduplication. All lobs in the segment are read, and any matching
LOBs are deduplicated before returning.

LOB_compression_clause

This clause is valid only for SecureFiles LOBs. COMPRESS compresses all LOBs in the
segment and then returns. NOCOMPRESS uncompresses all LOBs in the segment and then
returns.

Chapter 12
ALTER TABLE

12-117

ENCRYPT | DECRYPT

LOB encryption has the same semantics as column encryption in general. See
"ENCRYPT encryption_spec | DECRYPT" for more information.

CACHE, NOCACHE, CACHE READS

When you modify a LOB column from CACHE or NOCACHE to CACHE READS, or from CACHE
READS to CACHE or NOCACHE, you can change the logging attribute. If you do not specify
LOGGING or NOLOGGING, then this attribute defaults to the current logging attribute of the
LOB column. If you do not specify CACHE, NOCACHE, or CACHE READS, then Oracle
Database retains the existing values of the LOB attributes.

Restrictions on Modifying LOB Storage

Modifying LOB storage is subject to the following restrictions:

• You cannot modify the value of the INITIAL parameter in the storage_clause
when modifying the LOB storage attributes.

• You cannot specify both the allocate_extent_clause and the
deallocate_unused_clause in the same statement.

• You cannot specify both the PCTVERSION and RETENTION parameters.

• You cannot specify the shrink_clause for SecureFiles LOBs.

See Also:

LOB_storage_clause (in CREATE TABLE) for information on setting LOB
parameters and "LOB Columns: Examples"

alter_varray_col_properties

The alter_varray_col_properties clause lets you change the storage characteristics
of an existing LOB in which a varray is stored.

Restriction on Altering Varray Column Properties

You cannot specify the TABLESPACE clause of LOB_parameters as part of this clause.
The LOB tablespace for a varray defaults to the tablespace of the containing table.

REKEY encryption_spec

The REKEY clause causes the database to generate a new encryption key. All
encrypted columns in the table are reencrypted using the new key and, if you specify
the USING clause of the encryption_spec, a new encryption algorithm. You cannot
combine this clause with any other clauses in this ALTER TABLE statement.

See Also:

Oracle Database Advanced Security Guide for more information on
transparent column encryption

Chapter 12
ALTER TABLE

12-118

constraint_clauses

Use the constraint_clauses to add a new constraint using out-of-line declaration, modify the
state of an existing constraint, or drop a constraint. Refer to constraint for a description of all
the keywords and parameters of out-of-line constraints and constraint_state.

Adding a Constraint

The ADD clause lets you add a new out-of-line constraint or out-of-line REF constraint to the
table.

Restrictions on Adding a Constraint

Adding constraints is subject to the following restrictions:

• You cannot add a constraint to a duplicated table.

• You cannot add a foreign key constraint to a sharded table.

See Also:

"Disabling a CHECK Constraint: Example", "Specifying Object Identifiers: Example",
and "REF Columns: Examples"

Modifying a Constraint

The MODIFY CONSTRAINT clause lets you change the state of an existing constraint.

The CASCADE keyword is valid only when you are disabling a unique or primary key constraint
on which a foreign key constraint is defined. In this case, you must specify CASCADE so that
the unique or primary key constraint and all of its dependent foreign key constraints are
disabled.

Restrictions on Modifying Constraints

Modifying constraints is subject to the following restrictions:

• You cannot change the state of a NOT DEFERRABLE constraint to INITIALLY DEFERRED.

• If you specify this clause for an index-organized table, then you cannot specify any other
clauses in the same statement.

• You cannot change the NOT NULL constraint on a foreign key column of a reference-
partitioned table, and you cannot change the state of a partitioning referential constraint
of a reference-partitioned table.

• You cannot modify a constraint on a duplicated table.

See Also:

"Changing the State of a Constraint: Examples"

Renaming a Constraint

Chapter 12
ALTER TABLE

12-119

The RENAME CONSTRAINT clause lets you rename any existing constraint on table. The
new constraint name cannot be the same as any existing constraint on any object in
the same schema. All objects that are dependent on the constraint remain valid.

See Also:

"Renaming Constraints: Example"

drop_constraint_clause

The drop_constraint_clause lets you drop an integrity constraint from the database.
Oracle Database stops enforcing the constraint and removes it from the data
dictionary. You can specify only one constraint for each drop_constraint_clause, but
you can specify multiple drop_constraint_clause in one statement.

PRIMARY KEY

Specify PRIMARY KEY to drop the primary key constraint of table.

UNIQUE

Specify UNIQUE to drop the unique constraint on the specified columns.

If you drop the primary key or unique constraint from a column on which a bitmap join
index is defined, then Oracle Database invalidates the index. See CREATE INDEX for
information on bitmap join indexes.

CONSTRAINT

Specify CONSTRAINT constraint_name to drop an integrity constraint other than a
primary key or unique constraint.

CASCADE

Specify CASCADE if you want all other integrity constraints that depend on the dropped
integrity constraint to be dropped as well.

KEEP INDEX | DROP INDEX

Specify KEEP INDEX or DROP INDEX to indicate whether Oracle Database should
preserve or drop the index it has been using to enforce the PRIMARY KEY or UNIQUE
constraint.

ONLINE

Specify ONLINE to indicate that DML operations on the table will be allowed while
dropping the constraint.

Restrictions on Dropping Constraints

Dropping constraints is subject to the following restrictions:

• You cannot drop a primary key or unique key constraint that is part of a referential
integrity constraint without also dropping the foreign key. To drop the referenced
key and the foreign key together, use the CASCADE clause. If you omit CASCADE,
then Oracle Database does not drop the primary key or unique constraint if any
foreign key references it.

Chapter 12
ALTER TABLE

12-120

• You cannot drop a primary key constraint (even with the CASCADE clause) on a table that
uses the primary key as its object identifier (OID).

• If you drop a referential integrity constraint on a REF column, then the REF column remains
scoped to the referenced table.

• You cannot drop the scope of a REF column.

• You cannot drop the NOT NULL constraint on a foreign key column of a reference-
partitioned table, and you cannot drop a partitioning referential constraint of a reference-
partitioned table.

• You cannot drop the NOT NULL constraint on a column that is defined with a default column
value using the ON NULL clause.

• You cannot specify the ONLINE clause when dropping a DEFERRABLE constraint.

See Also:

"Dropping Constraints: Examples"

alter_external_table

Use the alter_external_table clauses to change the characteristics of an external table.
This clause has no affect on the external data itself. The syntax and semantics of the
parallel_clause, enable_disable_clause, external_table_data_props, and REJECT LIMIT
clause are the same as described for CREATE TABLE. See the external_table_clause (in
CREATE TABLE).

PROJECT COLUMN Clause

This clause lets you determine how the access driver validates the rows of an external table
in subsequent queries. The default is PROJECT COLUMN ALL, which means that the access
driver processes all column values, regardless of which columns are selected, and validates
only those rows with fully valid column entries. If any column value would raise an error, such
as a data type conversion error, then the row is rejected even if that column was not
referenced in the select list. If you specify PROJECT COLUMN REFERENCED, then the access driver
processes only those columns in the select list.

The ALL setting guarantees consistent result sets. The REFERENCED setting can result in
different numbers of rows returned, depending on the columns referenced in subsequent
queries, but is faster than the ALL setting. If a subsequent query selects all columns of the
external table, then the settings behave identically.

Restrictions on Altering External Tables

Altering external tables is subject to the following restrictions:

• You cannot modify an external table using any clause outside of this clause.

• You cannot add a LONG, varray, or object type column to an external table, nor can you
change the data type of an external table column to any of these data types.

• You cannot modify the storage parameters of an external table.

Chapter 12
ALTER TABLE

12-121

alter_table_partitioning

The clauses in this section apply only to partitioned tables. You cannot combine
partition operations with other partition operations or with operations on the base table
in the same ALTER TABLE statement.

Notes on Changing Table Partitioning

The following notes apply when changing table partitioning:

• If you drop, exchange, truncate, move, modify, or split a partition on a table that is
a master table for one or more materialized views, then existing bulk load
information about the table will be deleted. Therefore, be sure to refresh all
dependent materialized views before performing any of these operations.

• If a bitmap join index is defined on table, then any operation that alters a partition
of table causes Oracle Database to mark the index UNUSABLE.

• The only alter_table_partitioning clauses you can specify for a reference-
partitioned table are modify_table_default_attrs, move_table_[sub]partition,
truncate_partition_subpart, and exchange_partition_subpart. None of these
operations cascade to any child table of the reference-partitioned table. No other
partition maintenance operations are valid on a reference-partitioned table, but you
can specify the other partition maintenance operations on the parent table of a
reference-partitioned table, and the operation will cascade to the child reference-
partitioned table.

• When adding partitions and subpartitions, bear in mind that you can specify up to
a total of 1024K-1 partitions and subpartitions for each table.

• When you add a table partition or subpartition and you omit the partition name, the
database generates a name using the rules described in "Notes on Partitioning in
General".

• When you move, add (hash only), coalesce, drop, split, merge, rename, or
truncate a table partition or subpartition, the procedures, functions, packages,
package bodies, views, type bodies, and triggers that reference the table remain
valid. All other dependent objects are invalidated.

• Deferred segment creation is not supported for partition maintenance operations
that create new segments on tables with LOB columns; segments will always be
created for the involved (sub)partitions.

• For sharded tables, the only clauses you can specify for modifying table partitions
and subpartitions are UNUSABLE LOCAL INDEXES and REBUILD UNUSABLE LOCAL
INDEXES. You cannot perform any other modifications for individual partitions and
subpartitions on a system sharded table.

• For user-defined sharded tables the following operations on partitions and
subpartitions are supported:

– add partition, add subpartition

– drop partition, drop subpartition

– split partition

– modify partition to add or drop values to a list partition

Chapter 12
ALTER TABLE

12-122

• For sharded tables, the only supported partition maintenance operations are truncating
partitions and subpartitions. You cannot perform any other partition maintenance
operations on a sharded table.

For additional information on partition operations on tables with an associated CONTEXT
domain index, refer to Oracle Text Reference.

The storage of partitioned database entities in tablespaces of different block sizes is subject
to several restrictions. Refer to Oracle Database VLDB and Partitioning Guide for a
discussion of these restrictions.

modify_table_default_attrs

The modify_table_default_attrs clause lets you specify new default values for the
attributes of table. Only attributes named in the statement are affected. Partitions and LOB
partitions you create subsequently will inherit these values unless you override them explicitly
when creating the partition or LOB partition. Existing partitions and LOB partitions are not
affected by this clause.

Only attributes named in the statement are affected, and the default values specified are
overridden by any attributes specified at the individual partition or LOB partition level.

• FOR partition_extended_name applies only to composite-partitioned tables. This clause
specifies new default values for the attributes of the partition identified in
partition_extended_name. Subpartitions and LOB subpartitions of that partition that you
create subsequently will inherit these values unless you override them explicitly when
creating the subpartition or LOB subpartition. Existing subpartitions are not affected by
this clause.

If you are modifying the default directory, you can save its location using DEFAULT
DIRECTORY directory.

• PCTTHRESHOLD, prefix_compression, and the alter_overflow_clause are valid only for
partitioned index-organized tables.

• You can specify the prefix_compression clause only if prefix compression is already
specified at the table level. Further, you cannot specify an integer after the COMPRESS
keyword. Prefix length can be specified only when you create the table.

• You cannot specify the PCTUSED parameter in segment_attributes for the index segment
of an index-organized table.

• The read_only_clause lets you modify the default read-only or read/write mode for the
table. The new default mode will be assigned to partitions or subpartitions that are
subsequently added to the table, unless you override this behavior by specifying the
mode for the new partition or subpartition. When you modify the default read-only or read/
write mode of a table, you do not change the mode of the existing partitions and
subpartitions in the table. Refer to the read_only_clause of CREATE TABLE for the full
semantics of this clause.

• The indexing_clause lets you modify the default indexing property for the table. The new
default indexing property will be assigned to partitions or subpartitions that are
subsequently added to the table, unless you override this behavior by specifying the
indexing property for the new partition or subpartition. When you modify the default
indexing property of a table, you do not change the indexing property of the existing
partitions and subpartitions in the table. Refer to the indexing_clause of CREATE TABLE for
the full semantics of this clause.

Chapter 12
ALTER TABLE

12-123

alter_automatic_partitioning

This clause allows you to manage automatic list-partitioned tables, as follows:

• Use the SET PARTITIONING AUTOMATIC clause to convert a regular list-partitioned
table to an automatic list-partitioned table.

• Use the SET PARTITIONING MANUAL clause to convert an automatic list-partitioned
table to a regular list-partitioned table.

• You can specify the SET STORE IN clause only for automatic list-partitioned tables. It
lets you specify one or more tablespaces into which the database will store data
for any subsequent automatically created list partitions. This clause overrides any
tablespaces that might have been set for the table by a previously issued SET
STORE IN clause.

To determine whether an existing table is an automatic list-partitioned table, you can
query the AUTOLIST column of the USER_, DBA_, ALL_PART_TABLES data dictionary
views.

Restriction on alter_automatic_partitioning

You cannot convert a regular list-partitioned table that contains a DEFAULT partition to
an automatic list-partitioned table.

See Also:

The AUTOMATIC clause in the documentation on CREATE TABLE for more
information on automatic list-partitioned tables

alter_interval_partitioning

Use this clause:

• To convert an existing range-partitioned table to interval partitioning. The database
automatically creates partitions of the specified numeric range or datetime interval
as needed for data beyond the highest value allowed for the last range partition. If
the table has reference-partitioned child tables, then the child tables are converted
to interval reference-partitioned child tables.

• To change the interval of an existing interval-partitioned table. The database first
converts existing interval partitions to range partitions and determines the high
value of the defined range partitions. The database then automatically creates
partitions of the specified numeric range or datetime interval as needed for data
that is beyond that high value.

• To change the tablespace storage for an existing interval-partitioned table. If the
table has interval reference-partitioned child tables, then the new tablespace
storage is inherited by any child table that does not have its own table-level default
tablespace.

• To change an interval-partitioned table back to a range-partitioned table. Use SET
INTERVAL () to disable interval partitioning. The database converts existing interval
partitions to range partitions, using the higher boundaries of created interval
partitions as upper boundaries for the range partitions to be created. If the table

Chapter 12
ALTER TABLE

12-124

has interval reference-partitioned child tables, then the child tables are converted to
ordinary reference-partitioned child tables.

For expr, specify a valid number or interval expression.

See Also:

The CREATE TABLE "INTERVAL Clause" and Oracle Database VLDB and Partitioning
Guide for more information on interval partitioning

set_subpartition_template

Use the set_subpartition_template clause to create or replace existing default range, list,
or hash subpartition definitions for each table partition. This clause is valid only for
composite-partitioned tables. It replaces the existing subpartition template or creates a new
template if you have not previously created one. Existing subpartitions are not affected, nor
are existing local and global indexes. However, subsequent partitioning operations (such as
add and merge operations) will use the new template.

You can drop an existing subpartition template by specifying ALTER TABLE table SET
SUBPARTITION TEMPLATE ().

The set_subpartition_template clause has the same semantics as the
subpartition_template clause of CREATE TABLE. Refer to the subpartition_template clause of
CREATE TABLE for more information.

modify_table_partition

The modify_table_partition clause lets you change the real physical attributes of a range,
hash, list partition, or system partition. This clause optionally modifies the storage attributes
of one or more LOB items for the partition. You can specify new values for physical attributes
(with some restrictions, as noted in the sections that follow), logging, and storage parameters.

For all types of partitions, you can also specify how Oracle Database should handle local
indexes that become unusable as a result of the modification to the partition. See
"UNUSABLE LOCAL INDEXES Clauses".

For partitioned index-organized tables, you can also update the mapping table in conjunction
with partition changes. See the alter_mapping_table_clauses .

read_only_clause

Use the read_only_clause to put a table partition in read-only or read/write mode. Refer to
the read_only_clause of CREATE TABLE for the full semantics of this clause.

indexing_clause

Use the indexing_clause to modify the indexing property of a table partition. The indexing
property determines whether the partition is included in partial indexes on the table. You can
specify the indexing_clause in the modify_range_partition, modify_hash_partition, and
modify_list_partition clauses.

Specify INDEXING ON to change the indexing property for a table partition to ON. This operation
has no effect on full indexes on the table. It has the following effects on partial indexes on the
table:

Chapter 12
ALTER TABLE

12-125

• Local partial indexes: The table partition is included in the index. The
corresponding index partition is rebuilt and marked USABLE.

• Global partial indexes: The table partition is included in the index. Index entries for
the table partition are added to the index as part of routine index maintenance.

Specify INDEXING OFF to change the indexing property for a table partition to OFF. This
operation has no effect on full indexes on the table. It has the following effects on
partial indexes on the table:

• Local partial indexes: The table partition is excluded from the index. The
corresponding index partition is marked UNUSABLE.

• Global partial indexes: The table partition is excluded from the index. Index entries
for the table partition are removed from the index. This is a metadata-only
operation and the index entries will continue to be physically stored in the index.
You can remove these orphaned index entries by specifying COALESCE CLEANUP in
the ALTER INDEX statement or in the modify_index_partition clause.

Restriction on column of type object

You cannot partition a table that has an object type. The alter table modification to a
partitioned state is only supported for non-partitioned heap tables with zero columns of
type object.

Restriction on the indexing_clause

You can specify this clause only for partitions of a simple partitioned table. For
composite-partitioned tables, you can specify the indexing_clause at the table
subpartition level. Refer to modify_table_subpartition for more information.

Notes on Modifying Table Partitions

The following notes apply to operations on range, list, and hash table partitions:

• For all types of table partition, in the partition_attributes clause, the
shrink_clause lets you compact an individual partition segment. Refer to
shrink_clause for additional information on this clause.

• The syntax and semantics for modifying a system partition are the same as those
for modifying a hash partition. Refer to modify_hash_partition.

• If table is composite partitioned, then:

– If you specify the allocate_extent_clause, then Oracle Database allocates
an extent for each subpartition of partition.

– If you specify the deallocate_unused_clause, then Oracle Database
deallocates unused storage from each subpartition of partition.

– Any other attributes changed in this clause will be changed in subpartitions of
partition as well, overriding existing values. To avoid changing the attributes
of existing subpartitions, use the FOR PARTITION clause of
modify_table_default_attrs.

• When you modify the partition_attributes of a table partition with
equipartitioned nested tables, the changes do not apply to the nested table
partitions corresponding to the table partition being modified. However, you can
modify the storage table of the nested table partition directly with an ALTER TABLE
statement.

Chapter 12
ALTER TABLE

12-126

• Unless otherwise documented, the remaining clauses of partition_attributes have the
same behavior they have when you are creating a partitioned table. Refer to the CREATE
TABLE table_partitioning_clauses for more information.

See Also:

"Modifying Table Partitions: Examples"

modify_range_partition

Use this clause to modify the characteristics of a range partition.

add_range_subpartition

This clause is valid only for range-range composite partitions. It lets you add one or more
range subpartitions to partition.

Starting with Oracle Database 12c Release 2 (12.2), you can use this clause to add a
subpartition to composite-partitioned external table. In this case, you can specify the optional
external_part_subpart_data_props clause of the range_subpartition_desc clause. Refer
to external_part_subpart_data_props for the full semantics of this clause.

Restriction on Adding Range Subpartitions

If table is an index-organized table, then you can add only one range subpartition at a time.

add_hash_subpartition

This clause is valid only for range-hash composite partitions. The add_hash_subpartition
clause lets you add a hash subpartition to partition. Oracle Database populates the new
subpartition with rows rehashed from the other subpartition(s) of partition as determined by
the hash function. For optimal load balancing, the total number of subpartitions should be a
power of 2.

In the partitioning_storage_clause, the only clause you can specify for subpartitions is the
TABLESPACE clause. If you do not specify TABLESPACE, then the new subpartition will reside in
the default tablespace of partition.

Oracle Database adds local index partitions corresponding to the selected partition.

Oracle Database marks UNUSABLE the local index partitions corresponding to the added
partitions. The database invalidates any indexes on heap-organized tables. You can update
these indexes during this operation using the update_index_clauses.

add_list_subpartition

This clause is valid only for range-list and list-list composite partitions. It lets you add one or
more list subpartitions to partition, and only if you have not already created a DEFAULT
subpartition.

• The list_values_clause is required in this operation, and the values you specify in the
list_values_clause cannot exist in any other subpartition of partition. However, these
values can duplicate values found in subpartitions of other partitions.

Chapter 12
ALTER TABLE

12-127

• In the partitioning_storage_clause, the only clauses you can specify for
subpartitions are the TABLESPACE clause and table compression.

• Starting with Oracle Database 12c Release 2 (12.2), you can use this clause to
add a subpartition to composite-partitioned external table. In this case, you can
specify the optional external_part_subpart_data_props clause of the
list_subpartition_desc clause. Refer to external_part_subpart_data_props for
the full semantics of this clause.

For each added subpartition, Oracle Database also adds a subpartition with the same
value list to all local index partitions of the table. The status of existing local and global
index partitions of table are not affected.

Restrictions on Adding List Subpartitions

The following restrictions apply to adding list subpartitions:

• You cannot specify this clause if you have already created a DEFAULT subpartition
for this partition. Instead you must split the DEFAULT partition using the
split_list_subpartition clause.

• If table is an index-organized table, then you can add only one list subpartition at
a time.

coalesce_table_subpartition

COALESCE SUBPARTITION applies only to hash subpartitions. Use the COALESCE
SUBPARTITION clause if you want Oracle Database to select the last hash subpartition,
distribute its contents into one or more remaining subpartitions (determined by the
hash function), and then drop the last subpartition.

• Oracle Database drops local index partitions corresponding to the selected
partition.

• Oracle Database marks UNUSABLE the local index partitions corresponding to one
or more absorbing partitions. The database invalidates any global indexes on
heap-organized tables. You can update these indexes during this operation using
the update_index_clauses.

modify_hash_partition

When modifying a hash partition, in the partition_attributes clause, you can
specify only the allocate_extent_clause and deallocate_unused_clause. All other
attributes of the partition are inherited from the table-level defaults except TABLESPACE,
which stays the same as it was at create time.

modify_list_partition

Clauses available to you when modifying a list partition have the same semantics as
when you are modifying a range partition. When modifying a list partition, the following
additional clauses are available:

ADD | DROP VALUES Clauses

These clauses are valid only when you are modifying composite partitions. Local and
global indexes on the table are not affected by either of these clauses.

Chapter 12
ALTER TABLE

12-128

• Use the ADD VALUES clause to extend the partition_key_value list of partition to
include additional values. The added partition values must comply with all rules and
restrictions listed in the CREATE TABLE clause list_partitions .

• Use the DROP VALUES clause to reduce the partition_key_value list of partition by
eliminating one or more partition_key_value. When you specify this clause, Oracle
Database checks to ensure that no rows with this value exist. If such rows do exist, then
Oracle Database returns an error.

Note:

ADD VALUES and DROP VALUES operations on a table with a DEFAULT list partition are
enhanced if you have defined a local prefixed index on the table.

Restrictions on Adding and Dropping List Values

Adding and dropping list values are subject to the following restrictions:

• You cannot add values to or drop values from a DEFAULT list partition.

• If table contains a DEFAULT partition and you attempt to add values to a nondefault
partition, then Oracle Database will check that the values being added do not already
exist in the DEFAULT partition. If the values do exist in the DEFAULT partition, then Oracle
Database returns an error.

modify_table_subpartition

This clause applies only to composite-partitioned tables. Its subclauses let you modify the
characteristics of an individual range, list, or hash subpartition.

The shrink_clause lets you compact an individual subpartition segment. Refer to
shrink_clause for additional information on this clause.

You can also specify how Oracle Database should handle local indexes that become
unusable as a result of the modification to the partition. See "UNUSABLE LOCAL INDEXES
Clauses".

Use the read_only_clause to put a table subpartition in read-only or read/write mode. Refer
to the read_only_clause of CREATE TABLE for the full semantics of this clause.

Use the indexing_clause to modify the indexing property of a table subpartition. The
indexing property determines whether the subpartition is included in partial indexes on the
table. Modifying the indexing property of table subpartitions has the same effect on index
subpartitions as modifying the indexing property of table partitions has on index partitions.
Refer to the indexing_clause of modify_table_partition for details.

Restriction on Modifying Hash Subpartitions

The only modify_LOB_parameters you can specify for subpartition are the
allocate_extent_clause and deallocate_unused_clause.

ADD | DROP VALUES Clauses

These clauses are valid only when you are modifying list subpartitions. Local and global
indexes on the table are not affected by either of these clauses.

Chapter 12
ALTER TABLE

12-129

• Use the ADD VALUES clause to extend the subpartition_key_value list of
subpartition to include additional values. The added partition values must
comply with all rules and restrictions listed in the CREATE TABLE clause
list_partitions .

• Use the DROP VALUES clause to reduce the subpartition_key_value list of
subpartition by eliminating one or more subpartition_key_value. When you
specify this clause, Oracle Database checks to ensure that no rows with this value
exist. If such rows do exist, then Oracle Database returns an error.

You can also specify how Oracle Database should handle local indexes that become
unusable as a result of the modification to the partition. See "UNUSABLE LOCAL
INDEXES Clauses".

Restriction on Modifying List Subpartitions

The only modify_LOB_parameters you can specify for subpartition are the
allocate_extent_clause and deallocate_unused_clause.

move_table_partition

Use the move_table_partition clause to move partition to another segment. You
can move partition data to another tablespace, recluster data to reduce fragmentation,
or change create-time physical attributes.

If the table contains LOB columns, then you can use the LOB_storage_clause to move
the LOB data and LOB index segments associated with this partition. Only the LOBs
named are affected. If you do not specify the LOB_storage_clause for a particular LOB
column, then its LOB data and LOB index segments are not moved.

If the table contains nested table columns, then you can use the
nested_table_col_properties clause of the table_partition_description to move
the nested table segments associated with this partition. Only the nested table items
named are affected. If you do not specify the nested_table_col_properties clause
of the table_partition_description for a particular nested table column, then its
segments are not moved.

Oracle Database moves local index partitions corresponding to the specified partition.
If the moved partitions are not empty, then the database marks them UNUSABLE. The
database invalidates global indexes on heap-organized tables. You can update these
indexes during this operation using the update_index_clauses.

When you move a LOB data segment, Oracle Database drops the old data segment
and corresponding index segment and creates new segments even if you do not
specify a new tablespace.

The move operation obtains its parallel attribute from the parallel_clause, if
specified. When it is not specified, the default parallel attributes of the table, if any, are
used. If neither is specified, then Oracle Database performs the move serially.

Specifying the parallel_clause in MOVE PARTITION does not change the default
parallel attributes of table.

Chapter 12
ALTER TABLE

12-130

Note:

For index-organized tables, Oracle Database uses the address of the primary key,
as well as its value, to construct logical rowids. The logical rowids are stored in the
secondary index of the table. If you move a partition of an index-organized table,
then the address portion of the rowids will change, which can hamper performance.
To ensure optimal performance, rebuild the secondary index(es) on the moved
partition to update the rowids.

See Also:

"Moving Table Partitions: Example"

MAPPING TABLE

The MAPPING TABLE clause is relevant only for an index-organized table that already has a
mapping table defined for it. Oracle Database moves the mapping table along with the moved
index-organized table partition. The mapping table partition inherits the physical attributes of
the moved index-organized table partition. This is the only way you can change the attributes
of the mapping table partition. If you omit this clause, then the mapping table partition retains
its original attributes.

Oracle Database marks UNUSABLE all corresponding bitmap index partitions.

Refer to the mapping_table_clauses (in CREATE TABLE) for more information on this clause.

ONLINE

Specify ONLINE to indicate that DML operations on the table partition will be allowed while
moving the table partition.

Restrictions on the ONLINE Clause

The ONLINE clause is subject to the following restrictions when moving table partitions:

• You cannot specify the ONLINE clause for tables owned by SYS.

• You cannot specify the ONLINE clause for index-organized tables.

• You cannot specify the ONLINE clause for heap-organized tables that contain object types
or on which bitmap join indexes or domain indexes are defined.

• Parallel DML and direct path INSERT operations require an exclusive lock on the table.
Therefore, these operations are not supported concurrently with an ongoing online
partition MOVE, due to conflicting locks.

Restrictions on Moving Table Partitions

Moving table partitions is subject to the following restrictions:

• If partition is a hash partition, then the only attribute you can specify in this clause is
TABLESPACE.

• You cannot specify this clause for a partition containing subpartitions. However, you can
move subpartitions using the move_table_subpartition clause.

Chapter 12
ALTER TABLE

12-131

move_table_subpartition

Use the move_table_subpartition clause to move the subpartition identified by
subpartition_extended_name to another segment. If you do not specify TABLESPACE,
then the subpartition remains in the same tablespace.

If the subpartition is not empty, then Oracle Database marks UNUSABLE all local index
subpartitions corresponding to the subpartition being moved. You can update all
indexes on heap-organized tables during this operation using the
update_index_clauses.

If the table contains LOB columns, then you can use the LOB_storage_clause to move
the LOB data and LOB index segments associated with this subpartition. Only the
LOBs specified are affected. If you do not specify the LOB_storage_clause for a
particular LOB column, then its LOB data and LOB index segments are not moved.

When you move a LOB data segment, Oracle Database drops the old data segment
and corresponding index segment and creates new segments even if you do not
specify a new tablespace.

ONLINE

Specify ONLINE to indicate that DML operations on the table subpartition will be
allowed while moving the table subpartition.

Restrictions on the ONLINE Clause

The ONLINE clause for moving table subpartitions is subject to the same restrictions as
the ONLINE clause for moving table partitions. Refer to "Restrictions on the ONLINE
Clause."

Restriction on Moving Table Subpartitions

The only clauses of the partitioning_storage_clause you can specify are the
TABLESPACE clause and table_compression.

add_external_partition_attrs
Use this clause to add external parameters to a partitioned table.

add_table_partition

Use the add_table_partition clause to add one or more range, list, or system
partitions to table, or to add one hash partition to table.

For each partition added, Oracle Database adds to any local index defined on table a
new partition with the same name as that of the base table partition. If the index
already has a partition with such a name, then Oracle Database generates a partition
name of the form SYS_Pn.

If table is index organized, then for each partition added Oracle Database adds a
partition to any mapping table and overflow area defined on the table as well.

If table is the parent table of a reference-partitioned table, then you can use the
dependent_tables_clause to propagate the partition maintenance operation you are
specifying in this statement to all the reference-partitioned child tables.

The default indexing property of table is inherited by the new table partition(s). You
can override this by setting the indexing property of a list, range, or system partition

Chapter 12
ALTER TABLE

12-132

using the indexing_clause in the table_partition_description clause, or a hash partition
using the indexing_clause in the add_hash_partition_clause.

For each partition added to a composite-partitioned table, Oracle Database adds a new index
partition with the same subpartition descriptions to all local indexes defined on table. Global
indexes defined on table are not affected. If you specify the indexing property for the new
table partition, then the new subpartitions inherit the indexing property for the partition.
Otherwise, the new subpartitions inherit the default indexing property for the table. You can
override this by setting the indexing property of a subpartition using the indexing_clause in
the range_subpartition_desc, individual_hash_subparts, and list_subpartition_desc
clauses.

BEFORE Clause

You can specify the optional BEFORE clause only when adding system partitions to table. This
clause lets you specify where the new partition(s) should be added in relation to existing
partitions. You cannot split a system partition. Therefore, this clause is useful if you want to
divide the contents of one existing partition among multiple new partitions. If you omit this
clause, then the database adds the new partition(s) after the existing partitions.

Restriction on Adding Table Partitions

If table is an index-organized table, or if a local domain index is defined on table, then you
can add only one partition at a time.

See Also:

"Adding a Table Partition with a LOB and Nested Table Storage: Examples" and
"Adding Multiple Partitions to a Table: Example"

add_range_partition_clause

The add_range_partition_clause lets you add a new range partition to the high end of a
range-partitioned or composite range-partitioned table (after the last existing partition).

If a domain index is defined on table, then the index must not be marked IN_PROGRESS or
FAILED.

Restrictions on Adding Range Partitions

Adding range partitions is subject to the following restrictions:

• If the upper partition bound of each partitioning key in the existing high partition is
MAXVALUE, then you cannot add a partition to the table. Instead, use the
split_table_partition clause to add a partition at the beginning or the middle of the
table.

• The prefix_compression and OVERFLOW clauses, are valid only for a partitioned index-
organized table. You can specify prefix_compression only if prefix compression is
enabled at the table level. You can specify OVERFLOW only if the partitioned table already
has an overflow segment.

• You cannot specify the PCTUSED parameter for the index segment of an index-organized
table.

range_values_clause

Chapter 12
ALTER TABLE

12-133

Specify the upper bound for the new partition. The value_list is a comma-delimited,
ordered list of literal values corresponding to the partitioning key columns. The
value_list must collate greater than the partition bound for the highest existing
partition in the table.

table_partition_description

Use this clause to specify any create-time physical attributes for the new partition. If
the table contains LOB columns, then you can also specify partition-level attributes for
one or more LOB items.

external_part_subpart_data_props

Starting with Oracle Database 12c Release 2 (12.2), Oracle supports partitioned and
composite-partitioned external tables. When adding a partition to such a table, you can
optionally use this clause to specify the DEFAULT DIRECTORY and LOCATION for the
partition. Refer to DEFAULT DIRECTORY and LOCATION in the documentation on
CREATE TABLE for the full semantics of these clauses.

Subpartition Descriptions

These clauses are valid only for composite-partitioned tables. Use the
range_subpartition_desc, list_subpartition_desc, individual_hash_subparts, or
hash_subparts_by_quantity clause as appropriate, if you want to specify
subpartitions for the new partition. This clause overrides any subpartition descriptions
defined in subpartition_template at the table level.

add_hash_partition_clause

The add_hash_partition_clause lets you add a new hash partition to the high end of
a hash-partitioned table. Oracle Database populates the new partition with rows
rehashed from other partitions of table as determined by the hash function. For
optimal load balancing, the total number of partitions should be a power of 2.

You can specify a name for the partition, and optionally a tablespace where it should
be stored. If you do not specify a name, then the database assigns a partition name of
the form SYS_Pn. If you do not specify TABLESPACE, then the new partition is stored in
the default tablespace of the table. Other attributes are always inherited from table-
level defaults.

If this operation causes data to be rehashed among partitions, then the database
marks UNUSABLE any corresponding local index partitions. You can update all indexes
on heap-organized tables during this operation using the update_index_clauses.

Use the parallel_clause to specify whether to parallelize the creation of the new
partition.

Use the read_only_clause to put a table partition in read-only or read/write mode.
Refer to the read_only_clause of CREATE TABLE for the full semantics of this clause.

Use the indexing_clause to specify the indexing property for the partition. If you do
not specify this clause, then the partition inherits the default indexing property of
table.

Chapter 12
ALTER TABLE

12-134

See Also:

CREATE TABLE and Oracle Database VLDB and Partitioning Guide for more
information on hash partitioning

add_list_partition_clause

The add_list_partition_clause lets you add a new partition to table using a new set of
partition values. You can specify any create-time physical attributes for the new partition. If
the table contains LOB columns, then you can also specify partition-level attributes for one or
more LOB items.

Restrictions on Adding List Partitions

You cannot add a list partition if you have already defined a DEFAULT partition for the table.
Instead, you must use the split_table_partition clause to split the DEFAULT partition.

See Also:

• list_partitions of CREATE TABLE for more information and restrictions on list
partitions

• "Working with Default List Partitions: Example"

add_system_partition_clause

Use this clause to add a partition to a system-partitioned table. Oracle Database adds a
corresponding index partition to all local indexes defined on the table.

The table_partition_description lets you specify partition-level attributes of the new
partition. The values of any unspecified attributes are inherited from the table-level values.

Restriction on Adding System Partitions

You cannot specify the OVERFLOW clause when adding a system partition.

See Also:

The CREATE TABLE clause system_partitioning for more information on system
partitions

coalesce_table_partition

COALESCE applies only to hash partitions. Use the coalesce_table_partition clause to
indicate that Oracle Database should select the last hash partition, distribute its contents into
one or more remaining partitions as determined by the hash function, and then drop the last
partition.

Oracle Database drops local index partitions corresponding to the selected partition. The
database marks UNUSABLE the local index partitions corresponding to one or more absorbing

Chapter 12
ALTER TABLE

12-135

partitions. The database invalidates any indexes on heap-organized tables. You can
update all indexes during this operation using the update_index_clauses.

Restriction on Coalescing Table Partitions

If you update global indexes using the update_all_indexes_clause, then you can
specify only the keywords UPDATE INDEXES, not the subclause.

drop_external_partition_attrs
Use this clause to drop external parameters in a partitioned table.

drop_table_partition

The drop_table_partition clause removes partitions, and the data in those
partitions, from a partitioned table. If you want to drop a partition but keep its data in
the table, then you must merge the partition into one of the adjacent partitions.

Starting with Oracle Database 12c Release 2 (12.2), you can use this clause to drop a
partition from a partitioned table or composite-partitioned external table.

See Also:

merge_table_partitions

Use the partition_extended_names clause to specify one or more partitions to be
dropped. When specifying multiple partitions, you must specify all partitions by name,
as shown in the upper branch of the syntax diagram, or all partitions using the FOR
clause, as shown in the lower branch of the syntax diagram. You cannot use both
types of syntax in one drop operation.

• If table has LOB columns, then Oracle Database also drops the LOB data and
LOB index partitions and any subpartitions corresponding to the table partition(s)
being dropped.

• If table has equipartitioned nested table columns, then Oracle Database also
drops the nested table partitions corresponding to the table partition(s) being
dropped.

• If table is index organized and has a mapping table defined on it, then the
database drops the corresponding mapping table partition(s) as well.

• Oracle Database drops local index partitions and subpartitions corresponding to
the dropped partition(s), even if they are marked UNUSABLE.

You can update indexes on table during this operation using the
update_index_clauses. Updates to global indexes are metadata-only and the index
entries for records that are dropped by the drop operation will continue to be physically
stored in the index. You can remove these orphaned index entries by specifying
COALESCE CLEANUP in the ALTER INDEX statement or in the modify_index_partition
clause.

If you specify the parallel_clause with the update_index_clauses, then the
database parallelizes the index update, not the drop operation.

If you drop a range partition and later insert a row that would have belonged to the
dropped partition, then the database stores the row in the next higher partition.

Chapter 12
ALTER TABLE

12-136

However, if that partition is the highest partition, then the insert will fail, because the range of
values represented by the dropped partition is no longer valid for the table.

Restrictions on Dropping Table Partitions

Dropping table partitions is subject to the following restrictions:

• You cannot drop a partition of a hash-partitioned table. Instead, use the
coalesce_table_partition clause.

• You cannot drop all of the partitions in a table. Instead, drop the table.

• If you update global indexes using the update_all_indexes_clause, then you can specify
only the UPDATE INDEXES keywords but not the subclause.

• If table is an index-organized table, or if a local domain index is defined on table, then
you can drop only one partition at a time.

• You cannot drop a partition of a duplicated table.

• Dropping a partition does not place the partition in the Oracle Database recycle bin,
regardless of the setting of the recycle bin. Dropped partitions are immediately removed
from the system.

See Also:

"Dropping a Table Partition: Example"

drop_table_subpartition

Use this clause to drop range or list subpartitions from a range, list, or hash composite-
partitioned table. Oracle Database deletes any rows in the dropped subpartition(s).

Starting with Oracle Database 12c Release 2 (12.2), you can use this clause to drop a
subpartition from a composite-partitioned external table.

Use the subpartition_extended_names clause to specify one or more subpartitions to be
dropped. When specifying multiple subpartitions, you must specify all subpartitions by name,
as shown in the upper branch of the syntax diagram, or all subpartitions using the FOR clause,
as shown in the lower branch of the syntax diagram. You cannot use both types of syntax in
one drop operation.

Oracle Database drops the corresponding subpartition(s) of any local index. Other index
subpartitions are not affected. Any global indexes are marked UNUSABLE unless you specify
the update_global_index_clause or update_all_indexes_clause. Updates to global
indexes are metadata-only and the index entries for records that are dropped by the drop
operation will continue to be physically stored in the index. You can remove these orphaned
index entries by specifying COALESCE CLEANUP in the ALTER INDEX statement or in the
modify_index_partition clause.

Restrictions on Dropping Table Subpartitions

Dropping table subpartitions is subject to the following restrictions:

• You cannot drop a hash subpartition. Instead use the MODIFY PARTITION ... COALESCE
SUBPARTITION syntax.

Chapter 12
ALTER TABLE

12-137

• You cannot drop all of the subpartitions in a partition. Instead, use the
drop_table_partition clause.

• If you update the global indexes, then you cannot specify the optional subclause of
the update_all_indexes_clause.

• If table is an index-organized table, then you can drop only one subpartition at a
time.

• When dropping multiple subpartitions, all of the subpartitions must be in the same
partition.

• You cannot drop a subpartition of a duplicated table.

rename_partition_subpart

Use the rename_partition_subpart clause to rename a table partition or subpartition
to new_name. For both partitions and subpartitions, new_name must be different from all
existing partitions and subpartitions of the same table.

If table is index organized, then Oracle Database assigns the same name to the
corresponding primary key index partition as well as to any existing overflow partitions
and mapping table partitions.

Starting with Oracle Database 12c Release 2 (12.2), you can use this clause to
rename a partition or subpartition in a partitioned or composite-partitioned external
table.

See Also:

"Renaming Table Partitions: Examples"

truncate_partition_subpart

Specify TRUNCATE partition_extended_names to remove all rows from the partition(s)
identified by partition_extended_names or, if the table is composite partitioned, all
rows from the subpartitions of those partitions. Specify TRUNCATE
subpartition_extended_names to remove all rows from individual subpartitions. If
table is index organized, then Oracle Database also truncates any corresponding
mapping table partitions and overflow area partitions.

When specifying multiple partitions, you must specify all partitions by name, as shown
in the upper branch of the partition_extended_names syntax diagram, or all partitions
using the FOR clause, as shown in the lower branch of the syntax diagram. You cannot
use both types of syntax in one truncate operation. The same rule applies when
specifying multiple subpartitions with the subpartition_extended_names clause.

For each specified partition or subpartition:

• If the partition or subpartition to be truncated contain data, then you must first
disable any referential integrity constraints on the table. Alternatively, you can
delete the rows and then truncate the partition.

• If table contains any LOB columns, then the LOB data and LOB index segments
for the partition are also truncated. If table is composite partitioned, then the LOB
data and LOB index segments for the subpartitions of the partition are truncated.

Chapter 12
ALTER TABLE

12-138

• If table contains any equipartitioned nested tables, then you cannot truncate the parent
partition unless its corresponding nested table partition is empty.

• If a domain index is defined on table, then the index must not be marked IN_PROGRESS or
FAILED, and the index partition corresponding to the table partition being truncated must
not be marked IN_PROGRESS.

For each partition or subpartition truncated, Oracle Database also truncates corresponding
local index partitions and subpartitions. If those index partitions or subpartitions are marked
UNUSABLE, then the database truncates them and resets the UNUSABLE marker to VALID.

You can update indexes on table during this operation using the update_index_clauses.
Updates to global indexes are metadata-only and the index entries for records that are
dropped by the truncate operation will continue to be physically stored in the index. You can
remove these orphaned index entries by specifying COALESCE CLEANUP in the ALTER INDEX
statement or in the modify_index_partition clause.

If you specify the parallel_clause with the update_index_clauses, then the database
parallelizes the index update, not the truncate operation.

DROP STORAGE

Specify DROP STORAGE to deallocate all space from the deleted rows, except the space
allocated by the MINEXTENTS parameter. This space can subsequently be used by other
objects in the tablespace.

DROP ALL STORAGE

Specify DROP ALL STORAGE to deallocate all space from the deleted rows, including the space
allocated by the MINEXTENTS parameter. All segments for the partition(s) or subpartition(s), as
well as all segments for their dependent objects, will be deallocated.

Restrictions on DROP ALL STORAGE

This clause is subject to the same restrictions as described in "Restrictions on Deferred
Segment Creation".

REUSE STORAGE

Specify REUSE STORAGE to keep space from the deleted rows allocated to the partition(s) or
subpartition(s). The space is subsequently available only for inserts and updates to the same
partition(s) or subpartition(s).

CASCADE

Specify CASCADE to truncate the corresponding partition(s) or subpartition(s) in all reference-
partitioned child tables of table.

Restrictions on Truncating Table Partitions and Subpartitions

Truncating table partitions and subpartitions is subject to the following restrictions:

• If you update global indexes using the update_all_indexes_clause, then you can
specify only the UPDATE INDEXES keywords, not the subclause.

• If table is an index-organized table, or if a local domain index is defined on table, then
you can truncate only one table partition or one table subpartition at a time.

• You cannot truncate partitions or subpartitions in a duplicated table.

Chapter 12
ALTER TABLE

12-139

See Also:

"Truncating Table Partitions: Example"

split_table_partition

The split_table_partition clause lets you create, from the partition identified by
partition_extended_name, multiple new partitions, each with a new segment, new
physical attributes, and new initial extents. The segment associated with the current
partition is discarded.

The new partitions inherit all unspecified physical attributes from the current partition.

Note:

Oracle Database can optimize and speed up SPLIT PARTITION and SPLIT
SUBPARTITION operations if specific conditions are met. Refer to Oracle
Database VLDB and Partitioning Guide for information on optimizing these
operations.

• If you split a DEFAULT list partition, then the last resulting partition will have the
DEFAULT value. All other resulting partitions will have the specified split values.

• If table is index organized, then Oracle Database splits any corresponding
mapping table partition and places it in the same tablespace as the parent index-
organized table partition. The database also splits any corresponding overflow
area, and you can use the OVERFLOW clause to specify segment attributes for the
new overflow areas.

• If table contains LOB columns, then you can use the LOB_storage_clause to
specify separate LOB storage attributes for the LOB data segments resulting from
the split. The database drops the LOB data and LOB index segments of the
current partition and creates new segments for each LOB column, for each
partition, even if you do not specify a new tablespace.

• If table contains nested table columns, then you can use the
split_nested_table_part clause to specify the storage table names and
segment attributes of the nested table segments resulting from the split. The
database drops the nested table segments of the current partition and creates new
segments for each nested table column, for each partition. This clause allows for
multiple nested table columns in the parent table as well as multilevel nested table
columns.

Oracle Database splits the corresponding local index partition, even if it is marked
UNUSABLE. The database marks UNUSABLE, and you must rebuild the local index
partitions corresponding to the split partitions. The new index partitions inherit their
attributes from the partition being split. The database stores the new index partitions in
the default tablespace of the index partition being split. If that index partition has no
default tablespace, then the database uses the tablespace of the new underlying table
partitions.

AT Clause

Chapter 12
ALTER TABLE

12-140

The AT clause applies only to range partitions and lets you split one range partition into two
range partitions. Specify the new noninclusive upper bound for the first of the two new
partitions. The value list must compare less than the original partition bound for the current
partition and greater than the partition bound for the next lowest partition (if there is one).

VALUES Clause

The VALUES clause applies only to list partitions and allows you to split one list partition into
two list partitions. If the table is partitioned on one key column, then use the upper branch of
the list_values syntax to specify a list of values for that column. You can specify NULL if you
have not already specified NULL for another partition in the table. If the table is partitioned on
multiple key columns, then use the lower branch of the list_values syntax to specify a list of
value lists. Each value list is enclosed in parentheses and represents a list of values for the
key columns. Oracle Database creates the first new partition using the list_values you
specify and creates the second new partition using the remaining partition values from the
current partition. Therefore, the value list cannot contain all of the partition values of the
current partition, nor can it contain any partition values that do not already exist for the
current partition.

INTO Clause

The INTO clause lets you describe the new partitions resulting from the split.

• The AT ... INTO clause lets you describe the partitions resulting from splitting one range
partition into two range partitions. In range_partition_desc, the keyword PARTITION is
required even if you do not specify the optional names and physical attributes of the two
partitions resulting from the split. If you do not specify new partition names, then Oracle
Database assigns names of the form SYS_Pn. Any attributes you do not specify are
inherited from the current partition.

• The VALUES ... INTO clause lets you describe the partitions resulting from splitting one list
partition into two list partitions. In list_partition_desc, the keyword PARTITION is
required even if you do not specify the optional names and physical attributes of the two
partitions resulting from the split. If you do not specify new partition names, then Oracle
Database assigns names of the form SYS_Pn. Any attributes you do not specify are
inherited from the current partition.

• The INTO clause lets you split one range partition into two or more range partitions, or
one list partition into two or more list partitions. If you do not specify new partition names,
then Oracle Database assigns names of the form SYS_Pn. Any attributes you do not
specify are inherited from the current partition.

– You must specify range partitions in ascending order of their partition bounds. The
partition bound of the first specified range partition must be greater than the partition
bound for the next lowest partition in the table (if there is one). Do not specify a
partition bound for the last range partition; it will inherit the partition bound of the
current partition.

– For list partitions, all specified partition values for the new partitions must exist in the
current partition. Do not specify any partition values for the last partition. Oracle
Database creates the last partition using the remaining partition values from the
current partition.

For range-hash composite-partitioned tables, if you specify subpartitioning for the new
partitions, then you can specify only TABLESPACE and table compression for the subpartitions.
All other attributes are inherited from the current partition. If you do not specify subpartitioning
for the new partitions, then their tablespace is also inherited from the current partition.

Chapter 12
ALTER TABLE

12-141

For range-list and list-list composite-partitioned tables, you cannot specify
subpartitions for the new partitions at all. The list subpartitions of the split partition
inherit the number of subpartitions and value lists from the current partition.

For all composite-partitioned tables for which you do not specify subpartition names for
the newly created subpartitions, the newly created subpartitions inherit their names
from the parent partition as follows:

• For those subpartitions in the parent partition with names of the form
partition_name underscore (_) subpartition_name (for example, P1_SUBP1),
Oracle Database generates corresponding names in the newly created
subpartitions using the new partition names (for example P1A_SUB1 and P1B_SUB1).

• For those subpartitions in the parent partition with names of any other form, Oracle
Database generates subpartition names of the form SYS_SUBPn.

Oracle Database splits the corresponding partition(s) in each local index defined on
table, even if the index is marked UNUSABLE.

If table is the parent table of a reference-partitioned table, then you can use the
dependent_tables_clause to propagate the partition maintenance operation you are
specifying in this statement to all the reference-partitioned child tables.

Oracle Database invalidates any indexes on heap-organized tables. You can update
these indexes during this operation using the update_index_clauses.

The parallel_clause lets you parallelize the split operation but does not change the
default parallel attributes of the table.

ONLINE

Specify ONLINE to indicate that DML operations on the table will be allowed while
splitting the table partition.

Restrictions on the ONLINE Clause

The ONLINE clause is subject to the following restrictions when splitting table partitions:

• You cannot specify the ONLINE clause for tables owned by SYS.

• You cannot specify the ONLINE clause for index-organized tables.

• You cannot specify the ONLINE clause if a domain index is defined on the table.

• You cannot specify the ONLINE clause for heap-organized tables that contain object
types or on which bitmap join indexes are defined.

• Parallel DML and direct path INSERT operations require an exclusive lock on the
table. Therefore, these operations are not supported concurrently with an ongoing
online partition split, due to conflicting locks.

Restrictions on Splitting Table Partitions

Splitting table partitions is subject to the following restrictions:

• You cannot specify this clause for a hash partition.

• You cannot specify the parallel_clause for index-organized tables.

• If table is an index-organized table, or if a local domain index is defined on table,
then you can split the partition into only two new partitions.

Chapter 12
ALTER TABLE

12-142

See Also:

"Splitting Table Partitions: Examples"

split_table_subpartition

Use this clause to split a subpartition into multiple new subpartitions with nonoverlapping
value lists.

Note:

Oracle Database can optimize and speed up SPLIT PARTITION and SPLIT
SUBPARTITION operations if specific conditions are met. Refer to Oracle Database
VLDB and Partitioning Guide for information on optimizing these operations.

AT Clause

The AT clause is valid only for range subpartitions. Specify the new noninclusive upper bound
for the first of the two new subpartitions. The value list must compare less than the original
subpartition bound for the subpartition identified by subpartition_extended_name and
greater than the partition bound for the next lowest subpartition (if there is one).

VALUES Clause

The VALUES clause is valid only for list subpartitions. If the table is subpartitioned on one key
column, then use the upper branch of the list_values syntax to specify a list of values for
that column. You can specify NULL if you have not already specified NULL for another
subpartition in the same partition. If the table is subpartitioned on multiple key columns, then
use the lower branch of the list_values syntax to specify a list of value lists. Each value list
is enclosed in parentheses and represents a list of values for the key columns. Oracle
Database creates the first new subpartition using the subpartition value list you specify and
creates the second new partition using the remaining partition values from the current
subpartition. Therefore, the value list cannot contain all of the partition values of the current
subpartition, nor can it contain any partition values that do not already exist for the current
subpartition.

INTO Clause

The INTO clause lets you describe the new subpartitions resulting from the split.

• The AT ... INTO clause lets you describe the two subpartitions resulting from splitting one
range partition into two range partitions. In range_subpartition_desc, the keyword
SUBPARTITION is required even if you do not specify the optional names and attributes of
the two new subpartitions. If you do not specify new subpartition names, then Oracle
Database assigns names of the form SYS_SUBPn Any attributes you do not specify are
inherited from the current subpartition.

• The VALUES ... INTO clause lets you describe the two subpartitions resulting from splitting
one list partition into two list partitions. In list_subpartition_desc, the keyword
SUBPARTITION is required even if you do not specify the optional names and attributes of
the two new subpartitions. If you do not specify new subpartition names, then Oracle

Chapter 12
ALTER TABLE

12-143

Database assigns names of the form SYS_SUBPn Any attributes you do not specify
are inherited from the current subpartition.

• The INTO clause lets you split one range subpartition into two or more range
subpartitions, or one list subpartition into two or more list subpartitions. If you do
not specify new subpartition names, then Oracle Database assigns names of the
form SYS_SUBPn. Any attributes you do not specify are inherited from the current
subpartition.

– You must specify range subpartitions in ascending order of their subpartition
bounds. The subpartition bound of the first specified range subpartition must
be greater than the subpartition bound for the next lowest subpartition (if there
is one). Do not specify a subpartition bound for the last range subpartition; it
will inherit the partition bound of the current subpartition.

– For list subpartitions, all specified subpartition values for the new subpartitions
must exist in the current subpartition. Do not specify any subpartition values
for the last subpartition. Oracle Database creates the last subpartition using
the remaining partition values from the current subpartition.

Oracle Database splits any corresponding local subpartition index, even if it is marked
UNUSABLE. The new index subpartitions inherit the names of the new table subpartitions
unless those names are already held by index subpartitions. In that case, the database
assigns new index subpartition names of the form SYS_SUBPn. The new index
subpartitions inherit physical attributes from the parent subpartition. However, if the
parent subpartition does not have a default TABLESPACE attribute, then the new
subpartitions inherit the tablespace of the corresponding new table subpartitions.

Oracle Database invalidates indexes on heap-organized tables. You can update these
indexes by using the update_index_clauses.

ONLINE

Specify ONLINE to indicate that DML operations on the table will be allowed while
splitting the table subpartition.

Restrictions on the ONLINE Clause

The ONLINE clause for splitting table subpartitions is subject to the same restrictions as
the ONLINE clause for splitting table partitions. Refer to Restrictions on the ONLINE
Clause.

Restrictions on Splitting Table Subpartitions

Splitting table subpartitions is subject to the following restrictions:

• You cannot specify this clause for a hash subpartition.

• In subpartition descriptions, the only clauses of partitioning_storage_clause
you can specify are TABLESPACE and table compression.

• You cannot specify the parallel_clause for index-organized tables.

• If table is an index-organized table, then you can split the subpartition into only
two new subpartitions.

merge_table_partitions

The merge_table_partitions clause lets you merge the contents of two or more
range, list, or system partitions of table into one new partition and then drop the

Chapter 12
ALTER TABLE

12-144

original partitions. This clause is not valid for hash partitions. Use the
coalesce_table_partition clause instead.

Specify a comma-separated list of two or more range, list, or system partitions to be merged.
You can use the TO clause to specify two or more adjacent range partitions to be merged.

For each partition, use partition to specify a partition name or the FOR clause to specify a
partition without using its name. See "References to Partitioned Tables and Indexes " for
more information on the FOR clause.

• The partitions to be merged must be adjacent and must be specified in ascending order
of their partition bounds if they are range partitions. List partitions and system partitions
need not be adjacent in order to be merged.

• When you merge range partitions, the new partition inherits the partition bound of the
highest of the original partitions.

• When you merge list partitions, the resulting partition value list is the union of the set of
the partition values lists of the partitions being merged. If you merge a DEFAULT list
partition with other list partitions, then the resulting partition will be the DEFAULT partition
and will have the DEFAULT value.

• When you merge composite range partitions or composite list partitions, range-list or list-
list composite partitions, you cannot specify subpartition descriptions. Oracle Database
obtains the subpartitioning information from the subpartition template. If you have not
specified a subpartition template, then the database creates one MAXVALUE subpartition
from range subpartitions or one DEFAULT subpartition from list subpartitions.

Any attributes you do not specify explicitly for the new partition are inherited from table-level
defaults. However, if you reuse one of the partition names for the new partition, then the new
partition inherits values from the partition whose name is being reused rather than from table-
level default values.

Oracle Database drops local index partitions corresponding to the selected partitions and
marks UNUSABLE the local index partition corresponding to merged partition. The database
also marks UNUSABLE any global indexes on heap-organized tables. You can update all these
indexes during this operation using the update_index_clauses.

If table is the parent table of a reference-partitioned table, then you can use the
dependent_tables_clause to propagate the partition maintenance operation you are
specifying in this statement to all the reference-partitioned child tables.

ONLINE

Specify ONLINE to allow DML operations on the table partitions during the merge partitions
operation.

Restriction on Merging Table Partitions

If table is an index-organized table, or if a local domain index is defined on table, then you
can merge only two partitions at a time.

See Also:

"Merging Two Table Partitions: Example", "Merging Four Adjacent Range Partitions:
Example", and "Working with Default List Partitions: Example"

Chapter 12
ALTER TABLE

12-145

merge_table_subpartitions

The merge_table_subpartitions clause lets you merge the contents of two or more
range or list subpartitions of table into one new subpartition and then drop the original
subpartitions. This clause is not valid for hash subpartitions. Use the
coalesce_hash_subpartition clause instead.

Specify a comma-separated list of two or more range or list subpartitions to be
merged. You can use the TO clause to specify two or more adjacent range
subpartitions to be merged.

For each subpartition, use subpartition to specify a subpartition name or the FOR
clause to specify a subpartition without using its name. See "References to Partitioned
Tables and Indexes " for more information on the FOR clause.

The subpartitions to be merged must belong to the same partition. If they are range
subpartitions, then they must be adjacent. If they are list subpartitions, then they need
not be adjacent. The data in the resulting subpartition consists of the combined data
from the merged subpartitions.

If you specify the INTO clause, then in the range_subpartition_desc or
list_subpartition_desc you cannot specify the range_values_clause or
list_values_clause, respectively. Further, the only clauses you can specify in the
partitioning_storage_clause are the TABLESPACE clause and table_compression.

Any attributes you do not specify explicitly for the new subpartition are inherited from
partition-level values. However, if you reuse one of the subpartition names for the new
subpartition, then the new subpartition inherits values from the subpartition whose
name is being reused rather than from partition-level default values.

Oracle Database merges corresponding local index subpartitions and marks the
resulting index subpartition UNUSABLE. The database also marks UNUSABLE both
partitioned and nonpartitioned global indexes on heap-organized tables. You can
update all indexes during this operation using the update_index_clauses.

ONLINE

Specify ONLINE to allow DML operations on the table subpartitions during the merge
subpartitions operation.

Restriction on Merging Table Subpartitions

If table is an index-organized table, then you can merge only two subpartitions at a
time.

exchange_partition_subpart

Use the EXCHANGE PARTITION or EXCHANGE SUBPARTITION clause to exchange the data
and index segments of:

• One nonpartitioned table with:

– one range, list, or hash partition

– one range, list, or hash subpartition

• One range-partitioned table with the range subpartitions of a range-range or list-
range composite-partitioned table partition

Chapter 12
ALTER TABLE

12-146

• One hash-partitioned table with the hash subpartitions of a range-hash or list-hash
composite-partitioned table partition

• One list-partitioned table with the list subpartitions of a range-list or hash-list composite-
partitioned table partition

In all cases, the structure of the table and the partition or subpartition being exchanged,
including their partitioning keys, must be identical. In the case of list partitions and
subpartitions, the corresponding value lists must also match.

This clause facilitates high-speed data loading when used with transportable tablespaces.

See Also:

Oracle Database Administrator's Guide for information on transportable tablespaces

If table contains LOB columns, then for each LOB column Oracle Database exchanges LOB
data and LOB index partition or subpartition segments with corresponding LOB data and LOB
index segments of table.

If table has nested table columns, then for each such column Oracle Database exchanges
nested table partition segments with corresponding nested table segments of the
nonpartitioned table.

If table contains an identity column, then so must the partition or subpartition being
exchanged, and vice versa. The sequence generators must both be increasing or decreasing.
The sequence generators are not exchanged, so table and the partition or subpartition will
continue to use the same sequence generators. The high water mark for both sequence
generators will be adjusted so that new identity column values will not conflict with existing
values.

All of the segment attributes of the two objects (including tablespace and logging) are also
exchanged.

Existing statistics for the table being exchanged into the partitioned table will be exchanged.
However, the global statistics for the partitioned table will not be altered. Use the
DBMS_STATS.GATHER_TABLE_STATS procedure to re-create global statistics. You can set the
GRANULARITY attribute equal to 'APPROX_GLOBAL AND PARTITION' to speed up the process and
aggregate new global statistics based on the existing partition statistics. See Oracle
Database PL/SQL Packages and Types Reference for more information on this packaged
procedure.

Oracle Database invalidates any global indexes on the objects being exchanged. You can
update the global indexes on the table whose partition is being exchanged by using either the
update_global_index_clause or the update_all_indexes_clause. For the
update_all_indexes_clause, you can specify only the keywords UPDATE INDEXES, not the
subclause. Global indexes on the table being exchanged remain invalidated. The
update_global_index_clause and update_all_indexes_clause do not update local indexes
during an exchange operation. You can specify local index maintenance by using the
INCLUDING | EXCLUDING INDEXES clause. If you specify the parallel_clause with either
of these clauses, then the database parallelizes the index update, not the exchange
operation.

Chapter 12
ALTER TABLE

12-147

See Also:

"Notes on Exchanging Partitions and Subpartitions"

WITH TABLE

Specify the table with which the partition or subpartition will be exchanged. If you omit
schema, then Oracle Database assumes that table is in your own schema.

INCLUDING | EXCLUDING INDEXES

Specify INCLUDING INDEXES if you want local index partitions or subpartitions to be
exchanged with the corresponding table index (for a nonpartitioned table) or local
indexes (for a hash-partitioned table). Specify EXCLUDING INDEXES if you want all index
partitions or subpartitions corresponding to the partition and all the regular indexes and
index partitions on the exchanged table to be marked UNUSABLE. If you omit this clause,
then the default is EXCLUDING INDEXES.

WITH | WITHOUT VALIDATION

Specify WITH VALIDATION if you want Oracle Database to return an error if any rows in
the exchanged table do not map into partitions or subpartitions being exchanged.
Specify WITHOUT VALIDATION if you do not want Oracle Database to check the proper
mapping of rows in the exchanged table. If you omit this clause, then the default is
WITH VALIDATION.

exceptions_clause

See "Handling Constraint Exceptions " for information on this clause. In the context of
exchanging partitions, this clause is valid only if the partitioned table has been defined
with a UNIQUE constraint, and that constraint must be in DISABLE VALIDATE state. This
clause is valid only for exchanging partition, not subpartitions.

CASCADE

Specify CASCADE to exchange the corresponding partition or subpartition in all
reference-partitioned child tables of table. The reference-partitioned table hierarchies
of the source and target must match.

Restrictions on CASCADE

The following restrictions apply to the CASCADE clause:

• You cannot specify CASCADE if a parent key in the reference-partitioned table
hierarchy is referenced by multiple partitioning constraints.

• You cannot specify CASCADE if a domain index or an XMLIndex index is defined on
any of the reference-partitioned child tables of table.

Chapter 12
ALTER TABLE

12-148

See Also:

• The DBMS_IOT package in Oracle Database PL/SQL Packages and Types
Reference for information on the SQL scripts

• Oracle Database Administrator's Guide for information on eliminating migrated
and chained rows

• constraint for more information on constraint checking and "Creating an
Exceptions Table for Index-Organized Tables: Example"

Notes on Exchanging Partitions and Subpartitions

The following notes apply when exchanging partitions and subpartitions:

• Both tables involved in the exchange must have the same primary key, and no validated
foreign keys can be referencing either of the tables unless the referenced table is empty.

• When exchanging partitioned index-organized tables:

– The source and target table or partition must have their primary key set on the same
columns, in the same order.

– If prefix compression is enabled, then it must be enabled for both the source and the
target, and with the same prefix length.

– Both the source and target must be index organized.

– Both the source and target must have overflow segments, or neither can have
overflow segments. Also, both the source and target must have mapping tables, or
neither can have a mapping table.

– Both the source and target must have identical storage attributes for any LOB
columns.

See Also:

"Exchanging Table Partitions: Example"

dependent_tables_clause

This clause is valid only when you are altering the parent table of a reference-partitioned
table. The clause lets you specify attributes of partitions that are created by the operation for
reference-partitioned child tables of the parent table.

• If the parent table is not composite partitioned, then specify one or more child tables, and
for each child table specify one partition_spec for each partition created in the parent
table.

• If the parent table is composite, then specify one or more child tables, and for each child
table specify one partition_spec for each subpartition created in the parent table.

Chapter 12
ALTER TABLE

12-149

See Also:

The CREATE TABLE clause reference_partitioning for information on creating
reference-partitioned tables and Oracle Database VLDB and Partitioning
Guide for information on partitioning by reference in general

UNUSABLE LOCAL INDEXES Clauses

These two clauses modify the attributes of local index partitions and index
subpartitions corresponding to partition, depending on whether you are modifying a
partition or subpartition.

• UNUSABLE LOCAL INDEXES marks UNUSABLE the local index partition or index
subpartition associated with partition.

• REBUILD UNUSABLE LOCAL INDEXES rebuilds the unusable local index partition or
index subpartition associated with partition.

Restrictions on UNUSABLE LOCAL INDEXES

This clause is subject to the following restrictions:

• You cannot specify this clause with any other clauses of the
modify_table_partition clause.

• You cannot specify this clause in the modify_table_partition clause for a
partition that has subpartitions. However, you can specify this clause in the
modify_table_subpartition clause.

update_index_clauses

Use the update_index_clauses to update the indexes on table as part of the table
partitioning operation. When you perform DDL on a table partition, if an index is
defined on table, then Oracle Database invalidates the entire index, not just the
partitions undergoing DDL. This clause lets you update the index partition you are
changing during the DDL operation, eliminating the need to rebuild the index after the
DDL.

The update_index_clauses are not needed, and are not valid, for partitioned index-
organized tables. Index-organized tables are primary key based, so Oracle can keep
global indexes USABLE during operations that move data but do not change its value.

update_global_index_clause

Use this clause to update only global indexes on table. Oracle Database marks
UNUSABLE all local indexes on table.

UPDATE GLOBAL INDEXES

Specify UPDATE GLOBAL INDEXES to update the global indexes defined on table.

Restriction on Updating Global Indexes

If the global index is a global domain index defined on a LOB column, then Oracle
Database marks the domain index UNUSABLE instead of updating it.

INVALIDATE GLOBAL INDEXES

Chapter 12
ALTER TABLE

12-150

Specify INVALIDATE GLOBAL INDEXES to invalidate the global indexes defined on table.

If you specify neither, then Oracle Database invalidates the global indexes.

Restrictions on Invalidating Global Indexes

This clause is supported only for global indexes. It is not supported for index-organized
tables. In addition, this clause updates only indexes that are USABLE and VALID. UNUSABLE
indexes are left unusable, and INVALID global indexes are ignored.

update_all_indexes_clause

Use this clause to update all indexes on table.

update_index_partition

This clause is valid only for operations on table partitions and affects only local indexes.

• The index_partition_description lets you specify physical attributes, tablespace
storage, and logging for each partition of each local index. If you specify only the
PARTITION keyword, then Oracle Database updates the index partition as follows:

– For operations on a single table partition (such as MOVE PARTITION and SPLIT
PARTITION), the corresponding index partition inherits the attributes of the affected
index table partition, Oracle Database does not generate names for new index
partitions, so any new index partitions resulting from this operation inherit their names
from the corresponding new table partition.

– For MERGE PARTITION operations, the resulting local index partition inherits its name
from the resulting table partition and inherits its attributes from the local index.

For a domain index, you can use the PARAMETERS clause to specify the parameter string
that is passed uninterpreted to the appropriate ODCI indextype routine. The PARAMETERS
clause is valid only for domain indexes, and is the only part of the
index_partition_description you can specify for a domain index.

See Also:

Oracle Database Data Cartridge Developer's Guide for more information on
domain indexes

• For a composite-partitioned index, the index_subpartition_clause lets you specify
tablespace storage for each subpartition. Refer to the index_subpartition_clause (in
CREATE INDEX) for more information on this component of the update_index_partition
clause.

For information on the USABLE and UNUSABLE keywords, refer to ALTER INDEX ... USABLE |
UNUSABLE.

update_index_subpartition

This clause is valid only for operations on subpartitions of composite-partitioned tables and
affects only local indexes on composite-partitioned tables. It lets you specify tablespace
storage for one or more subpartitions.

Restrictions on Updating All Indexes

The following restrictions apply to the update_all_indexes_clause:

Chapter 12
ALTER TABLE

12-151

• You cannot specify this clause for index-organized tables.

• When you exchange a partition or subpartition with the
exchange_partition_subpart clause, the update_all_indexes_clause is
applicable only to global indexes. Therefore, you cannot specify the
update_index_partition or update_index_subpartition clauses. You can,
however, specify local index maintenance during an exchange operation by using
the INCLUDING | EXCLUDING INDEXES clause.

See Also:

"Updating Global Indexes: Example" and "Updating Partitioned Indexes:
Example"

parallel_clause

The parallel_clause lets you change the default degree of parallelism for queries
and DML on the table.

For complete information on this clause, refer to parallel_clause in the documentation
on CREATE TABLE.

Restrictions on Changing Table Parallelization

Changing parallelization is subject to the following restrictions:

• If table contains any columns of LOB or user-defined object type, then
subsequent INSERT, UPDATE, and DELETE operations on table are executed serially
without notification. Subsequent queries, however, are executed in parallel.

• If you specify the parallel_clause in conjunction with the move_table_clause,
then the parallelism applies only to the move, not to subsequent DML and query
operations on the table.

See Also:

"Specifying Parallel Processing: Example"

filter_condition

This clause lets you specify which rows to preserve during the following ALTER TABLE
operations: moving, splitting, or merging table partitions or subpartitions; moving a
table; or converting a nonpartitioned table to a partitioned table. The database
preserves only the rows that satisfy the condition specified in the where_clause. Refer
to the where_clause in the documentation on SELECT for the full semantics of this
clause.

Restrictions on Filter Conditions

The following restrictions apply to the filter_condition clause:

• Filter conditions are supported only for heap-organized tables.

Chapter 12
ALTER TABLE

12-152

• Filter conditions can refer only to columns in the table being altered. Filter conditions
cannot contain operations, such as joins or subqueries, that reference other database
objects.

• Filter conditions are unsupported for tables with primary or unique keys that are
referenced by enabled foreign keys.

Restrictions and Notes on Using Filter Conditions with Online Operations

The following restrictions and notes apply when you specify a filter condition for an online
ALTER TABLE operation:

• You cannot specify both the filter_condition and ONLINE clauses if supplemental
logging is enabled.

• When you specify both the filter_condition and ONLINE clauses, DML operations on
the table are allowed during the ALTER TABLE operation. The filter condition does not have
a direct effect on the concurrent DML operations. However, consider this combination
carefully, because the filter operation and the DML operations could unintentionally
conflict, as follows:

– Inserts into a nonpartitioned table will succeed. Inserts into a partitioned table will
succeed if they do not violate the partitioning key criteria.

– Delete operations will apply only to rows that are preserved by the filter condition
throughout the ALTER TABLE operation.

– Update operations will apply only to rows that are preserved by the filter condition
throughout the ALTER TABLE operation. These update operations will succeed,
regardless of whether the update operation would have disqualified the rows for
preservation by the filter condition.

– Rows that do not qualify for preservation by the filter condition at the onset of the
ALTER TABLE operation will not be preserved, regardless of whether an update
operation would qualify the rows for preservation.

allow_disallow_clustering

This clause is valid for tables that use attribute clustering. It lets you allow or disallow attribute
clustering for data movement that occurs during the move table operation specified by the
move_table_clause, and the table partition and subpartition maintenance operations
specified by the coalesce_table_[sub]partition, merge_table_[sub]partitions,
move_table_[sub]partition, and split_table_[sub]partition clauses.

• Specify ALLOW CLUSTERING to allow attribute clustering for data movement. This clause
overrides a NO ON DATA MOVEMENT setting in the DDL that created or altered the table.

• Specify DISALLOW CLUSTERING to disallow attribute clustering for data movement. This
clause overrides a YES ON DATA MOVEMENT setting in the DDL that created or altered the
table.

The allow_disallow_clustering clause has no effect if you specify it for a table that does
not use attribute clustering.

Chapter 12
ALTER TABLE

12-153

See Also:

clustering_when clause of CREATE TABLE for more information on the NO ON
DATA MOVEMENT and YES ON DATA MOVEMENT clauses

{ DEFERRED | IMMEDIATE } INVALIDATION

This clause lets you control when the database invalidates dependent cursors while
performing table partition maintenance operations.

• If you specify DEFERRED INVALIDATION, then the database avoids or defers
invalidating dependent cursors, when possible.

• If you specify IMMEDIATE INVALIDATION, then the database immediately invalidates
dependent cursors, as it did in Oracle Database 12c Release 1 (12.1) and prior
releases. This is the default.

If you omit this clause, then the value of the CURSOR_INVALIDATION initialization
parameter determines when cursors are invalidated.

You can specify this clause only when performing table partition maintenance
operations; it is not supported for any other ALTER TABLE operations.

See Also:

• Oracle Database SQL Tuning Guide for more information on cursor
invalidation

• Oracle Database Reference for more information in the
CURSOR_INVALIDATION initialization parameter

move_table_clause

The move_table_clause lets you relocate data of a nonpartitioned or partitioned table
into new segments. Alternatively you can move a partition or subpartition of a
partitioned table into a new segment, optionally in a different tablespace, and
optionally modify any of its storage attributes.

You can also move any LOB data segments associated with the table or partition using
the LOB_storage_clause and varray_col_properties clause. LOB items not specified
in this clause are not moved.

Moving Partitions and Subpartitions of Heap-Organized Tables

You can move all the partitions and subpartitions of a partitioned heap-organized table
with a single ALTER TABLE MOVE statement.

Existing partition and subpartition properties that are not modified on table level will be
preserved. For example, if you specify COMPRESS for the ALTER TABLE MOVE command,
then all partitions will be compressed, whereas the tablespace location for each
partition will be preserved. Conversely, if you specify a target tablespace for the ALTER
TABLE MOVE , then all partitions will reside in the specified tablespace after the move,
but the individual compression attribute for each partition will be preserved.

Chapter 12
ALTER TABLE

12-154

Restrictions on Moving All Partitions and Subpartions of a Partitioned Table with One
Command

• You cannot use this functionality if a domain index is defined on the table.

• You cannot use this functionality if the table has columns of type VARRAY.

• You cannot change the attribute clustering properties.

• You can only control table-level segment attributes_clauses, such as tablespace or
compression. Any segment attribute that is managed as default on the table-level is not
supported.

• You cannot use this functionality for an index-organized table .

ONLINE Clause

Specify ONLINE if you want DML operations on the table to be allowed while the table is being
moved.

Restrictions on Moving Tables Online

Moving tables online is subject to the following restrictions:

• You cannot combine this clause with any other clause in the same statement.

• You cannot specify this clause for a partitioned index-organized table.

• You cannot specify this clause if a domain index is defined on the table, like spatial, XML,
or Text indexes.

• Parallel DML and direct path INSERT operations require an exclusive lock on the table.
Therefore, these operations are not supported concurrently with an ongoing online table
MOVE, due to conflicting locks.

• You cannot specify this clause for index-organized tables that contain any LOB, VARRAY,
Oracle-supplied type, or user-defined object type columns.

index_org_table_clause

For an index-organized table, the index_org_table_clause of the move_table_clause lets
you additionally specify overflow segment attributes. The move_table_clause rebuilds the
primary key index of the index-organized table. The overflow data segment is not rebuilt
unless the OVERFLOW keyword is explicitly stated, with two exceptions:

• If you alter the values of PCTTHRESHOLD or the INCLUDING column as part of this ALTER
TABLE statement, then the overflow data segment is rebuilt.

• If you explicitly move any of out-of-line columns (LOBs, varrays, nested table columns) in
the index-organized table, then the overflow data segment is also rebuilt.

The index and data segments of LOB columns are not rebuilt unless you specify the LOB
columns explicitly as part of this ALTER TABLE statement.

mapping_table_clause

Specify MAPPING TABLE if you want Oracle Database to create a mapping table if one does not
already exist. If it does exist, then the database moves the mapping table along with the
index-organized table, and marks any bitmapped indexes UNUSABLE. The new mapping table
is created in the same tablespace as the parent table.

Specify NOMAPPING to instruct the database to drop an existing mapping table.

Refer to mapping_table_clauses (in CREATE TABLE) for more information on this clause.

Chapter 12
ALTER TABLE

12-155

Restriction on Mapping Tables

You cannot specify NOMAPPING if any bitmapped indexes have been defined on table.

prefix_compression

Use the prefix_compression clause to enable or disable prefix compression in an
index-organized table.

• COMPRESS enables prefix compression, which eliminates repeated occurrence 1of
primary key column values in index-organized tables. Use integer to specify the
prefix length (number of prefix columns to compress).

The valid range of prefix length values is from 1 to the number of primary key
columns minus 1. The default prefix length is the number of primary key columns
minus 1.

• NOCOMPRESS disables prefix compression in index-organized tables. This is the
default.

TABLESPACE tablespace

Specify the tablespace into which the rebuilt index-organized table is to be stored.

LOB_storage_clause

Use this clause to move a LOB segment to a different tablespace. You cannot use this
clause to move a LOB segment if the table contains a LONG column. Instead, you must
either convert the LONG column to a LOB, or you must export the table, re-create the
table specifying the desired tablespace storage for the LOB column, and re-import the
table data.

UPDATE INDEXES

This clause is valid only when performing online or offline moves of heap-organized
tables. It allows you to update all global indexes on the table.

You can optionally change the tablespace for an index or index partition, as follows:

• Specify the segment_attributes_clause to change the tablespace of a
nonpartitioned global index. Within this clause, you can specify only the
TABLESPACE clause.

• Specify the update_index_partition clause to change the tablespace for a
partition of a partitioned global index. Within this clause, you can specify only the
TABLESPACE clause of the segment_attributes_clause.

Restrictions on Moving Tables

Moving tables is subject to the following restrictions:

• If you specify MOVE, then it must be the first clause in the ALTER TABLE statement,
and the only clauses outside this clause that are allowed are the
physical_attributes_clause, the parallel_clause, and the
LOB_storage_clause.

• You cannot move a table containing a LONG or LONG RAW column.

• You cannot MOVE an entire partitioned table (either heap- or index-organized). You
must move individual partitions or subpartitions.

Chapter 12
ALTER TABLE

12-156

Note:

For any LOB columns you specify in a move_table_clause:

• Oracle Database drops the old LOB data segment and corresponding index
segment and creates new segments, even if you do not specify a new
tablespace.

• If the LOB index in table resided in a different tablespace from the LOB data,
then Oracle Database collocates the LOB index in the same tablespace with
the LOB data after the move.

See Also:

move_table_partition and move_table_subpartition

modify_to_partitioned

Use this clause to partition a nonpartitioned or partitioned table, including indexes, online or
offline.

You can change a nonpartitioned or partitioned table into any type of partitioned or composite
partitioned table with the following characteristics:

• All data in the original table is preserved.

• The data in the newly created partitions or subpartitions of the modified table is stored in
the same tablespace as the original table, unless you specify otherwise in the
table_partitioning_clauses.

• Local index partitions or subpartitions and lob partitions or subpartitions of the modified
table will be co- located with the table partitions or subpartitions unless you specify
otherwise in the table_partitioning_clauses.

• All triggers, constraints, and VPD policies defined on the original table are preserved.

• If table compression is defined on the original nonpartitioned table, then the partitioned
table will use the same type of table compression.

• In case of modifying a partitioned table, the compression setting of the newly created
partitions or subpartitions is derived from the default compression setting of the
partitioned table prior to the modification unless all partitions or subpartitions shared the
same compression method.

Each range, list, or hash partitioning or subpartitioning key column with a character data type,
specified in the modify_to_partitioned clause must have one of the following declared
collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS.

table_partitioning_clauses

Use this clause to specify the partitioning attributes for the table.

Each range, list, or hash partitioning or subpartitioning key column with a character data type,
specified in the modify_to_partitioned clause must have one of the following declared
collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS.

Chapter 12
ALTER TABLE

12-157

This clause has the same semantics here as it has for the CREATE TABLE statement.
Refer to the CREATE TABLE table_partitioning_clauses for the full semantics of this
clause.

ONLINE

Specify ONLINE to indicate that DML operations on the table will be allowed while
changing to a partitioned table.

UPDATE INDEXES

Use this clause to specify how existing indexes on the table are converted into global
partitioned indexes or local partitioned indexes.

• For index, specify the name of an existing index on the table.

• Specify the local_partitioned_index clause to convert index into a local
partitioned index. This clause has the same semantics here as it has for the
CREATE INDEX statement. Refer to the clause local_partitioned_index in the
documentation on CREATE INDEX for the full semantics of this clause.

• Specify the global_partitioned_index clause to convert index into a global
partitioned index. This clause has the same semantics here as it has for the
CREATE INDEX statement. Refer to the clause global_partitioned_index in the
documentation on CREATE INDEX for the full semantics of this clause.

• Specify the GLOBAL keyword to allow prefixed partitioned and nonpartitioned global
indexes to retain their global shape. This clause prevents such indexes from being
converted to local partitioned indexes; it has no effect on nonprefixed global
indexes.

If you specify only the UPDATE INDEXES keywords, or omit the UPDATE INDEXES clause
altogether, then existing indexes are converted as follows:

• Nonprefixed indexes retain their original shape: normal indexes are converted to
nonpartitioned global indexes, nonpartitioned global indexes remain the same, and
partitioned global indexes remain the same and retain their partitioning shape.

• Prefixed indexes are converted to local partitioned indexes. Prefixed indexes
include partitioning keys in the index definition, but the index definition is not
limited to including only the partitioning keys.

• Bitmap indexes are converted to local partitioned indexes, regardless of whether
they are prefixed or not.

Default Index Rules for Conversion from Partitioned to Partitioned Table

The rule set for default index conversion for partitioned to partitioned table is identical
to the one for nonpartitioned to partitioned table, with additional handling of existing
local indexes on the partitioned table.

• If the index is already local, then the index stays as a local index if the index
column is prefixed on both sides of the partitioning dimensions.

• If the partitioning columns are a subset of the key columns, (that is, they are
prefixed), then the global index is converted to local. If the global index is not
prefixed, then the shape of the global index is retained.

Restrictions on Changing a Nonpartitioned Table to a Partitioned Table

The following restrictions apply to the modify_to_partitioned clause:

Chapter 12
ALTER TABLE

12-158

• You cannot specify this clause for an index-organized table.

• You cannot specify this clause if a domain index is defined on the table.

• You cannot specify ONLINE when changing a nonpartitioned table to a reference-
partitioned child table. This operation is supported only in offline mode.

See Also:

Oracle Database VLDB and Partitioning Guide for more information on converting a
nonpartitioned table into a partitioned table

modify_opaque_type

Use the modify_opaque_type clause to instruct the database to store the specified abstract
data type or XMLType in an ANYDATA column using unpacked storage.

You can specify any abstract data type with this clause. However, it is primarily useful
because it allows you to specify the following data types, which cannot be stored in an
ANYDATA column using conventional storage:

• XMLType
• Abstract data types that contain one or more attributes of type XMLType, CLOB, BLOB, or

NCLOB.

When you use unpacked storage, data types are stored in system-generated hidden
columns that are associated with the ANYDATA column. You can insert and query these data
types as you would data types that are stored in an ANYDATA column using conventional
storage.

anydata_column

Specify the name of a column of type ANYDATA. If type_name is an abstract data type that does
not contain an attribute of type XMLType, CLOB, BLOB, or NCLOB, then anydata_column must be
empty.

type_name

Specify the name of one or more abstract data types or XMLType. The abstract data type can
contain an attribute of type XMLType, CLOB, BLOB, or NCLOB. The type can be EDITIONABLE.
When you subsequently insert these data types into anydata_column, they will use unpacked
storage. If you previously specified this clause for the same anydata_column, then unpacked
storage will continue to be used for the previously specified data types as well as the newly
specified data types.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information on the
ANYDATA type and "Unpacked Storage in ANYDATA Columns: Example"

Chapter 12
ALTER TABLE

12-159

immutable_table_clauses

You can use the NO DROP or NO DELETE clauses to modify the definition of an
immutable table.

Use the NO DROP clause to modify the retention period for an immutable table or the
retention period for rows within the immutable table. You cannot reduce the retention
period.

Example : Modifying the Retention Period for an Immutable Table

The following statement modifies the definition of the immutable table imm_tab and
specifies that it cannot be dropped if the newest row is less than 50 days old.

ALTER TABLE imm_tab NO DROP UNTIL 50 DAYS IDLE;

Example : Modifying the Retention Period for Immutable Table Rows

The following statement modifies the definition of the immutable table imm_tab and
specifies that rows cannot be deleted until 120 days after they were created.

ALTER TABLE imm_tab NO DELETE UNTIL 120 DAYS AFTER
 INSERT;

blockchain_table_clauses

You can modify a table created using the keyword BLOCKCHAIN in the ALTER TABLE
statement, and one or more of the blockchain_table_clauses.

See blockchain_table_clauses of CREATE TABLE for the semantics of the clause.

Restrictions

You cannot use the blockchain_hash_and_data_format_clause of the
blockchain_table_clauses in the ALTER TABLE statement.

You can use all the clauses of ALTER TABLE on a blockchain table except the following
clauses:

• RENAME table

• ADD COLUMN
• DROP COLUMN
• RENAME COLUMN
• DROP (SUB)PARTITION
• TRUNCATE(SUB)PARTITION
• EXCHANGE(SUB)PARTITION
• MODIFY TYPE

enable_disable_clause

The enable_disable_clause lets you specify whether and how Oracle Database
should apply an integrity constraint. The DROP and KEEP clauses are valid only when
you are disabling a unique or primary key constraint.

Chapter 12
ALTER TABLE

12-160

See Also:

• The enable_disable_clause (in CREATE TABLE) for a complete description of this
clause, including notes and restrictions that relate to this statement

TABLE LOCK

Oracle Database permits DDL operations on a table only if the table can be locked during the
operation. Such table locks are not required during DML operations.

Note:

Table locks are not acquired on temporary tables.

• Specify ENABLE TABLE LOCK to enable table locks, thereby allowing DDL operations on the
table. All currently executing transactions must commit or roll back before Oracle
Database enables the table lock.

Note:

Oracle Database waits until active DML transactions in the database have
completed before locking the table. Sometimes the resulting delay is
considerable.

• Specify DISABLE TABLE LOCK to disable table locks, thereby preventing DDL operations on
the table.

Note:

Parallel DML operations are not performed when the table lock of the target
table is disabled.

ALL TRIGGERS

Use the ALL TRIGGERS clause to enable or disable all triggers associated with the table.

• Specify ENABLE ALL TRIGGERS to enable all triggers associated with the table. Oracle
Database fires the triggers whenever their triggering condition is satisfied.

To enable a single trigger, use the enable_clause of ALTER TRIGGER.

See Also:

CREATE TRIGGER , ALTER TRIGGER , and "Enabling Triggers: Example"

Chapter 12
ALTER TABLE

12-161

• Specify DISABLE ALL TRIGGERS to disable all triggers associated with the table.
Oracle Database does not fire a disabled trigger even if the triggering condition is
satisfied.

CONTAINER_MAP

Use the CONTAINER_MAP clause to enable or disable the table to be queried using a
container map.

• Specify ENABLE CONTAINER_MAP to enable the table to be queried using a container
map.

• Specify DISABLE CONTAINER_MAP to disable the table from being queried using a
container map.

CONTAINERS_DEFAULT

Use the CONTAINERS_DEFAULT clause to enable or disable the table for the CONTAINERS
clause.

• Specify ENABLE CONTAINERS_DEFAULT to enable the table for the CONTAINERS
clause.

• Specify DISABLE CONTAINERS_DEFAULT to disable the table for the CONTAINERS
clause.

Examples

Adding Constraints to Tables: Example

The following statements create a new table to manipulate data and display the
information in the newly created table:

CREATE TABLE JOBS_Temp AS SELECT * FROM HR.JOBS;

SELECT * FROM JOBS_Temp WHERE MIN_SALARY < 3000;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
PU_CLERK Purchasing Clerk 2500 5500
ST_CLERK Stock Clerk 2008 5000
SH_CLERK Shipping Clerk 2500 5500

The following statement updates the column values to a higher value:

UPDATE JOBS_Temp SET MIN_SALARY = 2300 WHERE MIN_SALARY < 2010;

The following statement adds a constraint:

ALTER TABLE JOBS_Temp ADD CONSTRAINT chk_sal_min CHECK (MIN_SALARY >=2010);

The following statement displays the table information:

SELECT * FROM JOBS_Temp WHERE MIN_SALARY < 3000;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
PU_CLERK Purchasing Clerk 2500 5500
ST_CLERK Stock Clerk 2300 5000
SH_CLERK Shipping Clerk 2500 5500

Chapter 12
ALTER TABLE

12-162

The following statement displays the constraint:

SELECT CONSTRAINT_NAME FROM USER_CONSTRAINTS WHERE TABLE_NAME='JOBS_TEMP';

CONSTRAINT_NAME
--
SYS_C008830
CHK_SAL_MIN

Collection Retrieval: Example

The following statement modifies nested table column ad_textdocs_ntab in the sample table
sh.print_media so that when queried it returns actual values instead of locators:

ALTER TABLE print_media MODIFY NESTED TABLE ad_textdocs_ntab
 RETURN AS VALUE;

Specifying Parallel Processing: Example

The following statement specifies parallel processing for queries to the sample table
oe.customers:

ALTER TABLE customers
 PARALLEL;

Changing the State of a Constraint: Examples

The following statement places in ENABLE VALIDATE state an integrity constraint named
emp_manager_fk in the employees table:

ALTER TABLE employees
 ENABLE VALIDATE CONSTRAINT emp_manager_fk
 EXCEPTIONS INTO exceptions;

Each row of the employees table must satisfy the constraint for Oracle Database to enable
the constraint. If any row violates the constraint, then the constraint remains disabled. The
database lists any exceptions in the table exceptions. You can also identify the exceptions in
the employees table with the following statement:

SELECT e.*
 FROM employees e, exceptions ex
 WHERE e.rowid = ex.row_id
 AND ex.table_name = 'EMPLOYEES'
 AND ex.constraint = 'EMP_MANAGER_FK';

The following statement tries to place in ENABLE NOVALIDATE state two constraints on the
employees table:

ALTER TABLE employees
 ENABLE NOVALIDATE PRIMARY KEY
 ENABLE NOVALIDATE CONSTRAINT emp_last_name_nn;

This statement has two ENABLE clauses:

• The first places a primary key constraint on the table in ENABLE NOVALIDATE state.

• The second places the constraint named emp_last_name_nn in ENABLE NOVALIDATE state.

In this case, Oracle Database enables the constraints only if both are satisfied by each row in
the table. If any row violates either constraint, then the database returns an error and both
constraints remain disabled.

Chapter 12
ALTER TABLE

12-163

Consider the foreign key constraint on the location_id column of the departments
table, which references the primary key of the locations table. The following
statement disables the primary key of the locations table:

ALTER TABLE locations
 MODIFY PRIMARY KEY DISABLE CASCADE;

The unique key in the locations table is referenced by the foreign key in the
departments table, so you must specify CASCADE to disable the primary key. This
clause disables the foreign key as well.

Creating an Exceptions Table for Index-Organized Tables: Example

The following example creates the except_table table to hold rows from the index-
organized table hr.countries that violate the primary key constraint:

EXECUTE DBMS_IOT.BUILD_EXCEPTIONS_TABLE ('hr', 'countries', 'except_table');

ALTER TABLE countries
 ENABLE PRIMARY KEY
 EXCEPTIONS INTO except_table;

To specify an exception table, you must have the privileges necessary to insert rows
into the table. To examine the identified exceptions, you must have the privileges
necessary to query the exceptions table.

See Also:

INSERT and SELECT for information on the privileges necessary to insert
rows into tables

Disabling a CHECK Constraint: Example

The following statement defines and disables a CHECK constraint on the employees
table:

ALTER TABLE employees ADD CONSTRAINT check_comp
 CHECK (salary + (commission_pct*salary) <= 5000)
 DISABLE;

The constraint check_comp ensures that no employee's total compensation
exceeds $5000. The constraint is disabled, so you can increase an employee's
compensation above this limit.

Enabling Triggers: Example

The following statement enables all triggers associated with the employees table:

ALTER TABLE employees
 ENABLE ALL TRIGGERS;

Deallocating Unused Space: Example

The following statement frees all unused space for reuse in table employees, where
the high water mark is above MINEXTENTS:

Chapter 12
ALTER TABLE

12-164

ALTER TABLE employees
 DEALLOCATE UNUSED;

Modifying the Collation of a Column for Fine-Grained Case-Insensitivity: Example

This example shows how to modify a column to be case-insensitive. First, create and
populate table students as follows:

CREATE TABLE students (last_name VARCHAR2(20), id NUMBER);

INSERT INTO students VALUES('Dodd', 364);
INSERT INTO students VALUES('de Niro', 132);
INSERT INTO students VALUES('Vogel', 837);
INSERT INTO students VALUES('van der Kamp', 549);
INSERT INTO students VALUES('van Der Meer', 624);

The following statement returns column last_name in alphabetical order. Notice that the
results are case-sensitive; lowercase letters are ordered after uppercase letters.

SELECT last_name, id
 FROM students
 ORDER BY last_name;

LAST_NAME ID
-------------------- ----------
Dodd 364
Vogel 837
de Niro 132
van Der Meer 624
van der Kamp 549

The following statement changes the data-bound collation of column last_name to case-
insensitive collation BINARY_CI:

ALTER TABLE students
 MODIFY (last_name COLLATE BINARY_CI);

The following statement again returns column last_name in alphabetical order. Notice that the
results are now case-insensitive:

SELECT last_name, id
 FROM students
 ORDER BY last_name;

LAST_NAME ID
-------------------- ----------
de Niro 132
Dodd 364
van der Kamp 549
van Der Meer 624
Vogel 837

Renaming a Column: Example

The following example renames the credit_limit column of the sample table oe.customers
to credit_amount:

ALTER TABLE customers
 RENAME COLUMN credit_limit TO credit_amount;

Dropping a Column: Example

Chapter 12
ALTER TABLE

12-165

This statement illustrates the drop_column_clause with CASCADE CONSTRAINTS. Assume
table t1 is created as follows:

CREATE TABLE t1 (
 pk NUMBER PRIMARY KEY,
 fk NUMBER,
 c1 NUMBER,
 c2 NUMBER,
 CONSTRAINT ri FOREIGN KEY (fk) REFERENCES t1,
 CONSTRAINT ck1 CHECK (pk > 0 and c1 > 0),
 CONSTRAINT ck2 CHECK (c2 > 0)
);

An error will be returned for the following statements:

/* The next two statements return errors:
ALTER TABLE t1 DROP (pk); -- pk is a parent key
ALTER TABLE t1 DROP (c1); -- c1 is referenced by multicolumn
 -- constraint ck1

Submitting the following statement drops column pk, the primary key constraint, the
foreign key constraint, ri, and the check constraint, ck1:

ALTER TABLE t1 DROP (pk) CASCADE CONSTRAINTS;

If all columns referenced by the constraints defined on the dropped columns are also
dropped, then CASCADE CONSTRAINTS is not required. For example, assuming that no
other referential constraints from other tables refer to column pk, then it is valid to
submit the following statement without the CASCADE CONSTRAINTS clause:

ALTER TABLE t1 DROP (pk, fk, c1);

Dropping Unused Columns: Example

The following statements create a new table to manipulate data and display the
information in the newly created table:

CREATE TABLE JOBS_Temp AS SELECT * FROM HR.JOBS;

SELECT * FROM JOBS_Temp WHERE MAX_SALARY > 20000;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
AD_PRES President 20080 40000
AD_VP Administration Vice President 15000 30000
SA_MAN Sales Manager 10000 20080

The following statement adds two new columns:

ALTER TABLE JOBS_Temp ADD (DUMMY1 NUMBER(2), DUMMY2 NUMBER(2));

The following statements inserts values into the newly added columns:

INSERT INTO JOBS_Temp(JOB_ID, JOB_TITLE, DUMMY1, DUMMY2) VALUES
('D','DUMMY',10,20);

INSERT INTO JOBS_Temp(JOB_ID, JOB_TITLE, DUMMY1, DUMMY2) VALUES
('D','DUMMY',10,20)

The following statement sets the newly added columns to unused:

Chapter 12
ALTER TABLE

12-166

ALTER TABLE JOBS_TEMP SET UNUSED (DUMMY1, DUMMY2);

The following statement displays the count of unused columns:

SELECT * FROM USER_UNUSED_COL_TABS WHERE TABLE_NAME='JOBS_TEMP';

TABLE_NAM COUNT
--------- ----------
JOBS_TEMP 2

The following statement drops the unused columns:

ALTER TABLE JOBS_TEMP DROP UNUSED COLUMNS;

The following statement displays the table information:

SELECT * FROM JOBS_TEMP;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
AD_PRES President 20080 40000
AD_VP Administration Vice President 15000 30000
AD_ASST Administration Assistant 3000 6000
FI_MGR Finance Manager 8200 16000
FI_ACCOUNT Accountant 4200 9000
AC_MGR Accounting Manager 8200 16000
AC_ACCOUNT Public Accountant 4200 9000
SA_MAN Sales Manager 10000 20080
SA_REP Sales Representative 6000 12008
PU_MAN Purchasing Manager 8000 15000
PU_CLERK Purchasing Clerk 2500 5500
ST_MAN Stock Manager 5500 8500
ST_CLERK Stock Clerk 2008 5000
SH_CLERK Shipping Clerk 2500 5500
IT_PROG Programmer 4000 10000
MK_MAN Marketing Manager 9000 15000
MK_REP Marketing Representative 4000 9000
HR_REP Human Resources Representative 4000 9000
PR_REP Public Relations Representative 4500 10500
D DUMMY
D DUMMY

Modifying Index-Organized Tables: Examples

This statement modifies the INITRANS parameter for the index segment of index-organized
table countries_demo, which is based on hr.countries:

ALTER TABLE countries_demo INITRANS 4;

The following statement adds an overflow data segment to index-organized table countries:

ALTER TABLE countries_demo ADD OVERFLOW;

This statement modifies the INITRANS parameter for the overflow data segment of index-
organized table countries:

ALTER TABLE countries_demo OVERFLOW INITRANS 4;

Splitting Table Partitions: Examples

Chapter 12
ALTER TABLE

12-167

The following statement splits the old partition sales_q4_2000 in the sample table
sh.sales, creating two new partitions, naming one sales_q4_2000b and reusing the
name of the old partition for the other:

ALTER TABLE sales SPLIT PARTITION SALES_Q4_2000
 AT (TO_DATE('15-NOV-2000','DD-MON-YYYY'))
 INTO (PARTITION SALES_Q4_2000, PARTITION SALES_Q4_2000b);

The following statement splits the old partition sales_q1_2002 into three new partitions
sales_jan_2002, sales_feb_2002, and sales_mar_2002:

ALTER TABLE sales SPLIT PARTITION SALES_Q1_2002 INTO (
 PARTITION SALES_JAN_2002 VALUES LESS THAN (TO_DATE('01-FEB-2002','DD-MON-
YYYY')),
 PARTITION SALES_FEB_2002 VALUES LESS THAN (TO_DATE('01-MAR-2002','DD-MON-
YYYY')),
 PARTITION SALES_MAR_2002);

The following statements create a partitioned version of the pm.print_media table. The
LONG column in the print_media table has been converted to LOB. The table is stored
in tablespaces created in "Creating Oracle Managed Files: Examples". The object
types underlying the ad_textdocs_ntab and ad_header columns are created in the
script that creates the pm sample schema:

CREATE TABLE print_media_part (
 product_id NUMBER(6),
 ad_id NUMBER(6),
 ad_composite BLOB,
 ad_sourcetext CLOB,
 ad_finaltext CLOB,
 ad_fltextn NCLOB,
 ad_textdocs_ntab TEXTDOC_TAB,
 ad_photo BLOB,
 ad_graphic BFILE,
 ad_header ADHEADER_TYP)
 NESTED TABLE ad_textdocs_ntab STORE AS textdoc_nt
 PARTITION BY RANGE (product_id)
 (PARTITION p1 VALUES LESS THAN (100),
 PARTITION p2 VALUES LESS THAN (200));

The following statement splits partition p2 of that table into partitions p2a and p2b:

ALTER TABLE print_media_part
 SPLIT PARTITION p2 AT (150) INTO
 (PARTITION p2a TABLESPACE omf_ts1
 LOB (ad_photo, ad_composite) STORE AS (TABLESPACE omf_ts2),
 PARTITION p2b
 LOB (ad_photo, ad_composite) STORE AS (TABLESPACE omf_ts2))
 NESTED TABLE ad_textdocs_ntab INTO (PARTITION nt_p2a, PARTITION nt_p2b);

In both partitions p2a and p2b, Oracle Database creates the LOB segments for
columns ad_photo and ad_composite in tablespace omf_ts2. The LOB segments for
the remaining columns in partition p2a are stored in tablespace omf_ts1. The LOB
segments for the remaining columns in partition p2b remain in the tablespaces in
which they resided prior to this ALTER statement. However, the database creates new
segments for all the LOB data and LOB index segments, even if they are not moved to
a new tablespace.

Chapter 12
ALTER TABLE

12-168

The database also creates new segments for nested table column ad_textdocs_ntab. The
storage tables is those new segments are nt_p2a and nt_p2b.

Merging Two Table Partitions: Example

The following statement merges back into one partition the partitions created in "Splitting
Table Partitions: Examples":

ALTER TABLE sales
 MERGE PARTITIONS sales_q4_2000, sales_q4_2000b
 INTO PARTITION sales_q4_2000;

The next statement reverses the example in "Splitting Table Partitions: Examples":

ALTER TABLE print_media_part
 MERGE PARTITIONS p2a, p2b INTO PARTITION p2ab TABLESPACE example
 NESTED TABLE ad_textdocs_ntab STORE AS nt_p2ab;

Merging Four Adjacent Range Partitions: Example

The following statement merges four adjacent range partitions, sales_q1_2000,
sales_q2_2000, sales_q3_2000, and sales_q4_2000 into one partition sales_all_2000:

ALTER TABLE sales
 MERGE PARTITIONS sales_q1_2000 TO sales_q4_2000
 INTO PARTITION sales_all_2000;

Adding a Table Partition with a LOB and Nested Table Storage: Examples

The following statement adds a partition p3 to the print_media_part table (see preceding
example) and specifies storage characteristics for the BLOB, CLOB, and nested table columns
of that table:

ALTER TABLE print_media_part ADD PARTITION p3 VALUES LESS THAN (400)
 LOB(ad_photo, ad_composite) STORE AS (TABLESPACE omf_ts1)
 LOB(ad_sourcetext, ad_finaltext) STORE AS (TABLESPACE omf_ts2)
 NESTED TABLE ad_textdocs_ntab STORE AS nt_p3;

The LOB data and LOB index segments for columns ad_photo and ad_composite in partition
p3 will reside in tablespace omf_ts1. The remaining attributes for these LOB columns will be
inherited first from the table-level defaults, and then from the tablespace defaults.

The LOB data segments for columns ad_source_text and ad_finaltext will reside in the
omf_ts2 tablespace, and will inherit all other attributes first from the table-level defaults, and
then from the tablespace defaults.

The partition for the storage table for nested table storage column ad_textdocs_ntab
corresponding to partition p3 of the base table is named nt_p3 and inherits all other attributes
first from the table-level defaults, and then from the tablespace defaults.

Adding Multiple Partitions to a Table: Example

The following statement adds three partitions to the table print_media_part created in
"Splitting Table Partitions: Examples":

ALTER TABLE print_media_part ADD
 PARTITION p3 values less than (300),
 PARTITION p4 values less than (400),
 PARTITION p5 values less than (500);

Working with Default List Partitions: Example

Chapter 12
ALTER TABLE

12-169

The following statements use the list partitioned table created in "List Partitioning
Example". The first statement splits the existing default partition into a new south
partition and a default partition:

ALTER TABLE list_customers SPLIT PARTITION rest
 VALUES ('MEXICO', 'COLOMBIA')
 INTO (PARTITION south, PARTITION rest);

The next statement merges the resulting default partition with the asia partition:

ALTER TABLE list_customers
 MERGE PARTITIONS asia, rest INTO PARTITION rest;

The next statement re-creates the asia partition by splitting the default partition:

ALTER TABLE list_customers SPLIT PARTITION rest
 VALUES ('CHINA', 'THAILAND')
 INTO (PARTITION asia, PARTITION rest);

Dropping a Table Partition: Example

The following statement drops partition p3 created in "Adding a Table Partition with a
LOB and Nested Table Storage: Examples":

ALTER TABLE print_media_part DROP PARTITION p3;

Exchanging Table Partitions: Example

This example creates the table exchange_table with the same structure as the
partitions of the list_customers table created in "List Partitioning Example". It then
replaces partition rest of table list_customers with table exchange_table without
exchanging local index partitions with corresponding indexes on exchange_table and
without verifying that data in exchange_table falls within the bounds of partition rest:

CREATE TABLE exchange_table (
 customer_id NUMBER(6),
 cust_first_name VARCHAR2(20),
 cust_last_name VARCHAR2(20),
 cust_address CUST_ADDRESS_TYP,
 nls_territory VARCHAR2(30),
 cust_email VARCHAR2(40));

ALTER TABLE list_customers
 EXCHANGE PARTITION rest WITH TABLE exchange_table
 WITHOUT VALIDATION;

Modifying Table Partitions: Examples

The following statement marks all the local index partitions corresponding to the asia
partition of the list_customers table UNUSABLE:

ALTER TABLE list_customers MODIFY PARTITION asia
 UNUSABLE LOCAL INDEXES;

The following statement rebuilds all the local index partitions that were marked
UNUSABLE:

ALTER TABLE list_customers MODIFY PARTITION asia
 REBUILD UNUSABLE LOCAL INDEXES;

Moving Table Partitions: Example

Chapter 12
ALTER TABLE

12-170

The following statement moves partition p2b (from "Splitting Table Partitions: Examples") to
tablespace omf_ts1:

ALTER TABLE print_media_part
 MOVE PARTITION p2b TABLESPACE omf_ts1;

Renaming Table Partitions: Examples

The following statement renames a partition of the sh.sales table:

ALTER TABLE sales RENAME PARTITION sales_q4_2003 TO sales_currentq;

Truncating Table Partitions: Example

The following statement uses the print_media_demo table created in "Partitioned Table with
LOB Columns Example". It deletes all the data in the p1 partition and deallocates the freed
space:

ALTER TABLE print_media_demo
 TRUNCATE PARTITION p1 DROP STORAGE;

Updating Global Indexes: Example

The following statement splits partition sales_q1_2000 of the sample table sh.sales and
updates any global indexes defined on it:

ALTER TABLE sales SPLIT PARTITION sales_q1_2000
 AT (TO_DATE('16-FEB-2000','DD-MON-YYYY'))
 INTO (PARTITION q1a_2000, PARTITION q1b_2000)
 UPDATE GLOBAL INDEXES;

Updating Partitioned Indexes: Example

The following statement splits partition costs_Q4_2003 of the sample table sh.costs and
updates the local index defined on it. It uses the tablespaces created in "Creating Basic
Tablespaces: Examples".

CREATE INDEX cost_ix ON costs(channel_id) LOCAL;

ALTER TABLE costs
 SPLIT PARTITION costs_q4_2003 at
 (TO_DATE('01-Nov-2003','dd-mon-yyyy'))
 INTO (PARTITION c_p1, PARTITION c_p2)
 UPDATE INDEXES (cost_ix (PARTITION c_p1 tablespace tbs_02,
 PARTITION c_p2 tablespace tbs_03));

Specifying Object Identifiers: Example

The following statements create an object type, a corresponding object table with a primary-
key-based object identifier, and a table having a user-defined REF column:

CREATE TYPE emp_t AS OBJECT (empno NUMBER, address CHAR(30));

CREATE TABLE emp OF emp_t (
 empno PRIMARY KEY)
 OBJECT IDENTIFIER IS PRIMARY KEY;

CREATE TABLE dept (dno NUMBER, mgr_ref REF emp_t SCOPE is emp);

The next statements add a constraint and a user-defined REF column, both of which reference
table emp

Chapter 12
ALTER TABLE

12-171

ALTER TABLE dept ADD CONSTRAINT mgr_cons FOREIGN KEY (mgr_ref)
 REFERENCES emp;
ALTER TABLE dept ADD sr_mgr REF emp_t REFERENCES emp;

Adding a Table Column: Example

The following statement adds to the countries table a column named duty_pct of
data type NUMBER and a column named visa_needed of data type VARCHAR2 with a size
of 3 and a CHECK integrity constraint:

ALTER TABLE countries
 ADD (duty_pct NUMBER(2,2) CHECK (duty_pct < 10.5),
 visa_needed VARCHAR2(3));

Adding a Virtual Table Column: Example

The following statement adds to a copy of the hr.employees table a column named
income, which is a combination of salary plus commission. Both salary and
commission are NUMBER columns, so the database creates the virtual column as a
NUMBER column even though the data type is not specified in the statement:

CREATE TABLE emp2 AS SELECT * FROM employees;

ALTER TABLE emp2 ADD (income AS (salary + (salary*commission_pct)));

Modifying Table Columns: Examples

The following statement increases the size of the duty_pct column:

ALTER TABLE countries
 MODIFY (duty_pct NUMBER(3,2));

Because the MODIFY clause contains only one column definition, the parentheses
around the definition are optional.

The following statement changes the values of the PCTFREE and PCTUSED parameters
for the employees table to 30 and 60, respectively:

ALTER TABLE employees
 PCTFREE 30
 PCTUSED 60;

Modifying Storage Attributes for a Table

The following statement creates a table named JOBS_TEMP by using the existing JOBS
table:

CREATE TABLE JOBS_TEMP AS SELECT * FROM HR.JOBS;

The following statement queries the USER_TABLES table for storage parameters:

SELECT initial_extent,
 next_extent,
 min_extents,
 max_extents,
 pct_increase,
 blocks,
 sample_size

Chapter 12
ALTER TABLE

12-172

FROM user_tables
WHERE table_name = 'JOBS_TEMP';

INITIAL_EXTENT NEXT_EXTENT MIN_EXTENTS MAX_EXTENTS PCT_INCREASE BLOCKS
SAMPLE_SIZE
-------------- ----------- ----------- ----------- ------------ ----------

 65536 1048576 1 2147483645
1 19

The following statement alters the JOBS_TEMP table with new storage parameters:

ALTER TABLE JOBS_TEMP MOVE
 STORAGE (INITIAL 20K
 NEXT 40K
 MINEXTENTS 2
 MAXEXTENTS 20
 PCTINCREASE 0)
 TABLESPACE USERS;

The following statement queries the USER_TABLES table for the new storage parameters:

SELECT initial_extent,
 next_extent,
 min_extents,
 max_extents,
 pct_increase,
 blocks,
 sample_size
FROM user_tables
WHERE table_name = 'JOBS_TEMP';

INITIAL_EXTENT NEXT_EXTENT MIN_EXTENTS MAX_EXTENTS PCT_INCREASE BLOCKS
SAMPLE_SIZE
-------------- ----------- ----------- ----------- ------------ ----------

 65536 40960 1 2147483645
1 19

Adding, Altering, Renaming and Dropping Table Columns: Example

The following statements create a new table to manipulate data and display the information in
the newly created table:

CREATE TABLE JOBS_Temp AS SELECT * FROM HR.JOBS;

SELECT * FROM JOBS_Temp WHERE MAX_SALARY > 30000;

JOB_ID JOB_TITLE MIN_SALARY MAX_SALARY
---------- ----------------------------------- ---------- ----------
AD_PRES President 20080 40000

The following statement modifies an existing column definition:

ALTER TABLE JOBS_Temp MODIFY(JOB_TITLE VARCHAR2(100));

Chapter 12
ALTER TABLE

12-173

The following statement adds two new columns to the table:

ALTER TABLE JOBS_Temp ADD (BONUS NUMBER (7,2), COMM NUMBER (5,2), DUMMY
NUMBER(2));

The following statement displays the newly added columns:

SELECT JOB_ID, BONUS, COMM, DUMMY FROM JOBS_Temp WHERE MAX_SALARY > 20000;

JOB_ID BONUS COMM DUMMY
---------- ---------- ---------- ----------
AD_PRES
AD_VP
SA_MAN

The following statements rename an existing column and display the modified column:

ALTER TABLE JOBS_Temp RENAME COLUMN COMM TO COMMISSION;

SELECT JOB_ID, COMMISSION FROM JOBS_Temp WHERE MAX_SALARY > 20000;

JOB_ID COMMISSION
---------- ----------
AD_PRES
AD_VP
SA_MAN

The following statement drops a single column from the table:

ALTER TABLE JOBS_Temp DROP COLUMN DUMMY;

The following statement drops multiple columns from the table:

ALTER TABLE JOBS_Temp DROP (BONUS, COMMISSION);

Data Encryption: Examples

The following statement encrypts the salary column of the hr.employees table using
the encryption algorithm AES256. As described in "Semantics" above, you must first
enable Transparent Data Encryption:

ALTER TABLE employees
 MODIFY (salary ENCRYPT USING 'AES256' 'NOMAC');

The following statement adds a new encrypted column online_acct_pw to the
oe.customers table, using the default encryption algorithm AES192. Specifying NO SALT
will allow a B-tree index to be created on the column, if desired.

ALTER TABLE customers
 ADD (online_acct_pw VARCHAR2(8) ENCRYPT 'NOMAC' NO SALT);

The following example decrypts the customer.online_acct_pw column:

ALTER TABLE customers
 MODIFY (online_acct_pw DECRYPT);

Allocating Extents: Example

The following statement allocates an extent of 5 kilobytes for the employees table and
makes it available to instance 4:

Chapter 12
ALTER TABLE

12-174

ALTER TABLE employees
 ALLOCATE EXTENT (SIZE 5K INSTANCE 4);

Because this statement omits the DATAFILE parameter, Oracle Database allocates the extent
in one of the data files belonging to the tablespace containing the table.

Specifying a Default Column Value: Examples

This statement modifies the min_price column of the product_information table so that it
has a default value of 10:

ALTER TABLE product_information
 MODIFY (min_price DEFAULT 10);

If you subsequently add a new row to the product_information table and do not specify a
value for the min_price column, then the value of the min_price column is automatically 10:

INSERT INTO product_information (product_id, product_name,
 list_price)
 VALUES (300, 'left-handed mouse', 40.50);

SELECT product_id, product_name, list_price, min_price
 FROM product_information
 WHERE product_id = 300;

PRODUCT_ID PRODUCT_NAME LIST_PRICE MIN_PRICE
---------- -------------------- ---------- ----------
 300 left-handed mouse 40.5 10

To discontinue previously specified default values, so that they are no longer automatically
inserted into newly added rows, replace the values with NULL, as shown in this statement:

ALTER TABLE product_information
 MODIFY (min_price DEFAULT NULL);

The MODIFY clause need only specify the column name and the modified part of the definition,
rather than the entire column definition. This statement has no effect on any existing values in
existing rows.

The following example adds a column defined with DEFAULT ON NULL to a table. The DEFAULT
column value includes the sequence pseudocolumn NEXTVAL.

Create sequence s1 and table t1 as follows:

CREATE SEQUENCE s1 START WITH 1;

CREATE TABLE t1 (name VARCHAR2(10));
INSERT INTO t1 VALUES('Kevin');
INSERT INTO t1 VALUES('Julia');
INSERT INTO t1 VALUES('Ryan');

Add column id, which defaults to s1.NEXTVAL. The default column value for id is assigned to
each existing row in the table. The order in which s1.NEXTVAL is assigned to each row is
nondeterministic.

ALTER TABLE t1 ADD (id NUMBER DEFAULT ON NULL s1.NEXTVAL NOT NULL);

SELECT id, name FROM t1 ORDER BY id;

 ID NAME
---------- ----------

Chapter 12
ALTER TABLE

12-175

 1 Kevin
 2 Julia
 3 Ryan

If you subsequently add a new row to the table and specify a NULL value for the id
column, then the DEFAULT ON NULL expression s1.NEXTVAL is inserted.

INSERT INTO t1(id, name) VALUES(NULL, 'Sean');

SELECT id, name FROM t1 ORDER BY id;

 ID NAME
---------- ----------
 1 Kevin
 2 Julia
 3 Ryan
 4 Sean

Adding a Constraint to an XMLType Table: Example

The following example adds a primary key constraint to the xwarehouses table, created
in "XMLType Examples":

ALTER TABLE xwarehouses
 ADD (PRIMARY KEY(XMLDATA."WarehouseID"));

Refer to XMLDATA Pseudocolumn for information about this pseudocolumn.

Renaming Constraints: Example

The following statement renames the cust_fname_nn constraint on the sample table
oe.customers to cust_firstname_nn:

ALTER TABLE customers RENAME CONSTRAINT cust_fname_nn
 TO cust_firstname_nn;

Dropping Constraints: Examples

The following statement drops the primary key of the departments table:

ALTER TABLE departments
 DROP PRIMARY KEY CASCADE;

If you know that the name of the PRIMARY KEY constraint is pk_dept, then you could
also drop it with the following statement:

ALTER TABLE departments
 DROP CONSTRAINT pk_dept CASCADE;

The CASCADE clause causes Oracle Database to drop any foreign keys that reference
the primary key.

The following statement drops the unique key on the email column of the employees
table:

ALTER TABLE employees
 DROP UNIQUE (email);

The DROP clause in this statement omits the CASCADE clause. Because of this omission,
Oracle Database does not drop the unique key if any foreign key references it.

Chapter 12
ALTER TABLE

12-176

LOB Columns: Examples

The following statement adds CLOB column resume to the employee table and specifies LOB
storage characteristics for the new column:

ALTER TABLE employees ADD (resume CLOB)
 LOB (resume) STORE AS resume_seg (TABLESPACE example);

To modify the LOB column resume to use caching, enter the following statement:

ALTER TABLE employees MODIFY LOB (resume) (CACHE);

The following statement adds a SecureFiles CLOB column resume to the employee table and
specifies LOB storage characteristics for the new column. SecureFiles LOBs must be stored
in tablespaces with automatic segment-space management. Therefore, the LOB data in this
example is stored in the auto_seg_ts tablespace, which was created in "Specifying Segment
Space Management for a Tablespace: Example":

ALTER TABLE employees ADD (resume CLOB)
LOB (resume) STORE AS SECUREFILE resume_seg (TABLESPACE auto_seg_ts);

To modify the LOB column resume so that it does not use caching, enter the following
statement:

ALTER TABLE employees MODIFY LOB (resume) (NOCACHE);

Nested Tables: Examples

The following statement adds the nested table column skills to the employee table:

ALTER TABLE employees ADD (skills skill_table_type)
 NESTED TABLE skills STORE AS nested_skill_table;

You can also modify nested table storage characteristics. Use the name of the storage table
specified in the nested_table_col_properties to make the modification. You cannot query
or perform DML statements on the storage table. Use the storage table only to modify the
nested table column storage characteristics.

The following statement creates table vet_service with nested table column client and
storage table client_tab. Nested table client_tab is modified to specify constraints:

CREATE TYPE pet_t AS OBJECT
 (pet_id NUMBER, pet_name VARCHAR2(10), pet_dob DATE);
/

CREATE TYPE pet AS TABLE OF pet_t;
/

CREATE TABLE vet_service (vet_name VARCHAR2(30),
 client pet)
 NESTED TABLE client STORE AS client_tab;

ALTER TABLE client_tab ADD UNIQUE (pet_id);

The following statement alters the storage table for a nested table of REF values to specify
that the REF is scoped:

CREATE TYPE emp_t AS OBJECT (eno number, ename char(31));
CREATE TYPE emps_t AS TABLE OF REF emp_t;
CREATE TABLE emptab OF emp_t;
CREATE TABLE dept (dno NUMBER, employees emps_t)

Chapter 12
ALTER TABLE

12-177

 NESTED TABLE employees STORE AS deptemps;
ALTER TABLE deptemps ADD (SCOPE FOR (COLUMN_VALUE) IS emptab);

Similarly, to specify storing the REF with rowid:

ALTER TABLE deptemps ADD (REF(column_value) WITH ROWID);

In order to execute these ALTER TABLE statements successfully, the storage table
deptemps must be empty. Also, because the nested table is defined as a table of scalar
values (REF values), Oracle Database implicitly provides the column name
COLUMN_VALUE for the storage table.

See Also:

• CREATE TABLE for more information about nested table storage

• Oracle Database Object-Relational Developer's Guide for more
information about nested tables

REF Columns: Examples

The following statement creates an object type dept_t and then creates table staff:

CREATE TYPE dept_t AS OBJECT
 (deptno NUMBER, dname VARCHAR2(20));
/

CREATE TABLE staff
 (name VARCHAR2(100),
 salary NUMBER,
 dept REF dept_t);

An object table offices is created as:

CREATE TABLE offices OF dept_t;

The dept column can store references to objects of dept_t stored in any table. If you
would like to restrict the references to point only to objects stored in the departments
table, then you could do so by adding a scope constraint on the dept column as
follows:

ALTER TABLE staff
 ADD (SCOPE FOR (dept) IS offices);

The preceding ALTER TABLE statement will succeed only if the staff table is empty.

If you want the REF values in the dept column of staff to also store the rowids, then
issue the following statement:

ALTER TABLE staff
 ADD (REF(dept) WITH ROWID);

Unpacked Storage in ANYDATA Columns: Example

Chapter 12
ALTER TABLE

12-178

This example creates a table with an ANYDATA column, stores opaque data types in the
ANYDATA column using unpacked storage, and then queries the data types. This example
assumes that you are connected to the database as user hr.

Create table t1, which contains a NUMBER column n and an ANYDATA column x:

CREATE TABLE t1 (n NUMBER, x ANYDATA);

Create an object type clob_typ, which contains a CLOB attribute:

CREATE OR REPLACE TYPE clob_typ AS OBJECT (c clob);
/

Enable unpacked storage of the opaque data types XMLType and clob_typ in ANYDATA column
x of table t1:

ALTER TABLE t1 MODIFY OPAQUE TYPE x STORE (XMLType, clob_typ) UNPACKED;

Insert XMLType and clob_typ objects into table t1. These types will use unpacked storage:

INSERT INTO t1
 VALUES(1, anydata.convertobject(XMLType('<Test>This is test XML</Test>')));

INSERT INTO t1
 VALUES(2, anydata.convertobject(clob_typ(TO_CLOB('This is a test CLOB'))));

Query table t1 to view the names of the types stored in ANYDATA column x:

SELECT t1.*, anydata.getTypeName(t1.x) typename FROM t1;

 N X() TYPENAME
----- -------------------- --------------------
 1 ANYDATA() SYS.XMLTYPE
 2 ANYDATA() HR.CLOB_TYP

Create functions that allow you to query the values stored in the XMLType and clob_typ data
types:

CREATE FUNCTION get_xmltype (ad IN ANYDATA) RETURN VARCHAR2 AS
 rtn_val PLS_INTEGER;
 my_xmltype XMLType;
 string_val VARCHAR2(30);
 BEGIN
 rtn_val := ad.getObject(my_xmltype);
 string_val := my_xmltype.getstringval();
 return (string_val);
 END;
/

CREATE FUNCTION get_clob_typ (ad IN ANYDATA) RETURN VARCHAR2 AS
 rtn_val PLS_INTEGER;
 my_clob_typ clob_typ;
 string_val VARCHAR2(30);
 BEGIN
 rtn_val := ad.getObject(my_clob_typ);
 string_val := (my_clob_typ.c);
 return (string_val);
 END;
/

Query table t1 to view the values stored in each data type in ANYDATA column x:

Chapter 12
ALTER TABLE

12-179

SELECT t1.*, anydata.getTypeName(t1.x) typename,
 CASE
 WHEN anydata.gettypename(t1.x) = 'SYS.XMLTYPE' THEN get_xmltype(t1.x)
 WHEN anydata.gettypename(t1.x) = 'HR.CLOB_TYP' THEN get_clob_typ(t1.x)
 END string_value
FROM t1;

 N X() TYPENAME STRING_VALUE
----- -------------------- -------------------- ------------------------------
 1 ANYDATA() SYS.XMLTYPE <Test>This is test XML</Test>
 2 ANYDATA() HR.CLOB_TYP This is a test CLOB

Additional Examples

For examples of defining integrity constraints with the ALTER TABLE statement, see the
constraint.

For examples of changing the storage parameters of a table, see the storage_clause.

ALTER TABLESPACE
Purpose

Use the ALTER TABLESPACE statement to alter an existing tablespace or one or more of
its data files or temp files.

You cannot use this statement to convert a dictionary-managed tablespace to a locally
managed tablespace. For that purpose, use the DBMS_SPACE_ADMIN package, which is
documented in Oracle Database PL/SQL Packages and Types Reference.

See Also:

Oracle Database Administrator's Guide and CREATE TABLESPACE for
information on creating a tablespace

Prerequisites

To alter the SYSAUX tablespace, you must have the SYSDBA system privilege.

If you have the ALTER TABLESPACE system privilege, then you can perform any ALTER
TABLESPACE operation. If you have the MANAGE TABLESPACE system privilege, then you
can only perform the following operations:

• Take a tablespace online or offline

• Begin or end a backup

• Make a tablespace read only or read write

• Change the state of a tablespace to PERMANENT or TEMPORARY
• Set the default logging mode of a tablespace to LOGGING or NOLOGGING
• Put a tablespace in force logging mode or take it out of force logging mode

• Rename a tablespace or a tablespace data file

• Specify RETENTION GUARANTEE or RETENTION NOGUARANTEE for an undo tablespace

Chapter 12
ALTER TABLESPACE

12-180

• Resize a data file for a tablespace

• Enable or disable autoextension of a data file for a tablespace

• Shrink the amount of space a temporary tablespace or a temp file is taking

Before you can make a tablespace read only, the following conditions must be met:

• The tablespace must be online.

• The tablespace must not contain any active rollback segments. For this reason, the
SYSTEM tablespace can never be made read only, because it contains the SYSTEM rollback
segment. Additionally, because the rollback segments of a read-only tablespace are not
accessible, Oracle recommends that you drop the rollback segments before you make a
tablespace read only.

• The tablespace must not be involved in an open backup, because the end of a backup
updates the header file of all data files in the tablespace.

Performing this function in restricted mode may help you meet these restrictions, because
only users with RESTRICTED SESSION system privilege can be logged on.

Syntax

alter_tablespace::=

ALTER TABLESPACE tablespace alter_tablespace_attrs ;

(alter_tablespace_attrs::=)

Chapter 12
ALTER TABLESPACE

12-181

alter_tablespace_attrs::=

default_tablespace_params

MINIMUM EXTENT size_clause

RESIZE size_clause

COALESCE

SHRINK SPACE

KEEP size_clause

RENAME TO new_tablespace_name

BEGIN

END
BACKUP

datafile_tempfile_clauses

tablespace_logging_clauses

tablespace_group_clause

tablespace_state_clauses

autoextend_clause

flashback_mode_clause

tablespace_retention_clause

alter_tablespace_encryption

lost_write_protection

(default_tablespace_params::=, size_clause::=, datafile_tempfile_clauses::=,
tablespace_logging_clauses::=, tablespace_group_clause::=,
tablespace_state_clauses::=, autoextend_clause::=, flashback_mode_clause::=,
tablespace_retention_clause::=, alter_tablespace_encryption::=,
lost_write_protection::=)

default_tablespace_params::=

DEFAULT

default_table_compression default_index_compression inmemory_clause

ilm_clause storage_clause

(default_table_compression::=—part of CREATE TABLESPACE,
default_index_compression::=—part of CREATE TABLESPACE, inmemory_clause::=—part
of CREATE TABLESPACE, ilm_clause::=—part of ALTER TABLE, storage_clause::=)

Chapter 12
ALTER TABLESPACE

12-182

Note:

If you specify the DEFAULT clause, then you must specify at least one of the clauses
default_table_compression, default_index_compression, inmemory_clause,
ilm_clause, or storage_clause.

datafile_tempfile_clauses::=

ADD
DATAFILE

TEMPFILE

file_specification

,

DROP
DATAFILE

TEMPFILE

’ filename ’

file_number

SHRINK TEMPFILE
’ filename ’

file_number

KEEP size_clause

RENAME DATAFILE ’ filename ’

,

TO ’ filename ’

,

DATAFILE

TEMPFILE

ONLINE

OFFLINE

(file_specification::=).

tablespace_logging_clauses::=

logging_clause

NO

FORCE LOGGING

(logging_clause::=)

tablespace_group_clause::=

TABLESPACE GROUP
tablespace_group_name

’ ’

Chapter 12
ALTER TABLESPACE

12-183

tablespace_state_clauses::=

ONLINE

OFFLINE

NORMAL

TEMPORARY

IMMEDIATE

READ

ONLY

WRITE

PERMANENT

TEMPORARY

autoextend_clause::=

AUTOEXTEND

OFF

ON

NEXT size_clause maxsize_clause

(size_clause::=)

maxsize_clause::=

MAXSIZE

UNLIMITED

size_clause

(size_clause::=)

flashback_mode_clause::=

FLASHBACK

ON

OFF

tablespace_retention_clause::=

RETENTION

GUARANTEE

NOGUARANTEE

Chapter 12
ALTER TABLESPACE

12-184

alter_tablespace_encryption::=

ENCRYPTION

OFFLINE

tablespace_encryption_spec

ENCRYPT

DECRYPT

ONLINE

tablespace_encryption_spec ENCRYPT

REKEY

DECRYPT

ts_file_name_convert

FINISH

ENCRYPT

REKEY

DECRYPT

ts_file_name_convert

(tablespace_encryption_spec::=, ts_file_name_convert::=)

tablespace_encryption_spec::=

USING ’ encrypt_algorithm ’

ts_file_name_convert::=

FILE_NAME_CONVERT = (’ filename_pattern ’ , ’ replacement_filename_pattern ’

,

)

KEEP

lost_write_protection::=

ENABLE

DISABLE

REMOVE

SUSPEND

LOST WRITE PROTECTION

Semantics

tablespace

Specify the name of the tablespace to be altered.

Restrictions on Altering Tablespaces

Chapter 12
ALTER TABLESPACE

12-185

Altering tablespaces is subject to the following restrictions:

• If tablespace is an undo tablespace, then the only other clauses you can specify
in this statement are ADD DATAFILE, RENAME DATAFILE, RENAME TO (renaming the
tablespace), DATAFILE ... ONLINE, DATAFILE ... OFFLINE, BEGIN BACKUP, and END
BACKUP.

• You cannot make the SYSTEM tablespace read only or temporary and you cannot
take it offline.

• For locally managed temporary tablespaces, the only clause you can specify in
this statement is the ADD clause.

See Also:

Oracle Database Administrator's Guide for information on automatic undo
management and undo tablespaces

alter_tablespace_attrs

Use the alter_tablespace_attrs clauses to change the attributes of the tablespace.

default_tablespace_params

This clause lets you specify new default parameters for the tablespace. The new
default parameters apply to objects subsequently created in the tablespace.

The clauses default_table_compression, default_index_compression,
inmemory_clause, ilm_clause, and storage_clause have the same semantics in
CREATE TABLESPACE and ALTER TABLESPACE. For complete information on these
clauses, refer to the default_tablespace_params clause in the documentation on
CREATE TABLESPACE.

MINIMUM EXTENT

This clause is valid only for permanent dictionary-managed tablespaces. The MINIMUM
EXTENT clause lets you control free space fragmentation in the tablespace by ensuring
that every used or free extent in a tablespace is at least as large as, and is a multiple
of, the value specified in the size_clause.

Restriction on MINIMUM EXTENT

You cannot specify this clause for a locally managed tablespace or for a dictionary-
managed temporary tablespace.

See Also:

size_clause for information about that clause, Oracle Database
Administrator's Guide for more information about using MINIMUM EXTENT to
control space fragmentation

Chapter 12
ALTER TABLESPACE

12-186

RESIZE Clause

This clause is valid only for bigfile tablespaces, including shadow tablespaces which store
lost write protection tracking data. It lets you increase or decrease the size of the single data
file to an absolute size. Use K, M, G, or T to specify the size in kilobytes, megabytes,
gigabytes, or terabytes, respectively.

To change the size of a newly added data file or temp file in smallfile tablespaces, use the
ALTER DATABASE ... autoextend_clause (see database_file_clauses).

See Also:

BIGFILE | SMALLFILE for information on bigfile tablespaces

COALESCE

For each data file in the tablespace, this clause combines all contiguous free extents into
larger contiguous extents.

SHRINK SPACE Clause

This clause is valid only for temporary tablespaces. It lets you reduce the amount of space
the tablespace is taking. In the optional KEEP clause, the size_clause defines the lower
bound that a tablespace can be shrunk to. It is the opposite of MAXSIZE for an autoextensible
tablespace. If you omit the KEEP clause, then the database will attempt to shrink the
tablespace as much as possible as long as other tablespace storage attributes are satisfied.

RENAME Clause

Use this clause to rename tablespace. This clause is valid only if tablespace and all its data
files are online and the COMPATIBLE parameter is set to 10.0.0 or greater. You can rename
both permanent and temporary tablespaces.

If tablespace is read only, then Oracle Database does not update the data file headers to
reflect the new name. The alert log will indicate that the data file headers have not been
updated.

Note:

If you re-create the control file, and if the data files that Oracle Database uses for
this purpose are restored backups whose headers reflect the old tablespace name,
then the re-created control file will also reflect the old tablespace name. However,
after the database is fully recovered, the control file will reflect the new name.

If tablespace has been designated as the undo tablespace for any instance in an Oracle
Real Application Clusters (Oracle RAC) environment, and if a server parameter file was used
to start up the database, then Oracle Database changes the value of the UNDO_TABLESPACE
parameter for that instance in the server parameter file (SPFILE) to reflect the new tablespace
name. If a single-instance database is using a parameter file (pfile) instead of an spfile, then

Chapter 12
ALTER TABLESPACE

12-187

the database puts a message in the alert log advising the database administrator to
change the value manually in the pfile.

Note:

The RENAME clause does not change the value of the UNDO_TABLESPACE
parameter in the running instance. Although this does not affect the
functioning of the undo tablespace, Oracle recommends that you issue the
following statement to manually change the value of UNDO_TABLESPACE to the
new tablespace name for the duration of the instance:

ALTER SYSTEM SET UNDO_TABLESPACE = new_tablespace_name SCOPE = MEMORY;

You only need to issue this statement once. If the UNDO_TABLESPACE
parameter is set to the new tablespace name in the pfile or spfile, then the
parameter will be set correctly when the instance is next restarted.

Restriction on Renaming Tablespaces

You cannot rename the SYSTEM or SYSAUX tablespaces.

BACKUP Clauses

Use these clauses to move all data files in a tablespace into or out of online
(sometimes called hot) backup mode.

See Also:

• Oracle Database Administrator's Guide for information on restarting the
database without media recovery

• ALTER DATABASE "BACKUP Clauses" for information on moving all data
files in the database into and out of online backup mode

• ALTER DATABASE alter_datafile_clause for information on taking individual
data files out of online backup mode

BEGIN BACKUP

Specify BEGIN BACKUP to indicate that an open backup is to be performed on the data
files that make up this tablespace. This clause does not prevent users from accessing
the tablespace. You must use this clause before beginning an open backup.

Restrictions on Beginning Tablespace Backup

Beginning tablespace backup is subject to the following restrictions:

• You cannot specify this clause for a read-only tablespace or for a temporary locally
managed tablespace.

• While the backup is in progress, you cannot take the tablespace offline normally,
shut down the instance, or begin another backup of the tablespace.

Chapter 12
ALTER TABLESPACE

12-188

See Also:

"Backing Up Tablespaces: Examples"

END BACKUP

Specify END BACKUP to indicate that an online backup of the tablespace is complete. Use this
clause as soon as possible after completing an online backup. Otherwise, if an instance
failure or SHUTDOWN ABORT occurs, then Oracle Database assumes that media recovery
(possibly requiring archived redo log) is necessary at the next instance startup.

Restriction on Ending Tablespace Backup

You cannot use this clause on a read-only tablespace.

datafile_tempfile_clauses

The tablespace file clauses let you add or modify a data file or temp file.

ADD Clause

Specify ADD to add to the tablespace a data file or temp file specified by file_specification.
Use the datafile_tempfile_spec form of file_specification (see file_specification) to list
regular data files and temp files in an operating system file system or to list Oracle Automatic
Storage Management disk group files.

For locally managed temporary tablespaces, this is the only clause you can specify at any
time.

If you omit file_specification, then Oracle Database creates an Oracle Managed File of
100M with AUTOEXTEND enabled.

You can add a data file or temp file to a locally managed tablespace that is online or to a
dictionary managed tablespace that is online or offline. Ensure the file is not in use by another
database.

Restriction on Adding Data Files and Temp Files

You cannot specify this clause for a bigfile (single-file) tablespace, as such a tablespace has
only one data file or temp file.

Note:

On some operating systems, Oracle does not allocate space for a temp file until the
temp file blocks are actually accessed. This delay in space allocation results in
faster creation and resizing of temp files, but it requires that sufficient disk space is
available when the temp files are later used. To avoid potential problems, before
you create or resize a temp file, ensure that the available disk space exceeds the
size of the new temp file or the increased size of a resized temp file. The excess
space should allow for anticipated increases in disk space use by unrelated
operations as well. Then proceed with the creation or resizing operation.

Chapter 12
ALTER TABLESPACE

12-189

See Also:

file_specification , "Adding and Dropping Data Files and Temp Files:
Examples", and "Adding an Oracle-managed Data File: Example"

DROP Clause

Specify DROP to drop from the tablespace an empty data file or temp file specified by
filename or file_number. This clause causes the data file or temp file to be removed
from the data dictionary and deleted from the operating system. The database must be
open at the time this clause is specified.

The ALTER TABLESPACE ... DROP TEMPFILE statement is equivalent to specifying the
ALTER DATABASE TEMPFILE ... DROP INCLUDING DATAFILES.

Restrictions on Dropping Files

To drop a data file or temp file, the data file or temp file:

• Must be empty.

• Cannot be the first data file that was created in the tablespace. In such cases,
drop the tablespace instead.

• Cannot be in a read-only tablespace that was migrated from dictionary managed
to locally managed. Dropping a data file from all other read-only tablespaces is
supported.

• Cannot be offline.

See Also:

• ALTER DATABASE alter_tempfile_clause for additional information on
dropping temp files

• Oracle Database Administrator's Guide for information on data file
numbers and for guidelines on managing data files

• "Adding and Dropping Data Files and Temp Files: Examples"

SHRINK TEMPFILE Clause

This clause is valid only when altering a temporary tablespace. It lets you reduce the
amount of space the specified temp file is taking. In the optional KEEP clause, the
size_clause defines the lower bound that the temp file can be shrunk to. It is the
opposite of MAXSIZE for an autoextensible tablespace. If you omit the KEEP clause, then
the database will attempt to shrink the temp file as much as possible as long as other
storage attributes are satisfied.

RENAME DATAFILE Clause

Specify RENAME DATAFILE to rename one or more of the tablespace data files. The
database must be open, and you must take the tablespace offline before renaming it.

Chapter 12
ALTER TABLESPACE

12-190

Each filename must fully specify a data file using the conventions for filenames on your
operating system.

This clause merely associates the tablespace with the new file rather than the old one. This
clause does not actually change the name of the operating system file. You must change the
name of the file through your operating system.

See Also:

"Moving and Renaming Tablespaces: Example"

ONLINE | OFFLINE Clauses

Use these clauses to take all data files or temp files in the tablespace offline or put them
online. These clauses have no effect on the ONLINE or OFFLINE status of the tablespace itself.

The database must be mounted. If tablespace is SYSTEM, or an undo tablespace, or the
default temporary tablespace, then the database must not be open.

tablespace_logging_clauses

Use these clauses to set or change the logging characteristics of the tablespace.

logging_clause

Specify LOGGING if you want logging of all tables, indexes, and partitions within the
tablespace. The tablespace-level logging attribute can be overridden by logging
specifications at the table, index, and partition levels.

When an existing tablespace logging attribute is changed by an ALTER TABLESPACE statement,
all tables, indexes, and partitions created after the statement will have the new default
logging attribute (which you can still subsequently override). The logging attribute of existing
objects is not changed.

If the tablespace is in FORCE LOGGING mode, then you can specify NOLOGGING in this statement
to set the default logging mode of the tablespace to NOLOGGING, but this will not take the
tablespace out of FORCE LOGGING mode.

[NO] FORCE LOGGING

Use this clause to put the tablespace in force logging mode or take it out of force logging
mode. The database must be open and in READ WRITE mode. Neither of these settings
changes the default LOGGING or NOLOGGING mode of the tablespace.

Restriction on Force Logging Mode

You cannot specify FORCE LOGGING for an undo or a temporary tablespace.

See Also:

Oracle Database Administrator's Guide for information on when to use FORCE
LOGGING mode and "Changing Tablespace Logging Attributes: Example"

Chapter 12
ALTER TABLESPACE

12-191

tablespace_group_clause

This clause is valid only for locally managed temporary tablespaces. Use this clause to
add tablespace to or remove it from the tablespace_group_name tablespace group.

• Specify a group name to indicate that tablespace is a member of this tablespace
group. If tablespace_group_name does not already exist, then Oracle Database
implicitly creates it when you alter tablespace to be a member of it.

• Specify an empty string (' ') to remove tablespace from the
tablespace_group_name tablespace group.

Restriction on Tablespace Groups

You cannot specify a tablespace group for a permanent tablespace or for a dictionary-
managed temporary tablespace.

See Also:

Oracle Database Administrator's Guide for more information on tablespace
groups and "Assigning a Tablespace Group: Example"

tablespace_state_clauses

Use these clauses to set or change the state of the tablespace.

ONLINE | OFFLINE

Specify ONLINE to bring the tablespace online. Specify OFFLINE to take the tablespace
offline and prevent further access to its segments. When you take a tablespace offline,
all of its data files are also offline.

Note:

Before taking a tablespace offline for a long time, consider changing the
tablespace allocation of any users who have been assigned the tablespace
as either a default or temporary tablespace. While the tablespace is offline,
such users cannot allocate space for objects or sort areas in the tablespace.
See ALTER USER for more information on allocating tablespace quota to
users.

Restriction on Taking Tablespaces Offline

You cannot take a temporary tablespace offline.

OFFLINE NORMAL

Specify NORMAL to flush all blocks in all data files in the tablespace out of the system
global area (SGA). You need not perform media recovery on this tablespace before
bringing it back online. This is the default.

OFFLINE TEMPORARY

Chapter 12
ALTER TABLESPACE

12-192

If you specify TEMPORARY, then Oracle Database performs a checkpoint for all online data files
in the tablespace but does not ensure that all files can be written. Files that are offline when
you issue this statement may require media recovery before you bring the tablespace back
online.

OFFLINE IMMEDIATE

If you specify IMMEDIATE, then Oracle Database does not ensure that tablespace files are
available and does not perform a checkpoint. You must perform media recovery on the
tablespace before bringing it back online.

Note:

The FOR RECOVER setting for ALTER TABLESPACE ... OFFLINE has been deprecated.
The syntax is supported for backward compatibility. However, Oracle recommends
that you use the transportable tablespaces feature for tablespace recovery.

See Also:

Oracle Database Backup and Recovery User's Guide for information on using
transportable tablespaces to perform media recovery

READ ONLY | READ WRITE

Specify READ ONLY to place the tablespace in transition read-only mode. In this state,
existing transactions can complete (commit or roll back), but no further DML operations are
allowed to the tablespace except for rollback of existing transactions that previously modified
blocks in the tablespace. You cannot make the SYSAUX, SYSTEM, or temporary tablespaces
READ ONLY.

When a tablespace is read only, you can copy its files to read-only media. You must then
rename the data files in the control file to point to the new location by using the SQL
statement ALTER DATABASE ... RENAME.

See Also:

• Oracle Database Concepts for more information on read-only tablespaces

• ALTER DATABASE

Specify READ WRITE to indicate that write operations are allowed on a previously read-only
tablespace.

PERMANENT | TEMPORARY

Specify PERMANENT to indicate that the tablespace is to be converted from a temporary to a
permanent tablespace. A permanent tablespace is one in which permanent database objects
can be stored. This is the default when a tablespace is created.

Chapter 12
ALTER TABLESPACE

12-193

Specify TEMPORARY to indicate that the tablespace is to be converted from a permanent
to a temporary tablespace. A temporary tablespace is one in which no permanent
database objects can be stored. Objects in a temporary tablespace persist only for the
duration of the session.

Restrictions on Temporary Tablespaces

Temporary tablespaces are subject to the following restrictions:

• You cannot specify TEMPORARY for the SYSAUX tablespace.

• If tablespace was not created with a standard block size, then you cannot change
it from permanent to temporary.

• You cannot specify TEMPORARY for a tablespace in FORCE LOGGING mode.

autoextend_clause

This clause is valid only for bigfile (single-file) tablespaces. Use this clause to enable
or disable autoextension of the single data file in the tablespace. To enable or disable
autoextension of a newly added data file or temp file in smallfile tablespaces, use the
autoextend_clause of the database_file_clauses in the ALTER DATABASE statement.

See Also:

• Oracle Database Administrator's Guide for information about bigfile
(single-file) tablespaces

• file_specification for more information about the autoextend_clause

flashback_mode_clause

Use this clause to specify whether this tablespace should participate in any
subsequent FLASHBACK DATABASE operation.

• For you to turn FLASHBACK mode on, the database must be mounted and closed.

• For you to turn FLASHBACK mode off, the database must be mounted, either open
READ WRITE or closed.

This clause is not valid for temporary tablespaces.

Refer to CREATE TABLESPACE for more complete information on this clause.

See Also:

Oracle Database Backup and Recovery User's Guide for more information
about Flashback Database

tablespace_retention_clause

This clause has the same semantics in CREATE TABLESPACE and ALTER TABLESPACE
statements. Refer to tablespace_retention_clause in the documentation on CREATE
TABLESPACE.

Chapter 12
ALTER TABLESPACE

12-194

alter_tablespace_encryption

These clauses let you encrypt, decrypt, or rekey the tablespace.

OFFLINE

This clause lets you encrypt or decrypt the tablespace with offline conversion. The tablespace
must be offline or the database must be mounted, but not open. The offline conversion
method does not use auxiliary disk space or files; it operates directly on the existing datafiles.
Therefore, you should perform a full backup of the tablespace before converting it offline.

• Specify ENCRYPT to encrypt the tablespace. You can encrypt the tablespace using AES128,
AES192, or AES256 algorithms. The tablespace must be unencrpyted.

• Specify DECRYPT to decrypt the tablespace. The tablespace must have been previously
encrypted with offline conversion (OFFLINE ENCRYPT).

If an offline conversion operation is interrupted, then you can reissue the offline conversion
command to finish the operation.

ONLINE

This clause lets you encrypt, decrypt, or rekey the tablespace with online conversion. The
tablespace must be online. The online conversion method creates a new datafile for each
datafile in the tablespace. Therefore, before using this clause, ensure that the amount of free
disk space is greater than or equal to the amount of disk space currently used by the
tablespace.

• Specify ENCRYPT to encrypt the tablespace. The tablespace must be unencrpyted.

• Specify REKEY to encrypt an encrypted the tablespace using a different encryption
algorithm. The tablespace must have been encrypted when it was created or encrypted
with online conversion (ONLINE ENCRYPT).

• Specify DECRYPT to decrypt the tablespace. The tablespace must have been encrypted
when it was created or encrypted with online conversion (ONLINE ENCRYPT).

If an online conversion operation is interrupted, then you can issue the FINISH clause to finish
the operation. Refer to the FINISH clause.

tablespace_encryption_spec

Use this clause to specify the encryption algorithm to use when encrypting or rekeying the
tablespace. If you omit this clause, then the datafiles will be encrypted using the AES128
algorithm. Refer to tablespace_encryption_spec in the documentation on CREATE TABLESPACE
for the full semantics of this clause.

ts_file_name_convert

Use this clause to determine how the database generates the names of the new datafiles that
are created during online conversion.

If FILE_NAME_CONVERT is omitted, Oracle will internally select a name for the auxiliary file, and
later rename it back to the original name.

• For filename_pattern, specify a string found in an existing datafile name.

• For replacement_filename_pattern, specify a replacement string. Oracle Database will
replace filename_pattern with replacement_filename_pattern when naming the new
datafile.

Chapter 12
ALTER TABLESPACE

12-195

• Specify KEEP to retain the original files after the tablespace conversion is finished.
If you omit this clause, then the original files are deleted when the conversion is
finished.

FINISH

This clause lets you finish a previously interrupted online conversion operation. The
ENCRYPT, DECRYPT, REKEY, and ts_file_name_convert clauses have the same
semantics here as they have for the ONLINE clause. Refer to the ONLINE clause for
complete information.

Restriction on the alter_tablespace_encryption Clause

You cannot perform offline or online conversions on temporary tablespaces.

lost_write_protection

Before you can enable lost write protection on individual tablespaces, you must first
enable the database for shadow lost write protection with ALTER DATABASE. Then you
must create at least one shadow tablespace in that database using the CREATE
TABLESPACE command.

After these steps you can use ALTER TABLESPACE to enable, remove, and suspend lost
write protection on the shadow tablespace.

Example: Enable Lost Write Protection for a Tablespace

The following command enables lost write protection for the tbsu1 tablespace.

 ALTER TABLESPACE tbsu1 ENABLE LOST WRITE PROTECTION

Example: Remove Lost Write Protection for a Shadow Tablespace

The following command removes lost write protection for the tbsu1 tablespace.

 ALTER TABLESPACE tbsu1 REMOVE LOST WRITE PROTECTION

Example: Suspend Lost Write Protection for a Shadow Tablespace

The following command suspends lost write protection for the tbsu1 tablespace.

 ALTER TABLESPACE tbsu1 SUSPEND LOST WRITE PROTECTION

See Also:

Managing Lost Write Protection with Shadow Tablespaces

Examples

Backing Up Tablespaces: Examples

The following statement signals to the database that a backup is about to begin:

ALTER TABLESPACE tbs_01
 BEGIN BACKUP;

The following statement signals to the database that the backup is finished:

Chapter 12
ALTER TABLESPACE

12-196

ALTER TABLESPACE tbs_01
 END BACKUP;

Moving and Renaming Tablespaces: Example

This example moves and renames a data file associated with the tbs_02 tablespace, created
in "Enabling Autoextend for a Tablespace: Example", from diskb:tbs_f5.dbf to
diska:tbs_f5.dbf:

1. Take the tablespace offline using an ALTER TABLESPACE statement with the OFFLINE
clause:

ALTER TABLESPACE tbs_02 OFFLINE NORMAL;
2. Copy the file from diskb:tbs_f5.dbf to diska:tbs_f5.dbf using your operating system

commands.

3. Rename the data file using an ALTER TABLESPACE statement with the RENAME DATAFILE
clause:

ALTER TABLESPACE tbs_02
 RENAME DATAFILE 'diskb:tbs_f5.dbf'
 TO 'diska:tbs_f5.dbf';

4. Bring the tablespace back online using an ALTER TABLESPACE statement with the ONLINE
clause:

ALTER TABLESPACE tbs_02 ONLINE;
Adding and Dropping Data Files and Temp Files: Examples

The following statement adds a data file to the tablespace. When more space is needed, new
10-kilobytes extents will be added up to a maximum of 100 kilobytes:

ALTER TABLESPACE tbs_03
 ADD DATAFILE 'tbs_f04.dbf'
 SIZE 100K
 AUTOEXTEND ON
 NEXT 10K
 MAXSIZE 100K;

The following statement drops the empty data file:

ALTER TABLESPACE tbs_03
 DROP DATAFILE 'tbs_f04.dbf';

The following statements add a temp file to the temporary tablespace created in "Creating a
Temporary Tablespace: Example" and then drops the temp file:

ALTER TABLESPACE temp_demo ADD TEMPFILE 'temp05.dbf' SIZE 5 AUTOEXTEND ON;

ALTER TABLESPACE temp_demo DROP TEMPFILE 'temp05.dbf';

Managing Space in a Temporary Tablespace: Example

The following statement manages the space in the temporary tablespace created in "Creating
a Temporary Tablespace: Example" using the SHRINK SPACE clause. The KEEP clause is
omitted, so the database will attempt to shrink the tablespace as much as possible as long as
other tablespace storage attributes are satisfied.

ALTER TABLESPACE temp_demo SHRINK SPACE;

Adding an Oracle-managed Data File: Example

Chapter 12
ALTER TABLESPACE

12-197

The following example adds an Oracle-managed data file to the omf_ts1 tablespace
(see "Creating Oracle Managed Files: Examples" for the creation of this tablespace).
The new data file is 100M and is autoextensible with unlimited maximum size:

ALTER TABLESPACE omf_ts1 ADD DATAFILE;

Changing Tablespace Logging Attributes: Example

The following example changes the default logging attribute of a tablespace to
NOLOGGING:

ALTER TABLESPACE tbs_03 NOLOGGING;

Altering a tablespace logging attribute has no affect on the logging attributes of the
existing schema objects within the tablespace. The tablespace-level logging attribute
can be overridden by logging specifications at the table, index, and partition levels.

Changing Undo Data Retention: Examples

The following statement changes the undo data retention for tablespace undots1 to
normal undo data behavior:

ALTER TABLESPACE undots1
 RETENTION NOGUARANTEE;

The following statement changes the undo data retention for tablespace undots1 to
behavior that preserves unexpired undo data:

ALTER TABLESPACE undots1
 RETENTION GUARANTEE;

ALTER TABLESPACE SET

Note:

This SQL statement is valid only if you are using Oracle Sharding. For more
information on Oracle Sharding, refer to Oracle Database Administrator’s
Guide.

Purpose

Use the ALTER TABLESPACE SET statement to change an attribute of an existing
tablespace set. The attribute change is applied to all tablespaces in the tablespace
set.

See Also:

CREATE TABLESPACE SET and DROP TABLESPACE SET

Prerequisites

You must be connected to a shard catalog database as an SDB user.

Chapter 12
ALTER TABLESPACE SET

12-198

If you have the ALTER TABLESPACE system privilege, then you can perform any ALTER
TABLESPACE SET operation. If you have the MANAGE TABLESPACE system privilege, then you can
only perform the following operations:

• Take all tablespaces in a tablespace set online or offline

• Begin or end a backup

• Make all tablespaces in a tablespace set read only or read write

• Set the default logging mode of all tablespaces in a tablespace set to LOGGING or
NOLOGGING

• Put all tablespaces in a tablespace set in force logging mode or take them out of force
logging mode

• Resize all data files for a tablespace set

• Enable or disable autoextension of all data files for a tablespace set

Before you can make a tablespace set read only, the following conditions must be met:

• The tablespaces in the tablespace set must be online.

• The tablespace set must not contain any active rollback segments. Additionally, because
the rollback segments of a read-only tablespace set are not accessible, Oracle
recommends that you drop the rollback segments before you make a tablespace set read
only.

• The tablespace set must not be involved in an open backup, because the end of a
backup updates the header file of all data files in the tablespace set.

Syntax

alter_tablespace_set::=

ALTER TABLESPACE SET tablespace_set alter_tablespace_attrs ;

Chapter 12
ALTER TABLESPACE SET

12-199

alter_tablespace_attrs::=

default_tablespace_params

MINIMUM EXTENT size_clause

RESIZE size_clause

COALESCE

SHRINK SPACE

KEEP size_clause

RENAME TO new_tablespace_name

BEGIN

END
BACKUP

datafile_tempfile_clauses

tablespace_logging_clauses

tablespace_group_clause

tablespace_state_clauses

autoextend_clause

flashback_mode_clause

tablespace_retention_clause

alter_tablespace_encryption

lost_write_protection

(See the following clauses of ALTER TABLESPACE: default_tablespace_params::=,
size_clause::=, datafile_tempfile_clauses::=, tablespace_logging_clauses::=,
tablespace_state_clauses::=, autoextend_clause::=, alter_tablespace_encryption::=)

Semantics

tablespace_set

Specify the name of the tablespace set to be altered.

alter_tablespace_attrs

Use this clause to change an attribute for all tablespaces in the tablespace set.

The subclauses of alter_tablespace_attrs have the same semantics here as for the
ALTER TABLESPACE statement, with the following exceptions:

• You cannot specify the following subclauses for tablespace sets:

– MINIMUM EXTENT size_clause

– SHRINK SPACE [KEEP size_clause]
– tablespace_group_clause

Chapter 12
ALTER TABLESPACE SET

12-200

– flashback_mode_clause

– tablespace_retention_clause

• For the datafile_tempfile_clauses, only the following subclauses are supported for
tablespace sets:

– RENAME DATAFILE
– DATAFILE { ONLINE | OFFLINE }

• For the tablespace_state_clauses, the PERMANENT and TEMPORARY subclauses are not
supported for tablespace sets.

See Also:

alter_tablespace_attrs in the documentation on ALTER TABLESPACE for the full
semantics of this clause

Examples

Altering a Tablespace Set: Example

The following statement puts all tablespaces in tablespace set ts1 in force logging mode:

ALTER TABLESPACE SET ts1
 FORCE LOGGING;

ALTER TRIGGER
Purpose

Triggers are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of syntax
and semantics.

Use the ALTER TRIGGER statement to enable, disable, or compile a database trigger.

Note:

This statement does not change the declaration or definition of an existing trigger.
To redeclare or redefine a trigger, use the CREATE TRIGGER statement with the OR
REPLACE keywords.

See Also:

• CREATE TRIGGER for information on creating a trigger

• DROP TRIGGER for information on dropping a trigger

• Oracle Database Concepts for general information on triggers

Chapter 12
ALTER TRIGGER

12-201

Prerequisites

The trigger must be in your own schema or you must have ALTER ANY TRIGGER system
privilege.

In addition, to alter a trigger on DATABASE, you must have the ADMINISTER DATABASE
TRIGGER privilege.

See Also:

CREATE TRIGGER for more information on triggers based on DATABASE
triggers

Syntax

alter_trigger::=

ALTER TRIGGER

schema .

trigger_name

trigger_compile_clause

ENABLE

DISABLE

RENAME TO new_name

EDITIONABLE

NONEDITIONABLE

;

(trigger_compile_clause: See Oracle Database PL/SQL Language Reference for the
syntax of this clause.)

Semantics

schema

Specify the schema containing the trigger. If you omit schema, then Oracle Database
assumes the trigger is in your own schema.

trigger_name

Specify the name of the trigger to be altered.

trigger_compile_clause

See Oracle Database PL/SQL Language Reference for the syntax and semantics of
this clause and for complete information on creating and compiling triggers.

ENABLE | DISABLE

Specify ENABLE to enable the trigger. You can also use the ENABLE ALL TRIGGERS clause
of ALTER TABLE to enable all triggers associated with a table. See ALTER TABLE.

Chapter 12
ALTER TRIGGER

12-202

Specify DISABLE to disable the trigger. You can also use the DISABLE ALL TRIGGERS clause of
ALTER TABLE to disable all triggers associated with a table.

RENAME Clause

Specify RENAME TO new_name to rename the trigger. Oracle Database renames the trigger and
leaves it in the same state it was in before being renamed.

When you rename a trigger, the database rebuilds the remembered source of the trigger in
the USER_SOURCE, ALL_SOURCE, and DBA_SOURCE data dictionary views. As a result, comments
and formatting may change in the TEXT column of those views even though the trigger source
did not change.

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the trigger becomes an editioned or noneditioned
object if editioning is later enabled for the schema object type TRIGGER in schema. The default
is EDITIONABLE. For information about altering editioned and noneditioned objects, see
Oracle Database Development Guide.

Restriction on NONEDITIONABLE

You cannot specify NONEDITIONABLE for a crossedition trigger.

ALTER TYPE
Purpose

Object types are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of syntax
and semantics.

Use the ALTER TYPE statement to add or drop member attributes or methods. You can change
the existing properties (FINAL or INSTANTIABLE) of an object type, and you can modify the
scalar attributes of the type.

You can also use this statement to recompile the specification or body of the type or to
change the specification of an object type by adding new object member subprogram
specifications.

Prerequisites

The object type must be in your own schema and you must have CREATE TYPE or CREATE ANY
TYPE system privilege, or you must have ALTER ANY TYPE system privileges.

Syntax

alter_type::=

ALTER TYPE

schema .

type_name

alter_type_clause

EDITIONABLE

NONEDITIONABLE

Chapter 12
ALTER TYPE

12-203

(alter_type_clause: See Oracle Database PL/SQL Language Reference for the
syntax of this clause.)

Semantics

schema

Specify the schema that contains the type. If you omit schema, then Oracle Database
assumes the type is in your current schema.

type_name

Specify the name of an object type, a nested table type, or a varray type.

Restriction on type_name

You cannot evolve an editioned object type. The ALTER TYPE statement fails with
ORA-22348 if either of the following is true:

• The type is an editioned object type and the ALTER TYPE statement has no
type_compile_clause. You can use the ALTER TYPE statement to recompile an
editioned object type, but not for any other purpose.

• The type has a dependent that is an editioned object type and the ALTER TYPE
statement has a CASCADE clause.

Refer to Oracle Database PL/SQL Language Reference for more information on the
type_compile_clause and the CASCADE clause.

alter_type_clause

See Oracle Database PL/SQL Language Reference for the syntax and semantics of
this clause and for complete information on creating and compiling object types.

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the type becomes an editioned or noneditioned
object if editioning is later enabled for the schema object type TYPE in schema. The
default is EDITIONABLE. For information about altering editioned and noneditioned
objects, see Oracle Database Development Guide.

ALTER USER
Purpose

Use the ALTER USER statement:

• To change the authentication or database resource characteristics of a database
user

• To permit a proxy server to connect as a client without authentication

• In an Oracle Automatic Storage Management (Oracle ASM) cluster, to change the
password of a user in the password file that is local to the Oracle ASM instance of
the current node

Chapter 12
ALTER USER

12-204

See Also:

Oracle Database Security Guide for detailed information about user authentication
methods

Prerequisites

In general, you must have the ALTER USER system privilege. However, the current user can
change his or her own password without this privilege.

To change the SYS password, password file must exist, and an account granted alter user
privilege must have the SYSDBA administrative role in order to have the ability to change SYS
password.

You must be authenticated AS SYSASM to change the password of a user other than yourself in
an Oracle ASM instance password file.

To specify the CONTAINER clause, you must be connected to a multitenant container database
(CDB). If the current container is the root, then you can specify CONTAINER = ALL or CONTAINER
= CURRENT. If the current container is a pluggable database (PDB), then you can specify only
CONTAINER = CURRENT.

To set and modify CONTAINER_DATA attributes using the container_data_clause, you must be
connected to a CDB and the current container must be the root.

Chapter 12
ALTER USER

12-205

Syntax

alter_user::=

ALTER USER

user

IDENTIFIED

BY password

REPLACE old_password

EXTERNALLY

AS ’
certificate_DN

kerberos_principal_name
’

GLOBALLY

AS ’

directory_DN

’

NO AUTHENTICATION

DEFAULT COLLATION collation_name

DEFAULT TABLESPACE tablespace

LOCAL

TEMPORARY TABLESPACE
tablespace

tablespace_group_name

QUOTA
size_clause

UNLIMITED
ON tablespace

PROFILE profile

DEFAULT ROLE

role

,

ALL

EXCEPT role

,

NONE

PASSWORD EXPIRE

EXPIRE PASSWORD ROLLOVER PERIOD

ACCOUNT
LOCK

UNLOCK

ENABLE EDITIONS

FOR object_type

,

FORCE

HTTP

DIGEST
ENABLE

DISABLE

CONTAINER =
CURRENT

ALL

container_data_clause

user

,

proxy_clause

;

Chapter 12
ALTER USER

12-206

(size_clause::=)

container_data_clause::=

SET CONTAINER_DATA =

ALL

DEFAULT

(container_name

,

)

ADD CONTAINER_DATA = (container_name

,

)

REMOVE CONTAINER_DATA = (container_name

,

)

FOR

schema .

container_data_object

proxy_clause::=

GRANT CONNECT THROUGH
ENTERPRISE USERS

db_user_proxy db_user_proxy_clauses

REVOKE CONNECT THROUGH
ENTERPRISE USERS

db_user_proxy

db_user_proxy_clauses::=

WITH

ROLE

role_name

,

ALL EXCEPT role_name

,

NO ROLES AUTHENTICATION REQUIRED

Semantics

The keywords, parameters, and clauses described in this section are unique to ALTER USER or
have different semantics than they have in CREATE USER. Keywords, parameters, and clauses
that do not appear here have the same meaning as in the CREATE USER statement.

Chapter 12
ALTER USER

12-207

Note:

Oracle recommends that user names and passwords be encoded in ASCII or
EBCDIC characters only, depending on your platform.

See Also:

CREATE USER for information on the keywords and parameters and
CREATE PROFILE for information on assigning limits on database resources
to a user

IDENTIFIED Clause

BY password

Specify BY password to specify a new password for the user. Passwords are case
sensitive. Any subsequent CONNECT string used to connect this user to the database
must specify the password using the same case (upper, lower, or mixed) that is used
in this ALTER USER statement. Passwords can contain single-byte, or multibyte
characters, or both from your database character set.

Note:

Oracle Database expects a different timestamp for each resetting of a
particular password. If you reset one password multiple times within one
second (for example, by cycling through a set of passwords using a script),
then the database may return an error message that the password cannot be
reused. For this reason, Oracle recommends that you avoid using scripts to
reset passwords.

You can omit the REPLACE clause if you are setting your own password or you have the
ALTER USER system privilege and you are changing another user's password. However,
unless you have the ALTER USER system privilege, you must always specify the
REPLACE clause if a password complexity verification function has been enabled, either
by running the UTLPWDMG.SQL script or by specifying such a function in the
PASSWORD_VERIFY_FUNCTION parameter of a profile that has been assigned to the user.

In an Oracle ASM cluster, you can use this clause to change the password of a user in
the password file that is local to an Oracle ASM instance of the current node. You must
be authenticated AS SYSASM to specify IDENTIFIED BY password without the REPLACE
old_password clause. If you are not authenticated AS SYSASM, then you can only
change your own password by specifying REPLACE old_password.

Oracle Database does not check the old password, even if you provide it in the
REPLACE clause, unless you are changing your own existing password.

Changing a Password to Begin the Gradual Database Password Rollover Period

Prerequisite

Chapter 12
ALTER USER

12-208

Enable gradual database password rollover period by setting a non-zero value to the
PASSWORD_ROLLOVER_TIME user profile parameter using CREATE PROFILE or ALTER PROFILE .

After you set the time for the gradual password rollover period, you can use the ALTER USER
statement to change the user's password and propagate the new password to all clients
before the PASSWORD_ROLLOVER_TIME ends.

Changing a Password During the Gradual Database Password Rollover Period

You can change the password during before the rollover period expires using ALTER USER
with or without the REPLACE clause.

For example, say user u1 has an original password p1, and p2 is the new password that
started the rollover process. Now you want to switch to p3 instead of p2. You can use any one
of the statements to change the password to p3:

ALTER USER u1 IDENTIFIED BY p3;

ALTER USER u1 IDENTIFIED BY p3 REPLACE p1;

ALTER USER u1 IDENTIFIED BY p3 REPLACE p2;

After you change the password to p3, the user can log in using either p1 or p3. Logging in with
p2 returns error ORA-1017 Invalid Username/Password and is recorded as a failed login
attempt.

The rollover start time is fixed the first time a user changes their password. The start time is
not affected by further password changes during the password rollover period. This design
limits the length of time the old password can be used .

See Also:

• Oracle Database Security Guide for guidelines on creating passwords

• Configuring Authentication

GLOBALLY

Refer to CREATE USER for more information on this clause.

You can change a user's access verification method from IDENTIFIED GLOBALLY to either
IDENTIFIED BY password or IDENTIFIED EXTERNALLY. You can change a user's access
verification method to IDENTIFIED GLOBALLY from one of the other methods only if all external
roles granted explicitly to the user are revoked.

EXTERNALLY

Refer to CREATE USER for more information on this clause.

Chapter 12
ALTER USER

12-209

See Also:

Oracle Database Enterprise User Security Administrator's Guide for more
information on globally and externally identified users, "Changing User
Identification: Example", and "Changing User Authentication: Examples"

NO AUTHENTICATION Clause

Use this clause to change an existing user account with authentication to a schema
account without authentication to prevent logins to the account.

DEFAULT COLLATION Clause

Use this clause to change the default collation for the schema owned by the user. The
new default collation is assigned to tables, views, and materialized views that are
subsequently created in the schema. It does not influence default collations for existing
tables views, and materialized views. Refer to the DEFAULT COLLATION Clause
clause of CREATE USER for the full semantics of this clause.

DEFAULT TABLESPACE Clause

Use this clause to assign or reassign a tablespace for the user's permanent segments.
This clause overrides any default tablespace that has been specified for the database.

Restriction on Default Tablespaces

You cannot specify a locally managed temporary tablespace, including an undo
tablespace, or a dictionary-managed temporary tablespace, as a user's default
tablespace.

[LOCAL] TEMPORARY TABLESPACE Clause

Use this clause to assign or reassign a temporary tablespace or tablespace group for
the user's temporary segments.

• Specify tablespace to indicate the user's temporary tablespace. Specify
TEMPORARY TABLESPACE to indicate a shared temporary tablespace. Specify LOCAL
TEMPORARY TABLESPACE to indicate a local temporary tablespace. If you are
connected to a CDB, then you can specify CDB$DEFAULT to use the CDB-wide
default temporary tablespace.

• Specify tablespace_group_name to indicate that the user can save temporary
segments in any tablespace in the tablespace group specified by
tablespace_group_name. Local temporary tablespaces cannot be part of a
tablespace group.

Restriction on User Temporary Tablespace

Any individual tablespace you assign or reassign as the user's temporary tablespace
must be a temporary tablespace and must have a standard block size.

Chapter 12
ALTER USER

12-210

See Also:

"Assigning a Tablespace Group: Example"

DEFAULT ROLE Clause

Specify the roles enabled by default for the user at logon.This clause can contain only roles
that have been granted directly to the user with a GRANT statement, or roles created by the
user with the CREATE ROLE privilege. You cannot use the DEFAULT ROLE clause to specify:

• Roles not granted to the user

• Roles granted through other roles

• Roles managed by an external service (such as the operating system), or by the Oracle
Internet Directory

• Roles that are enabled by the SET ROLE statement, such as password-authenticated roles
and secure application roles

See Also:

CREATE ROLE

Assigning Default Roles to Common Users in a CDB

You can modify the default role assigned to a common user both in the current container and
across all containers in a CDB.

While assigning a default role to a common user across all containers, role must be a
common role that was commonly granted to the common user.

While assigning a default role to a common user in the current container, role must be one of
the following:

• A local role that was granted to the common user in the current container

• A common role that was granted to the common user, either commonly or locally in the
current container

EXPIRE PASSWORD ROLLOVER PERIOD Clause

You can end the password rollover period with EXPIRE PASSWORD ROLLOVER PERIOD. The user
will be required to change password the next time they log in.

ENABLE EDITIONS

This clause is not reversible. Specify ENABLE EDITIONS to allow the user to create multiple
versions of editionable objects in this schema using editions. Editionable objects in non-
editions-enabled schemas cannot be editioned.

Use the FOR clause to specify one or more object types for which the user can create
editionable objects. For a list of valid values for object_type, query the
V$EDITIONABLE_TYPES dynamic performance view.

Chapter 12
ALTER USER

12-211

If you omit the FOR clause, then the types that become editionable in the schema are
VIEW, SYNONYM, PROCEDURE, FUNCTION, PACKAGE, PACKAGE BODY, TRIGGER, TYPE, TYPE
BODY, and LIBRARY.

To enable edition for other object types that are not enabled by default, you must
explicitly specify the object type in the FOR clause.

Example: Enable Edition for Object Type not Enabled by Default

ALTER USER username ENABLE EDITIONS FOR SQL TRANSLATION PROFILE;

See Also:

• For more on the semantics of the ENABLE EDITIONS clause see the
corresponding section in CREATE USER

• Enabling Editions for a User

• Oracle Database Reference for more information about the
V$EDITIONABLE_TYPES dynamic performance view

If the schema to be editions-enabled contains any objects that are not editionable and
that depend on editionable type objects in the schema, then you must specify FORCE to
enable editions for this schema. In this case, all the objects that are not editionable
and that depend on the editionable type objects in the schema being editions-enabled
become invalid.

[HTTP] DIGEST Clause

This clause lets you enable or disable HTTP Digest Access Authentication for the user.

• Specify ENABLE to enable HTTP Digest Access Authentication. After specifing this
clause, you must change the user’s password. This causes the database to
generate an HTTP Digest verifier for the new password. Only then will HTTP
Digest Access Authentication take effect. One way to ensure that the user’s
password is changed after you issue this clause is to specify the PASSWORD EXPIRE
clause in the same statement with the HTTP DIGEST ENABLE clause, as follows:

ALTER USER user PASSWORD EXPIRE HTTP DIGEST ENABLE;

This causes the database to prompt the user for a new password on his or her
next attempt to log in to the database. After that, HTTP Digest Access
Authentication will take effect for the user.

• Specify DISABLE to disable HTTP Digest Access Authentication for the user. You
do not need to change the user’s password in order for this clause to take effect.
Specifying the DISABLE clause removes the HTTP Digest from dictionary tables.

ALTER USER user PASSWORD EXPIRE HTTP DIGEST DISABLE;

Refer to [HTTP] DIGEST Clause in the documentation on CREATE USER for more
information on this clause.

Chapter 12
ALTER USER

12-212

CONTAINER Clause

If the current container is a PDB, then you can specify CONTAINER = CURRENT to change the
attributes of a local user, or the container-specific attributes (such as the default tablespace)
of a common user, in the current container. If the current container is the root, then you can
specify CONTAINER = ALL to change the attributes of a common user across the entire CDB. If
you omit this clause and the current container is a PDB, then CONTAINER = CURRENT is the
default. If you omit this clause and the current container is the root, then CONTAINER = ALL is
the default.

Restriction on Modifying Common Users in a CDB

Certain attributes of a common user must be modified for all the containers in a CDB and not
for only some containers. Therefore, when you use any of the following clauses to modify a
common user, ensure that you modify all of the containers by connecting to the root and
specifying CONTAINER=ALL:

• IDENTIFIED clause

• PASSWORD clause

• [HTTP] DIGEST clause

container_data_clause

The container_data_clause allows you the set and modify CONTAINER_DATA attributes for a
common user. Use the FOR clause to indicate whether to set or modify the default
CONTAINER_DATA attribute or an object-specific CONTAINER_DATA attribute. These attributes
determine the set of containers (which can never exclude the root) whose data will be visible
via CONTAINER_DATA objects to the specified common user when the current session is the
root.

To specify the container_data_clause, the current session must be the root and you must
specify CONTAINER = CURRENT.

SET CONTAINER_DATA

Use this clause to set the default CONTAINER_DATA attribute or an object-specific
CONTAINER_DATA attribute for a common user. When you specify this clause, you replace the
existing value, if any, of the CONTAINER_DATA attribute.

Use container_name to specify one or more containers that will be accessible to the user.

Use ALL to specify that all current and future containers in the CDB will be accessible to the
user.

Use DEFAULT to specify the default behavior, which is as follows:

• For a default CONTAINER_DATA attribute, the current container, that is, the root, and the
CDB as a whole will be accessible to the user.

• For an object-specific CONTAINER_DATA attribute, the database will use the user's default
CONTAINER_DATA attribute.

Chapter 12
ALTER USER

12-213

Note:

CONTAINER_DATA attributes that are set to DEFAULT are not visible in the
DBA_CONTAINER_DATA view.

ADD CONTAINER_DATA

Use this clause to add containers to the default CONTAINER_DATA attribute or an object-
specific CONTAINER_DATA attribute for a common user. Use container_name to specify
one or more containers to add.

You cannot use this clause if the default CONTAINER_DATA attribute is set to ALL. If you
use this clause when the default CONTAINER_DATA attribute is set to DEFAULT, then
CDB$ROOT will automatically be added to the set of containers, unless the set already
contains CDB$ROOT.

You cannot use this clause if the object-specific CONTAINER_DATA attribute is set to ALL
or DEFAULT.

REMOVE CONTAINER_DATA

Use this clause to remove containers from the default CONTAINER_DATA attribute or an
object-specific CONTAINER_DATA attribute for a common user. Use container_name to
specify one or more containers to remove.

You cannot use this clause if the default CONTAINER_DATA attribute or object-specific
CONTAINER_DATA attribute is set to ALL or DEFAULT.

FOR container_data_object

If you specify the FOR clause, then you can set and modify the object-specific
CONTAINER_DATA attribute for container_data_object for a common user.
container_data_object must be a CONTAINER_DATA table or view. If you omit schema,
then Oracle Database assumes that container_data_object is in your own schema.

If you omit the FOR clause, then you can set and modify the default CONTAINER_DATA
attribute for a common user.

See Also:

Oracle Database Security Guide for more information about enabling
common users to view information about PDB objects

proxy_clause

The proxy_clause lets you control the ability of an enterprise user (a user outside the
database) or a database proxy (another database user) to connect as the database
user being altered.

GRANT CONNECT THROUGH

Specify GRANT CONNECT THROUGH to allow the connection.

Chapter 12
ALTER USER

12-214

REVOKE CONNECT THROUGH

Specify REVOKE CONNECT THROUGH to prohibit the connection.

ENTERPRISE USER

This clause lets you expose user to proxy use by enterprise users. The administrator working
in Oracle Internet Directory must then grant privileges for appropriate enterprise users to act
on behalf of user.

db_user_proxy

This clause lets you expose user to proxy use by database user db_user_proxy (the proxy).

• The proxy will have all privileges that were directly granted to user.

• The proxy will have all roles associated with user, unless you specify the WITH clauses of
db_user_proxy_clauses to limit the proxy to some or none of the roles of user. For each
role associated with the proxy, if the role is enabled by default for user at login, then that
role will also be enabled by default for the proxy at login.

db_user_proxy_clauses

You can enable password-protected roles in a proxy session. Both secure application role
and password-protected roles provide a secure method for enabling a role in a session.
Oracle recommends using secure password roles instead of password protected roles in
instances where the password has to be maintained and transmitted over insecure channels,
or if more than one person needs to know the password. Password-protected roles in a proxy
session are suitable for situations where automation is used to set the role.

Proxy users can access password-protected roles. Specify the WITH clauses to limit the proxy
to some or none of the roles associated with user, and the AUTHENTICATION REQUIRED clause
to specify whether authentication is required.

WITH ROLE

WITH ROLE role_name permits the proxy to connect as the specified user and to activate only
the roles that are specified by role_name. This clause can contain only roles that are
associated with user. Password protected roles and secure application roles also need to be
listed in the WITH ROLE clause if the Proxy user will need to use these secure roles. These
secure roles will be included with the WITH ROLE ALL clause (the default if WITH ROLE is not
specified). If WITH ROLE doesn't specify the secure roles, then those cannot be enabled even
with right password.

WITH ROLE ALL EXCEPT

WITH ROLE ALL EXCEPT role_name permits the proxy to connect as the specified user and to
activate all roles associated with that user except those specified for role_name. This clause
can contain only roles that are associated with user.

WITH NO ROLES

WITH NO ROLES permits the proxy to connect as the specified user, but prohibits the proxy from
activating any of that user's roles after connecting, even the secure roles like password
protected roles and secure application roles.

AUTHENTICATION REQUIRED

Oracle Database does not expect the proxy to authenticate the user unless you specify the
AUTHENTICATION REQUIRED clause. This clause ensures that authentication credentials for the

Chapter 12
ALTER USER

12-215

user must be presented when the user is authenticated through the specified proxy.
The credential is a password.

AUTHENTICATED USING

The AUTHENTICATED USING clauses, which appeared in the syntax of earlier releases,
have been deprecated and are no longer needed. If you specify the AUTHENTICATED
USING PASSWORD clause, then Oracle Database converts it to the AUTHENTICATION
REQUIRED clause. Specifying the AUTHENTICATED USING CERTIFICATE clause or the
AUTHENTICATED USING DISTINGUISHED NAME clause is equivalent to omitting the
AUTHENTICATION REQUIRED clause.

See Also:

• Oracle Security Overview for an overview of database security and for
information on middle-tier systems and proxy authentication

• Oracle Database Security Guide for more information on proxies and
their use of the database and "Proxy Users: Examples"

Examples

Changing User Identification: Example

The following statement changes the password of the user sidney (created in
"Creating a Database User: Example") second_2nd_pwd and default tablespace to the
tablespace example:

ALTER USER sidney
 IDENTIFIED BY second_2nd_pwd
 DEFAULT TABLESPACE example;

The following statement assigns the new_profile profile (created in "Creating a
Profile: Example") to the sample user sh:

ALTER USER sh
 PROFILE new_profile;

In subsequent sessions, sh is restricted by limits in the new_profile profile.

The following statement makes all roles granted directly to sh default roles, except the
dw_manager role:

ALTER USER sh
 DEFAULT ROLE ALL EXCEPT dw_manager;

At the beginning of sh's next session, Oracle Database enables all roles granted
directly to sh except the dw_manager role.

Changing User Authentication: Examples

The following statement changes the authentication mechanism of user app_user1
(created in "Creating a Database User: Example"):

ALTER USER app_user1 IDENTIFIED GLOBALLY AS 'CN=tom,O=oracle,C=US';

Chapter 12
ALTER USER

12-216

The following statement causes user sidney's password to expire:

ALTER USER sidney PASSWORD EXPIRE;

If you cause a database user's password to expire with PASSWORD EXPIRE, then the user (or
the DBA) must change the password before attempting to log in to the database following the
expiration. However, tools such as SQL*Plus allow the user to change the password on the
first attempted login following the expiration.

Assigning a Tablespace Group: Example

The following statement assigns tbs_grp_01 (created in "Adding a Temporary Tablespace to
a Tablespace Group: Example") as the tablespace group for user sh:

ALTER USER sh
 TEMPORARY TABLESPACE tbs_grp_01;

Proxy Users: Examples

The following statement alters the user app_user1. The example permits the app_user1 to
connect through the proxy user sh. The example also allows app_user1 to enable its
warehouse_user role (created in "Creating a Role: Example") when connected through the
proxy sh:

ALTER USER app_user1
 GRANT CONNECT THROUGH sh
 WITH ROLE warehouse_user;

To show basic syntax, this example uses the sample database Sales History user (sh) as the
proxy. Normally a proxy user would be an application server or middle-tier entity. For
information on creating the interface between an application user and a database by way of
an application server, refer to Oracle Call Interface Programmer's Guide.

See Also:

• "Creating External Database Users: Examples" to see how to create the
app_user user

• "Creating a Role: Example" to see how to create the dw_user role

The following statement takes away the right of user app_user1 to connect through the proxy
user sh:

ALTER USER app_user1 REVOKE CONNECT THROUGH sh;

The following hypothetical examples shows another method of proxy authentication:

ALTER USER sully GRANT CONNECT THROUGH OAS1
 AUTHENTICATED USING PASSWORD;

The following example exposes the user app_user1 to proxy use by enterprise users. The
enterprise users cannot act on behalf of app_user1 until the Oracle Internet Directory
administrator has granted them appropriate privileges:

ALTER USER app_user1
 GRANT CONNECT THROUGH ENTERPRISE USERS;

Chapter 12
ALTER USER

12-217

ALTER VIEW
Purpose

Use the ALTER VIEW statement to explicitly recompile a view that is invalid or to modify
view constraints. Explicit recompilation lets you locate recompilation errors before run
time. You may want to recompile a view explicitly after altering one of its base tables to
ensure that the alteration does not affect the view or other objects that depend on it.

You can also use ALTER VIEW to define, modify, or drop view constraints.

You cannot use this statement to change the definition of an existing view. Further, if
DDL changes to the view's base tables invalidate the view, then you cannot use this
statement to compile the invalid view. In these cases, you must redefine the view using
CREATE VIEW with the OR REPLACE keywords.

When you issue an ALTER VIEW statement, Oracle Database recompiles the view
regardless of whether it is valid or invalid. The database also invalidates any local
objects that depend on the view.

If you alter a view that is referenced by one or more materialized views, then those
materialized views are invalidated. Invalid materialized views cannot be used by query
rewrite and cannot be refreshed.

See Also:

• CREATE VIEW for information on redefining a view and ALTER
MATERIALIZED VIEW for information on revalidating an invalid
materialized view

• Oracle Database Data Warehousing Guide for general information on
data warehouses

• Oracle Database Concepts for more about dependencies among
schema objects

Prerequisites

The view must be in your own schema or you must have ALTER ANY TABLE system
privilege.

Chapter 12
ALTER VIEW

12-218

Syntax

alter_view::=

ALTER VIEW

schema .

view

ADD out_of_line_constraint

MODIFY CONSTRAINT constraint
RELY

NORELY

DROP

CONSTRAINT constraint

PRIMARY KEY

UNIQUE (column

,

)

COMPILE

READ
ONLY

WRITE

EDITIONABLE

NONEDITIONABLE

;

(out_of_line_constraint::=—part of constraint::= syntax)

Semantics

schema

Specify the schema containing the view. If you omit schema, then Oracle Database assumes
the view is in your own schema.

view

Specify the name of the view to be recompiled.

MODIFY CONSTRAINT Clause

Use the MODIFY CONSTRAINT clause to change the RELY or NORELY setting of an existing view
constraint. Refer to "Notes on View Constraints" for general information on view constraints.

Restriction on Modifying Constraints

You cannot change the setting of a unique or primary key constraint if it is part of a referential
integrity constraint without dropping the foreign key or changing its setting to match that of
view.

ADD Clause

Use the ADD clause to add a constraint to view. Refer to constraint for information on view
constraints and their restrictions.

DROP Clause

Use the DROP clause to drop an existing view constraint.

Chapter 12
ALTER VIEW

12-219

Restriction on Dropping Constraints

You cannot drop a unique or primary key constraint if it is part of a referential integrity
constraint on a view.

COMPILE

The COMPILE keyword directs Oracle Database to recompile the view.

{ READ ONLY | READ WRITE }

These clauses are valid only for editioning views.

• Specify READ ONLY to indicate that the editioning view cannot be updated.

• Specify READ WRITE to return a read-only editioning view to read/write status.

When you specify these clauses, the database does not invalidate dependent objects,
but it may invalidate cursors.

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the view becomes an editioned or noneditioned
object if editioning is later enabled for the schema object type VIEW in schema. The
default is EDITIONABLE. For information about altering editioned and noneditioned
objects, see Oracle Database Development Guide.

See Also:

CREATE VIEW for information about editioning views

Examples

Altering a View: Example

To recompile the view customer_ro (created in "Creating a Read-Only View:
Example"), issue the following statement:

ALTER VIEW customer_ro
 COMPILE;

If Oracle Database encounters no compilation errors while recompiling customer_ro,
then customer_ro becomes valid. If recompiling results in compilation errors, then the
database returns an error and customer_ro remains invalid.

Oracle Database also invalidates all dependent objects. These objects include any
procedures, functions, package bodies, and views that reference customer_ro. If you
subsequently reference one of these objects without first explicitly recompiling it, then
the database recompiles it implicitly at run time.

ANALYZE
Purpose

Use the ANALYZE statement to collect statistics, for example, to:

Chapter 12
ANALYZE

12-220

• Collect or delete statistics about an index or index partition, table or table partition, index-
organized table, cluster, or scalar object attribute.

• Validate the structure of an index or index partition, table or table partition, index-
organized table, cluster, or object reference (REF).

• Identify migrated and chained rows of a table or cluster.

Note:

The use of ANALYZE for the collection of optimizer statistics is obsolete.

If you want to collect optimizer statistics, use the DBMS_STATS package, which lets
you collect statistics in parallel, global statistics for partitioned objects, and helps
you fine tune your statistics collection in other ways. See Oracle Database PL/SQL
Packages and Types Reference for more information on the DBMS_STATS package.

Use the ANALYZE statement only for the following cases:

• To use the VALIDATE or LIST CHAINED ROWS clauses

• To collect information on freelist blocks

Prerequisites

The schema object to be analyzed must be local, and it must be in your own schema or you
must have the ANALYZE ANY system privilege.

If you want to list chained rows of a table or cluster into a list table, then the list table must be
in your own schema, or you must have INSERT privilege on the list table, or you must have
INSERT ANY TABLE system privilege.

If you want to validate a partitioned table, then you must have the INSERT object privilege on
the table into which you list analyzed rowids, or you must have the INSERT ANY TABLE system
privilege.

Syntax

analyze::=

ANALYZE

TABLE

schema .

table

INDEX

schema .

index

partition_extension_clause

CLUSTER

schema .

cluster

validation_clauses

LIST CHAINED ROWS

into_clause

DELETE

SYSTEM

STATISTICS

;

Chapter 12
ANALYZE

12-221

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

validation_clauses::=

VALIDATE REF UPDATE

SET DANGLING TO NULL

VALIDATE STRUCTURE

CASCADE

FAST

COMPLETE

OFFLINE

ONLINE

into_clause

into_clause::=

INTO

schema .

table

Semantics

schema

Specify the schema containing the table, index, or cluster. If you omit schema, then
Oracle Database assumes the table, index, or cluster is in your own schema.

TABLE table

Specify a table to be analyzed. When you analyze a table, the database collects
statistics about expressions occurring in any function-based indexes as well.
Therefore, be sure to create function-based indexes on the table before analyzing the
table. Refer to CREATE INDEX for more information about function-based indexes.

When analyzing a table, the database skips all domain indexes marked LOADING or
FAILED.

For an index-organized table, the database also analyzes any mapping table and
calculates its PCT_ACCESSS_DIRECT statistics. These statistics estimate the accuracy of
guess data block addresses stored as part of the local rowids in the mapping table.

Chapter 12
ANALYZE

12-222

Oracle Database collects the following statistics for a table. Statistics marked with an asterisk
are always computed exactly. Table statistics, including the status of domain indexes, appear
in the data dictionary views USER_TABLES, ALL_TABLES, and DBA_TABLES in the columns shown
in parentheses.

• Number of rows (NUM_ROWS)

• * Number of data blocks below the high water mark—the number of data blocks that have
been formatted to receive data, regardless whether they currently contain data or are
empty (BLOCKS)

• * Number of data blocks allocated to the table that have never been used (EMPTY_BLOCKS)

• Average available free space in each data block in bytes (AVG_SPACE)

• Number of chained rows (CHAIN_COUNT)

• Average row length, including the row overhead, in bytes (AVG_ROW_LEN)

Restrictions on Analyzing Tables

Analyzing tables is subject to the following restrictions:

• You cannot use ANALYZE to collect statistics on data dictionary tables.

• You cannot use ANALYZE to collect statistics on an external table. Instead, you must use
the DBMS_STATS package.

• You cannot use ANALYZE to collect default statistics on a temporary table. However, if you
have already created an association between one or more columns of a temporary table
and a user-defined statistics type, then you can use ANALYZE to collect the user-defined
statistics on the temporary table.

• You cannot compute or estimate statistics for the following column types: REF column
types, varrays, nested tables, LOB column types (LOB column types are not analyzed,
they are skipped), LONG column types, or object types. However, if a statistics type is
associated with such a column, then Oracle Database collects user-defined statistics.

See Also:

• ASSOCIATE STATISTICS

• Oracle Database Reference for information on the data dictionary views

partition_extension_clause

partition_extension_clause

Specify the partition or subpartition, or the partition or subpartition value, on which you want
statistics to be gathered. You cannot use this clause when analyzing clusters.

If you specify PARTITION and table is composite-partitioned, then Oracle Database analyzes
all the subpartitions within the specified partition.

INDEX index

Specify an index to be analyzed.

Chapter 12
ANALYZE

12-223

Oracle Database collects the following statistics for an index. Statistics marked with an
asterisk are always computed exactly. For conventional indexes, when you compute or
estimate statistics, the statistics appear in the data dictionary views USER_INDEXES,
ALL_INDEXES, and DBA_INDEXES in the columns shown in parentheses.

• * Depth of the index from its root block to its leaf blocks (BLEVEL)

• Number of leaf blocks (LEAF_BLOCKS)

• Number of distinct index values (DISTINCT_KEYS)

• Average number of leaf blocks for each index value (AVG_LEAF_BLOCKS_PER_KEY)

• Average number of data blocks for each index value (for an index on a table)
(AVG_DATA_BLOCKS_PER_KEY)

• Clustering factor (how well ordered the rows are about the indexed values)
(CLUSTERING_FACTOR)

For domain indexes, this statement invokes the user-defined statistics collection
function specified in the statistics type associated with the index (see ASSOCIATE
STATISTICS). If no statistics type is associated with the domain index, then the
statistics type associated with its indextype is used. If no statistics type exists for either
the index or its indextype, then no user-defined statistics are collected. User-defined
index statistics appear in the STATISTICS column of the data dictionary views
USER_USTATS, ALL_USTATS, and DBA_USTATS.

Note:

• When you analyze an index from which a substantial number of rows
has been deleted, Oracle Database sometimes executes a COMPUTE
statistics operation (which can entail a full table scan) even if you request
an ESTIMATE statistics operation. Such an operation can be quite time
consuming.

• In some cases, analyzing an index with the ANALYZE statement takes an
inordinate amount of time to complete. In these cases, you can use a
SQL query to validate the index. If the query determines that there is an
inconsistency between a table and the index, then you can use the
ANALYZE statement for a thorough analysis of the index. Refer to Oracle
Database Administrator's Guide for more information.

Restriction on Analyzing Indexes

You cannot analyze a domain index that is marked IN_PROGRESS or FAILED.

See Also:

• CREATE INDEX for more information on domain indexes

• Oracle Database Reference for information on the data dictionary views

• "Analyzing an Index: Example"

Chapter 12
ANALYZE

12-224

CLUSTER cluster

Specify a cluster to be analyzed. When you collect statistics for a cluster, Oracle Database
also automatically collects the statistics for all the tables in the cluster and all their indexes,
including the cluster index.

For both indexed and hash clusters, the database collects the average number of data blocks
taken up by a single cluster key (AVG_BLOCKS_PER_KEY). These statistics appear in the data
dictionary views ALL_CLUSTERS, USER_CLUSTERS, and DBA_CLUSTERS.

See Also:

Oracle Database Reference for information on the data dictionary views and
"Analyzing a Cluster: Example"

validation_clauses

The validation clauses let you validate REF values and the structure of the analyzed object.

See Also:

Oracle Database Administrator's Guide for more information about validating tables,
indexes, clusters, and materialized views

VALIDATE REF UPDATE Clause

Specify VALIDATE REF UPDATE to validate the REF values in the specified table, check the rowid
portion in each REF, compare it with the true rowid, and correct it, if necessary. You can use
this clause only when analyzing a table.

If the owner of the table does not have the READ or SELECT object privilege on the referenced
objects, then Oracle Database will consider them invalid and set them to null. Subsequently
these REF values will not be available in a query, even if it is issued by a user with appropriate
privileges on the objects.

SET DANGLING TO NULL

SET DANGLING TO NULL sets to null any REF values (whether or not scoped) in the specified
table that are found to point to an invalid or nonexistent object.

VALIDATE STRUCTURE

Specify VALIDATE STRUCTURE to validate the structure of the analyzed object. The statistics
collected by this clause are not used by the Oracle Database optimizer.

See Also:

"Validating a Table: Example"

Chapter 12
ANALYZE

12-225

• For a table, Oracle Database verifies the integrity of each of the data blocks and
rows. For an index-organized table, the database also generates compression
statistics (optimal prefix compression count) for the primary key index on the table.

• For a cluster, Oracle Database automatically validates the structure of the cluster
tables.

• For a partitioned table, Oracle Database also verifies that each row belongs to the
correct partition. If a row does not collate correctly, then its rowid is inserted into
the INVALID_ROWS table.

• For a temporary table, Oracle Database validates the structure of the table and its
indexes during the current session.

• For an index, Oracle Database verifies the integrity of each data block in the index
and checks for block corruption. This clause does not confirm that each row in the
table has an index entry or that each index entry points to a row in the table. You
can perform these operations by validating the structure of the table with the
CASCADE clause.

Oracle Database also computes compression statistics (optimal prefix
compression count) for all normal indexes.

Oracle Database stores statistics about the index in the data dictionary views
INDEX_STATS and INDEX_HISTOGRAM.

See Also:

Oracle Database Reference for information on these views

If Oracle Database encounters corruption in the structure of the object, then an error
message is returned. In this case, drop and re-create the object.

CASCADE

Specify CASCADE if you want Oracle Database to validate the structure of the indexes
associated with the table or cluster. If you use this clause when validating a table, then
the database also validates the indexes defined on the table. If you use this clause
when validating a cluster, then the database also validates all the cluster tables
indexes, including the cluster index.

By default, CASCADE performs a COMPLETE validation, which can be resource intensive.
Specify FAST if you want the database to check for the existence of corruptions without
reporting details about the corruption. If the FAST check finds a corruption, you can
then use the CASCADE option without the FAST clause to locate and learn details about
it.

If you use this clause to validate an enabled (but previously disabled) function-based
index, then validation errors may result. In this case, you must rebuild the index.

ONLINE | OFFLINE

Specify ONLINE to enable Oracle Database to run the validation while DML operations
are ongoing within the object. The database reduces the amount of validation
performed to allow for concurrency.

Chapter 12
ANALYZE

12-226

Note:

When you validate the structure of an object ONLINE, Oracle Database does not
collect any statistics, as it does when you validate the structure of the object
OFFLINE.

Specify OFFLINE, to maximize the amount of validation performed. This setting prevents
INSERT, UPDATE, and DELETE statements from concurrently accessing the object during
validation but allows queries. This is the default.

Restriction on ONLINE

You cannot specify ONLINE when analyzing a cluster.

INTO

The INTO clause of VALIDATE STRUCTURE is valid only for partitioned tables. Specify a table
into which Oracle Database lists the rowids of the partitions whose rows do not collate
correctly. If you omit schema, then the database assumes the list is in your own schema. If
you omit this clause altogether, then the database assumes that the table is named
INVALID_ROWS. The SQL script used to create this table is UTLVALID.SQL.

LIST CHAINED ROWS

LIST CHAINED ROWS lets you identify migrated and chained rows of the analyzed table or
cluster. You cannot use this clause when analyzing an index.

In the INTO clause, specify a table into which Oracle Database lists the migrated and chained
rows. If you omit schema, then the database assumes the chained-rows table is in your own
schema. If you omit this clause altogether, then the database assumes that the table is
named CHAINED_ROWS. The chained-rows table must be on your local database.

You can create the CHAINED_ROWS table using one of these scripts:

• UTLCHAIN.SQL uses physical rowids. Therefore it can accommodate rows from
conventional tables but not from index-organized tables. (See the Note that follows.)

• UTLCHN1.SQL uses universal rowids, so it can accommodate rows from both conventional
and index-organized tables.

If you create your own chained-rows table, then it must follow the format prescribed by one of
these two scripts.

If you are analyzing index-organized tables based on primary keys (rather than universal
rowids), then you must create a separate chained-rows table for each index-organized table
to accommodate its primary-key storage. Use the SQL scripts DBMSIOTC.SQL and
PRVTIOTC.PLB to define the BUILD_CHAIN_ROWS_TABLE procedure, and then execute this
procedure to create an IOT_CHAINED_ROWS table for each such index-organized table.

Chapter 12
ANALYZE

12-227

See Also:

• The DBMS_IOT package in Oracle Database PL/SQL Packages and
Types Reference for information on the packaged SQL scripts

• "Listing Chained Rows: Example"

DELETE STATISTICS

Specify DELETE STATISTICS to delete any statistics about the analyzed object that are
currently stored in the data dictionary. Use this statement when you no longer want
Oracle Database to use the statistics.

When you use this clause on a table, the database also automatically removes
statistics for all the indexes defined on the table. When you use this clause on a
cluster, the database also automatically removes statistics for all the cluster tables and
all their indexes, including the cluster index.

Specify SYSTEM if you want Oracle Database to delete only system (not user-defined)
statistics. If you omit SYSTEM, and if user-defined column or index statistics were
collected for an object, then the database also removes the user-defined statistics by
invoking the statistics deletion function specified in the statistics type that was used to
collect the statistics.

See Also:

"Deleting Statistics: Example"

Examples

Deleting Statistics: Example

The following statement deletes statistics about the sample table oe.orders and all its
indexes from the data dictionary:

ANALYZE TABLE orders DELETE STATISTICS;

Analyzing an Index: Example

The following statement validates the structure of the sample index
oe.inv_product_ix:

ANALYZE INDEX inv_product_ix VALIDATE STRUCTURE;

Validating a Table: Example

The following statement analyzes the sample table hr.employees and all of its
indexes:

ANALYZE TABLE employees VALIDATE STRUCTURE CASCADE;

For a table, the VALIDATE REF UPDATE clause verifies the REF values in the specified
table, checks the rowid portion of each REF, and then compares it with the true rowid. If

Chapter 12
ANALYZE

12-228

the result is an incorrect rowid, then the REF is updated so that the rowid portion is correct.

The following statement validates the REF values in the sample table oe.customers:

ANALYZE TABLE customers VALIDATE REF UPDATE;

The following statement validates the structure of the sample table oe.customers while
allowing simultaneous DML:

ANALYZE TABLE customers VALIDATE STRUCTURE ONLINE;

Analyzing a Cluster: Example

The following statement analyzes the personnel cluster (created in "Creating a Cluster:
Example"), all of its tables, and all of their indexes, including the cluster index:

ANALYZE CLUSTER personnel
 VALIDATE STRUCTURE CASCADE;

Listing Chained Rows: Example

The following statement collects information about all the chained rows in the table orders:

ANALYZE TABLE orders
 LIST CHAINED ROWS INTO chained_rows;

The preceding statement places the information into the table chained_rows. You can then
examine the rows with this query (no rows will be returned if the table contains no chained
rows):

SELECT owner_name, table_name, head_rowid, analyze_timestamp
 FROM chained_rows
 ORDER BY owner_name, table_name, head_rowid, analyze_timestamp;

OWNER_NAME TABLE_NAME HEAD_ROWID ANALYZE_TIMESTAMP
---------- ---------- ------------------ -----------------
OE ORDERS AAAAZzAABAAABrXAAA 25-SEP-2000

ASSOCIATE STATISTICS
Purpose

Use the ASSOCIATE STATISTICS statement to associate a statistics type (or default statistics)
containing functions relevant to statistics collection, selectivity, or cost with one or more
columns, standalone functions, packages, types, domain indexes, or indextypes.

For a listing of all current statistics type associations, query the USER_ASSOCIATIONS data
dictionary view. If you analyze the object with which you are associating statistics, then you
can also query the associations in the USER_USTATS view.

See Also:

ANALYZE for information on the order of precedence with which ANALYZE uses
associations

Chapter 12
ASSOCIATE STATISTICS

12-229

Prerequisites

To issue this statement, you must have the appropriate privileges to alter the base
object (table, function, package, type, domain index, or indextype). In addition, unless
you are associating only default statistics, you must have execute privilege on the
statistics type. The statistics type must already have been defined.

See Also:

CREATE TYPE for information on defining types

Syntax

associate_statistics::=

ASSOCIATE STATISTICS WITH
column_association

function_association

storage_table_clause

;

column_association::=

COLUMNS

schema .

table . column

,

using_statistics_type

function_association::=

FUNCTIONS

schema .

function

,

PACKAGES

schema .

package

,

TYPES

schema .

type

,

INDEXES

schema .

index

,

INDEXTYPES

schema .

indextype

,

using_statistics_type

default_cost_clause

, default_selectivity_clause

default_selectivity_clause

, default_cost_clause

Chapter 12
ASSOCIATE STATISTICS

12-230

using_statistics_type::=

USING

schema .

statistics_type

NULL

default_cost_clause::=

DEFAULT COST (cpu_cost , io_cost , network_cost)

default_selectivity_clause::=

DEFAULT SELECTIVITY default_selectivity

storage_table_clause::=

WITH

SYSTEM

USER

MANAGED STORAGE TABLES

Semantics

column_association

Specify one or more table columns. If you do not specify schema, then Oracle Database
assumes the table is in your own schema.

function_association

Specify one or more standalone functions, packages, user-defined data types, domain
indexes, or indextypes. If you do not specify schema, then Oracle Database assumes the
object is in your own schema.

• FUNCTIONS refers only to standalone functions, not to method types or to built-in functions.

• TYPES refers only to user-defined types, not to built-in SQL data types.

Restriction on function_association

You cannot specify an object for which you have already defined an association. You must
first disassociate the statistics from this object.

Chapter 12
ASSOCIATE STATISTICS

12-231

See Also:

DISASSOCIATE STATISTICS "Associating Statistics: Example"

using_statistics_type

Specify the statistics type (or a synonym for the type) being associated with column,
function, package, type, domain index, or indextype. The statistics_type must
already have been created.

The NULL keyword is valid only when you are associating statistics with a column or an
index. When you associate a statistics type with an object type, columns of that object
type inherit the statistics type. Likewise, when you associate a statistics type with an
indextype, index instances of the indextype inherit the statistics type.You can override
this inheritance by associating a different statistics type for the column or index.
Alternatively, if you do not want to associate any statistics type for the column or index,
then you can specify NULL in the using_statistics_type clause.

Restriction on Specifying Statistics Type

You cannot specify NULL for functions, packages, types, or indextypes.

See Also:

Oracle Database Data Cartridge Developer's Guide for information on
creating statistics collection functions

default_cost_clause

Specify default costs for standalone functions, packages, types, domain indexes, or
indextypes. If you specify this clause, then you must include one number each for CPU
cost, I/O cost, and network cost, in that order. Each cost is for a single execution of the
function or method or for a single domain index access. Accepted values are integers
of zero or greater.

default_selectivity_clause

Specify as a percent the default selectivity for predicates with standalone functions,
types, packages, or user-defined operators. The default_selectivity_clause must
be a number between 0 and 100. Values outside this range are ignored.

Restriction on the default_selectivity_clause

You cannot specify DEFAULT SELECTIVITY for domain indexes or indextypes.

See Also:

"Specifying Default Cost: Example"

Chapter 12
ASSOCIATE STATISTICS

12-232

storage_table_clause

This clause is relevant only for statistics on INDEXTYPE.

• Specify WITH SYSTEM MANAGED STORAGE TABLES to indicate that the storage of statistics
data is to be managed by the system. The type you specify in statistics_type should
be storing the statistics related information in tables that are maintained by the system.
Also, the indextype you specify must already have been created or altered to support the
WITH SYSTEM MANAGED STORAGE TABLES clause.

• Specify WITH USER MANAGED STORAGE TABLES to indicate that the tables that store the user-
defined statistics will be managed by the user. This is the default behavior.

Examples

Associating Statistics: Example

This statement creates an association for the standalone package emp_mgmt. See Oracle
Database PL/SQL Language Reference for the example that creates this package.

ASSOCIATE STATISTICS WITH PACKAGES emp_mgmt DEFAULT SELECTIVITY 10;

Specifying Default Cost: Example

This statement specifies that using the domain index salary_index, created in "Using
Extensible Indexing ", to implement a given predicate always has a CPU cost of 100, I/O cost
of 5, and network cost of 0.

ASSOCIATE STATISTICS WITH INDEXES salary_index DEFAULT COST (100,5,0);

The optimizer will use these default costs instead of calling a cost function.

AUDIT (Traditional Auditing)

Note:

Traditional auditing is deprecated in Oracle Database 21c. Oracle recommends that
you use unified auditing, which enables selective and more effective auditing inside
Oracle Database.

This section describes the AUDIT statement for traditional auditing, which is the same
auditing functionality used in releases earlier than Oracle Database 12c.

Beginning with Oracle Database 12c, Oracle introduces unified auditing, which provides a
full set of enhanced auditing features. For backward compatibility, traditional auditing is still
supported. However, Oracle recommends that you plan the migration of your existing audit
settings to the new unified audit policy syntax. For new audit requirements, Oracle
recommends that you use the new unified auditing. Traditional auditing may be desupported
in a future major release.

Chapter 12
AUDIT (Traditional Auditing)

12-233

See Also:

AUDIT (Unified Auditing) for a description of the AUDIT statement for unified
auditing

Purpose

Use the AUDIT statement to:

• Track the issuance of SQL statements in subsequent user sessions. You can track
the issuance of a specific SQL statement or of all SQL statements authorized by a
particular system privilege. Auditing operations on SQL statements apply only to
subsequent sessions, not to current sessions.

• Track operations on a specific schema object. Auditing operations on schema
objects apply to current sessions as well as to subsequent sessions.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information on the DBMS_FGA package, which lets you create and
administer value-based auditing policies

• NOAUDIT (Traditional Auditing)

Prerequisites

To audit issuances of a SQL statement, you must have the AUDIT SYSTEM system
privilege. However, the AUDIT SYSTEM system privilege is not required when you use
the IN SESSION CURRENT clause.

To collect auditing results, you must enable auditing by setting the initialization
parameter AUDIT_TRAIL to a value other than the default setting of NONE. You can
specify auditing options regardless of whether auditing is enabled. However, Oracle
Database does not generate audit records until you enable auditing.

To audit operations on a schema object, the object you choose for auditing must be in
your own schema or you must have AUDIT ANY system privilege. In addition, if the
object you choose for auditing is a directory object, even if you created it, then you
must have AUDIT ANY system privilege.

When you are connected to a multitenant container database (CDB), you must have
the privileges described in this section, either granted locally in the current container or
granted commonly.

To specify the CONTAINER clause, you must be connected to a multitenant container
database (CDB). To specify CONTAINER = CURRENT, the current container must be a
pluggable database (PDB). To specify CONTAINER = ALL, the current container must be
the root.

Notes on Using the AUDIT Statement in a CDB

Chapter 12
AUDIT (Traditional Auditing)

12-234

When you issue the AUDIT statement in a CDB, the database performs auditing as follows:

• If you issue the AUDIT statement when the current container is a PDB, then the database
performs auditing in that PDB. If you specify the auditing_by_clause, then user must be
a local user in the PDB or a common user. If you specify the
audit_schema_object_clause, then the object must be a local object in the PDB.

• If you issue the AUDIT statement when the current container is the root, then the
database performs auditing across the entire CDB, that is, in the root and all PDBs. If you
specify the auditing_by_clause, then user must be a common user. If you omit the
auditing_by_clause, then all common users are audited. If you specify the
audit_schema_object_clause, then the object must be a local object in the root or a
common object.

Note:

The AUDIT ANY system privileges allows the grantee to audit any object in any
schema except the SYS schema.

See Also:

Oracle Database Reference for information on the AUDIT_TRAIL parameter

Syntax

audit::=

AUDIT

audit_operation_clause

auditing_by_clause

IN SESSION CURRENT

audit_schema_object_clause

NETWORK

DIRECT_PATH LOAD

auditing_by_clause

BY
SESSION

ACCESS WHENEVER

NOT

SUCCESSFUL
CONTAINER =

CURRENT

ALL

;

audit_operation_clause::=

Chapter 12
AUDIT (Traditional Auditing)

12-235

sql_statement_shortcut

ALL

ALL STATEMENTS

,

system_privilege

ALL PRIVILEGES

,

auditing_by_clause::=

BY user

,

audit_schema_object_clause::=

sql_operation

,

ALL
auditing_on_clause

auditing_on_clause::=

ON

schema .

object

DIRECTORY directory_name

MINING MODEL

schema .

model

SQL TRANSLATION PROFILE

schema .

profile

DEFAULT

Semantics

audit_operation_clause

Use the audit_operation_clause to audit specified operations, regardless of the
schema objects affected by the operations.

Chapter 12
AUDIT (Traditional Auditing)

12-236

sql_statement_shortcut

Specify a shortcut to audit the use of specific SQL statements. Table 12-1 and Table 12-2 list
the shortcuts and the SQL statements they audit.

Note:

Do not confuse SQL statement shortcuts with system privileges. For example:

• An AUDIT USER statement specifies the USER shortcut for auditing of all CREATE
USER, ALTER USER, and DROP USER SQL statements. Auditing in this case includes
an operation in which a user changes his or her own password with an ALTER
USER statement.

• An AUDIT ALTER USER statement specifies the ALTER USER system privilege for
auditing of all operations that make use of that system privilege. Auditing in this
case does not include an operation in which a user changes his or her own
password, because that operation does not require the ALTER USER system
privilege.

For each audited operation, Oracle Database produces an audit record containing this
information:

• The user performing the operation

• The type of operation

• The object involved in the operation

• The date and time of the operation

Oracle Database writes audit records to the audit trail, which is a database table containing
audit records. You can review database activity by examining the audit trail through data
dictionary views.

See Also:

• Oracle Database Security Guide 11g Release 2 (11.2) for a listing of the audit
trail data dictionary views. Refer to Oracle Database Upgrade Guide for
instructions on how to locate the Oracle Database 11g Release 2 (11.2)
documentation.

• Oracle Database Reference for detailed descriptions of the data dictionary
views

• "Auditing SQL Statements Relating to Roles: Example"

system_privilege

Specify a system privilege to audit SQL statements and other operations that are authorized
by the specified system privilege.

Chapter 12
AUDIT (Traditional Auditing)

12-237

Note:

Auditing the use of a system privilege containing the ANY keyword is more
restrictive than auditing the use of the same privilege without the ANY
keyword. For example:

• AUDIT CREATE PROCEDURE audits the statements issued using either the
CREATE PROCEDURE or CREATE ANY PROCEDURE privilege.

• AUDIT CREATE ANY PROCEDURE audits only those statements issued using
the CREATE ANY PROCEDURE privilege.

Rather than specifying many individual system privileges, you can specify the roles
CONNECT, RESOURCE, and DBA. Doing so is equivalent to auditing all of the system
privileges granted to those roles.

Oracle Database also provides three shortcuts for specifying groups of system
privileges and statement options at once:

ALL

Specify ALL to audit all statements options shown in Table 12-1 but not the additional
statement options shown in Table 12-2.

ALL STATEMENTS

Specify ALL STATEMENTS to audit all top-level SQL statements executed. Top-level
SQL statements are issued directly by a user. SQL statements run from within a
PL/SQL procedure or function are not considered top-level statements. Therefore, this
clause does not audit the statements executed within PL/SQL procedures or functions.
However, the execution of the PL/SQL procedure or function itself is audited. This
clause is useful if you want to audit all the statements in a specific environment,
regardless of other auditing configurations that are system wide or user specific.

ALL PRIVILEGES

Specify ALL PRIVILEGES to audit system privileges.

Note:

Oracle recommends that you specify individual system privileges and
statement options for auditing rather than roles or shortcuts. The specific
system privileges and statement options encompassed by roles and
shortcuts change from one release to the next and may not be supported in
future versions of Oracle Database.

Chapter 12
AUDIT (Traditional Auditing)

12-238

See Also:

• Table 18-1 for a list of all system privileges and the operations that they
authorize

• Oracle Database Security Guide for more information on the CONNECT,
RESOURCE, and DBA roles

• "Auditing Query and Update SQL Statements: Example", "Auditing Deletions:
Example", and "Auditing Statements Relating to Directories: Examples"

auditing_by_clause

Specify the auditing_by_clause to restrict auditing to only SQL statements issued by the
specified users. If you omit this clause, then Oracle Database audits all users' statements.

IN SESSION CURRENT

Use this clause to limit auditing to the current session. Auditing will persist until the end of the
session and cannot be stopped using the NOAUDIT statement.

audit_schema_object_clause

Use the audit_schema_object_clause to audit operations on specific schema objects.

Restriction on the audit_schema_object_clause

When connected to a CDB, you can specify the audit_schema_object_clause, but you
cannot also specify the CONTAINER clause. This restriction does not limit functionality because
the only allowed values for the CONTAINER clause are the default values. Refer to
CONTAINER Clause for more information.

sql_operation

Specify the SQL operation to be audited. Table 12-3 shows the types of objects that can be
audited, and for each object the SQL statements that can be audited. For example, if you
choose to audit a table with the ALTER operation, then Oracle Database audits all ALTER TABLE
statements issued against the table. If you choose to audit a sequence with the SELECT
operation, then the database audits all statements that use any values of the sequence.

ALL

Specify ALL as a shortcut equivalent to specifying all SQL operations applicable for the type
of object.

auditing_on_clause

The auditing_on_clause lets you specify the particular schema object to be audited.

See Also:

"Auditing Queries on a Table: Example", "Auditing Inserts and Updates on a Table:
Example", and "Auditing Operations on a Sequence: Example"

Chapter 12
AUDIT (Traditional Auditing)

12-239

schema

Specify the schema containing the object chosen for auditing. If you omit schema, then
Oracle Database assumes the object is in your own schema.

object

Specify the name of the object to be audited. The object must be a table, view,
sequence, stored procedure, function, package, materialized view, mining model, or
library.

You can also specify a synonym for a table, view, sequence, procedure, stored
function, package, materialized view, or user-defined type.

ON DEFAULT

Specify ON DEFAULT to establish the specified object options as default object options
for subsequently created objects. After you have established these default auditing
options, any subsequently created object is automatically audited with those options.
The default auditing options for a view are always the union of the auditing options for
the base tables of the view. You can see the current default auditing options by
querying the ALL_DEF_AUDIT_OPTS data dictionary view.

When you change the default auditing options, the auditing options for previously
created objects remain the same. You can change the auditing options for an existing
object only by specifying the object in the ON clause of the AUDIT statement.

See Also:

"Setting Default Auditing Options: Example"

ON DIRECTORY

The ON DIRECTORY clause lets you specify the name of a directory chosen for auditing.

ON MINING MODEL

The ON MINING MODEL clause lets you specify the name of a mining model to be
audited.

ON SQL TRANSLATION PROFILE

The ON SQL TRANSLATION PROFILE clause lets you specify the name of a SQL
translation profile to be audited.

NETWORK

Use this clause to detect internal failures in the network layer.

See Also:

Oracle Database Security Guide 11g Release 2 (11.2) for information on
network auditing. Refer to Oracle Database Upgrade Guide for instructions
on how to locate the Oracle Database 11g Release 2 (11.2) documentation.

Chapter 12
AUDIT (Traditional Auditing)

12-240

DIRECT_PATH LOAD

Use this clause to audit SQL*Loader direct path loads.

BY SESSION

In earlier releases, BY SESSION caused the database to write a single record for all SQL
statements or operations of the same type executed on the same schema objects in the
same session. Beginning with this release of Oracle Database, both BY SESSION and BY
ACCESS cause Oracle Database to write one audit record for each audited statement and
operation. BY SESSION continues to populate different values to the audit trail compared with
BY ACCESS. Oracle recommends that you include the BY ACCESS clause for all AUDIT
statements, which results in a more detailed audit record. If you specify neither clause, then
BY ACCESS is the default.

Note:

This change applies only to schema object audit options, statement options and
system privileges that audit SQL statements other than data definition language
(DDL) statements. The database has always audited BY ACCESS all SQL statements
and system privileges that audit a DDL statement.

BY ACCESS

Specify BY ACCESS if you want Oracle Database to write one record for each audited
statement and operation.

Note:

If you specify either a SQL statement shortcut or a system privilege that audits a
data definition language (DDL) statement, then the database always audits by
access. In all other cases, the database honors the BY SESSION or BY ACCESS
specification.

For statement options and system privileges that audit SQL statements other than DDL, you
can specify either BY SESSION or BY ACCESS. BY ACCESS is the default.

WHENEVER [NOT] SUCCESSFUL

Specify WHENEVER SUCCESSFUL to audit only SQL statements and operations that succeed.

Specify WHENEVER NOT SUCCESSFUL to audit only SQL statements and operations that fail or
result in errors.

If you omit this clause, then Oracle Database performs the audit regardless of success or
failure.

Chapter 12
AUDIT (Traditional Auditing)

12-241

CONTAINER Clause

The CONTAINER clause applies only when you are connected to a CDB. You can use
this clause to specify the scope of the AUDIT statement. However, it is not necessary to
specify the CONTAINER clause because its default values are the only allowed values.

• If you issue the AUDIT statement when the current container is a PDB, then you
can optionally specify CONTAINER = CURRENT, which is the default.

• If you issue the AUDIT statement when the current container is the root, then you
can optionally specify CONTAINER = ALL, which is the default.

Tables of Auditing Options

Table 12-1 SQL Statement Shortcuts for Auditing

SQL Statement Shortcut SQL Statements and Operations Audited

ALTER SYSTEM ALTER SYSTEM
CLUSTER CREATE CLUSTER

ALTER CLUSTER
DROP CLUSTER
TRUNCATE CLUSTER

CONTEXT CREATE CONTEXT
DROP CONTEXT

DATABASE LINK CREATE DATABASE LINK
ALTER DATABASE LINK
DROP DATABASE LINK

DIMENSION CREATE DIMENSION
ALTER DIMENSION
DROP DIMENSION

DIRECTORY CREATE DIRECTORY
DROP DIRECTORY

INDEX CREATE INDEX
ALTER INDEX
ANALYZE INDEX
DROP INDEX

MATERIALIZED VIEW CREATE MATERIALIZED VIEW
ALTER MATERIALIZED VIEW
DROP MATERIALIZED VIEW

NOT EXISTS All SQL statements that fail because a specified object does
not exist.

OUTLINE CREATE OUTLINE
ALTER OUTLINE
DROP OUTLINE

Chapter 12
AUDIT (Traditional Auditing)

12-242

Table 12-1 (Cont.) SQL Statement Shortcuts for Auditing

SQL Statement Shortcut SQL Statements and Operations Audited

PLUGGABLE DATABASE CREATE PLUGGABLE DATABASE
ALTER PLUGGABLE DATABASE
DROP PLUGGABLE DATABASE

PROCEDURE (See note at end
of table)

CREATE FUNCTION
CREATE LIBRARY
CREATE PACKAGE
CREATE PACKAGE BODY
CREATE PROCEDURE
DROP FUNCTION
DROP LIBRARY
DROP PACKAGE
DROP PROCEDURE

PROFILE CREATE PROFILE
ALTER PROFILE
DROP PROFILE

PUBLIC DATABASE LINK CREATE PUBLIC DATABASE LINK
ALTER PUBLIC DATABASE LINK
DROP PUBLIC DATABASE LINK

PUBLIC SYNONYM CREATE PUBLIC SYNONYM
DROP PUBLIC SYNONYM

ROLE CREATE ROLE
ALTER ROLE
DROP ROLE
SET ROLE

ROLLBACK SEGMENT CREATE ROLLBACK SEGMENT
ALTER ROLLBACK SEGMENT
DROP ROLLBACK SEGMENT

SEQUENCE CREATE SEQUENCE
DROP SEQUENCE

SESSION Logons

SYNONYM CREATE SYNONYM
DROP SYNONYM

SYSTEM AUDIT AUDIT sql_statements
NOAUDIT sql_statements

SYSTEM GRANT GRANT system_privileges_and_roles
REVOKE system_privileges_and_roles

TABLE CREATE TABLE
DROP TABLE
TRUNCATE TABLE

Chapter 12
AUDIT (Traditional Auditing)

12-243

Table 12-1 (Cont.) SQL Statement Shortcuts for Auditing

SQL Statement Shortcut SQL Statements and Operations Audited

TABLESPACE CREATE TABLESPACE
ALTER TABLESPACE
DROP TABLESPACE

TRIGGER CREATE TRIGGER
ALTER TRIGGER
 with ENABLE and DISABLE clauses

DROP TRIGGER
ALTER TABLE
 with ENABLE ALL TRIGGERS clause

 and DISABLE ALL TRIGGERS clause

TYPE CREATE TYPE
CREATE TYPE BODY
ALTER TYPE
DROP TYPE
DROP TYPE BODY

USER CREATE USER
ALTER USER
DROP USER
Notes:
• AUDIT USER audits these three SQL statements. Use

AUDIT ALTER USER to audit statements that require the
ALTER USER system privilege.

• An AUDIT ALTER USER statement does not audit a user
changing his or her own password, as this activity does
not require the ALTER USER system privilege.

VIEW CREATE VIEW
DROP VIEW

Note:

Java schema objects (sources, classes, and resources) are considered the
same as procedures for purposes of auditing SQL statements.

Table 12-2 Additional SQL Statement Shortcuts for Auditing

SQL Statement Shortcut SQL Statements and Operations Audited

ALTER SEQUENCE ALTER SEQUENCE
ALTER TABLE ALTER TABLE

Chapter 12
AUDIT (Traditional Auditing)

12-244

Table 12-2 (Cont.) Additional SQL Statement Shortcuts for Auditing

SQL Statement Shortcut SQL Statements and Operations Audited

COMMENT TABLE COMMENT ON TABLE table, view, materialized view
COMMENT ON COLUMN table.column, view.column,
materialized view.column

DELETE TABLE DELETE FROM table, view

EXECUTE DIRECTORY Execution of any program in a directory

EXECUTE PROCEDURE CALL
Execution of any procedure or function or access to any
variable, library, or cursor inside a package

GRANT DIRECTORY GRANT privilege ON directory

REVOKE privilege ON directory

GRANT PROCEDURE GRANT privilege ON procedure, function, package

REVOKE privilege ON procedure, function, package

GRANT SEQUENCE GRANT privilege ON sequence

REVOKE privilege ON sequence

GRANT TABLE GRANT privilege ON table, view, materialized view

REVOKE privilege ON table, view, materialized view

GRANT TYPE GRANT privilege ON TYPE
REVOKE privilege ON TYPE

INSERT TABLE INSERT INTO table, view

LOCK TABLE LOCK TABLE table, view

READ DIRECTORY Read operations on a directory

SELECT SEQUENCE Any statement containing sequence.CURRVAL or
sequence.NEXTVAL

SELECT TABLE SELECT FROM table, view, materialized view

UPDATE TABLE UPDATE table, view

WRITE DIRECTORY Write operations on a directory

Chapter 12
AUDIT (Traditional Auditing)

12-245

Table 12-3 Schema Object Auditing Options

Object SQL Operations

Table ALTER
AUDIT
COMMENT
DELETE
FLASHBACK (Note 1)

GRANT
INDEX
INSERT
LOCK
RENAME
SELECT
UPDATE

View AUDIT
COMMENT
DELETE
FLASHBACK (Note 1)

GRANT
INSERT
LOCK
RENAME
SELECT
UPDATE

Sequence ALTER
AUDIT
GRANT
SELECT

Procedure, Function,
Package (Note 2)

AUDIT
EXECUTE (Notes 3 and 4)

GRANT
Materialized View (Note 5) ALTER

AUDIT
COMMENT
DELETE
INDEX
INSERT
LOCK
SELECT
UPDATE

Chapter 12
AUDIT (Traditional Auditing)

12-246

Table 12-3 (Cont.) Schema Object Auditing Options

Object SQL Operations

Mining Model AUDIT
COMMENT
GRANT
RENAME
SELECT

Directory AUDIT
GRANT
READ

Library EXECUTE
GRANT

Object Type ALTER
AUDIT
GRANT

Note 1: The FLASHBACK audit object option applies only to flashback queries.

Note 2: Java schema objects (sources, classes, and resources) are considered the same as
procedures, functions, and packages for purposes of auditing options.

Note 3: When you audit the EXECUTE operation on a PL/SQL stored procedure or stored
function, the database considers only its ability to find the procedure or function and authorize
its execution when determining the success or failure of the operation for the purposes of
auditing. Therefore, if you specify the WHENEVER NOT SUCCESSFUL clause, then only invalid
object errors, non-existent object errors, and authorization failures are audited; errors
encountered during the execution of the procedure or function are not audited. If you specify
the WHENEVER SUCCESSFUL clause, then all executions that are not blocked by invalid object
errors, non-existent object errors, or authorization failures are audited, regardless of whether
errors are encountered during execution.

Note 4: To audit the failure of a recursive SQL operation inside a PL/SQL stored procedure or
stored function, configure auditing for the SQL operation.

Note 5: You can audit INSERT, UPDATE, and DELETE operations only on updatable materialized
views.

Examples

Auditing SQL Statements Relating to Roles: Example

To choose auditing for every SQL statement that creates, alters, drops, or sets a role,
regardless of whether the statement completes successfully, issue the following statement:

AUDIT ROLE;

To choose auditing for every statement that successfully creates, alters, drops, or sets a role,
issue the following statement:

Chapter 12
AUDIT (Traditional Auditing)

12-247

AUDIT ROLE
 WHENEVER SUCCESSFUL;

To choose auditing for every CREATE ROLE, ALTER ROLE, DROP ROLE, or SET ROLE
statement that results in an Oracle Database error, issue the following statement:

AUDIT ROLE
 WHENEVER NOT SUCCESSFUL;

Auditing Query and Update SQL Statements: Example

To choose auditing for any statement that queries or updates any table, issue the
following statement:

AUDIT SELECT TABLE, UPDATE TABLE;

To choose auditing for statements issued by the users hr and oe that query or update
a table or view, issue the following statement

AUDIT SELECT TABLE, UPDATE TABLE
 BY hr, oe;

Auditing Deletions: Example

To choose auditing for statements issued using the DELETE ANY TABLE system privilege,
issue the following statement:

AUDIT DELETE ANY TABLE;

Auditing Statements Relating to Directories: Examples

To choose auditing for statements issued using the CREATE ANY DIRECTORY system
privilege, issue the following statement:

AUDIT CREATE ANY DIRECTORY;

To choose auditing for CREATE DIRECTORY (and DROP DIRECTORY) statements that do not
use the CREATE ANY DIRECTORY system privilege, issue the following statement:

AUDIT DIRECTORY;

To choose auditing for every statement that reads files from the bfile_dir directory,
issue the following statement:

AUDIT READ ON DIRECTORY bfile_dir;

To choose auditing for every statement that reads files from any directory, issue the
following statement:

AUDIT READ DIRECTORY;

Auditing Queries on a Table: Example

To choose auditing for every SQL statement that queries the employees table in the
schema hr, issue the following statement:

AUDIT SELECT
 ON hr.employees;

To choose auditing for every statement that successfully queries the employees table
in the schema hr, issue the following statement:

Chapter 12
AUDIT (Traditional Auditing)

12-248

AUDIT SELECT
 ON hr.employees
 WHENEVER SUCCESSFUL;

To choose auditing for every statement that queries the employees table in the schema hr
and results in an Oracle Database error, issue the following statement:

AUDIT SELECT
 ON hr.employees
 WHENEVER NOT SUCCESSFUL;

Auditing Inserts and Updates on a Table: Example

To choose auditing for every statement that inserts or updates a row in the customers table in
the schema oe, issue the following statement:

AUDIT INSERT, UPDATE
 ON oe.customers;

Auditing Operations on a Sequence: Example

To choose auditing for every statement that performs any operation on the employees_seq
sequence in the schema hr, issue the following statement:

AUDIT ALL
 ON hr.employees_seq;

The preceding statement uses the ALL shortcut to choose auditing for the following
statements that operate on the sequence:

• ALTER SEQUENCE
• AUDIT
• GRANT
• any statement that accesses the values of the sequence using the pseudocolumns

CURRVAL or NEXTVAL
Setting Default Auditing Options: Example

The following statement specifies default auditing options for objects created in the future:

AUDIT ALTER, GRANT, INSERT, UPDATE, DELETE
 ON DEFAULT;

Any objects created later are automatically configured for audit with the specified options that
apply to them.

• If you create a table, then Oracle Database automatically configures audit options ALTER,
GRANT, INSERT, UPDATE, or DELETE issued against the table.

• If you create a view, then Oracle Database automatically configures audit options GRANT,
INSERT, UPDATE, or DELETE against the view.

• If you create a sequence, then Oracle Database automatically configures audit options
ALTER or GRANT against the sequence.

• If you create a procedure, package, or function, then Oracle Database automatically
configures audit options ALTER or GRANT against it.

Chapter 12
AUDIT (Traditional Auditing)

12-249

AUDIT (Unified Auditing)
This section describes the AUDIT statement for unified auditing. This type of auditing
is new beginning with Oracle Database 12c and provides a full set of enhanced
auditing features. Refer to Oracle Database Security Guide for more information on
unified auditing.

Purpose

Use the AUDIT statement to:

• Enable a unified audit policy for all users or for specified users

• Specify whether an audit record is created if the audited event fails, succeeds, or
both

• Specify application context attributes, whose values will be recorded in audit
records

Changes made to the audit policy become effective immediately in the current session
and in all active sessions without re-login.

See Also:

• NOAUDIT (Unified Auditing)

• CREATE AUDIT POLICY (Unified Auditing)

• ALTER AUDIT POLICY (Unified Auditing)

• DROP AUDIT POLICY (Unified Auditing)

Prerequisites

You must have the AUDIT SYSTEM system privilege or the AUDIT_ADMIN role.

If you are connected to a multitenant container database (CDB), then to enable a
common unified audit policy, the current container must be the root and you must have
the commonly granted AUDIT SYSTEM privilege or the AUDIT_ADMIN common role. To
enable a local unified audit policy, the current container must be the container in which
the audit policy was created and you must have the commonly granted AUDIT SYSTEM
privilege or the AUDIT_ADMIN common role, or you must have the locally granted AUDIT
SYSTEM privilege or the AUDIT_ADMIN local role in the container.

To specify the AUDIT CONTEXT ... statement when connected to a CDB, you must have
the commonly granted AUDIT SYSTEM privilege or the AUDIT_ADMIN common role, or you
must have the locally granted AUDIT SYSTEM privilege or the AUDIT_ADMIN local role in
the current session's container.

Chapter 12
AUDIT (Unified Auditing)

12-250

Syntax

unified_audit::=

AUDIT

POLICY policy

BY

EXCEPT
user

,

by_users_with_roles WHENEVER

NOT

SUCCESSFUL

CONTEXT NAMESPACE namespace ATTRIBUTES attribute

,

,

BY user

, ;

by_users_with_roles::=

BY USERS WITH GRANTED ROLES role

,

Semantics

policy

With Oracle Database Release 21c unified audit policies are enforced on the current user
who executes the SQL statement.

Specify the name of the unified audit policy to be enabled. (The policy must be created
previously by the CREATE AUDIT POLICY statement.) The policy becomes active immediately
for the current session and active ongoing sessions as soon as the AUDIT POLICY statement
is executed.

You can find descriptions of all unified audit policies by querying the
AUDIT_UNIFIED_POLICIES view and descriptions of all enabled unified audit policies by
querying the AUDIT_UNIFIED_ENABLED_POLICIES view.

When you enable a unified audit policy, all SQL statements and operations that satisfy either
a system privilege or action or role audit option specified in the enabled policy will be audited
—that is, a unified audit record will be created in the UNIFIED_AUDIT_TRAIL view. If a single
SQL statement or operation satisfies multiple enabled policies, then only one unified audit
record will be created and all satisfied audit policy names will appear in a comma-separated
list in the UNIFIED_AUDIT_POLICIES column of the UNIFIED_AUDIT_TRAIL view.

Chapter 12
AUDIT (Unified Auditing)

12-251

See Also:

• CREATE AUDIT POLICY (Unified Auditing)

• Oracle Database Reference for more information on the
AUDIT_UNIFIED_POLICIES, AUDIT_UNIFIED_ENABLED_POLICIES, and
UNIFIED_AUDIT_TRAIL views

BY | EXCEPT

Specify the BY clause to enable policy for only the specified users.

Specify the EXCEPT clause to enable policy for all users except the specified users.

If you omit the BY and EXCEPT clauses and the by_users_with_roles clause, then
Oracle Database enables policy for all users.

If policy is a common unified audit policy, then user must be a common user. If
policy is a local unified audit policy, then user must be a common user or a local user
in the container to which you are connected.

Notes on the BY and EXCEPT Clauses

The following notes apply to the BY and EXCEPT clauses:

• If multiple AUDIT ... BY ... statements are specified for the same unified audit policy,
then the policy is enabled for the union of the users specified in each statement.

• If multiple AUDIT ... EXCEPT ... statements are specified for the same unified audit
policy, then only the most recently specified statement takes effect. That is, the
policy is enabled for all users except the users specified in the most recent
AUDIT ... EXCEPT ... statement.

• If a policy is enabled using the BY clause and you would like to instead enable it
using the EXCEPT clause, then you must first use the NOAUDIT ... BY ... statement to
disable the policy for all users for whom the policy is currently enabled, and then
enable the policy with the AUDIT ... EXCEPT ... statement.

• If a policy is enabled using the EXCEPT clause and you would like to instead enable
it using the BY clause, then you must first use the NOAUDIT statement to disable the
audit policy. Note that you cannot specify the EXCEPT clause with the NOAUDIT
statement. You can then enable the policy with the AUDIT ... BY ... statement.

Restriction on the BY and EXCEPT Clauses

You cannot specify an AUDIT ... BY ... statement and an AUDIT ... EXCEPT ... statement
for the same unified audit policy. If you attempt to do so, then an error occurs.

by_users_with_roles

Specify this clause to enable policy for users who have been directly or indirectly
granted the specified roles. If you subsequently grant one of the roles to an additional
user or to a role which is directly or indirectly granted to a user, then the policy
automatically applies to that user. If you subsequently revoke one of the roles from a
user or from a role which was directly or indirectly granted to a role or a user, then the
policy no longer applies to that user.

Chapter 12
AUDIT (Unified Auditing)

12-252

When you are connected to a CDB, if policy is a common unified audit policy, then role
must be a common role. If policy is a local unified audit policy, then role must be a common
role or a local role in the container to which you are connected.

Enabling a Local Audit Policy on Roles

Local audit policy can be enabled on local roles as well as on common roles. When a local
audit policy is enabled on a common role, it generates audit records when a common role is
granted to user locally or commonly in the container.

Enabling a Common Audit Policy on Roles

Common audit policy can only be enabled on common roles. When a common audit policy is
enabled on a common role, it generates audit records when a common role is granted to an
user commonly or locally in the ROOT container.

WHENEVER [NOT] SUCCESSFUL

Specify WHENEVER SUCCESSFUL to audit only SQL statements and operations that succeed.

Specify WHENEVER NOT SUCCESSFUL to audit only SQL statements and operations that fail or
result in errors.

If you omit this clause, then Oracle Database performs the audit regardless of success or
failure.

CONTEXT Clause

Specify the CONTEXT clause to include the values of context attributes in audit records.

• For namespace, specify the context namespace.

• For attribute, specify one or more context attributes whose values you want to include
in audit records.

• Use the optional BY user clause to include the values of the context attributes only in
audit records for events executed by the specified users. If you omit the BY clause, then
the values of the context attributes are included in all audit records.

If you specify the CONTEXT clause when the current container is the root of a CDB, then the
values of context attributes will be included in audit records only for events executed in the
root. If you specify the optional BY clause, then user must be a common user.

If you specify the CONTEXT clause when the current container is a pluggable database (PDB),
then the values of context attributes will be included in audit records only for events executed
in that PDB. If you specify the optional BY clause, then user must be a common user or a
local user in that PDB.

You can find the application context attributes that are configured to be captured in the audit
trail by querying the AUDIT_UNIFIED_CONTEXTS view.

See Also:

Oracle Database Reference for more information on the AUDIT_UNIFIED_CONTEXTS
view

Chapter 12
AUDIT (Unified Auditing)

12-253

Examples

The following examples enable unified audit policies that were created in the CREATE
AUDIT POLICY "Examples".

Enabling a Unified Audit Policy for All Users: Example

The following statement enables unified audit policy table_pol for all users:

AUDIT POLICY table_pol;

The following statement verifies that table_pol is enabled for all users:

SELECT policy_name, enabled_option, entity_name
 FROM audit_unified_enabled_policies
 WHERE policy_name = 'TABLE_POL';

POLICY_NAME ENABLED_OPTION ENTITY_NAME
----------- ----------- ---------
TABLE_POL BY ALL USERS

Enabling a Unified Audit Policy for Specific Users: Examples

The following statement enables unified audit policy dml_pol for only users hr and sh:

AUDIT POLICY dml_pol BY hr, sh;

The following statement verifies that dml_pol is enabled for only users hr and sh:

SELECT policy_name, enabled_option, entity_name
 FROM audit_unified_enabled_policies
 WHERE policy_name = 'DML_POL'
 ORDER BY user_name;

POLICY_NAME ENABLED_OPTION ENTITY_NAME
----------- ----------- ---------
DML_POL BY HR
DML_POL BY SH

The following statement enables unified audit policy read_dir_pol for all users except
hr:

AUDIT POLICY read_dir_pol EXCEPT hr;

The following statement verifies that read_dir_pol is enabled for all users except hr:

SELECT policy_name, enabled_option, entity_name
 FROM audit_unified_enabled_policies
 WHERE policy_name = 'READ_DIR_POL';

POLICY_NAME ENABLED_OPTION ENTITY_NAME
------------ ----------- ---------
READ_DIR_POL EXCEPT HR

The following statement enables unified audit policy security_pol for user hr and
audits only the SQL statements and operations that fail:

AUDIT POLICY security_pol BY hr WHENEVER NOT SUCCESSFUL;

Chapter 12
AUDIT (Unified Auditing)

12-254

The following statement verifies that security_pol is enabled for only user hr and that only
the SQL statements and operations that fail will be audited:

SELECT policy_name, enabled_option, entity_name, success, failure
 FROM audit_unified_enabled_policies
 WHERE policy_name = 'SECURITY_POL';

POLICY_NAME ENABLED_OPTION ENTITY_NAME SUCCESS FAILURE
------------ -------------------- ---------- ------- -------
SECURITY_POL BY HR NO YES

Including Values of Context Attributes in Audit Records: Example

The following statement instructs the database to include the values of namespace USERENV
attributes CURRENT_USER and DB_NAME in all audit records for user hr:

AUDIT CONTEXT NAMESPACE userenv
 ATTRIBUTES current_user, db_name
 BY hr;

CALL
Purpose

Use the CALL statement to execute a routine (a standalone procedure or function, or a
procedure or function defined within a type or package) from within SQL.

Note:

The restrictions on user-defined function expressions specified in "Function
Expressions " apply to the CALL statement as well.

See Also:

Oracle Database PL/SQL Language Reference for information on creating such
routine

Prerequisites

You must have EXECUTE privilege on the standalone routine or on the type or package in
which the routine is defined.

Chapter 12
CALL

12-255

Syntax

call::=

CALL
routine_clause

object_access_expression

INTO : host_variable

INDICATOR

: indicator_variable

;

routine_clause::=

schema .

type .

package .
function

procedure

method

@ dblink_name

(

argument

,

)

object_access_expression::=

table_alias . column .

object_table_alias .

(expr) .

attribute

.
. method (

argument

,

)

method (

argument

,

)

Semantics

You can execute a routine in two ways. You can issue a call to the routine itself by
name, by using the routine_clause, or you can invoke a routine inside the type of an
expression, by using an object_access_expression.

routine_clause

Specify the name of the function or procedure being called, or a synonym that resolves
to a function or procedure.

Chapter 12
CALL

12-256

When you call a member function or procedure of a type, if the first argument (SELF) is a null
IN OUT argument, then Oracle Database returns an error. If SELF is a null IN argument, then
the database returns null. In both cases, the function or procedure is not invoked.

Restriction on Functions

If the routine is a function, then the INTO clause is required.

schema

Specify the schema in which the standalone routine, or the package or type containing the
routine, resides. If you do not specify schema, then Oracle Database assumes the routine is in
your own schema.

type or package

Specify the type or package in which the routine is defined.

@dblink

In a distributed database system, specify the name of the database containing the standalone
routine, or the package or function containing the routine. If you omit dblink, then Oracle
Database looks in your local database.

See Also:

"Calling a Procedure: Example" for an example of calling a routine directly

object_access_expression

If you have an expression of an object type, such as a type constructor or a bind variable,
then you can use this form of expression to call a routine defined within the type. In this
context, the object_access_expression is limited to method invocations.

See Also:

"Object Access Expressions " for syntax and semantics of this form of expression,
and "Calling a Procedure Using an Expression of an Object Type: Example" for an
example of calling a routine using an expression of an object type

argument

Specify one or more arguments to the routine, if the routine takes arguments. You can use
positional, named, or mixed notation for argument. For example, all of the following notations
are correct:

CALL my_procedure(arg1 => 3, arg2 => 4)

CALL my_procedure(3, 4)

CALL my_procedure(3, arg2 => 4)

Restrictions on Applying Arguments to Routines

Chapter 12
CALL

12-257

The argument is subject to the following restrictions:

• The data types of the parameters passed by the CALL statement must be SQL data
types. They cannot be PL/SQL-only data types such as BOOLEAN.

• An argument cannot be a pseudocolumn or either of the object reference functions
VALUE or REF.

• Any argument that is an IN OUT or OUT argument of the routine must correspond to
a host variable expression.

• The number of arguments, including any return argument, is limited to 1000.

• You cannot bind arguments of character and raw data types (CHAR, VARCHAR2,
NCHAR, NVARCHAR2, RAW, LONG RAW) that are larger than 4K.

INTO :host_variable

The INTO clause applies only to calls to functions. Specify which host variable will store
the return value of the function.

:indicator_variable

Specify the value or condition of the host variable.

See Also:

Pro*C/C++ Programmer's Guide for more information on host variables and
indicator variables

Examples

Calling a Procedure: Example

The following statement removes the Entertainment department (created in "Inserting
Sequence Values: Example") using uses the remove_dept procedure. See Oracle
Database PL/SQL Language Reference for the example that creates this procedure.

CALL emp_mgmt.remove_dept(162);

Calling a Procedure Using an Expression of an Object Type: Example

The following examples show how call a procedure by using an expression of an
object type in the CALL statement. The example uses the warehouse_typ object type in
the order entry sample schema OE:

ALTER TYPE warehouse_typ
 ADD MEMBER FUNCTION ret_name
 RETURN VARCHAR2
 CASCADE;

CREATE OR REPLACE TYPE BODY warehouse_typ
 AS MEMBER FUNCTION ret_name
 RETURN VARCHAR2
 IS
 BEGIN
 RETURN self.warehouse_name;
 END;

Chapter 12
CALL

12-258

 END;
/
VARIABLE x VARCHAR2(25);

CALL warehouse_typ(456, 'Warehouse 456', 2236).ret_name()
 INTO :x;

PRINT x;
X

Warehouse 456

The next example shows how to use an external function to achieve the same thing:

CREATE OR REPLACE FUNCTION ret_warehouse_typ(x warehouse_typ)
 RETURN warehouse_typ
 IS
 BEGIN
 RETURN x;
 END;
/
CALL ret_warehouse_typ(warehouse_typ(234, 'Warehouse 234',
 2235)).ret_name()
 INTO :x;

PRINT x;

X

Warehouse 234

COMMENT
Purpose

Use the COMMENT statement to add to the data dictionary a comment about a table or table
column, unified audit policy, edition, indextype, materialized view, mining model, operator, or
view.

To drop a comment from the database, set it to the empty string ' '.

See Also:

• "Comments " for more information on associating comments with SQL
statements and schema objects

• Oracle Database Reference for information on the data dictionary views that
display comments

Prerequisites

The object about which you are adding a comment must be in your own schema or:

• To add a comment to a table, view, or materialized view, you must have COMMENT ANY
TABLE system privilege.

Chapter 12
COMMENT

12-259

• To add a comment to a unified audit policy, you must have the AUDIT SYSTEM
system privilege or the AUDIT_ADMIN role.

• To add a comment to an edition, you must have the CREATE ANY EDITION system
privilege, granted either directly or through a role.

• To add a comment to an indextype, you must have the CREATE ANY INDEXTYPE
system privilege.

• To add a comment to a mining model, you must have the COMMENT ANY MINING
MODEL system privilege.

• To add a comment to an operator, you must have the CREATE ANY OPERATOR system
privilege.

Syntax

comment::=

C0MMENT ON

AUDIT POLICY policy

COLUMN

schema .
table

view

materialized_view

. column

EDITION edition_name

INDEXTYPE

schema .

indextype

MATERIALIZED VIEW materialized_view

MINING MODEL

schema .

model

OPERATOR

schema .

operator

TABLE

schema . table

view

IS string ;

Semantics

AUDIT POLICY Clause

Specify the name of the unified audit policy to be commented.

You can view the comments on a particular unified audit policy by querying the
AUDIT_UNIFIED_POLICY_COMMENTS data dictionary view.

COLUMN Clause

Specify the name of the column of a table, view, or materialized view to be
commented. If you omit schema, then Oracle Database assumes the table, view, or
materialized view is in your own schema.

Chapter 12
COMMENT

12-260

You can view the comments on a particular table or column by querying the data dictionary
views USER_TAB_COMMENTS, DBA_TAB_COMMENTS, or ALL_TAB_COMMENTS or USER_COL_COMMENTS,
DBA_COL_COMMENTS, or ALL_COL_COMMENTS.

EDITION Clause

Specify the name of an existing edition to be commented.

You can query the data dictionary view ALL_EDITION_COMMENTS to view comments associated
with editions that are accessible to the current user. You can query DBA_EDITION_COMMENTS to
view comments associated with all editions in the database.

TABLE Clause

Specify the schema and name of the table or materialized view to be commented. If you omit
schema, then Oracle Database assumes the table or materialized view is in your own schema.

Note:

In earlier releases, you could use this clause to create a comment on a materialized
view. You should now use the COMMENT ON MATERIALIZED VIEW clause for
materialized views.

INDEXTYPE Clause

Specify the name of the indextype to be commented. If you omit schema, then Oracle
Database assumes the indextype is in your own schema.

You can view the comments on a particular indextype by querying the data dictionary views
USER_INDEXTYPE_COMMENTS, DBA_INDEXTYPE_COMMENTS, or ALL_INDEXTYPE_COMMENTS.

MATERIALIZED VIEW Clause

Specify the name of the materialized view to be commented. If you omit schema, then Oracle
Database assumes the materialized view is in your own schema.

You can view the comments on a particular materialized view by querying the data dictionary
views USER_MVIEW_COMMENTS, DBA_MVIEW_COMMENTS, or ALL_MVIEW_COMMENTS.

MINING MODEL

Specify the name of the mining model to be commented.

You can view the comments on a particular mining model by querying the COMMENTS column of
the data dictionary views USER_MINING_MODELS, DBA_MINING_MODELS, or ALL_MINING_MODELS.

OPERATOR Clause

Specify the name of the operator to be commented. If you omit schema, then Oracle Database
assumes the operator is in your own schema.

You can view the comments on a particular operator by querying the data dictionary views
USER_OPERATOR_COMMENTS, DBA_OPERATOR_COMMENTS, or ALL_OPERATOR_COMMENTS.

Chapter 12
COMMENT

12-261

IS 'string'

Specify the text of the comment. Refer to "Text Literals " for a syntax description of
'string'.

Examples

Creating Comments: Example

To insert an explanatory remark on the job_id column of the employees table, you
might issue the following statement:

COMMENT ON COLUMN employees.job_id
 IS 'abbreviated job title';

To drop this comment from the database, issue the following statement:

COMMENT ON COLUMN employees.job_id IS '';

Chapter 12
COMMENT

12-262

13
SQL Statements: COMMIT to CREATE JAVA

This chapter contains the following SQL statements:

• COMMIT

• CREATE ANALYTIC VIEW

• CREATE ATTRIBUTE DIMENSION

• CREATE AUDIT POLICY (Unified Auditing)

• CREATE CLUSTER

• CREATE CONTEXT

• CREATE CONTROLFILE

• CREATE DATABASE

• CREATE DATABASE LINK

• CREATE DIMENSION

• CREATE DIRECTORY

• CREATE DISKGROUP

• CREATE EDITION

• CREATE FLASHBACK ARCHIVE

• CREATE FUNCTION

• CREATE HIERARCHY

• CREATE INDEX

• CREATE INDEXTYPE

• CREATE INMEMORY JOIN GROUP

• CREATE JAVA

COMMIT
Purpose

Use the COMMIT statement to end your current transaction and make permanent all changes
performed in the transaction. A transaction is a sequence of SQL statements that Oracle
Database treats as a single unit. This statement also erases all savepoints in the transaction
and releases transaction locks.

Until you commit a transaction:

• You can see any changes you have made during the transaction by querying the
modified tables, but other users cannot see the changes. After you commit the
transaction, the changes are visible to other users' statements that execute after the
commit.

13-1

• You can roll back (undo) any changes made during the transaction with the
ROLLBACK statement (see ROLLBACK).

Oracle Database issues an implicit COMMIT under the following circumstances:

• Before any syntactically valid data definition language (DDL) statement, even if the
statement results in an error

• After any data definition language (DDL) statement that completes without an error

You can also use this statement to:

• Commit an in-doubt distributed transaction manually

• Terminate a read-only transaction begun by a SET TRANSACTION statement

Oracle recommends that you explicitly end every transaction in your application
programs with a COMMIT or ROLLBACK statement, including the last transaction, before
disconnecting from Oracle Database. If you do not explicitly commit the transaction
and the program terminates abnormally, then the last uncommitted transaction is
automatically rolled back.

A normal exit from most Oracle utilities and tools causes the current transaction to be
committed. A normal exit from an Oracle precompiler program does not commit the
transaction and relies on Oracle Database to roll back the current transaction.

See Also:

• Oracle Database Concepts for more information on transactions

• SET TRANSACTION for more information on specifying characteristics
of a transaction

Prerequisites

You need no privileges to commit your current transaction.

To manually commit a distributed in-doubt transaction that you originally committed,
you must have FORCE TRANSACTION system privilege. To manually commit a distributed
in-doubt transaction that was originally committed by another user, you must have
FORCE ANY TRANSACTION system privilege.

Chapter 13
COMMIT

13-2

Syntax

commit::=

COMMIT

WORK

COMMENT string WRITE

WAIT

NOWAIT

IMMEDIATE

BATCH

FORCE string

, integer

;

Semantics

COMMIT

All clauses after the COMMIT keyword are optional. If you specify only COMMIT, then the default
is COMMIT WORK WRITE WAIT IMMEDIATE.

WORK

The WORK keyword is supported for compliance with standard SQL. The statements COMMIT
and COMMIT WORK are equivalent.

COMMENT Clause

This clause is supported for backward compatibility. Oracle recommends that you use named
transactions instead of commit comments.

See Also:

SET TRANSACTION and Oracle Database Concepts for more information on
named transactions

Specify a comment to be associated with the current transaction. The 'text' is a quoted literal
of up to 255 bytes that Oracle Database stores in the data dictionary view DBA_2PC_PENDING
along with the transaction ID if a distributed transaction becomes in doubt. This comment can
help you diagnose the failure of a distributed transaction.

See Also:

COMMENT for more information on adding comments to SQL statements

Chapter 13
COMMIT

13-3

WRITE Clause

Use this clause to specify the priority with which the redo information generated by the
commit operation is written to the redo log. This clause can improve performance by
reducing latency, thus eliminating the wait for an I/O to the redo log. Use this clause to
improve response time in environments with stringent response time requirements
where the following conditions apply:

• The volume of update transactions is large, requiring that the redo log be written to
disk frequently.

• The application can tolerate the loss of an asynchronously committed transaction.

• The latency contributed by waiting for the redo log write to occur contributes
significantly to overall response time.

You can specify the WAIT | NOWAIT and IMMEDIATE | BATCH clauses in any order.

Note:

If you omit this clause, then the behavior of the commit operation is
controlled by the COMMIT_LOGGING and COMMIT_WAIT initialization parameters,
if they have been set.

WAIT | NOWAIT

Use these clauses to specify when control returns to the user.

• The WAIT parameter ensures that the commit will return only after the
corresponding redo is persistent in the online redo log. Whether in BATCH or
IMMEDIATE mode, when the client receives a successful return from this COMMIT
statement, the transaction has been committed to durable media. A crash
occurring after a successful write to the log can prevent the success message
from returning to the client. In this case the client cannot tell whether or not the
transaction committed.

• The NOWAIT parameter causes the commit to return to the client whether or not the
write to the redo log has completed. This behavior can increase transaction
throughput. With the WAIT parameter, if the commit message is received, then you
can be sure that no data has been lost.

Note:

With NOWAIT, a crash occurring after the commit message is received, but
before the redo log record(s) are written, can falsely indicate to a transaction
that its changes are persistent.

If you omit this clause, then the transaction commits with the WAIT behavior.

IMMEDIATE | BATCH

Use these clauses to specify when the redo is written to the log.

Chapter 13
COMMIT

13-4

• The IMMEDIATE parameter causes the log writer process (LGWR) to write the
transaction's redo information to the log. This operation option forces a disk I/O, so it can
reduce transaction throughput.

• The BATCH parameter causes the redo to be buffered to the redo log, along with other
concurrently executing transactions. When sufficient redo information is collected, a disk
write of the redo log is initiated. This behavior is called "group commit", as redo for
multiple transactions is written to the log in a single I/O operation.

If you omit this clause, then the transaction commits with the IMMEDIATE behavior.

See Also:

Oracle Database Concepts for more information on asynchronous commit

FORCE Clause

In a distributed database system, the FORCE string [, integer] clause lets you manually
commit an in-doubt distributed transaction. The transaction is identified by the 'string'
containing its local or global transaction ID. To find the IDs of such transactions, query the
data dictionary view DBA_2PC_PENDING. You can use integer to specifically assign the
transaction a system change number (SCN). If you omit integer, then the transaction is
committed using the current SCN.

Note:

A COMMIT statement with a FORCE clause commits only the specified transactions.
Such a statement does not affect your current transaction.

See Also:

Oracle Database Administrator's Guide for more information on these topics

Examples

Committing an Insert: Example

This statement inserts a row into the hr.regions table and commits this change:

INSERT INTO regions VALUES (5, 'Antarctica');

COMMIT WORK;

To commit the same insert operation and instruct the database to buffer the change to the
redo log, without initiating disk I/O, use the following COMMIT statement:

COMMIT WRITE BATCH;

Commenting on COMMIT: Example

Chapter 13
COMMIT

13-5

The following statement commits the current transaction and associates a comment
with it:

COMMIT
 COMMENT 'In-doubt transaction Code 36, Call (415) 555-2637';

If a network or machine failure prevents this distributed transaction from committing
properly, then Oracle Database stores the comment in the data dictionary along with
the transaction ID. The comment indicates the part of the application in which the
failure occurred and provides information for contacting the administrator of the
database where the transaction was committed.

Forcing an In-Doubt Transaction: Example

The following statement manually commits a hypothetical in-doubt distributed
transaction. Query the V$CORRUPT_XID_LIST data dictionary view to find the transaction
IDs of corrupt transactions. You must have DBA privileges to view the
V$CORRUPT_XID_LIST and to issue this statement.

COMMIT FORCE '22.57.53';

CREATE ANALYTIC VIEW
Purpose

Use the CREATE ANALYTIC VIEW statement to create an analytic view. An analytic view
specifies the source of its fact data and defines measures that describe calculations or
other analytic operations to perform on the data. An analytic view also specifies the
attribute dimensions and hierarchies that define the rows of the analytic view.

Prerequisites

To create an analytic view in your own schema, you must have the CREATE ANALYTIC
VIEW system privilege. To create an analytic view in another user's schema, you must
have the CREATE ANY ANALYTIC VIEW system privilege.

Syntax

create_analytic_view::=

CREATE

OR REPLACE

NOFORCE

FORCE

ANALYTIC VIEW analytic_view_name

SHARING =
METADATA

NONE classification_clause using_clause dim_by_clause

measures_clause default_measure_clause default_aggregate_clause

cache_clause fact_columns_clause qry_transform_clause

;

Chapter 13
CREATE ANALYTIC VIEW

13-6

classification_clause::=

CAPTION caption DESCRIPTION description

CLASSIFICATION classification_name

VALUE classification_value LANGUAGE language

using_clause::=

USING source_clause

source_clause::=

schema .

fact_table_or_view

REMOTE

AS

alias

dim_by_clause::=

DIMENSION BY (dim_key

,

)

dim_key::=

dim_ref

classification_clause

KEY

(alias .

fact_column

)

(

alias .

fact_column

,

)

REFERENCES

DISTINCT

(

attribute

)

(attribute

,

)

HIERARCHIES (hier_ref

,

)

Chapter 13
CREATE ANALYTIC VIEW

13-7

dim_ref::=

schema .

attr_dim_name

AS

dim__alias

hier_ref::=

schema .

hier_name

AS

hier_alias DEFAULT

measures_clause::=

MEASURES (av_measure

,

)

av_measure::=

meas_name

base_meas_clause

calc_meas_clause classification_clause

base_meas_clause::=

FACT FOR MEASURE base_meas meas_aggregate_clause

calc_meas_clause::=

meas_name AS (expression)

meas_aggregate_clause::=

AGGREGATE BY aggr_function

Chapter 13
CREATE ANALYTIC VIEW

13-8

default_measure_clause::=

DEFAULT MEASURE measure

default_aggregate_clause::=

DEFAULT AGGREGATE BY aggr_function

cache_clause::=

CACHE cache_specification

,

cache_specification::=

MEASURE GROUP

ALL

(measure_name

,

) levels_clause

,

levels_clause::=

LEVELS (

level_specification

,

) level_group_type

level_specification::=

(

dim_name .

hier_name .

level_name)

level_group_type::=

DYNAMIC

MATERIALIZED

USING

schema .

table

Chapter 13
CREATE ANALYTIC VIEW

13-9

fact_columns_clause::=

FACT COLUMNS fact_column

AS

fact_alias

,

qry_transform_clause::=

ENABLE QUERY TRANSFORM

RELY

NORELY

Semantics

OR REPLACE

Specify OR REPLACE to replace an existing definition of an analytic view with a different
definition.

FORCE and NOFORCE

Specify FORCE to force the creation of the analytic view even if it does not successfully
compile. If you specify NOFORCE, then the analytic view must compile successfully,
otherwise an error occurs. The default is NOFORCE.

schema

Specify the schema in which to create the analytic view. If you do not specify a
schema, then Oracle Database creates the analytic view in your own schema.

analytic_view_name

Specify a name for the analytic view.

SHARING

Use the sharing clause if you want to create the object in an application root in the
context of an application maintenance. This type of object is called an application
common object and it can be shared with the application PDBs that belong to the
application root.

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each
container. This type of object is referred to as a metadata-linked application
common object.

• NONE - The object is not shared and can only be accessed in the application root.

Chapter 13
CREATE ANALYTIC VIEW

13-10

classification_clause

Use the classification clause to specify values for the CAPTION or DESCRIPTION classifications
and to specify user-defined classifications. Classifications provide descriptive metadata that
applications may use to provide information about analytic views and their components.

You may specify any number of classifications for the same object. A classification can have
a maximum length of 4000 bytes.

For the CAPTION and DESCRIPTION classifications, you may use the DDL shortcuts CAPTION
'caption' and DESCRIPTION 'description' or the full classification syntax.

You may vary the classification values by language. To specify a language for the CAPTION or
DESCRIPTION classification, you must use the full syntax. If you do not specify a language,
then the language value for the classification is NULL. The language value must either be NULL
or a valid NLS_LANGUAGE value.

using_clause

Use this clause to declare the sources that you want to use to build the analytic view.

source_clause

You can specify any of the following sources to build an analytic view:

• A fact table or a view.

• External tables and remote tables.

• A table or a view in another schema. You can specify an alias for the table or the view.

REMOTE

Specify REMOTE on a given source to indicate to the analytic view that the given source is
backed by remote data and should be optimized as remote data.

dim_by_clause

Specify the attribute dimensions of the analytic view.

dim_key

Specify an attribute dimension, columns of the fact table, columns of the attribute dimension,
and hierarchies that are related in the analytic view.

With the KEY keyword, specify one or more columns in the fact table.

With the REFERENCES keyword, specify attributes of the attribute dimensions that the analytic
view is dimensioned by. Each attribute must be a level key. The DISTINCT keyword supports
the use of denormalized fact tables, in which the attribute dimension and fact data are in the
same table. Use REFERENCES DISTINCT when an attribute dimension is defined using the fact
table.

With the HIERARCHIES keyword, specify the hierarchies in the analytic view that use the
attribute dimension.

Chapter 13
CREATE ANALYTIC VIEW

13-11

dim_ref

Specify an attribute dimension. You can specify an alias for an attribute dimension,
which is required if you use the same dimension more than once or if you use multiple
dimensions with the same name from different schemas.

hier_ref

Specify a hierarchy. You can specify an alias for a hierarchy. You can specify one of
the hierarchies in the list as the default. If you do not specify a default, the first
hierarchy in the list is the default.

measures_clause

Specify the measures for the analytic view.

av_measure

Define a measure using either a single fact column or an expression over measures in
this analytic view. A measure can be either a base measure or a calculated measure.

base_measure_clause

Define a base measure by optionally specifying a fact column or a
meas_aggregate_clause, or both. If you do not specify a fact column, then the analytic
view uses the column of the fact table that has the same name as the measure. If a
column by the same name does not exist, an error is raised.

calc_measure_clause

Define a calculated measure by specifying an analytic view expression. The
expression may reference other measures in the analytic view, but may not reference
fact columns. Calculated measures do not have an aggregate clause because they're
computed over the aggregated base measures.

For the syntax and descriptions of analytic view expressions, see Analytic View
Expressions.

default_measure_clause

Specify a measure to use as the default measure for the analytic view. If you do not
specify a measure, the first measure defined is the default.

meas_aggregate_clausè

Specify a default aggregation function for a base measure. If you do not specify an
aggregation function, then the function specified by the default_aggregate_clause is
used.

aggr_function

The functions that you can aggregate by in the meas_aggregate_clause and
default_aggregate_clause are the following: APPROX_COUNT_DISTINCT,
APPROX_COUNT_DISTINCT_AGG, AVG, COUNT, MAX, MIN, STDDEV, STDDEV_POP, STDDEV_SAMP,
SUM, VAR_POP, VAR_SAMP, and VARIANCE.

Chapter 13
CREATE ANALYTIC VIEW

13-12

default_aggregate_clause

Specify a default aggregation function for all of the base measures in the analytic view. If you
do not specify a default aggregation function, then the default value is SUM.

cache_clause

Specify a cache clause to improve query response time when an appropriate materialized
view is available. You can specify one or more cache specifications.

cache_specification

Specify one or more measure groups for a cache clause. To include all measure groups,
specify ALL. Each measure group can contain one or more measures and one or more level
groupings. A level grouping can contain one or more level specifications.

level_specification

Specify one or more levels for a level grouping of a measure group for a cache specification.
Specify only one level per hierarchy. A materialized view must exist that contains the
aggregated values for the hierarchy level.

level_group_type

If you specify the USING clause, then the given table will be directly used at query time, if the
analytic view determines that this is the best cache to use for the query. The typical shape of
the cache is a column for each measure in the MEASURE GROUP plus a column per level key of
each level in the cache. There is one row per member combination, across all given levels,
that has at least one contributing row from the fact table. The column names of the given
table must match a specific format so that the analytic view can identify which columns line
up with which measures and level keys. The names of the columns can be retrieved from the
DBMS_HIERARCHY package using the method GET_MV_SQL_FOR_AV_CACHE.

This method takes in the cache to generate SQL for and returns the SQL text for the cache.
This SQL text can be used to create a materialized view for the cache. It can also be used to
create an aggregate table using CREATE TABLE AS.

At compile time of the analytic view, the following checks will be made in regard to the
materialized table:

• The table must exist and be accessible by the owner of the analytic view

• The columns of the table must include the expected cache columns

fact_columns_clause

Specify this clause to explictly state the fact columns that can be accessed by the dervided
analytic view. You can aggregate any columns of the fact table that appear in
fact_columns_clause at query time with the aggregation operator specified in the derived
analytic view

If an alias is provided for the fact column, then the alias name must be used in the dervided
analytic view. The alias defaults to the fact column name if not specified.

It is a semantic analysis error, if two or more fact columns are specified with the same name.

If you do not specify this clause, then no fact columns can be accessed for aggregation by
the derived analytic view. This is the default.

Chapter 13
CREATE ANALYTIC VIEW

13-13

qry_transform_clause

Specify this clause on an analytic view, if you want the view to participate in detecting
queries that match its semantic model and transform it into an equivalent analytic view
query if appropriate.

Restrictions

You cannot use qry_transform_clause on an analytic view in the following cases:

• When the analytic view contains an attribute dimension with more than one
dimension table (either a snowflake or starflake schema)

• When a dimension table joins to the fact table at a level that is above the leaf level
of the dimension (i.e. a REFERENCES DISTINCT join)

• When NORELY is specified and one or more base tables are remote tables

The new clause allows for an optional RELY or NORELY keyword. The default is NORELY.

The analytic view metadata can be viewed as a set of constraints on the underlying
data. These constraints are not enforced by the database, but can be checked using
the DBMS_HIERARCHY.VALIDATE_ANALYTIC_VIEW procedure.

The RELY keyword indicates that the constraints implied on the data by the analytic
view metadata can be relied upon without validation when being considered for base
table transform. If NORELY is specified, then the data must be in a valid state in relation
to the metadata in order for the base table transform to take place.

Examples

The following is a description of the SALES_FACT table:

desc SALES_FACT
Name Null? Type
----------------- ----- -------------
MONTH_ID VARCHAR2(10)
CATEGORY_ID NUMBER(6)
STATE_PROVINCE_ID VARCHAR2(120)
UNITS NUMBER(6)
SALES NUMBER(12,2)

The following example creates the SALES_AV analytic view using the SALES_FACT table:

CREATE OR REPLACE ANALYTIC VIEW sales_av
USING sales_fact
DIMENSION BY
 (time_attr_dim -- An attribute dimension of
time data
 KEY month_id REFERENCES month_id
 HIERARCHIES (
 time_hier DEFAULT),
 product_attr_dim -- An attribute dimension of
product data
 KEY category_id REFERENCES category_id
 HIERARCHIES (

Chapter 13
CREATE ANALYTIC VIEW

13-14

 product_hier DEFAULT),
 geography_attr_dim -- An attribute dimension of store
data
 KEY state_province_id
 REFERENCES state_province_id HIERARCHIES (
 geography_hier DEFAULT)
)
MEASURES
 (sales FACT sales, -- A base measure
 units FACT units, -- A base measure
 sales_prior_period AS -- Calculated measures
 (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1)),
 sales_year_ago AS
 (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL year)),
 chg_sales_year_ago AS
 (LAG_DIFF(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL year)),
 pct_chg_sales_year_ago AS
 (LAG_DIFF_PERCENT(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL year)),
 sales_qtr_ago AS
 (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL quarter)),
 chg_sales_qtr_ago AS
 (LAG_DIFF(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL quarter)),
 pct_chg_sales_qtr_ago AS
 (LAG_DIFF_PERCENT(sales) OVER (HIERARCHY time_hier OFFSET 1
 ACROSS ANCESTOR AT LEVEL quarter))
)
DEFAULT MEASURE SALES;

CREATE ATTRIBUTE DIMENSION
Purpose

Use the CREATE ATTRIBUTE DIMENSION statement to create an attribute dimension. An attribute
dimension specifies dimension members for one or more analytic view hierarchies. It
specifies the data source it is using and the members it includes. It specifies levels for its
members and determines attribute relationships between levels.

Prerequisites

To create an attribute dimension in your own schema, you must have the CREATE ATTRIBUTE
DIMENSION system privilege. To create an attribute dimension in another user's schema, you
must have the CREATE ANY ATTRIBUTE DIMENSION system privilege.

Chapter 13
CREATE ATTRIBUTE DIMENSION

13-15

Syntax

create_attribute_dimension::=

CREATE

OR REPLACE

NOFORCE

FORCE

ATTRIBUTE DIMENSION

schema .

attr_dimension

SHARING =
METADATA

NONE

classification_clause
DIMENSION TYPE

STANDARD

TIME

attr_dim_using_clause attributes_clause attr_dim_level_clause

all_clause

;

classification_clause::=

CAPTION caption DESCRIPTION description

CLASSIFICATION classification_name

VALUE classification_value LANGUAGE language

attr_dim_using_clause::=

USING source_clause

,
join_path_clause

source_clause::=

schema .

fact_table_or_view

REMOTE

AS

alias

join_path_clause::=

JOIN PATH join_path_name ON join_condition

Chapter 13
CREATE ATTRIBUTE DIMENSION

13-16

join_condition::=

join_condition_elem

AND join_condition_elem

join_condition_elem ::=

alias.

column =

alias.

column

attributes_clause::=

ATTRIBUTES (attr_dim_attribute_clause

,

)

attr_dim_attributes_clause::=

alias .

column

AS

attribute_name classification_clause

Chapter 13
CREATE ATTRIBUTE DIMENSION

13-17

attr_dim_level_clause::=

LEVEL level

NOT NULL

SKIP WHEN NULL classification_clause

LEVEL TYPE

STANDARD

YEARS

HALF_YEARS

QUARTERS

MONTHS

WEEKS

DAYS

HOURS

MINUTES

SECONDS

key_clause

alternate_key_clause

MEMBER NAME expression MEMBER CAPTION expression

MEMBER DESCRIPTION expression ORDER BY

MIN

MAX

dim_order_clause

,

DETERMINES (attribute

,

)

key_clause::=

KEY

(

attribute

)

(attribute

,

)

Chapter 13
CREATE ATTRIBUTE DIMENSION

13-18

alternate_key_clause::=

ALTERNATE KEY

(

attribute

)

(attribute

,

)

dim_order_clause::=

attribute

ASC

DESC

NULLS

FIRST

LAST

all_clause::=

ALL MEMBER

NAME expression

MEMBER CAPTION expression

CAPTION expression

MEMBER DESCRIPTION expression

DESCRIPTION expression

Semantics

OR REPLACE

Specify OR REPLACE to replace an existing definition of an attribute dimension with a different
definition.

FORCE and NOFORCE

Specify FORCE to force the creation of the attribute dimension even if it does not successfully
compile. If you specify NOFORCE, then the attribute dimension must compile successfully,
otherwise an error occurs. The default is NOFORCE.

schema

Specify the schema in which to create the attribute dimension. If you do not specify a
schema, then Oracle Database creates the attribute dimension in your own schema.

attr_dimension

Specify a name for the attribute dimension.

Chapter 13
CREATE ATTRIBUTE DIMENSION

13-19

SHARING

Use the sharing clause if you want to create the object in an application root in the
context of an application maintenance. This type of object is called an application
common object and it can be shared with the application PDBs that belong to the
application root.

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each
container. This type of object is referred to as a metadata-linked application
common object.

• NONE - The object is not shared and can only be accessed in the application root.

classification_clause

Use the classification clause to specify values for the CAPTION or DESCRIPTION
classifications and to specify user-defined classifications. Classifications provide
descriptive metadata that applications may use to provide information about analytic
views and their components.

You may specify any number of classifications for the same object. A classification can
have a maximum length of 4000 bytes.

For the CAPTION and DESCRIPTION classifications, you may use the DDL shortcuts
CAPTION 'caption' and DESCRIPTION 'description' or the full classification syntax.

You may vary the classification values by language. To specify a language for the
CAPTION or DESCRIPTION classification, you must use the full syntax. If you do not
specify a language, then the language value for the classification is NULL. The
language value must either be NULL or a valid NLS_LANGUAGE value.

DIMENSION TYPE

An attribute dimension may be either a STANDARD or a TIME type. A STANDARD type
attribute dimension has STANDARD type levels. Each level of a TIME type attribute
dimension is one of the time types. The default DIMENSION TYPE is STANDARD.

attr_dim_using_clause

Use this clause to declare the sources that you want to use to create the attribute
dimension.

source_clause

You may specify the following sources:

• A table or a view.

• An alias for the table or the view by using the AS keyword.

• A join path. Use join paths to specify joins when the attribute dimension uses
tables organized in a snowflake schema.

REMOTE

Specify REMOTE on a given source to indicate that the source is backed by remote data
and should be optimized as remote data.

Chapter 13
CREATE ATTRIBUTE DIMENSION

13-20

join_path_clause

The join path clause specifies a join condition between columns in different tables. The name
for the join path specified by the join_path_name argument must be unique for each join path
included in the USING clause.

join_condition

A join condition consists of one or more join condition elements; each additional join condition
element is included by an AND operation.

join_condition_element

In a join condition element, the column references on the left-hand-side must come from a
different table than the column references on the right-hand-side.

attributes_clause

Specify one or more attr_dim_attribute_clause clauses.

attr_dim_attribute_clause

Specify a column from the attr_dim_using_clause source. The attribute has the name of the
column unless you specify an alias using the AS keyword. You may specify classifications for
each attribute.

attr_dim_level_clause

Specify a level in the attribute dimension. A level specifies key and optional alternate key
attributes that provide the members of the level.

If the key attribute has no NULL values, then you may specify NOT NULL, which is the default. If
it does have one or more NULL values, then specify SKIP WHEN NULL.

LEVEL TYPE

A STANDARD type attribute dimension has STANDARD type levels. You do not need to specify a
LEVEL TYPE for a STANDARD type attribute dimension.

In a TIME type attribute dimension, you must specify a level type. The type of the level may be
one of the time types. You must specify a time type even if the values of the level members
are not of that type. For example, you may have a SEASON level with values that are the
names of seasons. In defining the level, you must specify any one of the time level types,
such as QUARTERS. An application may use the level type designations for whatever purpose it
chooses.

DETERMINES

With the DETERMINES keyword, you may specify other attributes of the attribute dimension that
this level determines. If an attribute has only one value for each value of another attribute,
then the value of the first attribute determines the value of the other attribute. For example,
the QUARTER_ID attribute has only one value for each value of the MONTH_ID attribute, so
you can include the the QUARTER_ID attribute in the DETERMINES phrase of the MONTHS
level.

Chapter 13
CREATE ATTRIBUTE DIMENSION

13-21

key_clause

Specify one or more attributes as the key for the level.

alternate_key_clause

Specify one or more attributes as the alternate key for the level.

dim_order_clause

Specify the ordering of the members of the level.

all_clause

Optionally specify MEMBER NAME, MEMBER CAPTION, and MEMBER DESCRIPTION values for
the implicit ALL level. By default, the MEMBER NAME value is ALL.

Examples

The following example describes the TIME_DIM table:

desc TIME_DIM

Name Null? Type
----------------- ----- -------------
MONTH_ID VARCHAR2(10)
CATEGORY_ID NUMBER(6)
STATE_PROVINCE_ID VARCHAR2(120)
UNITS NUMBER(6)
SALES NUMBER(12,2)
YEAR_ID NOT NULL VARCHAR2(30)
YEAR_NAME NOT NULL VARCHAR2(40)
YEAR_END_DATE DATE
QUARTER_ID NOT NULL VARCHAR2(30)
QUARTER_NAME NOT NULL VARCHAR2(40)
QUARTER_END_DATE DATE
QUARTER_OF_YEAR NUMBER
MONTH_ID NOT NULL VARCHAR2(30)
MONTH_NAME NOT NULL VARCHAR2(40)
MONTH_END_DATE DATE
MONTH_OF_YEAR NUMBER
MONTH_LONG_NAME VARCHAR2(30)
SEASON VARCHAR2(10)
SEASON_ORDER NUMBER(38)
MONTH_OF_QUARTER NUMBER(38)

The following example creates a TIME type attribute dimension, using columns from
the TIME_DIM table:

CREATE OR REPLACE ATTRIBUTE DIMENSION time_attr_dim
DIMENSION TYPE TIME
USING time_dim
ATTRIBUTES
 (year_id
 CLASSIFICATION caption VALUE 'YEAR_ID'

Chapter 13
CREATE ATTRIBUTE DIMENSION

13-22

 CLASSIFICATION description VALUE 'YEAR ID',
 year_name
 CLASSIFICATION caption VALUE 'YEAR_NAME'
 CLASSIFICATION description VALUE 'Year',
 year_end_date
 CLASSIFICATION caption VALUE 'YEAR_END_DATE'
 CLASSIFICATION description VALUE 'Year End Date',
 quarter_id
 CLASSIFICATION caption VALUE 'QUARTER_ID'
 CLASSIFICATION description VALUE 'QUARTER ID',
 quarter_name
 CLASSIFICATION caption VALUE 'QUARTER_NAME'
 CLASSIFICATION description VALUE 'Quarter',
 quarter_end_date
 CLASSIFICATION caption VALUE 'QUARTER_END_DATE'
 CLASSIFICATION description VALUE 'Quarter End Date',
 quarter_of_year
 CLASSIFICATION caption VALUE 'QUARTER_OF_YEAR'
 CLASSIFICATION description VALUE 'Quarter of Year',
 month_id
 CLASSIFICATION caption VALUE 'MONTH_ID'
 CLASSIFICATION description VALUE 'MONTH ID',
 month_name
 CLASSIFICATION caption VALUE 'MONTH_NAME'
 CLASSIFICATION description VALUE 'Month',
 month_long_name
 CLASSIFICATION caption VALUE 'MONTH_LONG_NAME'
 CLASSIFICATION description VALUE 'Month Long Name',
 month_end_date
 CLASSIFICATION caption VALUE 'MONTH_END_DATE'
 CLASSIFICATION description VALUE 'Month End Date',
 month_of_quarter
 CLASSIFICATION caption VALUE 'MONTH_OF_QUARTER'
 CLASSIFICATION description VALUE 'Month of Quarter',
 month_of_year
 CLASSIFICATION caption VALUE 'MONTH_OF_YEAR'
 CLASSIFICATION description VALUE 'Month of Year',
 season
 CLASSIFICATION caption VALUE 'SEASON'
 CLASSIFICATION description VALUE 'Season',
 season_order
 CLASSIFICATION caption VALUE 'SEASON_ORDER'
 CLASSIFICATION description VALUE 'Season Order')
LEVEL month
 LEVEL TYPE MONTHS
 CLASSIFICATION caption VALUE 'MONTH'
 CLASSIFICATION description VALUE 'Month'
 KEY month_id
 MEMBER NAME month_name
 MEMBER CAPTION month_name
 MEMBER DESCRIPTION month_long_name
 ORDER BY month_end_date
 DETERMINES (month_end_date,
 quarter_id,
 season,

Chapter 13
CREATE ATTRIBUTE DIMENSION

13-23

 season_order,
 month_of_year,
 month_of_quarter)
LEVEL quarter
 LEVEL TYPE QUARTERS
 CLASSIFICATION caption VALUE 'QUARTER'
 CLASSIFICATION description VALUE 'Quarter'
 KEY quarter_id
 MEMBER NAME quarter_name
 MEMBER CAPTION quarter_name
 MEMBER DESCRIPTION quarter_name
 ORDER BY quarter_end_date
 DETERMINES (quarter_end_date,
 quarter_of_year,
 year_id)
LEVEL year
 LEVEL TYPE YEARS
 CLASSIFICATION caption VALUE 'YEAR'
 CLASSIFICATION description VALUE 'Year'
 KEY year_id
 MEMBER NAME year_name
 MEMBER CAPTION year_name
 MEMBER DESCRIPTION year_name
 ORDER BY year_end_date
 DETERMINES (year_end_date)
LEVEL season
 LEVEL TYPE QUARTERS
 CLASSIFICATION caption VALUE 'SEASON'
 CLASSIFICATION description VALUE 'Season'
 KEY season
 MEMBER NAME season
 MEMBER CAPTION season
 MEMBER DESCRIPTION season
LEVEL month_of_quarter
 LEVEL TYPE MONTHS
 CLASSIFICATION caption VALUE 'MONTH_OF_QUARTER'
 CLASSIFICATION description VALUE 'Month of Quarter'
 KEY month_of_quarter;

The following example describes the PRODUCT_DIM table:

desc PRODUCT_DIM

Name Null? Type
--------------- -------- -------------
DEPARTMENT_ID NOT NULL NUMBER
DEPARTMENT_NAME NOT NULL VARCHAR2(100)
CATEGORY_ID NOT NULL NUMBER
CATEGORY_NAME NOT NULL VARCHAR2(100)

Chapter 13
CREATE ATTRIBUTE DIMENSION

13-24

The following example creates a STANDARD type attribute dimension, using columns from the
PRODUCT_DIM table:

CREATE OR REPLACE ATTRIBUTE DIMENSION product_attr_dim
USING product_dim
ATTRIBUTES
 (department_id,
 department_name,
 category_id,
 category_name)
LEVEL DEPARTMENT
 KEY department_id
 ALTERNATE KEY department_name
 MEMBER NAME department_name
 MEMBER CAPTION department_name
 ORDER BY department_name
LEVEL CATEGORY
 KEY category_id
 ALTERNATE KEY category_name
 MEMBER NAME category_name
 MEMBER CAPTION category_name
 ORDER BY category_name
 DETERMINES(department_id)
ALL MEMBER NAME 'ALL PRODUCTS';

The following example describes the GEOGRAPHY_DIM table:

desc GEOGRAPHY_DIM

Name Null? Type
--------------- -------- -------------
DEPARTMENT_ID NOT NULL NUMBER
DEPARTMENT_NAME NOT NULL VARCHAR2(100)
CATEGORY_ID NOT NULL NUMBER
CATEGORY_NAME NOT NULL VARCHAR2(100)
REGION_ID NOT NULL VARCHAR2(120)
REGION_NAME NOT NULL VARCHAR2(100)
COUNTRY_ID NOT NULL VARCHAR2(2)
COUNTRY_NAME NOT NULL VARCHAR2(120)
STATE_PROVINCE_ID NOT NULL VARCHAR2(120)
STATE_PROVINCE_NAME NOT NULL VARCHAR2(400)

The following example creates an STANDARD type attribute dimension, using columns from the
GEOGRAPHY_DIM table:

CREATE OR REPLACE ATTRIBUTE DIMENSION geography_attr_dim
USING geography_dim
ATTRIBUTES
 (region_id,
 region_name,
 country_id,
 country_name,
 state_province_id,

Chapter 13
CREATE ATTRIBUTE DIMENSION

13-25

 state_province_name)
LEVEL REGION
 KEY region_id
 ALTERNATE KEY region_name
 MEMBER NAME region_name
 MEMBER CAPTION region_name
 ORDER BY region_name
LEVEL COUNTRY
 KEY country_id
 ALTERNATE KEY country_name
 MEMBER NAME country_name
 MEMBER CAPTION country_name
 ORDER BY country_name
 DETERMINES(region_id)
LEVEL STATE_PROVINCE
 KEY state_province_id
 ALTERNATE KEY state_province_name
 MEMBER NAME state_province_name
 MEMBER CAPTION state_province_name
 ORDER BY state_province_name
 DETERMINES(country_id)
ALL MEMBER NAME 'ALL CUSTOMERS';

CREATE AUDIT POLICY (Unified Auditing)
This section describes the CREATE AUDIT POLICY statement for unified auditing. This
type of auditing is new beginning with Oracle Database 12c and provides a full set of
enhanced auditing features. Refer to Oracle Database Security Guide for more
information on unified auditing.

Purpose

Use the CREATE AUDIT POLICY statement to create a unified audit policy.

See Also:

• ALTER AUDIT POLICY (Unified Auditing)

• DROP AUDIT POLICY (Unified Auditing)

• AUDIT (Unified Auditing)

• NOAUDIT (Unified Auditing)

Prerequisites

You must have the AUDIT SYSTEM system privilege or the AUDIT_ADMIN role.

To specify the CONTAINER clause, you must be connected to a multitenant container
database (CDB). To create a common unified audit policy, you must have the
commonly granted AUDIT SYSTEM privilege or the AUDIT_ADMIN common role. To create
a local unified audit policy, you must have the commonly granted AUDIT SYSTEM
privilege or the AUDIT_ADMIN common role, or you must have the locally granted AUDIT

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

13-26

SYSTEM privilege or the AUDIT_ADMIN local role in the container to which you are connected.

Syntax

create_audit_policy::=

CREATE AUDIT POLICY policy

privilege_audit_clause action_audit_clause role_audit_clause

WHEN ’ audit_condition ’ EVALUATE PER

STATEMENT

SESSION

INSTANCE ONLY TOPLEVEL

CONTAINER =
ALL

CURRENT

;

Note:

You must specify at least one of the clauses privilege_audit_clause,
action_audit_clause, or role_audit_clause.

(privilege_audit_clause::=, action_audit_clause::=, role_audit_clause::=)

privilege_audit_clause::=

PRIVILEGES system_privilege

,

action_audit_clause::=

standard_actions

component_actions

Note:

You can specify only the standard_actions clause, only the component_actions
clause, or both clauses in either order, but you can specify each clause at most
once.

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

13-27

standard_actions::=

ACTIONS

object_action

ALL
ON

DIRECTORY directory_name

MINING MODEL

schema .

object_name

schema .

object_name

system_action

ALL

,

component_actions::=

ACTIONS COMPONENT =

DATAPUMP

DIRECT_LOAD

OLS

XS

component_action

,

DV component_action ON object_name

,

PROTOCOL

FTP

HTTP

AUTHENTICATION

role_audit_clause::=

ROLES role

,

Semantics

policy

Specify the name of the unified audit policy to be created. The name must satisfy the
requirements listed in "Database Object Naming Rules ".

You can find the names of all unified audit policies by querying the
AUDIT_UNIFIED_POLICIES view.

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

13-28

See Also:

Oracle Database Reference for more information on the AUDIT_UNIFIED_POLICIES
view

privilege_audit_clause

Use this clause to audit one or more system privileges. For system_privilege, specify a valid
system privilege. To view all valid system privileges, query the NAME column of the
SYSTEM_PRIVILEGE_MAP view.

Only those SQL statements are audited, that successfully use system privileges. If a
statement does not make use of a system privilege, it does not get audited with the
privilege_audit_clause.

Restriction on Auditing System Privileges

You cannot audit the following system privileges: INHERIT ANY PRIVILEGES, SYSASM,
SYSBACKUP, SYSDBA, SYSDG, SYSKM, SYSRAC, and SYSOPER.

action_audit_clause

Use this clause to specify one or more actions to be audited. Use the standard_actions
clause to audit actions on standard RDBMS objects and to audit standard RDBMS system
actions for the database. Use the component_actions clause to audit actions for components.

standard_actions

Use this clause to audit actions on standard RDBMS objects and to audit standard RDBMS
system actions for the database.

object_action ON

Use this clause to audit an action on the specified object. For object_action, specify the
action to be audited. Table 13-1 lists the actions that can be audited on each type of object.

ALL ON

Use this clause to audit all actions on the specified object. All of the actions listed in
Table 13-1 for the type of object that you specify in the ON clause will be audited.

ON Clause

Use the ON clause to specify the object to be audited. Directories and data mining models are
identified separately because they reside in separate namespaces. To audit actions on a
directory, specify ON DIRECTORY directory_name. To audit actions on a data mining model,
specify ON MINING MODEL object_name. To audit actions on the other types of objects listed in
Table 13-1, specify ON object_name. If you do not qualify object_name with schema, then the
database assumes the object is in your own schema.

Table 13-1 Unified Auditing Objects and Actions

Type of Object Actions

Directory AUDIT, GRANT, READ

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

13-29

Table 13-1 (Cont.) Unified Auditing Objects and Actions

Type of Object Actions

Function AUDIT, EXECUTE (Notes 1 and 2), GRANT
Java Schema Objects (Source,
Class, Resource)

AUDIT, EXECUTE, GRANT

Library EXECUTE, GRANT
Materialized Views ALTER, AUDIT, COMMENT, DELETE, INDEX, INSERT, LOCK, SELECT,

UPDATE
Mining Model AUDIT, COMMENT, GRANT, RENAME, SELECT
Object Type ALTER, AUDIT, GRANT
Package AUDIT, EXECUTE, GRANT
Procedure AUDIT, EXECUTE (Notes 1 and 2), GRANT
Sequence ALTER, AUDIT, GRANT, SELECT
Table ALTER, AUDIT, COMMENT, DELETE, FLASHBACK, GRANT, INDEX,

INSERT, LOCK, RENAME, SELECT, UPDATE
View AUDIT, DELETE, FLASHBACK, GRANT, INSERT, LOCK, RENAME,

SELECT, UPDATE

Note 1: When you audit the EXECUTE operation on a PL/SQL stored procedure or
stored function, the database considers only its ability to find the procedure or function
and authorize its execution when determining the success or failure of the operation
for the purposes of auditing. Therefore, if you specify the WHENEVER NOT SUCCESSFUL
clause, then only invalid object errors, non-existent object errors, and authorization
failures are audited; errors encountered during the execution of the procedure or
function are not audited. If you specify the WHENEVER SUCCESSFUL clause, then all
executions that are not blocked by invalid object errors, non-existent object errors, or
authorization failures are audited, regardless of whether errors are encountered during
execution.

Note 2: To audit the failure of a recursive SQL operation inside a PL/SQL stored
procedure or stored function, configure auditing for the SQL operation.

Note 3: The auditing of EXECUTE on a PL/SQL stored procedure, function, or package
in the database happens during the instantiation phase of the procedure, function, or
package.

Note 3: The auditing of the GRANT object audit option also audits the REVOKE audit
option.

system_action

Use this clause to audit a system action for the database. To view the valid values for
system_action, query the NAME column of the AUDITABLE_SYSTEM_ACTIONS view where
COMPONENT is 'Standard'.

ALL

Use this clause to audit all system actions for the database.

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

13-30

component_actions

Use this clause to audit actions for the following components: Oracle Data Pump, Oracle
SQL*Loader Direct Path Load, Oracle Label Security, Oracle Database Real Application
Security, Oracle Database Vault, and the transmission protocol.

DATAPUMP

Use this clause to audit actions for Oracle Data Pump. For component_action, specify the
action to be audited. To view the valid actions for Oracle Data Pump, query the NAME column
of the AUDITABLE_SYSTEM_ACTIONS view where COMPONENT is Datapump. For example:

SELECT name FROM auditable_system_actions WHERE component = 'Datapump';

Refer to Oracle Database Security Guide for complete information on auditing Oracle Data
Pump.

DIRECT_LOAD

Use this clause to audit actions for Oracle SQL*Loader Direct Path Load. For
component_action, specify the action to be audited. To view the valid actions for Oracle
SQL*Loader Direct Path Load, query the NAME column of the AUDITABLE_SYSTEM_ACTIONS
view where COMPONENT is Direct path API. For example:

SELECT name FROM auditable_system_actions WHERE component = 'Direct path API';

Refer to Oracle Database Security Guide for complete information on auditing Oracle
SQL*Loader Direct Path Load.

OLS

Use this clause to audit actions for Oracle Label Security. For component_action, specify the
action to be audited. To view the valid actions for Oracle Label Security, query the NAME
column of the AUDITABLE_SYSTEM_ACTIONS view where COMPONENT is Label Security. For
example:

SELECT name FROM auditable_system_actions WHERE component = 'Label Security';

Refer to Oracle Database Security Guide for complete information on auditing Oracle Label
Security.

XS

Use this clause to audit actions for Oracle Database Real Application Security. For
component_action, specify the action to be audited. To view the valid actions for Oracle
Database Real Application Security, query the NAME column of the
AUDITABLE_SYSTEM_ACTIONS view where COMPONENT is XS. For example:

SELECT name FROM auditable_system_actions WHERE component = 'XS';

Refer to Oracle Database Security Guide for complete information on auditing Oracle
Database Real Application Security.

DV

Use this clause to audit actions for Oracle Database Vault. For component_action, specify
the action to be audited. To view the valid actions for Oracle Database Vault, query the NAME
column of the AUDITABLE_SYSTEM_ACTIONS view where COMPONENT is Database Vault. For
example:

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

13-31

SELECT name FROM auditable_system_actions WHERE component = 'Database Vault';

For object_name, specify the name of the Database Vault object to be audited.

Refer to Oracle Database Security Guide for complete information on auditing Oracle
Database Vault.

PROTOCOL

Use the PROTOCOL component to audit FTP and HTTP messages.

Example 1: Audit all HTTP Messages

CREATE AUDIT POLICY mypolicy ACTIONS COMPONENT = PROTOCOL HTTP
 AUDIT POLICY mypolicy

Example 2: Audit Failed FTP Messages

CREATE AUDIT POLICY mypolicy ACTIONS COMPONENT = PROTOCOL FTP
 AUDIT POLICY mypolicy WHENEVER NOT SUCCESSFUL

Example 3: Audit HTTP Messages that had 401 AUTH Replies

CREATE AUDIT POLICY mypolicy ACTIONS COMPONENT = PROTOCOL AUTHENTICATION
 AUDIT POLICY mypolicy

role_audit_clause

Use this clause to specify one or more roles to be audited. When you audit a role,
Oracle Database audits all system privileges that are granted directly to the role. SQL
statements that require the system privileges in order to succeed are audited. For
role, specify either a user-defined (local or external) or predefined role. For a list of
predefined roles, refer to Oracle Database Security Guide.

WHEN Clause

Use this clause to control when the unified audit policy is enforced.

audit_condition

Specify a condition that determines if the unified audit policy is enforced. If
audit_condition evaluates to TRUE, then the policy is enforced. If FALSE, then the
policy is not enforced.

The audit_condition can have a maximum length of 4000 characters. It can contain
expressions, as well as the following functions and conditions:

• Numeric functions: BITAND, CEIL, FLOOR, POWER
• Character functions returning character values: CONCAT, LOWER, UPPER
• Character functions returning number values: INSTR, LENGTH
• Environment and identifier functions: SYS_CONTEXT, UID
• Comparison conditions: =, !=, <>, <, >, <=, >=
• Logical conditions: AND, OR
• Null conditions: IS [NOT] NULL
• [NOT] BETWEEN condition

• [NOT] IN condition

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

13-32

The audit_condition must be enclosed in single quotation marks. If the audit_condition
contains a single quotation mark, then specify two single quotation marks instead. For
example, to specify the following condition:

SYS_CONTEXT('USERENV', 'CLIENT_IDENTIFIER') = 'myclient'

Specify the following for 'audit_condition':

'SYS_CONTEXT(''USERENV'', ''CLIENT_IDENTIFIER'') = ''myclient'''

The EVALUATE PER clauses evaluate the audit condition per instance per container. For
example, if a condition is evaluated in one container, it will be evaluated again in any other
container even if the instance is same.

EVALUATE PER STATEMENT

Specify this clause to evaluate the audit_condition for each auditable statement for each
instance in the container. If the audit_condition evaluates to TRUE, then the unified audit
policy is enforced for the statement. If FALSE, then the unified audit policy is not enforced for
the statement.

EVALUATE PER SESSION

Specify this clause to evaluate the audit_condition once during the session. The
audit_condition is evaluated for the first auditable statement that is executed during the
session. If the audit_condition evaluates to TRUE, then the unified audit policy is enforced
for all applicable statements for the rest of the session. If FALSE, then the unified audit policy
is not enforced for all applicable statements for the rest of the session.

EVALUATE PER INSTANCE

Specify this clause to evaluate the audit_condition once during the lifetime of the instance.
The audit_condition is evaluated for the first auditable statement that is executed during the
instance lifetime. If the audit_condition evaluates to TRUE, then the unified audit policy is
enforced for all applicable statements for the rest of the lifetime of the instance. If FALSE, then
the unified audit policy is not enforced for all applicable statements for the rest of the lifetime
of the instance.

ONLY TOPLEVEL

Specify the ONLY TOPLEVEL clause when you want to audit the SQL statements issued directly
by a user.

SQL statements that are run from within a PL/SQL procedure are not considered top-level
statements. You can audit top-level statements from all users, including user SYS.

For more see Database Security Guide.

CONTAINER Clause

Use the CONTAINER clause to specify the scope of the unified audit policy.

• Specify CONTAINER = ALL to create a common unified audit policy. This type of policy is
available to all pluggable databases (PDBs) in the CDB. The current container must be
the root. If you specify the ACTIONS object_action ON or ACTIONS ALL ON clause, then you
must specify a common object or an application common object.

• Specify CONTAINER = CURRENT to create a local unified audit policy in the current
container. The current container can be the root or a PDB.

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

13-33

If you omit this clause, then CONTAINER = CURRENT is the default.

Note:

You cannot alter the scope of a unified audit policy after it has been created.

Examples

Auditing System Privileges: Example

The following statement creates unified audit policy table_pol, which audits the
system privileges CREATE ANY TABLE and DROP ANY TABLE:

CREATE AUDIT POLICY table_pol
 PRIVILEGES CREATE ANY TABLE, DROP ANY TABLE;

The following statement verifies that table_pol now appears in the
AUDIT_UNIFIED_POLICIES view:

SELECT *
 FROM audit_unified_policies
 WHERE policy_name = 'TABLE_POL';

Auditing Actions on Objects: Examples

The following statement creates unified audit policy dml_pol, which audits DELETE,
INSERT, and UPDATE actions on table hr.employees, and all auditable actions on table
hr.departments:

CREATE AUDIT POLICY dml_pol
 ACTIONS DELETE on hr.employees,
 INSERT on hr.employees,
 UPDATE on hr.employees,
 ALL on hr.departments;

The following statement creates unified audit policy read_dir_pol, which audits READ
actions on directory bfile_dir (created in "Creating a Directory: Examples"):

CREATE AUDIT POLICY read_dir_pol
 ACTIONS READ ON DIRECTORY bfile_dir;

Auditing System Actions: Examples

The following query displays the standard RDBMS system actions that can be audited
for the database:

SELECT name FROM auditable_system_actions
 WHERE component = 'Standard'
 ORDER BY name;

NAME

ADMINISTER KEY MANAGEMENT
ALL
ALTER ASSEMBLY
ALTER AUDIT POLICY
ALTER CLUSTER
...

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

13-34

The following statement creates unified audit policy security_pol, which audits the system
action ADMINISTER KEY MANAGEMENT:

CREATE AUDIT POLICY security_pol
 ACTIONS ADMINISTER KEY MANAGEMENT;

The following statement creates unified audit policy dir_pol, which audits all read, write, and
execute operations on any directory:

CREATE AUDIT POLICY dir_pol
 ACTIONS READ DIRECTORY, WRITE DIRECTORY, EXECUTE DIRECTORY;

The following statement creates unified audit policy all_actions_pol, which audits all
standard RDBMS system actions for the database:

CREATE AUDIT POLICY all_actions_pol
 ACTIONS ALL;

Auditing Component Actions: Example

The following query displays the actions that can be audited for Oracle Data Pump:

SELECT name FROM auditable_system_actions
 WHERE component = 'Datapump';

NAME

EXPORT
IMPORT
ALL

The following statement creates unified audit policy dp_actions_pol, which audits IMPORT
actions for Oracle Data Pump:

CREATE AUDIT POLICY dp_actions_pol
 ACTIONS COMPONENT = datapump IMPORT;

Auditing Roles: Example

The following statement creates unified audit policy java_pol, which audits the predefined
roles java_admin and java_deploy:

CREATE AUDIT POLICY java_pol
 ROLES java_admin, java_deploy;

Auditing System Privileges, Actions, and Roles: Example

The following statement creates unified audit policy hr_admin_pol, which audits multiple
system privileges, actions, and roles:

CREATE AUDIT POLICY hr_admin_pol
 PRIVILEGES CREATE ANY TABLE, DROP ANY TABLE
 ACTIONS DELETE on hr.employees,
 INSERT on hr.employees,
 UPDATE on hr.employees,
 ALL on hr.departments,
 LOCK TABLE
 ROLES audit_admin, audit_viewer;

Controlling When a Unified Audit Policy is Enforced: Examples

Chapter 13
CREATE AUDIT POLICY (Unified Auditing)

13-35

The following statement creates unified audit policy order_updates_pol, which audits
UPDATE actions on table oe.orders. This policy is enforced only when the auditable
statement is issued by an external user. The audit condition is checked once per
session.

CREATE AUDIT POLICY order_updates_pol
 ACTIONS UPDATE ON oe.orders
 WHEN 'SYS_CONTEXT(''USERENV'', ''IDENTIFICATION_TYPE'') = ''EXTERNAL'''
 EVALUATE PER SESSION;

The following statement creates unified audit policy emp_updates_pol, which audits
DELETE, INSERT, and UPDATE actions on table hr.employees. This policy is enforced
only when the auditable statement is issued by a user who does not have a UID of
100, 105, or 107. The audit condition is checked for each auditable statement.

CREATE AUDIT POLICY emp_updates_pol
 ACTIONS DELETE on hr.employees,
 INSERT on hr.employees,
 UPDATE on hr.employees
 WHEN 'UID NOT IN (100, 105, 107)'
 EVALUATE PER STATEMENT;

Creating a Local Unified Audit Policy: Example

The following statement creates local unified audit policy local_table_pol, which
audits the system privileges CREATE ANY TABLE and DROP ANY TABLE in the current
container::

CREATE AUDIT POLICY local_table_pol
 PRIVILEGES CREATE ANY TABLE, DROP ANY TABLE
 CONTAINER = CURRENT;

Creating a Common Unified Audit Policy: Example

The following statement creates common unified audit policy common_role1_pol, which
audits the common role c##role1 (created in CREATE ROLE "Examples") across the
entire CDB:

CREATE AUDIT POLICY common_role1_pol
 ROLES c##role1
 CONTAINER = ALL;

CREATE CLUSTER
Purpose

Use the CREATE CLUSTER statement to create a cluster. A cluster is a schema object
that contains data from one or more tables.

• An indexed cluster must contain more than one table, and all of the tables in the
cluster have one or more columns in common. Oracle Database stores together all
the rows from all the tables that share the same cluster key.

• In a hash cluster, which can contain one or more tables, Oracle Database stores
together rows that have the same hash key value.

For information on existing clusters, query the USER_CLUSTERS, ALL_CLUSTERS, and
DBA_CLUSTERS data dictionary views.

Chapter 13
CREATE CLUSTER

13-36

See Also:

• Oracle Database Concepts for general information on clusters

• Oracle Database SQL Tuning Guide for suggestions on when to use clusters

• Oracle Database Reference for information on the data dictionary views

Prerequisites

To create a cluster in your own schema, you must have CREATE CLUSTER system privilege. To
create a cluster in another user's schema, you must have CREATE ANY CLUSTER system
privilege. Also, the owner of the schema to contain the cluster must have either space quota
on the tablespace containing the cluster or the UNLIMITED TABLESPACE system privilege.

Oracle Database does not automatically create an index for a cluster when the cluster is
initially created. Data manipulation language (DML) statements cannot be issued against
cluster tables in an indexed cluster until you create a cluster index with a CREATE INDEX
statement.

Syntax

create_cluster::=

CREATE CLUSTER

schema .

cluster

SHARING =
METADATA

NONE

(column datatype

COLLATE column_collation_name SORT

,

)

physical_attributes_clause

SIZE size_clause

TABLESPACE tablespace

INDEX

SINGLE TABLE

HASHKEYS integer

HASH IS expr

parallel_clause

N0ROWDEPENDENCIES

ROWDEPENDENCIES

CACHE

N0CACHE cluster_range_partitions

;

(physical_attributes_clause::=, size_clause::=, cluster_range_partitions::=)

Chapter 13
CREATE CLUSTER

13-37

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

parallel_clause::=

NOPARALLEL

PARALLEL

integer

cluster_range_partitions::=

PARTITION BY RANGE (column

,

)

(PARTITION

partition

range_values_clause table_partition_description

,

)

(range_values_clause::=, table_partition_description::=)

Semantics

schema

Specify the schema to contain the cluster. If you omit schema, then Oracle Database
creates the cluster in your current schema.

cluster

Specify is the name of the cluster to be created. The name must satisfy the
requirements listed in "Database Object Naming Rules ".

After you create a cluster, you add tables to it. A cluster can contain a maximum of 32
tables. Object tables and tables containing LOB columns or columns of the Any*
Oracle-supplied types cannot be part of a cluster. After you create a cluster and add

Chapter 13
CREATE CLUSTER

13-38

tables to it, the cluster is transparent. You can access clustered tables with SQL statements
just as you can access nonclustered tables.

See Also:

CREATE TABLE for information on adding tables to a cluster, "Creating a Cluster:
Example", and "Adding Tables to a Cluster: Example"

SHARING

Use the sharing clause if you want to create the cluster in an application root in the context of
an application maintenance. This type of object is called an application common object and it
can be shared with the application PDBs that belong to the application root.

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each container.
This type of object is referred to as a metadata-linked application common object.

• NONE - The object is not shared and can only be accessed in the application root.

column

Specify one or more names of columns in the cluster key. You can specify up to 16 cluster
key columns. These columns must correspond in both data type and size to columns in each
of the clustered tables, although they need not correspond in name.

You cannot specify integrity constraints as part of the definition of a cluster key column.
Instead, you can associate integrity constraints with the tables that belong to the cluster.

See Also:

"Cluster Keys: Example"

datatype

Specify the data type of each cluster key column.

Restrictions on Cluster Data Types

Cluster data types are subject to the following restrictions:

• You cannot specify a cluster key column of data type LONG, LONG RAW, REF, nested table,
varray, BLOB, CLOB, BFILE, the Any* Oracle-supplied types, or user-defined object type.

• You can specify a column of type ROWID, but Oracle Database does not guarantee that
the values in such columns are valid rowids.

See Also:

"Data Types " for information on data types

Chapter 13
CREATE CLUSTER

13-39

COLLATE

Use this clause to specify the data-bound collation for character data type columns in
the cluster key.

For column_collation_name, specify the collation as follows:

• When creating an indexed cluster or a sorted hash cluster, you can specify one of
the following collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or
USING_NLS_SORT_CS.

• When creating a hash cluster that is not sorted, you can specify any valid named
collation or pseudo-collation.

If you omit this clause, then columns in the cluster key inherit the effective schema
default collation of the schema containing the cluster. Refer to the
DEFAULT_COLLATION clause of ALTER SESSION for more information on the effective
schema default collation.

The collations of cluster key columns must match the collations of the corresponding
columns in the tables created in the cluster.

You can specify the COLLATE clause only if the COMPATIBLE initialization parameter is
set to 12.2 or greater, and the MAX_STRING_SIZE initialization parameter is set to
EXTENDED.

To change the collation of a cluster key column, you must recreate the cluster.

SORT

The SORT keyword is valid only if you are creating a hash cluster. Table rows are
hashed into buckets on cluster key columns without SORT, and then sorted in each
bucket on the columns with this clause. This may improve response time during
subsequent queries on the clustered data.

All columns without the SORT clause must come before all columns with the SORT
clause in the CREATE CLUSTER statement.

Restriction on Sorted Hash Clusters

Row dependency is not supported for sorted hash clusters.

See Also:

• See "HASHKEYS Clause" for information on creating a hash cluster.

• Managing Hash Clusters for more information.

physical_attributes_clause

The physical_attributes_clause lets you specify the storage characteristics of the
cluster. Each table in the cluster uses these storage characteristics as well. If you do
not specify values for these parameters, then Oracle Database uses the following
defaults:

• PCTFREE: 10

Chapter 13
CREATE CLUSTER

13-40

• PCTUSED: 40

• INITRANS: 2 or the default value of the tablespace to contain the cluster, whichever is
greater

See Also:

physical_attributes_clause and storage_clause for a complete description of
these clauses

SIZE

Specify the amount of space in bytes reserved to store all rows with the same cluster key
value or the same hash value. This space determines the maximum number of cluster or
hash values stored in a data block. If SIZE is not a divisor of the data block size, then Oracle
Database uses the next largest divisor. If SIZE is larger than the data block size, then the
database uses the operating system block size, reserving at least one data block for each
cluster or hash value.

The database also considers the length of the cluster key when determining how much space
to reserve for the rows having a cluster key value. Larger cluster keys require larger sizes. To
see the actual size, query the KEY_SIZE column of the USER_CLUSTERS data dictionary view.
(This value does not apply to hash clusters, because hash values are not actually stored in
the cluster.)

If you omit this parameter, then the database reserves one data block for each cluster key
value or hash value.

TABLESPACE

Specify the tablespace in which the cluster is to be created.

INDEX Clause

Specify INDEX to create an indexed cluster. In an indexed cluster, Oracle Database stores
together rows having the same cluster key value. Each distinct cluster key value is stored
only once in each data block, regardless of the number of tables and rows in which it occurs.
If you specify neither INDEX nor HASHKEYS, then Oracle Database creates an indexed cluster
by default.

After you create an indexed cluster, you must create an index on the cluster key before you
can issue any data manipulation language (DML) statements against a table in the cluster.
This index is called the cluster index.

You cannot create a cluster index for a hash cluster, and you need not create an index on a
hash cluster key.

See Also:

CREATE INDEX for information on creating a cluster index and Oracle Database
Concepts for general information in indexed clusters

Chapter 13
CREATE CLUSTER

13-41

HASHKEYS Clause

Specify the HASHKEYS clause to create a hash cluster and specify the number of hash
values for the hash cluster. In a hash cluster, Oracle Database stores together rows
that have the same hash key value. The hash value for a row is the value returned by
the hash function of the cluster.

Oracle Database rounds up the HASHKEYS value to the nearest prime number to obtain
the actual number of hash values. The minimum value for this parameter is 2. If you
omit both the INDEX clause and the HASHKEYS parameter, then the database creates an
indexed cluster by default.

When you create a hash cluster, the database immediately allocates space for the
cluster based on the values of the SIZE and HASHKEYS parameters.

See Also:

Oracle Database Concepts for more information on how Oracle Database
allocates space for clusters and "Hash Clusters: Examples"

SINGLE TABLE

SINGLE TABLE indicates that the cluster is a type of hash cluster containing only one
table. This clause can provide faster access to rows in the table.

Restriction on Single-table Clusters

Only one table can be present in the cluster at a time. However, you can drop the table
and create a different table in the same cluster.

See Also:

"Single-Table Hash Clusters: Example"

HASH IS expr

Specify an expression to be used as the hash function for the hash cluster. The
expression:

• Must evaluate to a positive value

• Must contain at least one column, with referenced columns of any data type as
long as the entire expression evaluates to a number of scale 0. For example:
number_column * LENGTH(varchar2_column)

• Cannot reference user-defined PL/SQL functions

• Cannot reference the pseudocolumns LEVEL or ROWNUM
• Cannot reference the user-related functions USERENV, UID, or USER or the datetime

functions CURRENT_DATE, CURRENT_TIMESTAMP, DBTIMEZONE, EXTRACT (datetime),
FROM_TZ, LOCALTIMESTAMP, NUMTODSINTERVAL, NUMTOYMINTERVAL, SESSIONTIMEZONE,

Chapter 13
CREATE CLUSTER

13-42

SYSDATE, SYSTIMESTAMP, TO_DSINTERVAL, TO_TIMESTAMP, TO_DATE, TO_TIMESTAMP_TZ,
TO_YMINTERVAL, and TZ_OFFSET.

• Cannot evaluate to a constant

• Cannot be a scalar subquery expression

• Cannot contain columns qualified with a schema or object name (other than the cluster
name)

If you omit the HASH IS clause, then Oracle Database uses an internal hash function for the
hash cluster.

For information on existing hash functions, query the USER_, ALL_, and
DBA_CLUSTER_HASH_EXPRESSIONS data dictionary tables.

The cluster key of a hash column can have one or more columns of any data type. Hash
clusters with composite cluster keys or cluster keys made up of noninteger columns must use
the internal hash function.

See Also:

Oracle Database Reference for information on the data dictionary views

parallel_clause

The parallel_clause lets you parallelize the creation of the cluster.

For complete information on this clause, refer to parallel_clause in the documentation on
CREATE TABLE.

NOROWDEPENDENCIES | ROWDEPENDENCIES

This clause has the same behavior for a cluster that it has for a table. Refer to
"NOROWDEPENDENCIES | ROWDEPENDENCIES" in CREATE TABLE for information.

CACHE | NOCACHE

CACHE

Specify CACHE if you want the blocks retrieved for this cluster to be placed at the most recently
used end of the least recently used (LRU) list in the buffer cache when a full table scan is
performed. This clause is useful for small lookup tables.

NOCACHE

Specify NOCACHE if you want the blocks retrieved for this cluster to be placed at the least
recently used end of the LRU list in the buffer cache when a full table scan is performed. This
is the default behavior.

NOCACHE has no effect on clusters for which you specify KEEP in the storage_clause.

cluster_range_partitions

Specify the cluster_range_partitions clause to create a range-partitioned hash cluster. If
you specify this clause, then you must also specify the HASHKEYS clause.

Chapter 13
CREATE CLUSTER

13-43

Use the cluster_range_partitions clause to partition the cluster on ranges of values
from the column list. When you add a table to a range-partitioned hash cluster, it is
automatically partitioned on the same columns, with the same number of partitions,
and on the same partition bounds as the cluster. Oracle Database assigns system-
generated names to the table partitions.

Each partitioning key column with a character data type must have one of the
following declared collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or
USING_NLS_SORT_CS.

The cluster_range_partitions clause has the same semantics as the
range_partitions clause of CREATE TABLE, except that here you cannot specify the
INTERVAL clause. For complete information, refer to range_partitions in the
documentation on CREATE TABLE.

See Also:

"Range-Partitioned Hash Clusters: Example"

Examples

Creating a Cluster: Example

The following statement creates a cluster named personnel with the cluster key
column department, a cluster size of 512 bytes, and storage parameter values:

CREATE CLUSTER personnel
 (department NUMBER(4))
SIZE 512
STORAGE (initial 100K next 50K);

Cluster Keys: Example

The following statement creates the cluster index on the cluster key of personnel:

CREATE INDEX idx_personnel ON CLUSTER personnel;

After creating the cluster index, you can add tables to the index and perform DML
operations on those tables.

Adding Tables to a Cluster: Example

The following statements create some departmental tables from the sample
hr.employees table and add them to the personnel cluster created in the earlier
example:

CREATE TABLE dept_10
 CLUSTER personnel (department_id)
 AS SELECT * FROM employees WHERE department_id = 10;

CREATE TABLE dept_20
 CLUSTER personnel (department_id)
 AS SELECT * FROM employees WHERE department_id = 20;

Hash Clusters: Examples

Chapter 13
CREATE CLUSTER

13-44

The following statement creates a hash cluster named language with the cluster key column
cust_language, a maximum of 10 hash key values, each of which is allocated 512 bytes, and
storage parameter values:

CREATE CLUSTER language (cust_language VARCHAR2(3))
 SIZE 512 HASHKEYS 10
 STORAGE (INITIAL 100k next 50k);

Because the preceding statement omits the HASH IS clause, Oracle Database uses the
internal hash function for the cluster.

The following statement creates a hash cluster named address with the cluster key made up
of the columns postal_code and country_id, and uses a SQL expression containing these
columns for the hash function:

CREATE CLUSTER address
 (postal_code NUMBER, country_id CHAR(2))
 HASHKEYS 20
 HASH IS MOD(postal_code + country_id, 101);

Single-Table Hash Clusters: Example

The following statement creates a single-table hash cluster named cust_orders with the
cluster key customer_id and a maximum of 100 hash key values, each of which is allocated
512 bytes:

CREATE CLUSTER cust_orders (customer_id NUMBER(6))
 SIZE 512 SINGLE TABLE HASHKEYS 100;

Range-Partitioned Hash Clusters: Example

The following statement creates a range-partitioned hash cluster named sales with five range
partitions based on the amount sold. The cluster key is made up of the columns amount_sold
and prod_id. The cluster uses the hash function (amount_sold * 10 + prod_id) and has a
maximum of 100000 hash key values, each of which is allocated 300 bytes.

CREATE CLUSTER sales (amount_sold NUMBER, prod_id NUMBER)
 HASHKEYS 100000
 HASH IS (amount_sold * 10 + prod_id)
 SIZE 300
 TABLESPACE example
 PARTITION BY RANGE (amount_sold)
 (PARTITION p1 VALUES LESS THAN (2001),
 PARTITION p2 VALUES LESS THAN (4001),
 PARTITION p3 VALUES LESS THAN (6001),
 PARTITION p4 VALUES LESS THAN (8001),
 PARTITION p5 VALUES LESS THAN (MAXVALUE));

Create Cluster Tables: Example

The following statement creates a cluster named emp_dept with the default key size (600):

CREATE CLUSTER emp_dept (deptno NUMBER(3))
 SIZE 600
 TABLESPACE USERS
 STORAGE (INITIAL 200K
 NEXT 300K
 MINEXTENTS 2
 PCTINCREASE 33);

Chapter 13
CREATE CLUSTER

13-45

The following statement creates a cluster table named dept under emp_dept cluster:

CREATE TABLE dept (
 deptno NUMBER(3) PRIMARY KEY)
 CLUSTER emp_dept (deptno);

The following statement creates another cluster table named empl under emp_dept
cluster:

CREATE TABLE empl (
 emplno NUMBER(5) PRIMARY KEY,
 emplname VARCHAR2(15) NOT NULL,
 deptno NUMBER(3) REFERENCES dept)
 CLUSTER emp_dept (deptno);

The following statement creates an index for the emp_dept cluster:

CREATE INDEX emp_dept_index
 ON CLUSTER emp_dept
 TABLESPACE USERS
 STORAGE (INITIAL 50K
 NEXT 50K
 MINEXTENTS 2
 MAXEXTENTS 10
 PCTINCREASE 33);

The following statement queries USER_CLUSTERS to display the cluster metadata:

SELECT CLUSTER_NAME, TABLESPACE_NAME, CLUSTER_TYPE, PCT_INCREASE,
MIN_EXTENTS, MAX_EXTENTS FROM USER_CLUSTERS;

CLUSTER_NAME TABLESPACE CLUST PCT_INCREASE MIN_EXTENTS MAX_EXTENTS
--------------- ---------- ----- ------------ ----------- -----------
EMP_DEPT USERS INDEX 1 2147483645

The following statement queries USER_CLU_COLUMNS to display the cluster metadata:

SELECT * FROM USER_CLU_COLUMNS;

CLUSTER_NAME CLU_COLUMN_NAME TABLE_NAME TAB_COLUMN_NAME
--------------- -------------------- ---------- --------------------
EMP_DEPT DEPTNO DEPT DEPTNO
EMP_DEPT DEPTNO EMPL DEPTNO

The following statement queries USER_INDEXES to display the index attributes of the
emp_dept cluster:

SELECT INDEX_NAME, INDEX_TYPE, PCT_INCREASE, MIN_EXTENTS, MAX_EXTENTS
FROM USER_INDEXES WHERE TABLE_NAME='EMP_DEPT';

INDEX_NAME INDEX_TYPE PCT_INCREASE MIN_EXTENTS MAX_EXTENTS

Chapter 13
CREATE CLUSTER

13-46

--------------- --------------- ------------ ----------- -----------
EMP_DEPT_INDEX CLUSTER 1 2147483645

CREATE CONTEXT
Purpose

Use the CREATE CONTEXT statement to:

• Create a namespace for a context (a set of application-defined attributes that validates
and secures an application)

• Associate the namespace with the externally created package that sets the context

You can use the DBMS_SESSION.SET_CONTEXT procedure in your designated package to set or
reset the attributes of the context.

See Also:

• Oracle Database Security Guide for a discussion of contexts

• Oracle Database PL/SQL Packages and Types Reference for information on
the DBMS_SESSION.SET_CONTEXT procedure

Prerequisites

To create a context namespace, you must have CREATE ANY CONTEXT system privilege.

Note that you cannot use a synonym for a package name in the CREATE CONTEXT command.

Syntax

create_context::=

CREATE

OR REPLACE

CONTEXT namespace USING

schema .

package

SHARING =
METADATA

NONE

INITIALIZED
EXTERNALLY

GLOBALLY

ACCESSED GLOBALLY

;

Semantics

OR REPLACE

Specify OR REPLACE to redefine an existing context namespace using a different package.

Chapter 13
CREATE CONTEXT

13-47

namespace

Specify the name of the context namespace to create or modify. The name must
satisfy the requirements listed in "Database Object Naming Rules ". Context
namespaces are always stored in the schema SYS.

See Also:

"Database Object Naming Rules " for guidelines on naming a context
namespace

schema

Specify the schema owning package. If you omit schema, then Oracle Database uses
the current schema.

package

Specify the PL/SQL package that sets or resets the context attributes under the
namespace for a user session.

To provide some design flexibility, Oracle Database does not verify the existence of the
schema or the validity of the package at the time you create the context.

SHARING

Use the sharing clause if you want to create the object in an application root in the
context of an application maintenance. This type of object is called an application
common object and it can be shared with the application PDBs that belong to the
application root.

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each
container. This type of object is referred to as a metadata-linked application
common object.

• NONE - The object is not shared and can only be accessed in the application root.

INITIALIZED Clause

The INITIALIZED clause lets you specify an entity other than Oracle Database that
can initialize the context namespace.

EXTERNALLY

EXTERNALLY indicates that the namespace can be initialized using an OCI interface
when establishing a session.

Chapter 13
CREATE CONTEXT

13-48

See Also:

Oracle Call Interface Programmer's Guide for information on using OCI to establish
a session

GLOBALLY

GLOBALLY indicates that the namespace can be initialized by the LDAP directory when a
global user connects to the database.

After the session is established, only the designated PL/SQL package can issue commands
to write to any attributes inside the namespace.

See Also:

Oracle Database Security Guide for information on establishing globally initialized
contexts

ACCESSED GLOBALLY

This clause indicates that any application context set in namespace is accessible throughout
the entire instance. This setting lets multiple sessions share application attributes.

Examples

Creating an Application Context: Example

This example uses a PL/SQL package emp_mgmt, which validates and secures a human
resources application. See Oracle Database PL/SQL Language Reference for the example
that creates that package. The following statement creates the context namespace
hr_context and associates it with the package emp_mgmt:

CREATE CONTEXT hr_context USING emp_mgmt;

You can control data access based on this context using the SYS_CONTEXT function. For
example, the emp_mgmt package has defined an attribute department_id as a particular
department identifier. You can secure the base table employees by creating a view that
restricts access based on the value of department_id, as follows:

CREATE VIEW hr_org_secure_view AS
 SELECT * FROM employees
 WHERE department_id = SYS_CONTEXT('hr_context', 'department_id');

See Also:

SYS_CONTEXT and Oracle Database Security Guide for more information on
using application contexts to retrieve user information

Chapter 13
CREATE CONTEXT

13-49

CREATE CONTROLFILE

Note:

Oracle recommends that you perform a full backup of all files in the database
before using this statement. For more information, see Oracle Database
Backup and Recovery User's Guide.

Purpose

The CREATE CONTROLFILE statement should be used in only a few cases. Use this
statement to re-create a control file if all control files being used by the database are
lost and no backup control file exists. You can also use this statement to change the
maximum number of redo log file groups, redo log file members, archived redo log
files, data files, or instances that can concurrently have the database mounted and
open.

To change the name of the database, Oracle recommends that you use the DBNEWID
utility rather than the CREATE CONTROLFILE statement. DBNEWID is preferable because
no OPEN RESETLOGS operation is required after changing the database name.

See Also:

• Oracle Database Utilities for more information about the DBNEWID utility

• ALTER DATABASE "BACKUP CONTROLFILE Clause" for information
creating a script based on an existing database control file

Prerequisites

To create a control file, you must have the SYSDBA or SYSBACKUP system privilege.

The database must not be mounted by any instance. After successfully creating the
control file, Oracle mounts the database in the mode specified by the
CLUSTER_DATABASE parameter. The DBA must then perform media recovery before
opening the database. If you are using the database with Oracle Real Application
Clusters (Oracle RAC), then you must then shut down and remount the database in
SHARED mode (by setting the value of the CLUSTER_DATABASE initialization parameter to
TRUE) before other instances can start up.

Chapter 13
CREATE CONTROLFILE

13-50

Syntax

create_controlfile::=

CREATE CONTROLFILE

REUSE SET

DATABASE database

logfile_clause RESETL0GS

NORESETL0GS

DATAFILE file_specification

,

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

MAXDATAFILES integer

MAXINSTANCES integer

ARCHIVELOG

NOARCHIVELOG

FORCE LOGGING

SET STANDBY NOLOGGING FOR
DATA AVAILABILITY

LOAD PERFORMANCE character_set_clause

;

(storage_clause::=)

logfile_clause::=

LOGFILE

GROUP integer

file_specification

,

(file_specification::=)

character_set_clause::=

CHARACTER SET character_set

Chapter 13
CREATE CONTROLFILE

13-51

Semantics

When you issue a CREATE CONTROLFILE statement, Oracle Database creates a new
control file based on the information you specify in the statement. The control file
resides in the location specified in the CONTROL_FILES initialization parameter. If that
parameter does not have a value, then the database creates an Oracle-managed
control file in the default control file destination, which is one of the following (in order
of precedence):

1. One or more control files as specified in the DB_CREATE_ONLINE_LOG_DEST_n
initialization parameter. The file in the first directory is the primary control file.
When DB_CREATE_ONLINE_LOG_DEST_n is specified, the database does not create a
control file in DB_CREATE_FILE_DEST or in DB_RECOVERY_FILE_DEST (the fast
recovery area).

2. If no value is specified for DB_CREATE_ONLINE_LOG_DEST_n, but values are set for
both the DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST, then the database
creates one control file in each location. The location specified in
DB_CREATE_FILE_DEST is the primary control file.

3. If a value is specified only for DB_CREATE_FILE_DEST, then the database creates
one control file in that location.

4. If a value is specified only for DB_RECOVERY_FILE_DEST, then the database creates
one control file in that location.

If no values are set for any of these parameters, then the database creates a control
file in the default location for the operating system on which the database is running.
This control file is not an Oracle Managed File.

If you omit any clauses, then Oracle Database uses the default values rather than the
values for the previous control file. After successfully creating the control file, Oracle
Database mounts the database in the mode specified by the initialization parameter
CLUSTER_DATABASE. If that parameter is not set, then the default value is FALSE, and the
database is mounted in EXCLUSIVE mode. Oracle recommends that you then shut
down the instance and take a full backup of all files in the database.

See Also:

Oracle Database Backup and Recovery User's Guide

REUSE

Specify REUSE to indicate that existing control files identified by the initialization
parameter CONTROL_FILES can be reused, overwriting any information they may
currently contain. If you omit this clause and any of these control files already exists,
then Oracle Database returns an error.

DATABASE Clause

Specify the name of the database. The value of this parameter must be the existing
database name established by the previous CREATE DATABASE statement or CREATE
CONTROLFILE statement.

Chapter 13
CREATE CONTROLFILE

13-52

SET DATABASE Clause

Use SET DATABASE to change the name of the database. The name of a database can be as
long as eight bytes.

When you specify this clause, you must also specify RESETLOGS. If you want to rename the
database and retain your existing log files, then after issuing this CREATE CONTROLFILE
statement you must complete a full database recovery using an ALTER DATABASE RECOVER
USING BACKUP CONTROLFILE statement.

logfile_clause

Use the logfile_clause to specify the redo log files for your database. You must list all
members of all redo log file groups.

Use the redo_log_file_spec form of file_specification (see file_specification) to list
regular redo log files in an operating system file system or to list Oracle ASM disk group redo
log files. When using a form of ASM_filename, you cannot specify the autoextend_clause of
the redo_log_file_spec.

If you specify RESETLOGS in this clause, then you must use one of the file creation forms of
ASM_filename. If you specify NORESETLOGS, then you must specify one of the reference forms
of ASM_filename.

See Also:

ASM_filename for information on the different forms of syntax and Oracle Automatic
Storage Management Administrator's Guide for general information about using
Oracle ASM

GROUP integer

Specify the logfile group number. If you specify GROUP values, then Oracle Database verifies
these values with the GROUP values when the database was last open.

If you omit this clause, then the database creates logfiles using system default values. In
addition, if either the DB_CREATE_ONLINE_LOG_DEST_n or DB_CREATE_FILE_DEST initialization
parameter has been set, and if you have specified RESETLOGS, then the database creates two
logs in the default logfile destination specified in the DB_CREATE_ONLINE_LOG_DEST_n
parameter, and if it is not set, then in the DB_CREATE_FILE_DEST parameter.

See Also:

file_specification for a full description of this clause

RESETLOGS

Specify RESETLOGS if you want Oracle Database to ignore the contents of the files listed in the
LOGFILE clause. These files do not have to exist. You must specify this clause if you have
specified the SET DATABASE clause.

Chapter 13
CREATE CONTROLFILE

13-53

Each redo_log_file_spec in the LOGFILE clause must specify the SIZE parameter.
The database assigns all online redo log file groups to thread 1 and enables this
thread for public use by any instance. After using this clause, you must open the
database using the RESETLOGS clause of the ALTER DATABASE statement.

NORESETLOGS

Specify NORESETLOGS if you want Oracle Database to use all files in the LOGFILE clause
as they were when the database was last open. These files must exist and must be
the current online redo log files rather than restored backups. The database reassigns
the redo log file groups to the threads to which they were previously assigned and
reenables the threads as they were previously enabled.

You cannot specify NORESETLOGS if you have specified the SET DATABASE clause to
change the name of the database. Refer to "SET DATABASE Clause" for more
information.

DATAFILE Clause

Specify the data files of the database. You must list all data files. These files must all
exist, although they may be restored backups that require media recovery.

Do not include in the DATAFILE clause any data files in read-only tablespaces. You can
add these types of files to the database later. Also, do not include in this clause any
temporary data files (temp files).

Use the datafile_tempfile_spec form of file_specification (see
file_specification) to list regular data files and temp files in an operating system file
system or to list Oracle ASM disk group files. When using a form of ASM_filename, you
must use one of the reference forms of ASM_filename. Refer to ASM_filename for
information on the different forms of syntax.

See Also:

Oracle Automatic Storage Management Administrator's Guide for general
information about using Oracle ASM

Restriction on DATAFILE

You cannot specify the autoextend_clause of file_specification in this DATAFILE
clause.

MAXLOGFILES Clause

Specify the maximum number of online redo log file groups that can ever be created
for the database. Oracle Database uses this value to determine how much space to
allocate in the control file for the names of redo log files. The default and maximum
values depend on your operating system. The value that you specify should not be
less than the greatest GROUP value for any redo log file group.

MAXLOGMEMBERS Clause

Specify the maximum number of members, or identical copies, for a redo log file
group. Oracle Database uses this value to determine how much space to allocate in

Chapter 13
CREATE CONTROLFILE

13-54

the control file for the names of redo log files. The minimum value is 1. The maximum and
default values depend on your operating system.

MAXLOGHISTORY Clause

This parameter is useful only if you are using Oracle Database in ARCHIVELOG mode. Specify
your current estimate of the maximum number of archived redo log file groups needed for
automatic media recovery of the database. The database uses this value to determine how
much space to allocate in the control file for the names of archived redo log files.

The minimum value is 0. The default value is a multiple of the MAXINSTANCES value and
depends on your operating system. The maximum value is limited only by the maximum size
of the control file. The database will continue to add additional space to the appropriate
section of the control file as needed, so that you do not need to re-create the control file if
your your original configuration is no longer adequate. As a result, the actual value of this
parameter can eventually exceed the value you specify.

MAXDATAFILES Clause

Specify the initial sizing of the data files section of the control file at CREATE DATABASE or
CREATE CONTROLFILE time. An attempt to add a file whose number is greater than
MAXDATAFILES, but less than or equal to DB_FILES, causes the control file to expand
automatically so that the data files section can accommodate more files.

The number of data files accessible to your instance is also limited by the initialization
parameter DB_FILES.

MAXINSTANCES Clause

Specify the maximum number of instances that can simultaneously have the database
mounted and open. This value takes precedence over the value of the initialization parameter
INSTANCES. The minimum value is 1. The maximum and default values depend on your
operating system.

ARCHIVELOG | NOARCHIVELOG

Specify ARCHIVELOG to archive the contents of redo log files before reusing them. This clause
prepares for the possibility of media recovery as well as instance or system failure recovery.

If you omit both the ARCHIVELOG clause and NOARCHIVELOG clause, then Oracle Database
chooses NOARCHIVELOG mode by default. After creating the control file, you can change
between ARCHIVELOG mode and NOARCHIVELOG mode with the ALTER DATABASE statement.

FORCE LOGGING

Use this clause to put the database into FORCE LOGGING mode after control file creation. When
the database is in this mode, Oracle Database logs all changes in the database except
changes to temporary tablespaces and temporary segments. This setting takes precedence
over and is independent of any NOLOGGING or FORCE LOGGING settings you specify for
individual tablespaces and any NOLOGGING settings you specify for individual database
objects. If you omit this clause, then the database will not be in FORCE LOGGING mode after the
control file is created.

Chapter 13
CREATE CONTROLFILE

13-55

Note:

FORCE LOGGING mode can have performance effects. Refer to Oracle
Database Administrator's Guide for information on when to use this setting.

SET STANDBY NOLOGGING FOR DATA AVAILABILITY | LOAD PERFORMANCE

SET STANDBY NOLOGGING

The SET STANDBY NOLOGGING disables logging on the standby. You can specify it in two
modes:

• SET STANDBY NOLOGGING FOR DATA AVAILABILITY guarantees full data
replication to the standby database. The primary and standby databases are
synchronized during the load. In cases of network congestion the primary
database will throttle its load.

• SET STANDBY NOLOGGING FOR LOAD PERFORMANCE to maintain speed of
primary database load and synchronize with the standby later.

Restrictions On SET STANDBY NOLOGGING

The SET STANDBY NOLOGGING clause cannot be used at the same time as FORCE
LOGGING.

character_set_clause

If you specify a character set, then Oracle Database reconstructs character set
information in the control file. If media recovery of the database is subsequently
required, then this information will be available before the database is open, so that
tablespace names can be correctly interpreted during recovery. This clause is required
only if you are using a character set other than the default, which depends on your
operating system. Oracle Database prints the current database character set to the
alert log in $ORACLE_HOME/log during startup.

If you are re-creating your control file and you are using Recovery Manager for
tablespace recovery, and if you specify a different character set from the one stored in
the data dictionary, then tablespace recovery will not succeed. However, at database
open, the control file character set will be updated with the correct character set from
the data dictionary.

You cannot modify the character set of the database with this clause.

See Also:

Oracle Database Backup and Recovery User's Guide for more information
on tablespace recovery

Examples

Creating a Controlfile: Example

Chapter 13
CREATE CONTROLFILE

13-56

This statement re-creates a control file. In this statement, database demo was created with the
WE8DEC character set. The example uses the word path where you would normally insert
the path on your system to the appropriate Oracle Database directories.

STARTUP NOMOUNT

CREATE CONTROLFILE REUSE DATABASE "demo" NORESETLOGS NOARCHIVELOG
 MAXLOGFILES 32
 MAXLOGMEMBERS 2
 MAXDATAFILES 32
 MAXINSTANCES 1
 MAXLOGHISTORY 449
LOGFILE
 GROUP 1 '/path/oracle/dbs/t_log1.f' SIZE 500K,
 GROUP 2 '/path/oracle/dbs/t_log2.f' SIZE 500K
STANDBY LOGFILE
DATAFILE
 '/path/oracle/dbs/t_db1.f',
 '/path/oracle/dbs/dbu19i.dbf',
 '/path/oracle/dbs/tbs_11.f',
 '/path/oracle/dbs/smundo.dbf',
 '/path/oracle/dbs/demo.dbf'
CHARACTER SET WE8DEC
;

CREATE DATABASE

Note:

This statement prepares a database for initial use and erases any data currently in
the specified files. Use this statement only when you understand its ramifications.

Note:

In this release of Oracle Database and in subsequent releases, several
enhancements are being made to ensure the security of default database user
accounts. You can find a security checklist for this release in Oracle Database
Security Guide. Oracle recommends that you read this checklist and configure your
database accordingly.

Purpose

Use the CREATE DATABASE statement to create a database, making it available for general use.

This statement erases all data in any specified data files that already exist in order to prepare
them for initial database use. If you use the statement on an existing database, then all data
in the data files is lost.

After creating the database, this statement mounts it in either exclusive or parallel mode,
depending on the value of the CLUSTER_DATABASE initialization parameter and opens it,
making it available for normal use. You can then create tablespaces for the database.

Chapter 13
CREATE DATABASE

13-57

See Also:

• ALTER DATABASE for information on modifying a database

• Oracle Database Java Developer's Guide for information on creating an
Oracle Java virtual machine

• CREATE TABLESPACE for information on creating tablespaces

Prerequisites

To create a database, you must have the SYSDBA system privilege. An initialization
parameter file with the name of the database to be created must be available, and you
must be in STARTUP NOMOUNT mode.

Syntax

create_database::=

CREATE DATABASE

database

USER SYS IDENTIFIED BY password

USER SYSTEM IDENTIFIED BY password

CONTROLFILE REUSE

MAXDATAFILES integer

MAXINSTANCES integer

CHARACTER SET charset

NATIONAL CHARACTER SET charset

SET DEFAULT
BIGFILE

SMALLFILE
TABLESPACE

database_logging_clauses

tablespace_clauses

set_time_zone_clause

BIGFILE

SMALLFILE

USER_DATA TABLESPACE tablespace_name DATAFILE datafile_tempfile_spec

,

enable_pluggable_database

new_database_name USING MIRROR COPY mirror_name

;

(database_logging_clauses::=, tablespace_clauses::=, set_time_zone_clause::=,
datafile_tempfile_spec::=, enable_pluggable_database::=)

Chapter 13
CREATE DATABASE

13-58

database_logging_clauses::=

LOGFILE

GROUP integer

file_specification

,

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

ARCHIVELOG

NOARCHIVELOG

FORCE LOGGING

SET STANDBY NOLOGGING FOR
DATA AVAILABILITY

LOAD PERFORMANCE

(file_specification::=)

tablespace_clauses::=

EXTENT MANAGEMENT LOCAL

DATAFILE file_specification

,

SYSAUX DATAFILE file_specification

,

default_tablespace

default_temp_tablespace

undo_tablespace

(file_specification::=, default_tablespace::=, default_temp_tablespace::=, undo_tablespace::=,
undo_tablespace::=)

default_tablespace::=

DEFAULT TABLESPACE tablespace

DATAFILE datafile_tempfile_spec extent_management_clause

default_temp_tablespace::=

Chapter 13
CREATE DATABASE

13-59

BIGFILE

SMALLFILE

DEFAULT

TEMPORARY TABLESPACE

LOCAL TEMPORARY TABLESPACE FOR
ALL

LEAF

tablespace

TEMPFILE file_specification

,

extent_management_clause

(file_specification::=)

extent_management_clause::=

EXTENT MANAGEMENT LOCAL

AUTOALLOCATE

UNIFORM

SIZE size_clause

(size_clause::=)

undo_tablespace::=

BIGFILE

SMALLFILE

UNDO TABLESPACE tablespace

DATAFILE file_specification

,

(file_specification::=)

set_time_zone_clause::=

SET TIME_ZONE = ’

+

–
hh : mi

time_zone_region

’

Chapter 13
CREATE DATABASE

13-60

enable_pluggable_database::=

ENABLE PLUGGABLE DATABASE

SEED

file_name_convert SYSTEM tablespace_datafile_clauses SYSAUX tablespace_datafile_clauses

undo_mode_clause

(tablespace_datafile_clauses::=, undo_mode_clause::=)

file_name_convert::=

FILE_NAME_CONVERT =
(’ filename_pattern ’ , ’ replacement_filename_pattern ’

,

)

NONE

tablespace_datafile_clauses::=

DATAFILES

SIZE size_clause

autoextend_clause

(size_clause::=, autoextend_clause::=)

undo_mode_clause::=

LOCAL UNDO

ON

OFF

Semantics

database

Specify the name of the database to be created. The name must match the value of the
DB_NAME initialization parameter. The name can be up to 8 bytes long and can contain only
ASCII characters. The following characters are valid in a database name: alphanumeric
characters, underscore (_), number sign (#), and dollar sign ($). No other characters are
valid. The database name must start with an alphabetic character. Oracle Database writes
this name into the control file. If you subsequently issue an ALTER DATABASE statement that

Chapter 13
CREATE DATABASE

13-61

explicitly specifies a database name, then Oracle Database verifies that name with the
name in the control file.

The database name is case insensitive and is stored in uppercase ASCII characters. If
you specify the database name as a quoted identifier, then the quotation marks are
silently ignored.

Note:

You cannot use special characters from European or Asian character sets in
a database name. For example, characters with umlauts are not allowed.

If you omit the database name from a CREATE DATABASE statement, then Oracle
Database uses the name specified by the initialization parameter DB_NAME. The
DB_NAME initialization parameter must be set in the database initialization parameter
file, and if you specify a different name from the value of that parameter, then the
database returns an error. Refer to "Database Object Naming Rules " for additional
rules to which database names should adhere.

USER SYS ..., USER SYSTEM ...

Use these clauses to establish passwords for the SYS and SYSTEM users. These
clauses are not mandatory in this release. However, if you specify either clause, then
you must specify both clauses.

If you do not specify these clauses, then Oracle Database creates the default
password change_on_install for user SYS . You can change this password later with
the ALTER USER statement.

See Also:

ALTER USER

CONTROLFILE REUSE Clause

Specify CONTROLFILE REUSE to reuse existing control files identified by the initialization
parameter CONTROL_FILES, overwriting any information they currently contain. Normally
you use this clause only when you are re-creating a database, rather than creating one
for the first time. When you create a database for the first time, Oracle Database
creates a control file in the default destination, which is dependent on the value or
several initialization parameters. See CREATE CONTROLFILE, "Semantics".

You cannot use this clause if you also specify a parameter value that requires that the
control file be larger than the existing files. These parameters are MAXLOGFILES,
MAXLOGMEMBERS, MAXLOGHISTORY, MAXDATAFILES, and MAXINSTANCES.

If you omit this clause and any of the files specified by CONTROL_FILES already exist,
then the database returns an error.

Chapter 13
CREATE DATABASE

13-62

MAXDATAFILES Clause

Specify the initial sizing of the data files section of the control file at CREATE DATABASE or
CREATE CONTROLFILE time. An attempt to add a file whose number is greater than
MAXDATAFILES, but less than or equal to DB_FILES, causes the Oracle Database control file to
expand automatically so that the data files section can accommodate more files.

The number of data files accessible to your instance is also limited by the initialization
parameter DB_FILES.

MAXINSTANCES Clause

Specify the maximum number of instances that can simultaneously have this database
mounted and open. This value takes precedence over the value of initialization parameter
INSTANCES. The minimum value is 1. The maximum value is 1055. The default depends on
your operating system.

CHARACTER SET Clause

Specify the character set the database uses to store data. The supported character sets and
default value of this parameter depend on your operating system.

Restriction on CHARACTER SET

You cannot specify the AL16UTF16 character set as the database character set.

See Also:

Oracle Database Globalization Support Guide for more information about choosing
a character set

NATIONAL CHARACTER SET Clause

Specify the national character set used to store data in columns specifically defined as NCHAR,
NCLOB, or NVARCHAR2. Valid values are AL16UTF16 and UTF8. The default is AL16UTF16.

See Also:

Oracle Database Globalization Support Guide for information on Unicode data type
support

SET DEFAULT TABLESPACE Clause

Use this clause to determine the default type of subsequently created tablespaces and of the
SYSTEM and SYSAUX tablespaces. Specify either BIGFILE or SMALLFILE to set the default type
of subsequently created tablespaces as a bigfile or smallfile tablespace, respectively.

• A bigfile tablespace contains only one data file or temp file, which can contain up to
approximately 4 billion (232) blocks. The maximum size of the single data file or temp file
is 128 terabytes (TB) for a tablespace with 32K blocks and 32TB for a tablespace with 8K
blocks.

Chapter 13
CREATE DATABASE

13-63

• A smallfile tablespace is a traditional Oracle tablespace, which can contain 1022
data files or temp files, each of which can contain up to approximately 4 million
(222) blocks.

If you omit this clause, then Oracle Database creates smallfile tablespaces by default.

See Also:

• Oracle Database Administrator's Guide for more information about bigfile
tablespaces

• "Setting the Default Type of Tablespaces: Example" for an example using
this syntax

database_logging_clauses

Use the database_logging_clauses to determine how Oracle Database will handle
redo log files for this database.

LOGFILE Clause

Specify one or more files to be used as redo log files. Use the redo_log_file_spec
form of file_specification to create regular redo log files in an operating system file
system or to create Oracle ASM disk group redo log files. When using a form of
ASM_filename, you cannot specify the autoextend_clause of redo_log_file_spec.

The redo_log_file_spec clause specifies a redo log file group containing one or more
redo log file members (copies). All redo log files specified in a CREATE DATABASE
statement are added to redo log thread number 1.

See Also:

file_specification for a full description of this clause

If you omit the LOGFILE clause, then Oracle Database creates an Oracle-managed log
file member in the default destination, which is one of the following locations (in order
of precedence):

• If DB_CREATE_ONLINE_LOG_DEST_n is set, then the database creates a log file
member in each directory specified, up to the value of the MAXLOGMEMBERS
initialization parameter.

• If the DB_CREATE_ONLINE_LOG_DEST_n parameter is not set, but both the
DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST initialization parameters are
set, then the database creates one Oracle-managed log file member in each of
those locations. The log file in the DB_CREATE_FILE_DEST destination is the first
member.

• If only the DB_CREATE_FILE_DEST initialization parameter is specified, then Oracle
Database creates a log file member in that location.

• If only the DB_RECOVERY_FILE_DEST initialization parameter is specified, then
Oracle Database creates a log file member in that location.

Chapter 13
CREATE DATABASE

13-64

In all these cases, the parameter settings must correctly specify operating system filenames
or creation form Oracle ASM filenames, as appropriate.

If no values are set for any of these parameters, then the database creates a log file in the
default location for the operating system on which the database is running. This log file is not
an Oracle Managed File.

GROUP integer

Specify the number that identifies the redo log file group. The value of integer can range
from 1 to the value of the MAXLOGFILES parameter. A database must have at least two redo
log file groups. You cannot specify multiple redo log file groups having the same GROUP value.
If you omit this parameter, then Oracle Database generates its value automatically. You can
examine the GROUP value for a redo log file group through the dynamic performance view
V$LOG.

MAXLOGFILES Clause

Specify the maximum number of redo log file groups that can ever be created for the
database. Oracle Database uses this value to determine how much space to allocate in the
control file for the names of redo log files. The default, minimum, and maximum values
depend on your operating system.

MAXLOGMEMBERS Clause

Specify the maximum number of members, or copies, for a redo log file group. Oracle
Database uses this value to determine how much space to allocate in the control file for the
names of redo log files. The minimum value is 1. The maximum and default values depend
on your operating system.

MAXLOGHISTORY Clause

This parameter is useful only if you are using Oracle Database in ARCHIVELOG mode with
Oracle Real Application Clusters (Oracle RAC). Specify the maximum number of archived
redo log files for automatic media recovery of Oracle RAC. The database uses this value to
determine how much space to allocate in the control file for the names of archived redo log
files. The minimum value is 0. The default value is a multiple of the MAXINSTANCES value and
depends on your operating system. The maximum value is limited only by the maximum size
of the control file.

ARCHIVELOG

Specify ARCHIVELOG if you want the contents of a redo log file group to be archived before the
group can be reused. This clause prepares for the possibility of media recovery.

NOARCHIVELOG

Specify NOARCHIVELOG if the contents of a redo log file group need not be archived before the
group can be reused. This clause does not allow for the possibility of media recovery.

The default is NOARCHIVELOG mode. After creating the database, you can change between
ARCHIVELOG mode and NOARCHIVELOG mode with the ALTER DATABASE statement.

FORCE LOGGING

Use this clause to put the database into FORCE LOGGING mode. Oracle Database will log all
changes in the database except for changes in temporary tablespaces and temporary
segments. This setting takes precedence over and is independent of any NOLOGGING or FORCE

Chapter 13
CREATE DATABASE

13-65

LOGGING settings you specify for individual tablespaces and any NOLOGGING settings
you specify for individual database objects.

FORCE LOGGING mode is persistent across instances of the database. If you shut down
and restart the database, then the database is still in FORCE LOGGING mode. However, if
you re-create the control file, then Oracle Database will take the database out of FORCE
LOGGING mode unless you specify FORCE LOGGING in the CREATE CONTROLFILE
statement.

Note:

FORCE LOGGING mode can have performance effects. Refer to Oracle
Database Administrator's Guide for information on when to use this setting.

See Also:

CREATE CONTROLFILE

SET STANDBY NOLOGGING FOR DATA AVAILABILITY | LOAD PERFORMANCE

The SET STANDBY NOLOGGING disables logging on the standby. You can specify it in two
modes:

• SET STANDBY NOLOGGING FOR DATA AVAILABILITY guarantees full data
replication to the standby database. The primary and standby databases are
synchronized during the load. In cases of network congestion the primary
database will throttle its load.

• SET STANDBY NOLOGGING FOR LOAD PERFORMANCE to maintain speed of
primary database load and synchronize with the standby later.

Restrictions SET STANDBY NOLOGGING

TheSET STANDBY NOLOGGING clause cannot be used at the same time as FORCE
LOGGING.

tablespace_clauses

Use the tablespace clauses to configure the SYSTEM and SYSAUX tablespaces and to
specify a default temporary tablespace and an undo tablespace.

extent_management_clause

Use this clause to create a locally managed SYSTEM tablespace. If you omit this clause,
then the SYSTEM tablespace will be dictionary managed.

Chapter 13
CREATE DATABASE

13-66

Note:

When you create a locally managed SYSTEM tablespace, you cannot change it to be
dictionary managed, nor can you create any other dictionary-managed tablespaces
in this database.

If you specify this clause, then the database must have a default temporary tablespace,
because a locally managed SYSTEM tablespace cannot store temporary segments.

• If you specify EXTENT MANAGEMENT LOCAL but you do not specify the DATAFILE clause, then
you can omit the default_temp_tablespace clause. Oracle Database will create a default
temporary tablespace called TEMP with one data file of size 10M with autoextend disabled.

• If you specify both EXTENT MANAGEMENT LOCAL and the DATAFILE clause, then you must
also specify the default_temp_tablespace clause and explicitly specify a temp file for
that temporary tablespace.

If you have opened the instance in automatic undo mode, similar requirements exist for the
database undo tablespace:

• If you specify EXTENT MANAGEMENT LOCAL but you do not specify the DATAFILE clause, then
you can omit the undo_tablespace clause. Oracle Database will create an undo
tablespace named SYS_UNDOTBS.

• If you specify both EXTENT MANAGEMENT LOCAL and the DATAFILE clause, then you must
also specify the undo_tablespace clause and explicitly specify a data file for that
tablespace.

See Also:

Oracle Database Administrator's Guide for more information on locally
managed and dictionary-managed tablespaces

DATAFILE Clause

Specify one or more files to be used as data files. All these files become part of the SYSTEM
tablespace. Use the data file_tempfile_spec form of file_specification to create regular
data files and temp files in an operating system file system or to create Oracle ASM disk
group files.

Note:

This clause is optional, as is the DATAFILE clause of the undo_tablespace clause.
Therefore, to avoid ambiguity, if your intention is to specify a data file for the SYSTEM
tablespace with this clause, then do not specify it immediately after an
undo_tablespace clause that does not include the optional DATAFILE clause. If you
do so, then Oracle Database will interpret the DATAFILE clause to be part of the
undo_tablespace clause.

Chapter 13
CREATE DATABASE

13-67

The syntax for specifying data files for the SYSTEM tablespace is the same as that for
specifying data files during tablespace creation using the CREATE TABLESPACE
statement, whether you are storing files using Oracle ASM or in a file system.

See Also:

CREATE TABLESPACE for information on specifying data files

If you are running the database in automatic undo mode and you specify a data file
name for the SYSTEM tablespace, then Oracle Database expects to generate data files
for all tablespaces. Oracle Database does this automatically if you are using Oracle
Managed Files—you have set a value for the DB_CREATE_FILE_DEST initialization
parameter. However, if you are not using Oracle Managed Files and you specify this
clause, then you must also specify the undo_tablespace clause and the
default_temp_tablespace clause.

If you omit this clause, then:

• If the DB_CREATE_FILE_DEST initialization parameter is set, then Oracle Database
creates a 100 MB Oracle-managed data file with a system-generated name in the
default file destination specified in the parameter.

• If the DB_CREATE_FILE_DEST initialization parameter is not set, then Oracle
Database creates one data file whose name and size depend on your operating
system.

See Also:

file_specification for syntax

SYSAUX Clause

Oracle Database creates both the SYSTEM and SYSAUX tablespaces as part of every
database. Use this clause if you are not using Oracle Managed Files and you want to
specify one or more data files for the SYSAUX tablespace.

You must specify this clause if you have specified one or more data files for the SYSTEM
tablespace using the DATAFILE clause. If you are using Oracle Managed Files and you
omit this clause, then the database creates the SYSAUX data files in the default location
set up for Oracle Managed Files.

If you have enabled Oracle Managed Files and you omit the SYSAUX clause, then the
database creates the SYSAUX tablespace as an online, permanent, locally managed
tablespace with one data file of 100 MB, with logging enabled and automatic segment-
space management.

The syntax for specifying data files for the SYSAUX tablespace is the same as that for
specifying data files during tablespace creation using the CREATE TABLESPACE
statement, whether you are storing files using Oracle ASM or in a file system.

Chapter 13
CREATE DATABASE

13-68

See Also:

• CREATE TABLESPACE for information on creating the SYSAUX tablespace
during database upgrade and for information on specifying data files in a
tablespace

• Oracle Database Administrator's Guide for more information on creating the
SYSAUX tablespace

default_tablespace

Specify this clause to create a default permanent tablespace for the database. Oracle
Database creates a smallfile tablespace and subsequently will assign to this tablespace any
non-SYSTEM users for whom you do not specify a different permanent tablespace. If you do
not specify this clause, then the SYSTEM tablespace is the default permanent tablespace for
non-SYSTEM users.

The DATAFILE clause and extent_management_clause have the same semantics they have in
a CREATE TABLESPACE statement. Refer to "DATAFILE | TEMPFILE Clause" and
extent_management_clause for information on these clauses.

default_temp_tablespace

Use this clause to create a default shared temporary tablespace or a default local temporary
tablespace. Oracle Database will assign to these temporary tablespaces any users for whom
you do not specify different temporary tablespaces.

• Specify DEFAULT TEMPORARY TABLESPACE to create a default shared temporary tablespace
for the database. Shared temporary tablespaces were available in prior releases of
Oracle Database and were called "temporary tablespaces." Elsewhere in this guide, the
term "temporary tablespace" refers to a shared temporary tablespace unless specified
otherwise. If you do not specify this clause, and if the database does not create a default
shared temporary tablespace automatically in the process of creating a locally managed
SYSTEM tablespace, then the SYSTEM tablespace is the default shared temporary
tablespace.

• Starting with Oracle Database 12c Release 2 (12.2), you can specify DEFAULT LOCAL
TEMPORARY TABLESPACE to create a default local temporary tablespace. Local temporary
tablespaces are useful for Oracle Real Application Clusters and Oracle Flex Clusters.
They store a separate, nonshared temp file for each database instance, which can
improve I/O performance. A local temporary tablespace must be a BIGFILE tablespace.

– Specify FOR ALL to instruct the database to create separate, nonshared temp files for
all HUB and LEAF nodes.

– Specify FOR LEAF to instruct the database to create separate nonshared temp files for
only LEAF nodes. If you specify this clause, then HUB nodes will use the default
shared temporary tablespace. For SQL operations that span both HUB and LEAF
nodes, HUB nodes will use the default shared temporary tablespace and LEAF
nodes will use the default local temporary tablespace.

If you do not create a local temporary tablespace, then HUB and LEAF nodes will use the
default shared temporary tablespace.

Chapter 13
CREATE DATABASE

13-69

Specify BIGFILE or SMALLFILE to determine whether the default temporary tablespace
is a bigfile or smallfile tablespace. These clauses have the same semantics as in the
"SET DEFAULT TABLESPACE Clause ".

The TEMPFILE clause part of this clause is optional if you have enabled Oracle
Managed Files by setting the DB_CREATE_FILE_DEST initialization parameter. If you
have not specified a value for this parameter, then the TEMPFILE clause is required. If
you have specified BIGFILE, then you can specify only one temp file in this clause.

The syntax for specifying temp files for the default temporary tablespace is the same
as that for specifying temp files during temporary tablespace creation using the CREATE
TABLESPACE statement, whether you are storing files using Oracle ASM or in a file
system.

The extent_management_clause clause has the same semantics in CREATE DATABASE
and CREATE TABLESPACE statements. For complete information, refer to the CREATE
TABLESPACE ... extent_management_clause .

See Also:

CREATE TABLESPACE for information on specifying temp files

Note:

On some operating systems, Oracle does not allocate space for a temp file
until the temp file blocks are actually accessed. This delay in space
allocation results in faster creation and resizing of temp files, but it requires
that sufficient disk space is available when the temp files are later used. To
avoid potential problems, before you create or resize a temp file, ensure that
the available disk space exceeds the size of the new temp file or the
increased size of a resized temp file. The excess space should allow for
anticipated increases in disk space use by unrelated operations as well.
Then proceed with the creation or resizing operation.

Restrictions on Default Temporary Tablespaces

Default temporary tablespaces are subject to the following restrictions:

• You cannot specify the SYSTEM tablespace in this clause.

• The default temporary tablespace must have a standard block size.

undo_tablespace

If you have opened the instance in automatic undo mode (the UNDO_MANAGEMENT
initialization parameter is set to AUTO, which is the default), then you can specify the
undo_tablespace to create a tablespace to be used for undo data. Oracle strongly
recommends that you use automatic undo mode. However, if you want undo space
management to be handled by way of rollback segments, then you must omit this
clause. You can also omit this clause if you have set a value for the UNDO_TABLESPACE

Chapter 13
CREATE DATABASE

13-70

initialization parameter. If that parameter has been set, and if you specify this clause, then
tablespace must be the same as that parameter value.

• Specify BIGFILE if you want the undo tablespace to be a bigfile tablespace. A bigfile
tablespace contains only one data file, which can be up to 8 exabytes (8 million
terabytes) in size.

• Specify SMALLFILE if you want the undo tablespace to be a smallfile tablespace. A
smallfile tablespace is a traditional Oracle Database tablespace, which can contain
1022 data files or temp files, each of which can contain up to approximately 4 million (222)
blocks.

• The DATAFILE clause part of this clause is optional if you have enabled Oracle Managed
Files by setting the DB_CREATE_FILE_DEST initialization parameter. If you have not
specified a value for this parameter, then the DATAFILE clause is required. If you have
specified BIGFILE, then you can specify only one data file in this clause.

The syntax for specifying data files for the undo tablespace is the same as that for specifying
data files during tablespace creation using the CREATE TABLESPACE statement, whether you
are storing files using Oracle ASM or in a file system.

See Also:

CREATE TABLESPACE for information on specifying data files

If you specify this clause, then Oracle Database creates an undo tablespace named
tablespace, creates the specified data file(s) as part of the undo tablespace, and assigns this
tablespace as the undo tablespace of the instance. Oracle Database will manage undo data
using this undo tablespace. The DATAFILE clause of this clause has the same behavior as
described in "DATAFILE Clause".

If you have specified a value for the UNDO_TABLESPACE initialization parameter in your
initialization parameter file before mounting the database, then you must specify the same
name in this clause. If these names differ, then Oracle Database will return an error when you
open the database.

If you omit this clause, then Oracle Database creates a default database with a default
smallfile undo tablespace named SYS_UNDOTBS and assigns this default tablespace as the
undo tablespace of the instance. This undo tablespace allocates disk space from the default
files used by the CREATE DATABASE statement, and it has an initial extent of 10M. Oracle
Database handles the system-generated data file as described in "DATAFILE Clause". If
Oracle Database is unable to create the undo tablespace, then the entire CREATE DATABASE
operation fails.

See Also:

• Oracle Database Administrator's Guide for information on automatic undo
management and undo tablespaces

• CREATE TABLESPACE for information on creating an undo tablespace after
database creation

Chapter 13
CREATE DATABASE

13-71

set_time_zone_clause

Use the SET TIME_ZONE clause to set the time zone of the database. You can specify
the time zone in two ways:

• By specifying a displacement from UTC (Coordinated Universal Time—formerly
Greenwich Mean Time). The valid range of hh:mi is -12:00 to +14:00.

• By specifying a time zone region. To see a listing of valid time zone region names,
query the TZNAME column of the V$TIMEZONE_NAMES dynamic performance view.

Note:

Oracle recommends that you set the database time zone to UTC (0:00).
Doing so can improve performance, especially across databases, as no
conversion of time zones will be required.

See Also:

Oracle Database Reference for information on the dynamic performance
views

Oracle Database normalizes all TIMESTAMP WITH LOCAL TIME ZONE data to the time zone
of the database when the data is stored on disk. If you do not specify the SET
TIME_ZONE clause, then the database uses the operating system time zone of the
server. If the operating system time zone is not a valid Oracle Database time zone,
then the database time zone defaults to UTC.

USER_DATA TABLESPACE Clause

This clause lets you create a tablespace that is used for storing user data and
database options such as Oracle XML DB.

If you specify this clause when creating a multitenant container database (CDB), then
the tablespace is created as part of the seed. Pluggable databases (PDBs)
subsequently created using the seed will include this tablespace and its data file. The
tablespace and data file specified in this clause are not used by the root.

Specify BIGFILE or SMALLFILE to determine whether the tablespace is a bigfile or
smallfile tablespace. If you omit these clauses, then Oracle Database creates a
tablespace of the type that you specify with the SET DEFAULT TABLESPACE clause. If you
do not specify the SET DEFAULT TABLESPACE clause, then Oracle Database creates a
smallfile tablespace. These clauses have the same semantics as in the "SET
DEFAULT TABLESPACE Clause ".

Use the datafile_tempfile_spec clause to specify one or more data files for the
tablespace. Refer to datafile_tempfile_spec for the full semantics of this clause.

Chapter 13
CREATE DATABASE

13-72

enable_pluggable_database

Starting with Oracle Database 21c, the ENABLE_PLUGGABLE_DATABASE initialization parameter
is set to TRUE by default. If you set the ENABLE_PLUGGABLE_DATABASE initialization parameter to
FALSE, the command will fail.

The CREATE DATABASE enable_pluggable_database statement creates a CDB that contains a
root and a seed container. You then create PDBs in the CDB by using the CREATE PLUGGABLE
DATABASE statement.

See Also:

• Creating and configuring a cdb.

• CREATE PLUGGABLE DATABASE

• "Creating a CDB: Example"

file_name_convert

Use the file_name_convert clause to determine how the database generates the names of
files (such as data files and wallet files) associated with the seed by using the names of files
associated with the root.

• For filename_pattern, specify a string found in file names associated with the root.

• For replacement_filename_pattern, specify a replacement string.

Oracle Database will replace filename_pattern with replacement_filename_pattern when
generating the names of files associated with the seed.

File name patterns cannot match files or directories managed by Oracle Managed Files.

You can specify FILE_NAME_CONVERT = NONE, which is the same as omitting this clause. If you
omit this clause, then the database first attempts to use Oracle Managed Files to generate
seed file names. If you are not using Oracle Managed Files, then the database uses the
PDB_FILE_NAME_CONVERT initialization parameter to generate file names. If this parameter is
not set, then an error occurs.

tablespace_datafile_clauses

Use these clauses to specify attributes for all data files comprising the SYSTEM and SYSAUX
tablespaces in the seed PDB. If you do not specify SIZE size_clause, then the data file size
for a given tablespace will be set to a predetermined fraction of the size of the corresponding
root data file. If you do not specify the autoextend_clause, then those values are inherited
from the root.

Refer to size_clause and autoextend_clause for the full semantics of these clauses.

undo_mode_clause

This clause lets you specify local undo mode or shared undo mode for the CDB.

• Use LOCAL UNDO ON to specify local undo mode for the CDB. In this mode, every container
in the CDB uses local undo.

Chapter 13
CREATE DATABASE

13-73

• Use LOCAL UNDO OFF to specify shared undo mode for the CDB. In this mode, there
is one active undo tablespace for a single-instance CDB, or for an Oracle RAC
CDB, there is one active undo tablespace for each instance.

If you omit this clause, then the default is LOCAL UNDO OFF.

USING MIRROR COPY

Use this clause to create a database with new_database_name using the prepared files
of the mirror copy, identified by mirror_name.

Examples

Creating a Database: Example

The following statement creates a database and fully specifies each argument:

CREATE DATABASE sample
 CONTROLFILE REUSE
 LOGFILE
 GROUP 1 ('diskx:log1.log', 'disky:log1.log') SIZE 50K,
 GROUP 2 ('diskx:log2.log', 'disky:log2.log') SIZE 50K
 MAXLOGFILES 5
 MAXLOGHISTORY 100
 MAXDATAFILES 10
 MAXINSTANCES 2
 ARCHIVELOG
 CHARACTER SET AL32UTF8
 NATIONAL CHARACTER SET AL16UTF16
 DATAFILE
 'disk1:df1.dbf' AUTOEXTEND ON,
 'disk2:df2.dbf' AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
 DEFAULT TEMPORARY TABLESPACE temp_ts
 UNDO TABLESPACE undo_ts
 SET TIME_ZONE = '+02:00';

This example assumes that you have enabled Oracle Managed Files by specifying a
value for the DB_CREATE_FILE_DEST parameter in your initialization parameter file.
Therefore no file specification is needed for the DEFAULT TEMPORARY TABLESPACE and
UNDO TABLESPACE clauses.

Creating a CDB: Example

The following statement creates a CDB newcdb. The ENABLE PLUGGABLE DATABASE
clause indicates that a CDB is being created. The CDB will contain a root (CDB$ROOT)
and a seed (PDB$SEED). The FILE_NAME_CONVERT clause specifies that names of files
for the seed will be generated by replacing /u01/app/oracle/oradata/newcdb in the
names of files associated with the root with /u01/app/oracle/oradata/pdbseed.

CREATE DATABASE newcdb
 USER SYS IDENTIFIED BY sys_password
 USER SYSTEM IDENTIFIED BY system_password
 LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/my/redo01b.log')
 SIZE 100M BLOCKSIZE 512,
 GROUP 2 ('/u01/logs/my/redo02a.log','/u02/logs/my/redo02b.log')
 SIZE 100M BLOCKSIZE 512,
 GROUP 3 ('/u01/logs/my/redo03a.log','/u02/logs/my/redo03b.log')
 SIZE 100M BLOCKSIZE 512
 MAXLOGHISTORY 1
 MAXLOGFILES 16

Chapter 13
CREATE DATABASE

13-74

 MAXLOGMEMBERS 3
 MAXDATAFILES 1024
 CHARACTER SET AL32UTF8
 NATIONAL CHARACTER SET AL16UTF16
 EXTENT MANAGEMENT LOCAL
 DATAFILE '/u01/app/oracle/oradata/newcdb/system01.dbf'
 SIZE 700M REUSE AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
 SYSAUX DATAFILE '/u01/app/oracle/oradata/newcdb/sysaux01.dbf'
 SIZE 550M REUSE AUTOEXTEND ON NEXT 10240K MAXSIZE UNLIMITED
 DEFAULT TABLESPACE deftbs
 DATAFILE '/u01/app/oracle/oradata/newcdb/deftbs01.dbf'
 SIZE 500M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
 DEFAULT TEMPORARY TABLESPACE tempts1
 TEMPFILE '/u01/app/oracle/oradata/newcdb/temp01.dbf'
 SIZE 20M REUSE AUTOEXTEND ON NEXT 640K MAXSIZE UNLIMITED
 UNDO TABLESPACE undotbs1
 DATAFILE '/u01/app/oracle/oradata/newcdb/undotbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON NEXT 5120K MAXSIZE UNLIMITED
 ENABLE PLUGGABLE DATABASE
 SEED
 FILE_NAME_CONVERT = ('/u01/app/oracle/oradata/newcdb/',
 '/u01/app/oracle/oradata/pdbseed/')
 SYSTEM DATAFILES SIZE 125M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
 SYSAUX DATAFILES SIZE 100M
 USER_DATA TABLESPACE usertbs
 DATAFILE '/u01/app/oracle/oradata/pdbseed/usertbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

CREATE DATABASE LINK
Purpose

Use the CREATE DATABASE LINK statement to create a database link. A database link is a
schema object in one database that enables you to access objects on another database. The
other database need not be an Oracle Database system. However, to access non-Oracle
systems you must use Oracle Heterogeneous Services.

After you have created a database link, you can use it in SQL statements to refer to tables,
views, and PL/SQL objects in the other database by appending @dblink to the table, view, or
PL/SQL object name. You can query a table or view in the other database with the SELECT
statement. You can also access remote tables and views using any INSERT, UPDATE, DELETE,
or LOCK TABLE statement.

Chapter 13
CREATE DATABASE LINK

13-75

See Also:

• Oracle Database Development Guide for information about accessing
remote tables or views with PL/SQL functions, procedures, packages,
and data types

• Oracle Database Administrator's Guide for information on distributed
database systems

• Oracle Database Reference for descriptions of existing database links in
the ALL_DB_LINKS, DBA_DB_LINKS, and USER_DB_LINKS data dictionary
views and for information on monitoring the performance of existing links
through the V$DBLINK dynamic performance view

• ALTER DATABASE LINK for information on altering a database link
when the password of a connection or authentication user changes.

• DROP DATABASE LINK for information on dropping existing database
links

• INSERT , UPDATE , DELETE , and LOCK TABLE for using links in DML
operations

Prerequisites

To create a private database link, you must have the CREATE DATABASE LINK system
privilege. To create a public database link, you must have the CREATE PUBLIC DATABASE
LINK system privilege. Also, you must have the CREATE SESSION system privilege on
the remote Oracle Database.

Oracle Net must be installed on both the local and remote Oracle Databases.

Syntax

create_database_link::=

CREATE

SHARED PUBLIC

DATABASE LINK dblink

CONNECT

TO

CURRENT_USER

user IDENTIFIED BY password

dblink_authentication

WITH credential

dblink_authentication

USING connect_string

;

(dblink::=)

Chapter 13
CREATE DATABASE LINK

13-76

dblink_authentication::=

AUTHENTICATED BY user IDENTIFIED BY password

Semantics

SHARED

Specify SHARED to create a database link that can be shared by multiple sessions using a
single network connection from the source database to the target database. In a shared
server configuration, shared database links can keep the number of connections into the
remote database from becoming too large. Shared links are typically also public database
links. However, a shared private database link can be useful when many clients access the
same local schema, and therefore use the same private database link.

In a shared database link, multiple sessions in the source database share the same
connection to the target database. Once a session is established on the target database, that
session is disassociated from the connection, to make the connection available to another
session on the source database. To prevent an unauthorized session from attempting to
connect through the database link, when you specify SHARED you must also specify the
dblink_authentication clause for the users authorized to use the database link.

See Also:

Oracle Database Administrator's Guide for more information about shared database
links

PUBLIC

Specify PUBLIC to create a public database link visible to all users. If you omit this clause,
then the database link is private and is available only to you.

The data accessible on the remote database depends on the identity the database link uses
when connecting to the remote database:

• If you specify CONNECT TO user IDENTIFIED BY password, then the database link connects
with the specified user and password.

• If you specify CONNECT TO CURRENT_USER, then the database link connects with the user in
effect based on the scope in which the link is used.

• If you omit both of those clauses, then the database link connects to the remote database
as the locally connected user.

See Also:

"Defining a Public Database Link: Example"

Chapter 13
CREATE DATABASE LINK

13-77

dblink

Specify the complete or partial name of the database link. If you specify only the
database name, then Oracle Database implicitly appends the database domain of the
local database.

Use only ASCII characters for dblink. Multibyte characters are not supported. The
database link name is case insensitive and is stored in uppercase ASCII characters. If
you specify the database name as a quoted identifier, then the quotation marks are
silently ignored.

If the value of the GLOBAL_NAMES initialization parameter is TRUE, then the database link
must have the same name as the database to which it connects. If the value of
GLOBAL_NAMES is FALSE, and if you have changed the global name of the database,
then you can specify the global name.

The maximum number of database links that can be open in one session or one
instance of an Oracle RAC configuration depends on the value of the OPEN_LINKS and
OPEN_LINKS_PER_INSTANCE initialization parameters.

Restriction on Creating Database Links

You cannot create a database link in another user's schema, and you cannot qualify
dblink with the name of a schema. Periods are permitted in names of database links,
so Oracle Database interprets the entire name, such as ralph.linktosales, as the
name of a database link in your schema rather than as a database link named
linktosales in the schema ralph.

See Also:

• "References to Objects in Remote Databases " for guidelines for naming
database links

• Oracle Database Reference for information on the GLOBAL_NAMES,
OPEN_LINKS, and OPEN_LINKS_PER_INSTANCE initialization parameters

• "RENAME GLOBAL_NAME Clause" (an ALTER DATABASE clause) for
information on changing the database global name

CONNECT TO Clause

The CONNECT TO clause lets you specify the user and credentials, if any, to be used to
connect to the remote database.

CURRENT_USER Clause

Specify CURRENT_USER to create a current user database link. The current user must
be a global user with a valid account on the remote database.

If the database link is used directly rather than from within a stored object, then the
current user is the same as the connected user.

When executing a stored object (such as a procedure, view, or trigger) that initiates a
database link, CURRENT_USER is the name of the user that owns the stored object, and
not the name of the user that called the object. For example, if the database link

Chapter 13
CREATE DATABASE LINK

13-78

appears inside procedure scott.p (created by scott), and user jane calls procedure
scott.p, then the current user is scott.

However, if the stored object is an invoker-rights function, procedure, or package, then the
invoker's authorization ID is used to connect as a remote user. For example, if the privileged
database link appears inside procedure scott.p (an invoker-rights procedure created by
scott), and user Jane calls procedure scott.p, then CURRENT_USER is jane and the
procedure executes with Jane's privileges.

See Also:

• CREATE FUNCTION for more information on invoker-rights functions

• "Defining a CURRENT_USER Database Link: Example"

user IDENTIFIED BY password

Specify the user name and password used to connect to the remote database using a fixed
user database link. If you omit this clause, then the database link uses the user name and
password of each user who is connected to the database. This is called a connected user
database link.

See Also:

"Defining a Fixed-User Database Link: Example"

dblink_authentication

You can specify this clause only if you are creating a shared database link—that is, you have
specified the SHARED clause. Specify the username and password on the target instance. This
clause authenticates the user to the remote server and is required for security. The specified
username and password must be a valid username and password on the remote instance.
The username and password are used only for authentication. No other operations are
performed on behalf of this user.

CONNECT WITH Clause

Use CONNECT WITH to specify the credential object that stores the username and password to
connect to the remote database.

You can create, update, or drop the credential using the DBMS_CREDENTIAL package.

You can use a credential object belonging to another user, if that user has granted you
execute privileges on the credential object.

USING 'connect string'

Specify the service name of a remote database. If you specify only the database name, then
Oracle Database implicitly appends the database domain to the connect string to create a
complete service name. Therefore, if the database domain of the remote database is different
from that of the current database, then you must specify the complete service name.

Chapter 13
CREATE DATABASE LINK

13-79

See Also:

Oracle Database Administrator's Guide for information on specifying remote
databases

Examples

The examples that follow assume two databases, one with the database name local
and the other with the database name remote. The examples use the Oracle Database
domain. Your database domain will be different.

Defining a Public Database Link: Example

The following statement defines a shared public database link named remote that
refers to the database specified by the service name remote:

CREATE PUBLIC DATABASE LINK remote
 USING 'remote';

This database link allows user hr on the local database to update a table on the
remote database (assuming hr has appropriate privileges):

UPDATE employees@remote
 SET salary=salary*1.1
 WHERE last_name = 'Baer';

Defining a Fixed-User Database Link: Example

In the following statement, user hr on the remote database defines a fixed-user
database link named local to the hr schema on the local database:

CREATE DATABASE LINK local
 CONNECT TO hr IDENTIFIED BY password
 USING 'local';

After this database link is created, hr can query tables in the schema hr on the local
database in this manner:

SELECT * FROM employees@local;

User hr can also use DML statements to modify data on the local database:

INSERT INTO employees@local
 (employee_id, last_name, email, hire_date, job_id)
 VALUES (999, 'Claus', 'sclaus@example.com', SYSDATE, 'SH_CLERK');

UPDATE jobs@local SET min_salary = 3000
 WHERE job_id = 'SH_CLERK';

DELETE FROM employees@local
 WHERE employee_id = 999;

Using this fixed database link, user hr on the remote database can also access tables
owned by other users on the same database. This statement assumes that user hr
has the READ or SELECT privilege on the oe.customers table. The statement connects
to the user hr on the local database and then queries the oe.customers table:

Chapter 13
CREATE DATABASE LINK

13-80

SELECT * FROM oe.customers@local;

Defining a CURRENT_USER Database Link: Example

The following statement defines a current-user database link to the remote database, using
the entire service name as the link name:

CREATE DATABASE LINK remote.us.example.com
 CONNECT TO CURRENT_USER
 USING 'remote';

The user who issues this statement must be a global user registered with the LDAP directory
service.

You can create a synonym to hide the fact that a particular table is on the remote database.
The following statement causes all future references to emp_table to access the employees
table owned by hr on the remote database:

CREATE SYNONYM emp_table
 FOR oe.employees@remote.us.example.com;

CREATE DIMENSION
Purpose

Use the CREATE DIMENSION statement to create a dimension. A dimension defines a parent-
child relationship between pairs of column sets, where all the columns of a column set must
come from the same table. However, columns in one column set (called a level) can come
from a different table than columns in another set. The optimizer uses these relationships with
materialized views to perform query rewrite. The SQL Access Advisor uses these
relationships to recommend creation of specific materialized views.

Note:

Oracle Database does not automatically validate the relationships you declare when
creating a dimension. To validate the relationships specified in the
hierarchy_clause and the dimension_join_clause of CREATE DIMENSION, you must
run the DBMS_OLAP.VALIDATE_DIMENSION procedure.

See Also:

• CREATE MATERIALIZED VIEW for more information on materialized views

• Oracle Database SQL Tuning Guide for more information on query rewrite, the
optimizer and the SQL Access Advisor

Prerequisites

To create a dimension in your own schema, you must have the CREATE DIMENSION system
privilege. To create a dimension in another user's schema, you must have the CREATE ANY

Chapter 13
CREATE DIMENSION

13-81

DIMENSION system privilege. In either case, you must have the READ or SELECT object
privilege on any objects referenced in the dimension.

Syntax

create_dimension::=

CREATE DIMENSION

schema .

dimension level_clause

hierarchy_clause

attribute_clause

extended_attribute_clause

;

level_clause::=

LEVEL level IS

level_table . level_column

(level_table . level_column

,

)

SKIP WHEN NULL

hierarchy_clause::=

HIERARCHY hierarchy (child_level CHILD OF parent_level

dimension_join_clause

)

dimension_join_clause::=

JOIN KEY

child_key_column

(child_key_column

,

)

REFERENCES parent_level

attribute_clause::=

ATTRIBUTE level DETERMINES

dependent_column

(dependent_column

,

)

Chapter 13
CREATE DIMENSION

13-82

extended_attribute_clause::=

ATTRIBUTE attribute LEVEL level DETERMINES

dependent_column

(dependent_column

,

)

Semantics

schema

Specify the schema in which the dimension will be created. If you do not specify schema, then
Oracle Database creates the dimension in your own schema.

dimension

Specify the name of the dimension. The name must satisfy the requirements listed in
"Database Object Naming Rules ".

level_clause

The level_clause defines a level in the dimension. A level defines dimension hierarchies
and attributes.

level

Specify the name of the level.

level_table . level_column

Specify the columns in the level. You can specify up to 32 columns. The tables you specify in
this clause must already exist.

SKIP WHEN NULL

Specify this clause to indicate that if the specified level is NULL, then the level is to be
skipped. This clause lets you preserve the hierarchical chain of parent-child relationship by
an alternative path that skips over the specified level. See hierarchy_clause.

Restrictions on Dimension Level Columns

Dimension level columns are subject to the following restrictions:

• All of the columns in a level must come from the same table.

• If columns in different levels come from different tables, then you must specify the
dimension_join_clause.

• The set of columns you specify must be unique to this level.

• The columns you specify cannot be specified in any other dimension.

• Each level_column must be non-null unless the level is specified with SKIP WHEN NULL.
The non-null columns need not have NOT NULL constraints. The column for which you
specify SKIP WHEN NULL cannot have a NOT NULL constraint).

Chapter 13
CREATE DIMENSION

13-83

hierarchy_clause

The hierarchy_clause defines a linear hierarchy of levels in the dimension. Each
hierarchy forms a chain of parent-child relationships among the levels in the
dimension. Hierarchies in a dimension are independent of each other. They may, but
need not, have columns in common.

Each level in the dimension should be specified at most once in this clause, and each
level must already have been named in the level_clause.

hierarchy

Specify the name of the hierarchy. This name must be unique in the dimension.

child_level

Specify the name of a level that has an n:1 relationship with a parent level. The
level_columns of child_level cannot be null, and each child_level value uniquely
determines the value of the next named parent_level.

If the child level_table is different from the parent level_table, then you must
specify a join relationship between them in the dimension_join_clause.

parent_level

Specify the name of a level.

dimension_join_clause

The dimension_join_clause lets you specify an inner equijoin relationship for a
dimension whose columns are contained in multiple tables. This clause is required and
permitted only when the columns specified in the hierarchy are not all in the same
table.

child_key_column

Specify one or more columns that are join-compatible with columns in the parent level.

If you do not specify the schema and table of each child_column, then the schema
and table are inferred from the CHILD OF relationship in the hierarchy_clause. If you
do specify the schema and column of a child_key_column, then the schema and table
must match the schema and table of columns in the child of parent_level in the
hierarchy_clause.

parent_level

Specify the name of a level.

Restrictions on Join Dimensions

Join dimensions are subject to the following restrictions:

• You can specify only one dimension_join_clause for a given pair of levels in the
same hierarchy.

• The child_key_columns must be non-null, and the parent key must be unique and
non-null. You need not define constraints to enforce these conditions, but queries
may return incorrect results if these conditions are not true.

Chapter 13
CREATE DIMENSION

13-84

• Each child key must join with a key in the parent_level table.

• Self-joins are not permitted. The child_key_columns cannot be in the same table as
parent_level.

• All of the child key columns must come from the same table.

• The number of child key columns must match the number of columns in parent_level,
and the columns must be joinable.

• You cannot specify multiple child key columns unless the parent level consists of multiple
columns.

attribute_clause

The attribute_clause lets you specify the columns that are uniquely determined by a
hierarchy level. The columns in level must all come from the same table as the
dependent_columns. The dependent_columns need not have been specified in the
level_clause.

For example, if the hierarchy levels are city, state, and country, then city might determine
mayor, state might determine governor, and country might determine president.

extended_attribute_clause

This clause lets you specify an attribute name for one or more level-to-column relations. The
type of attribute you create with this clause is not different from the type of attribute created
using the attribute_clause. The only difference is that this clause lets you assign a name to
the attribute that is different from the level name.

Examples

Creating a Dimension: Examples

This statement was used to create the customers_dim dimension in the sample schema sh:

CREATE DIMENSION customers_dim
 LEVEL customer IS (customers.cust_id)
 LEVEL city IS (customers.cust_city)
 LEVEL state IS (customers.cust_state_province)
 LEVEL country IS (countries.country_id)
 LEVEL subregion IS (countries.country_subregion)
 LEVEL region IS (countries.country_region)
 HIERARCHY geog_rollup (
 customer CHILD OF
 city CHILD OF
 state CHILD OF
 country CHILD OF
 subregion CHILD OF
 region
 JOIN KEY (customers.country_id) REFERENCES country
)
 ATTRIBUTE customer DETERMINES
 (cust_first_name, cust_last_name, cust_gender,
 cust_marital_status, cust_year_of_birth,
 cust_income_level, cust_credit_limit)
 ATTRIBUTE country DETERMINES (countries.country_name)
;

Creating a Dimension with Extended Attributes: Example

Chapter 13
CREATE DIMENSION

13-85

Alternatively, the extended_attribute_clause could have been used instead of the
attribute_clause, as shown in the following example:

CREATE DIMENSION customers_dim
 LEVEL customer IS (customers.cust_id)
 LEVEL city IS (customers.cust_city)
 LEVEL state IS (customers.cust_state_province)
 LEVEL country IS (countries.country_id)
 LEVEL subregion IS (countries.country_subregion)
 LEVEL region IS (countries.country_region)
 HIERARCHY geog_rollup (
 customer CHILD OF
 city CHILD OF
 state CHILD OF
 country CHILD OF
 subregion CHILD OF
 region
 JOIN KEY (customers.country_id) REFERENCES country
)
 ATTRIBUTE customer_info LEVEL customer DETERMINES
 (cust_first_name, cust_last_name, cust_gender,
 cust_marital_status, cust_year_of_birth,
 cust_income_level, cust_credit_limit)
 ATTRIBUTE country DETERMINES (countries.country_name);

Creating a Dimension with NULL Column Values: Example

The following example shows how to create the dimension if one of the level columns
is null and you want to preserve the hierarchical chain. The example uses the
cust_marital_status column for simplicity because it is not a NOT NULL column. If it
had such a constraint, then you would have to disable the constraint before using the
SKIP WHEN NULL clause.

CREATE DIMENSION customers_dim
 LEVEL customer IS (customers.cust_id)
 LEVEL status IS (customers.cust_marital_status) SKIP WHEN NULL
 LEVEL city IS (customers.cust_city)
 LEVEL state IS (customers.cust_state_province)
 LEVEL country IS (countries.country_id)
 LEVEL subregion IS (countries.country_subregion) SKIP WHEN NULL
 LEVEL region IS (countries.country_region)
 HIERARCHY geog_rollup (
 customer CHILD OF
 city CHILD OF
 state CHILD OF
 country CHILD OF
 subregion CHILD OF
 region
 JOIN KEY (customers.country_id) REFERENCES country
)
 ATTRIBUTE customer DETERMINES
 (cust_first_name, cust_last_name, cust_gender,
 cust_marital_status, cust_year_of_birth,
 cust_income_level, cust_credit_limit)
 ATTRIBUTE country DETERMINES (countries.country_name)
;

Chapter 13
CREATE DIMENSION

13-86

CREATE DIRECTORY
Purpose

Use the CREATE DIRECTORY statement to create a directory object. A directory object specifies
an alias for a directory on the server file system where external binary file LOBs (BFILEs) and
external table data are located. You can use directory names when referring to BFILEs in your
PL/SQL code and OCI calls, rather than hard coding the operating system path name, for
management flexibility.

All directories are created in a single namespace and are not owned by an individual schema.
You can secure access to the BFILEs stored within the directory structure by granting object
privileges on the directories to specific users.

See Also:

• "Large Object (LOB) Data Types " for more information on BFILE objects

• GRANT for more information on granting object privileges

• external_table_clause::= of CREATE TABLE

Prerequisites

You must have the CREATE ANY DIRECTORY system privilege to create directories.

When you create a directory, you are automatically granted the READ, WRITE, and EXECUTE
object privileges on the directory, and you can grant these privileges to other users and roles.
The DBA can also grant these privileges to other users and roles.

WRITE privileges on a directory are useful in connection with external tables. They let the
grantee determine whether the external table agent can write a log file or a bad file to the
directory.

For file storage, you must also create a corresponding operating system directory, an Oracle
Automatic Storage Management (Oracle ASM) disk group, or a directory within an Oracle
ASM disk group. Your system or database administrator must ensure that the operating
system directory has the correct read and write permissions for Oracle Database processes.

Privileges granted for the directory are created independently of the permissions defined for
the operating system directory, and the two may or may not correspond exactly. For example,
an error occurs if sample user hr is granted READ privilege on the directory object but the
corresponding operating system directory does not have READ permission defined for Oracle
Database processes.

Restrictions

Symbolic links are not allowed in the directory object paths or filenames when opening BFILE
objects. The entire directory path and filename is checked and the following error is returned
if any symbolic link is found:

ORA-22288: file or LOB operation FILEOPEN failed soft link in path

Chapter 13
CREATE DIRECTORY

13-87

Workaround

If the database directory object or filename you are trying to open contains symbolic
links, change it to provide the real path and filename.

Syntax

create_directory::=

CREATE

OR REPLACE

DIRECTORY directory

SHARING =
METADATA

NONE

AS ’ path_name ’ ;

Semantics

OR REPLACE

Specify OR REPLACE to re-create the directory database object if it already exists. You
can use this clause to change the definition of an existing directory without dropping,
re-creating, and regranting database object privileges previously granted on the
directory.

Users who had previously been granted privileges on a redefined directory can still
access the directory without being regranted the privileges.

See Also:

DROP DIRECTORY for information on removing a directory from the
database

SHARING

This clause applies only when creating a directory in an application root. This type of
directory is called an application common object and it can be shared with the
application PDBs that belong to the application root. To determine how the directory is
shared, specify one of the following sharing attributes:

• METADATA - A metadata link shares the directory’s metadata, but its data is unique
to each container. This type of directory is referred to as a metadata-linked
application common object.

• NONE - The directory is not shared.

If you omit this clause, then the database uses the value of the DEFAULT_SHARING
initialization parameter to determine the sharing attribute of the directory. If the
DEFAULT_SHARING initialization parameter does not have a value, then the default is
METADATA.

You cannot change the sharing attribute of a directory after it is created.

Chapter 13
CREATE DIRECTORY

13-88

See Also:

• Oracle Database Reference for more information on the DEFAULT_SHARING
initialization parameter

• Oracle Database Administrator’s Guide for complete information on creating
application common objects

directory

Specify the name of the directory object to be created. The name must satisfy the
requirements listed in "Database Object Naming Rules ".

Oracle Database does not verify that the directory you specify actually exists. Therefore, take
care that you specify a valid directory in your operating system. In addition, if your operating
system uses case-sensitive path names, then be sure you specify the directory in the correct
format. You need not include a trailing slash at the end of the path name.

Do not refer to a parent directory in the directory name. For example, the following syntax is
valid:

CREATE DIRECTORY mydir AS '/scratch/data/file_data';

However, the following syntax is not valid:

CREATE DIRECTORY mydir AS '/scratch/../file_data';

path_name

Specify the full path name of the operating system directory of the server where the files are
located. The single quotation marks are required, with the result that the path name is case
sensitive.

Examples

Creating a Directory: Examples

The following statement creates a directory database object that points to a directory on the
server:

CREATE DIRECTORY admin AS '/disk1/oracle/admin';

The following statement redefines directory database object bfile_dir to enable access to
BFILEs stored in the operating system directory /usr/bin/bfile_dir:

CREATE OR REPLACE DIRECTORY bfile_dir AS '/usr/bin/bfile_dir';

Chapter 13
CREATE DIRECTORY

13-89

CREATE DISKGROUP

Note:

This SQL statement is valid only if you are using Oracle ASM and you have
started an Oracle ASM instance. You must issue this statement from within
the Oracle ASM instance, not from a normal database instance. For
information on starting an Oracle ASM instance, refer to Oracle Automatic
Storage Management Administrator's Guide.

Purpose

Use the CREATE DISKGROUP clause to name a group of disks and specify that Oracle
Database should manage the group for you. Oracle Database manages a disk group
as a logical unit and evenly spreads each file across the disks to balance I/O. Oracle
Database also automatically distributes database files across all available disks in disk
groups and rebalances storage automatically whenever the storage configuration
changes.

This statement creates a disk group, assigns one or more disks to the disk group, and
mounts the disk group for the first time. Note that CREATE DISKGROUP only mounts a
disk group on the local node. If you want Oracle ASM to mount the disk group
automatically in subsequent instances, then you must add the disk group name to the
value of the ASM_DISKGROUPS initialization parameter in the initialization parameter file.
If you use an SPFILE, then the disk group is added to the initialization parameter
automatically.

See Also:

• ALTER DISKGROUP for information on modifying disk groups

• Oracle Automatic Storage Management Administrator's Guide for
information on Oracle ASM and using disk groups to simplify database
administration

• ASM_DISKGROUPS for more information about adding disk group names to
the initialization parameter file

• V$ASM_OPERATION for information on monitoring Oracle ASM operations

• DROP DISKGROUP for information on dropping a disk group

Prerequisites

You must have the SYSASM system privilege to issue this statement.

Before issuing this statement, you must format the disks using an operating system
format utility. Also ensure that the Oracle Database user has read/write permission and
the disks can be discovered using the ASM_DISKSTRING.

Chapter 13
CREATE DISKGROUP

13-90

When you store your database files in Oracle ASM disk groups, rather than in a file system,
before the database instance can access your files in the disk groups, you must configure
and start up an Oracle ASM instance to manage the disk groups.

Each database instance communicates with a single Oracle ASM instance on the same node
as the database. Multiple database instances on the same node can communicate with a
single Oracle ASM instance.

Syntax

create_diskgroup::=

CREATE DISKGROUP diskgroup_name

HIGH

NORMAL

FLEX

EXTENDED

SITE site_name

EXTERNAL

REDUNDANCY

QUORUM

REGULAR FAILGROUP failgroup_name

DISK qualified_disk_clause

,

ATTRIBUTE ’ attribute_name ’ = ’ attribute_value ’

,

;

qualified_disk_clause::=

search_string

NAME disk_name SIZE size_clause

FORCE

NOFORCE

(size_clause::=)

diskgroup_name

Specify the name of the disk group. The name must satisfy the requirements listed in
"Database Object Naming Rules ". However, disk groups are not schema objects.

Chapter 13
CREATE DISKGROUP

13-91

Note:

Oracle does not recommend using quoted identifiers for disk group names.
These quoted identifiers are accepted when issuing the CREATE DISKGROUP
statement in SQL*Plus, but they may not be valid when using other tools that
manage disk groups.

REDUNDANCY Clause

The REDUNDANCY clause lets you specify the redundancy level of the disk group.

• NORMAL REDUNDANCY requires the existence of at least two failure groups (see the
FAILGROUP clause that follows). Oracle ASM provides redundancy for all files in the
disk group according to the attributes specified in the disk group templates. NORMAL
REDUNDANCY disk groups can tolerate the loss of one group. Refer to ALTER
DISKGROUP ... diskgroup_template_clauses for more information on disk group
templates.

NORMAL REDUNDANCY is the default if you omit the REDUNDANCY clause. Therefore, if
you omit this clause, you must create at least two failure groups, or the create
operation will fail.

• HIGH REDUNDANCY requires the existence of at least three failure groups. Oracle
ASM fixes mirroring at 3-way mirroring, with each extent getting two mirrored
copies. HIGH REDUNDANCY disk groups can tolerate the loss of two failure groups.

• FLEX REDUNDANCY is a type of disk group that allows a database to specify its own
redundancy after the disk group is created. A file's redundancy can also be
changed after its creation. This type of disk group supports Oracle ASM file groups
and quota groups. A flex disk group requires the existence of at least three failure
groups. If a flex disk group has fewer than five failure groups, then it can tolerate
the loss of one; otherwise, it can tolerate the loss of two failure groups. To create a
flex disk group, the COMPATIBLE.ASM and COMPATIBLE.RDBMS disk group attributes
must be set to 12.2 or greater.

• EXTENDED REDUNDANCY is a disk group that has all the features of a flex disk group
in addition to being highly available in an extended cluster environment. The
cluster contains nodes that span multiple physically separated sites. For more see
About Oracle ASM Extended Disk Groups

You can use the SITE keyword to specify the redundancy of files and file groups in
an extended disk group for each site, rather than for each disk group.

• EXTERNAL REDUNDANCY indicates that Oracle ASM does not provide any redundancy
for the disk group. The disks within the disk group must provide redundancy (for
example, using a storage array), or you must be willing to tolerate loss of the disk
group if a disk fails (for example, in a test environment). You cannot specify the
FAILGROUP clause if you specify EXTERNAL REDUNDANCY.

You cannot change the redundancy level after the disk group has been created, with
the following exception: You can convert a normal or high redundancy disk group to a
flex disk group. For more information, see the convert_redundancy_clause of ALTER
DISKGROUP.

Chapter 13
CREATE DISKGROUP

13-92

QUORUM | REGULAR

Use these keywords to qualify either failure group or disk specifications.

• REGULAR disks, or disks in non-quorum failure groups, can contain any files.

• QUORUM disks, or disks in quorum failure groups, cannot contain any database files, the
Oracle Cluster Registry (OCR), or dynamic volumes. However, QUORUM disks can contain
the voting file for Cluster Synchronization Services (CSS). Oracle ASM uses quorum
disks or disks in quorum failure groups for voting files whenever possible.

A quorum failure group is not considered when determining redundancy requirements
with respect to storing user data.

If you specify neither keyword, then REGULAR is the default.

Specify either QUORUM or REGULAR before the keyword FAILGROUP if you are explicitly specifying
the failure group. If you are creating a disk group with implicitly created failure groups, then
specify these keywords before the keyword DISK.

See Also:

Oracle Automatic Storage Management Administrator's Guide for more information
about quorum and regular disks and failure groups

FAILGROUP Clause

Use this clause to specify a name for one or more failure groups. If you omit this clause, and
you have specified NORMAL or HIGH REDUNDANCY, then Oracle Database automatically adds
each disk in the disk group to its own failure group. The implicit name of the failure group is
the same as the operating system independent disk name (see "NAME Clause").

You cannot specify this clause if you are creating an EXTERNAL REDUNDANCY disk group.

qualified_disk_clause

Specify DISK qualified_disk_clause to add a disk to a disk group.

search_string

For each disk you are adding to the disk group, specify the operating system dependent
search string that Oracle ASM will use to find the disk. The search_string must point to a
subset of the disks returned by discovery using the strings in the ASM_DISKSTRING initialization
parameter. If search_string does not point to any disks the Oracle Database user has read/
write access to, then Oracle ASM returns an error. If it points to one or more disks that have
already been assigned to a different disk group, then Oracle Database returns an error unless
you also specify FORCE.

For each valid candidate disk, Oracle ASM formats the disk header to indicate that it is a
member of the new disk group.

Chapter 13
CREATE DISKGROUP

13-93

See Also:

The ASM_DISKSTRING initialization parameter for more information on
specifying the search string

NAME Clause

The NAME clause is valid only if the search_string points to a single disk. This clause
lets you specify an operating system independent name for the disk. The name can be
up to 30 characters long and can contain only alphanumeric characters. The first
character must be alphabetic. If you omit this clause and you assigned a label to a disk
through ASMLIB, then that label is used as the disk name. If you omit this clause and
you did not assign a label through ASMLIB, then Oracle ASM creates a default name
of the form diskgroupname_####, where #### is the disk number. You use this name to
refer to the disk in subsequent Oracle ASM operations.

SIZE Clause

Use this clause to specify in bytes the size of the disk. If you specify a size greater
than the capacity of the disk, then Oracle ASM returns an error. If you specify a size
less than the capacity of the disk, then you limit the disk space Oracle ASM will use.
The size value must be identical for all disks in a disk group. If you omit this clause,
then Oracle ASM attempts programmatically to determine the size of the disk.

FORCE

Specify FORCE if you want Oracle ASM to add the disk to the disk group even if the disk
is already a member of a different disk group.

Note:

Using FORCE in this way may destroy existing disk groups.

For this clause to be valid, the disk must already be a member of a disk group and the
disk cannot be part of a mounted disk group.

NOFORCE

Specify NOFORCE if you want Oracle ASM to return an error if the disk is already a
member of a different disk group. NOFORCE is the default.

ATTRIBUTE Clause

Use this clause to set attribute values for the disk group. You can view the current
attribute values by querying the V$ASM_ATTRIBUTE view. Table 13-2 lists the attributes
you can set with this clause. All attribute values are strings.

Chapter 13
CREATE DISKGROUP

13-94

Table 13-2 Disk Group Attributes

Attribute Valid Values Description

ACCESS_CONTROL.ENABL
ED

true or false Specifies whether Oracle ASM File Access Control is enabled
for a disk group. If set to true, accessing Oracle ASM files is
subject to access control. If false, any user can access every
file in the disk group. All other operations behave independently
of this attribute. The default value is false.

If both the compatible.rdbms and compatible.asm
attributes are set to at least 11.2, you can set this attribute in an
ALTER DISKGROUP ... SET ATTRIBUTE statement. You cannot
set this attribute when creating a disk group.

When you set up file access control on an existing disk group,
the files previously created remain accessible by everyone,
unless you run the ALTER DISKGROUP SET PERMISSION
statement to restrict the permissions.

Note: This attribute is used in conjunction with
ACCESS_CONTROL.UMASK to manage Oracle ASM File Access
Control. After setting the ACCESS_CONTROL.ENABLED disk
attribute, you must set permissions with the
ACCESS_CONTROL.UMASK attribute.

ACCESS_CONTROL.UMASK A three-digit number
where each digit is
0, 2, or 6.

Determines which permissions are masked out on the creation
of an Oracle ASM file for the user that owns the file (first digit),
users in the same user group (second digit), and others not in
the user group (third digit). This attribute applies to all files on a
disk group. Setting to 0 masks out nothing. Setting to 2 masks
out write permission. Setting to 6 masks out both read and write
permissions. The default value is 066.

If both the compatible.rdbms and compatible.asm
attributes are set to at least 11.2, you can set this attribute in an
ALTER DISKGROUP ... SET ATTRIBUTE statement. You cannot
set this attribute when creating a disk group.

When you set up file access control on an existing disk group,
the files previously created remain accessible by everyone,
unless you run the ALTER DISKGROUP SET PERMISSION
statement to restrict the permissions.

Note: This attribute is used in conjunction with
ACCESS_CONTROL.ENABLED to manage Oracle ASM File
Access Control. Before setting ACCESS_CONTROL.UMASK, you
must set ACCESS_CONTROL.ENABLED to true.

AU_SIZE Size in bytes. Valid
values are powers of
2 from 1M to 64M.
Examples '4M',
'4194304'.

Specifies the allocation unit size. This attribute can be set only
during disk group creation; it cannot be modified with an ALTER
DISKGROUP statement.

COMPATIBLE.ADVM Valid Oracle
Database version
number1

Determines whether the disk group can contain Oracle ADVM
volumes. The value must be set to 11.2 or higher. Before setting
this attribute, the COMPATIBLE.ASM value must be 11.2 or
higher. Also, the Oracle ADVM volume drivers must be loaded.

By default, the value of the COMPATIBLE.ADVM attribute is empty
until set.

Chapter 13
CREATE DISKGROUP

13-95

Table 13-2 (Cont.) Disk Group Attributes

Attribute Valid Values Description

COMPATIBLE.ASM Valid Oracle
Database version
number1

Determines the minimum software version for an Oracle ASM
instance that can use the disk group. This setting also affects
the format of the data structures for the Oracle ASM metadata
on the disk.

For Oracle ASM in Oracle Database 11g, 10.1 is the default
setting for the COMPATIBLE.ASM attribute when using the SQL
CREATE DISKGROUP statement, the ASMCMD mkdg command,
and Oracle Enterprise Manager Create Disk Group page.
When creating a disk group with ASMCA, the default setting is
11.2.

COMPATIBLE.RDBMS Valid Oracle
Database version
number1

Determines the minimum COMPATIBLE database initialization
parameter setting for any database instance that is allowed to
use the disk group.

Before advancing the COMPATIBLE.RDBMS attribute, ensure that
the values for the COMPATIBLE initialization parameter for all of
the databases that access the disk group are set to at least the
value of the new setting for COMPATIBLE.RDBMS. For example, if
the COMPATIBLE initialization parameters of the databases are
set to either 11.1 or 11.2, then COMPATIBLE.RDBMS can be set
to any value between 10.1 and 11.1 inclusively.

For Oracle ASM in Oracle Database 11g, 10.1 is the default
setting for the COMPATIBLE.RDBMS attribute when using the SQL
CREATE DISKGROUP statement, the ASMCMD mkdg command,
ASMCA Create Disk Group page, and Oracle Enterprise
Manager Create Disk Group page.

CONTENT.CHECK true or false Enables (true) or disables (false) content checking when
performing data copy operations for rebalancing a disk group.
You cannot set this attribute when creating a disk group.

The default value is dependent on the COMPATIBLE.ASM
attribute and follows this rule:
• If COMPATIBLE.ASM > = 19.0.0.0.0, then CONTENT.CHECK

defaults to true.

• If COMPATIBLE.ASM < 19.0.0.0.0, then CONTENT.CHECK
defaults to false.

Note: This rule is ONLY true for the creation of new diskgroups.
If the COMPATIBLE.ASM attribute of an existing diskgroup is
updated to 19.0.0.0.0 or above, the CONTENT.CHECK attribute
remains at its current value.

Chapter 13
CREATE DISKGROUP

13-96

Table 13-2 (Cont.) Disk Group Attributes

Attribute Valid Values Description

DISK_REPAIR_TIME 0 to 136 years When disks are taken offline, Oracle ASM drops them after a
default period of time. If both the compatible.rdbms and
compatible.asm attributes are set to at least 11.1, you can set
the disk_repair_time attribute in an ALTER DISKGROUP ...
SET ATTRIBUTE statement to change that default period of time
so that the disk can be repaired and brought back online. You
cannot set this attribute when creating a disk group.

The time can be specified in units of minute (M) or hour (H).
The specified time elapses only when the disk group is
mounted. If you omit the unit, then the default is H. If you omit
this attribute, and both compatible.rdbms and
compatible.asm are set to at least 11.1, then the default is 12
H. Otherwise the disk is dropped immediately. You can override
this attribute with an ALTER DISKGROUP ... OFFLINE DISK
statement and the DROP AFTER clause.

Note: If a disk is taken offline using the current value of
disk_repair_time, and the value of this attribute is
subsequently changed, then the changed value is used by
Oracle ASM in the disk offline logic.

See Also: The ALTER DISKGROUP ... disk_offline_clause and
Oracle Automatic Storage Management Administrator's Guide
for more information

FAILGROUP_REPAIR_TIM
E

<number>m (number
of minutes) or
<number>h (number
of hours)

Specifies a default repair time for the failure groups in the disk
group. The failure group repair time is used if Oracle ASM
determines that an entire failure group has failed. The default
value is 24 hours (24h).

If there is a repair time specified for a disk, such as with the
DROP AFTER clause of the ALTER DISKGROUP OFFLINE DISK
statement, then that disk repair time overrides the failure group
repair time.

This attribute can only be set when altering a disk group and is
only applicable to normal and high redundancy disk groups.

LOGICAL_SECTOR_SIZE 512, 4096, or 4K Sets the logical sector size of a disk group. This value specifies
the smallest possible I/O that the disk group can accept. The
default value is estimated from the disks that join the disk group.

To set this disk group attribute during the creation of a disk
group or to alter it after a disk group has been created, the
COMPATIBLE.ASM disk group attribute must be set to 12.2 or
higher.

Chapter 13
CREATE DISKGROUP

13-97

Table 13-2 (Cont.) Disk Group Attributes

Attribute Valid Values Description

PHYS_META_REPLICATED true or false Tracks the replication status of a disk group. When the Oracle
ASM compatibility of a disk group is advanced to 12.0 or higher,
the physical metadata of each disk, including its disk header,
free space table blocks and allocation table blocks, is replicated.
The replication is performed online asynchronously.
PHYS_META_REPLICATED is set to true by Oracle ASM if the
physical metadata of every disk in the disk group has been
replicated.

This disk group attribute is only defined in a disk group with the
Oracle ASM disk group compatibility (COMPATIBLE.ASM) set to
12.0 and higher. This attribute is read-only and is intended for
information only. You cannot set or change its value.

PREFERRED_READ.ENABL
ED

true or false In an Oracle extended cluster, which contains nodes that span
multiple physically separated sites, the
PREFERRED_READ.ENABLED disk group attribute controls
whether preferred read functionality is enabled for a disk group.
If preferred read functionality is enabled, then this functionality
enables an instance to determine and read from disks at the
same site as itself, which can improve performance. For
extended clusters, the default value is true. For clusters that
are not extended (only one physical site), preferred read is
disabled (false). Preferred read status applies to extended,
normal, high, and flex redundancy disk groups.

This disk group attribute is only defined in a disk group with the
Oracle ASM disk group compatibility (COMPATIBLE.ASM) set to
12.2 and higher.

SECTOR_SIZE 512, 4096, or 4K Sets the physical sector size of a disk group. All disks in the
disk group must have this physical sector size. The default value
is obtained from the disks that join the disk group.

To set this disk group attribute during the creation of a disk
group, the COMPATIBLE.ASM and COMPATIBLE.RDBMS disk
group attributes must be set to 11.2 or higher. To alter this disk
group attribute after a disk group has been created, the
COMPATIBLE.ASM disk group attribute must be set to 12.2 or
higher.

THIN_PROVISIONED true or false Enables (true) or disables (false) the functionality to discard
unused storage space after a disk group rebalance is
completed. The default value is false.

CONTENT_HARDCHECK true or false CONTENT_HARDCHECK enables or disables Hardware Assisted
Resilient Data (HARD) checking when performing data copy
operations for rebalancing a disk group. This attribute can only
be set when altering a disk group.

1 Specify at least the first two digits of a valid Oracle Database release number. Refer to Oracle Database Administrator's Guide
for information on specifying valid version numbers. For example, you can specify compatibility as '11.2' or '12.1'.

Chapter 13
CREATE DISKGROUP

13-98

See Also:

Oracle Automatic Storage Management Administrator's Guide for more information
on managing these attribute settings

Examples

The following example assumes that the ASM_DISKSTRING parameter is a superset of /
devices/disks/c*, /devices/disks/c* points to at least one device to be used as an Oracle
ASM disk, and the Oracle Database user has read/write permission to the disks.

See Also:

Oracle Automatic Storage Management Administrator's Guide for information on
Oracle ASM and using disk groups to simplify database administration

Creating a Diskgroup: Example

The following statement creates an Oracle ASM disk group dgroup_01 where no redundancy
for the disk group is provided by Oracle ASM and includes all disks that match the
search_string:

CREATE DISKGROUP dgroup_01
 EXTERNAL REDUNDANCY
 DISK '/devices/disks/c*';

CREATE EDITION
Purpose

This statement creates a new edition as a child of an existing edition. An edition makes it
possible to have two or more versions of the same editionable objects in the database. When
you create an edition, it immediately inherits all of the editionable objects of its parent edition.
The following object types are editionable:

• Synonym

• View

• Function

• Procedure

• Package (specification and body)

• Type (specification and body)

• Library

• Trigger

An editionable object is an object of one of the above editionable object types in an editions-
enabled schema. The ability to have multiple versions of these objects in the database
greatly facilitates online application upgrades.

Chapter 13
CREATE EDITION

13-99

Note:

All database object types not listed above are not editionable. Changes to
object types that are not editionable are immediately visible across all
editions in the database.

Every newly created or upgraded Oracle Database has one default edition named
ORA$BASE, which serves as the parent of the first edition created with a CREATE EDITION
statement. You can subsequently designate a user-defined edition as the database
default edition using an ALTER DATABASE DEFAULT EDITION statement.

See Also:

• Oracle Database Development Guide for a more complete discussion of
editionable object types and editions

• The ALTER DATABASE "DEFAULT EDITION Clause" for information on
designating an edition as the default edition for the database

Prerequisites

To create an edition, you must have the CREATE ANY EDITION system privilege, granted
either directly or through a role. To create an edition as a child of another edition, you
must have the USE object privilege on the parent edition.

Syntax

create_edition::=

CREATE EDITION edition

AS CHILD OF parent_edition

;

Semantics

edition

Specify the name of the edition to be created. The name must satisfy the requirements
listed in "Database Object Naming Rules ".

To view the editions that have been created for the database, query the EDITION_NAME
column of the DBA_OBJECTS or ALL_OBJECTS data dictionary view.

When you create an edition, the system automatically grants you the USE object
privilege WITH GRANT OPTION on the edition you create.

Chapter 13
CREATE EDITION

13-100

Note:

Oracle strongly recommends that you do not name editions with the prefixes ORA,
ORACLE, SYS, DBA, and DBMS, as these prefixes are reserved for internal use.

AS CHILD OF Clause

If you use this clause, then the new edition is created as a child of parent_edition. If you
omit this clause, then the new edition is created as a child of the leaf edition. At the time of its
creation, the new edition inherits all editioned objects from its parent edition.

Restriction on Editions

An edition can have only one child edition. If you specify for parent_edition an edition that
already has a child edition, then an error is returned.

Examples

The following very simple examples are intended to show the syntax for creating and working
with an edition. For realistic examples of using editions refer to Oracle Database
Development Guide.

In the following statements, the user HR is given the privileges needed to create and use an
edition:

GRANT CREATE ANY EDITION, DROP ANY EDITION to HR;
Grant succeeded.

ALTER USER hr ENABLE EDITIONS;
User altered.

HR creates a new edition TEST_ED for testing purposes:

CREATE EDITION test_ed;

HR then creates an editioning view ed_view in the default edition ORA$BASE for testing
purposes, first verifying that the current edition is the default edition:

SELECT SYS_CONTEXT('userenv', 'current_edition_name') FROM DUAL;
SYS_CONTEXT('USERENV','CURRENT_EDITION_NAME')
--
ORA$BASE
1 row selected.

CREATE EDITIONING VIEW e_view AS
 SELECT last_name, first_name, email FROM employees;
View created.

DESCRIBE e_view
 Name Null? Type
 --- -------- ----------------------------
 LAST_NAME NOT NULL VARCHAR2(25)
 FIRST_NAME VARCHAR2(20)
 EMAIL NOT NULL VARCHAR2(25)

The view is then actualized in the TEST_ED edition when HR uses the TEST_ED edition and re-
creates the view in a different form:

Chapter 13
CREATE EDITION

13-101

ALTER SESSION SET EDITION = TEST_ED;
Session altered.

CREATE OR REPLACE EDITIONING VIEW e_view AS
 SELECT last_name, first_name, email, salary FROM employees;

View created.

The view in the TEST_ED edition has an additional column:

DESCRIBE e_view
 Name Null? Type
 --- -------- ----------------------------
 LAST_NAME NOT NULL VARCHAR2(25)
 FIRST_NAME VARCHAR2(20)
 EMAIL NOT NULL VARCHAR2(25)
 SALARY NUMBER(8,2)

The view in the ORA$BASE edition remains isolated from the test environment:

ALTER SESSION SET EDITION = ora$base;
Session altered.

DESCRIBE e_view;

 Name Null? Type
 --- -------- ----------------------------
 LAST_NAME NOT NULL VARCHAR2(25)
 FIRST_NAME VARCHAR2(20)
 EMAIL NOT NULL VARCHAR2(25)

Even if the view is dropped in the test environment, it remains in the ORA$BASE edition:

ALTER SESSION SET EDITION = TEST_ED;
Session altered.

DROP VIEW e_view;
View dropped.

ALTER SESSION SET EDITION = ORA$BASE;
Session altered.

DESCRIBE e_view;
 Name Null? Type
 --- -------- ----------------------------
 LAST_NAME NOT NULL VARCHAR2(25)
 FIRST_NAME VARCHAR2(20)
 EMAIL NOT NULL VARCHAR2(25)

When the testing of upgrade that necessitated the TEST_ED edition is complete, the
edition can be dropped:

DROP EDITION TEST_ED;

CREATE FLASHBACK ARCHIVE
Purpose

Use the CREATE FLASHBACK ARCHIVE statement to create a flashback archive, which
provides the ability to automatically track and archive transactional data changes to

Chapter 13
CREATE FLASHBACK ARCHIVE

13-102

specified database objects. A flashback archive consists of multiple tablespaces and stores
historic data from all transactions against tracked tables. The data is stored in internal history
tables.

Flashback data archives retain historical data for the time duration specified using the
RETENTION parameter. Historical data can be queried using the Flashback Query AS OF
clause. Archived historic data that has aged beyond the specified retention period is
automatically purged.

Flashback data archives retain historical data across data definition language (DDL) changes
to tables enabled for flashback archive. Flashback data archives supports many common
DDL statements, including some DDL statements that alter table definitions or incur data
movement. DDL statements that are not supported result in error ORA-55610.

See Also:

• Oracle Database Development Guide for general information on using
Flashback Time Travel

• The CREATE TABLE flashback_archive_clause for information on designating a
table as a tracked table

• ALTER FLASHBACK ARCHIVE for information on changing the quota and
retention attributes of the flashback archive, as well as adding or changing
tablespace storage for the flashback archive

Prerequisites

You must have the FLASHBACK ARCHIVE ADMINISTER system privilege to create a flashback
archive. In addition, you must have the CREATE TABLESPACE system privilege to create a
flashback archive, as well as sufficient quota on the tablespace in which the historical
information will reside. To designate a flashback archive as the system default flashback
archive, you must be logged in as SYSDBA.

Syntax

create_flashback_archive::=

CREATE FLASHBACK ARCHIVE

DEFAULT

flashback_archive TABLESPACE tablespace

flashback_archive_quota

NO

OPTIMIZE DATA

flashback_archive_retention ;

Chapter 13
CREATE FLASHBACK ARCHIVE

13-103

flashback_archive_quota::=

QUOTA integer

M

G

T

P

E

flashback_archive_retention::=

RETENTION integer

YEAR

MONTH

DAY

Semantics

DEFAULT

You must be logged in as SYSDBA to specify DEFAULT. Use this clause to designate this
flashback archive as the default flashback archive for the database. When a CREATE
TABLE or ALTER TABLE statement specifies the flashback_archive_clause without
specifying a flashback archive name, the database uses the default flashback archive
to store data from that table.

You cannot specify this clause if a default flashback archive already exists. However,
you can replace an existing default flashback archive using the ALTER FLASHBACK
ARCHIVE ... SET DEFAULT clause.

See Also:

The CREATE TABLE flashback_archive_clause for more information

flashback_archive

Specify the name of the flashback archive. The name must satisfy the requirements
specified in "Database Object Naming Rules ".

TABLESPACE Clause

Specify the tablespace where the archived data for this flashback archive is to be
stored. You can specify only one tablespace with this clause. However, you can
subsequently add tablespaces to the flashback archive with an ALTER FLASHBACK
ARCHIVE statement.

Chapter 13
CREATE FLASHBACK ARCHIVE

13-104

flashback_archive_quota

Specify the amount of space in the initial tablespace to be reserved for the archived data. If
the space for archiving in a flashback archive becomes full, then DML operations on tracked
tables that use this flashback archive will fail. The database issues an out-of-space alert
when the content of the flashback archive is 90% of the specified quota, to allow time to
purge old data or add additional quota. If you omit this clause, then the flashback archive has
unlimited quota on the specified tablespace.

[NO] OPTIMIZE DATA

Specify OPTIMIZE DATA to enable optimization for flashback archive history tables. This
instructs the database to optimize the storage of data in history tables using any of the
following features: Advanced Row Compression, Advanced LOB Compression, Advanced
LOB Deduplication, segment-level compression tiering, and row-level compression tiering. To
specify this clause, you must have a license for the Advanced Compression option.

Specify NO OPTIMIZE DATA to instruct the database not to optimize the storage of data in
history tables. This is the default.

flashback_archive_retention

Specify the length of time in months, days, or years that the archived data should be retained
in the flashback archive. If the length of time causes the flashback archive to become full,
then the database responds as described in flashback_archive_quota.

Examples

The following statement creates two flashback archives for testing purposes. The first is
designated as the default for the database. For both of them, the space quota is 1 megabyte,
and the archive retention is one day.

CREATE FLASHBACK ARCHIVE DEFAULT test_archive1
 TABLESPACE example
 QUOTA 1 M
 RETENTION 1 DAY;

CREATE FLASHBACK ARCHIVE test_archive2
 TABLESPACE example
 QUOTA 1 M
 RETENTION 1 DAY;

The next statement alters the default flashback archive to extend the retention period to 1
month:

ALTER FLASHBACK ARCHIVE test_archive1
 MODIFY RETENTION 1 MONTH;

The next statement specifies tracking for the oe.customers table. The flashback archive is
not specified, so data will be archived in the default flashback archive, test_archive1:

ALTER TABLE oe.customers
 FLASHBACK ARCHIVE;

The next statement specifies tracking for the oe.orders table. In this case, data will be
archived in the specified flashback archive, test_archive2:

ALTER TABLE oe.orders
 FLASHBACK ARCHIVE test_archive2;

Chapter 13
CREATE FLASHBACK ARCHIVE

13-105

The next statement drops test_archive2 flashback archive:

DROP FLASHBACK ARCHIVE test_archive2;

CREATE FUNCTION
Purpose

Functions are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of
syntax and semantics.

Use the CREATE FUNCTION statement to create a standalone stored function or a call
specification.

• A stored function (also called a user function or user-defined function) is a set
of PL/SQL statements you can call by name. Stored functions are very similar to
procedures, except that a function returns a value to the environment in which it is
called. User functions can be used as part of a SQL expression.

• A call specification declares a Java method or a third-generation language (3GL)
routine so that it can be called from PL/SQL. You can also use the CALL SQL
statement to call such a method or routine. The call specification tells Oracle
Database which Java method, or which named function in which shared library, to
invoke when a call is made. It also tells the database what type conversions to
make for the arguments and return value.

Note:

You can also create a function as part of a package using the CREATE
PACKAGE statement.

See Also:

• CREATE PROCEDURE for a general discussion of procedures and
functions, CREATE PACKAGE for information on creating packages,
ALTER FUNCTION and DROP FUNCTION for information on modifying
and dropping a function

• CREATE LIBRARY for information on shared libraries

• Oracle Database Development Guide for more information about
registering external functions

Prerequisites

To create or replace a function in your own schema, you must have the CREATE
PROCEDURE system privilege. To create or replace a function in another user's schema,
you must have the CREATE ANY PROCEDURE system privilege.

Chapter 13
CREATE FUNCTION

13-106

Syntax

Functions are defined using PL/SQL. Therefore, the syntax diagram in this book shows only
the SQL keywords. Refer to Oracle Database PL/SQL Language Reference for the PL/SQL
syntax, semantics, and examples.

create_function::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

FUNCTION plsql_function_source

(plsql_function_source: See Oracle Database PL/SQL Language Reference.)

Semantics

OR REPLACE

Specify OR REPLACE to re-create the function if it already exists. Use this clause to change the
definition of an existing function without dropping, re-creating, and regranting object privileges
previously granted on the function. If you redefine a function, then Oracle Database
recompiles it.

Users who had previously been granted privileges on a redefined function can still access the
function without being regranted the privileges.

If any function-based indexes depend on the function, then Oracle Database marks the
indexes DISABLED.

See Also:

ALTER FUNCTION for information on recompiling functions using SQL

[EDITIONABLE | NONEDITIONABLE]

Use these clauses to specify whether the function is an editioned or noneditioned object if
editioning is enabled for the schema object type FUNCTION in schema. The default is
EDITIONABLE. For information about editioned and noneditioned objects, see Oracle
Database Development Guide.

plsql_function_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of the
plsql_function_source, including examples.

Chapter 13
CREATE FUNCTION

13-107

CREATE HIERARCHY
Purpose

Use the CREATE HIERARCHY statement to create a hierarchy. A hierarchy specifies the
hierarchical relationships among the levels of an attribute dimension.

Prerequisites

To create a hierarchy in your own schema, you must have the CREATE HIERARCHY
system privilege. To create a hierarchy in another user's schema, you must have the
CREATE ANY HIERARCHY system privilege.

Syntax

create_hierarchy::=

CREATE

OR REPLACE NO

FORCE

HIERARCHY

schema .

hierarchy

SHARING =
METADATA

NONE classification_clause

hier_using_clause level_hier_clause

hier_attrs_clause

;

classification_clause::=

CAPTION caption DESCRIPTION description

CLASSIFICATION classification_name

VALUE classification_value LANGUAGE language

hier_using_clause::=

USING

schema .

attribute_dimension level_hier_clause

Chapter 13
CREATE HIERARCHY

13-108

level_hier_clause::=

(level

CHILD OF

)

hier_attrs_clause::=

HIERARCHICAL ATTRIBUTES (hier_attr_clause

,

)

hier_attr_clause::=

hier_attr_name

classification_clause

hier_attr_name::=

MEMBER_NAME

MEMBER_UNIQUE_NAME

MEMBER_CAPTION

MEMBER_DESCRIPTION

LEVEL_NAME

HIER_ORDER

DEPTH

IS_LEAF

PARENT_LEVEL_NAME

PARENT_UNIQUE_NAME

Semantics

OR REPLACE

Specify OR REPLACE to replace an existing definition of a hierarchy with a different definition.

Chapter 13
CREATE HIERARCHY

13-109

FORCE and NOFORCE

Specify FORCE to force the creation of the hierarchy even if it does not successfully
compile. If you specify NOFORCE, then the hierarchy must compile successfully,
otherwise an error occurs. The default is NOFORCE.

schema

Specify the schema in which to create the hierarchy. If you do not specify a schema,
then Oracle Database creates the hierarchy in your own schema.

hierarchy

Specify a name for the hierarchy.

SHARING

Use the sharing clause if you want to create the object in an application root in the
context of an application maintenance. This type of object is called an application
common object and it can be shared with the application PDBs that belong to the
application root.

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each
container. This type of object is referred to as a metadata-linked application
common object.

• NONE - The object is not shared and can only be accessed in the application root.

classification_clause

Use the classification clause to specify values for the CAPTION or DESCRIPTION
classifications and to specify user-defined classifications. Classifications provide
descriptive metadata that applications may use to provide information about analytic
views and their components.

You may specify any number of classifications for the same object. A classification can
have a maximum length of 4000 bytes.

For the CAPTION and DESCRIPTION classifications, you may use the DDL shortcuts
CAPTION 'caption' and DESCRIPTION 'description' or the full classification syntax.

You may vary the classification values by language. To specify a language for the
CAPTION or DESCRIPTION classification, you must use the full syntax. If you do not
specify a language, then the language value for the classification is NULL. The
language value must either be NULL or a valid NLS_LANGUAGE value.

hier_using_clause

Specify the attribute dimension that has the members of the hierarchy.

level_hier_clause

Specify the organization of the hierarchy levels.

Chapter 13
CREATE HIERARCHY

13-110

hier_attrs_clause

Specify classifications that contain descriptive metadata for the hierarchical attributes. A
hier_attr_clause for a given hier_attr_name may appear only once in the list.

All hierarchies always contain all of the hierarchical attributes, but a hierarchical attribute
does not have descriptive metadata associated with it unless you specify it with this clause.

hier_attr_clause

Specify a hierarchical attribute and provide one or more classifications for it.

hier_attr_name

Specify a hierarchical attribute.

Examples

The following example creates the TIME_HIER hierarchy:

CREATE OR REPLACE HIERARCHY time_hier -- Hierarchy name
USING time_attr_dim -- Refers to TIME_ATTR_DIM attribute
dimension
 (month CHILD OF -- Months in the attribute dimension
 quarter CHILD OF
 year);

The following example creates the PRODUCT_HIER hierarchy:

CREATE OR REPLACE HIERARCHY product_hier
USING product_attr_dim
 (category
 CHILD OF department);

The following example creates the GEOGRAPHY_HIER hierarchy:

CREATE OR REPLACE HIERARCHY geography_hier
USING geography_attr_dim
 (state_province
 CHILD OF country
 CHILD OF region);

CREATE INDEX
Purpose

Use the CREATE INDEX statement to create an index on:

• One or more columns of a table, a partitioned table, an index-organized table, or a cluster

• One or more scalar typed object attributes of a table or a cluster

• A nested table storage table for indexing a nested table column

Chapter 13
CREATE INDEX

13-111

An index is a schema object that contains an entry for each value that appears in the
indexed column(s) of the table or cluster and provides direct, fast access to rows. The
maximum size of a single index entry is dependent on the block size of the database.

Oracle Database supports several types of index:

• Normal indexes. (By default, Oracle Database creates B-tree indexes.)

• Bitmap indexes, which store rowids associated with a key value as a bitmap.

• Partitioned indexes, which consist of partitions containing an entry for each value
that appears in the indexed column(s) of the table.

• Function-based indexes, which are based on expressions. They enable you to
construct queries that evaluate the value returned by an expression, which in turn
may include built-in or user-defined functions.

• Domain indexes, which are instances of an application-specific index of type
indextype.

Note:

• Oracle Database Concepts for a discussion of indexes

• Oracle Database Reference for more information about the limits related
to index size

• ALTER INDEX and DROP INDEX

Prerequisites

To create an index in your own schema, one of the following conditions must be true:

• The table or cluster to be indexed must be in your own schema.

• You must have the INDEX object privilege on the table to be indexed.

• You must have the CREATE ANY INDEX system privilege.

To create an index in another schema, you must have the CREATE ANY INDEX system
privilege. Also, the owner of the schema to contain the index must have either the
UNLIMITED TABLESPACE system privilege or space quota on the tablespaces to contain
the index or index partitions.

To create a function-based index, in addition to the prerequisites for creating a
conventional index, if the index is based on user-defined functions, then those
functions must be marked DETERMINISTIC. A function-based index is executed with the
credentials of the index owner, so the index owner must have the EXECUTE object
privilege on the function.

To create a domain index in your own schema, in addition to the prerequisites for
creating a conventional index, you must also have the EXECUTE object privilege on the
indextype. If you are creating a domain index in another user's schema, then the index
owner also must have the EXECUTE object privilege on the indextype and its underlying
implementation type. Before creating a domain index, you should first define the
indextype.

Chapter 13
CREATE INDEX

13-112

See Also:

CREATE INDEXTYPE

Syntax

create_index::=

CREATE

UNIQUE

BITMAP

MULTIVALUE

INDEX

schema .

index_name

index_ilm_clause

ON

cluster_index_clause

table_index_clause

bitmap_join_index_clause

USABLE

UNUSABLE

DEFERRED

IMMEDIATE
INVALIDATION

;

(cluster_index_clause::=, table_index_clause::=, bitmap_join_index_clause::=)

index_ilm_clause ::=

ILM

ADD POLICY

policy_clause

DELETE POLICY policy_name

policy_clause ::=

OPTIMIZE condition_clause

tiering_clause

PLSQL_function_name

tiering_clause ::=

TIER TO LOW_COST_TBS

condition_clause ::=

Chapter 13
CREATE INDEX

13-113

tracking_statistics_clause

ON PLSQL_function_name

tracking_statistics_clause ::=

AFTER time_interval

DAYS

MONTHS

YEARS

OF

NO
ACCESS

MODIFICATION

CREATION

cluster_index_clause::=

CLUSTER

schema .

cluster index_attributes

(index_attributes::=)

table_index_clause::=

schema .

table

t_alias

(index_expr

ASC

DESC

,

)

index_properties

(index_properties::=)

bitmap_join_index_clause::=

Chapter 13
CREATE INDEX

13-114

schema .

table (

schema .

table .

t_alias .

column

ASC

DESC

,

)

FROM

schema .

table

t_alias

,

WHERE condition

local_partitioned_index

index_attributes

(local_partitioned_index::=, index_attributes::=)

index_expr::=

column

column_expression

index_properties::=

global_partitioned_index

local_partitioned_index

index_attributes

INDEXTYPE IS
domain_index_clause

XMLIndex_clause

(global_partitioned_index::=, local_partitioned_index::=, index_attributes::=,
domain_index_clause::=, XMLIndex_clause::=)

Chapter 13
CREATE INDEX

13-115

index_attributes::=

physical_attributes_clause

logging_clause

ONLINE

TABLESPACE
tablespace

DEFAULT

index_compression

SORT

NOSORT

REVERSE

VISIBLE

INVISIBLE

partial_index_clause

parallel_clause

(physical_attributes_clause::=, logging_clause::=, index_compression::=,
partial_index_clause::=, parallel_clause::=)

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

Chapter 13
CREATE INDEX

13-116

index_compression::=

prefix_compression

advanced_index_compression

prefix_compression::=

COMPRESS

integer

NOCOMPRESS

advanced_index_compression::=

COMPRESS ADVANCED

LOW

HIGH

NOCOMPRESS

partial_index_clause::=

INDEXING

PARTIAL

FULL

domain_index_clause::=

indextype

local_domain_index_clause parallel_clause PARAMETERS (’ ODCI_parameters ’)

(parallel_clause::=)

local_domain_index_clause::=

LOCAL

(PARTITION partition

PARAMETERS (’ ODCI_parameters ’)

,

)

Chapter 13
CREATE INDEX

13-117

XMLIndex_clause::=

XDB .

XMLINDEX

local_XMLIndex_clause parallel_clause XMLIndex_parameters_clause

(The XMLIndex_parameters_clause is documented in Oracle XML DB Developer's
Guide.)

local_XMLIndex_clause::=

LOCAL

(PARTITION partition

XMLIndex_parameters_clause

,

)

(The XMLIndex_parameters_clause is documented in Oracle XML DB Developer's
Guide.)

global_partitioned_index::=

GLOBAL PARTITION BY

RANGE (column_list) (index_partitioning_clause)

HASH (column_list)
individual_hash_partitions

hash_partitions_by_quantity

(index_partitioning_clause::=, individual_hash_partitions::=,
hash_partitions_by_quantity::=)

individual_hash_partitions::=

(PARTITION

partition read_only_clause indexing_clause partitioning_storage_clause

,

)

(read_only_clause and indexing_clause: not supported in table_index_clause,
partitioning_storage_clause::=)

Chapter 13
CREATE INDEX

13-118

partitioning_storage_clause::=

TABLESPACE tablespace

TABLESPACE SET tablespace_set

OVERFLOW

TABLESPACE tablespace

TABLESPACE SET tablespace_set

table_compression

index_compression

inmemory_clause

ilm_clause

LOB_partitioning_storage

VARRAY varray_item STORE AS

SECUREFILE

BASICFILE

LOB LOB_segname

json_storage_clause

(TABLESPACE SET, table_compression, inmemory_clause, and ilm_clause not supported with
CREATE INDEX, index_compression::=, LOB_partitioning_storage::=)

LOB_partitioning_storage::=

LOB (LOB_item)

STORE AS

BASICFILE

SECUREFILE

LOB_segname

(
TABLESPACE tablespace

TABLESPACE SET tablespace_set
)

(
TABLESPACE tablespace

TABLESPACE SET tablespace_set
)

(TABLESPACE SET: not supported with CREATE INDEX)

Chapter 13
CREATE INDEX

13-119

hash_partitions_by_quantity::=

PARTITIONS hash_partition_quantity

STORE IN (tablespace

,

)

table_compression

index_compression OVERFLOW STORE IN (tablespace

,

)

index_partitioning_clause::=

PARTITION

partition

VALUES LESS THAN (literal

,

)

segment_attributes_clause

(segment_attributes_clause::=)

local_partitioned_index::=

LOCAL

on_range_partitioned_table

on_list_partitioned_table

on_hash_partitioned_table

on_comp_partitioned_table

(on_range_partitioned_table::=, on_list_partitioned_table::=,
on_hash_partitioned_table::=, on_comp_partitioned_table::=)

on_range_partitioned_table::=

(PARTITION

partition

segment_attributes_clause

index_compression

USABLE

UNUSABLE

,

)

(segment_attributes_clause::=)

Chapter 13
CREATE INDEX

13-120

on_list_partitioned_table::=

(PARTITION

partition

segment_attributes_clause

index_compression

USABLE

UNUSABLE

,

)

(segment_attributes_clause::=)

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE tablespace

TABLESPACE SET tablespace_set

logging_clause

(physical_attributes_clause::=, TABLESPACE SET: not supported with CREATE INDEX,
logging_clause::=

on_hash_partitioned_table::=

STORE IN (tablespace

,

)

(PARTITION

partition TABLESPACE tablespace index_compression

USABLE

UNUSABLE

,

)

on_comp_partitioned_table::=

STORE IN (tablespace

,

)

(PARTITION

partition

segment_attributes_clause

index_compression

USABLE

UNUSABLE index_subpartition_clause

,

)

Chapter 13
CREATE INDEX

13-121

(segment_attributes_clause::=, index_compression::=, index_subpartition_clause::=)

index_subpartition_clause::=

STORE IN (tablespace

,

)

(SUBPARTITION

subpartition TABLESPACE tablespace index_compression

USABLE

UNUSABLE

,

)

parallel_clause::=

NOPARALLEL

PARALLEL

integer

Semantics

UNIQUE

Specify UNIQUE to indicate that the value of the column (or columns) upon which the
index is based must be unique.

Restrictions on Unique Indexes

Unique indexes are subject to the following restrictions:

• You cannot specify both UNIQUE and BITMAP.

• You cannot specify UNIQUE for a domain index.

See Also:

"Unique Constraints " for information on the conditions that satisfy a unique
constraint

BITMAP

Specify BITMAP to indicate that index is to be created with a bitmap for each distinct
key, rather than indexing each row separately. Bitmap indexes store the rowids
associated with a key value as a bitmap. Each bit in the bitmap corresponds to a
possible rowid. If the bit is set, then it means that the row with the corresponding rowid
contains the key value. The internal representation of bitmaps is best suited for
applications with low levels of concurrent transactions, such as data warehousing.

Chapter 13
CREATE INDEX

13-122

Note:

Oracle does not index table rows in which all key columns are null except in the
case of bitmap indexes. Therefore, if you want an index on all rows of a table, then
you must either specify NOT NULL constraints for the index key columns or create a
bitmap index.

Restrictions on Bitmap Indexes

Bitmap indexes are subject to the following restrictions:

• You cannot specify BITMAP when creating a global partitioned index.

• You cannot create a bitmap secondary index on an index-organized table unless the
index-organized table has a mapping table associated with it.

• You cannot specify both UNIQUE and BITMAP.

• You cannot specify BITMAP for a domain index.

• A bitmap index can have a maximum of 30 columns.

See Also:

• Oracle Database Concepts and Oracle Database SQL Tuning Guide for more
information about using bitmap indexes

• CREATE TABLE for information on mapping tables

• "Bitmap Index Examples"

MULTIVALUE

Use the MULTIVALUE keyword to create a multivalue index on JSON data using simple dot-
notation syntax to specify the path to the indexed data.

Example

The multivalue index created here indexes the values of top-level field credit_score. If the
credit_score value targeted by a query is an array, then the index can be picked up for any
array elements that are numbers. If the value is a scalar, then the index can be picked up if
the scalar is a number.

CREATE MULTIVALUE INDEX mvi_1 ON mytable t
 (t.jcol.credit_score.numberOnly());

See Also:

• Indexes for JSON Data

• Simple Dot-Notation Access to JSON Data

Chapter 13
CREATE INDEX

13-123

schema

Specify the schema to contain the index. If you omit schema, then Oracle Database
creates the index in your own schema.

index_name

Specify the name of the index to be created. The name must satisfy the requirements
listed in Database Object Naming Rules .

See Also:

Creating an Index: Example and Creating an Index on an XMLType Table:
Example

index_ilm_clause

With Oracle Database Release 20c you can use the index_ilm_clause to add or
delete an ILM policy to an index.

You can also add an ILM policy to an index after you create it with the ALTER INDEX
statement.

When you create an index with an ILM policy, you can add only one new policy. To add
more policies to an index, or to modify existing policies on the index you must use the
ALTER INDEX statement.

You cannot modify an ILM policy at the index partition level. The index level
modification will be cascaded to all partitions.

Examples

CREATE INDEX [schema.]empno_idx ILM_POLICY

Restrictions

You cannot add an ILM policy on cluster indexes and IOTs.

You cannot add an ILM policy on domain indexes and bitmap indexes.

policy_clause

The OPTIMIZE index policy chooses the appropriate action if the policy condtion is met.

You can create ILM policies on objects in the same schema.

If you want to move the ILM policy to a different tablespace, you must ensure that you
have the necessary permissions for all the tablespaces mentioned in the ILM policy.

You must also ensure that you have the necessary storage on the target tablespaces
for storage tiering jobs.

Chapter 13
CREATE INDEX

13-124

cluster_index_clause

Use the cluster_index_clause to identify the cluster for which a cluster index is to be
created. If you do not qualify cluster with schema, then Oracle Database assumes the cluster
is in your current schema. You cannot create a cluster index for a hash cluster.

See Also:

CREATE CLUSTER and "Creating a Cluster Index: Example"

table_index_clause

Specify the table on which you are defining the index. If you do not qualify table with schema,
then Oracle Database assumes the table is contained in your own schema.

You create an index on a nested table column by creating the index on the nested table
storage table. Include the NESTED_TABLE_ID pseudocolumn of the storage table to create a
UNIQUE index, which effectively ensures that the rows of a nested table value are distinct.

See Also:

"Indexes on Nested Tables: Example"

You can perform DDL operations (such as ALTER TABLE, DROP TABLE, CREATE INDEX) on a
temporary table only when no session is bound to it. A session becomes bound to a
temporary table by performing an INSERT operation on the table. A session becomes
unbound to the temporary table by issuing a TRUNCATE statement or at session termination, or,
for a transaction-specific temporary table, by issuing a COMMIT or ROLLBACK statement.

Restrictions on the table_index_clause

This clause is subject to the following restrictions:

• If index is locally partitioned, then table must be partitioned.

• If table is index-organized, then this statement creates a secondary index. The index
contains the index key and the logical rowid of the index-organized table. The logical
rowid excludes columns that are also part of the index key. You cannot specify REVERSE
for this secondary index, and the combined size of the index key and the logical rowid
should be less than the block size.

• If table is a temporary table, then index will also be temporary with the same scope
(session or transaction) as table. The following restrictions apply to indexes on
temporary tables:

– The only part of index_properties you can specify is index_attributes.

– Within index_attributes, you cannot specify the physical_attributes_clause, the
parallel_clause, the logging_clause, or TABLESPACE.

– You cannot create a domain index or a partitioned index on a temporary table.

• You cannot create an index on an external table.

Chapter 13
CREATE INDEX

13-125

See Also:

CREATE TABLE and Oracle Database Concepts for more information on
temporary tables

t_alias

Specify a correlation name (alias) for the table upon which you are building the index.

Note:

This alias is required if the index_expr references any object type attributes
or object type methods. See "Creating a Function-based Index on a Type
Method: Example" and "Indexing on Substitutable Columns: Examples".

index_expr

For index_expr, specify the column or column expression upon which the index is
based.

You can create multiple indexes on the same set of columns, column expressions, or
both if the following conditions are met:

• The indexes are of different types, use different partitioning, or have different
uniqueness properties.

• Only one of the indexes is VISIBLE at any given time.

See Also:

Oracle Database Administrator's Guide for more information on creating
multiple indexes

column

Specify the name of one or more columns in the table. A bitmap index can have a
maximum of 30 columns. Other indexes can have as many as 32 columns. These
columns define the index key.

If a unique index is local nonprefixed (see local_partitioned_index), then the index key
must contain the partitioning key.

See Also:

Oracle Database VLDB and Partitioning Guide for information on prefixed
and nonprefixed indexes

Chapter 13
CREATE INDEX

13-126

You can create an index on a scalar object attribute column or on the system-defined
NESTED_TABLE_ID column of the nested table storage table. If you specify an object attribute
column, then the column name must be qualified with the table name. If you specify a nested
table column attribute, then it must be qualified with the outermost table name, the containing
column name, and all intermediate attribute names leading to the nested table column
attribute.

When you create an index on a column or expression with a declared or derived named
collation other than BINARY, or a declared or derived pseudo-collation USING_NLS_SORT_CI or
USING_NLS_SORT_AI, the database creates a functional index on the function NLSSORT. See
Oracle Database Globalization Support Guide for more information.

Creating an Index on an Extended Data Type Column

If column is an extended data type column, then you may receive a "maximum key length
exceeded" error when attempting to create the index. The maximum key length for an index
varies depending on the database block size and some additional index metadata stored in a
block. For example, for databases that use the Oracle standard 8K block size, the maximum
key length is approximately 6400 bytes.

To work around this situation, you must shorten the length of the values you want to index,
using one of the following methods:

• Create a function-based index to shorten the values stored in the extended data type
column as part of the expression used for the index definition.

• Create a virtual column to shorten the values stored in the extended data type column as
part of the expression used for the virtual column definition and build a normal index on
the virtual column. Using a virtual column also enables you to leverage functionality for
regular columns, such as collecting statistics and using constraint and triggers.

For both methods you can use either the SUBSTR or STANDARD_HASH function to shorten the
values of the extended data type column to build an index. These methods have the following
advantages and disadvantages:

• Use the SUBSTR function to return a substring, or prefix, of column that is an acceptable
length for the index key. This type of index can be used for equality, IN-list, and range
predicates on the original column without the need to specify the SUBSTR column as part
of the predicate. Refer to SUBSTR for more information.

• Using the STANDARD_HASH function is likely to create an index that is more compact than
the substring-based index and may result in fewer unnecessary index accesses. This
type of index can be used for equality and IN-list predicates on the original column
without the need to specify the STANDARD_HASH column as part of the predicate. Refer to
STANDARD_HASH for more information.

The following example shows how to create a function-based index on an extended data type
column:

CREATE INDEX index ON table (SUBSTR(column, 1, n));

For n, specify a prefix length that is large enough to differentiate between values in column.

The following example shows how to create a virtual column for an extended data type
column, and then create an index on the virtual column:

ALTER TABLE table ADD (new_hash_column AS (STANDARD_HASH(column)));
CREATE INDEX index ON table (new_hash_column);

Chapter 13
CREATE INDEX

13-127

See Also:

"Extended Data Types" for more information on extended data types

Restrictions on Index Columns

The following restrictions apply to index columns:

• You cannot create an index on columns or attributes whose type is user-defined,
LONG, LONG RAW, LOB, or REF, except that Oracle Database supports an index on
REF type columns or attributes that have been defined with a SCOPE clause.

• Only normal (B-tree) indexes can be created on encrypted columns, and they can
only be used for equality searches.

column_expression

Specify an expression built from columns of table, constants, SQL functions, and
user-defined functions. When you specify column_expression, you create a function-
based index.

See Also:

"Column Expressions ", "Notes on Function-based Indexes", "Restrictions on
Function-based Indexes", and "Function-Based Index Examples"

Name resolution of the function is based on the schema of the index creator. User-
defined functions used in column_expression are fully name resolved during the
CREATE INDEX operation.

After creating a function-based index, collect statistics on both the index and its base
table using the DBMS_STATS package. Such statistics will enable Oracle Database to
correctly decide when to use the index.

Function-based unique indexes can be useful in defining a conditional unique
constraint on a column or combination of columns. Refer to "Using a Function-based
Index to Define Conditional Uniqueness: Example" for an example.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information on the DBMS_STATS package

Notes on Function-based Indexes

The following notes apply to function-based indexes:

• When you subsequently query a table that uses a function-based index, Oracle
Database will not use the index unless the query filters out nulls. However, Oracle
Database will use a function-based index in a query even if the columns specified

Chapter 13
CREATE INDEX

13-128

in the WHERE clause are in a different order than their order in the column_expression that
defined the function-based index.

See Also:

"Function-Based Index Examples"

• If the function on which the index is based becomes invalid or is dropped, then Oracle
Database marks the index DISABLED. Queries on a DISABLED index fail if the optimizer
chooses to use the index. DML operations on a DISABLED index fail unless the index is
also marked UNUSABLE and the parameter SKIP_UNUSABLE_INDEXES is set to true. Refer
to ALTER SESSION for more information on this parameter.

• If a public synonym for a function, package, or type is used in column_expression, and
later an actual object with the same name is created in the table owner's schema, then
Oracle Database disables the function-based index. When you subsequently enable the
function-based index using ALTER INDEX ... ENABLE or ALTER INDEX ... REBUILD, the
function, package, or type used in the column_expression continues to resolve to the
function, package, or type to which the public synonym originally pointed. It will not
resolve to the new function, package, or type.

• If the definition of a function-based index generates internal conversion to character data,
then use caution when changing NLS parameter settings. Function-based indexes use
the current database settings for NLS parameters. If you reset these parameters at the
session level, then queries using the function-based index may return incorrect results.
Two exceptions are the collation parameters (NLS_SORT and NLS_COMP). Oracle Database
handles the conversions correctly even if these have been reset at the session level.

• Oracle Database cannot convert data in all cases, even when conversion is explicitly
requested. For example, an attempt to convert the string '105 lbs' from VARCHAR2 to
NUMBER using the TO_NUMBER function fails with an error. Therefore, if column_expression
contains a data conversion function such as TO_NUMBER or TO_DATE, and if a subsequent
INSERT or UPDATE statement includes data that the conversion function cannot convert,
then the index will cause the INSERT or UPDATE statement to fail.

• If column_expression contains a datetime format model, then the function-based index
expression defining the column may contain format elements that are different from those
specified. For example, define a function-based index using the yyyy datetime format
element:

CREATE INDEX cust_eff_ix ON customers
 (NVL(cust_eff_to, TO_DATE('9000-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss')));

Query the ALL_IND_EXPRESSIONS view to see that the function-based index expression
defining the column uses the syyyy datetime format element:

SELECT column_expression
 FROM all_ind_expressions
 WHERE index_name='CUST_EFF_IX';

COLUMN_EXPRESSION
--
NVL("CUST_EFF_TO",TO_DATE(' 9000-01-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

Restrictions on Function-based Indexes

Function-based indexes are subject to the following restrictions:

Chapter 13
CREATE INDEX

13-129

• The value returned by the function referenced in column_expression is subject to
the same restrictions as are the index columns of a B-tree index. Refer to
"Restrictions on Index Columns".

• Any user-defined function referenced in column_expression must be declared as
DETERMINISTIC.

• For a function-based globally partitioned index, the column_expression cannot be
the partitioning key.

• The column_expression can be any of the forms of expression described in
Column Expressions .

• All functions must be specified with parentheses, even if they have no parameters.
Otherwise Oracle Database interprets them as column names.

• Any function you specify in column_expression must return a repeatable value.
For example, you cannot specify the SYSDATE or USER function or the ROWNUM
pseudocolumn.

See Also:

CREATE FUNCTION and Oracle Database PL/SQL Language Reference

ASC | DESC

Use ASC or DESC to indicate whether the index should be created in ascending or
descending order. Indexes on character data are created in ascending or descending
order of the character values in the database character set.

Oracle Database treats descending indexes as if they were function-based indexes.
As with other function-based indexes, the database does not use descending indexes
until you first analyze the index and the table on which the index is defined. See the
column_expression clause of this statement.

Ascending unique indexes allow multiple NULL values. However, in descending unique
indexes, multiple NULL values are treated as duplicate values and therefore are not
permitted.

Restriction on Ascending and Descending Indexes

You cannot specify either of these clauses for a domain index. You cannot specify
DESC for a reverse index. Oracle Database ignores DESC if index is bitmapped or if the
COMPATIBLE initialization parameter is set to a value less than 8.1.0.

index_attributes

Specify the optional index attributes.

physical_attributes_clause

Use the physical_attributes_clause to establish values for physical and storage
characteristics for the index.

If you omit this clause, then Oracle Database sets PCTFREE to 10 and INITRANS to 2.

Restriction on Index Physical Attributes

Chapter 13
CREATE INDEX

13-130

You cannot specify the PCTUSED parameter for an index.

See Also:

physical_attributes_clause and storage_clause for a complete description of these
clauses

TABLESPACE

For tablespace, specify the name of the tablespace to hold the index, index partition, or
index subpartition. If you omit this clause, then Oracle Database creates the index in the
default tablespace of the owner of the schema containing the index.

For a local index, you can specify the keyword DEFAULT in place of tablespace. New
partitions or subpartitions added to the local index will be created in the same tablespace(s)
as the corresponding partitions or subpartitions of the underlying table.

index_compression

The index_compression clauses let you enable or disable index compression for the index.
Specify the COMPRESS clause of prefix_compression to enable prefix compression for the
index, specify the COMPRESS ADVANCED clause of advanced_index_compression to enable
advanced index compression for the index, or specify the NOCOMPRESS clause of either
prefix_compression or advanced_index_compression to disable compression for the index.
The default is NOCOMPRESS.

If you want to use compression for a partitioned index, then you must create the index with
compression enabled at the index level. You can subsequently enable and disable the
compression setting for individual partitions of such a partitioned index. You can also enable
and disable compression when rebuilding individual partitions. You can modify an existing
nonpartitioned index to enable or disable compression only when rebuilding the index.

prefix_compression

Specify COMPRESS to enable prefix compression, also known as key compression, which
eliminates repeated occurrence of key column values. Use integer to specify the prefix
length (number of prefix columns to compress). You can specify prefix compression for
indexes that are nonunique or unique indexes of at least two columns.

• For unique indexes, the range of valid prefix length values is from 1 to the number of key
columns minus 1. The default prefix length is the number of key columns minus 1.

• For nonunique indexes, the range of valid prefix length values is from 1 to the number of
key columns. The default prefix length is the number of key columns.

advanced_index_compression

Specify this clause to enable advanced index compression. Advanced index compression
improves compression ratios significantly while still providing efficient access to indexes.
Therefore, advanced index compression works well on all supported indexes, including those
indexes that are not good candidates for prefix compression.

• COMPRESS ADVANCED LOW - This level compresses the index less than the HIGH level, but
provides faster access to the index. You can specify this clause for indexes that are
nonunique or unique indexes of at least two columns. Before enabling COMPRESS
ADVANCED LOW, the database must be at 12.1.0 or higher compatibility level.

Chapter 13
CREATE INDEX

13-131

• COMPRESS ADVANCED HIGH - This level compresses the index more than the LOW
level, but provides slower access to the index. You can specify this clause for
indexes that are nonunique or unique indexes of one or more columns. Before
enabling COMPRESS ADVANCED HIGH, the database must be at 12.2.0 or higher
compatibility level.

If you omit the LOW and HIGH keywords, then the default is HIGH.

Restrictions on Index Compression

The following restrictions apply to index compression:

• You cannot specify prefix compression or advanced index compression for a
bitmap index.

• You cannot specify advanced index compression for index-organized tables.

See Also:

• Oracle Database Administrator's Guide for more information on prefix
compression and advanced index compression

• "Compressing an Index: Example"

partial_index_clause

You can specify this clause only when creating an index on a partitioned table. Specify
INDEXING FULL to create a full index. Specify INDEXING PARTIAL to create a partial
index. The default is INDEXING FULL.

A full index includes all partitions in the underlying table, regardless of their indexing
properties. A partial index includes only partitions in the underlying table with an
indexing property of ON.

If a partial index is a local partitioned index, then index partitions that correspond with
table partitions with an indexing property of ON are marked USABLE. Index partitions that
correspond with table partitions with an indexing property of OFF are marked UNUSABLE.

If the underlying table is a composite-partitioned table, then the preceding conditions
for index partitions and table partitions apply instead to index subpartitions and table
subpartitions.

Restrictions on Partial Indexes

Partial indexes are subject to the following restrictions:

• The underlying table of a partial index cannot be a nonpartitioned table.

• Unique indexes cannot be partial indexes. This applies to indexes created with the
CREATE UNIQUE INDEX statement and indexes that are implicitly created when you
specify a unique constraint on one or more columns.

Chapter 13
CREATE INDEX

13-132

See Also:

CREATE TABLE indexing_clause for information on the indexing property

SORT | NOSORT

By default, Oracle Database sorts indexes in ascending order when it creates the index. You
can specify NOSORT to indicate to the database that the rows are already stored in the
database in ascending order, so that Oracle Database does not have to sort the rows when
creating the index. If the rows of the indexed column or columns are not stored in ascending
order, then the database returns an error. For greatest savings of sort time and space, use
this clause immediately after the initial load of rows into a table. If you specify neither of these
keywords, then SORT is the default.

Restrictions on NOSORT

This parameter is subject to the following restrictions:

• You cannot specify REVERSE with this clause.

• You cannot use this clause to create a cluster index partitioned or bitmap index.

• You cannot specify this clause for a secondary index on an index-organized table.

REVERSE

Specify REVERSE to store the bytes of the index block in reverse order, excluding the rowid.

Restrictions on Reverse Indexes

Reverse indexes are subject to the following restrictions:

• You cannot specify NOSORT with this clause.

• You cannot reverse a bitmap index or an index on an index-organized table.

VISIBLE | INVISIBLE

Use this clause to specify whether the index is visible or invisible to the optimizer. An invisible
index is maintained by DML operations, but it is not be used by the optimizer during queries
unless you explicitly set the parameter OPTIMIZER_USE_INVISIBLE_INDEXES to TRUE at the
session or system level.

To determine whether an existing index is visible or invisible to the optimizer, you can query
the VISIBILITY column of the USER_, DBA_, ALL_INDEXES data dictionary views.

See Also:

Oracle Database Administrator's Guide for more information on this feature

logging_clause

Specify whether the creation of the index will be logged (LOGGING) or not logged (NOLOGGING)
in the redo log file. This setting also determines whether subsequent Direct Loader

Chapter 13
CREATE INDEX

13-133

(SQL*Loader) and direct-path INSERT operations against the index are logged or not
logged. LOGGING is the default.

If index is nonpartitioned, then this clause specifies the logging attribute of the index.

If index is partitioned, then this clause determines:

• The default value of all partitions specified in the CREATE statement, unless you
specify the logging_clause in the PARTITION description clause

• The default value for the segments associated with the index partitions

• The default value for local index partitions or subpartitions added implicitly during
subsequent ALTER TABLE ... ADD PARTITION operations

The logging attribute of the index is independent of that of its base table.

If you omit this clause, then the logging attribute is that of the tablespace in which it
resides.

See Also:

• logging_clause for a full description of this clause

• Oracle Database VLDB and Partitioning Guide for more information
about logging and parallel DML

• "Creating an Index in NOLOGGING Mode: Example"

ONLINE

Specify ONLINE to indicate that DML operations on the table will be allowed during
creation of the index.

Restrictions on Online Index Building

Online index building is subject to the following restrictions:

• Parallel DML is not supported during online index building. If you specify ONLINE
and then issue parallel DML statements, then Oracle Database returns an error.

• You can specify ONLINE for a bitmap index or a cluster index as long as you set
COMPATIBLE to 10 or higher.

• You cannot specify ONLINE for a conventional index on a UROWID column.

• For a nonunique secondary index on an index-organized table, the number of
index key columns plus the number of primary key columns that are included in
the logical rowid in the index-organized table cannot exceed 32. The logical rowid
excludes columns that are part of the index key.

See Also:

Oracle Database Concepts for a description of online index building and
rebuilding

Chapter 13
CREATE INDEX

13-134

parallel_clause

Specify the parallel_clause if you want creation of the index to be parallelized.

For complete information on this clause, refer to parallel_clause in the documentation on
CREATE TABLE.

Index Partitioning Clauses

Use the global_partitioned_index clause and the local_partitioned_index clauses to
partition index.

The storage of partitioned database entities in tablespaces of different block sizes is subject
to several restrictions. Refer to Oracle Database VLDB and Partitioning Guide for a
discussion of these restrictions.

See Also:

"Partitioned Index Examples"

global_partitioned_index

The global_partitioned_index clause lets you specify that the partitioning of the index is
user defined and is not equipartitioned with the underlying table. By default, nonpartitioned
indexes are global indexes.

You can partition a global index by range or by hash. In both cases, you can specify up to 32
columns as partitioning key columns. The partitioning column list must specify a left prefix of
the index column list. If the index is defined on columns a, b, and c, then for the columns you
can specify (a, b, c), or (a, b), or (a, c), but you cannot specify (b, c) or (c) or (b, a). If you
specify a partition name, then it must conform to the rules for naming schema objects and
their parts as described in "Database Object Naming Rules ". If you omit the partition names,
then Oracle Database assigns names of the form SYS_Pn.

GLOBAL PARTITION BY RANGE

Use this clause to create a range-partitioned global index. Oracle Database will partition the
global index on the ranges of values from the table columns you specify in the column list.

See Also:

"Creating a Range-Partitioned Global Index: Example"

GLOBAL PARTITION BY HASH

Use this clause to create a hash-partitioned global index. Oracle Database assigns rows to
the partitions using a hash function on values in the partitioning key columns.

Chapter 13
CREATE INDEX

13-135

See Also:

The CREATE TABLE clause hash_partitions for information on the two methods
of hash partitioning and "Creating a Hash-Partitioned Global Index: Example"

Restrictions on Global Partitioned Indexes

Global partitioned indexes are subject to the following restrictions:

• The partitioning key column list cannot contain the ROWID pseudocolumn or a
column of type ROWID.

• The only property you can specify for hash partitions is tablespace storage.
Therefore, you cannot specify LOB or varray storage clauses in the
partitioning_storage_clause of individual_hash_partitions.

• You cannot specify the OVERFLOW clause of hash_partitions_by_quantity, as that
clause is valid only for index-organized table partitions.

• In the partitioning_storage_clause, you cannot specify table_compression or
the inmemory_clause, but you can specify index_compression.

Note:

If your enterprise has or will have databases using different character sets,
then use caution when partitioning on character columns. The sort sequence
of characters is not identical in all character sets.

See Also:

Oracle Database Globalization Support Guide for more information on
character set support

index_partitioning_clause

Use this clause to describe the individual index partitions. The number of repetitions of
this clause determines the number of partitions. If you omit partition, then Oracle
Database generates a name with the form SYS_Pn.

For VALUES LESS THAN (value_list), specify the noninclusive upper bound for the
current partition in a global index. The value list is a comma-delimited, ordered list of
literal values corresponding to the column list in the global_partitioned_index
clause. Always specify MAXVALUE as the value of the last partition.

Chapter 13
CREATE INDEX

13-136

Note:

If the index is partitioned on a DATE column, and if the date format does not specify
the first two digits of the year, then you must use the TO_DATE function with a 4-
character format mask for the year. The date format is determined implicitly by
NLS_TERRITORY or explicitly by NLS_DATE_FORMAT. Refer to Oracle Database
Globalization Support Guide for more information on these initialization parameters.

See Also:

"Range Partitioning Example"

local_partitioned_index

The local_partitioned_index clauses let you specify that the index is partitioned on the
same columns, with the same number of partitions and the same partition bounds as table.
For composite-partitioned tables, this clause lets you specify that the index is subpartitioned
on the same columns, with the same number of subpartitions and the same subpartition
bounds as table. Oracle Database automatically maintains local index partitioning as the
underlying table is repartitioned.

If you specify only the keyword LOCAL and do not specify a subclause, then Oracle Database
creates each index partition in the same tablespace as its corresponding table partition and
assigns it the same name as its corresponding table partition. If table is a composite-
partitioned table, then Oracle Database creates each index subpartition in the same
tablespace as its corresponding table subpartition and assigns it the same name as its
corresponding table subpartition.

If you specify a partition name, then it must conform to the rules for naming schema objects
and their parts as described in "Database Object Naming Rules ". If you omit a partition
name, then Oracle Database generates a name that is consistent with the corresponding
table partition. If the name conflicts with an existing index partition name, then the database
uses the form SYS_Pn.

on_range_partitioned_table

This clause lets you specify the names and attributes of index partitions on a range-
partitioned table. If you specify this clause, then the number of PARTITION clauses must be
equal to the number of table partitions, and in the same order.

You cannot specify prefix compression for an index partition unless you have specified prefix
compression for the index.

For more information on the USABLE and UNUSABLE clauses, refer to USABLE | UNUSABLE.

on_list_partitioned_table

The on_list_partitioned_table clause is identical to on_range_partitioned_table.

on_hash_partitioned_table

This clause lets you specify names and tablespace storage for index partitions on a hash-
partitioned table.

Chapter 13
CREATE INDEX

13-137

If you specify any PARTITION clauses, then the number of these clauses must be equal
to the number of table partitions. You can optionally specify tablespace storage for one
or more individual partitions. If you do not specify tablespace storage either here or in
the STORE IN clause, then the database stores each index partition in the same
tablespace as the corresponding table partition.

The STORE IN clause lets you specify one or more tablespaces across which Oracle
Database will distribute all the index hash partitions. The number of tablespaces need
not equal the number of index partitions. If the number of index partitions is greater
than the number of tablespaces, then the database cycles through the names of the
tablespaces.

For more information on the USABLE and UNUSABLE clauses, refer to USABLE |
UNUSABLE.

on_comp_partitioned_table

This clause lets you specify the name and attributes of index partitions on a
composite-partitioned table.

The STORE IN clause is valid only for range-hash or list-hash composite-partitioned
tables. It lets you specify one or more default tablespaces across which Oracle
Database will distribute all index hash subpartitions for all partitions. You can override
this storage by specifying different default tablespace storage for the subpartitions of
an individual partition in the second STORE IN clause in the
index_subpartition_clause.

For range-range, range-list, and list-list composite-partitioned tables, you can specify
default attributes for the range or list subpartitions in the PARTITION clause. You can
override this storage by specifying different attributes for the range or list subpartitions
of an individual partition in the SUBPARTITION clause of the
index_subpartition_clause.

You cannot specify prefix compression for an index partition unless you have specified
prefix compression for the index.

For more information on the USABLE and UNUSABLE clauses, refer to USABLE |
UNUSABLE.

index_subpartition_clause

This clause lets you specify names and tablespace storage for index subpartitions in a
composite-partitioned table.

The STORE IN clause is valid only for hash subpartitions of a range-hash and list-hash
composite-partitioned table. It lets you specify one or more tablespaces across which
Oracle Database will distribute all the index hash subpartitions. The SUBPARTITION
clause is valid for all subpartition types.

If you specify any SUBPARTITION clauses, then the number of those clauses must be
equal to the number of table subpartitions. If you specify a subpartition name, then it
must conform to the rules for naming schema objects and their parts as described in
"Database Object Naming Rules ". If you omit subpartition, then the database
generates a name that is consistent with the corresponding table subpartition. If the
name conflicts with an existing index subpartition name, then the database uses the
form SYS_SUBPn.

Chapter 13
CREATE INDEX

13-138

The number of tablespaces need not equal the number of index subpartitions. If the number
of index subpartitions is greater than the number of tablespaces, then the database cycles
through the names of the tablespaces.

If you do not specify tablespace storage for subpartitions either in the
on_comp_partitioned_table clause or in the index_subpartition_clause, then Oracle
Database uses the tablespace specified for index. If you also do not specify tablespace
storage for index, then the database stores the subpartition in the same tablespace as the
corresponding table subpartition.

For more information on the USABLE and UNUSABLE clauses, refer to CREATE INDEX ... USABLE
| UNUSABLE.

domain_index_clause

Use the domain_index_clause to indicate that index is a domain index, which is an instance
of an application-specific index of type indextype.

Creating a domain index requires a number of preceding operations. You must first create an
implementation type for an indextype. You must also create a functional implementation and
then create an operator that uses the function. Next you create an indextype, which
associates the implementation type with the operator. Finally, you create the domain index
using this clause. Refer to Extended Examples, which contains an example of creating a
simple domain index, including all of these operations.

index_expr

In the index_expr (in table_index_clause), specify the table columns or object attributes on
which the index is defined. You can define multiple domain indexes on a single column only if
the underlying indextypes are different and the indextypes support a disjoint set of user-
defined operators.

Restrictions on Domain Indexes

Domain indexes are subject to the following restrictions:

• The index_expr (in table_index_clause) can specify only a single column, and the
column cannot be of data type REF, varray, nested table, LONG, or LONG RAW.

• You cannot create a bitmap or unique domain index.

• You cannot create a domain index on a temporary table.

• You can create local domain indexes on only range-, list-, hash-, and interval-partitioned
tables, with one exception: You cannot create a local domain index on an automatic list-
partitioned table.

• Domain indexes can be created only on table columns declared with collation BINARY,
USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS. See Oracle Database
Globalization Support Guide for more information.

indextype

For indextype, specify the name of the indextype. This name should be a valid schema
object that has already been created.

If you have installed Oracle Text, then you can use various built-in indextypes to create
Oracle Text domain indexes. For more information on Oracle Text and the indexes it uses,
refer to Oracle Text Reference.

Chapter 13
CREATE INDEX

13-139

See Also:

CREATE INDEXTYPE

local_domain_index_clause

Use this clause to specify that the index is a local index on a partitioned table.

• The PARTITIONS clause lets you specify names for the index partitions. The
number of partitions you specify must match the number of partitions in the base
table. If you omit this clause, then the database creates the partitions with system-
generated names of the form SYS_Pn.

• The PARAMETERS clause lets you specify the parameter string specific to an
individual partition. If you omit this clause, then the parameter string associated
with the index is also associated with the partition.

parallel_clause

Use the parallel_clause to parallelize creation of the domain index. For a
nonpartitioned domain index, Oracle Database passes the explicit or default degree of
parallelism to the ODCIIndexCreate cartridge routine, which in turn establishes
parallelism for the index. For local domain indexes, this clause causes the index
partitions to be created in parallel.

See Also:

Oracle Database Data Cartridge Developer's Guide for complete information
on the Oracle Data Cartridge Interface (ODCI) routines

PARAMETERS

In the PARAMETERS clause, specify the parameter string that is passed uninterpreted to
the appropriate ODCI indextype routine. The maximum length of the parameter string
is 1000 characters.

When you specify this clause at the top level of the syntax, the parameters become
the default parameters for the index partitions. If you specify this clause as part of the
local_domain_index_clause, then you override any default parameters with
parameters for the individual partition.

After the domain index is created, Oracle Database invokes the appropriate ODCI
routine. If the routine does not return successfully, then the domain index is marked
FAILED. The only operations supported on an failed domain index are DROP INDEX and
(for non-local indexes) REBUILD INDEX.

See Also:

Oracle Database Data Cartridge Developer's Guide for information on the
Oracle Data Cartridge Interface (ODCI) routines

Chapter 13
CREATE INDEX

13-140

XMLIndex_clause

The XMLIndex_clause lets you define an XMLIndex index, typically on a column contain XML
data. An XMLIndex index is a type of domain index designed specifically for the domain of
XML data.

XMLIndex_parameters_clause

This clause lets you specify information about the path table and about the secondary
indexes corresponding to the components of XMLIndex. This clause also lets you specify
information about the structured component of the index. The maximum length of the
parameter string is 1000 characters.

When you specify this clause at the top level of the syntax, the parameters become the
parameters of the index and the default parameters for the index partitions. If you specify this
clause as part of the local_xmlindex_clause clause, then you override any default
parameters with parameters for the individual partition.

See Also:

Oracle XML DB Developer's Guide for the syntax and semantics of the
XMLIndex_parameters_clause, as well as detailed information about the use of
XMLIndex

bitmap_join_index_clause

Use the bitmap_join_index_clause to define a bitmap join index. A bitmap join index is
defined on a single table. For an index key made up of dimension table columns, it stores the
fact table rowids corresponding to that key. In a data warehousing environment, the table on
which the index is defined is commonly referred to as a fact table, and the tables with which
this table is joined are commonly referred to as dimension tables. However, a star schema
is not a requirement for creating a join index.

ON

In the ON clause, first specify the fact table, and then inside the parentheses specify the
columns of the dimension tables on which the index is defined.

FROM

In the FROM clause, specify the joined tables.

WHERE

In the WHERE clause, specify the join condition.

If the underlying fact table is partitioned, then you must also specify one of the
local_partitioned_index clauses (see local_partitioned_index).

Restrictions on Bitmap Join Indexes

In addition to the restrictions on bitmap indexes in general (see BITMAP), the following
restrictions apply to bitmap join indexes:

• You cannot create a bitmap join index on a temporary table.

Chapter 13
CREATE INDEX

13-141

• No table may appear twice in the FROM clause.

• You cannot create a function-based join index.

• The dimension table columns must be either primary key columns or have unique
constraints.

• If a dimension table has a composite primary key, then each column in the primary
key must be part of the join.

• You cannot specify the local_partitioned_index clause unless the fact table is
partitioned.

• A bitmap join index definition can only reference columns with collation BINARY,
USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS. For any of these
collations, index keys are collated and the join condition is evaluated using the
BINARY collation. See Oracle Database Globalization Support Guide for more
information.

Note:

Oracle Database Data Warehousing Guide for information on fact and
dimension tables and on using bitmap indexes in a data warehousing
environment

USABLE | UNUSABLE

You can specify the USABLE and UNUSABLE keywords:

• For an index, in the CREATE INDEX statement

• For an index partition, in the on_range_partitioned_table,
on_list_partitioned_table, on_hash_partitioned_table, and
on_comp_partitioned_table clauses

• For an index subpartition, in the index_subpartition_clause

For nonpartitioned indexes, specify UNUSABLE to create an index in an unusable state.
An unusable index must be rebuilt, or dropped and re-created, before it can be used.
Specify USABLE to create an index in a usable state. USABLE is the default.

For partitioned indexes, specify USABLE or UNUSABLE as follows:

• If you specify UNUSABLE for the index, then all index partitions are marked
UNUSABLE.

• If you specify USABLE for the index, then all index partitions are marked USABLE.

• If you do not specify USABLE or UNUSABLE for the index, then all index partitions are
marked USABLE. The exception is a local partial index. If you specify the LOCAL and
INDEXING PARTIAL clauses, and do not specify USABLE or UNUSABLE, then each
index partition is marked USABLE if the indexing property of its corresponding table
partition is ON, or UNUSABLE if the indexing property of its corresponding table
partition is OFF.

You can override the preceding conditions by specifying USABLE or UNUSABLE for a
specific index partition.

Chapter 13
CREATE INDEX

13-142

If the underlying table is a composite-partitioned table, then the preceding conditions for
index partitions and table partitions apply instead to index subpartitions and table
subpartitions.

After you create a partitioned index, you can choose to rebuild specific index partitions or
subpartitions to make them USABLE. Doing so can be useful if you want to maintain indexes
only on some index partitions or subpartitions—for example, if you want to enable index
access for new partitions but not for old partitions.

When an index, or some partitions or subpartitions of an index, are created UNUSABLE, no
segment is allocated for the unusable object. The unusable index or index partition consumes
no space in the database.

If an index, or some partitions or subpartitions of the index, are marked UNUSABLE, then the
index will be considered as an access path by the optimizer only under the following
circumstances: the optimizer must know at compile time which partitions are to be accessed,
and all of those partitions to be accessed must be marked USABLE. Therefore, the query
cannot contain any bind variables.

Restrictions on USABLE | UNUSABLE

The following restrictions apply when marking an index USABLE or UNUSABLE:

• You cannot specify this clause for an index on a temporary table.

• Unusable indexes or index partitions will still have a segment under the following
conditions:

– The index (or index partition) is owned by SYS, SYSTEM, PUBLIC, OUTLN, or XDB
– The index (or index partition) is stored in dictionary-managed tablespaces

– The global partitioned or nonpartitioned index on a partitioned table becomes
unusable due to a partition maintenance operation

{ DEFERRED | IMMEDIATE } INVALIDATION

This clause lets you control when the database invalidates dependent cursors while creating
the index. It has the same semantics here as for the ALTER INDEX statement. Refer to
{ DEFERRED | IMMEDIATE } INVALIDATION in the documentation on ALTER INDEX for the
full semantics of this clause.

Examples

General Index Examples

Creating an Index: Example

The following statement shows how the sample index ord_customer_ix on the customer_id
column of the sample table oe.orders was created:

CREATE INDEX ord_customer_ix
 ON orders (customer_id);

Compressing an Index: Example

To create the ord_customer_ix_demo index with the COMPRESS clause, you might issue the
following statement:

Chapter 13
CREATE INDEX

13-143

CREATE INDEX ord_customer_ix_demo
 ON orders (customer_id, sales_rep_id)
 COMPRESS 1;

The index will compress repeated occurrences of customer_id column values.

Creating an Index in NOLOGGING Mode: Example

If the sample table orders had been created using a fast parallel load (so all rows
were already sorted), then you could issue the following statement to quickly create an
index.

/* Unless you first sort the table oe.orders, this example fails
 because you cannot specify NOSORT unless the base table is
 already sorted.
*/
CREATE INDEX ord_customer_ix_demo
 ON orders (order_mode)
 NOSORT
 NOLOGGING;

Creating a Cluster Index: Example

To create an index for the personnel cluster, which was created in "Creating a Cluster:
Example", issue the following statement:

CREATE INDEX idx_personnel ON CLUSTER personnel;

No index columns are specified, because cluster indexes are automatically built on all
the columns of the cluster key. For cluster indexes, all rows are indexed.

Creating an Index on an XMLType Table: Example

The following example creates an index on the area element of the xwarehouses table
(created in "XMLType Table Examples"):

CREATE INDEX area_index ON xwarehouses e
 (EXTRACTVALUE(VALUE(e),'/Warehouse/Area'));

Such an index would greatly improve the performance of queries that select from the
table based on, for example, the square footage of a warehouse, as shown in this
statement:

SELECT e.getClobVal() AS warehouse
 FROM xwarehouses e
 WHERE EXISTSNODE(VALUE(e),'/Warehouse[Area>50000]') = 1;

See Also:

EXISTSNODE and VALUE

Function-Based Index Examples

The following examples show how to create and use function-based indexes.

Creating a Function-Based Index: Example

Chapter 13
CREATE INDEX

13-144

The following statement creates a function-based index on the employees table based on an
uppercase evaluation of the last_name column:

CREATE INDEX upper_ix ON employees (UPPER(last_name));

See the "Prerequisites " for the privileges and parameter settings required when creating
function-based indexes.

To increase the likelihood that Oracle Database will use the index rather than performing a
full table scan, be sure that the value returned by the function is not null in subsequent
queries. For example, this statement will use the index, unless some other condition exists
that prevents the optimizer from doing so:

SELECT first_name, last_name
 FROM employees WHERE UPPER(last_name) IS NOT NULL
 ORDER BY UPPER(last_name);

Without the WHERE clause, Oracle Database may perform a full table scan.

In the next statements showing index creation and subsequent query, Oracle Database will
use index income_ix even though the columns are in reverse order in the query:

CREATE INDEX income_ix
 ON employees(salary + (salary*commission_pct));

SELECT first_name||' '||last_name "Name"
 FROM employees
 WHERE (salary*commission_pct) + salary > 15000
 ORDER BY employee_id;

Creating a Function-Based Index on a LOB Column: Example

The following statement uses the text_length function to create a function-based index on a
LOB column in the sample pm schema. See Oracle Database PL/SQL Language Reference
for the example that creates this function. The example selects rows from the sample table
print_media where that CLOB column has fewer than 1000 characters.

CREATE INDEX src_idx ON print_media(text_length(ad_sourcetext));

SELECT product_id FROM print_media
 WHERE text_length(ad_sourcetext) < 1000
 ORDER BY product_id;

PRODUCT_ID

 2056
 2268
 3060
 3106

Creating a Function-based Index on a Type Method: Example

This example entails an object type rectangle containing two number attributes: length and
width. The area() method computes the area of the rectangle.

CREATE TYPE rectangle AS OBJECT
(length NUMBER,
 width NUMBER,
 MEMBER FUNCTION area RETURN NUMBER DETERMINISTIC
);

Chapter 13
CREATE INDEX

13-145

CREATE OR REPLACE TYPE BODY rectangle AS
 MEMBER FUNCTION area RETURN NUMBER IS
 BEGIN
 RETURN (length*width);
 END;
END;

Now, if you create a table rect_tab of type rectangle, you can create a function-
based index on the area() method as follows:

CREATE TABLE rect_tab OF rectangle;
CREATE INDEX area_idx ON rect_tab x (x.area());

You can use this index efficiently to evaluate a query of the form:

SELECT * FROM rect_tab x WHERE x.area() > 100;

Using a Function-based Index to Define Conditional Uniqueness: Example

The following statement creates a unique function-based index on the oe.orders table
that prevents a customer from taking advantage of promotion ID 2 ("blowout sale")
more than once:

CREATE UNIQUE INDEX promo_ix ON orders
 (CASE WHEN promotion_id =2 THEN customer_id ELSE NULL END,
 CASE WHEN promotion_id = 2 THEN promotion_id ELSE NULL END);

INSERT INTO orders (order_id, order_date, customer_id, order_total, promotion_id)
 VALUES (2459, systimestamp, 106, 251, 2);
1 row created.

INSERT INTO orders (order_id, order_date, customer_id, order_total, promotion_id)
 VALUES (2460, systimestamp+1, 106, 110, 2);
insert into orders (order_id, order_date, customer_id, order_total, promotion_id)
*
ERROR at line 1:
ORA-00001: unique constraint (OE.PROMO_IX) violated

The objective is to remove from the index any rows where the promotion_id is not
equal to 2. Oracle Database does not store in the index any rows where all the keys
are NULL. Therefore, in this example, both customer_id and promotion_id are mapped
to NULL unless promotion_id is equal to 2. The result is that the index constraint is
violated only if promotion_id is equal to 2 for two rows with the same customer_id
value.

Partitioned Index Examples

Creating a Range-Partitioned Global Index: Example

The following statement creates a global prefixed index cost_ix on the sample table
sh.sales with three partitions that divide the range of costs into three groups:

CREATE INDEX cost_ix ON sales (amount_sold)
 GLOBAL PARTITION BY RANGE (amount_sold)
 (PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (2500),
 PARTITION p3 VALUES LESS THAN (MAXVALUE));

Creating a Hash-Partitioned Global Index: Example

Chapter 13
CREATE INDEX

13-146

The following statement creates a hash-partitioned global index cust_last_name_ix on the
sample table sh.customers with four partitions:

CREATE INDEX cust_last_name_ix ON customers (cust_last_name)
 GLOBAL PARTITION BY HASH (cust_last_name)
 PARTITIONS 4;

Creating an Index on a Hash-Partitioned Table: Example

The following statement creates a local index on the category_id column of the
hash_products partitioned table (which was created in "Hash Partitioning Example"). The
STORE IN clause immediately following LOCAL indicates that hash_products is hash
partitioned. Oracle Database will distribute the hash partitions between the tbs1 and tbs2
tablespaces:

CREATE INDEX prod_idx ON hash_products(category_id) LOCAL
 STORE IN (tbs_01, tbs_02);

The creator of the index must have quota on the tablespaces specified. See CREATE
TABLESPACE for examples that create tablespaces tbs_01 and tbs_02.

Creating an Index on a Composite-Partitioned Table: Example

The following statement creates a local index on the composite_sales table, which was
created in "Composite-Partitioned Table Examples". The STORAGE clause specifies default
storage attributes for the index. However, this default is overridden for the five subpartitions of
partitions q3_2000 and q4_2000, because separate TABLESPACE storage is specified.

The creator of the index must have quota on the tablespaces specified. See CREATE
TABLESPACE for examples that create tablespaces tbs_02 and tbs_03.

CREATE INDEX sales_ix ON composite_sales(time_id, prod_id)
 STORAGE (INITIAL 1M)
 LOCAL
 (PARTITION q1_1998,
 PARTITION q2_1998,
 PARTITION q3_1998,
 PARTITION q4_1998,
 PARTITION q1_1999,
 PARTITION q2_1999,
 PARTITION q3_1999,
 PARTITION q4_1999,
 PARTITION q1_2000,
 PARTITION q2_2000
 (SUBPARTITION pq2001, SUBPARTITION pq2002,
 SUBPARTITION pq2003, SUBPARTITION pq2004,
 SUBPARTITION pq2005, SUBPARTITION pq2006,
 SUBPARTITION pq2007, SUBPARTITION pq2008),
 PARTITION q3_2000
 (SUBPARTITION c1 TABLESPACE tbs_02,
 SUBPARTITION c2 TABLESPACE tbs_02,
 SUBPARTITION c3 TABLESPACE tbs_02,
 SUBPARTITION c4 TABLESPACE tbs_02,
 SUBPARTITION c5 TABLESPACE tbs_02),
 PARTITION q4_2000
 (SUBPARTITION pq4001 TABLESPACE tbs_03,
 SUBPARTITION pq4002 TABLESPACE tbs_03,
 SUBPARTITION pq4003 TABLESPACE tbs_03,
 SUBPARTITION pq4004 TABLESPACE tbs_03)
);

Chapter 13
CREATE INDEX

13-147

Bitmap Index Examples

The following creates a bitmap index on the table oe.hash_products, which was
created in "Hash Partitioning Example":

CREATE BITMAP INDEX product_bm_ix
 ON hash_products(list_price)
 LOCAL(PARTITION ix_p1 TABLESPACE tbs_01,
 PARTITION ix_p2,
 PARTITION ix_p3 TABLESPACE tbs_02,
 PARTITION ix_p4 TABLESPACE tbs_03)
 TABLESPACE tbs_04;

Because hash_products is a partitioned table, the bitmap join index must be locally
partitioned. In this example, the user must have quota on tablespaces specified. See
CREATE TABLESPACE for examples that create tablespaces tbs_01, tbs_02, tbs_03,
and tbs_04.

The next series of statements shows how one might create a bitmap join index on a
fact table using a join with a dimension table.

CREATE TABLE hash_products
 (product_id NUMBER(6)
 , product_name VARCHAR2(50)
 , product_description VARCHAR2(2000)
 , category_id NUMBER(2)
 , weight_class NUMBER(1)
 , warranty_period INTERVAL YEAR TO MONTH
 , supplier_id NUMBER(6)
 , product_status VARCHAR2(20)
 , list_price NUMBER(8,2)
 , min_price NUMBER(8,2)
 , catalog_url VARCHAR2(50)
 , CONSTRAINT pk_product_id PRIMARY KEY (product_id)
 , CONSTRAINT product_status_lov_demo
 CHECK (product_status in ('orderable'
 ,'planned'
 ,'under development'
 ,'obsolete')
))
 PARTITION BY HASH (product_id)
 PARTITIONS 5
 STORE IN (example);

CREATE TABLE sales_quota
 (product_id NUMBER(6)
 , customer_name VARCHAR2(50)
 , order_qty NUMBER(6)
 ,CONSTRAINT u_product_id UNIQUE(product_id)
);

CREATE BITMAP INDEX product_bm_ix
 ON hash_products(list_price)
 FROM hash_products h, sales_quota s
 WHERE h.product_id = s.product_id
 LOCAL(PARTITION ix_p1 TABLESPACE example,
 PARTITION ix_p2,
 PARTITION ix_p3 TABLESPACE example,
 PARTITION ix_p4,
 PARTITION ix_p5 TABLESPACE example)
 TABLESPACE example;

Chapter 13
CREATE INDEX

13-148

Indexes on Nested Tables: Example

The sample table pm.print_media contains a nested table column ad_textdocs_ntab, which
is stored in storage table textdocs_nestedtab. The following example creates a unique index
on storage table textdocs_nestedtab:

CREATE UNIQUE INDEX nested_tab_ix
 ON textdocs_nestedtab(NESTED_TABLE_ID, document_typ);

Including pseudocolumn NESTED_TABLE_ID ensures distinct rows in nested table column
ad_textdocs_ntab.

Indexing on Substitutable Columns: Examples

You can build an index on attributes of the declared type of a substitutable column. In
addition, you can reference the subtype attributes by using the appropriate TREAT function.
The following example uses the table books, which is created in "Substitutable Table and
Column Examples". The statement creates an index on the salary attribute of all employee
authors in the books table:

CREATE INDEX salary_i
 ON books (TREAT(author AS employee_t).salary);

The target type in the argument of the TREAT function must be the type that added the
attribute being referenced. In the example, the target of TREAT is employee_t, which is the
type that added the salary attribute.

If this condition is not satisfied, then Oracle Database interprets the TREAT function as any
functional expression and creates the index as a function-based index. For example, the
following statement creates a function-based index on the salary attribute of part-time
employees, assigning nulls to instances of all other types in the type hierarchy.

CREATE INDEX salary_func_i ON persons p
 (TREAT(VALUE(p) AS part_time_emp_t).salary);

You can also build an index on the type-discriminant column underlying a substitutable
column by using the SYS_TYPEID function.

Note:

Oracle Database uses the type-discriminant column to evaluate queries that involve
the IS OF type condition. The cardinality of the typeid column is normally low, so
Oracle recommends that you build a bitmap index in this situation.

The following statement creates a bitmap index on the typeid of the author column of the
books table:

CREATE BITMAP INDEX typeid_i ON books (SYS_TYPEID(author));

Chapter 13
CREATE INDEX

13-149

See Also:

• Oracle Database PL/SQL Language Reference to see the creation of the
type hierarchy underlying the books table

• the functions TREAT and SYS_TYPEID and the condition "IS OF type
Condition "

CREATE INDEXTYPE
Purpose

Use the CREATE INDEXTYPE statement to create an indextype, which is an object that
specifies the routines that manage a domain (application-specific) index. Indextypes
reside in the same namespace as tables, views, and other schema objects. This
statement binds the indextype name to an implementation type, which in turn specifies
and refers to user-defined index functions and procedures that implement the
indextype.

See Also:

Oracle Database Data Cartridge Developer's Guide for more information on
implementing indextypes

Prerequisites

To create an indextype in your own schema, you must have the CREATE INDEXTYPE
system privilege. To create an indextype in another schema, you must have the CREATE
ANY INDEXTYPE system privilege. In either case, you must have the EXECUTE object
privilege on the implementation type and the supported operators.

An indextype supports one or more operators, so before creating an indextype, you
must first design the operator or operators to be supported and provide functional
implementation for those operators.

See Also:

CREATE OPERATOR

Chapter 13
CREATE INDEXTYPE

13-150

Syntax

create_indextype::=

CREATE

OR REPLACE

INDEXTYPE

schema .

indextype

SHARING =
METADATA

NONE

FOR

schema .

operator (parameter_type

,

)

,

using_type_clause

WITH LOCAL

RANGE

PARTITION storage_table_clause

;

using_type_clause::=

USING

schema .

implementation_type

array_DML_clause

array_DML_clause::=

WITH

WITHOUT

ARRAY DML

(

schema .

type

,

schema .

varray_type

)

,

storage_table_clause::=

WITH

SYSTEM

USER

MANAGED STORAGE TABLES

Chapter 13
CREATE INDEXTYPE

13-151

Semantics

schema

Specify the name of the schema in which the indextype resides. If you omit schema,
then Oracle Database creates the indextype in your own schema.

indextype

Specify the name of the indextype to be created. The name must satisfy the
requirements listed in "Database Object Naming Rules ".

SHARING

Use the sharing clause if you want to create the object in an application root in the
context of an application maintenance. This type of object is called an application
common object and it can be shared with the application PDBs that belong to the
application root.

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each
container. This type of object is referred to as a metadata-linked application
common object.

• NONE - The object is not shared and can only be accessed in the application root.

FOR Clause

Use the FOR clause to specify the list of operators supported by the indextype.

• For schema, specify the schema containing the operator. If you omit schema, then
Oracle assumes the operator is in your own schema.

• For operator, specify the name of the operator supported by the indextype.

All the operators listed in this clause must be valid operators.

• For parameter_type, list the types of parameters to the operator.

using_type_clause

The USING clause lets you specify the type that provides the implementation for the
new indextype.

For implementation_type, specify the name of the type that implements the
appropriate Oracle Data Cartridge Interface (ODCI).

• You must specify a valid type that implements the routines in the ODCI.

• The implementation type must reside in the same schema as the indextype.

See Also:

Oracle Database Data Cartridge Developer's Guide for additional information
on this interface

Chapter 13
CREATE INDEXTYPE

13-152

WITH LOCAL PARTITION

Use this clause to indicate that the indextype can be used to create local domain indexes on
range-, list-, hash-, and interval-partitioned tables. You use this clause in combination with the
storage_table_clause in several ways (see storage_table_clause).

• The recommended method is to specify WITH LOCAL PARTITION WITH SYSTEM MANAGED
STORAGE TABLES. This combination uses system-managed storage tables, which are the
preferred storage management, and lets you create local domain indexes on range-, list-,
hash-, and interval-partitioned tables. In this case the RANGE keyword is optional and
ignored, because it is no longer needed if you specify WITH LOCAL PARTITION WITH SYSTEM
MANAGED STORAGE TABLES.

• You can specify WITH LOCAL RANGE PARTITION (including the RANGE keyword) and omit the
storage_table clause. Local domain indexes on range-partitioned tables are supported
with user-managed storage tables for backward compatibility. Oracle does not
recommend this combination because it uses the less efficient user-managed storage
tables.

If you omit this clause entirely, then you cannot subsequently use this indextype to create a
local domain index on a range, list-, hash-, or interval-partitioned table.

storage_table_clause

Use this clause to specify how storage tables and partition maintenance operations for
indexes built on this indextype are managed:

• Specify WITH SYSTEM MANAGED STORAGE TABLES to indicate that the storage of statistics
data is to be managed by the system. The type you specify in statistics_type should
be storing the statistics related information in tables that are maintained by the system.
Also, the indextype you specify must already have been created or altered to support the
WITH SYSTEM MANAGED STORAGE TABLES clause.

• Specify WITH USER MANAGED STORAGE TABLES to indicate that the tables that store the user-
defined statistics will be managed by the user. This is the default behavior.

See Also:

Oracle Database Data Cartridge Developer's Guide for more information about
storage tables for domain indexes

array_DML_clause

Use this clause to let the indextype support the array interface for the ODCIIndexInsert
method.

type and varray_type

If the data type of the column to be indexed is a user-defined object type, then you must
specify this clause to identify the varray varray_type that Oracle should use to hold column
values of type. If the indextype supports a list of types, then you can specify a corresponding
list of varray types. If you omit schema for either type or varray_type, then Oracle assumes
the type is in your own schema.

Chapter 13
CREATE INDEXTYPE

13-153

If the data type of the column to be indexed is a built-in system type, then any varray
type specified for the indextype takes precedence over the ODCI types defined by the
system.

See Also:

Oracle Database Data Cartridge Developer's Guide for more information on
the ODCI array interface

Examples

Creating an Indextype: Example

The following statement creates an indextype named position_indextype and
specifies the position_between operator that is supported by the indextype and the
position_im type that implements the index interface. Refer to "Using Extensible
Indexing " for an extensible indexing scenario that uses this indextype:

CREATE INDEXTYPE position_indextype
 FOR position_between(NUMBER, NUMBER, NUMBER)
 USING position_im;

CREATE INMEMORY JOIN GROUP
Purpose

Use the CREATE INMEMORY JOIN GROUP statement to create a join group, which is an
object that specifies frequently joined columns from the same table or different tables.
Such columns typically contain values of compatible data types that fall in similar
ranges. When you create a join group, Oracle Database stores special metadata for
the columns in the global dictionary, which enables the database to optimize join
queries for the columns. In order to achieve this optimization, the table columns must
be populated in the In-Memory Column Store (IM column store).

Creating a join group for tables causes the current In-Memory contents of these tables
to be invalidated. Subsequent repopulation causes the In-Memory Compression Units
(IMCUs) of the tables to be re-encoded with the global dictionary. Thus, Oracle
recommends that you first create the join group, and then populate the tables.

See Also:

• ALTER INMEMORY JOIN GROUP and DROP INMEMORY JOIN
GROUP

• Oracle Database In-Memory Guide for more information on join groups

Prerequisites

To create a join group in another user's schema, or to include in the join group a
column in a table in another user’s schema, you must have the CREATE ANY TABLE
system privilege.

Chapter 13
CREATE INMEMORY JOIN GROUP

13-154

Syntax

create_inmemory_join_group::=

CREATE INMEMORY JOIN GROUP

schema .

join_group

(

schema .

table (column) ,

schema .

table (column)

,

) ;

Semantics

schema

Specify the schema to contain the join group. If you omit schema, then the database creates
the join group in your own schema.

join_group

Specify the name of the join group to be created. The name must satisfy the requirements
listed in “Database Object Naming Rules ”.

schema

Specify the schema of the table that contains a column to be included in the join group If you
omit schema, then Oracle Database assumes the table is in your own schema.

table

Specify the name of the table that contains a column to be included in the join group.

column

Specify the name of a column to be included in the join group. A join group can contain
columns in the same table or different tables.

Restrictions on Join Groups

The following restrictions apply to join groups:

• A join group must contain at least 1 column.

• A join group can contain at most 255 columns.

• A table column can be a member of at most one join group.

• Oracle Active Data Guard does not support join groups.

Chapter 13
CREATE INMEMORY JOIN GROUP

13-155

Examples

The following statement creates a join group named prod_id1 in the oe schema. Both
tables involved in this join group reside in the oe schema.

CREATE INMEMORY JOIN GROUP prod_id1
 (inventories(product_id), order_items(product_id));

The following statement creates a join group named prod_id2 in the oe schema. The
table inventories resides in the oe schema and the table online_media resides in the
pm schema.

CREATE INMEMORY JOIN GROUP prod_id2
 (inventories(product_id), pm.online_media(product_id));

CREATE JAVA
Purpose

Use the CREATE JAVA statement to create a schema object containing a Java source,
class, or resource.

See Also:

• Oracle Database Java Developer's Guide for Java concepts and
information about Java stored procedures

• Oracle Database JDBC Developer's Guide for information on JDBC

Prerequisites

To create or replace a schema object containing a Java source, class, or resource in
your own schema, you must have CREATE PROCEDURE system privilege. To create or
replace such a schema object in another user's schema, you must have CREATE ANY
PROCEDURE system privilege.

Chapter 13
CREATE JAVA

13-156

Syntax

create_java::=

CREATE

OR REPLACE
AND

RESOLVE

COMPILE NOFORCE

JAVA

SOURCE

RESOURCE
NAMED

schema .

primary_name

CLASS

SCHEMA schema

SHARING =
METADATA

NONE

invoker_rights_clause
RESOLVER ((match_string

, schema_name

–
))

USING

BFILE (directory_object_name , server_file_name)

CLOB

BLOB

BFILE

subquery

’ key_for_BLOB ’

AS source_char

;

invoker_rights_clause::=

AUTHID

CURRENT_USER

DEFINER

Semantics

OR REPLACE

Specify OR REPLACE to re-create the schema object containing the Java class, source, or
resource if it already exists. Use this clause to change the definition of an existing object
without dropping, re-creating, and regranting object privileges previously granted.

If you redefine a Java schema object and specify RESOLVE or COMPILE, then Oracle Database
recompiles or resolves the object. Whether or not the resolution or compilation is successful,
the database invalidates classes that reference the Java schema object.

Chapter 13
CREATE JAVA

13-157

Users who had previously been granted privileges on a redefined function can still
access the function without being regranted the privileges.

See Also:

ALTER JAVA for additional information

RESOLVE | COMPILE

RESOLVE and COMPILE are synonymous keywords. They specify that Oracle Database
should attempt to resolve the Java schema object that is created if this statement
succeeds.

• When applied to a class, resolution of referenced names to other class schema
objects occurs.

• When applied to a source, source compilation occurs.

Restriction on RESOLVE and COMPILE

You cannot specify these keywords for a Java resource.

NOFORCE

Specify NOFORCE to roll back the results of this CREATE command if you have specified
either RESOLVE or COMPILE and the resolution or compilation fails. If you do not specify
this option, then Oracle Database takes no action if the resolution or compilation fails,
and the created schema object remains.

JAVA SOURCE Clause

Specify JAVA SOURCE to load a Java source file.

JAVA CLASS Clause

Specify JAVA CLASS to load a Java class file.

JAVA RESOURCE Clause

Specify JAVA RESOURCE to load a Java resource file.

NAMED Clause

The NAMED clause is required for a Java source or resource. The primary_name must
be enclosed in double quotation marks and its length must not exceed 4000 bytes in
the database character set.

• For a Java source, this clause specifies the name of the schema object in which
the source code is held. A successful CREATE JAVA SOURCE statement will also
create additional schema objects to hold each of the Java classes defined by the
source.

• For a Java resource, this clause specifies the name of the schema object to hold
the Java resource.

Use double quotation marks to preserve a lower- or mixed-case primary_name.

Chapter 13
CREATE JAVA

13-158

If you do not specify schema, then Oracle Database creates the object in your own schema.

Restrictions on NAMED Java Classes

The NAMED clause is subject to the following restrictions:

• You cannot specify NAMED for a Java class.

• The primary_name cannot contain a database link.

SCHEMA Clause

The SCHEMA clause applies only to a Java class. This optional clause specifies the schema in
which the object containing the Java file will reside. If you do not specify this clause, then
Oracle Database creates the object in your own schema.

SHARING

This clause applies only when creating a Java schema object in an application root. This type
of object is called an application common object and it can be shared with the application
PDBs that belong to the application root. To determine how the Java schema object is
shared, specify one of the following sharing attributes:

• METADATA - A metadata link shares the Java schema object’s metadata, but its data is
unique to each container. This type of Java schema object is referred to as a metadata-
linked application common object.

• NONE - The Java schema object is not shared.

If you omit this clause, then the database uses the value of the DEFAULT_SHARING initialization
parameter to determine the sharing attribute of the Java schema object. If the
DEFAULT_SHARING initialization parameter does not have a value, then the default is METADATA.

You cannot change the sharing attribute of a Java schema object after it is created.

See Also:

• Oracle Database Reference for more information on the DEFAULT_SHARING
initialization parameter

• Oracle Database Administrator’s Guide for complete information on creating
application common objects

invoker_rights_clause

Use the invoker_rights_clause to indicate whether the methods of the class execute with
the privileges and in the schema of the user who owns the class or with the privileges and in
the schema of CURRENT_USER.

This clause also determines how Oracle Database resolves external names in queries, DML
operations, and dynamic SQL statements in the member functions and procedures of the
type.

AUTHID CURRENT_USER

CURRENT_USER indicates that the methods of the class execute with the privileges of
CURRENT_USER. This clause is the default and creates an invoker-rights class.

Chapter 13
CREATE JAVA

13-159

This clause also specifies that external names in queries, DML operations, and
dynamic SQL statements resolve in the schema of CURRENT_USER. External names in
all other statements resolve in the schema in which the methods reside.

AUTHID DEFINER

DEFINER indicates that the methods of the class execute with the privileges of the
owner of the schema in which the class resides, and that external names resolve in
the schema where the class resides. This clause creates a definer-rights class.

See Also:

• Oracle Database Java Developer's Guide

• Oracle Database PL/SQL Language Reference for information on how
CURRENT_USER is determined

RESOLVER Clause

The RESOLVER clause lets you specify a mapping of the fully qualified Java name to a
Java schema object, where:

• match_string is either a fully qualified Java name, a wildcard that can match such
a Java name, or a wildcard that can match any name.

• schema_name designates a schema to be searched for the corresponding Java
schema object.

• A dash (-) as an alternative to schema_name indicates that if match_string matches
a valid Java name, Oracle Database can leave the name unresolved. The
resolution succeeds, but the name cannot be used at run time by the class.

This mapping is stored with the definition of the schema objects created in this
command for use in later resolutions (either implicit or in explicit ALTER JAVA ... RESOLVE
statements).

USING Clause

The USING clause determines a sequence of character data (CLOB or BFILE) or binary
data (BLOB or BFILE) for the Java class or resource. Oracle Database uses the
sequence of characters to define one file for a Java class or resource, or one source
file and one or more derived classes for a Java source.

BFILE Clause

Specify the directory and filename of a previously created file on the operating system
(directory_object_name) and server file (server_file_name) containing the
sequence. BFILE is usually interpreted as a character sequence by CREATE JAVA
SOURCE and as a binary sequence by CREATE JAVA CLASS or CREATE JAVA RESOURCE.

CLOB | BLOB | BFILE subquery

Specify a subquery that selects a single row and column of the type specified (CLOB,
BLOB, or BFILE). The value of the column makes up the sequence of characters.

Chapter 13
CREATE JAVA

13-160

Note:

In earlier releases, the USING clause implicitly supplied the keyword SELECT. This is
no longer the case. However, the subquery without the keyword SELECT is still
supported for backward compatibility.

key_for_BLOB

The key_for_BLOB clause supplies the following implicit query:

SELECT LOB FROM CREATE$JAVA$LOB$TABLE
 WHERE NAME = 'key_for_BLOB';

Restriction on the key_for_BLOB Clause

For you to use this case, the table CREATE$JAVA$LOB$TABLE must exist in the current schema
and must have a column LOB of type BLOB and a column NAME of type VARCHAR2.

AS source_char

Specify a sequence of characters for a Java source.

Examples

Creating a Java Class Object: Example

The following statement creates a schema object containing a Java class using the name
found in a Java binary file:

CREATE JAVA CLASS USING BFILE (java_dir, 'Agent.class')
/

This example assumes the directory object java_dir, which points to the operating system
directory containing the Java class Agent.class, already exists. In this example, the name of
the class determines the name of the Java class schema object.

Creating a Java Source Object: Example

The following statement creates a Java source schema object:

CREATE JAVA SOURCE NAMED "Welcome" AS
 public class Welcome {
 public static String welcome() {
 return "Welcome World"; } }
/

Creating a Java Resource Object: Example

The following statement creates a Java resource schema object named apptext from a
bfile:

CREATE JAVA RESOURCE NAMED "appText"
 USING BFILE (java_dir, 'textBundle.dat')
/

Chapter 13
CREATE JAVA

13-161

14
SQL Statements: CREATE LIBRARY to
CREATE SCHEMA

This chapter contains the following SQL statements:

• CREATE LIBRARY

• CREATE LOCKDOWN PROFILE

• CREATE MATERIALIZED VIEW

• CREATE MATERIALIZED VIEW LOG

• CREATE MATERIALIZED ZONEMAP

• CREATE OPERATOR

• CREATE OUTLINE

• CREATE PACKAGE

• CREATE PACKAGE BODY

• CREATE PFILE

• CREATE PLUGGABLE DATABASE

• CREATE PROCEDURE

• CREATE PROFILE

• CREATE RESTORE POINT

• CREATE ROLE

• CREATE ROLLBACK SEGMENT

• CREATE SCHEMA

CREATE LIBRARY
Purpose

Use the CREATE LIBRARY statement to create a schema object associated with an operating-
system shared library. The name of this schema object can then be used in the call_spec of
CREATE FUNCTION or CREATE PROCEDURE statements, or when declaring a function or procedure
in a package or type, so that SQL and PL/SQL can call to third-generation-language (3GL)
functions and procedures.

See Also:

CREATE FUNCTION and Oracle Database PL/SQL Language Reference for more
information on functions and procedures

14-1

Prerequisites

The CREATE LIBRARY statement is valid only on platforms that support shared libraries
and dynamic linking.

To create a library in your own schema, you must have the CREATE LIBRARY system
privilege. To create a library in another user's schema, you must have the CREATE ANY
LIBRARY system privilege.

To use the library in the call_spec of a CREATE FUNCTION statement, or when declaring
a function in a package or type, you must have the EXECUTE object privilege on the
library and the CREATE FUNCTION system privilege. Refer to Oracle Database PL/SQL
Language Reference for information on the call_spec of a CREATE FUNCTION
statement.

To use the library in the call_spec of a CREATE PROCEDURE statement, or when
declaring a procedure in a package or type, you must have the EXECUTE object
privilege on the library and the CREATE PROCEDURE system privilege. Refer to Oracle
Database PL/SQL Language Reference for information on the call_spec of a CREATE
PROCEDURE statement.

To execute a procedure or function defined with the call_spec (including a procedure
or function defined within a package or type), you must have the EXECUTE object
privilege on the procedure or function (but you do not need the EXECUTE object
privilege on the library).

Syntax

Libraries are defined using PL/SQL. Therefore, the syntax diagram in this book shows
only the SQL keywords. Refer to Oracle Database PL/SQL Language Reference for
the PL/SQL syntax, semantics, and examples.

create_library::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

LIBRARY plsql_library_source

(plsql_library_source: See Oracle Database PL/SQL Language Reference.)

Semantics

OR REPLACE

Specify OR REPLACE to re-create the library if it already exists. Use this clause to
change the definition of an existing library without dropping, re-creating, and regranting
object privileges granted on it.

Users who had previously been granted privileges on a redefined library can still
access the library without being regranted the privileges.

Chapter 14
CREATE LIBRARY

14-2

[EDITIONABLE | NONEDITIONABLE]

Use these clauses to specify whether the library is an editioned or noneditioned object if
editioning is enabled for the schema object type LIBRARY in schema. The default is
EDITIONABLE. For information about editioned and noneditioned objects, see Oracle
Database Development Guide.

plsql_library_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of the
plsql_library_source.

CREATE LOCKDOWN PROFILE
Purpose

Use the CREATE LOCKDOWN PROFILE statement to create a PDB lockdown profile. You can use
PDB lockdown profiles in a multitenant container database (CDB) to restrict user operations
in PDBs.

After you create a PDB lockdown profile, you can add restrictions to the profile with the ALTER
LOCKDOWN PROFILE statement. You can restrict user operations associated with certain
database features, options, and SQL statements.

When a lockdown profile is assigned to a PDB, users in that PDB cannot perform the
operations that are the disabled for the profile. To assign a lockdown profile, set its name for
the value of the PDB_LOCKDOWN initialization parameter. You can assign a lockdown profile to
individual PDBs, or to all PDBs in a CDB or application container, as follows:

• If you set PDB_LOCKDOWN while connected to a CDB root, then the lockdown profile applies
to all PDBs in the CDB. It does not apply to the CDB root.

• If you set PDB_LOCKDOWN while connected to an application root, then the lockdown profile
applies to the application root and all PDBs in the application container.

• If you set PDB_LOCKDOWN while connected to a particular PDB, then the lockdown profile
applies to that PDB and overrides the lockdown profile for the CDB or application
container, if one exists.

See Also:

• ALTER LOCKDOWN PROFILE and DROP LOCKDOWN PROFILE

• Oracle Database Security Guide for more information on PDB lockdown profiles

Prerequisites

• The CREATE LOCKDOWN PROFILE statement must be issued from the CDB or the Application
Root.

• You must have the CREATE LOCKDOWN PROFILE system privilege in the container in which
the statement is issued.

Chapter 14
CREATE LOCKDOWN PROFILE

14-3

• The PDB lockdown profile name must be unique in the container in which the
statement is issued.

Syntax

create_lockdown_profile::=

CREATE LOCKDOWN PROFILE profile_name

static_base_profile

dynamic_base_profile

;

static_base_profile ::=

FROM base_profile

dynamic_base_profile ::=

INCLUDING base_profile

Semantics

profile_name

You can create a new PDB lockdown profile with a name that you specify. The name
must satisfy the requirements listed in “Database Object Naming Rules ”. The
lockdown profile can be derived from a static, or dynamic base profile.

static_base_profile

Use this option to create a new lockdown profile with a base profile. The rules of the
base profile in effect at profile creation time will be copied to the new lockdown profile.
Changes to the base profile after the lockdown profile is created will not apply to the
lockdown profile.

dynamic_base_profile

Use this option to create a new lockdown profile that will change with changes to the
base profile. The new lockdown profile will inherit DISABLE rules of the base profile as
well and subsequent changes to the base profile. The rules of the base profile have
precedence in any conflict with rules that may be explicitly added to the lockdown
profile. For example, the OPTION_VALUE clause of the base profile takes precedence
over the OPTION_VALUE clause of the dynamic base profile.

Example

The following statement creates PDB lockdown profile hr_prof with a dynamic base
profile PRIVATE_DBAAS:

CREATE LOCKDOWN PROFILE hr_prof INCLUDING PRIVATE_DBAAS;

Chapter 14
CREATE LOCKDOWN PROFILE

14-4

CREATE MATERIALIZED VIEW
Purpose

Use the CREATE MATERIALIZED VIEW statement to create a materialized view. A materialized
view is a database object that contains the results of a query. The FROM clause of the query
can name tables, views, and other materialized views. Collectively these objects are called
master tables (a replication term) or detail tables (a data warehousing term). This reference
uses "master tables" for consistency. The databases containing the master tables are called
the master databases.

Note:

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward
compatibility.

For replication purposes, materialized views allow you to maintain read-only copies of remote
data on your local node. You can select data from a materialized view as you would from a
table or view. In replication environments, the materialized views commonly created are
primary key, rowid, object, and subquery materialized views.

See Also:

Oracle Database Administrator’s Guide for information on the types of materialized
views used to support replication

For data warehousing purposes, the materialized views commonly created are materialized
aggregate views, single-table materialized aggregate views, and materialized join
views. All three types of materialized views can be used by query rewrite, an optimization
technique that transforms a user request written in terms of master tables into a semantically
equivalent request that includes one or more materialized views.

See Also:

• ALTER MATERIALIZED VIEW

• Oracle Database Data Warehousing Guide for information on the types of
materialized views used to support data warehousing

Prerequisites

The privileges required to create a materialized view should be granted directly rather than
through a role.

To create a materialized view in your own schema:

Chapter 14
CREATE MATERIALIZED VIEW

14-5

• You must have been granted the CREATE MATERIALIZED VIEW system privilege and
either the CREATE TABLE or CREATE ANY TABLE system privilege.

• You must also have access to any master tables of the materialized view that you
do not own, either through a READ or SELECT object privilege on each of the tables
or through the READ ANY TABLE or SELECT ANY TABLE system privilege.

To create a materialized view in another user's schema:

• You must have the CREATE ANY MATERIALIZED VIEW system privilege.

• The owner of the materialized view must have the CREATE TABLE system privilege.
The owner must also have access to any master tables of the materialized view
that the schema owner does not own (for example, if the master tables are on a
remote database) and to any materialized view logs defined on those master
tables, either through a READ or SELECT object privilege on each of the tables or
through the READ ANY TABLE or SELECT ANY TABLE system privilege.

To create a refresh-on-commit materialized view (REFRESH ON COMMIT clause), in
addition to the preceding privileges, you must have the ON COMMIT REFRESH object
privilege on any master tables that you do not own or you must have the ON COMMIT
REFRESH system privilege.

To create the materialized view with query rewrite enabled, in addition to the
preceding privileges:

• If the schema owner does not own the master tables, then the schema owner must
have the GLOBAL QUERY REWRITE privilege or the QUERY REWRITE object privilege on
each table outside the schema.

• If you are defining the materialized view on a prebuilt container (ON PREBUILT
TABLE clause), then you must have the READ or SELECT privilege WITH GRANT OPTION
on the container table.

The user whose schema contains the materialized view must have sufficient quota in
the target tablespace to store the master table and index of the materialized view or
must have the UNLIMITED TABLESPACE system privilege.

When you create a materialized view, Oracle Database creates one internal table and
at least one index, and may create one view, all in the schema of the materialized
view. Oracle Database uses these objects to maintain the materialized view data. You
must have the privileges necessary to create these objects.

You can create the following types of local materialized views (including both ON
COMMIT and ON DEMAND) on master tables with commit SCN-based materialized view
logs:

• Materialized aggregate views, including materialized aggregate views on a single
table

• Materialized join views

• Primary-key-based and rowid-based single table materialized views

• UNION ALL materialized views, where each UNION ALL branch is one of the above
materialized view types

You cannot create remote materialized views on master tables with commit SCN-
based materialized view logs.

Chapter 14
CREATE MATERIALIZED VIEW

14-6

Creating a materialized view on master tables with different types of materialized view logs
(that is, a master table with timestamp-based materialized view logs and a master table with
commit SCN-based materialized view logs) is not supported and causes ORA-32414.

To specify an edition in the evaluation_edition_clause or the unusable_editions_clause,
you must have the USE privilege on the edition.

See Also:

• CREATE TABLE, CREATE VIEW , and CREATE INDEX for information on
these privileges

• Oracle Database Administrator’s Guide for information about the prerequisites
that apply to creating replication materialized views

• Oracle Database Data Warehousing Guide for information about the
prerequisites that apply to creating data warehousing materialized views

Chapter 14
CREATE MATERIALIZED VIEW

14-7

Syntax

create_materialized_view::=

CREATE MATERIALIZED VIEW

schema .

materialized_view

OF

schema .

object_type

(

scoped_table_ref_constraint

column_alias

ENCRYPT

encryption_spec

,

)

DEFAULT COLLATION collation_name

ON PREBUILT TABLE

WITH

WITHOUT
REDUCED PRECISION

physical_properties materialized_view_props

USING INDEX

physical_attributes_clause

TABLESPACE tablespace

USING NO INDEX create_mv_refresh

evaluation_edition_clause

ENABLE

DISABLE
ON QUERY COMPUTATION

query_rewrite_clause

AS subquery ;

(scoped_table_ref_constraint::=, physical_properties::=, materialized_view_props::=,
physical_attributes_clause::=, create_mv_refresh::=, evaluation_edition_clause::=,
query_rewrite_clause::=, subquery::=)

scoped_table_ref_constraint::=

SCOPE FOR (
ref_column

ref_attribute
) IS

schema . scope_table_name

c_alias

Chapter 14
CREATE MATERIALIZED VIEW

14-8

physical_properties::=

deferred_segment_creation

segment_attributes_clause

table_compression inmemory_table_clause ilm_clause

deferred_segment_creation

ORGANIZATION

HEAP

segment_attributes_clause

heap_org_table_clause

INDEX

segment_attributes_clause

index_org_table_clause

EXTERNAL external_table_clause

EXTERNAL PARTITION ATTRIBUTES external_table_clause

REJECT LIMIT

CLUSTER cluster (column

,

)

(deferred_segment_creation::=, segment_attributes_clause::=, table_compression::=,
inmemory_table_clause::=, heap_org_table_clause::=, index_org_table_clause::=)

materialized_view_props::=

column_properties table_partitioning_clauses

CACHE

NOCACHE parallel_clause

build_clause

(column_properties::=, table_partitioning_clauses::=—part of CREATE TABLE syntax,
parallel_clause::=, build_clause::=)

heap_org_table_clause::=

table_compression inmemory_table_clause ilm_clause

index_org_table_clause::=

mapping_table_clause

PCTTHRESHOLD integer

prefix_compression index_org_overflow_clause

Chapter 14
CREATE MATERIALIZED VIEW

14-9

(mapping_table_clause: not supported with materialized views,
prefix_compression::=, index_org_overflow_clause::=)

prefix_compression::=

COMPRESS

integer

NOCOMPRESS

index_org_overflow_clause::=

INCLUDING column_name

OVERFLOW

segment_attributes_clause

(segment_attributes_clause::=)

create_mv_refresh::=

REFRESH

FAST

COMPLETE

FORCE

ON DEMAND

ON COMMIT

ON STATEMENT

START WITH

NEXT
date

WITH
PRIMARY KEY

ROWID

USING

DEFAULT

MASTER

LOCAL

ROLLBACK SEGMENT

MASTER

LOCAL

ROLLBACK SEGMENT rollback_segment

USING
ENFORCED

TRUSTED
CONSTRAINTS

NEVER REFRESH

Chapter 14
CREATE MATERIALIZED VIEW

14-10

deferred_segment_creation::=

SEGMENT CREATION

IMMEDIATE

DEFERRED

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE tablespace

TABLESPACE SET tablespace_set

logging_clause

(physical_attributes_clause::=, TABLESPACE SET: not supported with CREATE MATERIALIZED
VIEW, logging_clause::=)

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(logging_clause::=)

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

Chapter 14
CREATE MATERIALIZED VIEW

14-11

table_compression::=

COMPRESS

ROW STORE COMPRESS

BASIC

ADVANCED

COLUMN STORE COMPRESS

FOR

QUERY

ARCHIVE

LOW

HIGH

NO

ROW LEVEL LOCKING

NOCOMPRESS

inmemory_table_clause::=

INMEMORY

inmemory_attributes

NO INMEMORY inmemory_column_clause

(inmemory_attributes::=, inmemory_column_clause::=)

inmemory_attributes::=

inmemory_memcompress inmemory_priority inmemory_distribute

inmemory_duplicate inmemory_spatial

(inmemory_memcompress::=, inmemory_priority::=, inmemory_distribute::=,
inmemory_duplicate::=)

inmemory_memcompress::=

MEMCOMPRESS FOR

DML

QUERY

CAPACITY

LOW

HIGH

NO MEMCOMPRESS

MEMCOMPRESS AUTO

Chapter 14
CREATE MATERIALIZED VIEW

14-12

inmemory_priority::=

PRIORITY

NONE

LOW

MEDIUM

HIGH

CRITICAL

inmemory_distribute::=

DISTRIBUTE

AUTO

BY

ROWID RANGE

PARTITION

SUBPARTITION

FOR SERVICE

DEFAULT

ALL

service_name

NONE

inmemory_duplicate::=

DUPLICATE

ALL

NO DUPLICATE

inmemory_column_clause::=

INMEMORY

inmemory_memcompress

NO INMEMORY
(column

,

)

(inmemory_memcompress::=)

column_properties::=

Chapter 14
CREATE MATERIALIZED VIEW

14-13

object_type_col_properties

nested_table_col_properties

varray_col_properties

LOB_storage_clause

(LOB_partition_storage

,

)

XMLType_column_properties

json_storage_clause

(object_type_col_properties::=, nested_table_col_properties::=,
varray_col_properties::=, LOB_partition_storage::=, LOB_storage_clause::=,
XMLType_column_properties: not supported for materialized views)

object_type_col_properties::=

COLUMN column substitutable_column_clause

(substitutable_column_clause::=)

substitutable_column_clause::=

ELEMENT

IS OF

TYPE

(ONLY type)

NOT

SUBSTITUTABLE AT ALL LEVELS

nested_table_col_properties::=

Chapter 14
CREATE MATERIALIZED VIEW

14-14

NESTED TABLE
nested_item

COLUMN_VALUE

substitutable_column_clause

LOCAL

GLOBAL

STORE AS storage_table

(

(object_properties)

physical_properties

column_properties

)

RETURN

AS LOCATOR

VALUE

(substitutable_column_clause::=, object_properties::=, physical_properties::=—part of CREATE
TABLE syntax, column_properties::=)

varray_col_properties::=

VARRAY varray_item

substitutable_column_clause

varray_storage_clause

substitutable_column_clause

(substitutable_column_clause::=, varray_storage_clause::=)

varray_storage_clause::=

STORE AS

SECUREFILE

BASICFILE

LOB

LOB_segname

(LOB_storage_parameters)

LOB_segname

(LOB_parameters::=)

LOB_storage_clause::=

Chapter 14
CREATE MATERIALIZED VIEW

14-15

LOB

(LOB_item

,

) STORE AS

SECUREFILE

BASICFILE

(LOB_storage_parameters)

(LOB_item) STORE AS

SECUREFILE

BASICFILE

LOB_segname

(LOB_storage_parameters)

(LOB_storage_parameters::=)

LOB_storage_parameters::=

TABLESPACE tablespace

TABLESPACE SET tablespace_set

LOB_parameters

storage_clause

storage_clause

(TABLESPACE SET: not supported with CREATE MATERIALIZED VIEW, LOB_parameters::=,
storage_clause::=)

LOB_parameters::=

ENABLE

DISABLE
STORAGE IN ROW

CHUNK integer

PCTVERSION integer

FREEPOOLS integer

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

Chapter 14
CREATE MATERIALIZED VIEW

14-16

(storage_clause::=, logging_clause::=)

LOB_partition_storage::=

PARTITION partition
LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition
LOB_partitioning_storage

varray_col_properties
)

(LOB_storage_clause::=, varray_col_properties::=)

parallel_clause::=

NOPARALLEL

PARALLEL

integer

build_clause::=

BUILD

IMMEDIATE

DEFERRED

evaluation_edition_clause::=

EVALUATE USING

CURRENT EDITION

EDITION edition

NULL EDITION

query_rewrite_clause::=

ENABLE

DISABLE

QUERY REWRITE

unusable_editions_clause

Chapter 14
CREATE MATERIALIZED VIEW

14-17

unusable_editions_clause::=

UNUSABLE BEFORE

CURRENT EDITION

EDITION edition

UNUSABLE BEGINNING WITH

CURRENT EDITION

EDITION edition

NULL EDITION

Semantics

schema

Specify the schema to contain the materialized view. If you omit schema, then Oracle
Database creates the materialized view in your schema.

materialized_view

Specify the name of the materialized view to be created. The name must satisfy the
requirements listed in "Database Object Naming Rules ". Oracle Database generates
names for the table and indexes used to maintain the materialized view by adding a
prefix or suffix to the materialized view name.

column_alias

You can specify a column alias for each column of the materialized view. The column
alias list explicitly resolves any column name conflict, eliminating the need to specify
aliases in the SELECT clause of the materialized view. If you specify any column alias in
this clause, then you must specify an alias for each data source referenced in the
SELECT clause.

ENCRYPT clause

Use this clause to encrypt this column of the materialized view. Refer to the CREATE
TABLE clause encryption_spec for more information on column encryption.

OF object_type

The OF object_type clause lets you explicitly create an object materialized view of
type object_type.

See Also:

See CREATE TABLE ... object_table for more information on the OF type_name
clause

Chapter 14
CREATE MATERIALIZED VIEW

14-18

scoped_table_ref_constraint

Use the SCOPE FOR clause to restrict the scope of references to a single object table. You can
refer either to the table name with scope_table_name or to a column alias. The values in the
REF column or attribute point to objects in scope_table_name or c_alias, in which object
instances of the same type as the REF column are stored. If you specify aliases, then they
must have a one-to-one correspondence with the columns in the SELECT list of the defining
query of the materialized view.

See Also:

"SCOPE REF Constraints" for more information

DEFAULT COLLATION

Use this clause to specify the default collation for the materialized view. The default collation
is used as the derived collation for all the character literals included in the defining query of
the materialized view. The default collation is not used by the materialized view columns; the
collations for the materialized view columns are derived from the materialized view’s defining
subquery. The CREATE MATERIALIZED VIEW statement fails with an error, or the materialized
view is created in an invalid state, if any of its character columns is based on an expression in
the defining subquery that has no derived collation.

For collation_name, specify a valid named collation or pseudo-collation.

If you omit this clause, then the default collation for the materialized view is set to the
effective schema default collation of the schema containing the materialized view. Refer to
the DEFAULT_COLLATION clause of ALTER SESSION for more information on the effective
schema default collation.

You can specify the DEFAULT COLLATION clause only if the COMPATIBLE initialization parameter
is set to 12.2 or greater, and the MAX_STRING_SIZE initialization parameter is set to EXTENDED.

To change the default collation for a materialized view, you must recreate the materialized
view.

Restrictions on the Default Collation for Materialized Views

The following restrictions apply when specifying the default collation for a materialized view:

• If the defining query of the materialized view contains the WITH plsql_declarations
clause, then the default collation of the materialized view must be USING_NLS_COMP.

• If the materialized view is created on a prebuilt table, then the declared collations of the
table columns must be the same as the corresponding collations of the materialized view
columns, as derived from the defining query.

ON PREBUILT TABLE Clause

The ON PREBUILT TABLE clause lets you register an existing table as a preinitialized
materialized view. This clause is particularly useful for registering large materialized views in
a data warehousing environment. The table must have the same name and be in the same
schema as the resulting materialized view.

If the materialized view is dropped, then the preexisting table reverts to its identity as a table.

Chapter 14
CREATE MATERIALIZED VIEW

14-19

Note:

This clause assumes that the table object reflects the materialization of a
subquery. Oracle strongly recommends that you ensure that this assumption
is true in order to ensure that the materialized view correctly reflects the data
in its master tables.

The ON PREBUILT TABLE clause could be useful in the following scenarios:

• You have a table representing the result of a query. Creating the table was an
expensive operation that possibly took a long time. You want to create a
materialized view on the query. You can use the ON PREBUILT TABLE clause to
avoid the expense of executing the query and populating the container for the
materialized view.

• You temporarily discontinue having a materialized view, but keep its container
table, using the DROP MATERIALIZED VIEW ... PRESERVE TABLE statement. You then
decide to recreate the materialized view and you know that the master tables of
the view have not changed. You can create the materialized view using the ON
PREBUILT TABLE clause. This avoids the expense and time of creating and
populating the container table for the materialized view.

If you specify ON PREBUILT TABLE, then Oracle database does not create the I_SNAP$
index. This index improves fast refresh performance. If you want the benefits of this
index, then you can create it manually. Refer to Oracle Database Data Warehousing
Guide for more information.

WITH REDUCED PRECISION

Specify WITH REDUCED PRECISION to authorize the loss of precision that will result if the
precision of the table or materialized view columns do not exactly match the precision
returned by subquery.

WITHOUT REDUCED PRECISION

Specify WITHOUT REDUCED PRECISION to require that the precision of the table or
materialized view columns match exactly the precision returned by subquery, or the
create operation will fail. This is the default.

Restrictions on Using Prebuilt Tables

Prebuilt tables are subject to the following restrictions:

• Each column alias in subquery must correspond to a column in the prebuilt table,
and corresponding columns must have matching data types.

• If you specify this clause, then you cannot specify a NOT NULL constraint for any
column that is not referenced in subquery unless you also specify a default value
for that column.

• You cannot specify the ON PREBUILT TABLE clause when creating a rowid
materialized view.

Chapter 14
CREATE MATERIALIZED VIEW

14-20

See Also:

"Creating Prebuilt Materialized Views: Example"

physical_properties_clause

The components of the physical_properties_clause have the same semantics for
materialized views that they have for tables, with exceptions and additions described in the
sections that follow.

Restriction on the physical_properties_clause

You cannot specify ORGANIZATION EXTERNAL for a materialized view.

deferred_segment_creation

Use this clause to determine when the segment for this materialized view should be created.
See the CREATE TABLE clause deferred_segment_creation for more information.

segment_attributes_clause

Use the segment_attributes_clause to establish values for the PCTFREE, PCTUSED, and
INITRANS parameters, the storage characteristics for the materialized view, to assign a
tablespace, and to specify whether logging is to occur. In the USING INDEX clause, you cannot
specify PCTFREE or PCTUSED.

TABLESPACE Clause

Specify the tablespace in which the materialized view is to be created. If you omit this clause,
then Oracle Database creates the materialized view in the default tablespace of the schema
containing the materialized view.

See Also:

physical_attributes_clause and storage_clause for a complete description of these
clauses, including default values

logging_clause

Specify LOGGING or NOLOGGING to establish the logging characteristics for the materialized
view. The logging characteristic affects the creation of the materialized view and any
nonatomic refresh that is initiated by way of the DBMS_REFRESH package. The default is the
logging characteristic of the tablespace in which the materialized view resides.

See Also:

logging_clause for a full description of this clause and Oracle Database PL/SQL
Packages and Types Reference for more information on atomic and nonatomic
refresh

Chapter 14
CREATE MATERIALIZED VIEW

14-21

table_compression

Use the table_compression clause to instruct the database whether to compress data
segments to reduce disk and memory use. This clause has the same semantics in
CREATE MATERIALIZED VIEW and CREATE TABLE. Refer to the table_compression clause
in the documentation on CREATE TABLE for the full semantics of this clause.

inmemory_table_clause

Use the inmemory_table_clause to enable or disable the materialized view for the In-
Memory Column Store (IM column store). This clause has the same semantics as the
inmemory_table_clause in the CREATE TABLE documentation.

inmemory_column_clause

Use the inmemory_column_clause to disable specific materialized view columns for the
IM column store, and to specify the data compression method for specific columns.
This clause has the same semantics here as it has for the inmemory_column_clause
in the CREATE TABLE documentation, with the following addition: If you specify the
inmemory_column_clause, then you must also specify a column_alias for each column
in the materialized view.

index_org_table_clause

The ORGANIZATION INDEX clause lets you create an index-organized materialized view.
In such a materialized view, data rows are stored in an index defined on the primary
key of the materialized view. You can specify index organization for the following types
of materialized views:

• Read-only and updatable object materialized views. You must ensure that the
master table has a primary key.

• Read-only and updatable primary key materialized views.

• Read-only rowid materialized views.

The keywords and parameters of the index_org_table_clause have the same
semantics as described in CREATE TABLE, with the restrictions that follow.

See Also:

The index_org_table_clause of CREATE TABLE

Restrictions on Index-Organized Materialized Views

Index-organized materialized views are subject to the following restrictions:

• You cannot specify the following CREATE MATERIALIZED VIEW clauses: CACHE or
NOCACHE, CLUSTER, or ON PREBUILT TABLE.

• In the index_org_table_clause:

– You cannot specify the mapping_table_clause.

Chapter 14
CREATE MATERIALIZED VIEW

14-22

– You can specify COMPRESS only for a materialized view based on a composite primary
key. You can specify NOCOMPRESS for a materialized view based on either a simple or
composite primary key.

CLUSTER Clause

The CLUSTER clause lets you create the materialized view as part of the specified cluster. A
cluster materialized view uses the space allocation of the cluster. Therefore, you do not
specify physical attributes or the TABLESPACE clause with the CLUSTER clause.

Restriction on Cluster Materialized Views

If you specify CLUSTER, then you cannot specify the table_partitioning_clauses in
materialized_view_props.

materialized_view_props

Use these property clauses to describe a materialized view that is not based on an existing
table. To create a materialized view that is based on an existing table, use the ON PREBUILT
TABLE clause.

column_properties

The column_properties clause lets you specify the storage characteristics of a LOB, nested
table, varray, or XMLType column. The object_type_col_properties are not relevant for a
materialized view.

See Also:

CREATE TABLE for detailed information about specifying the parameters of this
clause

table_partitioning_clauses

The table_partitioning_clauses let you specify that the materialized view is partitioned on
specified ranges of values or on a hash function. Partitioning of materialized views is the
same as partitioning of tables.

See Also:

table_partitioning_clauses in the CREATE TABLE documentation

CACHE | NOCACHE

For data that will be accessed frequently, CACHE specifies that the blocks retrieved for this
table are placed at the most recently used end of the least recently used (LRU) list in the
buffer cache when a full table scan is performed. This attribute is useful for small lookup
tables. NOCACHE specifies that the blocks are placed at the least recently used end of the LRU
list.

Chapter 14
CREATE MATERIALIZED VIEW

14-23

Note:

NOCACHE has no effect on materialized views for which you specify KEEP in the
storage_clause.

See Also:

CREATE TABLE for information about specifying CACHE or NOCACHE

parallel_clause

The parallel_clause lets you indicate whether parallel operations will be supported
for the materialized view and sets the default degree of parallelism for queries and
DML on the materialized view after creation.

For complete information on this clause, refer to parallel_clause in the documentation
on CREATE TABLE.

build_clause

The build_clause lets you specify when to populate the materialized view.

IMMEDIATE

Specify IMMEDIATE to indicate that the materialized view is to be populated
immediately. This is the default.

DEFERRED

Specify DEFERRED to indicate that the materialized view is to be populated by the next
REFRESH operation. The first (deferred) refresh must always be a complete refresh.
Until then, the materialized view has a staleness value of UNUSABLE, so it cannot be
used for query rewrite.

USING INDEX Clause

The USING INDEX clause lets you establish the value of the INITRANS and STORAGE
parameters for the default index Oracle Database uses to maintain the materialized
view data. If USING INDEX is not specified, then default values are used for the index.
Oracle Database uses the default index to speed up incremental (FAST) refresh of the
materialized view.

Restriction on USING INDEX clause

You cannot specify the PCTUSED parameter in this clause.

USING NO INDEX Clause

Specify USING NO INDEX to suppress the creation of the default index. You can create
an alternative index explicitly by using the CREATE INDEX statement. You should create
such an index if you specify USING NO INDEX and you are creating the materialized view
with the fast refresh method (REFRESH FAST).

Chapter 14
CREATE MATERIALIZED VIEW

14-24

create_mv_refresh

Use the create_mv_refresh clause to specify the default methods, modes, and times for the
database to refresh the materialized view. If the master tables of a materialized view are
modified, then the data in the materialized view must be updated to make the materialized
view accurately reflect the data currently in its master tables. This clause lets you schedule
the times and specify the method and mode for the database to refresh the materialized view.

Restriction on Synchronous Refresh

If you are using the synchronous refresh method, then you must specify ON DEMAND and USING
TRUSTED CONSTRAINTS.

Note:

This clause only sets the default refresh options. For instructions on actually
implementing the refresh, refer to Oracle Database Administrator’s Guide and
Oracle Database Data Warehousing Guide.

See Also:

• "Periodic Refresh of Materialized Views: Example" and "Automatic Refresh
Times for Materialized Views: Example"

• Oracle Database PL/SQL Packages and Types Reference for more information
on refresh methods

• Oracle Database Data Warehousing Guide to learn how to use refresh statistics
to monitor the performance of materialized view refresh operations

FAST Clause

Specify FAST to indicate the fast refresh method, which performs the refresh according to the
changes that have occurred to the master tables. The changes for conventional DML
changes are stored in the materialized view log associated with the master table. The
changes for direct-path INSERT operations are stored in the direct loader log.

If you specify REFRESH FAST, then the CREATE statement will fail unless materialized view logs
already exist for the materialized view master tables. Oracle Database creates the direct
loader log automatically when a direct-path INSERT takes place. No user intervention is
needed.

For both conventional DML changes and for direct-path INSERT operations, other conditions
may restrict the eligibility of a materialized view for fast refresh.

Restrictions on FAST Refresh

FAST refresh is subject to the following restrictions:

• When you specify FAST refresh at create time, Oracle Database verifies that the
materialized view you are creating is eligible for fast refresh. When you change the
refresh method to FAST in an ALTER MATERIALIZED VIEW statement, Oracle Database does

Chapter 14
CREATE MATERIALIZED VIEW

14-25

not perform this verification. If the materialized view is not eligible for fast refresh,
then Oracle Database returns an error when you attempt to refresh this view.

• Materialized views are not eligible for fast refresh if the defining query contains an
analytic function or the XMLTable function.

• Materialized views are not eligible for fast refresh if the defining query references a
table on which an XMLIndex index is defined.

• You cannot fast refresh a materialized view if any of its columns is encrypted.

See Also:

• Oracle Database Administrator’s Guide for restrictions on fast refresh in
replication environments

• Oracle Database Data Warehousing Guide for restrictions on fast refresh
in data warehousing environments

• The EXPLAIN_MVIEW procedure of the DBMS_MVIEW package for help
diagnosing problems with fast refresh and the TUNE_MVIEW procedure of
the DBMS_MVIEW package for correction of query rewrite problems

• "Analytic Functions "

• "Creating a Fast Refreshable Materialized View: Example"

COMPLETE Clause

Specify COMPLETE to indicate the complete refresh method, which is implemented by
executing the defining query of the materialized view. If you request a complete
refresh, then Oracle Database performs a complete refresh even if a fast refresh is
possible.

FORCE Clause

Specify FORCE to indicate that when a refresh occurs, Oracle Database will perform a
fast refresh if one is possible or a complete refresh if fast refresh is not possible. If you
do not specify a refresh method (FAST, COMPLETE, or FORCE), then FORCE is the default.

ON COMMIT Clause

Specify ON COMMIT to indicate that a refresh is to occur whenever the database
commits a transaction that operates on a master table of the materialized view. This
clause may increase the time taken to complete the commit, because the database
performs the refresh operation as part of the commit process.

You can specify only one of the ON COMMIT, ON DEMAND, and ON STATEMENT clauses. If
you specify ON COMMIT, then you cannot also specify START WITH or NEXT.

Restrictions on Refreshing ON COMMIT

The following restrictions apply to the ON COMMIT clause:

• This clause is not supported for materialized views containing object types or
Oracle-supplied types.

• This clause is not supported for materialized views with remote tables.

Chapter 14
CREATE MATERIALIZED VIEW

14-26

• If you specify this clause, then you cannot subsequently execute a distributed transaction
on any master table of this materialized view. For example, you cannot insert into the
master by selecting from a remote table. The ON DEMAND clause does not impose this
restriction on subsequent distributed transactions on master tables.

ON DEMAND Clause

Specify ON DEMAND to indicate that database will not refresh the materialized view unless the
user manually launches a refresh through one of the three DBMS_MVIEW refresh procedures.

You can specify only one of the ON COMMIT, ON DEMAND, and ON STATEMENT clauses. If you omit
all three of these clauses, then ON DEMAND is the default. You can override this default setting
by specifying the START WITH or NEXT clauses, either in the same CREATE MATERIALIZED VIEW
statement or a subsequent ALTER MATERIALIZED VIEW statement.

START WITH and NEXT take precedence over ON DEMAND. Therefore, in most circumstances it is
not meaningful to specify ON DEMAND when you have specified START WITH or NEXT.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for information on
these procedures

• Oracle Database Data Warehousing Guide on the types of materialized views
you can create by specifying REFRESH ON DEMAND

ON STATEMENT Clause

Specify ON STATEMENT to indicate that an automatic refresh is to occur every time a DML
operation is performed on any of the materialized view's base tables.

You can specify only one of the ON COMMIT, ON DEMAND, and ON STATEMENT clauses. You can
specify ON STATEMENT only when creating a materialized view. You cannot subsequently alter
the materialized view to use ON STATEMENT refresh.

Restrictions on Refreshing ON STATEMENT

The following restrictions apply to the ON STATEMENT clause:

• This clause can be used only with materialized views that are fast refreshable. The ON
STATEMENT clause must be specified with the REFRESH FAST clause.

• The base tables referenced in the materialized view’s defining query must be connected
in a join graph that uses the star schema or snowflake schema model. The query must
contain exactly one centralized fact table and one or more dimension tables, with all pairs
of joined tables being related using primary key-foreign key constraints.

– There is no restriction on the depth of the snowflake model.

– The constraints can be in RELY mode. However, you must include the USING TRUSTED
CONSTRAINT clause while creating the materialized view to use the RELY constraint.

• The materialized view’s defining query must include the ROWID column of the fact table.

• The materialized view’s defining query cannot include any of the following: invisible
columns, ANSI join syntax, complex query, inline view as base table, composite primary
key, LONG columns, and LOB columns.

Chapter 14
CREATE MATERIALIZED VIEW

14-27

• You cannot alter the definition of an existing materialized view that uses the ON
STATEMENT refresh mode.

• You cannot alter an existing materialized view and enable ON STATEMENT refresh for
it.

• The following operations cause a materialized view with ON STATEMENT refresh to
become unusable:

– UPDATE operations on one or more dimension tables on which the materialized
view is based

– Partition maintenance operations and TRUNCATE operations on any base table

However, a materialized view with the ON STATEMENT refresh mode can be
partitioned.

• All the restrictions that apply to the ON COMMIT clause apply to ON STATEMENT.

START WITH Clause

Specify a datetime expression for the first automatic refresh time.

NEXT Clause

Specify a datetime expression for calculating the interval between automatic refreshes.

Both the START WITH and NEXT values must evaluate to a time in the future. If you omit
the START WITH value, then the database determines the first automatic refresh time by
evaluating the NEXT expression with respect to the creation time of the materialized
view. If you specify a START WITH value but omit the NEXT value, then the database
refreshes the materialized view only once. If you omit both the START WITH and NEXT
values, or if you omit the create_mv_refresh entirely, then the database does not
automatically refresh the materialized view.

WITH PRIMARY KEY Clause

Specify WITH PRIMARY KEY to create a primary key materialized view. This is the default
and should be used in all cases except those described for WITH ROWID. Primary key
materialized views allow materialized view master tables to be reorganized without
affecting the eligibility of the materialized view for fast refresh. The master table must
contain an enabled primary key constraint, and the defining query of the materialized
view must specify all of the primary key columns directly. In the defining query, the
primary key columns cannot be specified as the argument to a function such as UPPER.

Restriction on Primary Key Materialized Views

You cannot specify this clause for an object materialized view. Oracle Database
implicitly refreshes objects materialized WITH OBJECT ID.

See Also:

Oracle Database Administrator’s Guide for detailed information about
primary key materialized views and "Creating Primary Key Materialized
Views: Example"

WITH ROWID Clause

Chapter 14
CREATE MATERIALIZED VIEW

14-28

Specify WITH ROWID to create a rowid materialized view. Rowid materialized views are useful if
the materialized view does not include all primary key columns of the master tables. Rowid
materialized views must be based on a single table and cannot contain any of the following:

• Distinct or aggregate functions

• GROUP BY or CONNECT BY clauses

• Subqueries

• Joins

• Set operations

The WITH ROWID clause has no effect if there are multiple master tables in the defining query.

Rowid materialized views are not eligible for fast refresh after a master table reorganization
until a complete refresh has been performed.

Restriction on Rowid Materialized Views

You cannot specify this clause for an object materialized view. Oracle Database implicitly
refreshes objects materialized WITH OBJECT ID.

See Also:

"Creating Materialized Aggregate Views: Example" and "Creating Rowid
Materialized Views: Example"

USING ROLLBACK SEGMENT Clause

This clause is not valid if your database is in automatic undo mode, because in that mode
Oracle Database uses undo tablespaces instead of rollback segments. Oracle strongly
recommends that you use automatic undo mode. This clause is supported for backward
compatibility with replication environments containing older versions of Oracle Database that
still use rollback segments.

For rollback_segment, specify the remote rollback segment to be used during materialized
view refresh.

DEFAULT

DEFAULT specifies that Oracle Database will choose automatically which rollback segment to
use. If you specify DEFAULT, then you cannot specify rollback_segment. DEFAULT is most
useful when modifying, rather than creating, a materialized view.

See Also:

ALTER MATERIALIZED VIEW

MASTER

MASTER specifies the remote rollback segment to be used at the remote master site for the
individual materialized view.

Chapter 14
CREATE MATERIALIZED VIEW

14-29

LOCAL

LOCAL specifies the remote rollback segment to be used for the local refresh group that
contains the materialized view. This is the default.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information on
specifying the local materialized view rollback segment using the
DBMS_REFRESH package

If you omit rollback_segment, then the database automatically chooses the rollback
segment to be used. One master rollback segment is stored for each materialized view
and is validated during materialized view creation and refresh. If the materialized view
is complex, then the database ignores any master rollback segment you specify.

USING ... CONSTRAINTS Clause

The USING ... CONSTRAINTS clause lets Oracle Database choose more rewrite options
during the refresh operation, resulting in more efficient refresh execution. The clause
lets Oracle Database use unenforced constraints, such as dimension relationships or
constraints in the RELY state, rather than relying only on enforced constraints during
the refresh operation.

The USING TRUSTED CONSTRAINTS clause enables you to create a materialized view on
top of a table that has a non-NULL Virtual Private Database (VPD) policy on it. In this
case, you must ensure that the materialized view behaves correctly. Materialized view
results are computed based on the rows and columns filtered by VPD policy.
Therefore, you must coordinate the materialized view definition with the VPD policy to
ensure the correct results. Without the USING TRUSTED CONSTRAINTS clause, any VPD
policy on a master table will prevent a materialized view from being created.

Note:

The USING TRUSTED CONSTRAINTS clause lets Oracle Database use dimension
and constraint information that has been declared trustworthy by the
database administrator but that has not been validated by the database. If
the dimension and constraint information is valid, then performance may
improve. However, if this information is invalid, then the refresh procedure
may corrupt the materialized view even though it returns a success status.

If you omit this clause, then the default is USING ENFORCED CONSTRAINTS.
NEVER REFRESH Clause

Specify NEVER REFRESH to prevent the materialized view from being refreshed with any
Oracle Database refresh mechanism or packaged procedure. Oracle Database will
ignore any REFRESH statement on the materialized view issued from such a procedure.
If you specify this clause, then you can perform DML operations on the materialized
view. To reverse this clause, you must issue an ALTER MATERIALIZED VIEW ... REFRESH
statement.

Chapter 14
CREATE MATERIALIZED VIEW

14-30

evaluation_edition_clause

You must specify this clause if subquery references an editioned object. Use this clause to
specify the edition that is searched during name resolution of the editioned object—the
evaluation edition.

• Specify CURRENT EDITION to search the edition in which this DDL statement is executed.

• Specify EDITION edition to search edition.

• Specifying NULL EDITION is equivalent to omitting the evaluation_edition_clause.

If you omit the evaluation_edition_clause, then editioned objects are invisible during name
resolution and an error will result. Dropping the evaluation edition invalidates the materialized
view.

See Also:

Oracle Database Development Guide for more information on specifying the
evaluation edition for a materialized view

{ ENABLE | DISABLE } ON QUERY COMPUTATION

This clause lets you create a real-time materialized view or a regular view. A real-time
materialized view provides fresh data to user queries even when the materialized view is not
in sync with its base tables due to data changes. Instead of modifying the materialized view,
the optimizer writes a query that combines the existing rows in the materialized view with
changes recorded in log files (either materialized view logs or the direct loader logs). This is
called on-query computation.

• Specify ENABLE ON QUERY COMPUTATION to create a real-time materialized view by enabling
on-query computation. This allows you to directly query up-to-date data from the
materialized view by specifying the FRESH_MV hint in the SELECT statement. If the
materialized view is also enabled for query rewrite, then on-query computation occurs
automatically during query rewrite.

• Specify DISABLE ON QUERY COMPUTATION to create a regular materialized view by disabling
on-query computation. This is the default.

Restrictions on Real-Time Materialized Views

Real-time materialized views are subject to the following restrictions:

• Real-time materialized views cannot be used when one or more materialized view logs
created on the base tables are either unusable or nonexistent.

• A real-time materialized view must be refreshable using out-of-place refresh, log-based
refresh, or partition change tracking (PCT) refresh.

• A refresh-on-commit materialized view cannot be a real-time materialized view.

• If a real-time materialized view is a nested materialized view that is defined on top of one
or more base materialized views, then query rewrite occurs only if all the base
materialized views are fresh. If one or more base materialized views are stale, then query
rewrite is not performed using this real-time materialized view.

• The cursors of queries that directly access real-time materialized views are not shared.

Chapter 14
CREATE MATERIALIZED VIEW

14-31

See Also:

• FRESH_MV Hint

• Oracle Database Data Warehousing Guide for more information on real-
time materialized views

query_rewrite_clause

The query_rewrite_clause lets you specify whether the materialized view is eligible to
be used for query rewrite.

ENABLE Clause

Specify ENABLE to enable the materialized view for query rewrite. If you also specify the
unusable_editions_clause, then the materialized view is not enabled for query
rewrite in the unusable editions.

Restrictions on Enabling Query Rewrite

Enabling of query rewrite is subject to the following restrictions:

• You can enable query rewrite only if all user-defined functions in the materialized
view are DETERMINISTIC.

• You can enable query rewrite only if expressions in the statement are repeatable.
For example, you cannot include CURRENT_TIME or USER, sequence values (such as
the CURRVAL or NEXTVAL pseudocolumns), or the SAMPLE clause (which may sample
different rows as the contents of the materialized view change).

Note:

• Query rewrite is disabled by default, so you must specify this clause to
make materialized views eligible for query rewrite.

• After you create the materialized view, you must collect statistics on it
using the DBMS_STATS package. Oracle Database needs the statistics
generated by this package to optimize query rewrite.

Chapter 14
CREATE MATERIALIZED VIEW

14-32

See Also:

• Oracle Database Data Warehousing Guide for more information on query
rewrite

• Oracle Database Data Warehousing Guide to learn how to use refresh statistics
to monitor the performance of materialized view refresh operations

• Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_STATS package

• The EXPLAIN_MVIEW procedure of the DBMS_MVIEW package for help diagnosing
problems with query rewrite and the TUNE_MVIEW procedure of the DBMS_MVIEW
package for correction of query rewrite problems

• CREATE FUNCTION

DISABLE Clause

Specify DISABLE to indicate that the materialized view is not eligible for use by query rewrite.
A disabled materialized view can be refreshed.

unusable_editions_clause

This clause lets you specify that the materialized view is not eligible for query rewrite in one
or more editions. You can specify this clause regardless of whether you specify the ENABLE or
DISABLE clause. If you specify the DISABLE clause, then this clause will take effect if the
materialized view is subsequently enabled for query rewrite using the ALTER MATERIALIZED
VIEW ... ENABLE QUERY REWRITE statement.

UNUSABLE BEFORE Clause

This clause lets you specify that the materialized view is not eligible for query rewrite in the
ancestors of an edition.

• If you specify CURRENT EDITION, then the materialized view is not eligible for query rewrite
in the ancestors of the current edition.

• If you specify EDITION edition, then the materialized view is not eligible for query rewrite
in the ancestors of the specified edition.

UNUSABLE BEGINNING WITH Clause

This clause lets you specify that the materialized view is not eligible for query rewrite in an
edition and its descendants.

• If you specify CURRENT EDITION, then the materialized view is not eligible for query rewrite
in the current edition and its descendants.

• If you specify EDITION edition, then the materialized view is not eligible for query rewrite
in the specified edition and its descendants.

• Specifying NULL EDITION is equivalent to omitting the UNUSABLE BEGINNING WITH clause.

The materialized view has a dependency on each edition in which it is not eligible for query
rewrite. If such an edition is subsequently dropped, then the dependency is removed.
However, the materialized view is not invalidated.

Chapter 14
CREATE MATERIALIZED VIEW

14-33

AS subquery

Specify the defining query of the materialized view. When you create the materialized
view, Oracle Database executes this subquery and places the results in the
materialized view. This subquery is any valid SQL subquery. However, not all
subqueries are fast refreshable, nor are all subqueries eligible for query rewrite.

Notes on the Defining Query of a Materialized View

The following notes apply to materialized views:

• Oracle Database does not execute the defining query immediately if you specify
BUILD DEFERRED.

• Oracle recommends that you qualify each table and view in the FROM clause of the
defining query of the materialized view with the schema containing it.

• In order to create a materialized view whose defining query selects from a master
table that has a Virtual Private Database (VPD) policy, you must specify the
REFRESH USING TRUSTED CONSTRAINTS clause.

Restrictions on the Defining Query of a Materialized View

The materialized view query is subject to the following restrictions:

• The defining query of a materialized view can select from tables, views, or
materialized views owned by the user SYS, but you cannot enable QUERY REWRITE
on such a materialized view.

• The defining query of a materialized view cannot select from a V$ view or a GV$
view.

• You cannot define a materialized view with a subquery in the select list of the
defining query. You can, however, include subqueries elsewhere in the defining
query, such as in the WHERE clause.

• You cannot use the AS OF clause of the flashback_query_clause in the defining
query of a materialized view.

• Materialized join views and materialized aggregate views with a GROUP BY clause
cannot select from an index-organized table.

• Materialized views cannot contain columns of data type LONG or LONG RAW.

• Materialized views cannot contain virtual columns.

• You cannot create a materialized view log on a temporary table. Therefore, if the
defining query references a temporary table, then this materialized view will not be
eligible for FAST refresh, nor can you specify the QUERY REWRITE clause in this
statement.

• If the FROM clause of the defining query references another materialized view, then
you must always refresh the materialized view referenced in the defining query
before refreshing the materialized view you are creating in this statement.

• Materialized views with join expressions in the defining query cannot have XML
data type columns. The XML data types include XMLType and URI data type
columns.

If you are creating a materialized view enabled for query rewrite, then:

Chapter 14
CREATE MATERIALIZED VIEW

14-34

• The defining query cannot contain, either directly or through a view, references to ROWNUM,
USER, SYSDATE, remote tables, sequences, or PL/SQL functions that write or read
database or package state.

• Neither the materialized view nor the master tables of the materialized view can be
remote.

If you want the materialized view to be eligible for fast refresh using a materialized view log,
or synchronous refresh using a staging log, then some additional restrictions apply.

See Also:

• Oracle Database Data Warehousing Guide for restrictions relating to using fast
refresh and synchronous refresh

• Oracle Database Administrator’s Guidefor more information on restrictions
relating to replication

• "Creating Materialized Join Views: Example", "Creating Subquery Materialized
Views: Example", and "Creating a Nested Materialized View: Example"

Examples

The following examples require the materialized logs that are created in the "Examples"
section of CREATE MATERIALIZED VIEW LOG .

Creating a Simple Materialized View: Example

The following statement creates a very simple materialized view based on the employees and
table in the hr schema:

CREATE MATERIALIZED VIEW mv1 AS SELECT * FROM hr.employees;

By default, Oracle Database creates a primary key materialized view with refresh on demand
only. If a materialized view log exists on employees, then mv1 can be altered to be capable of
fast refresh. If no such log exists, then only full refresh of mv1 is possible. Oracle Database
uses default storage properties for mv1. The only privileges required for this operation are the
CREATE MATERIALIZED VIEW system privilege, and the READ or SELECT object privilege on
hr.employees.

Creating Subquery Materialized Views: Example

The following statement creates a subquery materialized view based on the customers and
countries tables in the sh schema at the remote database:

CREATE MATERIALIZED VIEW foreign_customers
 AS SELECT * FROM sh.customers@remote cu
 WHERE EXISTS
 (SELECT * FROM sh.countries@remote co
 WHERE co.country_id = cu.country_id);

Creating Materialized Aggregate Views: Example

The following statement creates and populates a materialized aggregate view on the sample
sh.sales table and specifies the default refresh method, mode, and time. It uses the
materialized view log created in "Creating a Materialized View Log for Fast Refresh:
Examples", as well as the two additional logs shown here:

Chapter 14
CREATE MATERIALIZED VIEW

14-35

CREATE MATERIALIZED VIEW LOG ON times
 WITH ROWID, SEQUENCE (time_id, calendar_year)
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON products
 WITH ROWID, SEQUENCE (prod_id)
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW sales_mv
 BUILD IMMEDIATE
 REFRESH FAST ON COMMIT
 AS SELECT t.calendar_year, p.prod_id,
 SUM(s.amount_sold) AS sum_sales
 FROM times t, products p, sales s
 WHERE t.time_id = s.time_id AND p.prod_id = s.prod_id
 GROUP BY t.calendar_year, p.prod_id;

Creating Materialized Join Views: Example

The following statement creates and populates the materialized aggregate view
sales_by_month_by_state using tables in the sample sh schema. The materialized
view will be populated with data as soon as the statement executes successfully. By
default, subsequent refreshes will be accomplished by reexecuting the defining query
of the materialized view:

CREATE MATERIALIZED VIEW sales_by_month_by_state
 TABLESPACE example
 PARALLEL 4
 BUILD IMMEDIATE
 REFRESH COMPLETE
 ENABLE QUERY REWRITE
 AS SELECT t.calendar_month_desc, c.cust_state_province,
 SUM(s.amount_sold) AS sum_sales
 FROM times t, sales s, customers c
 WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id
 GROUP BY t.calendar_month_desc, c.cust_state_province;

Creating Prebuilt Materialized Views: Example

The following statement creates a materialized aggregate view for the preexisting
summary table, sales_sum_table:

CREATE TABLE sales_sum_table
 (month VARCHAR2(8), state VARCHAR2(40), sales NUMBER(10,2));

CREATE MATERIALIZED VIEW sales_sum_table
 ON PREBUILT TABLE WITH REDUCED PRECISION
 ENABLE QUERY REWRITE
 AS SELECT t.calendar_month_desc AS month,
 c.cust_state_province AS state,
 SUM(s.amount_sold) AS sales
 FROM times t, customers c, sales s
 WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id
 GROUP BY t.calendar_month_desc, c.cust_state_province;

In the preceding example, the materialized view has the same name and also has the
same number of columns with the same data types as the prebuilt table. The WITH
REDUCED PRECISION clause allows for differences between the precision of the
materialized view columns and the precision of the values returned by the subquery.

Creating Primary Key Materialized Views: Example

Chapter 14
CREATE MATERIALIZED VIEW

14-36

The following statement creates the primary key materialized view catalog on the sample
table oe.product_information:

CREATE MATERIALIZED VIEW catalog
 REFRESH FAST START WITH SYSDATE NEXT SYSDATE + 1/4096
 WITH PRIMARY KEY
 AS SELECT * FROM product_information;

Creating Rowid Materialized Views: Example

The following statement creates a rowid materialized view on the sample table oe.orders:

CREATE MATERIALIZED VIEW order_data REFRESH WITH ROWID
 AS SELECT * FROM orders;

Periodic Refresh of Materialized Views: Example

The following statement creates the primary key materialized view emp_data and populates it
with data from the sample table hr.employees:

CREATE MATERIALIZED VIEW LOG ON employees
 WITH PRIMARY KEY
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW emp_data
 PCTFREE 5 PCTUSED 60
 TABLESPACE example
 STORAGE (INITIAL 50K)
 REFRESH FAST NEXT sysdate + 7
 AS SELECT * FROM employees;

The preceding statement does not include a START WITH parameter, so Oracle Database
determines the first automatic refresh time by evaluating the NEXT value using the current
SYSDATE. A materialized view log was created for the employee table, so Oracle Database
performs a fast refresh of the materialized view every 7 days, beginning 7 days after the
materialized view is created.

Because the materialized view conforms to the conditions for fast refresh, the database will
perform a fast refresh. The preceding statement also establishes storage characteristics that
the database uses to maintain the materialized view.

Automatic Refresh Times for Materialized Views: Example

The following statement creates the complex materialized view all_customers that queries
the employee tables on the remote and local databases:

CREATE MATERIALIZED VIEW all_customers
 PCTFREE 5 PCTUSED 60
 TABLESPACE example
 STORAGE (INITIAL 50K)
 USING INDEX STORAGE (INITIAL 25K)
 REFRESH START WITH ROUND(SYSDATE + 1) + 11/24
 NEXT NEXT_DAY(TRUNC(SYSDATE), 'MONDAY') + 15/24
 AS SELECT * FROM sh.customers@remote
 UNION
 SELECT * FROM sh.customers@local;

Oracle Database automatically refreshes this materialized view tomorrow at 11:00 a.m. and
subsequently every Monday at 3:00 p.m. The default refresh method is FORCE. The defining

Chapter 14
CREATE MATERIALIZED VIEW

14-37

query contains a UNION operator, which is not supported for fast refresh, so the
database will automatically perform a complete refresh.

The preceding statement also establishes storage characteristics for both the
materialized view and the index that the database uses to maintain it:

• The first STORAGE clause establishes the sizes of the first and second extents of the
materialized view as 50 kilobytes each.

• The second STORAGE clause, appearing with the USING INDEX clause, establishes
the sizes of the first and second extents of the index as 25 kilobytes each.

Creating a Fast Refreshable Materialized View: Example

The following statement creates a fast-refreshable materialized view that selects
columns from the order_items table in the sample oe schema, using the UNION set
operator to restrict the rows returned from the product_information and inventories
tables using WHERE conditions. The materialized view logs for order_items and
product_information were created in the "Examples " section of CREATE
MATERIALIZED VIEW LOG. This example also requires a materialized view log on
oe.inventories.

CREATE MATERIALIZED VIEW LOG ON inventories
 WITH (quantity_on_hand);

CREATE MATERIALIZED VIEW warranty_orders REFRESH FAST AS
 SELECT order_id, line_item_id, product_id FROM order_items o
 WHERE EXISTS
 (SELECT * FROM inventories i WHERE o.product_id = i.product_id
 AND i.quantity_on_hand IS NOT NULL)
 UNION
 SELECT order_id, line_item_id, product_id FROM order_items
 WHERE quantity > 5;

The materialized view warranty_orders requires that materialized view logs be
defined on order_items (with product_id as a join column) and on inventories (with
quantity_on_hand as a filter column). See "Specifying Filter Columns for Materialized
View Logs: Example" and "Specifying Join Columns for Materialized View Logs:
Example".

Creating a Nested Materialized View: Example

The following example uses the materialized view from the preceding example as a
master table to create a materialized view tailored for a particular sales representative
in the sample oe schema:

CREATE MATERIALIZED VIEW my_warranty_orders
 AS SELECT w.order_id, w.line_item_id, o.order_date
 FROM warranty_orders w, orders o
 WHERE o.order_id = o.order_id
 AND o.sales_rep_id = 165;

CREATE MATERIALIZED VIEW LOG
Purpose

Use the CREATE MATERIALIZED VIEW LOG statement to create a materialized view log,
which is a table associated with the master table of a materialized view.

Chapter 14
CREATE MATERIALIZED VIEW LOG

14-38

Note:

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward
compatibility.

Materialized view logs are used for two types of materialized view refreshes: fast refresh and
synchronous refresh.

Fast refresh uses a conventional materialized view log. During a fast refresh (also called an
incremental refresh), when DML changes are made to master table data, Oracle Database
stores rows describing those changes in the materialized view log and then uses the
materialized view log to refresh materialized views based on the master table.

Synchronous refresh uses a special type of materialized view log called a staging log.
During a synchronous refresh, DML changes are first described in the staging log and then
applied to the master tables and the materialized views simultaneously. This guarantees that
the master table data and materialized view data are in sync throughout the refresh process.
This refresh method is useful in data warehousing environments.

Without a materialized view log, Oracle Database must reexecute the materialized view query
to refresh the materialized view. This process is called a complete refresh. Usually, a
complete refresh takes more time to complete than a fast refresh or a synchronous refresh.

A materialized view log is located in the master database in the same schema as the master
table. A master table can have only one materialized view log defined on it.

To fast refresh or synchronous refresh a materialized join view, you must create a
materialized view log for each of the tables referenced by the materialized view.

Fast refresh supports two types of materialized view logs: timestamp-based materialized view
logs and commit SCN-based materialized view logs. Timestamp-based materialized view logs
use timestamps and require some setup operations when preparing to refresh the
materialized view. Commit SCN-based materialized view logs use commit SCN data rather
than timestamps, which removes the need for the setup operations and thus can improve the
speed of the materialized view refresh. If you specify the COMMIT SCN clause, then a commit
SCN-based materialized view log is created. Otherwise, a time-stamp based materialized
view log is created. Note that only new materialized view logs can take advantage of COMMIT
SCN. Existing materialized view logs cannot be altered to add COMMIT SCN unless they are
dropped and recreated. Refer to Oracle Database Data Warehousing Guide for more
information.

Synchronous refresh supports only timestamp-based staging logs.

Chapter 14
CREATE MATERIALIZED VIEW LOG

14-39

See Also:

• CREATE MATERIALIZED VIEW , ALTER MATERIALIZED VIEW ,
Oracle Database Concepts, Oracle Database Data Warehousing Guide,
and Oracle Database Administrator’s Guide for information on
materialized views in general

• ALTER MATERIALIZED VIEW LOG for information on modifying a
materialized view log

• DROP MATERIALIZED VIEW LOG for information on dropping a
materialized view log

• Oracle Database Utilities for information on using direct loader logs

Prerequisites

The privileges required to create a materialized view log directly relate to the privileges
necessary to create the underlying objects associated with a materialized view log.

• If you own the master table, then you can create an associated materialized view
log if you have the CREATE TABLE privilege.

• If you are creating a materialized view log for a table in another user's schema,
then you must have the CREATE ANY TABLE and COMMENT ANY TABLE system
privileges, as well as either the READ or SELECT object privilege on the master table
or the READ ANY TABLE or SELECT ANY TABLE system privilege.

In either case, the owner of the materialized view log must have sufficient quota in the
tablespace intended to hold the materialized view log or must have the UNLIMITED
TABLESPACE system privilege.

See Also:

Oracle Database Data Warehousing Guide for more information about the
prerequisites for creating a materialized view log

Restrictions

The statement CREATE MATERIALIZED VIEW LOG does not support the following
columns in the Master Table:

• Hidden columns

• Identity columns

• BFILE columns

• Temporal validity columns

Chapter 14
CREATE MATERIALIZED VIEW LOG

14-40

Syntax

create_materialized_vw_log::=

CREATE MATERIALIZED VIEW LOG ON

schema .

table

SHARING =
METADATA

NONE

physical_attributes_clause

TABLESPACE tablespace

logging_clause

CACHE

NOCACHE parallel_clause table_partitioning_clauses

mv_log_purge_clause for_refresh_clause

;

(physical_attributes_clause::=, logging_clause::=, parallel_clause::=,
table_partitioning_clauses::= (in CREATE TABLE), new_values_clause::=,
mv_log_purge_clause::=, for_refresh_clause::=.)

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

Chapter 14
CREATE MATERIALIZED VIEW LOG

14-41

parallel_clause::=

NOPARALLEL

PARALLEL

integer

new_values_clause::=

INCLUDING

EXCLUDING

NEW VALUES

mv_log_purge_clause::=

PURGE

IMMEDIATE

SYNCHRONOUS

ASYNCHRONOUS

START WITH datetime_expr

NEXT datetime_expr

REPEAT INTERVAL interval_expr

START WITH datetime_expr NEXT datetime_expr

REPEAT INTERVAL interval_expr

for_refresh_clause::=

FOR
SYNCHRONOUS REFRESH USING staging_log_name

FAST REFRESH

Semantics

schema

Specify the schema containing the materialized view log master table. If you omit
schema, then Oracle Database assumes the master table is contained in your own
schema. Oracle Database creates the materialized view log in the schema of its
master table. You cannot create a materialized view log for a table in the schema of
the user SYS.

Chapter 14
CREATE MATERIALIZED VIEW LOG

14-42

table

Specify the name of the master table for which the materialized view log is to be created.
Oracle Database encrypts any columns in the materialized view log that are encrypted in the
master table, using the same encryption algorithm.

Restrictions on Master Tables of Materialized View Logs

The following restrictions apply to master tables of materialized view logs:

• You cannot create a materialized view log for a temporary table or for a view.

• You cannot create a materialized view log for a master table with a virtual column.

See Also:

"Creating a Materialized View Log for Fast Refresh: Examples"

SHARING

Use the sharing clause if you want to create the object in an application root in the context of
an application maintenance. This type of object is called an application common object and it
can be shared with the application PDBs that belong to the application root.

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each container.
This type of object is referred to as a metadata-linked application common object.

• NONE - The object is not shared and can only be accessed in the application root.

physical_attributes_clause

Use the physical_attributes_clause to define physical and storage characteristics for the
materialized view log.

See Also:

physical_attributes_clause and storage_clause for a complete description these
clauses, including default values

TABLESPACE Clause

Specify the tablespace in which the materialized view log is to be created. If you omit this
clause, then the database creates the materialized view log in the default tablespace of the
schema of the materialized view log.

logging_clause

Specify either LOGGING or NOLOGGING to establish the logging characteristics for the
materialized view log. The default is the logging characteristic of the tablespace in which the
materialized view log resides.

Chapter 14
CREATE MATERIALIZED VIEW LOG

14-43

See Also:

logging_clause for a full description of this clause

CACHE | NOCACHE

For data that will be accessed frequently, CACHE specifies that the blocks retrieved for
this log are placed at the most recently used end of the least recently used (LRU) list
in the buffer cache when a full table scan is performed. This attribute is useful for small
lookup tables.

NOCACHE specifies that the blocks are placed at the least recently used end of the LRU
list. The default is NOCACHE.

Note:

NOCACHE has no effect on materialized view logs for which you specify KEEP in
the storage_clause.

See Also:

CREATE TABLE for information about specifying CACHE or NOCACHE

parallel_clause

The parallel_clause lets you indicate whether parallel operations will be supported
for the materialized view log.

For complete information on this clause, refer to parallel_clause in the documentation
on CREATE TABLE.

table_partitioning_clauses

Use the table_partitioning_clauses to indicate that the materialized view log is
partitioned on specified ranges of values or on a hash function. Partitioning of
materialized view logs is the same as partitioning of tables.

See Also:

table_partitioning_clauses in the CREATE TABLE documentation

WITH Clause

Use the WITH clause to indicate whether the materialized view log should record the
primary key, rowid, object ID, or a combination of these row identifiers when rows in

Chapter 14
CREATE MATERIALIZED VIEW LOG

14-44

the master are changed. You can also use this clause to add a sequence to the materialized
view log to provide additional ordering information for its records.

This clause also specifies whether the materialized view log records additional columns that
might be referenced as filter columns, which are non-primary-key columns referenced by
subquery materialized views, or join columns, which are non-primary-key columns that
define a join in the subquery WHERE clause.

If you omit this clause, or if you specify the clause without PRIMARY KEY, ROWID, or OBJECT ID,
then the database stores primary key values by default. However, the database does not
store primary key values implicitly if you specify only OBJECT ID or ROWID at create time. A
primary key log, created either explicitly or by default, performs additional checking on the
primary key constraint.

OBJECT ID

Specify OBJECT ID to indicate that the system-generated or user-defined object identifier of
every modified row should be recorded in the materialized view log.

Restriction on OBJECT ID

You can specify OBJECT ID only when creating a log on an object table, and you cannot
specify it for storage tables.

PRIMARY KEY

Specify PRIMARY KEY to indicate that the primary key of all rows changed should be recorded
in the materialized view log.

ROWID

Specify ROWID to indicate that the rowid of all rows changed should be recorded in the
materialized view log.

SEQUENCE

Specify SEQUENCE to indicate that a sequence value providing additional ordering information
should be recorded in the materialized view log. Sequence numbers are necessary to support
fast refresh after some update scenarios.

See Also:

Oracle Database Data Warehousing Guide for more information on the use of
sequence numbers in materialized view logs and for examples that use this clause

COMMIT SCN

Without the COMMIT SCN clause, the materialized view log is based on timestamps and
requires some setup operations when preparing to refresh the materialized view. Specify
COMMIT SCN to instruct the database to use commit SCN data rather than timestamps. This
setting removes the need for the setup operations and thus can improve the speed of the
materialized view refresh.

You can create the following types of local materialized views (including both ON COMMIT and
ON DEMAND) on master tables with commit SCN-based materialized view logs:

• Materialized aggregate views, including materialized aggregate views on a single table

Chapter 14
CREATE MATERIALIZED VIEW LOG

14-45

• Materialized join views

• Primary-key-based and rowid-based single table materialized views

• UNION ALL materialized views, where each UNION ALL branch is one of the above
materialized view types

You cannot create remote materialized views on master tables with commit SCN-
based materialized view logs.

Restrictions on COMMIT SCN

The following restrictions apply to COMMIT SCN:

• Use of COMMIT SCN on a table with one or more LOB columns is not supported and
causes ORA-32421.

• Creating a materialized view on master tables with different types of materialized
view logs (that is, a master table with timestamp-based materialized view logs and
a master table with commit SCN-based materialized view logs) is not supported
and causes ORA-32414.

• If you specify COMMIT SCN, then you cannot specify FOR SYNCHRONOUS REFRESH.

column

Specify the columns whose values you want to be recorded in the materialized view
log for all rows that are changed. Typically these columns are filter columns and join
columns.

Restrictions on the WITH Clause

This clause is subject to the following restrictions:

• You can specify only one PRIMARY KEY, one ROWID, one OBJECT ID, one SEQUENCE,
and one column list for each materialized view log.

• Primary key columns are implicitly recorded in the materialized view log.
Therefore, you cannot specify any of the following combinations if column contains
one of the primary key columns:

WITH ... PRIMARY KEY ... (column)
WITH ... (column) ... PRIMARY KEY
WITH (column)

See Also:

• CREATE MATERIALIZED VIEW for information on explicit and implicit
inclusion of materialized view log values

• Oracle Database Administrator’s Guide for more information about filter
columns and join columns

• "Specifying Filter Columns for Materialized View Logs: Example" and
"Specifying Join Columns for Materialized View Logs: Example"

Chapter 14
CREATE MATERIALIZED VIEW LOG

14-46

NEW VALUES Clause

The NEW VALUES clause lets you determine whether Oracle Database saves both old and new
values for update DML operations in the materialized view log.

See Also:

"Including New Values in Materialized View Logs: Example"

INCLUDING

Specify INCLUDING to save both new and old values in the log. If this log is for a table on
which you have a single-table materialized aggregate view, and if you want the materialized
view to be eligible for fast refresh, then you must specify INCLUDING.

EXCLUDING

Specify EXCLUDING to disable the recording of new values in the log. This is the default. You
can use this clause to avoid the overhead of recording new values. Do not use this clause if
you have a fast-refreshable single-table materialized aggregate view defined on the master
table.

mv_log_purge_clause

Use this clause to specify the purge time for the materialized view log.

• IMMEDIATE SYNCHRONOUS: the materialized view log is purged immediately after refresh.
This is the default.

• IMMEDIATE ASYNCHRONOUS: the materialized view log is purged in a separate Oracle
Scheduler job after the refresh operation.

• START WITH, NEXT, and REPEAT INTERVAL set up a scheduled purge that is independent of
the materialized view refresh and is initiated during CREATE or ALTER MATERIALIZED VIEW
LOG statement. This is very similar to scheduled refresh syntax in a CREATE or ALTER
MATERIALIZED VIEW statement:

– The START WITH datetime expression specifies when the purge starts.

– The NEXT datetime expression computes the next run time for the purge.

If you specify REPEAT INTERVAL, then the next run time will be: SYSDATE + interval_expr.

A CREATE MATERIALIZED VIEW LOG statement with a scheduled purge creates an Oracle
Scheduler job to perform log purge. The job calls the DBMS_SNAPSHOT.PURGE_LOG
procedure to purge the materialized view logs. This process allows you to amortize the
purging costs over several materialized view refreshes.

Restriction on mv_log_purge_clause

This clause is not valid for materialized view logs on temporary tables.

Chapter 14
CREATE MATERIALIZED VIEW LOG

14-47

See Also:

Oracle Database Data Warehousing Guide for more information on purging
materialized view logs

for_refresh_clause

Use this clause to specify the refresh method for which the materialized view log will
be used. You can specify only one refresh method for any given master table.

FOR SYNCHRONOUS REFRESH

Specify this clause to create a staging log that can be used for synchronous refresh.
Use staging_log_name to specify the name of the staging log to be created. The
staging log will be created in the schema in which the master table resides.

After you create the staging log, you cannot perform DML operations directly on the
master table. You must use the procedures in the DBMS_SYNC_REFRESH package to
prepare and execute change data operations.

Restrictions on Synchronous Refresh

The following restrictions apply to synchronous refresh:

• If you specify FOR SYNCHRONOUS REFRESH, then you cannot specify COMMIT SCN.

• To be eligible for synchronous refresh, the master table must satisfy the following
criteria:

– If the master table is a fact table, then it must be partitioned.

– The master table must have a key. If the master table is a dimension table,
then it must have a primary key defined on it. If the master table is a fact table,
then the set of columns that are the foreign keys of the dimension tables
joined to the fact table are deemed to be the key.

– The master table cannot have a non-NULL Virtual Private Database (VPD)
policy or a trigger defined on it.

Oracle Database may allow you to create a staging log on a master table even if
all of the preceding criteria are not met. However, the master table will not be
eligible for synchronous refresh.

• Any existing materialized views on the master table must be refresh-on-demand
materialized views. If an existing materialized view is a refresh-on-commit
materialized view, then you must change it to a refresh-on-demand materialized
view with the alter_mv_refresh clause of ALTER MATERIALIZED VIEW before you
create the staging log.

Chapter 14
CREATE MATERIALIZED VIEW LOG

14-48

See Also:

• Oracle Database Data Warehousing Guide for the complete steps for using
synchronous refresh

• Oracle Database PL/SQL Packages and Types Reference for information on
the DBMS_SYNC_REFRESH package

FOR FAST REFRESH

Specify this clause to create a materialized view log that can be used for fast refresh. The
materialized view log will be created in the same schema in which the master table resides.
This is the default.

Examples

Creating a Materialized View Log for Fast Refresh: Examples

The following statement creates a materialized view log on the oe.customers table that
specifies physical and storage characteristics:

CREATE MATERIALIZED VIEW LOG ON customers
 PCTFREE 5
 TABLESPACE example
 STORAGE (INITIAL 10K);

The materialized view log on customers supports fast refresh for primary key materialized
views only.

The following statement creates another version of the materialized view log with the ROWID
clause, which enables fast refresh for more types of materialized views:

CREATE MATERIALIZED VIEW LOG ON customers WITH PRIMARY KEY, ROWID;

This materialized view log on customers makes fast refresh possible for rowid materialized
views and for materialized join views. To provide for fast refresh of materialized aggregate
views, you must also specify the SEQUENCE and INCLUDING NEW VALUES clauses, as shown in
the example that follows.

Specify a Purge Repeat Interval for a Materialized View Log: Example

The following statement creates a materialized view log on the oe.orders table. The contents
of the log will be purged once every five days, beginning five days after the creation date of
the materialized view log:

CREATE MATERIALIZED VIEW LOG ON orders
 PCTFREE 5
 TABLESPACE example
 STORAGE (INITIAL 10K)
 PURGE REPEAT INTERVAL '5' DAY;

Specifying Filter Columns for Materialized View Logs: Example

The following statement creates a materialized view log on the sh.sales table and is used in
"Creating Materialized Aggregate Views: Example". It specifies as filter columns all of the
columns of the table referenced in that materialized view.

Chapter 14
CREATE MATERIALIZED VIEW LOG

14-49

CREATE MATERIALIZED VIEW LOG ON sales
 WITH ROWID, SEQUENCE(amount_sold, time_id, prod_id)
 INCLUDING NEW VALUES;

Specifying Join Columns for Materialized View Logs: Example

The following statement creates a materialized view log on the order_items table of
the sample oe schema. The log records primary keys and product_id, which is used
as a join column in "Creating a Fast Refreshable Materialized View: Example".

CREATE MATERIALIZED VIEW LOG ON order_items WITH (product_id);

Including New Values in Materialized View Logs: Example

The following example creates a materialized view log on the
oe.product_information table that specifies INCLUDING NEW VALUES:

CREATE MATERIALIZED VIEW LOG ON product_information
 WITH ROWID, SEQUENCE (list_price, min_price, category_id), PRIMARY KEY
 INCLUDING NEW VALUES;

You could create the following materialized aggregate view to use the
product_information log:

CREATE MATERIALIZED VIEW products_mv
 REFRESH FAST ON COMMIT
 AS SELECT SUM(list_price - min_price), category_id
 FROM product_information
 GROUP BY category_id;

This materialized view is eligible for fast refresh because the log defined on its master
table includes both old and new values.

Creating a Staging Log for Synchronous Refresh: Example

The following statement creates a staging log on the sh.sales fact table. The staging
log is named mystage_log and is stored in the sh schema. It can be used for
synchronous refresh.

CREATE MATERIALIZED VIEW LOG ON sales
 PCTFREE 5
 TABLESPACE example
 STORAGE (INITIAL 10K)
 FOR SYNCHRONOUS REFRESH USING mystage_log;

CREATE MATERIALIZED ZONEMAP
Purpose

Use the CREATE MATERIALIZED ZONEMAP statement to create a zone map.

A zone map is a special type of materialized view that stores information about zones.
A zone is a set of contiguous data blocks on disk that stores the values of one or more
table columns. Multiple zones are usually required to store all of the values of the table
columns. A zone map tracks the minimum and maximum table column values stored in
each zone.

Zone maps enable you to reduce the I/O and CPU costs of table scans. When a SQL
statement contains predicates on columns in a zone map, the database compares the

Chapter 14
CREATE MATERIALIZED ZONEMAP

14-50

predicate values to the minimum and maximum table column values stored in each zone to
determine which zones to read during SQL execution.

Oracle Database supports the following types of zone maps:

• A basic zone map is defined on a single table and maintains zone information for
specified columns in that table.

You can create a basic zone map either by specifying the create_zonemap_on_table
clause, or by specifying the create_zonemap_as_subquery clause where the FROM clause
of the defining subquery specifies a single table.

• A join zone map is defined on two or more joined tables and maintains zone information
for specified columns in any of the joined tables.

You can create a join zone map by specifying the create_zonemap_as_subquery clause.
The FROM clause of the defining subquery must specify a table that is left outer joined with
one or more other tables.

Zone maps are commonly used with star schemas in data warehousing environments.
However, a star schema is not a requirement for creating a zone map. In either case, this
reference uses star schema terminology to refer to the tables in a zone map. In a join zone
map, the outer table of the join(s) is referred to as the fact table, and the tables with which
this table is joined are referred to as dimension tables. Collectively these tables are called
the base tables of the zone map. In a basic zone map, the single table on which the zone
map is defined is referred to as both the fact table and the base table of the zone map.

A base table of a zone map can be a partitioned or composite-partitioned table. In this case,
the zone map maintains minimum and maximum column values for each partition (and
subpartition) as well as for each zone.

You can create zone maps for use with or without attribute clustering:

• To create a zone map for use with attribute clustering, use either of the following
methods:

– Use the CREATE MATERIALIZED ZONEMAP statement and include attribute clustered
columns in the zone map. Refer to the attribute_clustering_clause of CREATE TABLE
and the attribute_clustering_clause clause of ALTER TABLE for more information.

– Specify the WITH MATERIALIZED ZONEMAP clause while creating or modifying an
attribute clustered table. Refer to the zonemap_clause of CREATE TABLE and the
MODIFY CLUSTERING clause of ALTER TABLE for more information.

• To create a zone map for use without attribute clustering, use the CREATE MATERIALIZED
ZONEMAP statement and include columns that are not attribute clustered in the zone map.

See Also:

Oracle Database Data Warehousing Guide for more information on zone maps

Prerequisites

To create a zone map in your own schema:

• You must have the CREATE MATERIALIZED VIEW system privilege and either the CREATE
TABLE or CREATE ANY TABLE system privilege.

Chapter 14
CREATE MATERIALIZED ZONEMAP

14-51

• You must have access to any base tables of the zone map that you do not own,
either through a READ or SELECT object privilege on each of the tables or through
the READ ANY TABLE or SELECT ANY TABLE system privilege.

To create a zone map in another user's schema:

• You must have the CREATE ANY MATERIALIZED VIEW system privilege.

• The owner of the zone map must have the CREATE TABLE system privilege. The
owner must also have access to any base tables of the zone map that the schema
owner does not own, either through a READ or SELECT object privilege on each of
the tables or through the READ ANY TABLE or SELECT ANY TABLE system privilege.

To create a refresh-on-commit zone map (REFRESH ON COMMIT clause), in addition to the
preceding privileges, you must have the ON COMMIT REFRESH object privilege on any
base tables that you do not own or you must have the ON COMMIT REFRESH system
privilege. Unlike materialized views, you can create a refresh-on-commit zone map
even if there are no materialized view logs on the base tables.

When you create a zone map, Oracle Database creates one internal table and at least
one index, all in the schema of the zone map. Oracle Database uses these objects to
maintain the zone map data. You must have the privileges necessary to create these
objects, and you must have sufficient quota in the target tablespace to store these
objects or you must have the UNLIMITED TABLESPACE system privilege.

Syntax

create_materialized_zonemap::=

create_zonemap_on_table

create_zonemap_as_subquery
;

create_zonemap_on_table::=

CREATE MATERIALIZED ZONEMAP

schema .

zonemap_name

zonemap_attributes zonemap_refresh_clause

ENABLE

DISABLE
PRUNING

ON

schema . table

materialized_view
(column

,

)

Chapter 14
CREATE MATERIALIZED ZONEMAP

14-52

create_zonemap_as_subquery::=

CREATE MATERIALIZED ZONEMAP

schema .

zonemap_name

zonemap_attributes zonemap_refresh_clause

ENABLE

DISABLE
PRUNING

AS query_block

zonemap_attributes::=

TABLESPACE tablespace

SCALE integer

CACHE

NOCACHE

zonemap_refresh_clause::=

REFRESH

FAST

COMPLETE

FORCE

ON

DEMAND

COMMIT

LOAD

DATA MOVEMENT

LOAD DATA MOVEMENT

Note:

When specifying the zonemap_refresh_clause, you must specify at least one
clause after the REFRESH keyword.

Semantics

create_zonemap_on_table

Use this clause to create a basic zone map.

ON Clause

Chapter 14
CREATE MATERIALIZED ZONEMAP

14-53

In the ON clause, first specify the fact table for the zone map, and then inside the
parentheses specify one or more columns of the fact table to be included in the zone
map.

For each specified fact table column, Oracle creates two columns in the zone map.
These two columns contain the minimum and maximum values of the fact table
column in each zone. Oracle generates names for the zone map columns of the form
MIN_1_column and MAX_1_column for the first specified fact table column, MIN_2_column
and MAX_2_column for the second specified fact table column, and so on.

If you omit schema, then Oracle assumes the fact table is in your own schema. The fact
table can be a table or a materialized view

create_zonemap_as_subquery

Use this clause to create a basic zone map or a join zone map. To create a basic zone
map, specify a single base table in the FROM clause of the defining subquery. To create
a join zone map, specify a table that is left outer joined to one or more other tables in
the FROM clause of the defining subquery.

column_alias

You can specify a column alias for each table column to be included in the zone map.
The column alias list explicitly resolves any column name conflict, eliminating the need
to specify aliases in the SELECT list of the defining subquery. If you specify any column
alias in this clause, then you must specify an alias for each column in the SELECT list of
the defining subquery. The first column alias you specify must be ZONE_ID$, which
corresponds to the first column in the SELECT list, the SYS_OP_ZONE_ID function
expression.

AS query_block

Specify the defining subquery of the zone map. The subquery must consist of a single
query_block. You can specify only the SELECT, FROM, WHERE, and GROUP BY clauses of
query_block, and those clauses must satisfy the following requirements:

• The first column in the SELECT list must be the SYS_OP_ZONE_ID function
expression. Refer to SYS_OP_ZONE_ID for more information.

• The remaining columns in the SELECT list must be function expressions that return
minimum and maximum values for the columns you want to include in the zone
map. For each column, specify a pair of function expressions of the following form:

MIN([table.]column), MAX([table.]column)

For table, specify the name or table alias for the table that contains the column.
The table can be a fact table or dimension table. For column, specify the name or
column alias for the column.

• The FROM clause can specify a fact table alone, or a fact table and one or more
dimension tables with each dimension table left outer joined to the fact table. You
can specify LEFT [OUTER] JOIN syntax in the FROM clause, or apply the outer join
operator (+) to dimension table columns in the join condition in the WHERE clause.
You can optionally specify a table alias for any of the tables in the FROM clause.
Fact tables and dimension tables can be tables or materialized views.

• In the WHERE clause, you can specify only left outer join conditions using the outer
join operator(+).

Chapter 14
CREATE MATERIALIZED ZONEMAP

14-54

• You must specify a GROUP BY clause with the same SYS_OP_ZONE_ID function expression
that you specified for the first column of the SELECT list.

schema

Specify the schema to contain the zone map. If you omit schema, then Oracle Database
creates the zone map in your schema.

zonemap_name

Specify the name of the zone map to be created. The name must satisfy the requirements
listed in "Database Object Naming Rules ".

zonemap_attributes

Use this clause to specify the following attributes for the zone map: TABLESPACE, SCALE,
PCTFREE, PCTUSED, and CACHE or NOCACHE.

TABLESPACE

Specify the tablespace in which the zone map is to be created. If you omit this clause, then
Oracle Database creates the zone map in the default tablespace of the schema containing
the zone map.

SCALE

This clause lets you specify the zone map scale, which determines the number of contiguous
disk blocks that form a zone. The scale is an integer value that represents a power of 2. For
example, a scale of 10 means up to 2 raised to the 10th power, or 1024, contiguous disk
blocks will form a zone. For integer, specify a value between 4 and 16, inclusive. The
recommended value is 10; this is the default.

PCTFREE

Specify an integer representing the percentage of space in each data block of the zone map
reserved for future updates to rows of the zone map. The integer value must be between 0
and 99, inclusive. The default value is 10. Refer to physical_attributes_clause for more
information on the PCTFREE parameter.

PCTUSED

Specify an integer representing the minimum percentage of used space that Oracle
maintains for each data block of the zone map. The integer value must be between 0 and 99,
inclusive. The default value is 40. Refer to physical_attributes_clause for more information on
the PCTUSED parameter.

CACHE | NOCACHE

For data that will be accessed frequently, CACHE specifies that the blocks retrieved for this
zone map are placed at the most recently used end of the least recently used (LRU) list in the
buffer cache when a full table scan is performed.

NOCACHE specifies that the blocks are placed at the least recently used end of the LRU list.
The default is NOCACHE.

zonemap_refresh_clause

Use this clause to specify the default refresh method and mode for the zone map. If you do
not specify a refresh method (FAST, COMPLETE, or FORCE), then FORCE is the default method. If

Chapter 14
CREATE MATERIALIZED ZONEMAP

14-55

you do not specify a refresh mode (ON clauses), then ON LOAD DATA MOVEMENT is the
default mode.

FAST

Specify FAST to indicate the fast refresh method, which performs the refresh according
to the changes that have occurred to the base tables. While zone maps are internally
implemented as a type of materialized view, materialized view logs on base tables are
not needed to perform a fast refresh of a zone map

COMPLETE

Specify COMPLETE to indicate the complete refresh method, which is implemented by
executing the defining query of the zone map. If you request a complete refresh, then
Oracle Database performs a complete refresh even if a fast refresh is possible.

FORCE

Specify FORCE to indicate that when a refresh occurs, Oracle Database will perform a
fast refresh if one is possible or a complete refresh if fast refresh is not possible. This
is the default.

ON DEMAND

Specify ON DEMAND to indicate that database will not refresh the zone map unless you
manually issue an ALTER MATERIALIZED ZONEMAP ... REBUILD statement. If you specify
this clause, then the zone map is referred to as a refresh-on-demand zone map. Refer
to REBUILD in the documentation on ALTER MATERIALIZED ZONEMAP for more
information on rebuilding a zone map.

ON COMMIT

Specify ON COMMIT to indicate that a refresh is to occur whenever the database
commits a transaction that operates on a base table of the zone map. If you specify
this clause, then the zone map is referred to as a refresh-on-commit zone map. This
clause may increase the time taken to complete the commit, because the database
performs the refresh operation as part of the commit process.

ON LOAD

Specify ON LOAD to indicate that a refresh is to occur at the end of a direct-path insert
(serial or parallel) resulting either from an INSERT or a MERGE operation.

ON DATA MOVEMENT

Specify ON DATA MOVEMENT to indicate that a refresh is to occur at the end of the
following data movement operations:

• Data redefinition using the DBMS_REDEFINITION package

• Table partition maintenance operations that are specified by the following clauses
of ALTER TABLE: coalesce_table, merge_table_partitions,
move_table_partition, and split_table_partition

ON LOAD DATA MOVEMENT

Specify ON LOAD DATA MOVEMENT to indicate that a refresh is to occur at the end of a
direct-path insert or a data movement operation. This is the default.

Chapter 14
CREATE MATERIALIZED ZONEMAP

14-56

ENABLE | DISABLE PRUNING

This clause lets you control the use of the zone map for pruning.

• Specify ENABLE PRUNING to enable use of the zone map for pruning. This is the default.

• Specify DISABLE PRUNING to disable use of the zone map for pruning. The optimizer will
not use the zone map for pruning, but the database will continue to maintain the zone
map.

If the setting is ENABLE PRUNING, then the optimizer will consider using the zone map for
pruning during SQL operations that include any of the following conditions:

• Comparison conditions: =, <=, <, >=, >
The condition must be a simple comparison condition that has a column name on one
side and a literal or bind variable on the other side. For example:

WHERE country_name = 'United States of America'
WHERE country_name = :country1
WHERE 10000 >= salary

• IN condition

The IN condition must have a column name on the left side and an expression list of
literals or bind variables on the right side. For example:

WHERE country_name IN ('Germany', 'India', 'United Kingdom')
WHERE country_name IN (:country1, :country2, :country3)
WHERE prod_id IN (20, 48, 132, 143)

• LIKE condition

The LIKE condition must have a column name on the left side and a text literal on the
right side. The text literal is the pattern for the LIKE condition and it must contain at least
one pattern matching character. Valid pattern matching characters are the underscore (_),
which matches exactly one character, and the percent sign (%), which matches zero or
more characters. The first character of the pattern cannot be a pattern matching
character. For example:

WHERE prod_name LIKE 'DVD%'
WHERE prod_name LIKE 'Model%Cordless%Battery'
WHERE prod_name LIKE 'CD%Pack of _'

See Also:

Conditions for more information on conditions

Restrictions on Zone Maps

Zone maps are subject to the following restrictions:

• A table can be a fact table for at most one zone map. A table can be a dimension table
for multiple zone maps. A table can be a fact table for one zone map and a dimension
table for other zone maps.

• A base table of a zone map cannot be an external table, an index-organized table, a
remote table, a temporary table, or a view.

Chapter 14
CREATE MATERIALIZED ZONEMAP

14-57

• A base table of a zone map cannot be in the schema of the user SYS.

• A zone map cannot be partitioned.

• You can define a zone map on a column of any scalar data type other than BFILE,
BLOB, CLOB, LONG, LONG RAW, or NCLOB.

• All joins specified in the defining subquery of a zone map must be left outer
equijoins with the fact table on the left side.

• If the FROM clause of the defining subquery for a zone map references a
materialized view, then you must refresh that materialized view before refreshing
the zone map.

• You cannot perform DML operations directly on a zone map.

• Each column of the zone map must have one of the following declared collations:
BINARY or USING_NLS_COMP.

Examples

The following statement creates a basic zone map called sales_zmap. The zone map
tracks columns cust_id and prod_id in the table sales.

CREATE MATERIALIZED ZONEMAP sales_zmap
 ON sales(cust_id, prod_id);

The following statement creates a basic zone map called sales_zmap that is similar to
the zone map created in the previous example. However, this statement uses a
defining subquery to create the zone map.

CREATE MATERIALIZED ZONEMAP sales_zmap
 AS SELECT SYS_OP_ZONE_ID(rowid),
 MIN(cust_id), MAX(cust_id),
 MIN(prod_id), MAX(prod_id)
 FROM sales
 GROUP BY SYS_OP_ZONE_ID(rowid);

The following statement creates a join zone map called sales_zmap. The fact table for
the zone map is sales and the zone map has one dimension table: customers. The
zone map tracks two columns in the dimension table: cust_state_province and
cust_city.

CREATE MATERIALIZED ZONEMAP sales_zmap
 AS SELECT SYS_OP_ZONE_ID(s.rowid),
 MIN(cust_state_province), MAX(cust_state_province),
 MIN(cust_city), MAX(cust_city)
 FROM sales s
 LEFT OUTER JOIN customers c ON s.cust_id = c.cust_id
 GROUP BY SYS_OP_ZONE_ID(s.rowid);

The following statement creates a join zone map called sales_zmap. The fact table for
the zone map is sales and the zone map has two dimension tables: products and
customers. The zone map tracks five columns in the dimension tables: prod_category
and prod_subcategory in the products table, and country_id, cust_state_province,
and cust_city in the customers table.

CREATE MATERIALIZED ZONEMAP sales_zmap
 AS SELECT SYS_OP_ZONE_ID(s.rowid),
 MIN(prod_category), MAX(prod_category),
 MIN(prod_subcategory), MAX(prod_subcategory),

Chapter 14
CREATE MATERIALIZED ZONEMAP

14-58

 MIN(country_id), MAX(country_id),
 MIN(cust_state_province), MAX(cust_state_province),
 MIN(cust_city), MAX(cust_city)
 FROM sales s
 LEFT OUTER JOIN products p ON s.prod_id = p.prod_id
 LEFT OUTER JOIN customers c ON s.cust_id = c.cust_id
 GROUP BY sys_op_zone_id(s.rowid);

The following statement creates a join zone map that is identical to the zone map created in
the previous example. The only difference is that the previous example uses the LEFT OUTER
JOIN syntax in the FROM clause and the following example uses the outer join operator (+) in
the WHERE clause.

CREATE MATERIALIZED ZONEMAP sales_zmap
 AS SELECT SYS_OP_ZONE_ID(s.rowid),
 MIN(prod_category), MAX(prod_category),
 MIN(prod_subcategory), MAX(prod_subcategory),
 MIN(country_id), MAX(country_id),
 MIN(cust_state_province), MAX(cust_state_province),
 MIN(cust_city), MAX(cust_city)
 FROM sales s, products p, customers c
 WHERE s.prod_id = p.prod_id(+) AND
 s.cust_id = c.cust_id(+)
 GROUP BY sys_op_zone_id(s.rowid);

CREATE OPERATOR
Purpose

Use the CREATE OPERATOR statement to create a new operator and define its bindings.

Operators can be referenced by indextypes and by SQL queries and DML statements. The
operators, in turn, reference functions, packages, types, and other user-defined objects.

See Also:

Oracle Database Data Cartridge Developer's Guide and Oracle Database Concepts
for a discussion of these dependencies and of operators in general

Prerequisites

To create an operator in your own schema, you must have the CREATE OPERATOR system
privilege. To create an operator in another schema, you must have the CREATE ANY OPERATOR
system privilege. In either case, you must also have the EXECUTE object privilege on the
functions and operators referenced.

Chapter 14
CREATE OPERATOR

14-59

Syntax

create_operator::=

CREATE

OR REPLACE

OPERAT0R

schema .

operator binding_clause ;

SHARING =
METADATA

NONE

binding_clause::=

BINDING (parameter_type

,

) RETURN return_type

implementation_clause

using_function_clause

,

implementation_clause::=

ANCILLARY TO primary_operator (parameter_type

,

)

,

context_clause

context_clause::=

WITH INDEX CONTEXT , SCAN CONTEXT implementation_type

COMPUTE ANCILLARY DATA

WITH COLUMN CONTEXT

using_function_clause::=

USING

schema .

package .

type .

function_name

Chapter 14
CREATE OPERATOR

14-60

Semantics

OR REPLACE

Specify OR REPLACE to replace the definition of the operator schema object.

Restriction on Replacing an Operator

You can replace the definition only if the operator has no dependent objects, such as
indextypes supporting the operator.

schema

Specify the schema containing the operator. If you omit schema, then the database creates
the operator in your own schema.

operator

Specify the name of the operator to be created. The name must satisfy the requirements
listed in "Database Object Naming Rules ".

binding_clause

Use the binding_clause to specify one or more parameter data types (parameter_type) for
binding the operator to a function. The signature of each binding—the sequence of the data
types of the arguments to the corresponding function—must be unique according to the rules
of overloading.

The parameter_type can itself be an object type. If it is, then you can optionally qualify it with
its schema.

Restriction on Binding Operators

You cannot specify a parameter_type of REF, LONG, or LONG RAW.

See Also:

Oracle Database PL/SQL Language Reference for more information about
overloading

RETURN Clause

Specify the return data type for the binding.

The return_type can itself be an object type. If so, then you can optionally qualify it with its
schema.

Restriction on Binding Return Data Type

You cannot specify a return_type of REF, LONG, or LONG RAW.

SHARING

Use the sharing clause if you want to create the object in an application root in the context of
an application maintenance. This type of object is called an application common object and it
can be shared with the application PDBs that belong to the application root.

Chapter 14
CREATE OPERATOR

14-61

You can specify how the object is shared using one of the following sharing attributes:

• METADATA - A metadata link shares the metadata, but its data is unique to each
container. This type of object is referred to as a metadata-linked application
common object.

• NONE - The object is not shared and can only be accessed in the application root.

implementation_clause

Use this clause to describe the implementation of the binding.

ANCILLARY TO Clause

Use the ANCILLARY TO clause to indicate that the operator binding is ancillary to the
specified primary operator binding (primary_operator). If you specify this clause, then
do not specify a previous binding with just one number parameter.

context_clause

Use the context_clause to describe the functional implementation of a binding that is
not ancillary to a primary operator binding.

WITH INDEX CONTEXT, SCAN CONTEXT

Use this clause to indicate that the functional evaluation of the operator uses the index
and a scan context that is specified by the implementation type.

COMPUTE ANCILLARY DATA

Specify COMPUTE ANCILLARY DATA to indicate that the operator binding computes
ancillary data.

WITH COLUMN CONTEXT

Specify WITH COLUMN CONTEXT to indicate that Oracle Database should pass the column
information to the functional implementation for the operator.

If you specify this clause, then the signature of the function implemented must include
one extra ODCIFuncCallInfo structure.

See Also:

Oracle Database Data Cartridge Developer's Guide for instructions on using
the ODCIFuncCallInfo routine

using_function_clause

The using_function_clause lets you specify the function that provides the
implementation for the binding. The function_name can be a standalone function,
packaged function, type method, or a synonym for any of these.

If the function is subsequently dropped, then the database marks all dependent
objects INVALID, including the operator. However, if you then subsequently issue an
ALTER OPERATOR ... DROP BINDING statement to drop the binding, then subsequent
queries and DML will revalidate the dependent objects.

Chapter 14
CREATE OPERATOR

14-62

Examples

Creating User-Defined Operators: Example

This example creates a very simple functional implementation of equality and then creates an
operator that uses the function. For a more complete set of examples, see Oracle Database
Data Cartridge Developer's Guide.

CREATE FUNCTION eq_f(a VARCHAR2, b VARCHAR2) RETURN NUMBER AS
BEGIN
 IF a = b THEN RETURN 1;
 ELSE RETURN 0;
 END IF;
END;
/

CREATE OPERATOR eq_op
 BINDING (VARCHAR2, VARCHAR2)
 RETURN NUMBER
 USING eq_f;

CREATE OUTLINE
Purpose

Note:

Stored outlines are deprecated. They are still supported for backward compatibility.
However, Oracle recommends that you use SQL plan management instead. SQL
plan management creates SQL plan baselines, which offer superior SQL
performance stability compared with stored outlines.

You can migrate existing stored outlines to SQL plan baselines by using the
MIGRATE_STORED_OUTLINE function of the DBMS_SPM package or Enterprise Manager
Cloud Control. When the migration is complete, the stored outlines are marked as
migrated and can be removed. You can drop all migrated stored outlines on your
system by using the DROP_MIGRATED_STORED_OUTLINE function of the DBMS_SPM
package.

See Also: Oracle Database SQL Tuning Guide for more information about SQL
plan management and Oracle Database PL/SQL Packages and Types Reference
for information about the DBMS_SPM package

Use the CREATE OUTLINE statement to create a stored outline, which is a set of attributes
used by the optimizer to generate an execution plan. You can then instruct the optimizer to
use a set of outlines to influence the generation of execution plans whenever a particular
SQL statement is issued, regardless of changes in factors that can affect optimization. You
can also modify an outline so that it takes into account changes in these factors.

Chapter 14
CREATE OUTLINE

14-63

Note:

The SQL statement you want to affect must be an exact string match of the
statement specified when creating the outline.

See Also:

• Oracle Database SQL Tuning Guide for information on execution plans

• ALTER OUTLINE for information on modifying an outline

• ALTER SESSION and ALTER SYSTEM for information on the
USE_STORED_OUTLINES and USE_PRIVATE_OUTLINES parameters

Prerequisites

To create a public or private outline, you must have the CREATE ANY OUTLINE system
privilege.

If you are creating a clone outline from a source outline, then you must also have the
SELECT_CATALOG_ROLE role.

You can enable or disable the use of stored outlines dynamically for an individual
session or for the system:

• Enable the USE_STORED_OUTLINES parameter to use public outlines.

• Enable the USE_PRIVATE_OUTLINES parameter to use private stored outlines.

Syntax

create_outline::=

CREATE

OR REPLACE

PUBLIC

PRIVATE

OUTLINE

outline

FROM

PUBLIC

PRIVATE

source_outline

FOR CATEGORY category ON statement

;

Chapter 14
CREATE OUTLINE

14-64

Note:

None of the clauses after outline are required. However, you must specify at least
one clause after outline, and it must be either the FROM clause or the ON clause.

Semantics

OR REPLACE

Specify OR REPLACE to replace an existing outline with a new outline of the same name.

PUBLIC | PRIVATE

Specify PUBLIC if you are creating an outline for use by PUBLIC. This is the default.

Specify PRIVATE to create an outline for private use by the current session only. The data of
this outline is stored in the current schema.

outline

Specify the unique name to be assigned to the stored outline. The name must satisfy the
requirements listed in "Database Object Naming Rules ". If you do not specify outline, then
the database generates an outline name.

See Also:

"Creating an Outline: Example"

FROM source_outline Clause

Use the FROM clause to create a new outline by copying an existing one. By default, Oracle
Database looks for source_category in the public area. If you specify PRIVATE, then the
database looks for the outline in the current schema.

Restriction on Copying an Outline

If you specify the FROM clause, then you cannot specify the ON clause.

See Also:

"Creating a Private Clone Outline: Example" and "Publicizing a Private Outline to
the Public Area: Example"

FOR CATEGORY Clause

Specify an optional name used to group stored outlines. For example, you could specify a
category of outlines for end-of-week use and another for end-of-quarter use. If you do not
specify category, then the outline is stored in the DEFAULT category.

Chapter 14
CREATE OUTLINE

14-65

ON Clause

Specify the SQL statement for which the database will create an outline when the
statement is compiled. This clause is optional only if you are creating a copy of an
existing outline using the FROM clause.

You can specify any one of the following statements: SELECT, DELETE, UPDATE,
INSERT ... SELECT, CREATE TABLE ... AS SELECT.

Restrictions on the ON Clause

This clause is subject to the following restrictions:

• If you specify the ON clause, then you cannot specify the FROM clause.

• You cannot create an outline on a multitable INSERT statement.

• The SQL statement in the ON clause cannot include any DML operation on a
remote object.

Note:

In subsequent statements, you can specify additional outlines for the same
SQL statement, but each outline for the same statement must specify a
different category in the CATEGORY clause.

Examples

Creating an Outline: Example

The following statement creates a stored outline by compiling the ON statement. The
outline is called salaries and is stored in the category special.

CREATE OUTLINE salaries FOR CATEGORY special
 ON SELECT last_name, salary FROM employees;

When this same SELECT statement is subsequently compiled, if the
USE_STORED_OUTLINES parameter is set to special, the database generates the same
execution plan as was generated when the outline salaries was created.

Creating a Private Clone Outline: Example

The following statement creates a stored private outline my_salaries based on the
public category salaries created in the preceding example.

CREATE OR REPLACE PRIVATE OUTLINE my_salaries
 FROM salaries;

Publicizing a Private Outline to the Public Area: Example

The following statement copies back (publicizes) a private outline to the public area
after private editing:

CREATE OR REPLACE OUTLINE public_salaries
 FROM PRIVATE my_salaries;

Chapter 14
CREATE OUTLINE

14-66

CREATE PACKAGE
Purpose

Packages are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of syntax
and semantics.

Use the CREATE PACKAGE statement to create the specification for a stored package, which is
an encapsulated collection of related procedures, functions, and other program objects stored
together in the database. The package specification declares these objects. The package
body, specified subsequently, defines these objects.

See Also:

• CREATE PACKAGE BODY for information on specifying the implementation of
the package

• CREATE FUNCTION and CREATE PROCEDURE for information on creating
standalone functions and procedures

• ALTER PACKAGE and DROP PACKAGE for information on modifying and
dropping a package

• Oracle Database Development Guide and Oracle Database PL/SQL Packages
and Types Reference for detailed discussions of packages and how to use
them

Prerequisites

To create or replace a package in your own schema, you must have the CREATE PROCEDURE
system privilege. To create or replace a package in another user's schema, you must have
the CREATE ANY PROCEDURE system privilege.

To embed a CREATE PACKAGE statement inside an Oracle Database precompiler program, you
must terminate the statement with the keyword END-EXEC followed by the embedded SQL
statement terminator for the specific language.

See Also:

Oracle Database PL/SQL Language Reference for more information

Syntax

Packages are defined using PL/SQL. Therefore, the syntax diagram in this book shows only
the SQL keywords. Refer to Oracle Database PL/SQL Language Reference for the PL/SQL
syntax, semantics, and examples.

Chapter 14
CREATE PACKAGE

14-67

create_package::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

PACKAGE plsql_package_source

(plsql_package_source: See Oracle Database PL/SQL Language Reference.)

Semantics

OR REPLACE

Specify OR REPLACE to re-create the package specification if it already exists. Use this
clause to change the specification of an existing package without dropping, re-
creating, and regranting object privileges previously granted on the package. If you
change a package specification, then Oracle Database recompiles it.

Users who had previously been granted privileges on a redefined package can still
access the package without being regranted the privileges.

If any function-based indexes depend on the package, then the database marks the
indexes DISABLED.

See Also:

ALTER PACKAGE for information on recompiling package specifications

[EDITIONABLE | NONEDITIONABLE]

Use these clauses to specify whether the package is an editioned or noneditioned
object if editioning is enabled for the schema object type PACKAGE in schema. The
default is EDITIONABLE. For information about editioned and noneditioned objects, see
Oracle Database Development Guide.

plsql_package_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of
the plsql_package_source, including examples.

CREATE PACKAGE BODY
Purpose

Package bodies are defined using PL/SQL. Therefore, this section provides some
general information but refers to Oracle Database PL/SQL Language Reference for
details of syntax and semantics.

Use the CREATE PACKAGE BODY statement to create the body of a stored package,
which is an encapsulated collection of related procedures, stored functions, and other
program objects stored together in the database. The package body defines these

Chapter 14
CREATE PACKAGE BODY

14-68

objects. The package specification, defined in an earlier CREATE PACKAGE statement,
declares these objects.

Packages are an alternative to creating procedures and functions as standalone schema
objects.

See Also:

• CREATE FUNCTION and CREATE PROCEDURE for information on creating
standalone functions and procedures

• CREATE PACKAGE for a discussion of packages, including how to create
packages

• ALTER PACKAGE for information on modifying a package

• DROP PACKAGE for information on removing a package from the database

Prerequisites

To create or replace a package in your own schema, you must have the CREATE PROCEDURE
system privilege. To create or replace a package in another user's schema, you must have
the CREATE ANY PROCEDURE system privilege. In both cases, the package body must be created
in the same schema as the package.

To embed a CREATE PACKAGE BODY statement inside an Oracle Database precompiler program,
you must terminate the statement with the keyword END-EXEC followed by the embedded SQL
statement terminator for the specific language.

See Also:

Oracle Database PL/SQL Language Reference

Syntax

Package bodies are defined using PL/SQL. Therefore, the syntax diagram in this book shows
only the SQL keywords. Refer to Oracle Database PL/SQL Language Reference for the
PL/SQL syntax, semantics, and examples.

create_package_body::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

PACKAGE BODY plsql_package_body_source

(plsql_package_body_source: See Oracle Database PL/SQL Language Reference.)

Chapter 14
CREATE PACKAGE BODY

14-69

Semantics

OR REPLACE

Specify OR REPLACE to re-create the package body if it already exists. Use this clause
to change the body of an existing package without dropping, re-creating, and
regranting object privileges previously granted on it. If you change a package body,
then Oracle Database recompiles it.

Users who had previously been granted privileges on a redefined package can still
access the package without being regranted the privileges.

See Also:

ALTER PACKAGE for information on recompiling package bodies

[EDITIONABLE | NONEDITIONABLE]

If you do not specify this clause, then the package body inherits EDITIONABLE or
NONEDITIONABLE from the package specification. If you do specify this clause, then it
must match that of the package specification.

plsql_package_body_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of
the plsql_package_body_source.

CREATE PFILE
Purpose

Use the CREATE PFILE statement to export either a binary server parameter file or the
current In-Memory parameter settings into a text initialization parameter file. Creating a
text parameter file is a convenient way to get a listing of the current parameter settings
being used by the database, and it lets you edit the file easily in a text editor and then
convert it back into a server parameter file using the CREATE SPFILE statement.

Upon successful execution of this statement, Oracle Database creates a text
parameter file on the server. In an Oracle Real Application Clusters environment, it will
contain all parameter settings of all instances. It will also contain any comments that
appeared on the same line with a parameter setting in the server parameter file.

Note on Creating Text Parameter Files in a CDB

When you create a text parameter file in a multitenant container database (CDB), the
current container can be the root or a PDB.

• If the current container is the root, then the database creates a text file that
contains the parameter settings for the root.

• If the current container is a PDB, then the database creates a text file that contains
the parameter settings for the PDB. In this case you must specify a pfile_name.

Chapter 14
CREATE PFILE

14-70

See Also:

• CREATE SPFILE for information on server parameter files

• Oracle Database Administrator's Guide for additional information on text
initialization parameter files and binary server parameter files

• Oracle Real Application Clusters Administration and Deployment Guide for
information on using server parameter files in an Oracle Real Application
Clusters environment

Prerequisites

You must have one of the following system privileges to execute this statement:

• SYSDBA
• SYSDG
• SYSOPER
• SYSBACKUP
• SYSASM
• SYSRAC
You can execute this statement either before or after instance startup.

Restrictions

You cannot overwrite OS files as a SYSDG, SYSOPER, or SYSRAC user.

Syntax

create_pfile::=

CREATE PFILE

= ’ pfile_name ’

FROM
SPFILE

= ’ spfile_name ’

MEMORY
;

Semantics

pfile_name

Specify the name of the text parameter file you want to create. If you do not specify
pfile_name, then Oracle Database uses the platform-specific default initialization parameter
file name. pfile_name can include a path prefix. If you do not specify such a path prefix, then
the database adds the path prefix for the default storage location, which is platform
dependent.

spfile_name

Specify the name of the binary server parameter from which you want to create a text file.

Chapter 14
CREATE PFILE

14-71

• If you specify spfile_name, then the file must exist on the server. If the file does
not reside in the default directory for server parameter files on your operating
system, then you must specify the full path.

• If you do not specify spfile_name, then the database uses the spfile that is
currently associated with the instance, usually the one that was used a startup. If
no spfile is associated with the instance, then the database looks for the platform-
specific default server parameter file name. If that file does not exist, then the
database returns an error.

See Also:

Creating and Configuring an Oracle Database

MEMORY

Specify MEMORY to create a pfile using the current system-wide parameter settings. In
an Oracle RAC environment, the created file will contain the parameter settings from
each instance.

Examples

Creating a Parameter File: Example

The following example creates a text parameter file my_init.ora from a binary server
parameter file s_params.ora:

CREATE PFILE = 'my_init.ora' FROM SPFILE = 's_params.ora';

Note:

Typically you will need to specify the full path and filename for parameter
files on your operating system. Refer to your Oracle operating system
documentation for path information and default parameter file names.

CREATE PLUGGABLE DATABASE
Purpose

Use the CREATE PLUGGABLE DATABASE statement to create a pluggable database (PDB).

This statement enables you to perform the following tasks:

• Create a PDB by using the seed as a template

Use the create_pdb_from_seed clause to create a PDB by using the seed in the
multitenant container database (CDB) as a template. The files associated with the
seed are copied to a new location and the copied files are then associated with the
new PDB.

• Create a PDB by cloning an existing PDB

Chapter 14
CREATE PLUGGABLE DATABASE

14-72

Use the create_pdb_clone clause to create a PDB by copying an existing PDB and then
plugging the copy into the CDB. The files associated with the existing PDB are copied to
a new location and the copied files are associated with the new PDB.

• Create a PDB by plugging an unplugged PDB into a CDB

Use the create_pdb_from_xml clause to plug an unplugged PDB into a CDB, using an
XML metadata file.

• Create a proxy PDB by referencing another PDB. A proxy PDB provides fully functional
access to the referenced PDB.

Use the create_pdb_clone clause and specify AS PROXY FROM to create a proxy PDB.

• Create an application container, application seed, or application PDB

Use the create_pdb_from_seed, create_pdb_clone, or create_pdb_from_xml clause.
To create an application container, you must specify the AS APPLICATION CONTAINER
clause. To create an application seed, you must specify the AS SEED clause.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 20c. While the documentation is being revised, legacy terminology may
persist. In most cases, "database" and "non-CDB" refer to a CDB or PDB,
depending on context. In some contexts, such as upgrades, "non-CDB" refers to a
non-CDB from a previous release.

Note:

When a new PDB is established in a CDB, it is possible that the name of a service
offered by the new PDB will collide with an existing service name. The namespace
in which a collision can occur is that of the listener that gives access to the CDB.
Within that namespace, collisions are possible among the names of CDB's default
services, PDB's default services, and user-defined services. For example, if two or
more CDBs on the same computer system use the same listener, and the newly
established PDB has the same service name as another PDB in these CDBs, then
a collision occurs.

When you create a PDB, you can specify new names for any potential colliding
service names. See the clause service_name_convert. If you discover a service
name collision after a PDB is created, you must not attempt to operate the PDB that
causes a collision with an existing service name. If the colliding name is that of the
PDB's default service, then you must rename the PDB. If the colliding name is that
of a user-created service within the PDB, then you must drop that service and
create one in its place, with a non-colliding name, that has the same purpose and
properties.

Chapter 14
CREATE PLUGGABLE DATABASE

14-73

See Also:

• Oracle Multitenant Administrator’s Guide for more information on multi-
tenant architecture and concepts.

• ALTER PLUGGABLE DATABASE and DROP PLUGGABLE DATABASE
for information on modifying and dropping PDBs

Prerequisites

You must be connected to a CDB. The CDB must be open and in READ WRITE mode.

To create a PDB or an application container, the current container must be the root
and you must have the CREATE PLUGGABLE DATABASE system privilege, granted
commonly.

To create an application seed or an application PDB, the current container must be an
application root, the application container must be open and in READ WRITE mode, and
you must have the CREATE PLUGGABLE DATABASE system privilege, either granted
commonly or granted locally in that application container.

To specify the create_pdb_clone clause:

• If src_pdb_name refers to a PDB in the same CDB, then you must have the CREATE
PLUGGABLE DATABASE system privilege in the root of the CDB in which the new PDB
will be created and in the PDB being cloned.

• If src_pdb_name refers to a PDB in a remote database, then you must have the
CREATE PLUGGABLE DATABASE system privilege in the root of the CDB in which the
new PDB will be created. In addition, the remote user must have the CREATE
PLUGGABLE DATABASE system privilege in the PDB to which src_pdb_name refers.

See Oracle Multitenant Administrator’s Guide for more information on the prerequisites
to PDB creation.

Syntax

create_pluggable_database::=

CREATE PLUGGABLE DATABASE
pdb_name

AS APPLICATION CONTAINER

AS SEED

create_pdb_from_seed

create_pdb_clone

create_pdb_from_xml

create_pdb_from_mirror_copy

container_map_clause

pdb_snapshot_clause

;

Chapter 14
CREATE PLUGGABLE DATABASE

14-74

(create_pdb_from_seed::=, create_pdb_clone::=, create_pdb_from_xml::=)

create_pdb_from_seed::=

ADMIN USER admin_user_name IDENTIFIED BY password

pdb_dba_roles parallel_pdb_creation_clause

default_tablespace pdb_storage_clause file_name_convert service_name_convert

path_prefix_clause tempfile_reuse_clause user_tablespaces_clause standbys_clause

logging_clause create_file_dest_clause HOST = ’ hostname ’ PORT = number

(pdb_dba_roles::=, parallel_pdb_creation_clause::=, default_tablespace::=,
file_name_convert::=, service_name_convert::=, pdb_storage_clause::=,
path_prefix_clause::=, tempfile_reuse_clause::=, user_tablespaces_clause::=,
standbys_clause::=, logging_clause::=, create_file_dest_clause::=)

pdb_dba_roles::=

ROLES = (role

,

)

parallel_pdb_creation_clause::=

PARALLEL

integer

default_tablespace::=

DEFAULT TABLESPACE tablespace

DATAFILE datafile_tempfile_spec extent_management_clause

(datafile_tempfile_spec::=, extent_management_clause::=)

pdb_storage_clause::=

STORAGE

(

MAXSIZE

MAX_AUDIT_SIZE

MAX_DIAG_SIZE

UNLIMITED

size_clause
)

UNLIMITED

Chapter 14
CREATE PLUGGABLE DATABASE

14-75

(size_clause::=)

file_name_convert::=

FILE_NAME_CONVERT =
(’ filename_pattern ’ , ’ replacement_filename_pattern ’

,

)

NONE

service_name_convert::=

SERVICE_NAME_CONVERT =
(’ service_name ’ , ’ replacement_service_name ’

,

)

NONE

path_prefix_clause::=

PATH_PREFIX =

’ path_name ’

directory_object_name

NONE

tempfile_reuse_clause::=

TEMPFILE REUSE

user_tablespaces_clause::=

USER_TABLESPACES =

(’ tablespace ’

,

)

ALL

EXCEPT (’ tablespace ’

,

)

NONE

SNAPSHOT COPY

NO DATA

COPY

MOVE

NOCOPY

Chapter 14
CREATE PLUGGABLE DATABASE

14-76

standbys_clause::=

STANDBYS =

(’ cdb_name ’

,

)

ALL

EXCEPT (’ cdb_name ’

,

)

NONE

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

create_file_dest_clause::=

CREATE_FILE_DEST =

NONE

’ directory_path_name ’

diskgroup_name

create_pdb_clone::=

FROM
src_pdb_name

@ dblink

NON$CDB @ dblink

AS PROXY FROM src_pdb_name @ dblink

parallel_pdb_creation_clause default_tablespace

pdb_storage_clause file_name_convert service_name_convert path_prefix_clause

tempfile_reuse_clause SNAPSHOT COPY using_snapshot_clause user_tablespaces_clause

standbys_clause logging_clause create_file_dest_clause keystore_clause

pdb_refresh_mode_clause
RELOCATE AVAILABILITY

MAX

NORMAL NO DATA

HOST = ’ hostname ’ PORT = number

Chapter 14
CREATE PLUGGABLE DATABASE

14-77

(parallel_pdb_creation_clause::=, default_tablespace::=, pdb_storage_clause::=,
file_name_convert::=, service_name_convert::=, path_prefix_clause::=,
tempfile_reuse_clause::=, user_tablespaces_clause::=, standbys_clause::=,
logging_clause::=, create_file_dest_clause::=, keystore_clause::=,
pdb_refresh_mode_clause::=)

keystore_clause::=

KEYSTORE IDENTIFIED BY
EXTERNAL STORE

keystore_password

NO REKEY

pdb_refresh_mode_clause::=

REFRESH MODE

MANUAL

EVERY refresh_interval

HOURS

MINUTES

NONE

create_pdb_from_xml::=

AS CLONE

USING filename

source_file_name_convert

source_file_directory

COPY

MOVE

file_name_convert

NOCOPY

service_name_convert default_tablespace pdb_storage_clause path_prefix_clause

tempfile_reuse_clause user_tablespaces_clause standbys_clause logging_clause

create_file_dest_clause HOST = ’ hostname ’ PORT = number create_pdb_decrypt_from_xml

(source_file_name_convert::=, source_file_directory::=, file_name_convert::=,
service_name_convert::=, default_tablespace::=, pdb_storage_clause::=,
path_prefix_clause::=, tempfile_reuse_clause::=, user_tablespaces_clause::=,
standbys_clause::=, logging_clause::=, create_file_dest_clause::=)

create_pdb_from_mirror_copy::=

new_pdb_name FROM base_pdb_name

@dblinkname

USING MIRROR COPY mirror_name

Chapter 14
CREATE PLUGGABLE DATABASE

14-78

using_snapshot_clause ::=

USING SNAPSHOT

snapshot_name

AT SCN snapshot_SCN

AT snapshot_timestamp

container_map_clause ::=

CONTAINER_MAP UPDATE
add_table_partition

split_table_partition

pdb_snapshot_clause ::=

SNAPSHOT

MANUAL

EVERY snapshot_interval
HOURS

MINUTES

NONE

source_file_name_convert::=

SOURCE_FILE_NAME_CONVERT =
(’ filename_pattern ’ , ’ replacement_filename_pattern ’

,

)

NONE

source_file_directory::=

SOURCE_FILE_DIRECTORY =
’ directory_path_name ’

NONE

create_pdb_decrypt_from_xml::=

DECRYPT USING transport_secret

Chapter 14
CREATE PLUGGABLE DATABASE

14-79

Semantics

pdb_name

Specify the name of the PDB to be created. The name must satisfy the requirements
listed in "Database Object Naming Rules ". The first character of a PDB name must be
an alphabet character. The remaining characters can be alphanumeric or the
underscore character (_).

The PDB name must be unique in the CDB, and it must be unique within the scope of
all the CDBs whose instances are reached through a specific listener.

AS APPLICATION CONTAINER

Specify this clause to create an application container.

See Also:

Creating and Removing Application Containers and Seeds

using_snapshot_clause

Specify this clause to create a PDB from an existing PDB snapshot that can be
identified by its name, SCN, or timestamp.

If you additionally specify SNAPSHOT COPY, then the new PDB will depend on the
existence of the specified PDB snapshot. This will affect your ability to drop or purge
the new PDB.

AS SEED

Specify this clause to create an application seed. The database assigns the seed a
name of the form application_container_name$SEED.

An application container can have at most one application seed. The application seed
is optional, but, if it exists, you can use it to create application PDBs quickly that match
the requirements of the application container. An application seed enables instant
provisioning of application PDBs that are created from it.

See Also:

Creating and Removing Application Containers and Seeds

create_pdb_from_seed

This clause enables you to create a PDB by using the seed in the CDB as a template.

Chapter 14
CREATE PLUGGABLE DATABASE

14-80

See Also:

Creating a PDB from Scratch

ADMIN USER

Use this clause to create an administrative user who can be granted the privileges required to
perform administrative tasks on the PDB. For admin_user_name, specify name of the user to
be created. Use the IDENTIFIED BY clause to specify the password for admin_user_name.
Oracle Database creates a local user in the PDB and grants the PDB_DBA local role to that
user.

pdb_dba_roles

This clause lets you grant one or more roles to the PDB_DBA role. Use this clause to grant
roles that have the privileges required by the administrative user of the PDB. For role,
specify a predefined role. For a list of predefined roles, refer to Oracle Database Security
Guide.

You can also use the GRANT statement to grant roles to the PDB_DBA role after the PDB has
been created. Until you have granted the appropriate privileges to the PDB_DBA role, the SYS
and SYSTEM users can perform administrative tasks on a PDB.

parallel_pdb_creation_clause

This clause instructs the CDB to use parallel execution servers to copy the new PDB's data
files to a new location. This may result in faster creation of the PDB.

PARALLEL

If you specify PARALLEL, then the CDB automatically chooses the number of parallel
execution servers to use. This is the default if the COMPATIBLE initialization parameter is set to
12.2 or higher.

PARALLEL integer

Use integer to specify the number of parallel execution servers to use. The CDB can ignore
this setting, depending on the current database load and the number of available parallel
execution servers. If you specify a value of 0 or 1, then the CDB does not parallelize the
creation of the PDB. This can result in a longer PDB creation time.

default_tablespace

If you specify this clause, then Oracle Database creates a smallfile tablespace and sets it as
the default permanent tablespace for the PDB. Oracle Database will assign the default
tablespace to any non-SYSTEM user for whom a different permanent tablespace is not
specified. The default_tablespace clause has the same semantics that it has for the CREATE
DATABASE statement. For full information, refer to default_tablespace in the documentation on
CREATE DATABASE.

pdb_storage_clause

Use this clause to specify storage limits for the PDB.

Chapter 14
CREATE PLUGGABLE DATABASE

14-81

• Use MAXSIZE to limit the amount of storage that can be used by all tablespaces in
the PDB to the value specified with size_clause. This limit includes the size of
data files and temporary files for tablespaces belonging to the PDB. Specify
MAXSIZE UNLIMITED to enforce no limit.

• Use MAX_AUDIT_SIZE to limit the amount of storage that can be used by unified
audit OS spillover (.bin format) files in the PDB to the value specified with
size_clause. Specify MAX_AUDIT_SIZE UNLIMITED to enforce no limit.

• Use MAX_DIAG_SIZE to limit the amount of storage for diagnostics (trace files and
incident dumps) in the Automatic Diagnostic Repository (ADR) that can be used by
the PDB to the value specified with size_clause. Specify MAX_DIAG_SIZE
UNLIMITED to enforce no limit.

If you omit this clause, or specify STORAGE UNLIMITED, then there are no storage limits
for the PDB. This is equivalent to specifying STORAGE (MAXSIZE UNLIMITED
MAX_AUDIT_SIZE UNLIMITED MAX_DIAG_SIZE UNLIMITED).

file_name_convert

Use this clause to determine how the database generates the names of files (such as
data files and wallet files) for the PDB.

• For filename_pattern, specify a string found in names of files associated with the
seed (when creating a PDB by using the seed), associated with the source PDB
(when cloning a PDB), or listed in the XML file (when plugging a PDB into a CDB).

• For replacement_filename_pattern, specify a replacement string.

Oracle Database will replace filename_pattern with replacement_filename_pattern
when generating the names of files associated with the new PDB.

File name patterns cannot match files or directories managed by Oracle Managed
Files.

You can specify FILE_NAME_CONVERT = NONE, which is the same as omitting this clause.
If you omit this clause, then the database first attempts to use Oracle Managed Files to
generate file names. If you are not using Oracle Managed Files, then the database
uses the PDB_FILE_NAME_CONVERT initialization parameter to generate file names. If this
parameter is not set, then an error occurs.

service_name_convert

Use this clause to rename the user-defined services of the new PDB based on the
service names of the source PDB. When the service name of a new PDB conflicts with
an existing service name in the CDB, plug-in violations can result. This clause enables
you to avoid these violations.

• For service_name, specify the name of a service found in the PDB seed (when
creating a PDB in an application container by using the application seed) or in the
source PDB (when cloning a PDB or plugging a PDB into a CDB).

• For replacement_service_name, specify the replacement name for the service.

Oracle Database will use the replacement service name for the service in the PDB
being created.

You can specify SERVICE_NAME_CONVERT = NONE, which is the same as omitting this
clause.

Chapter 14
CREATE PLUGGABLE DATABASE

14-82

Restrictions on service_name_convert

The service_name_convert clause is subject to the following restrictions:

• You cannot change the name of the default service for a PDB. The default service has
the same name as the PDB.

• You cannot specify this clause when you use the create_pdb_from_seed clause to create
a PDB from the CDB seed, because the CDB seed does not have user-defined services.
You can, however, specify this clause when you use the create_pdb_from_seed clause to
create an application PDB from the application seed.

path_prefix_clause

Use this clause to ensure that file paths for directory objects associated with the PDB are
restricted to the specified directory or its subdirectories. This clause also ensures that the
following files associated with the PDB are restricted to the specified directory: the Oracle
XML repository for the PDB, files created with a CREATE PFILE statement, and the export
directory for Oracle wallets. You cannot modify the setting of this clause after you create the
PDB. This clause does not affect files created by Oracle Managed Files.

• For path_name, specify the absolute path name of an operating system directory. The
single quotation marks are required, with the result that the path name is case sensitive.
Oracle Database uses path_name as a prefix for all file paths associated with the PDB.

Be sure to specify path_name so that the resulting path name will be properly formed
when relative paths are appended to it. For example, on UNIX systems, be sure to end
path_name with a forward slash (/), such as:

PATH_PREFIX = '/disk1/oracle/dba/salespdb/'
• For directory_object_name, specify the name of a directory object that exists in the

CDB root (CDB$ROOT). The directory object points to the absolute path to be used for
PATH_PREFIX.

• If you specify PATH_PREFIX = NONE, then the relative paths for directory objects associated
with the PDB are treated as absolute paths and are not restricted to a particular directory.

Omitting the path_prefix_clause is equivalent to specifying PATH_PREFIX = NONE.

After the path_prefix_clause is specified for a PDB, existing directory objects might not
work as expected, since the PATH_PREFIX string is always added as a prefix to all local
directory objects in the PDB. The path_prefix_clause only applies to user-created directory
objects. It does not apply to Oracle-supplied directory objects.

tempfile_reuse_clause

When you create a PDB, Oracle Database associates temp files with the new PDB.
Depending on how you create the PDB, the temp files may already exist and may have been
previously used.

Specify TEMPFILE REUSE to instruct the database to format and reuse a temp file associated
with the new PDB if it already exists. If you specify this clause and a temp file does not exist,
then the database creates the temp file.

If you do not specify TEMPFILE REUSE and a temp file to be associated with the new PDB
already exists, then the database returns an error and does not create the PDB.

Chapter 14
CREATE PLUGGABLE DATABASE

14-83

user_tablespaces_clause

This clause lets you specify the tablespaces to be made available in the new PDB.
The SYSTEM, SYSAUX, and TEMP tablespaces are available in all PDBs and cannot be
specified in this clause.

You can use this clause to separate the data for multiple schemas into different PDBs.

• Specify tablespace to make the tablespace available in the new PDB. You can
specify more than one tablespace in a comma-separated list.

• Specify ALL to make all tablespaces available in the new PDB. This is the default.

• Specify ALL EXCEPT to make all tablespaces available in the new PDB, except the
specified tablespaces.

• Specify NONE to make only the SYSTEM, SYSAUX, and TEMP tablespaces available in
the new PDB.

When the compatibility level of the CDB is 12.2 or higher, the tablespaces that are
excluded by this clause are created offline in the new PDB, and they have no data files
associated with them. When the compatibility level of the CDB is lower than 12.2, the
tablespaces that are excluded by this clause are offline in the new PDB, and all data
files that belong to these tablespaces are unnamed and offline.

{ SNAPSHOT COPY | NO DATA }

These clauses apply only when cloning a PDB with the create_pdb_clone clause. By
default, the database creates each tablespace to be made available in the new PDB
according to the settings specified for cloning the PDB. These clauses allow you to
override those settings as follows:

• SNAPSHOT COPY - Clone the tablespace using storage snapshots.

• NO DATA - Clone the data model definition of the tablespace, but not the
tablespace's data.

{ COPY | MOVE | NOCOPY }

These clauses apply when you plug in a PDB with the create_pdb_from_xml clause.
By default, the database creates each tablespace to be made available in the new
PDB according to the settings specified for plugging in the PDB. These clauses allow
you to override those settings as follows:

• COPY - Copy the tablespace files to the new location.

• MOVE - Move the tablespace files to the new location.

• NOCOPY - Do not copy or move the tablespace files to the new location.

standbys_clause

Use this clause to specify whether the new PDB is included in one or more standby
CDBs. If you include a PDB in a standby CDB, then during standby recovery the
standby CDB will search for the data files for the PDB. If the data files are not found,
then standby recovery will stop and you must copy the data files to the correct location
before you can restart recovery.

• Specify cdb_name to include the new PDB in the specified standby CDB. You can
specify more than one standby CDB name in a comma-separated list.

Chapter 14
CREATE PLUGGABLE DATABASE

14-84

• Specify ALL to include the new PDB in all standby CDBs. This is the default.

• Specify ALL EXCEPT to include the new PDB in all standby CDBs, except the specified
standby CDBs.

• Specify NONE to exclude the new PDB from all standby CDBs. When a PDB is excluded
from all standby CDBs, the PDB's data files are unnamed and marked offline on all of the
standby CDBs. Standby recovery will not stop if the data files for the PDB are not found
on the standby. If you instantiate a new standby CDB after the PDB is created, then you
must explicitly disable the PDB for recovery on the new standby CDB.

You can enable a PDB on a standby CDB after it was excluded on that standby CDB by
copying the data files to the correct location, bringing the PDB online, and marking it as
enabled for recovery.

logging_clause

Use this clause to specify the default logging attribute for tablespaces created within the
PDB. The logging attribute controls whether certain DML operations are logged in the redo
log file (LOGGING) or not (NOLOGGING).The default is LOGGING.

When creating a tablespace, you can override the default logging attribute by specifying the
logging_clause of the CREATE TABLESPACE statement.

Refer to logging_clause for a full description of this clause.

create_file_dest_clause

By default, a newly created PDB inherits its Oracle Managed Files settings from the root. If
the root uses Oracle Managed Files, then the PDB also uses Oracle Managed Files. The
PDB shares the same base file system directory for Oracle Managed Files with the root and
has its own subdirectory named with the GUID of the PDB. If the root does not use Oracle
Managed Files, then the PDB also does not use Oracle Managed Files.

This clause lets you override the default behavior. You can enable or disable Oracle Managed
Files for the PDB and you specify a different base file system directory or Oracle ASM disk
group for the PDB's files.

• Specify NONE to disable Oracle Managed Files for the PDB.

• Specify either directory_path_name or diskgroup_name to enable Oracle Managed Files
for the PDB.

Specify directory_path_name to designate the base file system directory for the PDB's
files. Specify the full path name of the operating system directory. The directory must
exist and Oracle processes must have appropriate permissions on the directory. The
single quotation marks are required, with the result that the path name is case sensitive.

Specify diskgroup_name to designate the default Oracle ASM disk group for the PDB's
files.

If you specify a value other than NONE, then the database implicitly sets the
DB_CREATE_FILE_DEST initialization parameter with SCOPE=SPFILE in the PDB.

HOST and PORT

These clauses are useful only if you are creating a PDB that you plan to reference from a
proxy PDB. This type of PDB is called a referenced PDB.

When creating a referenced PDB:

Chapter 14
CREATE PLUGGABLE DATABASE

14-85

• If the name of the listener is different from the host name of the PDB, then you
must specify the HOST clause. For hostname, specify the fully qualified domain
name of the listener. Enclose hostname in single quotation marks. For example:
'myhost.example.com'.

In an Oracle Real Application Clusters (Oracle RAC) environment, you can specify
for hostname any of the hosts for the PDB.

• If the port number of the listener is not 1521, then you must specify the PORT
clause. For number, specify the port number for the listener.

A proxy PDB uses a database link to establish communication with its referenced
PDB. After communication is established, the proxy PDB communicates directly with
the referenced PDB without using a database link. The host name and port number of
the listener for the referenced PDB must be correct for the proxy PDB to function
properly.

See Also:

The clause AS PROXY FROM of create_pdb_clone for information on
creating a proxy PDB

create_pdb_clone

This clause enables you to create a new PDB by cloning a source to a target PDB.
The source can be a PDB in the local CDB, or a PDB in a remote CDB. The target
PDB is the clone of the source.

If the source is a PDB in the local CDB, then the source PDB can be plugged in or
unplugged. If the source is a PDB in a remote CDB, then the source PDB must be
plugged in.

If the source is a PDB in a remote CDB, then the source and the CDB that contains
the target PDB must meet the following requirements:

• They must have the same endian format.

• They must have compatible character sets and national character sets, which
means:

– Every character in the source character set is available in the local CDB
character set.

– Every character in the source character set has the same code point value in
the local CDB character set.

• They must have the same set of database options installed.

Users in the PDB who used the default temporary tablespace of the source PDB use
the default temporary tablespace of the new PDB. Users who used non-default
temporary tablespaces in the PDB continue to use the same local temporary
tablespaces in the new PDB.

You can clone a united PDB or an isolated PDB with the same command. The only
difference is that the keystore password you must provide are for different keystores.

Hot Clone a PDB: Example

Chapter 14
CREATE PLUGGABLE DATABASE

14-86

 CREATE PLUGGABLE DATABASE CDB1_PDB2_CLONE FROM CDB1_PDB2
 KEYSTORE IDENTIFIED BY keystore_password

For a united PDB:

• keystore_password is the ROOT keystore password.

• The wallet must be open in ROOT.

For an isolated PDB:

• keystore_password is the new keystore password for the PDB CDB1_PDB2_CLONE.

• The wallet must be open in CDB1_PDB2_CLONE.

Clone a PDB: Example

United PDB

 CREATE PLUGGABLE DATABASE CDB1_PDB1_C AS CLONE USING '/tmp/cdb1_pdb3.pdb'
 KEYSTORE IDENTIFED BY keystore_password DECRYPT USING transport_secret

• The wallet must be open in ROOT, if TDE is in use.

• If there are TDE keys in the .pdb file, you must specify KEYSTORE IDENTIFED BY and
provide transport_secret.

• keystore_password is the ROOT keystore password.

Isolated PDB

CREATE PLUGGABLE DATABASE CDB1_PDB2_C AS CLONE USING '/tmp/cdb1_pdb2.pdb'

• You need not specify KEYSTORE IDENTIFED BY or transport_secret. If specified, they are
ignored.

• The wallet need not be open in ROOT.

See Also:

Cloning a PDB

FROM

Use this clause to specify the source PDB. The files associated with the source are copied to
a new location and these copied files are then associated with the new PDB.

The source PDB cannot be closed. It can be open as follows:

• If the CDB that contains the source PDB (the source CDB) is in ARCHIVELOG mode and
local undo mode, then the source PDB can be open in READ WRITE mode and fully
functional during the cloning operation. This is called hot PDB cloning.

• If the source CDB is not in ARCHIVELOG mode, then the source PDB must be open READ
ONLY.

Specify the source PDBas follows:

Chapter 14
CREATE PLUGGABLE DATABASE

14-87

• If the source is a PDB in the local CDB, then use src_pdb_name to specify the
name of the source PDB. You cannot specify PDB$SEED for src_pdb_name. Instead,
use the create_pdb_from_seed clause to create a PDB by using the seed as a
template.

• If the source is a PDB in a remote CDB, then use src_pdb_name to specify the
name of the source PDB and dblink to specify the name of the database link to
use to connect to the remote CDB.

AS PROXY FROM

Use this clause to create a proxy PDB by referencing a different PDB, which is referred
to as the referenced PDB. The referenced PDB can be in the same CDB as the proxy
PDB or in a different CDB. A local proxy PDB is in the same CDB as its referenced
PDB, and a remote proxy PDB is in a different CDB than its referenced PDB.

For src_pdb_name@dblink, specify the referenced PDB.

See Also:

Creating a PDB as a Proxy PDB

default_tablespace

Use this clause to specify a permanent default tablespace for the PDB. Oracle
Database will assign the default tablespace to any non-SYSTEM user for whom a
different permanent tablespace is not specified. The tablespace must already exist in
the source PDB. Because the tablespace already exists, you cannot specify the
DATAFILE clause or the extent_management_clause when creating a PDB with the
create_pdb_clone clause.

pdb_storage_clause

Use this clause to specify storage limits for the new PDB. Refer to
pdb_storage_clause for the full semantics of this clause.

file_name_convert

Use this clause to determine how the database generates the names of files for the
new PDB. Refer to file_name_convert for the full semantics of this clause.

service_name_convert

Use this clause to determine how the database renames services for the new PDB.
Refer to service_name_convert::= for the full semantics of this clause.

path_prefix_clause

Use this clause to ensure that all directory object paths associated with the PDB are
restricted to the specified directory or its subdirectories. Refer to path_prefix_clause
for the full semantics of this clause.

Chapter 14
CREATE PLUGGABLE DATABASE

14-88

tempfile_reuse_clause

Specify TEMPFILE REUSE to instruct the database to format and reuse a temp file associated
with the new PDB if it already exists. Refer to tempfile_reuse_clause for the full semantics of
this clause.

SNAPSHOT COPY

You can specify SNAPSHOT COPY only when cloning a PDB. The source PDB can be in the local
CDB or a remote CDB. The SNAPSHOT COPY clause instructs the database to clone the source
PDB using storage snapshots. This reduces the time required to create the clone because
the database does not need to make a complete copy of the source data files.

When you use the SNAPSHOT COPY clause to create a clone of a source PDB and the CLONEDB
initialization parameter is set to FALSE, the underlying file system for the source PDB's files
must support storage snapshots. Such file systems include Oracle Advanced Cluster File
System (Oracle ACFS) and Direct NFS Client storage.

When you use the SNAPSHOT COPY clause to create a clone of a source PDB and the CLONEDB
initialization parameter is set to TRUE, the underlying file system for the source PDB's files can
be any local file system, network file system (NFS), or clustered file system that has Direct
NFS enabled. However, the source PDB must remain in open read-only mode as long as any
clones exist.

Direct NFS Client enables an Oracle database to access network attached storage (NAS)
devices directly, rather than using the operating system kernel NFS client. If the PDB files are
stored on Direct NFS Client storage, then the following additional requirements must be met:

• The source PDB files must be located on an NFS volume.

• Storage credentials must be stored in a Transparent Data Encryption keystore.

• The storage user must have the privileges required to create and destroy snapshots on
the volume that hosts the source PDB files.

• Credentials must be stored in the keystore using an ADMINISTER KEY MANAGEMENT ADD
SECRET SQL statement.

When you use the SNAPSHOT COPY clause to create a clone of a source PDB, the following
restrictions apply to the source PDB as long as any clones exist:

• It cannot be unplugged.

• It cannot be dropped.

PDB clones created using the SNAPSHOT COPY clause cannot be unplugged. They can only be
dropped. Attempting to unplug a clone created using the SNAPSHOT COPY clause results in an
error.

For a PDB created using the SNAPSHOT COPY clause in an Oracle Real Application Clusters
(Oracle RAC) environment, each node that must access the PDB's files must be mounted.
For Oracle RAC databases running on Linux or UNIX platforms, the underlying NFS volumes
must be mounted. If the Oracle RAC database is running on a Windows platform and using
Direct NFS for shared storage, then you must update the oranfstab file on all nodes with the
created volume export and mount entries.

Storage clones are named and tagged using the new PDB GUID. You can query the
CLONETAG column of DBA_PDB_HISTORY view to view clone tags for storage clones.

Chapter 14
CREATE PLUGGABLE DATABASE

14-89

keystore_clause

Specify this clause if the source database has encrypted data or a keystore set.

If you want to create the PDB by cloning another PDB, and if the source database has
encrypted data or a TDE master encryption key that has been set, then you must
provide the keystore password of the target keystore in keystore_password .

You can find if the source database has encrypted data by querying the
DBA_ENCRYPTED_COLUMNS data dictionary view or the V$ENCRYPTED_TABLESPACES
dynamic performance view.

You can use the EXTERNAL STORE clause instead of keystore_password to clone a
PDB that is using a united keystore. Note that you must configure the TDE SEPS
wallet first before you use this option.

You cannot use the EXTERNAL STORE clause for a PDB that is using an isolated
keystore.

pdb_refresh_mode_clause

The REFRESH MODE clause applies only when cloning a PDB. The source PDB must be
in a remote CDB, that is, you must specify the source PDB using the FROM
src_pdb_name@dblink clause.

This clause lets you specify the refresh mode of the PDB. You can use this clause to
create a refreshable PDB. Changes in the source PDB can be propagated to the
refreshable PDB, either manually or automatically. This operation is called a refresh.
You can specify the following refresh modes:

• MANUAL - This mode allows you to refresh the refreshable PDB manually at any
time by issuing an ALTER PLUGGABLE DATABASE REFRESH statement.

• EVERY refresh_interval MINUTES or HOURS – This mode instructs the database to
refresh the refreshable PDB every refresh_interval of selected time units,
minutes or hours. If you select MINUTES, the refresh_interval must be less than
3000. If you select HOURS, the refresh_interval must be less than 2000. This
mode also allows you to refresh the PDB manually at any time by issuing an ALTER
PLUGGABLE DATABASE REFRESH statement.

• NONE - If you specify this mode, then the clone PDB is not a refreshable PDB. The
database cannot refresh the PDB automatically and you cannot refresh the PDB
manually. If you specify this mode, then you cannot later change the PDB into a
refreshable PDB. This is the default.

A refreshable PDB can be opened only in READ ONLY mode. A refreshable PDB must
be closed in order for a refresh to occur. If it is not closed when you attempt to perform
a manual refresh, then an error will occur. If it is not closed when the database
attempts an automatic refresh, then the refresh will be deferred until the next
scheduled refresh.

Chapter 14
CREATE PLUGGABLE DATABASE

14-90

See Also:

• ALTER PLUGGABLE DATABASE REFRESH for information on refreshing a PDB
manually

• ALTER PLUGGABLE DATABASE pdb_refresh_mode_clause for information on
changing the refresh mode of a PDB

• Oracle Database Administrator’s Guide for more information on refreshable
PDBs

RELOCATE

Use this clause to relocate a PDB from one CDB to another. The database first clones the
source PDB to the target PDB, and then removes the source PDB. The database also moves
the files associated with the PDB to a new location. This operation is the fastest way to
relocate a PDB with minimal down time. The down time for the PDB is approximately the time
required to copy the PDB's files from their old location to their new location. The source PDB
can be open in READ WRITE mode and fully functional during the relocation operation.

You can specify the availability level with the AVAILABILITY keyword. The default availability
is NORMAL. If you specify AVAILABILITY MAX, then additional operations are performed to
ensure a smooth migration of the workload in a persistent connection between source and
target.

In the create_pdb_clone clause, you must use the FROM src_pdb_name@dblink syntax to
identify the location of the source PDB. For src_pdb_name, specify the name of the source
PDB. For dblink, specify a database link that indicates the location of the source PDB. The
database link must have been created in the CDB to which the PDB will be relocated. It can
connect either to the root of the remote CDB or to the remote PDB.

See Also:

Relocating a PDB

NO DATA

The NO DATA clause applies only when cloning a PDB. This clause specifies that the source
PDB's data model definition is cloned, but not the PDB's data. The dictionary data in the
source PDB is cloned, but all user-created table and index data from the source PDB is
discarded.

Restrictions on the NO DATA Clause

The following restrictions apply to the NO DATA clause:

• The source PDB should be open in read only mode when you use the NO DATA clause to
clone a PDB.

• You cannot specify NO DATA if the source PDB contains clustered tables, Advanced
Queuing (AQ) tables, index-organized tables, or tables that contain abstract data type
columns.

Chapter 14
CREATE PLUGGABLE DATABASE

14-91

HOST and PORT

These clauses are useful only if you are creating a PDB that you plan to reference
from a proxy PDB. This type of PDB is called a referenced PDB. Refer to HOST and
PORT for the full semantics of these clauses.

create_pdb_from_xml

This clause enables you to create a PDB by plugging an unplugged PDB (the source
database) into a CDB (the target CDB). If the source database is an unplugged PDB,
then it may have been unplugged from the target CDB or a different CDB.

The source database and the target CDB must meet the following requirements:

• They must have the same endian format.

• They must have compatible character sets and national character sets, which
means:

– Every character in the source database character set is available in the target
CDB character set.

– Every character in the source database character set has the same code point
value in the target CDB character set.

• They must have the same set of database options installed.

See Also:

• Plugging In an Unplugged PDB

• Oracle Database PL/SQL Packages and Types Reference for more
information on the DBMS_PDB package

AS CLONE

Specify this clause only if the target CDB already contains a PDB that was created
using the same set of data files. The source files remain as an unplugged PDB and
can be used again. Specifying AS CLONE also ensures that Oracle Database generates
new identifiers, such as DBID and GUID, for the new PDB.

USING

This clause lets you specify a file that contains information about the source database
that your are plugging in. For filename, specify the full path name of the file. You can
obtain this file in one of the following ways:

• If the source database is an unplugged PDB, then the file was created by the
pdb_unplug_clause of ALTER PLUGGABLE DATABASE as follows:

– If the filename ends with the extension .xml, then it is an XML file containing
metadata about the PDB. In this case, you must ensure that the XML
metadata file, as well as the PDB's data files, are in a location that is
accessible to the CDB.

– If the filename ends with the extension .pdb, then it is a PDB archive file. This
is a compressed file that includes an XML file containing metadata about the

Chapter 14
CREATE PLUGGABLE DATABASE

14-92

PDB, as well as the PDB's data files. The PDB archive file must exist in a location
that is accessible to the CDB. When you use a .pdb archive file, this file is extracted
when you plug in the PDB, and the PDB’s files are placed in the same directory as
the .pdb archive file. Therefore, the source_file_directory clause is not required.

• If the source database is a non-CDB, then you must create the XML metadata file using
the DBMS_PDB package, and ensure that the XML metadata file, as well as the source non-
CDB's data files, are in a location that is accessible to the CDB.

See Also:

• pdb_unplug_clause of ALTER PLUGGABLE DATABASE
• Oracle Database PL/SQL Packages and Types Reference for more information

on the DBMS_PDB package

source_file_name_convert

Specify this clause only if the contents of the XML file do not accurately describe the
locations of the source files. If the files that must be used to plug in the source database are
no longer in the location specified in the XML file, then use this clause to map the specified
file names to the actual file names.

• For filename_pattern, specify the string for the location of the files as specified in the
XML file.

• For replacement_filename_pattern, specify the string for the actual location that
contains the files that must be used to create the PDB.

Oracle Database will replace filename_pattern with replacement_filename_pattern when
searching for the source database files.

File name patterns cannot match files or directories managed by Oracle Managed Files.

If the files that must be used to create the PDB exist in the location specified in the XML file,
you can either omit this clause or specify SOURCE_FILE_NAME_CONVERT=NONE.

source_file_directory

Specify this clause only if the contents of the XML file do not accurately describe the
locations of the source files and the source files are all present in a single directory. This
clause is convenient when you have a large number of data files and specifying a
replacement file name pattern for each file using the source_file_name_convert clause is
not feasible.

• For directory_path_name, specify the absolute path of the directory that contains the
source files. The directory is scanned to find the appropriate files based on the unplugged
PDB's XML file.

You can specify this clause for configurations that use Oracle Managed Files and for
configurations that do not use Oracle Managed Files.

If the files that must be used to create the PDB exist in the location specified in the XML file,
you can either omit this clause or specify SOURCE_FILE_DIRECTORY=NONE.

Chapter 14
CREATE PLUGGABLE DATABASE

14-93

COPY

Specify COPY if you want the files listed in the XML file to be copied to the new location
and used for the new PDB. This is the default. You can use the optional
file_name_convert clause to use pattern replacement in the new file names. Refer to
file_name_convert for the full semantics of this clause.

MOVE

Specify MOVE if you want the files listed in the XML file to be moved, rather than copied,
to the new location and used for the new PDB. You can use the optional
file_name_convert clause to use pattern replacement in the new file names. Refer to
file_name_convert for the full semantics of this clause.

If the storage locations are different mounts, or if the storage locations do not support
move at the OS or storage level, then the MOVE clause first copies the files then deletes
the originals.

NOCOPY

Specify NOCOPY if you want the files for the PDB to remain in their current locations.
Use this clause if there is no need to copy or move the files required to plug in the
PDB.

service_name_convert

Use this clause to determine how the database renames services for the new PDB.
Refer to service_name_convert::= for the full semantics of this clause.

default_tablespace

Use this clause to specify a permanent default tablespace for the PDB. Oracle
Database will assign the default tablespace to any non-SYSTEM user for whom a
different permanent tablespace is not specified. The tablespace must already exist in
the source database. Because the tablespace already exists, you cannot specify the
DATAFILE clause or the extent_management_clause when creating a PDB with the
create_pdb_from_xml clause.

pdb_storage_clause

Use this clause to specify storage limits for the new PDB. Refer to
pdb_storage_clause for the full semantics of this clause.

path_prefix_clause

Use this clause to ensure that all directory object paths associated with the PDB are
restricted to the specified directory or its subdirectories. Refer to path_prefix_clause
for the full semantics of this clause.

tempfile_reuse_clause

Specify TEMPFILE REUSE to instruct the database to format and reuse a temp file
associated with the new PDB if it already exists. Refer to tempfile_reuse_clause for
the full semantics of this clause.

Chapter 14
CREATE PLUGGABLE DATABASE

14-94

HOST and PORT

These clauses are useful only if you are creating a PDB that you plan to reference from a
proxy PDB. This type of PDB is called a referenced PDB. Refer to HOST and PORT for the
full semantics of these clauses.

create_pdb_from_mirror_copy

Specify this clause to create a pluggable database new_pdb_name using the prepared files of
the mirror copy mirror_name. The new PDB will be split from the source database using the
prepared files created by the prepare_clause.

• You must execute this clause from the root container.

• The meaning of the other optional parameters remains unchanged by this clause.

• You can only split one database from a prepared mirror copy. If you want to create
additional splits, you must prepare a new mirror copy.

• You can specify the database link name after you have specifed the mirror copy name in
the prepare_clause of the ALTER PLUGGABLE DATABASE statement. In addition, the current
CDB name should match the target CDB name specified in the prepare_clause. You
must be a valid user in the CDB being referenced by the database link with the system
privileges CREATE SESSION and CREATE PLUGGABLE DATABASE.

• If the database link name is omitted, then the base PDB name is looked up in the current
CDB.

using_snapshot_clause

Specify this clause to create a PDB using an existing PDB snapshot that can be identified by
its name, SCN, or timestamp.

If you create a PDB specifying SNAPSHOT COPY, then the new PDB will depend on the
existence of the PDB snapshot. This will affect your ability to drop or purge the PDB.

container_map_clause

Specify this clause in CDB Root, Application Root or both to dynamically update changes as
they happen to the new PDB.

You must note the following points with container maps:

• The container_map_clause is optional.

• The add_partition_clause will add a new partition to the container map defined in the
Root (CDB Root and/or Application Root) of the new PDB.

• The split_partition_clause will split an existing partition of the container map defined
in the Root (CDB Root and/or Application Root) of the new PDB.

• In the absence of add_partition_clause and split_partition_clause, container map
defined in the Root of the new PDB is not updated.

• For PDB relocate, container map defined in the Root (CDB Root and/or Application Root)
of the source PDB are automatically updated to reflect the “drop” of the source PDB.

• Dynamic maintenance of container map defined using hash partitioning is not supported

Add a New Partition to a Range-Partitioned Container Map: Example

Chapter 14
CREATE PLUGGABLE DATABASE

14-95

 CREATE PLUGGABLE DATABASE cdb1_pdb3
 ADMIN USER IDENTIFIED BY manager
 FILE_NAME_CONVERT=('cdb1_pdb0, cdb1_pdb3')
 CONTAINER_MAP UPDATE (ADD PARTITION cdb1_pdb3 VALUES LESS THAN (100));
 ALTER PLUGGABLE DATABASE cdb1_pdb3 OPEN

Split an Existing Partition of a Range-Partitioned Container Map to Create a New
Partition: Example

 CREATE PLUGGABLE DATABASE cdb1_pdb4
 ADMIN USER IDENTIFIED BY manager
 FILE_NAME_CONVERT=('cdb1_pdb0, cdb1_pdb4')
 CONTAINER_MAP UPDATE (SPLIT PARTITION cdb1_pdb3
 AT (50)
 INTO
 (PARTITION cdb1_pdb3, PARTITION cdb1_pdb3)
 ALTER PLUGGABLE DATABASE cdb1_pdb4 OPEN

Verify Updated in Range-Partitioned Container Map : Example

 SELECT partition_name, high_value
 FROM dba_tab_partitions
 WHERE table_name='MAP' AND table_owner='SYS'

pdb_snapshot_clause

Specify this clause if you want to be able to create PDB snapshots.

• NONE is the default. It means that no snapshots of the PDB can be created.

• MANUAL means that the PDB snapshot can only be created manually.

• If snapshot interval is specified, PDB snapshots will be created automatically at
specified interval. In addition, a user will also be able to create PDB snapshots
manually

• If expressed in minutes, snapshot_interval must be less than 3000.

• If expressed in hours, snapshot_interval must be less than 2000.

create_pdb_decrypt_from_xml

You must have the SYSKM privilege to execute this command.

For PDBs in united mode, the following restrictions apply:

• You must specify the clause if you are using a TDE protected database. Otherwise
it is optional.

• You need not specify the clause for an isolated PDB.

• The wallet must be open in ROOT.

• The wallet file is copied in all cases: NOCOPY, COPY, and MOVE.

Plugging a PDB from an XML Metadata File: Example

CREATE PLUGGABLE DATABASE CDB1_PDB2 USING '/tmp/cdb1_pdb2.xml' NOCOPY
KEYSTORE IDENTIFIED BY keystore_password DECRYPT USING transport_secret

Plugging a PDB from an Archive File: Example

CREATE PLUGGABLE DATABASE CDB1_PDB1_1_C USING '/tmp/cdb1_pdb3.pdb' DECRYPT USING
transport_secret

Chapter 14
CREATE PLUGGABLE DATABASE

14-96

For PDBs in isolated mode, you need not specify DECRYPT USING transport_secret. This is
not required because the wallet file is copied during the creation of an unplugged PDB from
an XML file. if you are creating a PDB from an archive file with the .pdb extension, the wallet
file of the PDB is available in the zipped archive.

If the ewallet.p12 file already exists at the destination, a backup is automatically initiated.
The backup file has the following format: ewallet_PLGDB_2017090517455564.p12.

Examples

Creating a PDB by Using the Seed: Example

The following statement creates a PDB salespdb by using the seed in the CDB as a
template. The administrative user salesadm is created and granted the dba role. The default
tablespace assigned to any non-SYSTEM users for whom no permanent tablespace is
assigned is sales. File names for the new PDB will be constructed by replacing /disk1/
oracle/dbs/pdbseed/ in the file names in the seed with /disk1/oracle/dbs/salespdb/. All
tablespaces that belong to sales must not exceed 2G. The location of all directory object
paths associated with salespdb are restricted to the directory /disk1/oracle/dbs/
salespdb/.

CREATE PLUGGABLE DATABASE salespdb
 ADMIN USER salesadm IDENTIFIED BY password
 ROLES = (dba)
 DEFAULT TABLESPACE sales
 DATAFILE '/disk1/oracle/dbs/salespdb/sales01.dbf' SIZE 250M AUTOEXTEND ON
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/pdbseed/',
 '/disk1/oracle/dbs/salespdb/')
 STORAGE (MAXSIZE 2G)
 PATH_PREFIX = '/disk1/oracle/dbs/salespdb/';

Cloning a PDB From an Existing PDB: Example

The following statement creates a PDB newpdb by cloning PDB salespdb. PDBs newpdb and
salespdb are in the same CDB. Because no storage limits are explicitly specified, there is no
limit on the amount of storage for newpdb. The files are copied from /disk1/oracle/dbs/
salespdb/ to /disk1/oracle/dbs/newpdb/. The location of all directory object paths
associated with newpdb are restricted to the directory /disk1/oracle/dbs/newpdb/.

CREATE PLUGGABLE DATABASE newpdb FROM salespdb
 FILE_NAME_CONVERT = ('/disk1/oracle/dbs/salespdb/', '/disk1/oracle/dbs/newpdb/')
 PATH_PREFIX = '/disk1/oracle/dbs/newpdb';

Plugging a PDB into a CDB: Example

The following statement plugs the PDB salespdb, which was previously unplugged, into the
CDB. The details about the metadata describing salespdb are stored in the XML file /
disk1/usr/salespdb.xml. The XML file does not accurately describe the current locations of
the files. Therefore, the SOURCE_FILE_NAME_CONVERT clause is used to indicate that the files
are in /disk2/oracle/dbs/salespdb/, not /disk1/oracle/dbs/salespdb/. The NOCOPY
clause indicates that the files are already in the correct location. All tablespaces that belong
to sales must not exceed 2G. A file with the same name as the temp file specified in the XML
file exists in the target location. Therefore, the TEMPFILE REUSE clause is required.

CREATE PLUGGABLE DATABASE salespdb
 USING '/disk1/usr/salespdb.xml'
 SOURCE_FILE_NAME_CONVERT =
 ('/disk1/oracle/dbs/salespdb/', '/disk2/oracle/dbs/salespdb/')

Chapter 14
CREATE PLUGGABLE DATABASE

14-97

 NOCOPY
 STORAGE (MAXSIZE 2G)
 TEMPFILE REUSE;

CREATE PMEM FILESTORE
Purpose

You can create a persistent memory file store with this statement.

Prerequistes

You must have SYSDBA privileges to execute CREATE PMEM FILESTORE .

You must execute this statement from CDB$ROOT.

Syntax

create_pmem_filestore::=

CREATE PMEM FILESTORE filestore_name

MOUNTPOINT file_path

BACKINGFILE file_name

REUSE

SIZE size_clause

BLOCKSIZE size_clause

autoextend_clause

Semantics

MOUNTPOINT

file_path contains the final directory name and must match the PMEM file store
name. If there is no match, the statement will fail.

You must start database instance with at least NOMOUNT mode.

It is recommeded to use a spfile for the database init.ora file.

When you use a spfile , the CREATE PMEM FILESTORE command automatically writes
the necessary init.ora parameters into the spfile to remember the configuration. If
you do not use a spfile , you must explicitly add the required parameters to init.ora
so that the next database instance startup will automatically mount the PMEM file
store.

Example

CREATE PMEM FILESTORE cloud_db_1 MOUNTPOINT ‘/corp/db/cloud_db_1’
 BACKINGFILE ‘/var/pmem/foo_1.’ SIZE 2T BLOCKSIZE 8K
 AUTOEXTEND ON NEXT 10G MAXSIZE 3T

Chapter 14
CREATE PMEM FILESTORE

14-98

CREATE PROCEDURE
Purpose

Procedures are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of syntax
and semantics.

Use the CREATE PROCEDURE statement to create a standalone stored procedure or a call
specification.

A procedure is a group of PL/SQL statements that you can call by name. A call
specification (sometimes called call spec) declares a Java method or a third-generation
language (3GL) routine so that it can be called from SQL and PL/SQL. The call spec tells
Oracle Database which Java method to invoke when a call is made. It also tells the database
what type conversions to make for the arguments and return value.

Stored procedures offer advantages in the areas of development, integrity, security,
performance, and memory allocation.

See Also:

• Oracle Database Development Guide for more information on stored
procedures, including how to call stored procedures and for information about
registering external procedures.

• CREATE FUNCTION for information specific to functions, which are similar to
procedures in many ways.

• CREATE PACKAGE for information on creating packages. The CREATE
PROCEDURE statement creates a procedure as a standalone schema object. You
can also create a procedure as part of a package.

• ALTER PROCEDURE and DROP PROCEDURE for information on modifying
and dropping a standalone procedure.

• CREATE LIBRARY for more information about shared libraries.

Prerequisites

To create or replace a procedure in your own schema, you must have the CREATE PROCEDURE
system privilege. To create or replace a procedure in another user's schema, you must have
the CREATE ANY PROCEDURE system privilege.

To invoke a call spec, you may need additional privileges, for example, the EXECUTE object
privilege on the C library for a C call spec.

To embed a CREATE PROCEDURE statement inside an Oracle precompiler program, you must
terminate the statement with the keyword END-EXEC followed by the embedded SQL
statement terminator for the specific language.

Chapter 14
CREATE PROCEDURE

14-99

See Also:

Oracle Database PL/SQL Language Reference or Oracle Database Java
Developer's Guide for more information

Syntax

Procedures are defined using PL/SQL. Therefore, the syntax diagram in this book
shows only the SQL keywords. Refer to Oracle Database PL/SQL Language
Reference for the PL/SQL syntax, semantics, and examples.

create_procedure::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

PROCEDURE plsql_procedure_source

(plsql_procedure_source: See Oracle Database PL/SQL Language Reference.)

Semantics

OR REPLACE

Specify OR REPLACE to re-create the procedure if it already exists. Use this clause to
change the definition of an existing procedure without dropping, re-creating, and
regranting object privileges previously granted on it. If you redefine a procedure, then
Oracle Database recompiles it.

Users who had previously been granted privileges on a redefined procedure can still
access the procedure without being regranted the privileges.

If any function-based indexes depend on the procedure, then Oracle Database marks
the indexes DISABLED.

See Also:

ALTER PROCEDURE for information on recompiling procedures

[EDITIONABLE | NONEDITIONABLE]

Use these clauses to specify whether the procedure is an editioned or noneditioned
object if editioning is enabled for the schema object type PROCEDURE in schema. The
default is EDITIONABLE. For information about editioned and noneditioned objects, see
Oracle Database Development Guide.

plsql_procedure_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of
the plsql_procedure_source.

Chapter 14
CREATE PROCEDURE

14-100

CREATE PROFILE

Note:

Oracle recommends that you use the Database Resource Manager rather than this
SQL statement to establish resource limits. The Database Resource Manager offers
a more flexible means of managing and tracking resource use. For more
information on the Database Resource Manager, refer to Oracle Database
Administrator's Guide.

Purpose

Use the CREATE PROFILE statement to create a profile, which is a set of limits on database
resources. If you assign the profile to a user, then that user cannot exceed these limits.

To specify resource limits for a user, you must:

• Enable resource limits dynamically with the ALTER SYSTEM statement or with the
initialization parameter RESOURCE_LIMIT. This parameter does not apply to password
resources. Password resources are always enabled.

• Create a profile that defines the limits using the CREATE PROFILE statement

• Assign the profile to the user using the CREATE USER or ALTER USER statement

In a multitenant environment, different profiles can be assigned to a common user in the root
and in a PDB. When the common user logs in to the PDB, a profile whose setting applies to
the session depends on whether the settings are password-related or resource-related.

• Password-related profile settings are fetched from the profile that is assigned to the
common user in the root. For example, suppose you assign a common profile c##prof
(in which FAILED_LOGIN_ATTEMPTS is set to 1) to common user c##admin in the root. In a
PDB that user is assigned a local profilelocal_prof (in which FAILED_LOGIN_ATTEMPTS is
set to 6.) Common user c##admin is allowed only one failed login attempt when he or
she tries to log in to the PDB where loc_prof is assigned to him.

• Resource-related profile settings specified in the profile assigned to a user in a PDB get
used without consulting resource-related settings in a profile assigned to the common
user in the root. For example, if the profile local_prof that is assigned to user c##admin
in a PDB has SESSIONS_PER_USER set to 2, then c##admin is only allowed only 2
concurrent sessions when he or she logs in to the PDB loc_prof is assigned to him,
regardless of value of this setting in a profile assigned to him in the root.

See Also:

Oracle Database Security Guide for a detailed description and explanation of how
to use password management and protection

Chapter 14
CREATE PROFILE

14-101

Prerequisites

To create a profile, you must have the CREATE PROFILE system privilege.

To specify the CONTAINER clause, you must be connected to a multitenant container
database (CDB). To specify CONTAINER = ALL, the current container must be the root.
To specify CONTAINER = CURRENT, the current container must be a pluggable database
(PDB).

See Also:

• ALTER SYSTEM for information on enabling resource limits dynamically

• Oracle Database Reference for information on the RESOURCE_LIMIT
parameter

• CREATE USER and ALTER USER for information on profiles

Syntax

create_profile::=

CREATE

MANDATORY

PROFILE profile LIMIT
resource_parameters

password_parameters

CONTAINER =
CURRENT

ALL

;

resource_parameters::=

SESSIONS_PER_USER

CPU_PER_SESSION

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

COMPOSITE_LIMIT

integer

UNLIMITED

DEFAULT

PRIVATE_SGA

size_clause

UNLIMITED

DEFAULT

Chapter 14
CREATE PROFILE

14-102

(size_clause::=

password_parameters::=

FAILED_LOGIN_ATTEMPTS

PASSWORD_LIFE_TIME

PASSWORD_REUSE_TIME

PASSWORD_REUSE_MAX

PASSWORD_LOCK_TIME

PASSWORD_GRACE_TIME

INACTIVE_ACCOUNT_TIME

expr

UNLIMITED

DEFAULT

PASSWORD_VERIFY_FUNCTION

function

NULL

DEFAULT

PASSWORD_ROLLOVER_TIME
expr

DEFAULT

Semantics

profile

Specify the name of the profile to be created. The name must satisfy the requirements listed
in "Database Object Naming Rules ". Use profiles to limit the database resources available to
a user for a single call or a single session.

In a non-CDB, a profile name cannot begin with C## or c##.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 20c. While the documentation is being revised, legacy terminology may
persist. In most cases, "database" and "non-CDB" refer to a CDB or PDB,
depending on context. In some contexts, such as upgrades, "non-CDB" refers to a
non-CDB from a previous release.

In a CDB, the requirements for a profile name are as follows:

• The name of a common profile must begin with characters that are a case-insensitive
match to the prefix specified by the COMMON_USER_PREFIX initialization parameter. By
default, the prefix is C##.

• The name of a local profile must not begin with characters that are a case-insensitive
match to the prefix specified by the COMMON_USER_PREFIX initialization parameter.

Chapter 14
CREATE PROFILE

14-103

Regardless of the value of COMMON_USER_PREFIX, the name of a local profile can
never begin with C## or c##.

Note:

If the value of COMMON_USER_PREFIX is an empty string, then there are no
requirements for common or local profile names with one exception: the
name of a local profile can never begin with C## or c##. Oracle recommends
against using an empty string value because it might result in conflicts
between the names of local and common profiles when a PDB is plugged
into a different CDB, or when opening a PDB that was closed when a
common user was created.

Oracle Database enforces resource limits in the following ways:

• If a user exceeds the CONNECT_TIME or IDLE_TIME session resource limit, then the
database rolls back the current transaction and ends the session. When the user
process next issues a call, the database returns an error.

• If a user attempts to perform an operation that exceeds the limit for other session
resources, then the database aborts the operation, rolls back the current
statement, and immediately returns an error. The user can then commit or roll
back the current transaction, and must then end the session.

• If a user attempts to perform an operation that exceeds the limit for a single call,
then the database aborts the operation, rolls back the current statement, and
returns an error, leaving the current transaction intact.

MANDATORY

Specify the keyword MANDATORY to create a generic mandatory profile in CDB$ROOT. You
can use the mandatory profile to enforce password complexity requirements for
database user accounts across the entire CDB or individual PDBs using the profile
parameter password_verify_function.

The mandatory profile adds the password complexity requirement in addition to
existing profile limits for common and local users. A PDB administrator cannot remove
the password complexity requirement and allow users to set insecure shorter
passwords, because mandatory profiles, just like common profiles, can only be altered
in CDB$ROOT .

You can only use password_verify_function and password_grace_time profile
parameters to define the limits for the mandatory profile.

Use the profile parameter password_grace_time to specify a grace period for user
accounts in violation of mandatory password complexity requirements and whose
passwords have to be changed. User accounts imported using datapump are checked
for password compliance against the mandatory profile and forced to change their
passwords. If the password is not changed within the grace period, further connections
are rejected.

The default value for password_verify_function is null. The default value for
password_grace_time is 0.

User-Created Password Complexity Function: Example

Chapter 14
CREATE PROFILE

14-104

The example creates a password complexity function my_mandatory_function as the
argument to PASSWORD_VERIFY_FUNCTION.

SQL> create or replace function my_mandatory_verify_function
 (username varchar2,
 password varchar2,
 old_password varchar2)
 return boolean IS
begin
 -- mandatory verify function will always be evaluated regardless of the
 -- password verify function that is associated to a particular profile/user
 -- requires the minimum password length to be 8 characters
 if not ora_complexity_check(password, chars => 8) then
 return(false);
 end if;
 return(true);
end;
/
 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Function created.

Create a Mandatory Profile: Example

The example creates mandatory profile c##cdb_profile. LIMIT restricts the profile to use the
only profile parameter allowed, the PASSWORD_VERIFY_FUNCTION. The
PASSWORD_VERIFY_FUNCTION specifies the user-created password complexity function
my_mandatory_function.

CREATE MANDATORY PROFILE c##cdb_profile LIMIT PASSWORD_VERIFY_FUNCTION
my_mandatory_function
 CONTAINER = ALL ;

If you want to apply the mandatory user profile for all PDBs in the CDB, then you must do so
in the CDB root using the ALTER SYSTEM statement.

Apply the Mandatory Profile to the Entire CDB: Example

You must be in CDB$ROOT to execute this statement.

ALTER SYSTEM SET MANDATORY_USER_PROFILE=c##cdb_profile;

If you want to apply the mandatory user profile for individual PDBs, then you must configure
the MANDATORY_USER_PROFILE parameter in the init.ora file that is associated with the PDB.

Apply the Mandatory Profile to an Individual PDB: Example

Open the init.ora file associated with the PDB and set the MANDATORY_USER_PROFILE.

MANDATORY_USER_PROFILE=c##cdb_profile;

You can use SHOW PARAMETER to find the current MANDATORY_USER_PROFILE setting.

The mandatory profile that you set in init.ora takes precedence over the mandatory profile
that you set with the ALTER SYSTEM statement in the CDB root.

Restrictions

• Only common users who have been commonly granted the ALTER PROFILE system
privilege can alter or drop the mandatory profile, and only from the CDB root.

Chapter 14
CREATE PROFILE

14-105

• Only a common user who has been commonly granted the ALTER SYSTEM privilege
or has the SYSDBA administrative privilege can modify the MANDTORY_USER_PROFILE
in the init.ora file.

Note:

• You can use fractions of days for all parameters that limit time, with days
as units. For example, 1 hour is 1/24 and 1 minute is 1/1440.

• You can specify resource limits for users regardless of whether the
resource limits are enabled. However, Oracle Database does not enforce
the limits until you enable them.

See Also:

• Managing Security for Database Users

• "Creating a Profile: Example"

UNLIMITED

When specified with a resource parameter, UNLIMITED indicates that a user assigned
this profile can use an unlimited amount of this resource. When specified with a
password parameter, UNLIMITED indicates that no limit has been set for the parameter.

DEFAULT

Specify DEFAULT if you want to omit a limit for this resource in this profile. A user
assigned this profile is subject to the limit for this resource specified in the DEFAULT
profile. The DEFAULT profile initially defines unlimited resources. You can change those
limits with the ALTER PROFILE statement.

Any user who is not explicitly assigned a profile is subject to the limits defined in the
DEFAULT profile. Also, if the profile that is explicitly assigned to a user omits limits for
some resources or specifies DEFAULT for some limits, then the user is subject to the
limits on those resources defined by the DEFAULT profile.

resource_parameters

SESSIONS_PER_USER

Specify the number of concurrent sessions to which you want to limit the user.

CPU_PER_SESSION

Specify the CPU time limit for a session, expressed in hundredth of seconds.

CPU_PER_CALL

Specify the CPU time limit for a call (a parse, execute, or fetch), expressed in
hundredths of seconds.

CONNECT_TIME

Chapter 14
CREATE PROFILE

14-106

Specify the total elapsed time limit for a session, expressed in minutes.

IDLE_TIME

Specify the permitted periods of continuous inactive time during a session, expressed in
minutes. Long-running queries and other operations are not subject to this limit.

When you set an idle timeout of X minutes, note that the session will take X minutes, plus a
couple of additional minutes to be terminated.

On the client application side, the error message shows up the next time, when the idle client
attempts to issue a new command.

LOGICAL_READS_PER_SESSION

Specify the permitted number of data blocks read in a session, including blocks read from
memory and disk.

LOGICAL_READS_PER_CALL

Specify the permitted number of data blocks read for a call to process a SQL statement (a
parse, execute, or fetch).

PRIVATE_SGA

Specify the amount of private space a session can allocate in the shared pool of the system
global area (SGA). Refer to size_clause for information on that clause.

Note:

This limit applies only if you are using shared server architecture. The private space
for a session in the SGA includes private SQL and PL/SQL areas, but not shared
SQL and PL/SQL areas.

COMPOSITE_LIMIT

Specify the total resource cost for a session, expressed in service units. Oracle Database
calculates the total service units as a weighted sum of CPU_PER_SESSION, CONNECT_TIME,
LOGICAL_READS_PER_SESSION, and PRIVATE_SGA.

See Also:

• ALTER RESOURCE COST for information on how to specify the weight for
each session resource

• "Setting Profile Resource Limits: Example"

password_parameters

Use the following clauses to set password parameters. Parameters that set lengths of time—
that is, all the password parameters except FAILED_LOGIN_ATTEMPTS and
PASSWORD_REUSE_MAX—are interpreted in number of days. For testing purposes you can
specify minutes (n/1440) or even seconds (n/86400) for these parameters. You can also use
a decimal value for this purpose (for example .0833 for approximately one hour). The

Chapter 14
CREATE PROFILE

14-107

minimum value is 1 second. The maximum value is 24855 days. For
FAILED_LOGIN_ATTEMPTS and PASSWORD_REUSE_MAX, you must specify an integer.

FAILED_LOGIN_ATTEMPTS

Specify the number of consecutive failed attempts to log in to the user account before
the account is locked. If you omit this clause, then the default is 10 times.

PASSWORD_LIFE_TIME

Specify the number of days the same password can be used for authentication. If you
also set a value for PASSWORD_GRACE_TIME, then the password expires if it is not
changed within the grace period, and further connections are rejected. If you omit this
clause, then the default is 180 days.

See Also:

Oracle Database Security Guide for information on setting
PASSWORD_LIFE_TIME to a low value

PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX

These two parameters must be set in conjunction with each other.
PASSWORD_REUSE_TIME specifies the number of days which need to pass before a user
having this profile can reuse one of their earlier passwords. PASSWORD_REUSE_MAX
specifies the number of password changes required before the current password can
be reused. For these parameters to have any effect, you must specify a value for both
of them.

• If you specify a value for both of these parameters, then the user cannot reuse a
password until the password has been changed the number of times specified for
PASSWORD_REUSE_MAX during the number of days specified for
PASSWORD_REUSE_TIME.

For example, if you specify PASSWORD_REUSE_TIME to 30 and PASSWORD_REUSE_MAX
to 10, then the user can reuse the password after 30 days if the password has
already been changed 10 times.

• If you specify a value for either of these parameters and specify UNLIMITED for the
other, then the user can never reuse a password.

• If you specify DEFAULT for either parameter, then Oracle Database uses the value
defined in the DEFAULT profile. By default, the PASSWORD_REUSE_TIME and
PASSWORD_REUSE_MAX parameters are set to UNLIMITED in the DEFAULT profile. If
you have not changed the default setting of UNLIMITED in the DEFAULT profile, then
the database treats the value for that parameter as UNLIMITED.

• If you set both of these parameters to UNLIMITED, then the database ignores both
of them. This is the default if you omit both parameters.

PASSWORD_LOCK_TIME

Specify the number of days an account will be locked after the specified number of
consecutive failed login attempts. If you omit this clause, then the default is 1 day.

PASSWORD_GRACE_TIME

Chapter 14
CREATE PROFILE

14-108

Specify the number of days after the grace period begins during which a warning is issued
and login is allowed. If you omit this clause, then the default is 7 days.

INACTIVE_ACCOUNT_TIME

Specify the permitted number of consecutive days of no logins to the user account, after
which the account will be locked. The minimum value is 15 days. The maximum value is
24855. If you omit this clause, then the default is UNLIMITED.

PASSWORD_VERIFY_FUNCTION

You can pass a PL/SQL password complexity verification script as an argument to CREATE
PROFILE by specifying PASSWORD_VERIFY_FUNCTION. Oracle Database provides a default
script, but you can write your own function or use third-party software instead.

• For function, specify the name of the password complexity verification function. The
function must exist in the SYS schema, and you must have EXECUTE privilege on the
function.

• Specify NULL to indicate that no password verification is performed.

If you specify expr for any of the password parameters, then the expression can be of any
form except scalar subquery expression.

Restriction on Password Parameters

When you assign a profile to an external user or a global user, the password parameters do
not take effect for that user.

See Also:

"Setting Profile Password Limits: Example"

PASSWORD_ROLLOVER_TIME

You must configure a non-zero limit for the PASSWORD_ROLLOVER_TIME user profile parameter
in order to enable the gradual database password rollover. You can configure this parameter
using CREATE PROFILE or ALTER PROFILE.

Use expr to specify a value for PASSWORD_ROLLOVER_TIME in days. You must specify hours as
a fraction of one day. For example, if you want to set the limit to four hours, expr would be
4/24 .

The granularity of the PASSWORD_ROLLOVER_TIME limit value is one second. For example, you
can have a limit of one hour plus three minutes and five seconds by providing an expr like
this: (1/24) + (3/1440) + (5/86400)) .

The default setting for PASSWORD_ROLLOVER_TIME is 0, which means that gradual password
rollover is disabled.

Example

The example sets the gradual password rollover time period to 1 day:

CREATE PROFILE usr_prof LIMIT PASSWORD_ROLLOVER_TIME 1

Limits on PASSWORD_ROLLOVER_TIME:

Chapter 14
CREATE PROFILE

14-109

• Specify a value of 0 for PASSWORD_ROLLOVER_TIME if you want to disable the
password rollover period.

• Specify a positive value for PASSWORD_ROLLOVER_TIME to enable the password
rollover feature for all users who are members of the profile.

• The minimum value you can specify for PASSWORD_ROLLOVER_TIME is one hour. You
do this by entering 1/24. If you want to set the password rollover time to six hours,
you enter 6/24 as the value for PASSWORD_ROLLOVER_TIME .

• The value for PASSWORD_ROLLOVER_TIME cannot exceed either 60 days, or the
current value of the PASSWORD_GRACE_TIME limit of the profile, or the current value
of the PASSWORD_LIFE_TIME limit of the profile; whichever is lowest.

To find user accounts that are currently in the password rollover period, query the
ACCOUNT_STATUS column of the DBA_USERS data dictionary view. The status will be IN
ROLLOVER.

The password rollover period begins the moment the user changes their password.

See Also:

Configuring Authentication

CONTAINER Clause

The CONTAINER clause applies when you are connected to a CDB. However, it is not
necessary to specify the CONTAINER clause because its default values are the only
allowed values.

• To create a common profile, you must be connected to the root. You can optionally
specify CONTAINER = ALL, which is the default when you are connected to the root.

• To create a local profile, you must be connected to a PDB. You can optionally
specify CONTAINER = CURRENT, which is the default when you are connected to a
PDB.

Examples

Creating a Profile: Example

The following statement creates the profile new_profile:

CREATE PROFILE new_profile
 LIMIT PASSWORD_REUSE_MAX 10
 PASSWORD_REUSE_TIME 30;

Setting Profile Resource Limits: Example

The following statement creates the profile app_user:

CREATE PROFILE app_user LIMIT
 SESSIONS_PER_USER UNLIMITED
 CPU_PER_SESSION UNLIMITED
 CPU_PER_CALL 3000
 CONNECT_TIME 45
 LOGICAL_READS_PER_SESSION DEFAULT
 LOGICAL_READS_PER_CALL 1000

Chapter 14
CREATE PROFILE

14-110

 PRIVATE_SGA 15K
 COMPOSITE_LIMIT 5000000;

If you assign the app_user profile to a user, then the user is subject to the following limits in
subsequent sessions:

• The user can have any number of concurrent sessions.

• In a single session, the user can consume an unlimited amount of CPU time.

• A single call made by the user cannot consume more than 30 seconds of CPU time.

• A single session cannot last for more than 45 minutes.

• In a single session, the number of data blocks read from memory and disk is subject to
the limit specified in the DEFAULT profile.

• A single call made by the user cannot read more than 1000 data blocks from memory
and disk.

• A single session cannot allocate more than 15 kilobytes of memory in the SGA.

• In a single session, the total resource cost cannot exceed 5 million service units. The
formula for calculating the total resource cost is specified by the ALTER RESOURCE COST
statement.

• Since the app_user profile omits a limit for IDLE_TIME and for password limits, the user is
subject to the limits on these resources specified in the DEFAULT profile.

Setting Profile Password Limits: Example

The following statement creates the app_user2 profile with password limits values set:

CREATE PROFILE app_user2 LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LIFE_TIME 60
 PASSWORD_REUSE_TIME 60
 PASSWORD_REUSE_MAX 5
 PASSWORD_VERIFY_FUNCTION ora12c_verify_function
 PASSWORD_LOCK_TIME 1/24
 PASSWORD_GRACE_TIME 10
 INACTIVE_ACCOUNT_TIME 30;

This example uses the default Oracle Database password verification function,
ora12c_verify_function. Refer to Oracle Database Security Guide for information on using
this verification function provided or designing your own verification function.

CREATE RESTORE POINT
Purpose

Use the CREATE RESTORE POINT statement to create a restore point, which is a name
associated with a timestamp or an SCN of the database. A restore point can be used to flash
back a table or the database to the time specified by the restore point without the need to
determine the SCN or timestamp. Restore points are also useful in various RMAN operations,
including backups and database duplication. You can use RMAN to create restore points in
the process of implementing an archival backup.

Chapter 14
CREATE RESTORE POINT

14-111

See Also:

• Oracle Database Backup and Recovery User's Guide for more
information on creating and using restore points and guaranteed restore
points, for information on database duplication, and for information on
archival backups

• FLASHBACK DATABASE, FLASHBACK TABLE , and DROP RESTORE
POINT for information on using and dropping restore points

Prerequisites

To create a normal restore point, you must have the SELECT ANY DICTIONARY,
FLASHBACK ANY TABLE, SYSDBA, SYSBACKUP, or SYSDG system privilege.

To create a guaranteed restore point, you must fulfill one of the following conditions:

• You must connect AS SYSDBA, or AS SYSBACKUP, or AS SYSDG.

• You must have been granted the SYSDBA privilege and be using a multitenant
database.

• You must be running as user SYS, and be using a a multitenant database.

To view or use a restore point, you must have the SELECT ANY DICTIONARY, FLASHBACK
ANY TABLE, SYSDBA, SYSBACKUP, or SYSDG system privilege or the SELECT_CATALOG_ROLE
role.

You can create a restore point on a primary or standby database. The database can
be open, or mounted but not open. If the database is mounted, then it must have been
shut down consistently before being mounted unless it is a physical standby database.

You must have created a fast recovery area before creating a guaranteed restore
point. You need not enable flashback database before you create the guaranteed
restore point. The database must be in ARCHIVELOG mode if you are creating a
guaranteed restore point.

You need not enable flashback database before you create a normal restore point,
because normal restore points have other applications besides FLASHBACK DATABASE.
However, you would need to have enabled flashback database before you create a
normal restore point, if you intend to perform a FLASHBACK DATABASE to that normal
restore point.

You can create, use, or view a restore point when connected to a multitenant container
database (CDB) as follows:

• To create a normal CDB restore point, the current container must be the root and
you must have the SELECT ANY DICTIONARY or FLASHBACK ANY TABLE system
privilege, either granted commonly or granted locally in the root, or the SYSDBA,
SYSBACKUP, or SYSDG system privilege granted commonly.

• To create a guaranteed CDB restore point, the current container must be the root
and you must have the SYSDBA, SYSBACKUP, or SYSDG system privilege granted
commonly.

• To view a CDB restore point, the current container must be the root and you must
have the SELECT ANY DICTIONARY or FLASHBACK ANY TABLE system privilege or the

Chapter 14
CREATE RESTORE POINT

14-112

SELECT_CATALOG_ROLE role, either granted commonly or granted locally in the root, or the
SYSDBA, SYSBACKUP, or SYSDG system privilege granted commonly, or the current container
must be a PDB and you must have the SELECT ANY DICTIONARY, FLASHBACK ANY TABLE,
SYSDBA, SYSBACKUP, or SYSDG system privilege, granted commonly or granted locally in
that PDB.

• To use a CDB restore point, you must have the SELECT ANY DICTIONARY or FLASHBACK ANY
TABLE system privilege or the SELECT_CATALOG_ROLE role, either granted commonly or
granted locally in the root, or the SYSDBA, SYSBACKUP, or SYSDG system privilege granted
commonly.

• To create a normal PDB restore point, the current container must be the root and you
must have the SELECT ANY DICTIONARY or FLASHBACK ANY TABLE system privilege, either
granted commonly or granted locally in the root, or the SYSDBA, SYSBACKUP, or SYSDG
system privilege granted commonly, or the current container must be the PDB for which
you want to create the restore point and you must have the SELECT ANY DICTIONARY,
FLASHBACK ANY TABLE, SYSDBA, SYSBACKUP, or SYSDG system privilege, granted commonly
or granted locally in that PDB.

• To create a guaranteed PDB restore point, the current container must be the root and you
must have the SYSDBA, SYSBACKUP, or SYSDG system privilege, granted commonly, or the
current container must be the PDB for which you want to create the restore point and you
must have the SYSDBA, SYSBACKUP, or SYSDG system privilege, granted commonly or
granted locally in that PDB.

• To view a PDB restore point, the current container must be the root and you must have
the SELECT ANY DICTIONARY or FLASHBACK ANY TABLE system privilege or the
SELECT_CATALOG_ROLE role, either granted commonly or granted locally in the root, or the
SYSDBA, SYSBACKUP, or SYSDG system privilege granted commonly, or the current container
must be the PDB for the restore point and you must have the SELECT ANY DICTIONARY,
FLASHBACK ANY TABLE, SYSDBA, SYSBACKUP, or SYSDG system privilege, granted commonly
or granted locally in that PDB.

• To use a PDB restore point, the current container must be the PDB for the restore point
and you must have the SELECT ANY DICTIONARY, FLASHBACK ANY TABLE, SYSDBA,
SYSBACKUP, or SYSDG system privilege, granted commonly or granted locally in that PDB.

Syntax

create_restore_point::=

CREATE

CLEAN

RESTORE POINT restore_point

FOR PLUGGABLE DATABASE pdb_name

AS OF
TIMESTAMP

SCN
expr

PRESERVE

GUARANTEE FLASHBACK DATABASE

;

Semantics

CLEAN

You can specify CLEAN only when creating a PDB restore point. The PDB must use shared
undo and must be closed with no outstanding transactions. Flashing back a PDB using

Chapter 14
CREATE RESTORE POINT

14-113

shared undo to a clean PDB restore point does not require restoring backups or
creating a clone instance. Therefore, it is faster than flashing back a PDB using shared
undo to an SCN or other type of restore point.

restore_point

Specify the name of the restore point. The name must satisfy the requirements listed
in "Database Object Naming Rules ".

In a multitenant environment, the CDB and PDBs have their own namespaces for
restore points. Therefore, the CDB and each PDB can have a restore point with the
same name. When you specify a restore point name in a PDB or for a PDB operation,
the name is first interpreted as a PDB restore point for the concerned PDB. If a PDB
restore point with the specified name is not found, then it is interpreted as a CDB
restore point.

The database can retain at least 2048 normal restore points. In a Multitenant
environment, a CDB can retain at least 2048 normal restore points across the entire
CDB, including PDB restore points. Normal restore points are retained in the database
for at least the number of days specified for the CONTROL_FILE_RECORD_KEEP_TIME
initialization parameter. The default value of that parameter is 7 days. Guaranteed
restore points are retained in the database until explicitly dropped by the user.

If you specify neither PRESERVE nor GUARANTEE FLASHBACK DATABASE, then the resulting
restore point enables you to flash the database back to a restore point within the time
period determined by the DB_FLASHBACK_RETENTION_TARGET initialization parameter.
The database automatically manages such restore points. When the maximum
number of restore points is reached, according to the rules described in
restore_point above, the database automatically drops the oldest restore point.
Under some circumstances the restore points will be retained in the RMAN recovery
catalog for use in restoring long-term backups. You can explicitly drop a restore point
using the DROP RESTORE POINT statement.

FOR PLUGGABLE DATABASE

This clause enables you to create a PDB restore point when you are connected to the
root. For pdb_name, specify the name of the PDB.

If you are connected to the PDB for which you want to create the restore point, then it
is not necessary to specify this clause. However, if you specify this clause, then you
must specify the name of the PDB to which you are connected.

AS OF Clause

Use this clause to create a restore point at a specified datetime or SCN in the past. If
you specify TIMESTAMP, then expr must be a valid datetime expression resolving to a
time in the past. If you specify SCN, then expr must be a valid SCN in the database in
the past. In either case, expr must refer to a datetime or SCN in the current
incarnation of the database.

PRESERVE

Specify PRESERVE to indicate that the restore point must be explicitly deleted. Such
restore points are useful for preserving a flashback database.

Chapter 14
CREATE RESTORE POINT

14-114

GUARANTEE FLASHBACK DATABASE

A guaranteed restore point enables you to flash the database back deterministically to the
restore point regardless of the DB_FLASHBACK_RETENTION_TARGET initialization parameter
setting. The guaranteed ability to flash back depends on sufficient space being available in
the fast recovery area.

Guaranteed restore points guarantee only that the database will maintain enough flashback
logs to flashback the database to the guaranteed restore point. It does not guarantee that the
database will have enough undo to flashback any table to the same restore point.

Guaranteed restore points are always preserved. They must be dropped explicitly by the user
using the DROP RESTORE POINT statement. They do not age out. Guaranteed restore points can
use considerable space in the fast recovery area. Therefore, Oracle recommends that you
create guaranteed restore points only after careful consideration.

Examples

Creating and Using a Restore Point: Example

The following example creates a normal restore point, updates a table, and then flashes back
the altered table to the restore point. The example assumes the user hr has the appropriate
system privileges to use each of the statements.

CREATE RESTORE POINT good_data;

SELECT salary FROM employees WHERE employee_id = 108;

 SALARY

 12000

UPDATE employees SET salary = salary*10
 WHERE employee_id = 108;

SELECT salary FROM employees
 WHERE employee_id = 108;

 SALARY

 120000

COMMIT;

FLASHBACK TABLE employees TO RESTORE POINT good_data;

SELECT salary FROM employees
 WHERE employee_id = 108;

 SALARY

 12000

Chapter 14
CREATE RESTORE POINT

14-115

CREATE ROLE
Purpose

Use the CREATE ROLE statement to create a role, which is a set of privileges that can be
granted to users or to other roles. You can use roles to administer database privileges.
You can add privileges to a role and then grant the role to a user. The user can then
enable the role and exercise the privileges granted by the role.

A role contains all privileges granted to the role and all privileges of other roles granted
to it. A new role is initially empty. You add privileges to a role with the GRANT statement.

If you create a role that is NOT IDENTIFIED or is IDENTIFIED EXTERNALLY or BY
password, then Oracle Database grants you the role with ADMIN OPTION. However, if
you create a role IDENTIFIED GLOBALLY, then the database does not grant you the role.
A global role cannot be granted to a user or role directly. Global roles can be granted
only through enterprise roles.

See Also:

• GRANT for information on granting roles

• ALTER USER for information on enabling roles

• ALTER ROLE and DROP ROLE for information on modifying or
removing a role from the database

• SET ROLE for information on enabling and disabling roles for the current
session

• Oracle Database Security Guide for general information about roles

• Oracle Database Enterprise User Security Administrator's Guide for
details on enterprise roles

Prerequisites

You must have the CREATE ROLE system privilege.

To specify the CONTAINER clause, you must be connected to a multitenant container
database (CDB). To specify CONTAINER = ALL, the current container must be the root.
To specify CONTAINER = CURRENT, the current container must be a pluggable database
(PDB).

Chapter 14
CREATE ROLE

14-116

Syntax

create_role::=

CREATE ROLE role

NOT IDENTIFIED

IDENTIFIED

BY password

USING

schema .

package

EXTERNALLY

GLOBALLY AS domain_name_of_directory_group

CONTAINER =
CURRENT

ALL

;

Semantics

role

Specify the name of the role to be created. The name must satisfy the requirements listed in
"Database Object Naming Rules ". Oracle recommends that the role contain at least one
single-byte character regardless of whether the database character set also contains
multibyte characters. The maximum length of the role name is 128 bytes. The maximum
number of user-defined roles that can be enabled for a single user at one time is 148.

In a non-CDB, a role name cannot begin with C## or c##.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 20c. While the documentation is being revised, legacy terminology may
persist. In most cases, "database" and "non-CDB" refer to a CDB or PDB,
depending on context. In some contexts, such as upgrades, "non-CDB" refers to a
non-CDB from a previous release.

In a CDB, the requirements for a role name are as follows:

• The name of a common role must begin with characters that are a case-insensitive
match to the prefix specified by the COMMON_USER_PREFIX initialization parameter. By
default, the prefix is C##.

• The name of a local role must not begin with characters that are a case-insensitive
match to the prefix specified by the COMMON_USER_PREFIX initialization parameter.
Regardless of the value of COMMON_USER_PREFIX, the name of a local role can never begin
with C## or c##.

Chapter 14
CREATE ROLE

14-117

Note:

If the value of COMMON_USER_PREFIX is an empty string, then there are no
requirements for common or local role names with one exception: the name
of a local role can never begin with C## or c##. Oracle recommends against
using an empty string value because it might result in conflicts between the
names of local and common roles when a PDB is plugged into a different
CDB, or when opening a PDB that was closed when a common user was
created.

Some roles are defined by SQL scripts provided on your distribution media.

See Also:

GRANT for a list of these predefined roles and SET ROLE for information on
enabling and disabling roles for a user

NOT IDENTIFIED Clause

Specify NOT IDENTIFIED to indicate that this role is authorized by the database and that
no password is required to enable the role.

IDENTIFIED Clause

Use the IDENTIFIED clause to indicate that a user must be authorized by the specified
method before the role is enabled with the SET ROLE statement.

BY password

You can create a local role with a password with the BY password clause. This means
that you must specify the password to the database at the time you enable the role.

The password can contain any characters from the database character set except the
NULL character (CHR(0)) and the double-quote. The password is syntactically an
identifier, and may need to be enclosed in double-quotes as required by the "Database
Object Naming Rules ". You must ensure that your database, and the clients that need
to enable the role are configured to support all the characters comprising the
password.

You can enable password-protected roles in a proxy session. Both secure application
role and password-protected roles provide a secure method for enabling a role in a
session. Oracle recommends using secure password roles instead of password
protected roles in instances where the password has to be maintained and transmitted
over insecure channels, or if more than one person needs to know the password.
Password-protected roles in a proxy session are suitable for situations where
automation is used to set the role.

Chapter 14
CREATE ROLE

14-118

USING package

The USING package clause lets you create a secure application role, which is a role that can
be enabled only by applications using an authorized package. If you do not specify schema,
then the database assumes the package is in your own schema.

See Also:

Oracle Database Security Guide for information on creating a secure application
role

EXTERNALLY

Specify EXTERNALLY to create an external role. An external user must be authorized by an
external service, such as an operating system or third-party service, before enabling the role.

Depending on the operating system, the user may have to specify a password to the
operating system before the role is enabled.

GLOBALLY

Specify GLOBALLY to create a global role . A global user must be authorized to use the role
by the enterprise directory service before the role is enabled at login.

Specify GLOBALLY with AS to map a directory group to a global role when using centrally
managed users. The directory group is identified by its domain name.

Example: Map a Directory User to a Global User

 CREATE USER scott_global IDENTIFIED GLOBALLY AS ‘cn=scott
taylor,ou=sales,dc=abccorp,dc=com’;

This effectively maps a directory user named ‘scott taylor’ in the ‘sales’ organization unit of
the abccorp.com domain to a database global user ‘scott_global’.

CONTAINER Clause

The CONTAINER clause applies when you are connected to a CDB. However, it is not
necessary to specify the CONTAINER clause because its default values are the only allowed
values.

• To create a common role, you must be connected to the root. You can optionally specify
CONTAINER = ALL, which is the default when you are connected to the root.

• To create a local role, you must be connected to a PDB. You can optionally specify
CONTAINER = CURRENT, which is the default when you are connected to a PDB.

Examples

Creating a Role: Example

The following statement creates the role dw_manager:

CREATE ROLE dw_manager;

Chapter 14
CREATE ROLE

14-119

Users who are subsequently granted the dw_manager role will inherit all of the
privileges that have been granted to this role.

You can add a layer of security to roles by specifying a password, as in the following
example:

CREATE ROLE dw_manager
 IDENTIFIED BY warehouse;

Users who are subsequently granted the dw_manager role must specify the password
warehouse to enable the role with the SET ROLE statement.

The following statement creates global role warehouse_user:

CREATE ROLE warehouse_user IDENTIFIED GLOBALLY;

The following statement creates the same role as an external role:

CREATE ROLE warehouse_user IDENTIFIED EXTERNALLY;

The following statement creates local role role1 in the current PDB. The current
container must be a PDB when you issue this statement:

CREATE ROLE role1 CONTAINER = CURRENT;

The following statement creates common role c##role1. The current container must
be the root when you issue this statement:

CREATE ROLE c##role1 CONTAINER = ALL;

CREATE ROLLBACK SEGMENT

Note:

Oracle strongly recommends that you run your database in automatic undo
management mode instead of using rollback segments. Do not use rollback
segments unless you must do so for compatibility with earlier versions of
Oracle Database. Refer to Oracle Database Administrator's Guide for
information on automatic undo management.

Purpose

Use the CREATE ROLLBACK SEGMENT statement to create a rollback segment, which is
an object that Oracle Database uses to store data necessary to reverse, or undo,
changes made by transactions.

The information in this section assumes that your database is not running in automatic
undo mode (the UNDO_MANAGEMENT initialization parameter is set to MANUAL or not set at
all). If your database is running in automatic undo mode (the UNDO_MANAGEMENT
initialization parameter is set to AUTO, which is the default), then rollback segments are
not permitted. However, errors generated in rollback segment operations are
suppressed.

Further, if your database has a locally managed SYSTEM tablespace, then you cannot
create rollback segments in any dictionary-managed tablespace. Instead, you must

Chapter 14
CREATE ROLLBACK SEGMENT

14-120

either use the automatic undo management feature or create locally managed tablespaces to
hold the rollback segments.

Note:

A tablespace can have multiple rollback segments. Generally, multiple rollback
segments improve performance.

• The tablespace must be online for you to add a rollback segment to it.

• When you create a rollback segment, it is initially offline. To make it available for
transactions by your Oracle Database instance, bring it online using the ALTER
ROLLBACK SEGMENT statement. To bring it online automatically whenever you
start up the database, add the segment name to the value of the
ROLLBACK_SEGMENT initialization parameter.

To use objects in a tablespace other than the SYSTEM tablespace:

• If you are using rollback segments for undo, then at least one rollback segment (other
than the SYSTEM rollback segment) must be online.

• If you are running the database in automatic undo mode, then at least one UNDO
tablespace must be online.

See Also:

• ALTER ROLLBACK SEGMENT for information on altering a rollback segment

• DROP ROLLBACK SEGMENT for information on removing a rollback segment

• Oracle Database Reference for information on the UNDO_MANAGEMENT parameter

• Oracle Database Administrator's Guide for information on automatic undo mode

Prerequisites

To create a rollback segment, you must have the CREATE ROLLBACK SEGMENT system privilege.

Syntax

create_rollback_segment::=

CREATE

PUBLIC

ROLLBACK SEGMENT rollback_segment

TABLESPACE tablespace

storage_clause

;

(storage_clause)

Chapter 14
CREATE ROLLBACK SEGMENT

14-121

Semantics

PUBLIC

Specify PUBLIC to indicate that the rollback segment is public and is available to any
instance. If you omit this clause, then the rollback segment is private and is available
only to the instance naming it in its initialization parameter ROLLBACK_SEGMENTS.

rollback_segment

Specify the name of the rollback segment to be created. The name must satisfy the
requirements listed in "Database Object Naming Rules ".

TABLESPACE

Use the TABLESPACE clause to identify the tablespace in which the rollback segment is
created. If you omit this clause, then the database creates the rollback segment in the
SYSTEM tablespace.

Note:

Oracle Database must access rollback segments frequently. Therefore,
Oracle strongly recommends that you do not create rollback segments in the
SYSTEM tablespace, either explicitly or implicitly by omitting this clause. In
addition, to avoid high contention for the tablespace containing the rollback
segment, it should not contain other objects such as tables and indexes, and
it should require minimal extent allocation and deallocation.

To achieve these goals, create rollback segments in locally managed
tablespaces with autoallocation disabled—in tablespaces created with the
EXTENT MANAGEMENT LOCAL clause with the UNIFORM setting. The
AUTOALLOCATE setting is not supported.

See Also:

CREATE TABLESPACE

storage_clause

The storage_clause lets you specify storage characteristics for the rollback segment.

• The OPTIMAL parameter of the storage_clause is of particular interest, because it
applies only to rollback segments.

• You cannot specify the PCTINCREASE parameter of the storage_clause with CREATE
ROLLBACK SEGMENT.

Chapter 14
CREATE ROLLBACK SEGMENT

14-122

See Also:

storage_clause

Examples

Creating a Rollback Segment: Example

The following statement creates a rollback segment with default storage values in an
appropriately configured tablespace:

CREATE TABLESPACE rbs_ts
 DATAFILE 'rbs01.dbf' SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 100K;

/* This example and the next will fail if your database is in
 automatic undo mode.
*/
CREATE ROLLBACK SEGMENT rbs_one
 TABLESPACE rbs_ts;

The preceding statement is equivalent to the following:

CREATE ROLLBACK SEGMENT rbs_one
 TABLESPACE rbs_ts
 STORAGE
 (INITIAL 10K);

CREATE SCHEMA
Purpose

Use the CREATE SCHEMA statement to create multiple tables and views and perform multiple
grants in your own schema in a single transaction.

To execute a CREATE SCHEMA statement, Oracle Database executes each included statement.
If all statements execute successfully, then the database commits the transaction. If any
statement results in an error, then the database rolls back all the statements.

Note:

This statement does not actually create a schema. Oracle Database automatically
creates a schema when you create a user (see CREATE USER). This statement
lets you populate your schema with tables and views and grant privileges on those
objects without having to issue multiple SQL statements in multiple transactions.

Prerequisites

The CREATE SCHEMA statement can include CREATE TABLE, CREATE VIEW, and GRANT statements.
To issue a CREATE SCHEMA statement, you must have the privileges necessary to issue the
included statements.

Chapter 14
CREATE SCHEMA

14-123

Syntax

create_schema::=

CREATE SCHEMA AUTHORIZATION schema

create_table_statement

create_view_statement

grant_statement

;

Semantics

schema

Specify the name of the schema. The schema name must be the same as your Oracle
Database username.

Restrictions

While CREATE SCHEMA supports CREATE TABLE , CREATE BLOCKCHAIN TABLE is
unsupported.

create_table_statement

Specify a CREATE TABLE statement to be issued as part of this CREATE SCHEMA
statement. Do not end this statement with a semicolon (or other terminator character).

See Also:

CREATE TABLE

create_view_statement

Specify a CREATE VIEW statement to be issued as part of this CREATE SCHEMA statement.
Do not end this statement with a semicolon (or other terminator character).

See Also:

CREATE VIEW

grant_statement

Specify a GRANT statement to be issued as part of this CREATE SCHEMA statement. Do
not end this statement with a semicolon (or other terminator character). You can use
this clause to grant object privileges on objects you own to other users. You can also
grant system privileges to other users if you were granted those privileges WITH ADMIN
OPTION.

Chapter 14
CREATE SCHEMA

14-124

See Also:

GRANT

The CREATE SCHEMA statement supports the syntax of these statements only as defined by
standard SQL, rather than the complete syntax supported by Oracle Database.

The order in which you list the CREATE TABLE, CREATE VIEW, and GRANT statements is
unimportant. The statements within a CREATE SCHEMA statement can reference existing objects
or objects you create in other statements within the same CREATE SCHEMA statement.

Restriction on Granting Privileges to a Schema

The syntax of the parallel_clause is allowed for a CREATE TABLE statement in CREATE
SCHEMA, but parallelism is not used when creating the objects.

See Also:

The parallel_clause in the CREATE TABLE documentation

Examples

Creating a Schema: Example

The following statement creates a schema named oe for the sample order entry user oe,
creates the table new_product, creates the view new_product_view, and grants the SELECT
object privilege on new_product_view to the sample human resources user hr.

CREATE SCHEMA AUTHORIZATION oe
 CREATE TABLE new_product
 (color VARCHAR2(10) PRIMARY KEY, quantity NUMBER)
 CREATE VIEW new_product_view
 AS SELECT color, quantity FROM new_product WHERE color = 'RED'
 GRANT select ON new_product_view TO hr;

Chapter 14
CREATE SCHEMA

14-125

15
SQL Statements: CREATE SEQUENCE to
DROP CLUSTER

This chapter contains the following SQL statements:

• CREATE SEQUENCE

• CREATE SPFILE

• CREATE SYNONYM

• CREATE TABLE

• CREATE TABLESPACE

• CREATE TABLESPACE SET

• CREATE TRIGGER

• CREATE TYPE

• CREATE TYPE BODY

• CREATE USER

• CREATE VIEW

• DELETE

• DISASSOCIATE STATISTICS

• DROP ANALYTIC VIEW

• DROP ATTRIBUTE DIMENSION

• DROP AUDIT POLICY (Unified Auditing)

• DROP CLUSTER

CREATE SEQUENCE
Purpose

Use the CREATE SEQUENCE statement to create a sequence, which is a database object from
which multiple users may generate unique integers. You can use sequences to automatically
generate primary key values.

When a sequence number is generated, the sequence is incremented, independent of the
transaction committing or rolling back. If two users concurrently increment the same
sequence, then the sequence numbers each user acquires may have gaps, because
sequence numbers are being generated by the other user. One user can never acquire the
sequence number generated by another user. After a sequence value is generated by one
user, that user can continue to access that value regardless of whether the sequence is
incremented by another user.

Sequence numbers are generated independently of tables, so the same sequence can be
used for one or for multiple tables. It is possible that individual sequence numbers will appear

15-1

to be skipped, because they were generated and used in a transaction that ultimately
rolled back. Additionally, a single user may not realize that other users are drawing
from the same sequence.

After a sequence is created, you can access its values in SQL statements with the
CURRVAL pseudocolumn, which returns the current value of the sequence, or the
NEXTVAL pseudocolumn, which increments the sequence and returns the new value.

See Also:

• Pseudocolumns for more information on using the CURRVAL and NEXTVAL
• "How to Use Sequence Values " for information on using sequences

• ALTER SEQUENCE or DROP SEQUENCE for information on modifying
or dropping a sequence

Prerequisites

To create a sequence in your own schema, you must have the CREATE SEQUENCE
system privilege.

To create a sequence in another user's schema, you must have the CREATE ANY
SEQUENCE system privilege.

Chapter 15
CREATE SEQUENCE

15-2

Syntax

create_sequence::=

CREATE SEQUENCE

schema .

sequence

SHARING =

METADATA

DATA

NONE

INCREMENT BY

START WITH
integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE

ORDER

NOORDER

KEEP

NOKEEP

SCALE
EXTEND

NOEXTEND

NOSCALE

SHARD
EXTEND

NOEXTEND

NOSHARD

SESSION

GLOBAL

;

Semantics

schema

Specify the schema to contain the sequence. If you omit schema, then Oracle Database
creates the sequence in your own schema.

Chapter 15
CREATE SEQUENCE

15-3

sequence

Specify the name of the sequence to be created. The name must satisfy the
requirements listed in "Database Object Naming Rules ".

If you specify none of the clauses INCREMENT BY through GLOBAL, then you create an
ascending sequence that starts with 1 and increases by 1 with no upper limit.
Specifying only INCREMENT BY -1 creates a descending sequence that starts with ‐1 and
decreases with no lower limit.

• To create a sequence that increments without bound, for ascending sequences,
omit the MAXVALUE parameter or specify NOMAXVALUE. For descending sequences,
omit the MINVALUE parameter or specify the NOMINVALUE.

• To create a sequence that stops at a predefined limit, for an ascending sequence,
specify a value for the MAXVALUE parameter. For a descending sequence, specify a
value for the MINVALUE parameter. Also specify NOCYCLE. Any attempt to generate a
sequence number once the sequence has reached its limit results in an error.

• To create a sequence that restarts after reaching a predefined limit, specify values
for both the MAXVALUE and MINVALUE parameters. Also specify CYCLE.

SHARING

This clause applies only when creating a sequence in an application root. This type of
sequence is called an application common object and it can be shared with the
application PDBs that belong to the application root. To determine how the sequence
is shared, specify one of the following sharing attributes:

• METADATA - A metadata link shares the sequence’s metadata, but its data is unique
to each container. This type of sequence is referred to as a metadata-linked
application common object.

• DATA - A data link shares the sequence, and its data is the same for all containers
in the application container. Its data is stored only in the application root. This type
of sequence is referred to as a data-linked application common object.

• NONE - The sequence is not shared.

If you omit this clause, then the database uses the value of the DEFAULT_SHARING
initialization parameter to determine the sharing attribute of the sequence. If the
DEFAULT_SHARING initialization parameter does not have a value, then the default is
METADATA.

You cannot change the sharing attribute of a sequence after it is created.

See Also:

• Oracle Database Reference for more information on the
DEFAULT_SHARING initialization parameter

• Oracle Database Administrator’s Guide for complete information on
creating application common objects

Chapter 15
CREATE SEQUENCE

15-4

INCREMENT BY

Specify the interval between sequence numbers. This integer value can be any positive or
negative integer, but it cannot be 0. This value can have 28 or fewer digits for an ascending
sequence and 27 or fewer digits for a descending sequence. The absolute of this value must
be less than the difference of MAXVALUE and MINVALUE. If this value is negative, then the
sequence descends. If the value is positive, then the sequence ascends. If you omit this
clause, then the interval defaults to 1.

START WITH

Specify the first sequence number to be generated. Use this clause to start an ascending
sequence at a value greater than its minimum or to start a descending sequence at a value
less than its maximum. For ascending sequences, the default value is the minimum value of
the sequence. For descending sequences, the default value is the maximum value of the
sequence. This integer value can have 28 or fewer digits for positive values and 27 or fewer
digits for negative values.

Note:

This value is not necessarily the value to which an ascending or descending cycling
sequence cycles after reaching its maximum or minimum value, respectively.

MAXVALUE

Specify the maximum value the sequence can generate. This integer value can have 28 or
fewer digits for positive values and 27 or fewer digits for negative values. MAXVALUE must be
equal to or greater than START WITH and must be greater than MINVALUE.

NOMAXVALUE

Specify NOMAXVALUE to indicate a maximum value of 1028-1 for an ascending sequence or -1
for a descending sequence. This is the default.

MINVALUE

Specify the minimum value of the sequence. This integer value can have 28 or fewer digits
for positive values and 27 or fewer digits for negative values. MINVALUE must be less than or
equal to START WITH and must be less than MAXVALUE.

NOMINVALUE

Specify NOMINVALUE to indicate a minimum value of 1 for an ascending sequence or -(1027 -1)
for a descending sequence. This is the default.

CYCLE

Specify CYCLE to indicate that the sequence continues to generate values after reaching
either its maximum or minimum value. After an ascending sequence reaches its maximum
value, it generates its minimum value. After a descending sequence reaches its minimum, it
generates its maximum value.

Chapter 15
CREATE SEQUENCE

15-5

NOCYCLE

Specify NOCYCLE to indicate that the sequence cannot generate more values after
reaching its maximum or minimum value. This is the default.

CACHE

Specify how many values of the sequence the database preallocates and keeps in
memory for faster access. This integer value can have 28 or fewer digits. The
minimum value for this parameter is 2. For sequences that cycle, this value must be
less than the number of values in the cycle. You cannot cache more values than will fit
in a given cycle of sequence numbers. Therefore, the maximum value allowed for
CACHE must be less than the value determined by the following formula:

CEIL ((MAXVALUE - MINVALUE) / ABS (INCREMENT))

If a system failure occurs, then all cached sequence values that have not been used in
committed DML statements are lost. The potential number of lost values is equal to the
value of the CACHE parameter.

Note:

Oracle recommends using the CACHE setting to enhance performance if you
are using sequences in an Oracle Real Application Clusters environment.

NOCACHE

Specify NOCACHE to indicate that values of the sequence are not preallocated. If you
omit both CACHE and NOCACHE, then the database caches 20 sequence numbers by
default.

ORDER

Specify ORDER to guarantee that sequence numbers are generated in order of request.
This clause is useful if you are using the sequence numbers as timestamps.
Guaranteeing order is usually not important for sequences used to generate primary
keys.

NOORDER

Specify NOORDER if you do not want to guarantee sequence numbers are generated in
order of request. This is the default.

KEEP

Specify KEEP if you want NEXTVAL to retain its original value during replay for
Application Continuity. This behavior will occur only if the user running the application
is the owner of the schema containing the sequence. This clause is useful for
providing bind variable consistency at replay after recoverable errors. Refer to Oracle
Database Development Guide for more information on Application Continuity.

Chapter 15
CREATE SEQUENCE

15-6

NOKEEP

Specify NOKEEP if you do not want NEXTVAL to retain its original value during replay for
Application Continuity. This is the default.

Note:

The KEEP and NOKEEP clauses apply only to the owner of the schema containing the
sequence. You can control whether NEXTVAL retains its original value for other users
during replay for Application Continuity by granting or revoking the KEEP SEQUENCE
object privilege on the sequence. Refer to Table 18-2 for more information on the
KEEP SEQUENCE object privilege.

SCALE

Use SCALE to enable sequence scalability. When SCALE is specified, a numeric offset is affixed
to the beginning of the sequence which removes all duplicates in generated values.

EXTEND

If you specify EXTEND with SCALE the generated sequence values are all of length (x+y),
where x is the length of the scalable offset (default value is 6), and y is the maximum number
of digits in the sequence (maxvalue/minvalue).

When you use SCALE it is highly recommended that you not use ORDER simultaneously on the
sequence.

NOEXTEND

NOEXTEND is the default setting for the SCALE clause. With the NOEXTEND setting, the generated
sequence values are at most as wide as the maximum number of digits in the sequence
(maxvalue/minvalue). This setting is useful for integration with existing applications where
sequences are used to populate fixed width columns.

NOSCALE

Use NOSCALE to disable sequence scalability.

SHARD

For complete semantics on the SHARD clause please refer to the SHARD clause of the ALTER
SEQUENCE statement.

SESSION

Specify SESSION to create a session sequence, which is a special type of sequence that is
specifically designed to be used with global temporary tables that have session visibility.
Unlike the existing regular sequences (referred to as "global" sequences for the sake of
comparison), a session sequence returns a unique range of sequence numbers only within a
session, but not across sessions. Another difference is that session sequences are not
persistent. If a session goes away, so does the state of the session sequences that were
accessed during the session.

Chapter 15
CREATE SEQUENCE

15-7

Session sequences must be created by a read-write database but can be accessed on
any read-write or read-only databases (either a regular database temporarily open
read-only or a standby database).

The CACHE, NOCACHE, ORDER, or NOORDER clauses are ignored when specified with the
SESSION clause.

See Also:

Oracle Data Guard Concepts and Administration for more information on
session sequences

GLOBAL

Specify GLOBAL to create a global, or regular, sequence. This is the default.

Examples

Creating a Sequence: Example

The following statement creates the sequence customers_seq in the sample schema
oe. This sequence could be used to provide customer ID numbers when rows are
added to the customers table.

CREATE SEQUENCE customers_seq
 START WITH 1000
 INCREMENT BY 1
 NOCACHE
 NOCYCLE;

The first reference to customers_seq.nextval returns 1000. The second returns 1001.
Each subsequent reference will return a value 1 greater than the previous reference.

CREATE SPFILE
Purpose

Use the CREATE SPFILE statement to create a server parameter file either from a
traditional plain-text initialization parameter file or from the current system-wide
settings. Server parameter files are binary files that exist only on the server and are
called from client locations to start up the database.

Server parameter files let you make persistent changes to individual parameters.
When you use a server parameter file, you can specify in an ALTER SYSTEM SET
parameter statement that the new parameter value should be persistent. This means
that the new value applies not only in the current instance, but also to any instances
that are started up subsequently. Traditional plain-text parameter files do not let you
make persistent changes to parameter values.

Server parameter files are located on the server, so they allow for automatic database
tuning by Oracle Database and for backup by Recovery Manager (RMAN).

To use a server parameter file when starting up the database, you must create it using
the CREATE SPFILE statement.

Chapter 15
CREATE SPFILE

15-8

All instances in an Oracle Real Application Clusters environment must use the same server
parameter file. However, when otherwise permitted, individual instances can have different
settings of the same parameter within this one file. Instance-specific parameter definitions are
specified as SID.parameter = value, where SID is the instance identifier.

The method of starting up the database with a server parameter file depends on whether you
create a default or nondefault server parameter file. Refer to "Creating a Server Parameter
File: Examples" for examples of how to use server parameter files.

Note on Creating Server Parameter Files in a CDB

When you create a server parameter file in a multitenant container database (CDB), the
current container can be the root or a PDB.

• If the current container is the root, then the values that you set for initialization
parameters in the root are used as default values for all other containers.

• If the current container is a PDB, then the database stores the PDB's initialization
parameter values internally, rather than in a file. Therefore, you cannot specify an
spfile_name. The values that you set for initialization parameters in the PDB are
persistent and override any values set for those parameters in the root.

You can subsequently use the ALTER SYSTEM statement to modify initialization parameter
values for the root or a PDB.

See Also:

• CREATE PFILE for information on creating a regular text parameter file from a
binary server parameter file

• Oracle Database Administrator's Guide for information on traditional plain-text
initialization parameter files and server parameter files

• Oracle Real Application Clusters Administration and Deployment Guide for
information on using server parameter files in an Oracle Real Application
Clusters environment

Prerequisites

You must have the SYSBACKUP, SYSDBA, SYSDG, or SYSOPER system privilege to execute this
statement. You can execute this statement before or after instance startup. However, if you
have already started an instance using spfile_name, you cannot specify the same
spfile_name in this statement.

To create a server parameter file in a CDB, the current container must be the root and you
must have the commonly granted SYSBACKUP, SYSDBA, SYSDG, or SYSOPER system privilege.

Chapter 15
CREATE SPFILE

15-9

Syntax

create_spfile::=

CREATE SPFILE

= ’ spfile_name ’

FROM
PFILE

= ’ pfile_name ’ AS COPY

MEMORY
;

Semantics

spfile_name

This clause lets you specify a name for the server parameter file you are creating.

If you specify spfile_name, then Oracle Database creates a nondefault server
parameter file.

• For spfile_name, you can specify a traditional filename, a file in an Oracle ACFS
(Oracle Advanced Cluster File System) file system, or an Oracle Storage
Management (Oracle ASM) filename.

• If you specify a traditional filename or a file in an Oracle ACFS file system, then
spfile_name can include a path prefix. If you do not specify such a path prefix,
then the database adds the path prefix for the default storage location, which is
platform dependent.

• If you specify the Oracle ASM filename syntax, then the database creates the
spfile in an Oracle ASM disk group.

• When using a nondefault server parameter file, you must specify the server
parameter filename in the STARTUP command when you start up the database. The
exception to this rule is as follows:

– If the database is defined as a resource in Oracle Clusterware, the instance
from which the command is issued is running, and you specify the
spfile_name, specify the FROM PFILE clause, and omit the AS COPY clause, then
this statement automatically updates the SPFILE in the database resource. In
this case, you can start up the database without referring to the server
parameter file by name. If the instance from which the command is issued is
not running, then the SPFILE in the database resource must be updated
manually using srvctl modify database -d dbname -spfile spfile_path.

If you omit spfile_name, then Oracle Database uses the platform-specific default
server parameter filename. If such a file already exists on the server, then this
statement overwrites it. When using a default server parameter file, you can start up
the database without referring to the file by name.

Restriction on spfile_name

You cannot specify spfile_name when creating a server parameter file while
connected to a PDB.

Chapter 15
CREATE SPFILE

15-10

See Also:

• "Creating a Server Parameter File: Examples" for information on starting up the
database with default and nondefault server parameter files

• file_specification for the syntax of traditional and Oracle ASM filenames and
ALTER DISKGROUP for information on modifying the characteristics of an
Oracle ASM file

• The appropriate operating-system-specific documentation for default parameter
file names

pfile_name

Specify the traditional plain-text initialization parameter file from which you want to create a
server parameter file. The traditional parameter file must reside on the server.

• If you specify pfile_name and the traditional parameter file does not reside in the default
directory for parameter files on your operating system, then you must specify the full
path.

• If you do not specify pfile_name, then Oracle Database looks in the default directory for
parameter files on your operating system for the default parameter filename and uses
that file. If that file does not exist in the expected directory, then the database returns an
error.

Note:

In an Oracle Real Application Clusters environment, you must first combine all
instance parameter files into one file before specifying that filename in this
statement to create a server parameter file. For information on accomplishing this
step, see Oracle Real Application Clusters Administration and Deployment Guide.

AS COPY

This clause applies only if the database is defined as a resource in Oracle Clusterware. By
default, if you specify both the spfile_name and the FROM PFILE clause, then the CREATE
SPFILE statement automatically updates the SPFILE in the database resource. You can
specify AS COPY to prevent the database from updating the SPFILE in the database resource.

MEMORY

Specify MEMORY to create an spfile using the current system-wide parameter settings. In an
Oracle RAC environment, the created file will contain the parameter settings from each
instance.

Examples

Creating a Server Parameter File: Examples

The following example creates a default server parameter file from a traditional plain-text
parameter file named t_init1.ora:

Chapter 15
CREATE SPFILE

15-11

CREATE SPFILE
 FROM PFILE = '$ORACLE_HOME/work/t_init1.ora';

Note:

Typically you will need to specify the full path and filename for parameter
files on your operating system.

When you create a default server parameter file, you subsequently start up the
database using that server parameter file by using the SQL*Plus command STARTUP
without the PFILE parameter, as follows:

STARTUP

The following example creates a nondefault server parameter file s_params.ora from a
traditional plain-text parameter file named t_init1.ora:

CREATE SPFILE = 's_params.ora'
 FROM PFILE = '$ORACLE_HOME/work/t_init1.ora';

When you create a nondefault server parameter file, you subsequently start up the
database by first creating a traditional parameter file containing the following single
line:

spfile = 's_params.ora'

The name of this parameter file must comply with the naming conventions of your
operating system. You then use the single-line parameter file in the STARTUP command.
The following example shows how to start up the database, assuming that the single-
line parameter file is named new_param.ora:

STARTUP PFILE=new_param.ora

CREATE SYNONYM
Purpose

Use the CREATE SYNONYM statement to create a synonym, which is an alternative name
for a table, view, sequence, operator, procedure, stored function, package,
materialized view, Java class schema object, user-defined object type, or another
synonym. A synonym places a dependency on its target object and becomes invalid if
the target object is changed or dropped.

Synonyms provide both data independence and location transparency. Synonyms
permit applications to function without modification regardless of which user owns the
table or view and regardless of which database holds the table or view. However,
synonyms are not a substitute for privileges on database objects. Appropriate
privileges must be granted to a user before the user can use the synonym.

You can refer to synonyms in the following DML statements: SELECT, INSERT, UPDATE,
DELETE, FLASHBACK TABLE, EXPLAIN PLAN, LOCK TABLE, MERGE, and CALL .

You can refer to synonyms in the following DDL statements: AUDIT, NOAUDIT, GRANT,
REVOKE, and COMMENT.

Chapter 15
CREATE SYNONYM

15-12

See Also:

Oracle Database Concepts for general information on synonyms

Prerequisites

To create a private synonym in your own schema, you must have the CREATE SYNONYM system
privilege.

To create a private synonym in another user's schema, you must have the CREATE ANY
SYNONYM system privilege.

To create a PUBLIC synonym, you must have the CREATE PUBLIC SYNONYM system privilege.

Syntax

create_synonym::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE PUBLIC

SYNONYM

schema .

synonym

SHARING =
METADATA

NONE

FOR

schema .

object

@ dblink

;

Semantics

OR REPLACE

Specify OR REPLACE to re-create the synonym if it already exists. Use this clause to change
the definition of an existing synonym without first dropping it.

Restriction on Replacing a Synonym

You cannot use the OR REPLACE clause for a type synonym that has any dependent tables or
dependent valid user-defined object types.

[EDITIONABLE | NONEDITIONABLE]

Use these clauses to specify whether the synonym is an editioned or noneditioned object if
editioning is enabled for the schema object type SYNONYM in schema. For private synonyms,
the default is EDITIONABLE. For public synonyms, the default is NONEDITIONABLE. For
information about editioned and noneditioned objects, see Oracle Database Development
Guide.

PUBLIC

Specify PUBLIC to create a public synonym. Public synonyms are accessible to all users.
However each user must have appropriate privileges on the underlying object in order to use
the synonym.

Chapter 15
CREATE SYNONYM

15-13

When resolving references to an object, Oracle Database uses a public synonym only
if the object is not prefaced by a schema and is not followed by a database link.

If you omit this clause, then the synonym is private. A private synonym name must be
unique in its schema. A private synonym is accessible to users other than the owner
only if those users have appropriate privileges on the underlying database object and
specify the schema along with the synonym name.

Notes on Public Synonyms

The following notes apply to public synonyms:

• If you create a public synonym and it subsequently has dependent tables or
dependent valid user-defined object types, then you cannot create another
database object of the same name as the synonym in the same schema as the
dependent objects.

• Take care not to create a public synonym with the same name as an existing
schema. If you do so, then all PL/SQL units that use that name will be invalidated.

schema

Specify the schema to contain the synonym. If you omit schema, then Oracle Database
creates the synonym in your own schema. You cannot specify a schema for the
synonym if you have specified PUBLIC.

synonym

Specify the name of the synonym to be created. The name must satisfy the
requirements listed in "Database Object Naming Rules ".

Note:

The maximum length of a synonym name is subject to the following rules:

• If the COMPATIBLE initialization parameter is set to a value of 12.2 or
higher, then the maximum length of a synonym name is 128 bytes. The
database will allow you to create and drop synonyms of length 129 to
4000 bytes. However, unless these longer synonym names represent a
Java name they will not work in any other SQL command.

• If the COMPATIBLE initialization parameter is set to a value lower than
12.2, then the maximum length of a synonym name is 30 bytes. The
database will allow you to create and drop synonyms of length 31 to 128
bytes. However, unless these longer synonym names represent a Java
name they will not work in any other SQL command.

The longer synonym names are transformed into obscure shorter strings for
storage in the data dictionary.

See Also:

"CREATE SYNONYM: Examples" and "Oracle Database Resolution of
Synonyms: Example"

Chapter 15
CREATE SYNONYM

15-14

SHARING

This clause applies only when creating a synonym in an application root. This type of
synonym is called an application common object and it can be shared with the application
PDBs that belong to the application root. To determine how the synonym is shared, specify
one of the following sharing attributes:

• METADATA - A metadata link shares the synonym’s metadata, but its data is unique to each
container. This type of synonym is referred to as a metadata-linked application
common object.

• NONE - The synonym is not shared.

If you omit this clause, then the database uses the value of the DEFAULT_SHARING initialization
parameter to determine the sharing attribute of the synonym. If the DEFAULT_SHARING
initialization parameter does not have a value, then the default is METADATA.

You cannot change the sharing attribute of a synonym after it is created.

See Also:

• Oracle Database Reference for more information on the DEFAULT_SHARING
initialization parameter

• Oracle Database Administrator’s Guide for complete information on creating
application common objects

FOR Clause

Specify the object for which the synonym is created. The schema object for which you are
creating the synonym can be of the following types:

• Table or object table

• View or object view

• Sequence

• Stored procedure, function, or package

• Materialized view

• Java class schema object

• User-defined object type

• Synonym

The schema object need not currently exist and you need not have privileges to access the
object.

Restriction on the FOR Clause

The schema object cannot be contained in a package.

schema

Specify the schema in which the object resides. If you do not qualify object with schema, then
the database assumes that the schema object is in your own schema.

Chapter 15
CREATE SYNONYM

15-15

If you are creating a synonym for a procedure or function on a remote database, then
you must specify schema in this CREATE statement. Alternatively, you can create a local
public synonym on the database where the object resides. However, the database link
must then be included in all subsequent calls to the procedure or function.

dblink

You can specify a complete or partial database link to create a synonym for a schema
object on a remote database where the object is located. If you specify dblink and
omit schema, then the synonym refers to an object in the schema specified by the
database link. Oracle recommends that you specify the schema containing the object
in the remote database.

If you omit dblink, then Oracle Database assumes the object is located on the local
database.

Restriction on Database Links

You cannot specify dblink for a Java class synonym.

See Also:

• "References to Objects in Remote Databases " for more information on
referring to database links

• CREATE DATABASE LINK for more information on creating database
links

Examples

CREATE SYNONYM: Examples

To define the synonym offices for the table locations in the schema hr, issue the
following statement:

CREATE SYNONYM offices
 FOR hr.locations;

To create a PUBLIC synonym for the employees table in the schema hr on the remote
database, you could issue the following statement:

CREATE PUBLIC SYNONYM emp_table
 FOR hr.employees@remote.us.example.com;

A synonym may have the same name as the underlying object, provided the
underlying object is contained in another schema.

Oracle Database Resolution of Synonyms: Example

Oracle Database attempts to resolve references to objects at the schema level before
resolving them at the PUBLIC synonym level. For example, the schemas oe and sh both
contain tables named customers. In the next example, user SYSTEM creates a PUBLIC
synonym named customers for oe.customers:

CREATE PUBLIC SYNONYM customers FOR oe.customers;

Chapter 15
CREATE SYNONYM

15-16

If the user sh then issues the following statement, then the database returns the count of
rows from sh.customers:

SELECT COUNT(*) FROM customers;

To retrieve the count of rows from oe.customers, the user sh must preface customers with
the schema name. (The user sh must have select permission on oe.customers as well.)

SELECT COUNT(*) FROM oe.customers;

If the user hr's schema does not contain an object named customers, and if hr has select
permission on oe.customers, then hr can access the customers table in oe's schema by
using the public synonym customers:

SELECT COUNT(*) FROM customers;

CREATE TABLE
Purpose

Use the CREATE TABLE statement to create one of the following types of tables:

• A relational table, which is the basic structure to hold user data.

• An object table, which is a table that uses an object type for a column definition. An
object table is explicitly defined to hold object instances of a particular type.

You can also create an object type and then use it in a column when creating a relational
table.

Tables are created with no data unless a subquery is specified. You can add rows to a table
with the INSERT statement. After creating a table, you can define additional columns,
partitions, and integrity constraints with the ADD clause of the ALTER TABLE statement. You can
change the definition of an existing column or partition with the MODIFY clause of the ALTER
TABLE statement.

See Also:

• Oracle Database Administrator's Guide and CREATE TYPE for more
information about creating objects

• ALTER TABLE and DROP TABLE for information on modifying and dropping
tables

Prerequisites

To create a relational table in your own schema, you must have the CREATE TABLE system
privilege. To create a table in another user's schema, you must have the CREATE ANY TABLE
system privilege. Also, the owner of the schema to contain the table must have either space
quota on the tablespace to contain the table or the UNLIMITED TABLESPACE system privilege.

In addition to these table privileges, to create an object table or a relational table with an
object type column, the owner of the table must have the EXECUTE object privilege in order to
access all types referenced by the table, or you must have the EXECUTE ANY TYPE system
privilege. These privileges must be granted explicitly and not acquired through a role.

Chapter 15
CREATE TABLE

15-17

Additionally, if the table owner intends to grant access to the table to other users, then
the owner must have been granted the EXECUTE object privilege on the referenced
types WITH GRANT OPTION, or have the EXECUTE ANY TYPE system privilege WITH ADMIN
OPTION. Without these privileges, the table owner has insufficient privileges to grant
access to the table to other users.

To enable a unique or primary key constraint, you must have the privileges necessary
to create an index on the table. You need these privileges because Oracle Database
creates an index on the columns of the unique or primary key in the schema
containing the table.

To specify an edition in the evaluation_edition_clause or the
unusable_editions_clause, you must have the USE privilege on the edition.

To specify the zonemap_clause, you must have the permissions necessary to create a
zone map. Refer to the "Prerequisites" section in the documentation on CREATE
MATERIALIZED ZONEMAP.

To create an external table, you must have the required read and write operating
system privileges on the appropriate operating system directories. You must have the
READ object privilege on the database directory object corresponding to the operating
system directory in which the external data resides. You must also have the WRITE
object privilege on the database directory in which the files will reside if you specify a
log file or bad file in the opaque_format_spec or if you unload data into an external
table from a database table by specifying the AS subquery clause.

To create an XMLType table in a different database schema from your own, you must
have not only privilege CREATE ANY TABLE but also privilege CREATE ANY INDEX. This is
because a unique index is created on column OBJECT_ID when you create the table.
Column OBJECT_ID stores a system-generated object identifier.

See Also:

• CREATE INDEX

• Oracle Database Administrator's Guide for more information about the
privileges required to create tables using types

Chapter 15
CREATE TABLE

15-18

Syntax

create_table::=

CREATE

GLOBAL

PRIVATE
TEMPORARY

SHARDED

DUPLICATED

IMMUTABLE

BLOCKCHAIN

IMMUTABLE

TABLE

schema .

table

SHARING =

METADATA

DATA

EXTENDED DATA

NONE
relational_table

object_table

XMLType_table

MEMOPTIMIZE FOR READ

MEMOPTIMIZE FOR WRITE PARENT

schema .

table

;

(relational_table::=, object_table::=, XMLType_table::=)

relational_table::=

(relational_properties) immutable_table_clauses blockchain_table_clauses

DEFAULT COLLATION collation_name
ON COMMIT

DROP

PRESERVE
DEFINITION

ON COMMIT
DELETE

PRESERVE
ROWS

physical_properties table_properties

Chapter 15
CREATE TABLE

15-19

Note:

Each of the clauses following the table name is optional for any given
relational table. However, for every table you must at least specify either
column names and data types using the relational_properties clause or
an AS subquery clause using the table_properties clause.

(relational_properties::=,
immutable_table_clauses ,blockchain_table_clauses::= ,physical_properties::=,
table_properties::=)

object_table::=

OF

schema .

object_type

object_table_substitution

(object_properties)
ON COMMIT

DELETE

PRESERVE
ROWS

OID_clause OID_index_clause physical_properties table_properties

(object_table_substitution::=, object_properties::=, oid_clause::=, oid_index_clause::=,
physical_properties::=, table_properties::=)

XMLType_table::=

OF XMLTYPE

(object_properties) XMLTYPE XMLType_storage XMLSchema_spec

XMLType_virtual_columns
ON COMMIT

DELETE

PRESERVE
ROWS

OID_clause

OID_index_clause physical_properties table_properties

(XMLType_storage::=, XMLSchema_spec::=, XMLType_virtual_columns::=,
oid_clause::=, oid_index_clause::=, physical_properties::=, table_properties::=)

Chapter 15
CREATE TABLE

15-20

relational_properties::=

column_definition

virtual_column_definition

period_definition

out_of_line_constraint

out_of_line_ref_constraint

supplemental_logging_props

,

Note:

You can specify these clauses in any order with the following exception: You must
specify at least one column_definition or virtual_column_definition before you
specify period_definition. You can specify period_definition only once.

(column_definition::=, virtual_column_definition::=, period_definition::=, constraint::=,
supplemental_logging_props::=)

column_definition::=

column

datatype

COLLATE column_collation_name

SORT

VISIBLE

INVISIBLE

DEFAULT

ON NULL

expr

identity_clause ENCRYPT encryption_spec

inline_constraint

inline_ref_constraint

(identity_clause::=, encryption_spec::=, constraint::=)

identity_clause::=

GENERATED

ALWAYS

BY DEFAULT

ON NULL

AS IDENTITY

(identity_options)

Chapter 15
CREATE TABLE

15-21

identity_options::=

START WITH
integer

LIMIT VALUE

INCREMENT BY integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE

ORDER

NOORDER

virtual_column_definition::=

column

datatype

COLLATE column_collation_name
VISIBLE

INVISIBLE

GENERATED ALWAYS

AS (column_expression)

VIRTUAL evaluation_edition_clause

unusable_editions_clause inline_constraint

(evaluation_edition_clause::=, unusable_editions_clause::=, constraint::=)

evaluation_edition_clause::=

EVALUATE USING

CURRENT EDITION

EDITION edition

NULL EDITION

Chapter 15
CREATE TABLE

15-22

unusable_editions_clause::=

UNUSABLE BEFORE

CURRENT EDITION

EDITION edition

UNUSABLE BEGINNING WITH

CURRENT EDITION

EDITION edition

NULL EDITION

period_definition::=

PERIOD FOR valid_time_column

(start_time_column , end_time_column)

encryption_spec::=

USING ’ encrypt_algorithm ’ IDENTIFIED BY password

’ integrity_algorithm ’

NO

SALT

object_table_substitution::=

NOT

SUBSTITUTABLE AT ALL LEVELS

object_properties::=

column

attribute

DEFAULT expr

inline_constraint

inline_ref_constraint

out_of_line_constraint

out_of_line_ref_constraint

supplemental_logging_props

Chapter 15
CREATE TABLE

15-23

(constraint::=, supplemental_logging_props::=)

oid_clause::=

OBJECT IDENTIFIER IS

SYSTEM GENERATED

PRIMARY KEY

oid_index_clause::=

OIDINDEX

index

(
physical_attributes_clause

TABLESPACE tablespace
)

(physical_attributes_clause::=)

physical_properties::=

deferred_segment_creation

segment_attributes_clause

table_compression inmemory_table_clause ilm_clause

deferred_segment_creation

ORGANIZATION

HEAP

segment_attributes_clause

heap_org_table_clause

INDEX

segment_attributes_clause

index_org_table_clause

EXTERNAL external_table_clause

EXTERNAL PARTITION ATTRIBUTES external_table_clause

REJECT LIMIT

CLUSTER cluster (column

,

)

(deferred_segment_creation::=, segment_attributes_clause::=, table_compression::=,
inmemory_table_clause::=, ilm_clause::=, heap_org_table_clause::=,
index_org_table_clause::=, external_table_clause::=)

deferred_segment_creation::=

SEGMENT CREATION

IMMEDIATE

DEFERRED

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE tablespace

TABLESPACE SET tablespace_set

logging_clause

Chapter 15
CREATE TABLE

15-24

(physical_attributes_clause::=, logging_clause::=)

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

(storage_clause::=)

table_compression::=

COMPRESS

ROW STORE COMPRESS

BASIC

ADVANCED

COLUMN STORE COMPRESS

FOR

QUERY

ARCHIVE

LOW

HIGH

NO

ROW LEVEL LOCKING

NOCOMPRESS

inmemory_table_clause::=

INMEMORY

inmemory_attributes

NO INMEMORY inmemory_column_clause

(inmemory_attributes::=, inmemory_column_clause::=)

inmemory_attributes::=

inmemory_memcompress inmemory_priority inmemory_distribute

inmemory_duplicate inmemory_spatial

Chapter 15
CREATE TABLE

15-25

(inmemory_memcompress::=, inmemory_priority::=, inmemory_distribute::=,
inmemory_duplicate::=)

inmemory_memcompress::=

MEMCOMPRESS FOR

DML

QUERY

CAPACITY

LOW

HIGH

NO MEMCOMPRESS

MEMCOMPRESS AUTO

inmemory_priority::=

PRIORITY

NONE

LOW

MEDIUM

HIGH

CRITICAL

inmemory_distribute::=

DISTRIBUTE

AUTO

BY

ROWID RANGE

PARTITION

SUBPARTITION

FOR SERVICE

DEFAULT

ALL

service_name

NONE

inmemory_duplicate::=

DUPLICATE

ALL

NO DUPLICATE

inmemory_spatial::=

SPATIAL column

Chapter 15
CREATE TABLE

15-26

inmemory_column_clause::=

INMEMORY

inmemory_memcompress

NO INMEMORY
(column

,

)

(inmemory_memcompress::=)

ilm_clause::=

ILM

ADD POLICY ilm_policy_clause

DELETE

ENABLE

DISABLE

POLICY ilm_policy_name

DELETE_ALL

ENABLE_ALL

DISABLE_ALL

ilm_policy_clause::=

ilm_compression_policy

ilm_tiering_policy

ilm_inmemory_policy

(ilm_compression_policy::=, ilm_tiering_policy::=, ilm_inmemory_policy::=)

ilm_compression_policy::=

table_compression
SEGMENT

GROUP

AFTER ilm_time_period OF

NO ACCESS

NO MODIFICATION

CREATION

ON function_name

ROW STORE COMPRESS ADVANCED

COLUMN STORE COMPRESS FOR QUERY
ROW AFTER ilm_time_period OF NO MODIFICATION

(table_compression::=, ilm_time_period::=)

Chapter 15
CREATE TABLE

15-27

ilm_tiering_policy::=

TIER TO tablespace

SEGMENT

GROUP ON function_name

TIER TO tablespace READ ONLY

SEGMENT

GROUP
AFTER ilm_time_period OF

NO ACCESS

NO MODIFICATION

CREATION

ON function_name

(ilm_time_period::=)

ilm_inmemory_policy::=

SET INMEMORY

inmemory_attributes

MODIFY INMEMORY inmemory_memcompress

NO INMEMORY

SEGMENT

AFTER ilm_time_period OF

NO ACCESS

NO MODIFICATION

CREATION

ON function_name

ilm_time_period::=

integer

DAY

DAYS

MONTH

MONTHS

YEAR

YEARS

Chapter 15
CREATE TABLE

15-28

table_properties::=

column_properties read_only_clause indexing_clause table_partitioning_clauses

attribute_clustering_clause

CACHE

NOCACHE result_cache_clause

parallel_clause

ROWDEPENDENCIES

NOROWDEPENDENCIES enable_disable_clause

row_movement_clause logical_replication_clause flashback_archive_clause

ROW ARCHIVAL

AS subquery

FOR EXCHANGE WITH TABLE

schema .

table

(column_properties::=, read_only_clause::=, indexing_clause::=,
table_partitioning_clauses::=, attribute_clustering_clause::=, parallel_clause::=,
enable_disable_clause::=, row_movement_clause::=, logical_replication_clause::=,
flashback_archive_clause::= , subquery::=)

column_properties::=

object_type_col_properties

nested_table_col_properties

varray_col_properties

LOB_storage_clause

(LOB_partition_storage

,

)

XMLType_column_properties

json_storage_clause

(object_type_col_properties::=, nested_table_col_properties::=, varray_col_properties::=,
LOB_storage_clause::=, LOB_partition_storage::=, XMLType_column_properties::=,
json_storage_clause::=)

object_type_col_properties::=

COLUMN column substitutable_column_clause

Chapter 15
CREATE TABLE

15-29

substitutable_column_clause::=

ELEMENT

IS OF

TYPE

(ONLY type)

NOT

SUBSTITUTABLE AT ALL LEVELS

nested_table_col_properties::=

NESTED TABLE
nested_item

COLUMN_VALUE

substitutable_column_clause

LOCAL

GLOBAL

STORE AS storage_table

(

(object_properties)

physical_properties

column_properties

)

RETURN

AS LOCATOR

VALUE

(substitutable_column_clause::=, object_properties::=, physical_properties::=,
column_properties::=)

varray_col_properties::=

VARRAY varray_item

substitutable_column_clause

varray_storage_clause

substitutable_column_clause

(substitutable_column_clause::=, varray_storage_clause::=)

varray_storage_clause::=

STORE AS

SECUREFILE

BASICFILE

LOB

LOB_segname

(LOB_storage_parameters)

LOB_segname

Chapter 15
CREATE TABLE

15-30

(LOB_parameters::=)

LOB_storage_clause::=

LOB

(LOB_item

,

) STORE AS

SECUREFILE

BASICFILE

(LOB_storage_parameters)

(LOB_item) STORE AS

SECUREFILE

BASICFILE

LOB_segname

(LOB_storage_parameters)

(LOB_storage_parameters::=)

LOB_storage_parameters::=

TABLESPACE tablespace

TABLESPACE SET tablespace_set

LOB_parameters

storage_clause

storage_clause

(LOB_parameters::=, storage_clause::=)

Chapter 15
CREATE TABLE

15-31

LOB_parameters::=

ENABLE

DISABLE
STORAGE IN ROW

CHUNK integer

PCTVERSION integer

FREEPOOLS integer

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

(LOB_deduplicate_clause::=, LOB_compression_clause::=, encryption_spec::=,
logging_clause::=)

Note:

Several of the LOB parameters are no longer needed if you are using
SecureFiles for LOB storage. Refer to LOB_storage_parameters for more
information.

LOB_retention_clause::=

RETENTION

MAX

MIN integer

AUTO

NONE

LOB_deduplicate_clause::=

DEDUPLICATE

KEEP_DUPLICATES

Chapter 15
CREATE TABLE

15-32

LOB_compression_clause::=

COMPRESS

HIGH

MEDIUM

LOW

NOCOMPRESS

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

LOB_partition_storage::=

PARTITION partition
LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition
LOB_partitioning_storage

varray_col_properties
)

(LOB_storage_clause::=, varray_col_properties::=, LOB_partitioning_storage::=)

LOB_partitioning_storage::=

LOB (LOB_item)

STORE AS

BASICFILE

SECUREFILE

LOB_segname

(
TABLESPACE tablespace

TABLESPACE SET tablespace_set
)

(
TABLESPACE tablespace

TABLESPACE SET tablespace_set
)

Chapter 15
CREATE TABLE

15-33

XMLType_column_properties::=

XMLTYPE

COLUMN

column

XMLType_storage XMLSchema_spec

(XMLType_storage::=, XMLSchema_spec::=)

XMLType_storage::=

STORE

AS

OBJECT RELATIONAL

SECUREFILE

BASICFILE CLOB

BINARY XML

LOB_segname

(LOB_parameters)

(LOB_parameters)

ALL VARRAYS AS
LOBS

TABLES

(LOB_parameters::=)

XMLSchema_spec::=

XMLSCHEMA XMLSchema_URL

ELEMENT

element

XMLSchema_URL # element

STORE ALL VARRAYS AS

LOBS

TABLES

ALLOW

DISALLOW

NONSCHEMA

ALLOW

DISALLOW

ANYSCHEMA

XMLType_virtual_columns::=

VIRTUAL COLUMNS (column AS (expr)

,

)

Chapter 15
CREATE TABLE

15-34

JSON_storage_clause ::=

JSON (json_column

,

) STORE AS

(json_parameters)

LOB_segname (json_parameters)

JSON_parameters ::=

TABLESPACE tablespace

storage_clause

CHUNK

PCTVERSION

FREEPOOLS

integer

RETENTION

,

row_movement_clause::=

ENABLE

DISABLE

ROW MOVEMENT

logical_replication_clause::=

DISABLE LOGICAL REPLICATION

ENABLE LOGICAL REPLICATION

ALL

ALLOW NOVALIDATE

KEYS

flashback_archive_clause::=

FLASHBACK ARCHIVE

flashback_archive

NO FLASHBACK ARCHIVE

Chapter 15
CREATE TABLE

15-35

heap_org_table_clause::=

table_compression inmemory_table_clause ilm_clause

(table_compression::=, inmemory_table_clause::=, ilm_clause::=)

index_org_table_clause::=

mapping_table_clause

PCTTHRESHOLD integer

prefix_compression index_org_overflow_clause

(mapping_table_clauses::=, prefix_compression::=, index_org_overflow_clause::=)

mapping_table_clauses::=

MAPPING TABLE

NOMAPPING

index_compression::=

prefix_compression

advanced_index_compression

prefix_compression::=

COMPRESS

integer

NOCOMPRESS

advanced_index_compression::=

COMPRESS ADVANCED

LOW

HIGH

NOCOMPRESS

Chapter 15
CREATE TABLE

15-36

index_org_overflow_clause::=

INCLUDING column_name

OVERFLOW

segment_attributes_clause

(segment_attributes_clause::=)

supplemental_logging_props::=

SUPPLEMENTAL LOG
supplemental_log_grp_clause

supplemental_id_key_clause

supplemental_log_grp_clause::=

GROUP log_group (column

NO LOG

,

)

ALWAYS

supplemental_id_key_clause::=

DATA (

ALL

PRIMARY KEY

UNIQUE

FOREIGN KEY

,

) COLUMNS

immutable_table_clauses::=

immutable_table_no_drop_clause immutable_table_no_delete_clause

immutable_table_no_drop_clause::=

NO DROP

UNTIL integer DAYS IDLE

Chapter 15
CREATE TABLE

15-37

immutable_table_no_delete_clause::=

NO DELETE

LOCKED

UNTIL integer DAYS AFTER INSERT

LOCKED

blockchain_table_clauses::=

blockchain_drop_table_clause blockchain_row_retention_clause blockchain_hash_and_data_format_clause

blockchain_drop_table_clause::=

NO DROP

UNTIL integer DAYS IDLE

blockchain_row_retention_clause::=

NO DELETE

LOCKED

UNTIL integer DAYS AFTER INSERT

LOCKED

blockchain_hash_and_data_format_clause::=

HASHING USING sha2_512 VERSION v1

external_table_clause::=

(

TYPE access_driver_type external_table_data_props

)

REJECT LIMIT
integer

UNLIMITED

inmemory_table_clause

(external_table_data_props::=)

Chapter 15
CREATE TABLE

15-38

external_table_data_props::=

DEFAULT DIRECTORY directory

ACCESS PARAMETERS

(’opaque_format_spec’)

(opaque_format_spec)

USING CLOB subquery

LOCATION (

directory :

’ location_specifier ’

,

)

(opaque_format_spec: This clause specifies the access parameters for the ORACLE_LOADER,
ORACLE_DATAPUMP, ORACLE_HDFS, and ORACLE_HIVE access drivers. See Oracle Database
Utilities for descriptions of these parameters.)

read_only_clause::=

READ ONLY

READ WRITE

indexing_clause::=

INDEXING

ON

OFF

table_partitioning_clauses::=

range_partitions

list_partitions

hash_partitions

composite_range_partitions

composite_list_partitions

composite_hash_partitions

reference_partitioning

system_partitioning

consistent_hash_partitions

consistent_hash_with_subpartitions

partitionset_clauses

Chapter 15
CREATE TABLE

15-39

(range_partitions::=, list_partitions::=, hash_partitions::=,
composite_range_partitions::=, composite_list_partitions::=
composite_hash_partitions::=, reference_partitioning::=, system_partitioning::=,
consistent_hash_partitions::=, consistent_hash_with_subpartitions::=,
partitionset_clauses::=)

range_partitions::=

PARTITION BY RANGE (column

,

)

INTERVAL (expr)

STORE IN (tablespace

,

)

(PARTITION

partition

range_values_clause table_partition_description

external_part_subpart_data_props

,

)

(range_values_clause::=, table_partition_description::=,
external_part_subpart_data_props::=)

external_part_subpart_data_props::=

DEFAULT DIRECTORY directory LOCATION (

directory :

’ location_specifier ’

,

)

hash_partitions::=

PARTITION BY HASH (column

,

)
individual_hash_partitions

hash_partitions_by_quantity

(individual_hash_partitions::=, hash_partitions_by_quantity::=)

individual_hash_partitions::=

(PARTITION

partition read_only_clause indexing_clause partitioning_storage_clause

,

)

Chapter 15
CREATE TABLE

15-40

(read_only_clause::=, indexing_clause::=, partitioning_storage_clause::=)

hash_partitions_by_quantity::=

PARTITIONS hash_partition_quantity

STORE IN (tablespace

,

)

table_compression

index_compression OVERFLOW STORE IN (tablespace

,

)

(table_compression::=, index_compression::=)

list_partitions::=

PARTITION BY LIST (column

,

)

AUTOMATIC

STORE IN (tablespace

,

)

(PARTITION

partition

list_values_clause table_partition_description

external_part_subpart_data_props

,

)

(list_values_clause::=, table_partition_description::=, external_part_subpart_data_props::=)

composite_range_partitions::=

PARTITION BY RANGE (column

,

)

INTERVAL (expr)

STORE IN (tablespace

,

)

subpartition_by_range

subpartition_by_list

subpartition_by_hash

(range_partition_desc

,

)

Chapter 15
CREATE TABLE

15-41

(subpartition_by_range::=. subpartition_by_list::=, subpartition_by_hash::=,
range_partition_desc::=)

composite_hash_partitions::=

PARTITION BY HASH (column

,

)

subpartition_by_range

subpartition_by_list

subpartition_by_hash

individual_hash_partitions

hash_partitions_by_quantity

(subpartition_by_range::=, subpartition_by_list::=, subpartition_by_hash::=,
individual_hash_partitions::=, hash_partitions_by_quantity::=)

composite_list_partitions::=

PARTITION BY LIST (column

,

)

AUTOMATIC

STORE IN (tablespace

,

)

subpartition_by_range

subpartition_by_list

subpartition_by_hash

(list_partition_desc

,

)

(subpartition_by_range::=. subpartition_by_list::=, subpartition_by_hash::=,
list_partition_desc::=)

reference_partitioning::=

PARTITION BY REFERENCE (constraint)

(reference_partition_desc

,

)

(constraint::=, reference_partition_desc::=)

reference_partition_desc::=

PARTITION

partition table_partition_description

(table_partition_description::=)

Chapter 15
CREATE TABLE

15-42

system_partitioning::=

PARTITION BY SYSTEM

PARTITIONS integer

reference_partition_desc

,

(reference_partition_desc::=)

consistent_hash_partitions::=

PARTITION BY CONSISTENT HASH (column

,

)

PARTITIONS AUTO

TABLESPACE SET tablespace_set

consistent_hash_with_subpartitions::=

PARTITION BY CONSISTENT HASH (column

,

)

subpartition_by_range

subpartition_by_list

subpartition_by_hash

PARTITIONS AUTO

partitionset_clauses::=

range_partitionset_clause

list_partitionset_clause

(range_partitionset_clause::=, list_partitionset_clause::=

Chapter 15
CREATE TABLE

15-43

range_partitionset_clause::=

PARTITIONSET BY RANGE (column

,

) PARTITION BY CONSISTENT HASH (column

,

)

SUBPARTITION BY

RANGE

HASH
(column

,

)

LIST (column)

subpartition_template

PARTITIONS AUTO (range_partitionset_desc

,

)

range_partitionset_desc::=

PARTITIONSET partition_set range_values_clause

TABLESPACE SET tablespace_set

LOB_storage_clause SUBPARTITIONS STORE IN (tablespace_set

,

)

list_partitionset_clause::=

PARTITIONSET BY LIST (column) PARTITION BY CONSISTENT HASH (column

,

)

SUBPARTITION BY

RANGE

HASH
(column

,

)

LIST (column)

subpartition_template

PARTITIONS AUTO (list_partitionset_desc

,

)

Chapter 15
CREATE TABLE

15-44

list_partitionset_desc::=

PARTITIONSET partition_set list_values_clause

TABLESPACE SET tablespace_set

LOB_storage_clause SUBPARTITIONS STORE IN (tablespace_set

,

)

range_partition_desc::=

PARTITION

partition

range_values_clause table_partition_description

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity

(range_values_clause::=, table_partition_description::=, range_subpartition_desc::=,
list_subpartition_desc::=, individual_hash_subparts::=, hash_subparts_by_quantity::=)

list_partition_desc::=

PARTITION

partition

list_values_clause table_partition_description

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity

(list_values_clause::=, table_partition_description::=, range_subpartition_desc::=,
list_subpartition_desc::=, individual_hash_subparts::=, hash_subparts_by_quantity::=)

Chapter 15
CREATE TABLE

15-45

subpartition_template::=

SUBPARTITION TEMPLATE

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subpartition_quantity

(range_subpartition_desc::=, list_subpartition_desc::=, individual_hash_subparts::=)

subpartition_by_range::=

SUBPARTITION BY RANGE (column

,

)

subpartition_template

(subpartition_template::=)

subpartition_by_list::=

SUBPARTITION BY LIST (column

,

)

subpartition_template

(subpartition_template::=)

subpartition_by_hash::=

SUBPARTITION BY HASH (column

,

)

SUBPARTITIONS integer

STORE IN (tablespace

,

)

subpartition_template

Chapter 15
CREATE TABLE

15-46

(subpartition_template::=)

range_subpartition_desc::=

SUBPARTITION

subpartition

range_values_clause

read_only_clause indexing_clause

partitioning_storage_clause external_part_subpart_data_props

(range_values_clause::=, read_only_clause::=, indexing_clause::=,
partitioning_storage_clause::=, external_part_subpart_data_props::=)

list_subpartition_desc::=

SUBPARTITION

subpartition

list_values_clause

read_only_clause indexing_clause

partitioning_storage_clause external_part_subpart_data_props

(list_values_clause::=, read_only_clause::=, indexing_clause::=,
partitioning_storage_clause::=, external_part_subpart_data_props::=)

individual_hash_subparts::=

SUBPARTITION

subpartition read_only_clause indexing_clause partitioning_storage_clause

(read_only_clause::=, indexing_clause::=, partitioning_storage_clause::=)

hash_subparts_by_quantity::=

SUBPARTITIONS integer

STORE IN (tablespace

,

)

range_values_clause::=

VALUES LESS THAN (
literal

MAXVALUE

,

)

Chapter 15
CREATE TABLE

15-47

list_values_clause::=

VALUES (
list_values

DEFAULT
)

(list_values::=)

list_values::=

literal

NULL

,

(
literal

NULL

,

)

,

table_partition_description::=

INTERNAL

EXTERNAL deferred_segment_creation read_only_clause indexing_clause

segment_attributes_clause

table_compression

prefix_compression inmemory_clause ilm_clause

OVERFLOW

segment_attributes_clause

json_storage_clause

LOB_storage_clause

varray_col_properties

nested_table_col_properties

(deferred_segment_creation::=, read_only_clause::=, indexing_clause::=,
segment_attributes_clause::=, table_compression::=, prefix_compression::=,
inmemory_clause::=, segment_attributes_clause::=, LOB_storage_clause::=,
varray_col_properties::=, nested_table_col_properties::=)

Chapter 15
CREATE TABLE

15-48

partitioning_storage_clause::=

TABLESPACE tablespace

TABLESPACE SET tablespace_set

OVERFLOW

TABLESPACE tablespace

TABLESPACE SET tablespace_set

table_compression

index_compression

inmemory_clause

ilm_clause

LOB_partitioning_storage

VARRAY varray_item STORE AS

SECUREFILE

BASICFILE

LOB LOB_segname

json_storage_clause

(table_compression::=, index_compression::=, inmemory_clause::=,
LOB_partitioning_storage::=)

inmemory_clause::=

INMEMORY

inmemory_attributes

TEXT

column_name

,

column_name USING policy_name

,

NO INMEMORY

(inmemory_memcompress::=, inmemory_attributes::=)

attribute_clustering_clause::=

CLUSTERING

clustering_join

cluster_clause

clustering_when zonemap_clause

(clustering_join::=, cluster_clause::=, clustering_when::=, zonemap_clause::=)

Chapter 15
CREATE TABLE

15-49

result_cache_clause

RESULT_CACHE

(

MODE
DEFAULT

FORCE
, STANDBY

ENABLE

DISABLE

STANDBY
ENABLE

DISABLE
, MODE

DEFAULT

FORCE

)

clustering_join::=

schema .

table JOIN

schema .

table ON (equijoin_condition)

,

cluster_clause::=

BY

LINEAR

INTERLEAVED

ORDER clustering_columns

clustering_columns::=

clustering_column_group

(clustering_column_group

,

)

clustering_column_group::=

(column

,

)

clustering_when::=

YES

NO

ON LOAD

YES

NO

ON DATA MOVEMENT

Chapter 15
CREATE TABLE

15-50

zonemap_clause::=

WITH MATERIALIZED ZONEMAP

(zonemap_name)

WITHOUT MATERIALIZED ZONEMAP

parallel_clause::=

NOPARALLEL

PARALLEL

integer

enable_disable_clause::=

ENABLE

DISABLE

VALIDATE

NOVALIDATE
UNIQUE (column

,

)

PRIMARY KEY

CONSTRAINT constraint_name

using_index_clause exceptions_clause CASCADE

KEEP

DROP
INDEX

(using_index_clause::=, exceptions_clause not supported in CREATE TABLE statements)

using_index_clause::=

USING INDEX

schema .

index

(create_index_statement)

index_properties

(create_index::=, index_properties::=)

Chapter 15
CREATE TABLE

15-51

index_properties::=

global_partitioned_index

local_partitioned_index

index_attributes

INDEXTYPE IS
domain_index_clause

XMLIndex_clause

(global_partitioned_index::=, local_partitioned_index::=—part of CREATE INDEX,
index_attributes::=, domain_index_clause and XMLIndex_clause: not supported in
using_index_clause)

index_attributes::=

physical_attributes_clause

logging_clause

ONLINE

TABLESPACE
tablespace

DEFAULT

index_compression

SORT

NOSORT

REVERSE

VISIBLE

INVISIBLE

partial_index_clause

parallel_clause

(physical_attributes_clause::=, logging_clause::=, index_compression::=,
partial_index_clause and parallel_clause: not supported in using_index_clause)

memoptimize_write_clause

MEMOPTIMIZE FOR WRITE

NO MEMOPTIMIZE FOR WRITE

Chapter 15
CREATE TABLE

15-52

Semantics

GLOBAL TEMPORARY

Specify GLOBAL TEMPORARY to create a temporary table, whose definition is visible to all
sessions with appropriate privileges. The data in a temporary table is visible only to the
session that inserts the data into the table.

When you first create a temporary table, its metadata is stored in the data dictionary, but no
space is allocated for table data. Space is allocated for the table segment at the time of the
first DML operation on the table. The temporary table definition persists in the same way as
the definitions of regular tables, but the table segment and any data the table contains are
either session-specific or transaction-specific data. You specify whether the table segment
and data are session- or transaction-specific with the ON COMMIT clause.

You can perform DDL operations (such as ALTER TABLE, DROP TABLE, CREATE INDEX) on a
temporary table only when no session is bound to it. A session becomes bound to a
temporary table with an INSERT operation on the table. A session becomes unbound to a
temporary table with a TRUNCATE statement or at session termination, or, for a transaction-
specific temporary table, by issuing a COMMIT or ROLLBACK statement.

PRIVATE TEMPORARY

Specify PRIVATE TEMPORARY to create a private temporary table.

A private temporary table differs from a temporary table in that its definition and data are
visible only within the session that created it. Use the ON COMMIT clause to define the scope
of a private temporary table: either transaction or session. The ON COMMIT clause used with
the keywords DROP DEFINITION creates a transaction-specific table whose data and definition
are dropped when the transaction commits. This is the default behavior. The ON COMMIT
clause used with keywords PRESERVE DEFINITION creates a session-specific table whose
definition is preserved when the transaction commits. See here for usage details of theON
COMMIT clause.

Three DDL statements are supported for private temporary tables: CREATE, DROP, and
TRUNCATE.

Restrictions

You must be a user other than SYS to create private temporary tables.

See Also:

Oracle Database Concepts for information on temporary tables and "Creating a
Table: Temporary Table Example"

Restrictions on Temporary Tables

Temporary tables are subject to the following restrictions:

• Temporary tables cannot be partitioned, clustered, or index organized.

• You cannot specify any foreign key constraints on temporary tables.

• Temporary tables cannot contain columns of nested table.

Chapter 15
CREATE TABLE

15-53

• You cannot specify the following clauses of the LOB_storage_clause: TABLESPACE,
storage_clause, or logging_clause.

• Parallel UPDATE, DELETE and MERGE are not supported for temporary tables.

• The only part of the segment_attributes_clause you can specify for a temporary
table is TABLESPACE, which allows you to specify a single temporary tablespace.

• Distributed transactions are not supported for temporary tables.

• A temporary table cannot contain INVISIBLE columns.

Restrictions on Private Temporary Tables

In addition to the general limitations of temporary tables, private temporary tables are
subject to the following restrictions:

• The name of private temporary tables must always be prefixed with whatever is
defined with the init.ora parameter PRIVATE_TEMP_TABLE_PREFIX. The default is
ORA$PTT_.

• You cannot create indexes, materialized views, or zone maps on private temporary
tables.

• You cannot define column with default values.

• You cannot reference private temporary tables in any permanent object, e.g. views
or triggers.

• Private temporary tables are not visible through database links.

SHARDED

Specify SHARDED to create a sharded table.

This clause is valid only if you are using Oracle Sharding, which is a data tier
architecture in which data is horizontally partitioned across independent databases.
Each database in such configuration is called a shard. All of the shards together make
up a single logical database, which is referred to as a sharded database (SDB).
Horizontal partitioning involves splitting a table across shards so that each shard
contains the table with the same columns but a different subset of rows. A table split
up in this manner is called a sharded table.

When you create a sharded table, you must specify a tablespace set in which to create
the table. There is no default tablespace set for sharded tables. See CREATE
TABLESPACE SET for more information.

Oracle Sharding is based on the Oracle Partitioning feature. Therefore, a sharded
table must be a partitioned or composite-partitioned table. When creating a sharded
table, you must specify one of the table_partitioning_clauses. See
table_partitioning_clauses for the full semantics of these clauses.

Restrictions on Sharded Tables

The following restrictions apply to sharded tables:

• In system-managed sharding you can create multiple root tables (and therefore
table families) without throwing ORA-02530 , when the CREATE SHARDED TABLE
statement does not contain a PARTITION BY REFERENCE or PARENT clause and
there is already a root table in existence.

• A sharded table cannot be a temporary table or an index-organized table.

Chapter 15
CREATE TABLE

15-54

• A sharded table cannot contain a nested table column or an identity column.

• You cannot specify a tablespace for a sharded system or composite sharded table with
the TABLESPACEclause, because user-defined sharded tables require sharded
tablespaces and not tablespace sets.

• You cannot create tablespace sets in a user-defined sharding environment.

• A sharded tablespace is required for sharded tables. Normal tablespaces are not
supported.

• You cannot specify the same tablespace for multiple partitions of the sharded table. This
rule applies to subpartitions also. The same tablespace cannot be specified for
subpartitions belonging to different partitions of a sharded table.

• You must specify a tablespace per partition of non-reference partitioned sharded tables.

• For user defined sharding the partition method must be range or list. Autolist and Interval
partitioning is not supported.

• The list partition method can only have one partitioning column.

• Default partitions are not supported in list partitioned tables.

• NULL partitions are not supported in list partitioned tables.

• A primary key constraint defined on a sharded table must contain the sharding columns.
A foreign key constraint on a column of a sharded table referencing a duplicated table
column is not supported.

• System partitioning and interval-range partitioning are not supported for sharded tables.

• You cannot specify a virtual column in a sharded table in the PARTITION BY or
PARTITIONSET BY clauses.

See Also:

• Using Oracle Sharding

• Oracle Database Administrator’s Guide

DUPLICATED

This clause is valid only if you are using Oracle Sharding. Specify DUPLICATED to create a
duplicated table, which is duplicated on all shards. It can be a nonpartitioned table or
partitioned table.

Duplicated tables are not tied to any table family.

Restrictions on Duplicated Tables

The following restrictions apply to duplicated tables:

• A duplicated table cannot contain a LONG column.

• The maximum number of non-primary key columns in a duplicated table is 999.

• An XMLType column in a duplicated table can be used only in an Automatic Segment
Space Management (ASSM) tablespace.

• A duplicated table cannot be a temporary table.

Chapter 15
CREATE TABLE

15-55

• A duplicated table cannot be a reference-partitioned table or a system-partitioned
table.

• You cannot specify NOLOGGING or PARALLEL for a duplicated table.

• You cannot enable a duplicated table for the In-Memory Column Store.

IMMUTABLE

Specify the IMMUTABLE keyword to create a read-only table that protects data from
unauthorized modification by insiders.

You can create a blockchain table that is also immutable by using the keywords
IMMUTABLE BLOCKCHAIN in CREATE TABLE.

You must specify the mandatory immutable_table_clauses when you create an
immutable table using the CREATE IMMUTABLE TABLE statement.

Immutable tables support VPD policies, distributed transactions, and XA transactions.

Prerequistes

• The COMPATIBLE initialization parameter must be set to 19.11.0.0 or higher.

• The CREATE TABLE system privilege is required to create immutable tables in your
own schema. The CREATE ANY TABLE system privilege is required to create
immutable tables in another user's schema.

• The NO DROP and NO DELETE clauses are mandatory.

BLOCKCHAIN

Specify the BLOCKCHAIN keyword to create a blockchain table.

You must specify the mandatory blockchain_table_clauses when you create a
blockchain table using the CREATE BLOCKCHAIN TABLE statement.

When you create a blockchain table, an entry is created in the dictionary table
blockchain_table$ owned by SYS .

Restrictions

The following CREATE TABLE clauses are disallowed with the creation of blockchain
tables:

• ORGANIZATION INDEX
• ORGANIZATION EXTERNAL
• NESTED TABLE

schema

Specify the schema to contain the table. If you omit schema, then the database creates
the table in your own schema.

table

Specify the name of the table or object table to be created. The name must satisfy the
requirements listed in "Database Object Naming Rules ".

Chapter 15
CREATE TABLE

15-56

See Also:

Oracle Database Administrator’s Guide for more on sharded tables.

SHARING

This clause applies only when creating a table in an application root. This type of table is
called an application common object and its data can be shared with the application PDBs
that belong to the application root. To determine how the table data is shared, specify one of
the following sharing attributes:

• METADATA - A metadata link shares the table’s metadata, but its data is unique to each
container. This type of table is referred to as a metadata-linked application common
object.

• DATA - A data link shares the table, and its data is the same for all containers in the
application container. Its data is stored only in the application root. This type of table is
referred to as a data-linked application common object.

• EXTENDED DATA - An extended data link shares the table, and its data in the application
root is the same for all containers in the application container. However, each application
PDB in the application container can store data that is unique to the application PDB. For
this type of table, data is stored in the application root and, optionally, in each application
PDB. This type of table is referred to as an extended data-linked application common
object.

• NONE - The table is not shared.

If you omit this clause, then the database uses the value of the DEFAULT_SHARING initialization
parameter to determine the sharing attribute of the table. If the DEFAULT_SHARING initialization
parameter does not have a value, then the default is METADATA.

When creating a relational table, you can specify METADATA, DATA, EXTENDED DATA, or NONE.

When creating an object table or an XMLTYPE table, you can specify only METADATA or NONE.

You cannot change the sharing attribute of a table after it is created.

See Also:

• Oracle Database Reference for more information on the DEFAULT_SHARING
initialization parameter

• Oracle Database Administrator’s Guide for complete information on creating
application common objects

relational_table

This clause lets you create a relational table.

relational_properties

The relational properties describe the components of a relational table.

Chapter 15
CREATE TABLE

15-57

column_definition

The column_definition lets you define the characteristics of the column.

Specifying column_definition with AS subquery

If you specify the AS subquery clause, and each column returned by subquery has a
column name or is an expression with a specified column alias, then you can omit the
column_definition clause. In this case, the names of the columns of table are the
same as the names of the columns returned by subquery. The exception is creating an
index-organized table, for which you must specify the column_definition clause,
because you must designate a primary key column. Regardless of the table type, if
you specify the column_definition clause and the AS subquery clause, then you must
omit datatype from the column_definition clause.

column

Specify the name of a column of the table. The name must satisfy the requirements
listed in "Database Object Naming Rules ".

If you also specify AS subquery, then you can omit column and datatype unless you
are creating an index-organized table. If you specify AS subquery when creating an
index-organized table, then you must specify column, and you must omit datatype.

The absolute maximum number of columns in a table is 1000. When you create an
object table or a relational table with columns of object, nested table, varray, or REF
type, Oracle Database maps the columns of the user-defined types to relational
columns, in effect creating hidden columns that count toward the 1000-column limit. A
relational column that stores a user-defined type attribute inherits the collation property
of the attribute. In Oracle Database 12c Release 2 (12.2), user-defined types are
created using the pseudo-collation property USING_NLS_COMP and their corresponding
relational columns inherit this property.

datatype

Specify the data type of a column.

In general, you must specify datatype. However, the following exceptions apply:

• You must omit datatype if you specify the AS subquery clause.

• You can also omit datatype if the statement designates the column as part of a
foreign key in a referential integrity constraint. Oracle Database automatically
assigns to the column the data type of the corresponding column of the referenced
key of the referential integrity constraint.

Restrictions on Table Column Data Types

• Do not create a table with LONG columns. Use LOB columns (CLOB, NCLOB, BLOB)
instead. LONG columns are supported only for backward compatibility.

• You can specify a column of type ROWID, but Oracle Database does not guarantee
that the values in such columns are valid rowids.

Chapter 15
CREATE TABLE

15-58

See Also:

"Data Types " for information on LONG columns and on Oracle-supplied data types

You can specify a user-defined datatype as non-persistable when creating or altering the
datatype. Instances of non-persistable types cannot persist on disk. See CREATE TYPE for
more on user-defined datatypes declared as non-persistable types.

COLLATE

The COLLATE clause lets you specify a data-bound collation for the column.

For column_collation_name, specify a valid named collation or pseudo-collation. For
columns of data type CLOB or NCLOB, the only allowed value for column_collation_name is the
pseudo-collation USING_NLS_COMP.

If you omit this clause, then the column is assigned:

• the pseudo-collation USING_NLS_COMP, if the column has the data type CLOB or NCLOB, or

• the collation of the corresponding parent key column, if the column belongs to a foreign
key, or

• the default collation for the table as it stands at the time the column is created.

Refer to the DEFAULT COLLATION clause for more information on the default collation for a
table.

You can specify the COLLATE clause only if the COMPATIBLE initialization parameter is set to
12.2 or greater, and the MAX_STRING_SIZE initialization parameter is set to EXTENDED.

SORT

The SORT keyword is valid only if you are creating this table as part of a hash cluster and only
for columns that are also cluster columns.

Table rows are hashed into buckets on cluster key columns without SORT, and then sorted in
each bucket on the columns with this clause. This may improve response time during
subsequent operations on the clustered data.

See Also:

• "CLUSTER Clause" for information on creating a cluster table

• Managing Hash Clusters

VISIBLE | INVISIBLE

Use this clause to specify whether column is VISIBLE or INVISIBLE. The default is VISIBLE.

INVISIBLE columns are user-specified hidden columns. To display or assign a value to an
INVISIBLE column, you must specify its name explicitly. For example:

Chapter 15
CREATE TABLE

15-59

• The SELECT * syntax will not display an INVISIBLE column. However, if you include
an INVISIBLE column in the select list of a SELECT statement, then the column will
be displayed.

• You cannot implicitly specify a value for an INVISIBLE column in the VALUES clause
of an INSERT statement. You must specify the INVISIBLE column in the column list.

• You must explicitly specify an INVISIBLE column in Oracle Call Interface (OCI)
describes.

• You can configure SQL*Plus to allow INVISIBLE column information to be viewed
with the DESCRIBE command. Refer to SQL*Plus User's Guide and Reference for
more information.

Notes on VISIBLE and INVISIBLE Columns

The following notes apply to VISIBLE and INVISIBLE columns:

• An INVISIBLE column can be used as a partitioning key when specified as part of
CREATE TABLE.

• You can specify INVISIBLE columns in a column_expression.

• A virtual column can be an INVISIBLE column.

• PL/SQL %ROWTYPE attributes do not show INVISIBLE columns.

• The COLUMN_ID column of the ALL_, DBA_, and USER_TAB_COLUMNS data dictionary
views determines the order in which a SELECT * query returns columns for a table,
view, or materialized view. The value of COLUMN_ID is NULL for INVISIBLE
columns. When you make an invisible column visible, it will be assigned the next
highest available COLUMN_ID value. When you make a visible column invisible, its
COLUMN_ID value is set to NULL and COLUMN_ID is decremented by 1 for any
columns with a higher COLUMN_ID.

Restrictions on VISIBLE and INVISIBLE Columns

The following restrictions apply to VISIBLE and INVISIBLE columns:

• INVISIBLE columns are not supported in external tables, cluster tables, or
temporary tables.

• You cannot make a system-generated hidden column visible.

Note:

To determine whether a column is a system-generated hidden column,
query the HIDDEN_COLUMN and USER_GENERATED columns of the ALL_,
DBA_, and USER_TAB_COLS data dictionary views. Refer to Oracle
Database Reference for more information.

DEFAULT

The DEFAULT clause lets you specify a value to be assigned to the column if a
subsequent INSERT statement omits a value for the column. The data type of the
expression must match the data type specified for the column. The column must also
be large enough to hold this expression.

Chapter 15
CREATE TABLE

15-60

The DEFAULT expression can include any SQL function as long as the function does not return
a literal argument, a column reference, or a nested function invocation.

The DEFAULT expression can include the sequence pseudocolumns CURRVAL and NEXTVAL, as
long as the sequence exists and you have the privileges necessary to access it. Users who
perform subsequent inserts that use the DEFAULT expression must have the INSERT privilege
on the table and the SELECT privilege on the sequence. If the sequence is later dropped, then
subsequent INSERT statements where the DEFAULT expression is used will result in an error. If
you do not fully qualify the sequence by specifying the sequence owner, for example,
SCOTT.SEQ1, then Oracle Database will default the sequence owner to be the user who issues
the CREATE TABLE statement. For example, if user MARY creates SCOTT.TABLE and refers to a
sequence that is not fully qualified, such as SEQ2, then the column will use sequence
MARY.SEQ2. Synonyms on sequences undergo a full name resolution and are stored as the
fully qualified sequence in the data dictionary; this is true for public and private synonyms.
For example, if user BETH adds a column referring to public or private synonym SYN1 and the
synonym refers to PETER.SEQ7, then the column will store PETER.SEQ7 as the default.

Restrictions on Default Column Values

Default column values are subject to the following restrictions:

• A DEFAULT expression cannot contain references to PL/SQL functions or to other
columns, the pseudocolumns LEVEL, PRIOR, and ROWNUM, or date constants that are not
fully specified.

• The expression can be of any form except a scalar subquery expression.

See Also:

"About SQL Expressions " for the syntax of expr

ON NULL

If you specify the ON NULL clause, then Oracle Database assigns the DEFAULT column value
when a subsequent INSERT statement attempts to assign a value that evaluates to NULL.

When you specify ON NULL, the NOT NULL constraint and NOT DEFERRABLE constraint state are
implicitly specified. If you specify an inline constraint that conflicts with NOT NULL and NOT
DEFERRABLE, then an error is raised.

Restriction on the ON NULL Clause

You cannot specify this clause for an object type column or a REF column.

See Also:

"Creating a Table with a DEFAULT ON NULL Column Value: Example"

identity_clause

Use this clause to specify an identity column. The identity column will be assigned an
increasing or decreasing integer value from a sequence generator for each subsequent

Chapter 15
CREATE TABLE

15-61

INSERT statement. You can use the identity_options clause to configure the
sequence generator.

ALWAYS

If you specify ALWAYS, then Oracle Database always uses the sequence generator to
assign a value to the column. If you attempt to explicitly assign a value to the column
using INSERT or UPDATE, then an error will be returned. This is the default.

BY DEFAULT

If you specify BY DEFAULT, then Oracle Database uses the sequence generator to
assign a value to the column by default, but you can also explicitly assign a specified
value to the column. If you specify ON NULL, then Oracle Database uses the sequence
generator to assign a value to the column when a subsequent INSERT statement
attempts to assign a value that evaluates to NULL.

identity_options

Use the identity_options clause to configure the sequence generator. The
identity_options clause has the same parameters as the CREATE SEQUENCE
statement. Refer to CREATE SEQUENCE for a full description of these parameters
and characteristics. The exception is START WITH LIMIT VALUE, which is specific to
identity_options and can only be used with ALTER TABLE MODIFY. Refer to
identity_options for more information.

Note:

When you create an identity column, Oracle recommends that you specify
the CACHE clause with a value higher than the default of 20 to enhance
performance.

Restrictions on Identity Columns

Identity columns are subject to the following restrictions:

• You can specify only one identity column per table.

• If you specify identity_clause, then you must specify a numeric data type for
datatype in the column_definition clause. You cannot specify a user-defined
data type.

• If you specify identity_clause, then you cannot specify the DEFAULT clause in the
column_definition clause.

• When you specify identity_clause, the NOT NULL constraint and NOT DEFERRABLE
constraint state are implicitly specified. If you specify an inline constraint that
conflicts with NOT NULL and NOT DEFERRABLE, then an error is raised.

• If an identity column is encrypted, then the encryption algorithm may be inferred.
Oracle recommends that you use a strong encryption algorithm on identity
columns.

• CREATE TABLE AS SELECT will not inherit the identity property on a column.

Chapter 15
CREATE TABLE

15-62

See Also:

"Creating a Table with an Identity Column: Examples"

encryption_spec

The ENCRYPT clause lets you use the Transparent Data Encryption (TDE) feature to encrypt
the column you are defining. You can encrypt columns of type CHAR, NCHAR, VARCHAR2,
NVARCHAR2, NUMBER, DATE, LOB, and RAW. The data does not appear in its encrypted form to
authorized users, such as the user who encrypts the column.

Note:

Column encryption requires that a system administrator with appropriate privileges
has initialized the security module, opened a keystore, and set an encryption key.
Refer to Oracle Database Advanced Security Guide for general information about
column encryption and to security_clauses for related ALTER SYSTEM statements.

USING 'encrypt_algorithm'

Use this clause to specify the name of the algorithm to be used. Valid algorithms are AES256,
AES192, AES128 and 3DES168. If the COMPATIBLE initialization parameter is set to 12.2 or higher,
then the following algorithms are also valid: ARIA128, ARIA192, ARIA256, GOST256, and
SEED128. If you omit this clause, then the database uses AES192. If you encrypt more than one
column in the same table, and if you specify the USING clause for one of the columns, then
you must specify the same encryption algorithm for all the encrypted columns.

IDENTIFIED BY password

If you specify this clause, then the database derives the column key from the specified
password.

'integrity_algorithm'

Use this clause to specify the integrity algorithm to be used. Valid integrity algorithms are
SHA-1 and NOMAC.

• If you specify SHA-1, then TDE uses the Secure Hash Algorithm (SHA-1) and adds a 20-
byte Message Authentication Code (MAC) to each encrypted value for integrity checking.
This is the default.

• If you specify NOMAC, then TDE does not add a MAC and does not perform the integrity
check. This saves 20 bytes of disk space per encrypted value. Refer to Oracle Database
Advanced Security Guide for more information on using NOMAC to save disk space and
improve performance.

All encrypted columns in a table must use the same integrity algorithm. If you already have a
table column using the SHA-1 algorithm, then you cannot use the NOMAC parameter to encrypt
another column in the same table. Refer to the REKEY encryption_spec clause of ALTER
TABLE to learn how to change the integrity algorithm used by all encrypted columns in a table.

SALT | NO SALT

Chapter 15
CREATE TABLE

15-63

Specify SALT to instruct the database to append a random string, called "salt," to the
clear text of the column before encrypting it. This is the default.

Specify NO SALT to prevent the database from appending salt to the clear text of the
column before encrypting it.

The following considerations apply when specifying SALT or NO SALT for encrypted
columns:

• If you want to use the column as an index key, then you must specify NO SALT.
Refer to Oracle Database Advanced Security Guide for a description of "salt" in
this context.

• If you specify table compression for the table, then the database does not
compress the data in encrypted columns with SALT.

You cannot specify SALT or NO SALT for LOB encryption.

Restrictions on encryption_spec

The following restrictions apply to column encryption:

• Transparent Data Encryption is not supported by the traditional import and export
utilities or by transportable-tablespace-based export. Use the Data Pump import
and export utilities with encrypted columns instead.

• To encrypt a column in an external table, the table must use ORACLE_DATAPUMP as
its access type.

• You cannot encrypt a column in tables owned by SYS.

• You cannot encrypt a foreign key column.

See Also:

Oracle Database Advanced Security Guide for more information about
Transparent Data Encryption

virtual_column_definition

The virtual_column_definition clause lets you create a virtual column. A virtual
column is not stored on disk. Rather, the database derives the values in a virtual
column on demand by computing a set of expressions or functions. Virtual columns
can be used in queries, DML, and DDL statements. They can be indexed, and you can
collect statistics on them. Thus, they can be treated much as other columns.
Exceptions and restrictions are listed below in "Notes on Virtual Columns" and
"Restrictions on Virtual Columns".

column

For column, specify the name of the virtual column.

datatype

You can optionally specify the data type of the virtual column. If you omit datatype,
then the database determines the data type of the column based on the data type of
the underlying expressions. All Oracle scalar data types and XMLType are supported.

Chapter 15
CREATE TABLE

15-64

COLLATE

The COLLATE clause lets you specify a data-bound collation for the virtual column. For
column_collation_name, specify a valid named collation or pseudo-collation. If you omit this
clause, then the column is assigned the default collation for the table as it stands at the time
the column is created, unless the column belongs to a foreign key, in which case it inherits
the collation from the corresponding column of the parent key. Refer to the DEFAULT
COLLATION clause for more information on the default collation for a table.

You can specify the COLLATE clause only if the COMPATIBLE initialization parameter is set to
12.2 or greater, and the MAX_STRING_SIZE initialization parameter is set to EXTENDED.

VISIBLE | INVISIBLE

Use this clause to specify whether virtual column is VISIBLE or INVISIBLE. The default is
VISIBLE. For complete information, refer to "VISIBLE | INVISIBLE".

GENERATED ALWAYS

The optional keywords GENERATED ALWAYS are provided for semantic clarity. They indicate that
the column is not stored on disk, but is evaluated on demand.

column_expression

The AS column_expression clause determines the content of the column. Refer to "Column
Expressions " for more information on column_expression.

VIRTUAL

The optional keyword VIRTUAL is provided for semantic clarity.

evaluation_edition_clause

You must specify this clause if column_expression refers to an editioned PL/SQL function.
Use this clause to specify the edition that is searched during name resolution of the editioned
PL/SQL function—the evaluation edition.

• Specify CURRENT EDITION to search the edition in which this DDL statement is executed.

• Specify EDITION edition to search edition.

• Specifying NULL EDITION is equivalent to omitting the evaluation_edition_clause.

If you omit the evaluation_edition_clause, then editioned objects are invisible during name
resolution and an error will result. If the evaluation edition is dropped, then a subsequent
query on the virtual column will result in an error.

The database does not maintain dependencies on the functions referenced by a virtual
column. Therefore, if a virtual column refers to a noneditioned function, and the function
becomes editioned, then the following operations may raise an error:

• Querying the virtual column

• Updating a row that includes the virtual column

• Firing a trigger that accesses the virtual column

Chapter 15
CREATE TABLE

15-65

See Also:

Oracle Database Development Guide for more information on specifying the
evaluation edition for a virtual column

unusable_editions_clause

This clause lets you specify that the virtual column expression is unusable for
evaluating queries in one or more editions. The remaining editions form a range of
editions in which it is safe for the optimizer to use the virtual column expression to
evaluate queries.

For example, suppose you define a function-based index on the virtual column. The
optimizer can use the function-based index to evaluate queries that contain the virtual
column expression in their WHERE clause. If a query is compiled in an edition that is in
the usable range of editions for the virtual column, then the optimizer will consider
using the index to evaluate the query. If a query is compiled in an edition outside the
usable range of editions for the virtual column, then the optimizer will not consider
using the index.

See Also:

Oracle Database Concepts for more information on optimization with
function-based indexes

UNUSABLE BEFORE Clause

This clause lets you specify that the virtual column expression is unusable for
evaluating queries in the ancestors of an edition.

• If you specify CURRENT EDITION, then the virtual column expression is unusable in
the ancestors of the edition in which this DDL statement is executed.

• If you specify EDITION edition, then the virtual column expression is unusable in
the ancestors of the specified edition.

UNUSABLE BEGINNING WITH Clause

This clause lets you specify that the virtual column expression is unusable for
evaluating queries in an edition and its descendants.

• If you specify CURRENT EDITION, then the virtual column expression is unusable in
the edition in which this DDL statement is executed and its descendants.

• If you specify EDITION edition, then the virtual column expression is unusable in
the specified edition and its descendants.

• Specifying NULL EDITION is equivalent to omitting the UNUSABLE BEGINNING WITH
clause.

If an edition specified in this clause is subsequently dropped, there is no effect on the
virtual column.

Notes on Virtual Columns

Chapter 15
CREATE TABLE

15-66

• If column_expression refers to a column on which column-level security is implemented,
then the virtual column does not inherit the security rules of the base column. In such a
case, you must ensure that data in the virtual column is protected, either by duplicating a
column-level security policy on the virtual column or by applying a function that implicitly
masks the data. For example, it is common for credit card numbers to be protected by a
column-level security policy, while still allowing call center employees to view the last four
digits of the credit card number for validation purposes. In such a case, you could define
the virtual column to take a substring of the last four digits of the credit card number.

• A table index defined on a virtual column is equivalent to a function-based index on the
table.

• You cannot directly update a virtual column. Thus, you cannot specify a virtual column in
the SET clause of an UPDATE statement. However, you can specify a virtual column in the
WHERE clause of an UPDATE statement. Likewise, you can specify a virtual column in the
WHERE clause of a DELETE statement to delete rows from a table based on the derived
value of the virtual column.

• A query that specifies in its FROM clause a table containing a virtual column is eligible for
result caching. Refer to "RESULT_CACHE Hint " for more information on result caching.

• The column_expression can refer to a PL/SQL function if the function is explicitly
designated DETERMINISTIC during its creation. However, if the function is subsequently
replaced, definitions dependent on the virtual column are not invalidated. In such a case,
if the table contains data, queries that reference the virtual column may return incorrect
results if the virtual column is used in the definition of constraints, indexes, or
materialized views or for result caching. Therefore, in order to replace the deterministic
PL/SQL function for a virtual column.

– Disable and re-enable any constraints on the virtual column.

– Rebuild any indexes on the virtual column.

– Fully refresh materialized views accessing the virtual column.

– Flush the result cache if cached queries have accessed the virtual column.

– Regather statistics on the table.

• A virtual column can be an INVISIBLE column. The column_expression can contain
INVISIBLE columns.

Restrictions on Virtual Columns

• You can create virtual columns only in relational heap tables. Virtual columns are not
supported for index-organized, external, object, cluster, or temporary tables.

• The column_expression in the AS clause has the following restrictions:

– It cannot refer to another virtual column by name.

– Any columns referenced in column_expression must be defined on the same table.

– It can refer to a deterministic user-defined function, but if it does, then you cannot use
the virtual column as a partitioning key column.

– The output of column_expression must be a scalar value.

Chapter 15
CREATE TABLE

15-67

See Also:

"Column Expressions " for additional information and restrictions on
column_expression

• The virtual column cannot be an Oracle supplied data type, a user-defined type, or
LOB or LONG RAW.

• You cannot specify a call to a PL/SQL function in the defining expression for a
virtual column that you want to use as a partitioning column.

See Also:

"Adding a Virtual Table Column: Example" and Oracle Database
Administrator's Guide for examples of creating tables with virtual columns

period_definition

Use the period_definition clause to create a valid time dimension for table.

This clause implements Temporal Validity support for table. If you specify this clause,
then one column in table, the start time column, contains a start date or timestamp,
and another column in table, the end time column, contains an end date or
timestamp. These two columns define a valid time dimension for table—that is, a
period of time for which each row is considered valid. You can use Oracle Flashback
Query to retrieve rows from table based on whether they are considered valid as of a
specified time, before a specified time, or during a specified time period.

You can specify at most one valid time dimension when you create a table. You can
subsequently add additional valid time dimensions to a table with the
add_period_clause of ALTER TABLE.

valid_time_column

Specify the name of the valid time dimension. The name must satisfy the requirements
listed in "Database Object Naming Rules ". Oracle Database creates an INVISIBLE
virtual column with this name of data type NUMBER in table.

start_time_column and end_time_column

You can optionally specify these clauses as follows:

• Use start_time_column to specify the name of the start time column, which
contains the start date or timestamp.

• Use end_time_column to specify the name of the end time column, which contains
the end date or timestamp.

The names you specify for start_time_column and end_time_column must satisfy the
requirements listed in "Database Object Naming Rules ".

If you specify these clauses, then you must define start_time_column and
end_time_column in the column_definition clause of CREATE TABLE. Each column

Chapter 15
CREATE TABLE

15-68

must be of a datetime data type (DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, or TIMESTAMP
WITH LOCAL TIME ZONE) and can be VISIBLE or INVISIBLE.

If you do not specify these clauses, then Oracle Database creates a start time column named
valid_time_column_START, and an end time column named valid_time_column_END. These
columns are of data type TIMESTAMP WITH TIME ZONE and are INVISIBLE.

You can insert and update values in the start time column and end time column as you would
any column, with the following considerations:

• If the value of the start time column is NULL, then the row is considered valid for all time
values that occur before, but not including, the value of the end time column.

• If the value of the end time column is NULL, then the row is considered valid for all time
values that occur on or after the value of the start time column.

• If the value of neither column is NULL, then the value of the start time column must be
earlier than the value of the end time column. The row is considered valid for all time
values that occur on or after the value of the start time column, and up to, but not
including, the value of the end time column.

• If the value of both columns is NULL, then the row is considered valid for all time values.

Restrictions on Valid Time Dimension Columns

The following restrictions apply to valid time dimension columns:

• The valid_time_column is for internal use only. You cannot perform DDL or DML
operations on it with one exception: You can drop the column by using the
drop_period_clause of ALTER TABLE.

• You can drop the start time column and end time column only by using the
drop_period_clause of ALTER TABLE.

• If the start time column and end time column are automatically created by Oracle
Database, then they are INVISIBLE and you cannot subsequently make them VISIBLE.

See Also:

• Oracle Database Development Guide for more information on Temporal Validity

• SELECT flashback_query_clause for more information on Oracle Flashback
Query

• ALTER TABLE add_period_clause and drop_period_clause for information how to
add and drop a valid time dimension

Constraint Clauses

Use these clauses to create constraints on the table columns. You must specify a PRIMARY
KEY constraint for an index-organized table, and it cannot be DEFERRABLE. Refer to constraint
for syntax and description of these constraints as well as examples.

inline_ref_constraint and out_of_line_ref_constraint

These clauses let you describe a column of type REF. The only difference between these
clauses is that you specify out_of_line_ref_constraint from the table level, so you must

Chapter 15
CREATE TABLE

15-69

identify the REF column or attribute you are defining. Specify inline_ref_constraint
as part of the definition of the REF column or attribute.

See Also:

"REF Constraint Examples"

inline_constraint

Use the inline_constraint to define an integrity constraint as part of the column
definition.

You can create UNIQUE, PRIMARY KEY, and REFERENCES constraints on scalar attributes
of object type columns. You can also create NOT NULL constraints on object type
columns and CHECK constraints that reference object type columns or any attribute of
an object type column.

out_of_line_constraint

Use the out_of_line_constraint syntax to define an integrity constraint as part of the
table definition.

supplemental_logging_props

The supplemental_logging_props clause lets you instruct the database to put
additional data into the log stream to support log-based tools.

supplemental_log_grp_clause

Use this clause to create a named log group.

• The NO LOG clause lets you omit from the redo log one or more columns that would
otherwise be included in the redo for the named log group. You must specify at
least one fixed-length column without NO LOG in the named log group.

• If you specify ALWAYS, then during an update, the database includes in the redo all
columns in the log group. This is called an unconditional log group (sometimes
called an "always log group"), because Oracle Database supplementally logs all
the columns in the log group when the associated row is modified. If you omit
ALWAYS, then the database supplementally logs all the columns in the log group
only if any column in the log group is modified. This is called a conditional log
group.

You can query the appropriate USER_, ALL_, or DBA_LOG_GROUP_COLUMNS data dictionary
view to determine whether any supplemental logging has already been specified.

supplemental_id_key_clause

Use this clause to specify that all or a combination of the primary key, unique key, and
foreign key columns should be supplementally logged. Oracle Database will generate
either an unconditional log group or a conditional log group. With an unconditional
log group, the database supplementally logs all the columns in the log group when the
associated row is modified. With a conditional log group, the database supplementally
logs all the columns in the log group only if any column in the log group is modified.

Chapter 15
CREATE TABLE

15-70

• If you specify ALL COLUMNS, then the database includes in the redo log all the fixed-length
maximum size columns of that row. Such a redo log is a system-generated unconditional
log group.

• If you specify PRIMARY KEY COLUMNS, then for all tables with a primary key, the database
places into the redo log all columns of the primary key whenever an update is performed.
Oracle Database evaluates which columns to supplementally log as follows:

– First the database chooses columns of the primary key constraint, if the constraint is
validated or marked RELY and is not marked as DISABLED or INITIALLY DEFERRED.

– If no primary key columns exist, then the database looks for the smallest UNIQUE
index with at least one NOT NULL column and uses the columns in that index.

– If no such index exists, then the database supplementally logs all scalar columns of
the table.

• If you specify UNIQUE COLUMNS, then for all tables with a unique key or a bitmap index, if
any of the unique key or bitmap index columns are modified, the database places into the
redo log all other columns belonging to the unique key or bitmap index. Such a log group
is a system-generated conditional log group.

• If you specify FOREIGN KEY COLUMNS, then for all tables with a foreign key, if any foreign
key columns are modified, the database places into the redo log all other columns
belonging to the foreign key. Such a redo log is a system-generated conditional log
group.

If you specify this clause multiple times, then the database creates a separate log group for
each specification. You can query the appropriate USER_, ALL_, or DBA_LOG_GROUPS data
dictionary view to determine whether any supplemental logging data has already been
specified.

immutable_table_clauses

You must specify this clause when you create an immutable table.

Example: Create an Immutable Table

The following example creates an immutable table named trade_ledger in your user
schema. The immutable table can be dropped only after 40 days of inactivity. Rows cannot be
deleted until 100 days after they have been inserted.

CREATE IMMUTABLE TABLE trade_ledger (tr_id NUMBER, user_name VARCHAR2(40),
tr_value NUMBER)

 NO DROP UNTIL 40 DAYS IDLE

 NO DELETE UNTIL 100 DAYS AFTER INSERT;

blockchain_table_clauses

When you create a blockchain table, you must specify the blockchain_table_clauses :

• blockchain_drop_table_clause

• blockchain_row_retention_clause

• blockchain_hash_and data_format_clause

Chapter 15
CREATE TABLE

15-71

blockchain_drop_table_clause

NO DROP [UNTIL integer DAYS IDLE]

Use integer to specify the number of days that the blockchain table must be idle (i.e.
have no rows inserted). The minimum idle retention period is 0 days, but a
recommended idle retention period is 16 days.

You can specify this clause in two ways:

• NO DROP means that the blockchain table cannot be dropped.

• NO DROP UNTIL integer DAYS IDLE means that the blockchain table cannot be
dropped, if the newest row is less than integer of days old.

blockchain_row_retention_clause

NO DELETE [LOCKED]
 | NO DELETE UNTIL integer DAYS AFTER INSERT [LOCKED]

• integer specifies the idle retention period for inserted rows before they can be
deleted. The minimum idle retention period is 0 days, but a recommended idle
retention period is 16 days.

• If you specify LOCKED, then you cannot change the retention period using ALTER
TABLE.

• If you do not specify LOCKED in the clause UNTIL number DAYS AFTER INSERT, then
you can change the retention period using ALTER TABLE, but only to a value higher
than the previous retention period.

• If you specify NO DELETE LOCKED, then you cannot delete any rows from this table.
But you can drop the entire table if the table is inactive for more than the number
of days specified in the blockchain_drop_table_clause.

blockchain_hash_and data_format_clause

HASHING USING sha2_512 VERSION v1

You must specify this clause last after blockchain_drop_table_clause and
blockchain_row_retention_clause when you create a blockchain table.

You cannot specify this clause to modify a blockchain table using the ALTER TABLE
statement.

DEFAULT COLLATION

This clause lets you specify the default collation for the table. The default collation is
assigned to columns of the table that are of a character data type and are created with
this statement or subsequently added to the table with an ALTER TABLE statement. For
collation_name, specify a valid named collation or pseudo-collation.

If you omit this clause, then the default collation for the table is set to the effective
schema default collation of the schema containing the table. Refer to the
DEFAULT_COLLATION clause of ALTER SESSION for more information on the effective
schema default collation.

You can override the table’s default collation and assign a data-bound collation to a
particular column by specifying the COLLATE clause in the column_definition or

Chapter 15
CREATE TABLE

15-72

virtual_column_definition clause of CREATE TABLE or ALTER TABLE, or the
modify_col_properties or modify_virtcol_properties clause of ALTER TABLE.

You can specify the DEFAULT COLLATION clause only if the COMPATIBLE initialization parameter
is set to 12.2 or greater, and the MAX_STRING_SIZE initialization parameter is set to EXTENDED.

Restriction on Collation for CLOB and NCLOB Columns

If a column has the data type of CLOB or NCLOB, then its specified collation must be
USING_NLS_COMP. The collation of CLOB and NCLOB columns is always USING_NLS_COMP and is
not affected by the default collation for the table.

See Also:

Oracle Database Globalization Support Guide for full information on default
collations and data-bound collations

ON COMMIT

The ON COMMIT clause is relevant only if you are creating a global temporary table. This clause
specifies whether the data in the temporary table persists for the duration of a transaction or
a session.

DELETE ROWS

Specify DELETE ROWS for a transaction-specific temporary table. This is the default. Oracle
Database will truncate the table (delete all its rows) after each commit.

PRESERVE ROWS

Specify PRESERVE ROWS for a session-specific temporary table. Oracle Database will truncate
the table (delete all its rows) when you terminate the session.

The scope of a private temporary table is also defined using the ON COMMIT clause but with
the keywords DROP DROP DEFINITION and PRESERVE DEFINITION to define a transaction-
specific or session-specific table respectively.

DROP DEFINITION

Specify DROP DEFINITION to create a private temporary table whose content and definition are
dropped when the transaction commits. The scope of this private temporary table is limited to
the transaction. This is the default.

PRESERVE DEFINITION

Specify PRESERVE DEFINITION to create a private temporary table whose definition is
preserved when the transaction commits. The scope of this private temporary table is
extended to the session.

physical_properties

The physical properties relate to the treatment of extents and segments and to the storage
characteristics of the table.

INTERNAL | EXTERNAL

Chapter 15
CREATE TABLE

15-73

Use the keyword INTERNAL to indicate an internal partition. This is the default. Use the
keyword EXTERNAL to indicate an external partition.

deferred_segment_creation

Use this clause to determine when the database should create the segment(s) for this
table:

• SEGMENT CREATION DEFERRED: This clause defers creation of the table segment —
as well as segments for any LOB columns of the table, any indexes created
implicitly as part of table creation, and any indexes subsequently explicitly created
on the table — until the first row of data is inserted into the table. At that time, the
segments for the table, LOB columns and indexes, and explicitly created indexes
are all materialized and inherit any storage properties specified in this CREATE
TABLE statement or, in the case of explicitly created indexes, the CREATE INDEX
statement. These segments are created regardless whether the initial insert
operation is uncommitted or rolled back. This is the default value.

Caution:

When creating many tables with deferred segment creation, ensure that
you allocate enough space for your database so that when the first rows
are inserted, there is enough space for all the new segments.

• SEGMENT CREATION IMMEDIATE: The table segment is created as part of this CREATE
TABLE statement.

Immediate segment creation is useful, for example, if your application depends upon
the object appearing in the DBA_, USER_, and ALL_SEGMENTS data dictionary views,
because the object will not appear in those views until the segment is created. This
clause overrides the setting of the DEFERRED_SEGMENT_CREATION initialization
parameter.

To determine whether a segment has been created for an existing table or its LOB
columns or indexes, query the SEGMENT_CREATED column of USER_TABLES,
USER_INDEXES, or USER_LOBS.

Notes on Tables Without Segments

The following rules apply to a table whose segment has not yet been materialized:

• If you create this table with CREATE TABLE ... AS subquery, then if the source table
has no rows, segment creation of the new table is deferred. If the source table has
rows, then segment creation of the new table is not deferred.

• If you specify ALTER TABLE ... ALLOCATE EXTENT before the segment is materialized,
then the segment is materialized and then an extent is allocated. However the
ALLOCATE EXTENT clause in a DDL statement on any indexes of the table will return
an error.

• In a DDL statement on the table or its LOB columns or indexes, any specification
of DEALLOCATE UNUSED is silently ignored.

• ONLINE operations on indexes of a table or table partition without a segment will
silently be disabled; that is, they will proceed OFFLINE.

Chapter 15
CREATE TABLE

15-74

• If any of the following DDL statements are executed on a table with one or more LOB
columns, then the resulting partition(s) or subpartition(s) will be materialized:

– ALTER TABLE SPLIT [SUB]PARTITION
– ALTER TABLE MERGE [SUB]PARTITIONS
– ALTER TABLE ADD [SUB]PARTITION (hash partitions only)

– ALTER TABLE COALESCE [SUB]PARTITION (hash partitions only)

Restrictions on Deferred Segment Creation

This clause is subject to the following restrictions:

• You cannot defer segment creation for the following types of tables: clustered tables,
global temporary tables, session-specific temporary tables, internal tables, external
tables, and tables owned by SYS, SYSTEM, PUBLIC, OUTLN, or XDB.

• Deferred segment creation is not supported in dictionary-managed tablespaces.

• Deferred segment creation is not supported in the SYSTEM tablespace.

• Serializable transactions do not work with deferred segment creation. Trying to insert
data into an empty table with no segment created causes an error.

See Also:

Oracle Database Concepts for general information on segment allocation and
Oracle Database Reference for more information about the
DEFERRED_SEGMENT_CREATION initialization parameter

segment_attributes_clause

The segment_attributes_clause lets you specify physical attributes and tablespace storage
for the table.

physical_attributes_clause

The physical_attributes_clause lets you specify the value of the PCTFREE, PCTUSED, and
INITRANS parameters and the storage characteristics of the table.

• For a nonpartitioned table, each parameter and storage characteristic you specify
determines the actual physical attribute of the segment associated with the table.

• For partitioned tables, the value you specify for the parameter or storage characteristic is
the default physical attribute of the segments associated with all partitions specified in
this CREATE statement (and in subsequent ALTER TABLE ... ADD PARTITION statements),
unless you explicitly override that value in the PARTITION clause of the statement that
creates the partition.

If you omit this clause, then Oracle Database sets PCTFREE to 10, PCTUSED to 40, and
INITRANS to 1.

Chapter 15
CREATE TABLE

15-75

See Also:

• physical_attributes_clause and storage_clause for a description of these
clauses

• "Creating a Table: Storage Example"

TABLESPACE

Specify the tablespace in which Oracle Database creates the table, object table
OIDINDEX, partition, LOB data segment, LOB index segment, or index-organized table
overflow data segment. If you omit TABLESPACE, then the database creates that item in
the default tablespace of the owner of the schema containing the table.

For a heap-organized table with one or more LOB columns, if you omit the TABLESPACE
clause for LOB storage, then the database creates the LOB data and index segments
in the tablespace where the table is created.

For an index-organized table with one or more LOB columns, if you omit TABLESPACE,
then the LOB data and index segments are created in the tablespace in which the
primary key index segment of the index-organized table is created.

For nonpartitioned tables, the value specified for TABLESPACE is the actual physical
attribute of the segment associated with the table. For partitioned tables, the value
specified for TABLESPACE is the default physical attribute of the segments associated
with all partitions specified in the CREATE statement and on subsequent ALTER TABLE ...
ADD PARTITION statements, unless you specify TABLESPACE in the PARTITION
description.

See Also:

CREATE TABLESPACE for more information on tablespaces

TABLESPACE SET

This clause is valid only when creating a sharded table by specifying the SHARDED
keyword of CREATE TABLE. Use this clause to specify the tablespace set in which
Oracle Database creates the table.

You can only associate a tablespace set with one table family when you use the
CREATE SHARDED TABLE statement. If you try to use a tablespace set with more than
one table family, an error will be thrown .

logging_clause

Specify whether the creation of the table and of any indexes required because of
constraints, partition, or LOB storage characteristics will be logged in the redo log file
(LOGGING) or not (NOLOGGING).The logging attribute of the table is independent of that of
its indexes.

Chapter 15
CREATE TABLE

15-76

This attribute also specifies whether subsequent direct loader (SQL*Loader) and direct-path
INSERT operations against the table, partition, or LOB storage are logged (LOGGING) or not
logged (NOLOGGING).

Refer to logging_clause for a full description of this clause.

table_compression

The table_compression clause is valid only for heap-organized tables. Use this clause to
instruct the database whether to compress data segments to reduce disk use. The COMPRESS
clauses enable table compression. The NOCOMPRESS clause disables table compression. The
default is NOCOMPRESS.

COMPRESS

Specifying only the keyword COMPRESS is equivalent to specifying ROW STORE COMPRESS BASIC
and enables basic table compression.

ROW STORE COMPRESS BASIC

When you enable table compression by specifying either ROW STORE COMPRESS or ROW STORE
COMPRESS BASIC, you enable basic table compression. Oracle Database attempts to
compress data during direct-path INSERT operations when it is productive to do so. The
original import utility (imp) does not support direct-path INSERT, and therefore cannot import
data in a compressed format.

Tables with basic table compression use a PCTFREE value of 0 to maximize compression,
unless you explicitly set a value for PCTFREE in the physical_attributes_clause.

In earlier releases, basic table compression was enabled using COMPRESS BASIC. This syntax
is still supported for backward compatibility.

See Also:

"Conventional and Direct-Path INSERT" for information on direct-path INSERT
operations, including restrictions

ROW STORE COMPRESS ADVANCED

When you enable table compression by specifying ROW STORE COMPRESS ADVANCED, you enable
Advanced Row Compression. Oracle Database compresses data during all DML
operations on the table. This form of compression is recommended for OLTP environments.

Tables with ROW STORE COMPRESS ADVANCED or NOCOMPRESS use the PCTFREE default value of 10,
to maximize compress while still allowing for some future DML changes to the data, unless
you override this default explicitly.

In earlier releases, Advanced Row Compression was called OLTP table compression and
was enabled using COMPRESS FOR OLTP. This syntax is still supported for backward
compatibility.

COLUMN STORE COMPRESS FOR { QUERY | ARCHIVE }

When you specify COLUMN STORE COMPRESS FOR QUERY or COLUMN STORE COMPRESS FOR ARCHIVE,
you enable Hybrid Columnar Compression. With Hybrid Columnar Compression, data can
be compressed during direct-path inserts, conventional inserts, and array inserts. During the

Chapter 15
CREATE TABLE

15-77

load process, data is transformed into a column-oriented format and then compressed.
Oracle Database uses a compression algorithm appropriate for the level you specify.
In general, the higher the level, the greater the compression ratio. Hybrid Columnar
Compression can result in higher compression ratios, at a greater CPU cost.
Therefore, this form of compression is recommended for data that is not frequently
updated.

COLUMN STORE COMPRESS FOR QUERY is useful in data warehousing environments. Valid
values are LOW and HIGH, with HIGH providing a higher compression ratio. The default is
HIGH.

COLUMN STORE COMPRESS FOR ARCHIVE uses higher compression ratios than COLUMN
STORE COMPRESS FOR QUERY, and is useful for compressing data that will be stored for
long periods of time. Valid values are LOW and HIGH, with HIGH providing the highest
possible compression ratio. The default is LOW.

Specifying COLUMN STORE COMPRESS is equivalent to specifying COLUMN STORE COMPRESS
FOR QUERY HIGH.

Tables with COLUMN STORE COMPRESS FOR QUERY or COLUMN STORE COMPRESS FOR ARCHIVE
use a PCTFREE value of 0 to maximize compression, unless you explicitly set a value
for PCTFREE in the physical_attributes_clause. For these tables, PCTFREE has no
effect for blocks loaded using direct-path INSERT. PCTFREE is honored for blocks loaded
using conventional INSERT, and for blocks created as a result of DML operations on
blocks originally loaded using direct-path INSERT.

[NO] ROW LEVEL LOCKING

If you specify ROW LEVEL LOCKING, then Oracle Database uses row-level locking during
DML operations. This improves the performance of these operations when accessing
Hybrid Columnar Compressed data. If you specify NO ROW LEVEL LOCKING, then row-
level locking is not used. The default is NO ROW LEVEL LOCKING.

In earlier releases, Hybrid Columnar Compression was enabled using COMPRESS FOR
QUERY and COMPRESS FOR ARCHIVE. This syntax is still supported for backward
compatibility.

See Also:

Oracle Database Concepts for more information on Hybrid Columnar
Compression, which is a feature of certain Oracle storage systems

Notes on Table Compression

You can specify table compression for the following portions of a heap-organized table:

• For an entire table, in the physical_properties clause of relational_table or
object_table

• For a range partition, in the table_partition_description of the
range_partitions clause

• For a composite range partition, in the table_partition_description of the
range_partition_desc clause

Chapter 15
CREATE TABLE

15-78

• For a composite list partition, in the table_partition_description of the
list_partition_desc clause

• For a list partition, in the table_partition_description of the list_partitions clause

• For a system or reference partition, in the table_partition_description of the
reference_partition_desc clause

• For the storage table of a nested table, in the nested_table_col_properties clause

See Also:

Oracle Database PL/SQL Packages and Types Reference for information about
the DBMS_COMPRESSION package, which helps you choose the correct
compression level for an application, and Oracle Database Administrator's
Guide for more information about table compression, including examples

Restrictions on Table Compression

Table compression is subject to the following restrictions:

• Data segments of BasicFiles LOBs are not compressed. For information on compression
of SecureFiles LOBs, see LOB_compression_clause.

• You cannot drop a column from a table that uses COMPRESS BASIC, although you can set
such a column as unused. All of the operations of the ALTER TABLE ...
drop_column_clause are valid for tables that use ROW STORE COMPRESS ADVANCED, COLUMN
STORE COMPRESS FOR QUERY, and COLUMN STORE COMPRESS FOR ARCHIVE.

• You cannot specify any type of table compression for an index-organized table, any
overflow segment or partition of an overflow segment, or any mapping table segment of
an index-organized table.

• You cannot specify any type of table compression for external tables or for tables that are
part of a cluster.

• You cannot specify any type of table compression for tables with LONG or LONG RAW
columns, tables that are owned by the SYS schema and reside in the SYSTEM tablespace,
or tables with ROWDEPENDENCIES enabled.

• You cannot specify Hybrid Columnar Compression on tables that are enabled for
flashback archiving.

• You cannot specify Hybrid Columnar Compression on the following object-relational
features: object tables, XMLType tables, columns with abstract data types, collections
stored as tables, or OPAQUE types, including XMLType columns stored as objects.

• When you update a row in a table compressed with Hybrid Columnar Compression, the
ROWID of the row may change.

• In tables compressed with Hybrid Columnar Compression, updates to a single row may
result in locks on multiple rows. Concurrency for write transactions may therefore be
affected.

• If a table compressed with Hybrid Columnar Compression has a foreign key constraint,
and you insert data using INSERT with the APPEND hint, then the data will be compressed
to a lesser level than is typical with Hybrid Columnar Compression. To compress the data
with Hybrid Columnar Compression, disable the foreign key constraint, insert the data
using INSERT with the APPEND hint, and then reenable the foreign key constraint.

Chapter 15
CREATE TABLE

15-79

inmemory_table_clause

Use this clause to enable or disable the table for the In-Memory Column Store (IM
column store). The IM column store is an optional, static SGA pool that stores copies
of tables and partitions in a special columnar format optimized for rapid scans. The IM
column store does not replace the buffer cache, but acts as a supplement so that both
memory areas can store the same data in different formats.

• Specify INMEMORY to enable the table for the IM column store.

You can optionally use the inmemory_attributes clause to specify how table data
is stored in the IM column store. This clause enables you to specify the data
compression method and the data population priority. In an Oracle RAC
environment, it also enables you to specify how the data is distributed and
duplicated across Oracle RAC instances. Refer to the inmemory_attributes clause
for more information.

• Specify NO INMEMORY to disable the table for the IM column store.

• Specify the inmemory_column_clause to enable or disable specific table columns
for the IM column store, and to specify the data compression method for specific
columns. Refer to the inmemory_column_clause for more information.

If you omit this clause, then the table is assigned the default IM column store settings
for the tablespace in which it is created. Refer to the inmemory_clause of CREATE
TABLESPACE for more information on specifying the default IM column store settings for
a tablespace.

In an Oracle Active Data Guard environment, if you specify this clause for a table on
the primary database, then the table is enabled or disabled for the IM column store in
the Oracle Active Data Guard instance.

Note:

The INMEMORY_CLAUSE_DEFAULT initialization parameter enables you to
specify a default IM column store clause for new tables and materialized
views. Refer to Oracle Database Reference for more information on the
INMEMORY_CLAUSE_DEFAULT initialization parameter.

Restrictions on the In-Memory Column Store

The following restrictions apply to the In-Memory Column Store:

• You cannot specify the INMEMORY clause for index-organized tables.

• You cannot specify the INMEMORY clause for tables that are owned by the SYS
schema and reside in the SYSTEM or SYSAUX tablespace.

• Starting with Oracle Database 18c , you can specify the INMEMORY clause for
external tables. You must set the QUERY_REWRITE_INTEGRITY initialization
parameter to stale_tolerated for the DDL to parse correctly. The policy may not
be changed via ALTER to anything other than stale_tolerated if INMEMORY is
specified.

• The IM column store does not support LONG or LONG RAW columns, out-of-line
columns (LOBs, varrays, nested table columns), or extended data type columns. If

Chapter 15
CREATE TABLE

15-80

you enable a table for the IM column store and it contains any of these types of columns,
then the columns will not be populated in the IM column store.

• If you enable a table for the IM column store and it contains a virtual column, then the
column will be populated in the IM column store only if the value of the
INMEMORY_VIRTUAL_COLUMNS initialization parameter is ENABLED and the SQL expression
for the virtual column refers only to columns that are enabled for the IM column store.

See Also:

Oracle Database In-Memory Guide for an overview of the IM column store

inmemory_attributes

Use the inmemory_memcompress, inmemory_priority, inmemory_distribute, and
inmemory_duplicate clauses to specify how table data is stored in the IM column store.

Specify the inmemory_spatial clause to apply inmemory attributes to spatial columns of type
SDO_GEOMETRY.

inmemory_memcompress

Use this clause to specify the compression method for table data stored in the IM column
store. This data is called In-Memory data.

To instruct the database to not compress In-Memory data, specify NO MEMCOMPRESS.

Specify MEMCOMPRESS AUTO to instruct the database to manage the segment including actions
like evict, recompress, and populate.

To instruct the database to compress In-Memory data, specify MEMCOMPRESS FOR followed by
one of the following methods:

• DML - This method is optimized for DML operations and performs little or no data
compression.

• QUERY - Specifying QUERY is equivalent to specifying QUERY LOW.

• QUERY LOW - This method compresses In-Memory data the least (except for DML) and
results in the best query performance. This is the default.

• QUERY HIGH -This method compress In-Memory data more than QUERY LOW, but less than
CAPACITY LOW.

• CAPACITY - Specifying CAPACITY is equivalent to specifying CAPACITY LOW.

• CAPACITY LOW - This method compresses In-Memory data more than QUERY HIGH, but less
than CAPACITY HIGH, and results in excellent query performance.

• CAPACITY HIGH - This method compresses In-Memory data the most and results in good
query performance.

Any memcompress level can be specified via DDL, but will be ignored during population. All
In-Memory Compression Units (IMCUs) will be populated as QUERY LOW transparently.

Chapter 15
CREATE TABLE

15-81

inmemory_priority

Use the PRIORITY clause to specify the data population priority for table data in the IM
column store. This clause controls the priority of population, but not the speed of
population.

• Specify NONE for on-demand population. In this case, the database populates
table data in the IM column store when the table it is accessed through a full table
scan. If the table is never accessed, or if it is accessed only through an index scan
or fetch by rowid, then population never occurs. This is the default.

• Specify one of the following priority levels for priority-based population: LOW,
MEDIUM, HIGH, or CRITICAL. In this case, the database automatically populates
table data in the IM column store using an internally managed priority queue; a full
scan is not a necessary condition for population. The database queues population
of the table data based on the specified priority level. For example, a table with the
setting INMEMORY PRIORITY CRITICAL takes precedence over a table with the
setting INMEMORY PRIORITY HIGH, which in turn takes precedence over a table with
the setting INMEMORY PRIORITY LOW, and so on. If the IM column store has
insufficient space, then the database does not populate additional table data until
space is available.

inmemory_distribute

The DISTRIBUTE clause is applicable only if you are using Oracle Real Application
Clusters (Oracle RAC) or Oracle Active Data Guard. It lets you specify how table data
in the IM column store is distributed across Oracle RAC instances, and lets you
specify the database instances in which the data is eligible to be populated.

AUTO and BY

Use the AUTO and BY clauses to specify how table data in the IM column store is
distributed across Oracle RAC instances. You can specify the following options:

• AUTO - Oracle Database controls how data is distributed across Oracle RAC
instances. Large tables are distributed across Oracle RAC instances depending on
their access patterns. Smaller tables may be distributed between instances. This is
the default.

• BY ROWID RANGE - Data in certain ranges of rowids is distributed to different Oracle
RAC instances.

• BY PARTITION - Data in partitions is distributed to different Oracle RAC instances.

• BY SUBPARTITION - Data in subpartitions is distributed to different Oracle RAC
instances.

You can only use AUTO and BY to distribute the In-Memory Compression Units (IMCUs)
for an object between instances in a single Oracle RAC database, not between a
primary instance and standby instance in Active Data Guard.

FOR SERVICE

Use the FOR SERVICE clause to specify the Oracle RAC or Oracle Active Data Guard
instances in which the object is eligible to be populated. You can specify the following
options:

Chapter 15
CREATE TABLE

15-82

• DEFAULT - The object is eligible for population on all instances specified with the
PARALLEL_INSTANCE_GROUP initialization parameter. If this parameter is not set, then the
object is populated on all instances. This is the default.

• ALL - The object is eligible for population on all instances, regardless of the value of the
PARALLEL_INSTANCE_GROUP initialization parameter.

• service_name - The object is eligible for population only on instances belonging to the
specified service and only when the service is active and not blocked on an instance.

• NONE - The object is not eligible for population on any instances. This option lets you
disable IM column store population while preserving the other In-Memory attributes for
the table. These attributes take effect if you subsequently enable IM column store
population for the table by specifying FOR SERVICE DEFAULT, FOR SERVICE ALL, or FOR
SERVICE service_name in the inmemory_distribute clause of an ALTER TABLE statement.

In Oracle RAC, the FOR SERVICE clause specifies the instances within the Oracle RAC
database. In Active Data Guard, the primary and standby databases may use a single-
instance or Oracle RAC configuration. In Active Data Guard, the FOR SERVICE clause specifies
instances in the primary database, instances in the standby database, or a mixture of primary
and standby instances.

inmemory_duplicate

The DUPLICATE clause is applicable only if you are using Oracle Real Application Clusters
(Oracle RAC) on an engineered system. It controls how table data in the IM column store is
duplicated across Oracle RAC instances. You can specify the following options:

• DUPLICATE - Data is duplicated on one Oracle RAC instance, resulting in the data existing
on a total of two Oracle RAC instances.

• DUPLICATE ALL - Data is duplicated across all Oracle RAC instances. If you specify
DUPLICATE ALL, then the database uses the DISTRIBUTE AUTO setting, regardless of
whether or how you specify the inmemory_distribute clause.

• NO DUPLICATE - Data is not duplicated across Oracle RAC instances. This is the default.

inmemory_column_clause

Use this clause to enable or disable specific table columns for the IM column store, and to
specify the data compression method for specific columns. If you specify this clause when
creating a NO INMEMORY table, then the column settings will take effect when the table or
partition is subsequently enabled for the IM column store.

• Specify INMEMORY to enable the specified table columns for the IM column store.

You can optionally use the inmemory_memcompress clause to specify the data
compression method for specific columns. See inmemory_memcompress. If you omit the
inmemory_memcompress clause, then the table column uses the data compression method
for the table. You cannot specify the PRIORITY, DISTRIBUTE, or DUPLICATE settings for a
specific table column. These settings are the same for all table columns as they are for
the table.

• Specify NO INMEMORY to disable the specified table columns for the IM column store.

If you omit the inmemory_column_clause, then all table columns use the IM column store
settings for the table.

Restrictions on inmemory_column_clause

Chapter 15
CREATE TABLE

15-83

• You cannot specify this clause for a LONG or LONG RAW column, an out-of-line
column (LOB, varray, nested table column), or an extended data type column.

• To selectively enable a virtual column for the IM column store, the value of the
INMEMORY_VIRTUAL_COLUMNS initialization parameter must be ENABLED or MANUAL,
and the SQL expression for the virtual column must refer only to columns that are
enabled for the IM column store.

inmemory_clause

Use this clause to enable or disable a table partition for the IM column store. In order
to specify this clause, the table must be enabled for the IM column store. If you omit
this clause, then the table partition uses the IM column store settings for the table.

The inmemory_attributes clause has the same semantics for table partitions as for
tables. Refer to the inmemory_attributes clause for full information.

INMEMORY TEXT

Specify INMEMORY TEXT clause to enable IM full text columns. The PRIORITY clause
has the same effect on population of IM full text columns as standard In-Memory
columns. The default priority is NONE.

The MEMCOMPRESS clause is not valid with INMEMORY TEXT.

Examples

CREATE TABLE mydoc(id NUMBER, docCreationTime DATE, doc CLOB, json_doc JSON)
INMEMORY TEXT(DOC, JSON_DOC)

CREATE TABLE mydoc(id NUMBER, docCreationTime DATE, doc CLOB, json_doc JSON)
INMEMORY PRIORITY CRITICAL
 INMEMORY TEXT(DOC, JSON_DOC)

You can apply the IMEMORY TEXT clause to search non-scalar columns in an In-Memory
table. This clause enables fast In-Memory searching of text, XML, or JSON documents
using the CONTAINS () or JSON_TEXTCONTAINS() operators.

INMEMORY TEXT (column_name1, column_name2) specifies the list of columns to be
enabled as IM full text. The columns must be of type CHAR, VARCHAR2, CLOB, BLOB, or
JSON. JSON columns have JSON_TEXTCONTAINS() automatically enabled.

INMEMORY TEXT (column_name1 USING policy1, column_name2 USING
policy2)specifies the list of columns to be enabled as IM full text along with custom
indexing policies. The columns must be of type CHAR, VARCHAR2, CLOB, or BLOB. You
cannot use this clause with columns of type JSON.

You can use the IMEMORY PRIORITY clause to set the order in which objects are
populated.

See Also:

IM Full Text Columns.

You can specify INMEMORY on non-partitioned tables using the ORACLE_HIVE,
ORACLE_HDFS, and ORACLE_BIGDATA driver types.

Chapter 15
CREATE TABLE

15-84

ilm_clause

Use this clause to add an Automatic Data Optimization policy to table.

This clause has the same semantics in CREATE TABLE and ALTER TABLE, with the following
additional restriction: You can specify only the ADD POLICY clause for CREATE TABLE. Refer to
the ilm_clause for the full semantics of this clause.

See Also:

Oracle Database VLDB and Partitioning Guide for more information on managing
policies for Automatic Data Optimization

Restrictions on Automatic Data Optimization

Automatic Data Optimization is subject to the following restrictions:

• Automatic Data Optimization is not supported for tables that contain object types, index-
organized tables, clustered tables, or materialized views.

• Row-level policies are not supported for tables that support Temporal Validity or tables
that are enabled for row archiving for In-Database Archiving.

ilm_policy_clause

Use this clause to describe the Automatic Data Optimization policy.

This clause has the same semantics in CREATE TABLE and ALTER TABLE. Refer to
ilm_policy_clause for the full semantics of this clause.

RECOVERABLE | UNRECOVERABLE

These keywords are deprecated and have been replaced with LOGGING and NOLOGGING,
respectively. Although RECOVERABLE and UNRECOVERABLE are supported for backward
compatibility, Oracle strongly recommends that you use the LOGGING and NOLOGGING
keywords.

Restrictions on [UN]RECOVERABLE

This clause is subject to the following restrictions:

• You cannot specify RECOVERABLE for partitioned tables or LOB storage characteristics.

• You cannot specify UNRECOVERABLE for partitioned or index-organized tables.

• You can specify UNRECOVERABLE only with AS subquery.

ORGANIZATION

The ORGANIZATION clause lets you specify the order in which the data rows of the table are
stored.

HEAP

HEAP indicates that the data rows of table are stored in no particular order. This is the default.

INDEX

Chapter 15
CREATE TABLE

15-85

INDEX indicates that table is created as an index-organized table. In an index-
organized table, the data rows are held in an index defined on the primary key for the
table.

EXTERNAL

EXTERNAL indicates that table is a read-only table located outside the database.

See Also:

"External Table Example"

index_org_table_clause

Use the index_org_table_clause to create an index-organized table. Oracle
Database maintains the table rows, both primary key column values and nonkey
column values, in an index built on the primary key. Index-organized tables are
therefore best suited for primary key-based access and manipulation. An index-
organized table is an alternative to:

• A noncluster table indexed on the primary key by using the CREATE INDEX
statement

• A cluster table stored in an indexed cluster that has been created using the CREATE
CLUSTER statement that maps the primary key for the table to the cluster key

You must specify a primary key for an index-organized table, because the primary key
uniquely identifies a row. The primary key cannot be DEFERRABLE. Use the primary key
instead of the rowid for directly accessing index-organized rows.

If an index-organized table is partitioned and contains LOB columns, then you should
specify the index_org_table_clause first, then the LOB_storage_clause, and then the
appropriate table_partitioning_clauses.

You cannot use the TO_LOB function to convert a LONG column to a LOB column in the
subquery of a CREATE TABLE ... AS SELECT statement if you are creating an index-
organized table. Instead, create the index-organized table without the LONG column,
and then use the TO_LOB function in an INSERT ... AS SELECT statement.

The ROWID pseudocolumn of an index-organized table returns logical rowids instead of
physical rowids. A column that you create with the data type ROWID cannot store the
logical rowids of the IOT. The only data you can store in a column of type ROWID is
rowids from heap-organized tables. If you want to store the logical rowids of an IOT,
then create a column of type UROWID instead. A column of type UROWID can store both
physical and logical rowids.

See Also:

"Index-Organized Table Example"

Restrictions on Index-Organized Tables

Chapter 15
CREATE TABLE

15-86

Index-organized tables are subject to the following restrictions:

• You cannot define a virtual column for an index-organized table.

• You cannot specify the composite_range_partitions, composite_list_partitions, or
composite_hash_partitions clauses for an index-organized table.

• If the index-organized table is a nested table or varray, then you cannot specify
table_partitioning_clauses.

• The collations of character data type columns belonging to the primary key of an index-
organized table must be BINARY, USING_NLS_COMP, USING_NLS_SORT, or
USING_NLS_SORT_CS.

PCTTHRESHOLD integer

Specify the percentage of space reserved in the index block for an index-organized table row.
PCTTHRESHOLD must be large enough to hold the primary key. All trailing columns of a row,
starting with the column that causes the specified threshold to be exceeded, are stored in the
overflow segment. PCTTHRESHOLD must be a value from 1 to 50. If you do not specify
PCTTHRESHOLD, then the default is 50.

Restriction on PCTTHRESHOLD

You cannot specify PCTTHRESHOLD for individual partitions of an index-organized table.

mapping_table_clauses

Specify MAPPING TABLE to instruct the database to create a mapping of local to physical
ROWIDs and store them in a heap-organized table. This mapping is needed in order to create
a bitmap index on the index-organized table. If the index-organized table is partitioned, then
the mapping table is also partitioned and its partitions have the same name and physical
attributes as the base table partitions.

Oracle Database creates the mapping table or mapping table partition in the same
tablespace as its parent index-organized table or partition. You cannot query, perform DML
operations on, or modify the storage characteristics of the mapping table or its partitions.

prefix_compression

The prefix_compression clauses let you enable or disable prefix compression for index-
organized tables.

• Specify COMPRESS to enable prefix compression, also known as key compression, for an
index-organized table, which eliminates repeated occurrence of primary key column
values in index-organized tables. Use integer to specify the prefix length, which is the
number of prefix columns to compress.

The valid range of prefix length values is from 1 to the number of primary key columns
minus 1. The default prefix length is the number of primary key columns minus 1.

• Specify NOCOMPRESS to disable prefix compression in index-organized tables. This is the
default.

Restriction on Prefix Compression of Index-organized Tables

At the partition level, you can specify COMPRESS, but you cannot specify the prefix length with
integer.

Chapter 15
CREATE TABLE

15-87

index_org_overflow_clause

The index_org_overflow_clause lets you instruct the database that index-organized
table data rows exceeding the specified threshold are placed in the data segment
specified in this clause.

• When you create an index-organized table, Oracle Database evaluates the
maximum size of each column to estimate the largest possible row. If an overflow
segment is needed but you have not specified OVERFLOW, then the database raises
an error and does not execute the CREATE TABLE statement. This checking function
guarantees that subsequent DML operations on the index-organized table will not
fail because an overflow segment is lacking.

• All physical attributes and storage characteristics you specify in this clause after
the OVERFLOW keyword apply only to the overflow segment of the table. Physical
attributes and storage characteristics for the index-organized table itself, default
values for all its partitions, and values for individual partitions must be specified
before this keyword.

• If the index-organized table contains one or more LOB columns, then the LOBs
will be stored out-of-line unless you specify OVERFLOW, even if they would otherwise
be small enough be to stored inline.

• If table is partitioned, then the database equipartitions the overflow data
segments with the primary key index segments.

INCLUDING column_name

Specify a column at which to divide an index-organized table row into index and
overflow portions. The primary key columns are always stored in the index.
column_name can be either the last primary key column or any non primary key
column. All non primary key columns that follow column_name are stored in the
overflow data segment.

If an attempt to divide a row at column_name causes the size of the index portion of the
row to exceed the specified or default PCTTHRESHOLD value, then the database breaks
up the row based on the PCTTHRESHOLD value.

Restriction on the INCLUDING Clause

You cannot specify this clause for individual partitions of an index-organized table.

EXTERNAL PARTITION ATTRIBUTES
Use the EXTERNAL PARTITION ATTRIBUTES clause to specify table level external
parameters in a hybrid partitioned table.

external_table_clause

Use the external_table_clause to create an external table, which allows you to
process data that is stored outside the database from within the database without
loading any of the data into the database.

Defining an external table only creates metadata in the data dictionary, pointing to data
outside the database and providing seamless read only access to such data.

Because external tables have no data in the database, you define them with a small
subset of the clauses normally available when creating tables.

Chapter 15
CREATE TABLE

15-88

In addition to supporting external data residing in operating file systems and Big Data sources
and formats such as HDFS and Hive, Oracle supports external data residing in objects via
the DBMS_CLOUD package.

You can work with data in object stores using the DBMS_CLOUD package or by manually
defining external tables. Oracle strongly recommends using DBMS_CLOUD for the additional
functionality that is fully compatible with Oracle autonomous database.

See Also:

• DBMS_CLOUD

• Managing External Tables

• Within the relational_properties clause, you can specify only column, datatype,
ENCRYPT, inline_constraint, and out_of_line_constraint. You can specify the
ENCRYPT clause only when you specify the ORACLE_DATAPUMP access driver and the AS
subquery clause to load data into the external table. Within the inline_constraint and
out_of_line_constraint clauses, you can specify all subclauses except CHECK.

• Within the physical_properties_clause, you can specify only the organization of the
table (ORGANIZATION EXTERNAL external_table_clause).

• Within the table_properties clause, you can specify the parallel_clause. The
parallel_clause lets you parallelize subsequent queries on the external data and
subsequent operations that populate the external table.

Starting with Oracle Database 12c Release 2 (12.2), you can create a partitioned
external table. To do this, within the table_properties clause, you can specify the
following subclauses of the table_partitioning_clauses :

– range_partitions - specify this clause to create a range-partitioned or interval-
partitioned external table

– list_partitions - specify this clause to create a list-partitioned external table.
Within this clause, you cannot specify the AUTOMATIC clause; an automatic list-
partitioned table cannot be an external table.

– composite_range_partitions - specify this clause to create a range-range, range-
list, interval-range, or interval-list composite-partitioned external table

– composite_list_partitions - specify this clause to create a list-range or list-list
composite-partitioned external table. Within this clause, you cannot specify the
AUTOMATIC clause; an automatic composite-partitioned table cannot be an external
table.

• You can populate the external table at create time by using the AS subquery clause.

No other clauses are permitted in the same CREATE TABLE statement.

Chapter 15
CREATE TABLE

15-89

See Also:

• "External Table Example"

• ALTER TABLE ... "PROJECT COLUMN Clause" for information on the
effect of changing the default property of the column projection

• Oracle Database Data Warehousing Guide, Oracle Database
Administrator's Guide, and Oracle Database Utilities for information on
the uses for external tables

Restrictions on External Tables

External tables are subject to the following restrictions:

• An external table cannot be a temporary table.

• You can specify only the following types of constraints on an external table: NOT
NULL constraints, unique constraints, primary key constraints, and foreign key
constraints. When you specify unique constraints, primary key constraints, or
foreign key constraints, you must also specify RELY DISABLE. These constraints are
declarative and are not enforced. They can increase query performance and
reduce resource consumption because more optimizer transformations can be
taken into account. In order for the optimizer to utilize these RELY DISABLE
constraints, the QUERY_REWRITE_INTEGRITY initialization parameter must be set to
either trusted or stale_tolerated.

• You cannot create an index on an external table.

• An external table cannot contain INVISIBLE columns.

• An external table cannot have object type, varray, or LONG columns. However, you
can populate LOB columns of an external table with varray or LONG data from an
internal database table.

• Only ORACLE_LOADER and ORACLE_DATAPUMP access types are permitted for external
tables that can be populated into the inmemory column store.

TYPE

TYPE access_driver_type indicates the access driver of the external table. The
access driver is the API that interprets the external data for the database. Oracle
Database provides the following access drivers: ORACLE_LOADER, ORACLE_DATAPUMP,
ORACLE_HDFS, and ORACLE_HIVE. If you do not specify TYPE, then the database uses
ORACLE_LOADER as the default access driver. You must specify the ORACLE_DATAPUMP
access driver if you specify the AS subquery clause to unload data from one Oracle
Database and reload it into the same or a different Oracle Database.

See Also:

Oracle Database Utilities for information about the ORACLE_LOADER,
ORACLE_DATAPUMP, ORACLE_HDFS, and ORACLE_HIVE access drivers

Chapter 15
CREATE TABLE

15-90

DEFAULT DIRECTORY

DEFAULT DIRECTORY lets you specify a default directory object corresponding to a directory on
the file system where the external data sources may reside. The default directory can also be
used by the access driver to store auxiliary files such as error logs.

ACCESS PARAMETERS

The optional ACCESS PARAMETERS clause lets you assign values to the parameters of the
specific access driver for this external table.

• The opaque_format_spec specifies all access parameters for the ORACLE_LOADER,
ORACLE_DATAPUMP, ORACLE_HDFS, and ORACLE_HIVE access drivers. See Oracle Database
Utilities for descriptions of the ORACLE_LOADER, ORACLE_DATAPUMP, ORACLE_HDFS, and
ORACLE_HIVE access parameters.

Field names specified in the opaque_format_spec must match columns in the table
definition. Oracle Database ignores any field in the opaque_format_spec that is not
matched by a column in the table definition.

• USING CLOB subquery lets you derive the parameters and their values through a subquery.
The subquery cannot contain any set operators or an ORDER BY clause. It must return one
row containing a single item of data type CLOB.

Whether you specify the parameters in an opaque_format_spec or derive them using a
subquery, the database does not interpret anything in this clause. It is up to the access driver
to interpret this information in the context of the external data.

For inline external tables and external modify query statements you must use
opaque_format_spec within single quotes. For DDL statements you must use
opaque_format_spec without single quotes.

LOCATION

The LOCATION clause lets you specify one or more external data sources. Usually the
location_specifier is a file, but it need not be. Oracle Database does not interpret this
clause. It is up to the access driver to interpret this information in the context of the external
data.

You must specify the LOCATION clause as follows:

• When creating a nonpartitioned external table, you must specify the LOCATION clause at
the table level in the external_table_data_props clause.

• When creating a partitioned external table, you must specify the LOCATION clause at the
partition level in the external_part_subpart_data_props clause.

• When creating a composite-partitioned external table, you must specify the LOCATION
clause at the subpartition level in the external_part_subpart_data_props clause.

REJECT LIMIT

The REJECT LIMIT clause lets you specify how many conversion errors can occur during a
query of the external data before an Oracle Database error is returned and the query is
aborted. The default value is 0.

CLUSTER Clause

The CLUSTER clause indicates that the table is to be part of cluster. The columns listed in this
clause are the table columns that correspond to the cluster columns. Generally, the cluster

Chapter 15
CREATE TABLE

15-91

columns of a table are the column or columns that make up its primary key or a portion
of its primary key. Refer to CREATE CLUSTER for more information.

Specify one column from the table for each column in the cluster key. The columns are
matched by position, not by name.

A cluster table uses the space allocation of the cluster. Therefore, do not use the
PCTFREE, PCTUSED, or INITRANS parameters, the TABLESPACE clause, or the
storage_clause with the CLUSTER clause.

Restrictions on Cluster Tables

Cluster tables are subject to the following restrictions:

• Object tables and tables containing LOB columns or columns of the Any* Oracle-
supplied types cannot be part of a cluster.

• You cannot specify the parallel_clause or CACHE or NOCACHE for a table that is
part of a cluster.

• You cannot specify CLUSTER with either ROWDEPENDENCIES or NOROWDEPENDENCIES
unless the cluster has been created with the same ROWDEPENDENCIES or
NOROWDEPENDENCIES setting.

• A cluster table cannot contain INVISIBLE columns.

table_properties

The table_properties further define the characteristics of the table.

column_properties

Use the column_properties clauses to specify the storage attributes of a column.

object_type_col_properties

The object_type_col_properties determine storage characteristics of an object
column or attribute or of an element of a collection column or attribute.

column

For column, specify an object column or attribute.

substitutable_column_clause

The substitutable_column_clause indicates whether object columns or attributes in
the same hierarchy are substitutable for each other. You can specify that a column is
of a particular type, or whether it can contain instances of its subtypes, or both.

• If you specify ELEMENT, then you constrain the element type of a collection column
or attribute to a subtype of its declared type.

• The IS OF [TYPE] (ONLY type) clause constrains the type of the object column to a
subtype of its declared type.

• NOT SUBSTITUTABLE AT ALL LEVELS indicates that the object column cannot hold
instances corresponding to any of its subtypes. Also, substitution is disabled for
any embedded object attributes and elements of embedded nested tables and
varrays. The default is SUBSTITUTABLE AT ALL LEVELS.

Restrictions on the substitutable_column_clause

Chapter 15
CREATE TABLE

15-92

This clause is subject to the following restrictions:

• You cannot specify this clause for an attribute of an object column. However, you can
specify this clause for a object type column of a relational table and for an object column
of an object table if the substitutability of the object table itself has not been set.

• For a collection type column, the only part of this clause you can specify is [NOT]
SUBSTITUTABLE AT ALL LEVELS.

LOB_storage_clause

The LOB_storage_clause lets you specify the storage attributes of LOB data segments. You
must specify at least one clause after the STORE AS keywords. If you specify more than one
clause, then you must specify them in the order shown in the syntax diagram, from top to
bottom.

For a nonpartitioned table, this clause specifies the storage attributes of LOB data segments
of the table.

For a partitioned table, Oracle Database implements this clause depending on where it is
specified:

• For a partitioned table specified at the table level—when specified in the
physical_properties clause along with one of the partitioning clauses—this clause
specifies the default storage attributes for LOB data segments associated with each
partition or subpartition. These storage attributes apply to all partitions or subpartitions
unless overridden by a LOB_storage_clause at the partition or subpartition level.

• For an individual partition of a partitioned table—when specified as part of a
table_partition_description—this clause specifies the storage attributes of the data
segments of the partition or the default storage attributes of any subpartitions of the
partition. A partition-level LOB_storage_clause overrides a table-level
LOB_storage_clause.

• For an individual subpartition of a partitioned table—when specified as part of
subpartition_by_hash or subpartition_by_list—this clause specifies the storage
attributes of the data segments of the subpartition. A subpartition-level
LOB_storage_clause overrides both partition-level and table-level LOB_storage_clauses.

Restriction on the LOB_storage_clause:

Only the TABLESPACE clause is allowed when specifying the LOB_storage_clause in a
subpartition.

See Also:

• Oracle Database SecureFiles and Large Objects Developer's Guide for detailed
information about LOBs, including guidelines for creating gigabyte LOBs

• "Creating a Table: LOB Column Example"

LOB_item

Specify the LOB column name or LOB object attribute for which you are explicitly defining
tablespace and storage characteristics that are different from those of the table. Oracle
Database automatically creates a system-managed index for each LOB_item you create.

Chapter 15
CREATE TABLE

15-93

SECUREFILE | BASICFILE

Use this clause to specify the type of LOB storage, either high-performance LOB
(SecureFiles), or the traditional LOB (BasicFiles).

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about SecureFiles LOBs

Note:

You cannot convert a LOB from one type of storage to the other. Instead you
must migrate to SecureFiles or BasicFiles by using online redefinition or
partition exchange.

LOB_segname

Specify the name of the LOB data segment. You cannot use LOB_segname if you
specify more than one LOB_item.

LOB_storage_parameters

The LOB_storage_parameters clause lets you specify various elements of LOB
storage.

TABLESPACE Clause

Use this clause to specify the tablespace in which LOB data is to be stored.

TABLESPACE SET Clause

This clause is valid only when creating a sharded table by specifying the SHARDED
keyword of CREATE TABLE. Use this clause to specify the tablespace set in which LOB
data is to be stored.

storage_clause

Use the storage_clause to specify various aspects of LOB segment storage. Of
particular interest in the context of LOB storage is the MAXSIZE clause of the
storage_clause, which can be used in combination with the LOB_retention_clause of
LOB_parameters. Refer to storage_clause for more information.

LOB_parameters

Several of the LOB_parameters are no longer needed if you are using SecureFiles for
LOB storage. The PCTVERSION and FREEPOOLS parameters are valid and useful only if
you are using BasicFiles LOB storage.

ENABLE STORAGE IN ROW

Chapter 15
CREATE TABLE

15-94

If you enable storage in row, then the LOB value is stored in the row (inline) if its length is
less than approximately 4000 bytes minus system control information. This is the default.

Restriction on Enabling Storage in Row

For an index-organized table, you cannot specify this parameter unless you have specified an
OVERFLOW segment in the index_org_table_clause.

DISABLE STORAGE IN ROW

If you disable storage in row, then the LOB value is stored outside of the row out of line
regardless of the length of the LOB value.

The LOB locator is always stored inline regardless of where the LOB value is stored. You
cannot change the value of STORAGE IN ROW once it is set except by moving the table. See the
move_table_clause in the ALTER TABLE documentation for more information.

CHUNK integer

Specify the number of bytes to be allocated for LOB manipulation. If integer is not a multiple
of the database block size, then the database rounds up in bytes to the next multiple. For
example, if the database block size is 2048 and integer is 2050, then the database allocates
4096 bytes (2 blocks). The maximum value is 32768 (32K), which is the largest Oracle
Database block size allowed. The default CHUNK size is one Oracle Database block.

The value of CHUNK must be less than or equal to the value of NEXT, either the default value or
that specified in the storage_clause. If CHUNK exceeds the value of NEXT, then the database
returns an error. You cannot change the value of CHUNK once it is set.

PCTVERSION integer

Specify the maximum percentage of overall LOB storage space used for maintaining old
versions of the LOB. If the database is running in manual undo mode, then the default value
is 10, meaning that older versions of the LOB data are not overwritten until they consume
10% of the overall LOB storage space.

You can specify the PCTVERSION parameter whether the database is running in manual or
automatic undo mode. PCTVERSION is the default in manual undo mode. RETENTION is the
default in automatic undo mode. You cannot specify both PCTVERSION and RETENTION.

This clause is not valid if you have specified SECUREFILE. If you specify both SECUREFILE and
PCTVERSION, then the database silently ignores the PCTVERSION parameter.

LOB_retention_clause

Use this clause to specify whether you want the LOB segment retained for flashback
purposes, consistent-read purposes, both, or neither.

You can specify the RETENTION parameter only if the database is running in automatic undo
mode. Oracle Database uses the value of the UNDO_RETENTION initialization parameter to
determine the amount of committed undo data to retain in the database. In automatic undo
mode, RETENTION is the default value unless you specify PCTVERSION. You cannot specify both
PCTVERSION and RETENTION.

You can specify the optional settings after RETENTION only if you are using SecureFiles. The
SECUREFILE parameter of the LOB_storage_clause indicates that the database will use
SecureFiles to manage storage dynamically, taking into account factors such as the undo
mode of the database.

Chapter 15
CREATE TABLE

15-95

• Specify MAX to signify that the undo should be retained until the LOB segment has
reached MAXSIZE. If you specify MAX, then you must also specify the MAXSIZE
clause in the storage_clause.

• Specify MIN if the database is in flashback mode to limit the undo retention
duration for the specific LOB segment to n seconds.

• Specify AUTO if you want to retain undo sufficient for consistent read purposes only.

• Specify NONE if no undo is required for either consistent read or flashback
purposes.

If you do not specify the RETENTION parameter, or you specify RETENTION with no
optional settings, then RETENTION is set to DEFAULT, which is functionally equivalent to
AUTO.

See Also:

• To set the UNDO_RETENTION initialization parameter, see Setting the
Minimum Undo Retention Period

• CREATE TABLE clause LOB_storage_parameters for more information on
simplified LOB storage using SecureFiles

• Oracle Database SecureFiles and Large Objects Developer's Guide for
more information on using SecureFiles

• flashback_mode_clause of ALTER DATABASE for information on putting a
database in flashback mode

• "Creating an Undo Tablespace: Example"

FREEPOOLS integer

Specify the number of groups of free lists for the LOB segment. Normally integer will
be the number of instances in an Oracle Real Application Clusters environment or 1
for a single-instance database.

You can specify this parameter only if the database is running in automatic undo
mode. In this mode, FREEPOOLS is the default unless you specify the FREELIST GROUPS
parameter of the storage_clause. If you specify neither FREEPOOLS nor FREELIST
GROUPS, then the database uses a default of FREEPOOLS 1 if the database is in
automatic undo management mode and a default of FREELIST GROUPS 1 if the database
is in manual undo management mode.

This clause is not valid if you have specified SECUREFILE. If you specify both
SECUREFILE and FREEPOOLS, then the database silently ignores the FREEPOOLS
parameter.

Restriction on FREEPOOLS

You cannot specify both FREEPOOLS and the FREELIST GROUPS parameter of the
storage_clause.

LOB_deduplicate_clause

Chapter 15
CREATE TABLE

15-96

This clause is valid only for SecureFiles LOBs. Use the LOB_deduplicate_clause to enable
or disable LOB deduplication, which is the elimination of duplicate LOB data.

The DEDUPLICATE keyword instructs the database to eliminate duplicate copies of LOBs.
Using a secure hash index to detect duplication, the database coalesces LOBs with identical
content into a single copy, reducing storage consumption and simplifying storage
management.

If you omit this clause, then LOB deduplication is disabled by default.

This clause implements LOB deduplication for the entire LOB segment. To enable or disable
deduplication for an individual LOB, use the DBMS_LOB.SETOPTIONS procedure.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about LOB deduplication and Oracle Database PL/SQL Packages and
Types Reference for information about about the DBMS_LOB package

LOB_compression_clause

This clause is valid only for SecureFiles LOBs, not for BasicFiles LOBs. Use the
LOB_compression_clause to instruct the database to enable or disable server-side LOB
compression. Random read/write access is possible on server-side compressed LOB
segments. LOB compression is independent from table compression or index compression. If
you omit this clause, then the default is NOCOMPRESS.

You can specify HIGH, MEDIUM, or LOW to vary the degree of compression. The HIGH degree of
compression incurs higher latency than MEDIUM but provides better compression. The LOW
degree results in significantly higher decompression and compression speeds, at the cost of
slightly lower compression ratio than either HIGH or MEDIUM. If you omit this optional
parameter, then the default is MEDIUM.

This clause implements server-side LOB compression for the entire LOB segment. To enable
or disable compression on an individual LOB, use the DBMS_LOB.SETOPTIONS procedure.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information on server-side LOB storage and Oracle Database PL/SQL Packages
and Types Reference for information about client-side LOB compression using the
UTL_COMPRESS supplied package and for information about the DBMS_LOB package

ENCRYPT | DECRYPT

These clauses are valid only for LOBs that are using SecureFiles for LOB storage. Specify
ENCRYPT to encrypt all LOBs in the column. Specify DECRYPT to keep the LOB in cleartext. If
you omit this clause, then DECRYPT is the default.

Refer to encryption_spec for general information on that clause. When applied to a LOB
column, encryption_spec is specific to the individual LOB column, so the encryption

Chapter 15
CREATE TABLE

15-97

algorithm can differ from that of other LOB columns and other non-LOB columns. Use
the encryption_spec as part of the column_definition to encrypt the entire LOB
column. Use the encryption_spec as part of the LOB_storage_clause in the
table_partition_description to encrypt a LOB partition.

Restriction on encryption_spec for LOBs

You cannot specify the SALT or NO SALT clauses of encryption_spec for LOB
encryption.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information on LOB encryption and Oracle Database PL/SQL Packages and
Types Reference for information the DBMS_LOB package

CACHE | NOCACHE | CACHE READS

Refer to CACHE | NOCACHE | CACHE READS for information on these clauses.

LOB_partition_storage

The LOB_partition_storage clause lets you specify a separate LOB_storage_clause
or varray_col_properties clause for each partition. You must specify the partitions in
the order of partition position. You can find the order of the partitions by querying the
PARTITION_NAME and PARTITION_POSITION columns of the USER_IND_PARTITIONS view.

If you do not specify a LOB_storage_clause or varray_col_properties clause for a
particular partition, then the storage characteristics are those specified for the LOB
item at the table level. If you also did not specify any storage characteristics for the
LOB item at the table level, then Oracle Database stores the LOB data partition in the
same tablespace as the table partition to which it corresponds.

Restrictions on LOB_partition_storage

LOB_partition_storage is subject to the following restrictions:

• In the LOB_parameters of the LOB_storage_clause, you cannot specify
encryption_spec, because it is invalid to specify an encryption algorithm for
partitions and subpartitions.

• You can only specify the TABLESPACE clause for hash partitions and all types of
subpartitions.

varray_col_properties

The varray_col_properties let you specify separate storage characteristics for the
LOB in which a varray will be stored. If varray_item is a multilevel collection, then the
database stores all collection items nested within varray_item in the same LOB in
which varray_item is stored.

• For a nonpartitioned table—when specified in the physical_properties clause
without any of the partitioning clauses—this clause specifies the storage attributes
of the LOB data segments of the varray.

Chapter 15
CREATE TABLE

15-98

• For a partitioned table specified at the table level—when specified in the
physical_properties clause along with one of the partitioning clauses—this clause
specifies the default storage attributes for the varray LOB data segments associated with
each partition (or its subpartitions, if any).

• For an individual partition of a partitioned table—when specified as part of a
table_partition_description—this clause specifies the storage attributes of the varray
LOB data segments of that partition or the default storage attributes of the varray LOB
data segments of any subpartitions of this partition. A partition-level
varray_col_properties overrides a table-level varray_col_properties.

• For an individual subpartition of a partitioned table—when specified as part of
subpartition_by_hash or subpartition_by_list—this clause specifies the storage
attributes of the varray data segments of this subpartition. A subpartition-level
varray_col_properties overrides both partition-level and table-level
varray_col_properties.

STORE AS [SECUREFILE | BASICFILE] LOB Clause

If you specify STORE AS LOB, then:

• If the maximum varray size is less than approximately 4000 bytes, then the database
stores the varray as an inline LOB unless you have disabled storage in row.

• If the maximum varray size is greater than approximately 4000 bytes or if you have
disabled storage in row, then the database stores in the varray as an out-of-line LOB.

If you do not specify STORE AS LOB, then storage is based on the maximum possible size of
the varray rather than on the actual size of a varray column. The maximum size of the varray
is the number of elements times the element size, plus a small amount for system control
information. If you omit this clause, then:

• If the maximum size of the varray is less than approximately 4000 bytes, then the
database does not store the varray as a LOB, but as inline data.

• If the maximum size is greater than approximately 4000 bytes, then the database always
stores the varray as a LOB.

– If the actual size is less than approximately 4000 bytes, then it is stored as an inline
LOB

– If the actual size is greater than approximately 4000 bytes, then it is stored as an out-
of-line LOB, as is true for other LOB columns.

substitutable_column_clause

The substitutable_column_clause has the same behavior as described for
object_type_col_properties.

See Also:

"Substitutable Table and Column Examples"

Restriction on Varray Column Properties

You cannot specify this clause on an interval partitioned table.

Chapter 15
CREATE TABLE

15-99

nested_table_col_properties

The nested_table_col_properties let you specify separate storage characteristics
for a nested table, which in turn enables you to define the nested table as an index-
organized table. Unless you explicitly specify otherwise in this clause:

• For a nonpartitioned table, the storage table is created in the same schema and
the same tablespace as the parent table.

• For a partitioned table, the storage table is created in the default tablespace of the
schema. By default, nested tables are equipartitioned with the partitioned base
table.

• In either case, the storage table uses default storage characteristics, and stores
the nested table values of the column for which it was created.

You must include this clause when creating a table with columns or column attributes
whose type is a nested table. Clauses within nested_table_col_properties that
function the same way they function for the parent table are not repeated here.

nested_item

Specify the name of a column, or of a top-level attribute of the object type of the
tables, whose type is a nested table.

COLUMN_VALUE

If the nested table is a multilevel collection, then the inner nested table or varray may
not have a name. In this case, specify COLUMN_VALUE in place of the nested_item
name.

See Also:

"Creating a Table: Multilevel Collection Example" for examples using
nested_item and COLUMN_VALUE

LOCAL | GLOBAL

Specify LOCAL to equipartition the nested table with the base table. This is the default.
Oracle Database automatically creates a local partitioned index for the partitioned
nested table.

Specify GLOBAL to indicate that the nested table is a nonpartitioned nested table of a
partitioned base table.

storage_table

Specify the name of the table where the rows of nested_item reside.

You cannot query or perform DML statements on storage_table directly, but you can
modify its storage characteristics by specifying its name in an ALTER TABLE statement.

Chapter 15
CREATE TABLE

15-100

See Also:

ALTER TABLE for information about modifying nested table column storage
characteristics

RETURN [AS]

Specify what Oracle Database returns as the result of a query.

• VALUE returns a copy of the nested table itself.

• LOCATOR returns a collection locator to the copy of the nested table.

The locator is scoped to the session and cannot be used across sessions. Unlike a LOB
locator, the collection locator cannot be used to modify the collection instance.

If you do not specify the segment_attributes_clause or the LOB_storage_clause, then the
nested table is heap organized and is created with default storage characteristics.

Restrictions on Nested Table Column Properties

Nested table column properties are subject to the following restrictions:

• You cannot specify this clause for a temporary table.

• You cannot specify this clause on an interval partitioned table.

• You cannot specify the oid_clause.

• At create time, you cannot use object_properties to specify an
out_of_line_ref_constraint, inline_ref_constraint, or foreign key constraint for the
attributes of a nested table.

See Also:

• ALTER TABLE for information about modifying nested table column storage
characteristics

• "Nested Table Example" and "Creating a Table: Multilevel Collection Example"

XMLType_column_properties

The XMLType_column_properties let you specify storage attributes for an XMLTYPE column.

XMLType_storage

XMLType data can be stored in binary XML, CLOB, or object-relational columns.

• Specify BINARY XML to store the XML data in compact binary XML format.

Any LOB parameters you specify are applied to the underlying BLOB column created for
storing the binary XML encoded value.

In earlier releases, binary XML data is stored by default in a BasicFiles LOB. Beginning
with Oracle Database 11g Release 2 (11.2.0.2), if the COMPATIBLE initialization parameter
is 11.2 or higher and you do not specify BASICFILE or SECUREFILE, then binary XML data

Chapter 15
CREATE TABLE

15-101

is stored in a SecureFiles LOB whenever possible. If SecureFiles LOB storage is
not possible then the binary XML data is stored in a BasicFiles LOB. This can
occur if either of the following is true:

– The tablespace for the XMLType table does not use automatic segment space
management.

– A setting in file init.ora prevents SecureFiles LOB storage. For example, see
parameter DB_SECUREFILE in Oracle Database Reference.

• Specify CLOB if you want the database to store the XMLType data in a CLOB column.
Storing data in a CLOB column preserves the original content and enhances
retrieval time.

If you specify LOB storage, then you can specify either LOB parameters or the
XMLSchema_spec clause, but not both. Specify the XMLSchema_spec clause if you
want to restrict the table or column to particular schema-based XML instances.

If you do not specify BASICFILE or SECUREFILE with this clause, then the CLOB
column is stored in a BasicFiles LOB.

Note:

Oracle recommends against storing XMLType data in a CLOB column. CLOB
storage of XMLType is deprecated. Use binary XML storage of XMLType
instead.

• Specify OBJECT RELATIONAL if you want the database to store the XMLType data in
object-relational columns. Storing data objects relationally lets you define indexes
on the relational columns and enhances query performance.

If you specify object-relational storage, then you must also specify the
XMLSchema_spec clause.

Use the ALL VARRAYS AS clause if you want the database to store all varrays in an
XMLType column.

In earlier releases, XMLType data is stored in a CLOB column in a BasicFiles LOB by
default. Beginning with Oracle Database 11g Release 2 (11.2.0.2), if the COMPATIBLE
initialization parameter is 11.2 or higher and you do not specify the XMLType_storage
clause, then XMLType data is stored in a binary XML column in a SecureFiles LOB. If
SecureFiles LOB storage is not possible, then it is stored in a binary XML column in a
BasicFiles LOB.

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information on SecureFiles LOBs

XMLSchema_spec

Refer to the XMLSchema_spec for the full semantics of this clause.

Chapter 15
CREATE TABLE

15-102

See Also:

• LOB_storage_clause for information on the LOB_segname and LOB_parameters
clauses

• "XMLType Column Examples" for examples of XMLType columns in object-
relational tables and "Using XML in SQL Statements " for an example of
creating an XMLSchema

• Oracle XML DB Developer's Guide for more information on XMLType columns
and tables and on creating XMLSchemas

• Oracle Database PL/SQL Packages and Types Reference for information on
the DBMS_XMLSCHEMA package

XMLType_virtual_columns

This clause is valid only for XMLType tables with binary XML storage, which you designate in
the XMLType_storage clause. Specify the VIRTUAL COLUMNS clause to define virtual columns,
which can be used as in a function-based index or in the definition of a constraint. You cannot
define a constraint on such a virtual column during creation of the table, but you can use a
subsequent ALTER TABLE statement to add a constraint to the column.

See Also:

Oracle XML DB Developer's Guide for examples of how to use this clause in an
XML environment

json_storage_clause

With support for JSON data type you can define a column of JSON data type using the
JSON_storage_clause.

Creating a Table with a JSON Type Column: Example

This example creates table j_purchaseorder with JSON data type column po_document.
Oracle recommends that you store JSON data as JSON type.

CREATE TABLE j_purchaseorder
 (id VARCHAR2 (32) NOT NULL PRIMARY KEY,
 date_loaded TIMESTAMP (6) WITH TIME ZONE,
 po_document JSON);

See Also:

Creating a Table with a JSON Column

Chapter 15
CREATE TABLE

15-103

read_only_clause

This clause lets you specify whether to create a table, partition, or subpartition in read-
only or read/write mode.

• Use READ ONLY to specify read-only mode. When an object is in read-only mode,
you cannot issue any DML statements that affect the object or any SELECT ... FOR
UPDATE ... statements on the object. You can issue DDL statements as long as they
do not modify any table data. See Oracle Database Administrator’s Guide for the
complete list of operations that are allowed and disallowed on read-only objects.

• Use READ WRITE to specify read/write mode. This is the default.

When you specify this clause for a partitioned table, you specify the default read-only
or read/write mode for the table. This mode is assigned to all partitions in the table at
creation time, as well as any partitions that are subsequently added to the table,
unless you override this behavior by specifying the mode at the partition level.

When you specify this clause for a composite-partitioned table, you specify the default
read-only or read/write mode for all partitions in the table. You can override this
behavior by specifying this clause for a particular partition. The default mode of a
partition is assigned to all subpartitions in the partition at creation time, as well as any
subpartitions that are subsequently added to the partition, unless you override this
behavior by specifying the mode at the subpartition level.

indexing_clause

The indexing_clause is valid only for partitioned tables. Use this clause to set the
indexing property for a table, table partition, or table subpartition.

• Specify INDEXING ON to set the indexing property to ON. This is the default.

• Specify INDEXING OFF to set the indexing property to OFF.

The indexing property determines whether table partitions and subpartitions are
included in partial indexes on the table.

• For simple partitioned tables, partitions with an indexing property of ON are
included in partial indexes on the table. Partitions with an indexing property of OFF
are excluded.

• For composite-partitioned tables, subpartitions with an indexing property of ON are
included in partial indexes on the table. Subpartitions with an indexing property of
OFF are excluded.

You can specify the indexing_clause at the table, partition, or subpartition level. When
you specify the indexing_clause at the table level, in the table_properties clause,
you set the default indexing property for the table. Interval partitions, which are
automatically created by the database, always inherit the default indexing property for
the table. Other types of partitions and subpartitions inherit the default indexing
property as follows:

• For simple partitioned tables, partitions inherit the default indexing property for the
table. You can override this behavior by specifying the indexing_clause for an
individual partition:

– For a range partition, in the table_partition_description of the
range_partitions clause

Chapter 15
CREATE TABLE

15-104

– For a hash partition, in the individual_hash_partitions clause of the
hash_partitions clause

– For a list partition, in the table_partition_description of the list_partitions
clause

– For a reference partition, in the table_partition_description of the
reference_partition_desc clause of the reference_partitioning clause

– For a system partition, in the table_partition_description of the
reference_partition_desc clause of the system_partitioning clause

• For composite-partitioned tables, subpartitions inherit the default indexing property for the
table. You can override this behavior by specifying the indexing_clause for an individual
partition or subpartition.

If you specify the indexing_clause for a partition, then its subpartitions inherit the
indexing property of the partition:

– For composite range partitions, in the table_partition_description of the
composite_range_partitions clause

– For composite list partitions, in the table_partition_description of the
composite_list_partitions clause

– For composite hash partitions, in the individual_hash_partitions clause of the
composite_hash_partitions clause

You can set the indexing property of a subpartition by specifying the indexing_clause for
the subpartition:

– For range subpartitions, in the range_subpartition_desc clause of the
composite_range_partitions clause

– For list subpartitions, in the list_subpartition_desc clause of the
composite_list_partitions clause

– For hash subpartitions, in the individual_hash_subparts clause of the
composite_hash_partitions clause

See Also:

Oracle Database Reference for information on viewing the indexing property of a
table, table partition, or table subpartition.

• To view the default indexing property of a table, query the DEF_INDEXING column
of the *_PART_TABLES views.

• To view the indexing property of a table partition, query the INDEXING column of
the *_TAB_PARTITIONS views.

• To view the indexing property of a table subpartition, query the INDEXING
column of the *_TAB_SUBPARTITIONS views.

Restrictions on the indexing_clause

The indexing_clause is subject to the following restrictions:

• You cannot specify the indexing_clause for nonpartitioned tables.

Chapter 15
CREATE TABLE

15-105

• You cannot specify the indexing_clause for index-organized tables.

See Also:

The partial_index_clause of CREATE INDEX for more information on partial
indexes

table_partitioning_clauses

Use the table_partitioning_clauses to create a partitioned table.

Notes on Partitioning in General

The following notes pertain to all types of partitioning:

• You can specify up to a total of 1024K-1 partitions and subpartitions.

• You can create a partitioned table with just one partition. A table with one partition
is different from a nonpartitioned table. For example, you cannot add a partition to
a nonpartitioned table.

• You can specify a name for every table and LOB partition and for every table and
LOB subpartition, but you need not do so. If you specify a name, then it must
conform to the rules for naming schema objects and their parts as described in
Database Object Naming Rules . If you omit the name, then the database
generates names as follows:

– If you omit a partition name, then the database generates a name of the form
SYS_Pn. System-generated names for LOB data and LOB index partitions take
the form SYS_LOB_Pn and SYS_IL_Pn, respectively.

– If you specify a subpartition name in subpartition_template, then for each
subpartition created with that template, the database generates a name by
concatenating the partition name with the template subpartition name. For
LOB subpartitions, the generated LOB subpartition name is a concatenation of
the partition name and the template LOB segment name. If the COMPATIBLE
initialization parameter is set to 12.2 or higher, then the maximum length of the
concatenation is 128 bytes; otherwise, the maximum length is 30 bytes. If the
concatenation exceeds the maximum length, then the database returns an
error and the statement fails.

– If you omit a subpartition name when specifying an individual subpartition, and
you have not specified subpartition_template, then the database generates
a name of the form SYS_SUBPn. The corresponding system-generated names
for LOB data and index subpartitions are SYS_LOB_SUBPn and SYS_IL_SUBPn,
respectively.

• Tablespace storage can be specified at various levels in the CREATE TABLE
statement for both table segments and LOB segments. The number of
tablespaces does not have to equal the number of partitions or subpartitions. If the
number of partitions or subpartitions is greater than the number of tablespaces,
then the database cycles through the names of the tablespaces.

The database evaluates tablespace storage in the following order of descending
priority:

Chapter 15
CREATE TABLE

15-106

– Tablespace storage specified at the individual table subpartition or LOB subpartition
level has the highest priority, followed by storage specified for the partition or LOB in
the subpartition_template.

– Tablespace storage specified at the individual table partition or LOB partition level.
Storage parameters specified here take precedence over the
subpartition_template.

– Tablespace storage specified for the table

– Default tablespace storage specified for the user

• By default, nested tables are equipartitioned with the partitioned base table.

Restrictions on Partitioning in General

All partitioning is subject to the following restrictions:

• You cannot partition a table that is part of a cluster.

• You cannot partition a nested table or varray that is defined as an index-organized table.

• You cannot partition a table containing any LONG or LONG RAW columns.

Restrictions on Hybrid Partitioned Tables

Hybrid partitioned tables are subject to the following restrictions:

• Restrictions that apply to external tables also apply to hybrid partitioned tables unless
explicitly noted.

• No support for REFERENCE and SYSTEM partitioning methods.

• Only single level LIST and RANGE partitioning are supported.

• No unique indexes or global unique indexes. Only partial indexes are allowed and unique
indexes cannot be partial.

• Only single level list partitioning is supported for HIVE.

• Attribute clustering (CLUSTERING clause) is not allowed.

• DML operations only on internal partitions of a hybrid partitioned table (external partitions
are treated as read-only partitions).

• In-memory defined on the table level only has an effect on internal partitions of the hybrid
partitioned table.

• No column default value is allowed.

• Invisible columns are not allowed.

• The CELLMEMORY clause is not allowed.

• SPLIT, MERGE, and MOVE maintenance operations are not allowed on external partitions.

The storage of partitioned database entities in tablespaces of different block sizes is subject
to several restrictions. Refer to Oracle Database VLDB and Partitioning Guide for a
discussion of these restrictions.

See Also:

"Partitioning Examples"

Chapter 15
CREATE TABLE

15-107

range_partitions

Use the range_partitions clause to partition the table on ranges of values from the
column list. For an index-organized table, the column list must be a subset of the
primary key columns of the table.

Restrictions on Range Partitioning

Range partitioning is subject to the restrictions listed in "Restrictions on Partitioning in
General". The following additional restrictions apply:

• You cannot specify more than 16 partitioning key columns.

• Partitioning key columns must be of type CHAR, NCHAR, VARCHAR2, NVARCHAR2,
VARCHAR, NUMBER, FLOAT, DATE, TIMESTAMP, TIMESTAMP WITH LOCAL TIMEZONE, or RAW.

• Each range partitioning key column with a character data type that belongs to an
XMLType table or a table with an XMLType column, or that is used as a sharding key
column must have one of the following declared collations: BINARY,
USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS. For all these collations,
partition bounds are checked using the collation BINARY.

• You cannot specify NULL in the VALUES clause.

column

Specify an ordered list of columns used to determine into which partition a row
belongs. These columns are the partitioning key. You can specify virtual columns and
INVISIBLE columns as partitioning key columns.

INTERVAL Clause

Use this clause to establish interval partitioning for the table. Interval partitions are
partitions based on a numeric range or datetime interval. They extend range
partitioning by instructing the database to create partitions of the specified range or
interval automatically when data inserted into the table exceeds all of the range
partitions. For each automatically created partition, the database generates a name of
the form SYS_Pn. The database guarantees that automatically generated partition
names are unique and do not violate namespace rules.

• For expr, specify a valid number or interval expression.

• The optional STORE IN clause lets you specify one or more tablespaces into which
the database will store interval partition data.

• You must also specify at least one range partition using the PARTITION clause of
range_partitions. The range partition key value determines the high value of the
range partitions, which is called the transition point, and the database creates
interval partitions for data beyond that transition point.

Restrictions on Interval Partitioning

The INTERVAL clause is subject to the restrictions listed in "Restrictions on Partitioning
in General" and "Restrictions on Range Partitioning". The following additional
restrictions apply:

• You can specify only one partitioning key column, and it must be of type NUMBER,
DATE, FLOAT, or TIMESTAMP.

• This clause is not supported for index-organized tables.

Chapter 15
CREATE TABLE

15-108

• This clause is not supported for tables containing varray columns.

• You cannot create an interval-partitioned table with equipartitioned nested tables. If you
create an interval-partitioned table using nested tables or XML object-relational data
types, then the nested tables will be created as nonpartitioned tables.

• This clause is supported for tables containing XMLType columns only if the XML data is
stored as binary XML.

• Interval partitioning is not supported at the subpartition level.

• Serializable transactions do not work with interval partitioning. Trying to insert data into a
partition of an interval partitioned table that does not yet have a segment causes an error.

• In the VALUES clause:

– You cannot specify MAXVALUE (an infinite upper bound), because doing so would
defeat the purpose of the automatic addition of partitions as needed.

– You cannot specify NULL values for the partitioning key column.

See Also:

Oracle Database VLDB and Partitioning Guide for more information on interval
partitioning

PARTITION partition

If you specify a partition name, then the name partition must conform to the rules for
naming schema objects and their part as described in "Database Object Naming Rules ". If
you omit partition, then the database generates a name as described in "Notes on
Partitioning in General".

range_values_clause

Specify the noninclusive upper bound for the current partition. The value list is an ordered list
of literal values corresponding to the column list in the range_partitions clause. You can
substitute the keyword MAXVALUE for any literal in the value list. MAXVALUE specifies a
maximum value that will always sort higher than any other value, including null.

Specifying a value other than MAXVALUE for the highest partition bound imposes an implicit
integrity constraint on the table.

Note:

If table is partitioned on a DATE column, and if the date format does not specify the
first two digits of the year, then you must use the TO_DATE function with the YYYY 4-
character format mask for the year. The RRRR format mask is not supported in this
clause. The date format is determined implicitly by NLS_TERRITORY or explicitly by
NLS_DATE_FORMAT. Refer to Oracle Database Globalization Support Guide for more
information on these initialization parameters.

Chapter 15
CREATE TABLE

15-109

See Also:

Oracle Database Concepts for more information about partition bounds and
"Range Partitioning Example"

table_partition_description

Use the table_partition_description to define the physical and storage
characteristics of the table.

The clauses deferred_segment_creation, segment_attributes_clause,
table_compression, inmemory_clause, and ilm_clause have the same function as
described for the physical_properties of the table as a whole.

Use the indexing_clause to set the indexing property for a range, list, system, or
reference table partition. Refer to the indexing_clause for more information.

The prefix_compression clause and OVERFLOW clause, have the same function as
described for the index_org_table_clause.

LOB_storage_clause

The LOB_storage_clause lets you specify LOB storage characteristics for one or more
LOB items in this partition or in any range or list subpartitions of this partition. If you do
not specify the LOB_storage_clause for a LOB item, then the database generates a
name for each LOB data partition as described in "Notes on Partitioning in General".

varray_col_properties

The varray_col_properties let you specify storage characteristics for one or more
varray items in this partition or in any range or list subpartitions of this partition.

nested_table_col_properties

The nested_table_col_properties let you specify storage characteristics for one or
more nested table storage table items in this partition or in any range or list
subpartitions of this partition. Storage characteristics specified in this clause override
any storage attributes specified at the table level.

partitioning_storage_clause

Use the partitioning_storage_clause to specify storage characteristics for hash
partitions and for range, hash, and list subpartitions.

Restrictions on partitioning_storage_clause

This clause is subject to the following restrictions:

• The TABLESPACE SET clause is valid only when creating a sharded table by
specifying the SHARDED keyword of CREATE TABLE. Use this clause to specify the
tablespace set in which table partition data is to be stored.

• The OVERFLOW clause is relevant only for index-organized partitioned tables and is
valid only within the individual_hash_partitions clause. It is not valid for range
or hash partitions or for subpartitions of any type.

Chapter 15
CREATE TABLE

15-110

• You cannot specify the advanced_index_compression clause of the index_compression
clause.

• You can specify the prefix_compression clause of the indexing_clause only for
partitions of index-organized tables and you can specify COMPRESS or NOCOMPRESS, but you
cannot specify the prefix length with integer.

list_partitions

Use the list_partitions clause to partition the table on a list of literal values for each
column in the column list. List partitioning is useful for controlling how individual rows map to
specific partitions.

Restrictions on List Partitioning

List partitioning is subject to the restrictions listed in "Restrictions on Partitioning in General".
The following additional restrictions apply:

• You cannot specify more than 16 partitioning key columns.

• You cannot specify more than one partitioning key column when partitioning an index-
organized table.

• The partitioning key columns must be of type CHAR, NCHAR, VARCHAR2, NVARCHAR2,
VARCHAR, NUMBER, FLOAT, DATE, TIMESTAMP, TIMESTAMP WITH LOCAL TIMEZONE, or RAW.

• Each list partitioning key column with a character data type that belongs to an XMLType
table or a table with an XMLType column, or that is used as a sharding key column must
have one of the BINARY following declared collations: BINARY , USING_NLS_COMP,
USING_NLS_SORT, or USING_NLS_SORT_CS . For all these collations, partitions are matched
using the collation BINARY.

AUTOMATIC

Specify AUTOMATIC to create an automatic list-partitioned table. This type of table enables the
database to create additional partitions on demand.

When you create an automatic list-partitioned table, you specify partitions and partitioning key
values just as you would when creating a regular list-partitioned table. However, you do not
specify a DEFAULT partition. As data is loaded into the table, the database automatically
creates a new partition when the loaded partitioning key values do not correspond to any of
the existing partitions. If list partitioning is defined with a single partitioning key value, then the
database creates a new partition for each new partitioning key value. If list partitioning is
defined with multiple partitioning key columns, then the database creates a new partition for
each new and unique set of partitioning key values. For each automatically created partition,
the database generates a name of the form SYS_Pn. The database guarantees that
automatically generated partition names are unique and do not violate namespace rules.

You can specify the AUTOMATIC keyword for list-partitioned tables, and list-range, list-list, list-
hash, and list-interval composite-partitioned tables. For composite-partitioned tables, each
automatically created list partition will have one subpartition, unless a subpartition template is
defined for the table.

If a local partitioned index is defined on an automatic list-partitioned table, then local index
partitions will be created when the corresponding table partitions are created.

Restrictions on Automatic List Partitioning

Chapter 15
CREATE TABLE

15-111

Automatic list partitioning is subject to the restrictions listed in "Restrictions on List
Partitioning". The following additional restrictions apply:

• An automatic list-partitioned table must have at least one partition when created.
Because new partitions are automatically created for new, and unknown,
partitioning key values, an automatic list-partitioned table cannot have a DEFAULT
partition.

• Automatic list partitioning is not supported for index-organized tables or external
tables.

• Automatic list partitioning is not supported for tables containing varray columns.

• You cannot create a local domain index on an automatic list-partitioned table. You
can create a global domain index on an automatic list-partitioned table.

• An automatic list-partitioned table cannot be a child table or a parent table for
reference partitioning.

• Automatic list partitioning is not supported at the subpartition level.

STORE IN

The optional STORE IN clause lets you specify one or more tablespaces into which the
database will store data for the automatically created list partitions.

Note:

You can change an automatic list-partitioned table to a regular list-partitioned
table, and vice versa. You can also change the tablespaces into which the
database will store data for automatically created list partitions. See the
clause alter_automatic_partitioning of ALTER TABLE for more information.

list_values_clause

The list_values_clause of each partition must have at least one value. If the table is
partitioned on one key column, then use the upper branch of the list_values syntax
to specify a list of values for that column. In this case, no value, including NULL, can
appear in more than one partition. If the table is partitioned on multiple key columns,
then use the lower branch of the list_values syntax to specify a list of value lists.
Each value list is enclosed in parentheses and represents a list of values for the key
columns. In this case, individual key column values can appear in more than one
partition; however, no complete value list can appear in more than one partition. List
partitions are not ordered.

If you specify the literal NULL for a partition value in the VALUES clause, then to access
data in that partition in subsequent queries, you must use an IS NULL condition in the
WHERE clause, rather than a comparison condition.

The DEFAULT keyword creates a partition into which the database will insert any row
that does not map to another partition. Therefore, you can specify DEFAULT for only one
partition, and you cannot specify any other values for that partition. Further, the default
partition must be the last partition you define. The use of DEFAULT is similar to the use
of MAXVALUE for range partitions.

Chapter 15
CREATE TABLE

15-112

The string comprising the list of values for each partition can be up to 4K bytes. The total
number of values for all partitions cannot exceed 64K-1.

The partitioning key column for a list partition can be an extended data type column, which
has a maximum size of 32767 bytes. In this case, the list of values that you want to specify
for a partition may exceed the 4K byte limit. You can work around this limitation by using one
of the following methods:

• Use the DEFAULT partition for values that exceed the 4K byte limit.

• Use a hash function, such as STANDARD_HASH, in the partition key column to create unique
identifiers of lengths less than 4K bytes. See STANDARD_HASH for more information.

Restriction on the list_values_clause

You cannot specify a DEFAULT partition for an automatic list-partitioned table.

See Also:

"Extended Data Types" for more information on extended data types

table_partition_description

The subclauses of the table_partition_description have the same behavior as described
for range partitions in table_partition_description.

hash_partitions

Use the hash_partitions clause to specify that the table is to be partitioned using the hash
method. Oracle Database assigns rows to partitions using a hash function on values found in
columns designated as the partitioning key. You can specify individual hash partitions, or you
can specify how many hash partitions the database should create.

Restrictions on Hash Partitioning

Hash partitioning is subject to the restrictions listed in "Restrictions on Partitioning in
General". The following additional restrictions apply:

• You cannot specify more than 16 partitioning key columns.

• Partitioning key columns must be of type CHAR, NCHAR, VARCHAR2, NVARCHAR2, VARCHAR,
NUMBER, FLOAT, DATE, TIMESTAMP, TIMESTAMP WITH LOCAL TIMEZONE, or RAW.

• Each hash partitioning key column with a character data type that belongs to an XMLType
table or a table with an XMLType column, or that is used as a sharding key column must
have one of the following declared collations: BINARY, USING_NLS_COMP, USING_NLS_SORT,
or USING_NLS_SORT_CS.

column

Specify an ordered list of columns used to determine into which partition a row belongs (the
partitioning key).

individual_hash_partitions

Use this clause to specify individual partitions by name.

Chapter 15
CREATE TABLE

15-113

Use the indexing_clause to set the indexing property for a hash partition. Refer to the
indexing_clause for more information.

Restriction on Specifying Individual Hash Partitions

The only clauses you can specify in the partitioning_storage_clause are the
TABLESPACE clause and table compression.

Note:

If your enterprise has or will have databases using different character sets,
then use caution when partitioning on character columns. The sort sequence
of characters is not identical in all character sets. Refer to Oracle Database
Globalization Support Guide for more information on character set support.

hash_partitions_by_quantity

An alternative to defining individual partitions is to specify the number of hash
partitions. In this case, the database assigns partition names of the form SYS_Pn. The
STORE IN clause lets you specify one or more tablespaces where the hash partition
data is to be stored. The number of tablespaces need not equal the number of
partitions. If the number of partitions is greater than the number of tablespaces, then
the database cycles through the names of the tablespaces.

For both methods of hash partitioning, for optimal load balancing you should specify a
number of partitions that is a power of 2. When you specify individual hash partitions,
you can specify both TABLESPACE and table compression in the
partitioning_storage_clause. When you specify hash partitions by quantity, you can
specify only TABLESPACE. Hash partitions inherit all other attributes from table-level
defaults.

The table_compression clause has the same function as described for the
table_properties of the table as a whole.

The prefix_compression clause and the OVERFLOW clause have the same function as
described for the index_org_table_clause.

Tablespace storage specified at the table level is overridden by tablespace storage
specified at the partition level, which in turn is overridden by tablespace storage
specified at the subpartition level.

In the individual_hash_partitions clause, the TABLESPACE clause of the
partitioning_storage_clause determines tablespace storage only for the individual
partition being created. In the hash_partitions_by_quantity clause, the STORE IN
clause determines placement of partitions as the table is being created and the default
storage location for subsequently added partitions.

Restriction on Specifying Hash Partitions by Quantity

You cannot specify the advanced_index_compression clause of the
index_compression clause.

Chapter 15
CREATE TABLE

15-114

See Also:

Oracle Database VLDB and Partitioning Guide for more information on hash
partitioning

composite_range_partitions

Use the composite_range_partitions clause to first partition table by range, and then
partition the partitions further into range, hash, or list subpartitions.

The INTERVAL clause has the same semantics for composite range partitioning that it has for
range partitioning. Refer to "INTERVAL Clause" for more information.

Specify subpartition_by_range, subpartition_by_hash or subpartition_by_list to indicate the
type of subpartitioning you want for each composite range partition. Within these clauses you
can specify a subpartition template, which establishes default subpartition characteristics for
subpartitions created as part of this statement or subsequently created subpartitions.

After establishing the type of subpartitioning you want for the table, and optionally a
subpartition template, you must define at least one range partition.

• You must specify the range_values_clause , which has the same requirements as for
noncomposite range partitions.

• Use the table_partition_description to define the physical and storage characteristics of
the each partition.

• In the range_partition_desc, use range_subpartition_desc,
list_subpartition_desc, individual_hash_subparts, or hash_subparts_by_quantity
to specify characteristics for the individual subpartitions of the partition. The values you
specify in these clauses supersede for these subpartitions any values you have specified
in the subpartition_template.

• The only characteristics you can specify for a hash or list subpartition or any LOB
subpartition are TABLESPACE and table_compression.

Restrictions on Composite Range Partitioning

Regardless of the type of subpartitioning, composite range partitioning is subject to the
following restrictions:

• The only physical attributes you can specify at the subpartition level are TABLESPACE and
table compression.

• You cannot specify composite partitioning for an index-organized table. Therefore, the
OVERFLOW clause of the table_partition_description is not valid for composite-
partitioned tables.

• You cannot specify composite partitioning for tables containing XMLType columns.

• Each range, list, or hash subpartitioning key column with a character data type that
belongs to an XMLType table or a table with an XMLType column must have one of the
following declared collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or
USING_NLS_SORT_CS.

Chapter 15
CREATE TABLE

15-115

See Also:

"Composite-Partitioned Table Examples" for examples of composite range
partitioning and Oracle Database VLDB and Partitioning Guide for examples
of composite list partitioning

composite_list_partitions

Use the composite_list_partitions clause to first partition table by list, and then
partition the partitions further into range, hash, or list subpartitions.

Specify subpartition_by_range, subpartition_by_hash or subpartition_by_list to indicate
the type of subpartitioning you want for each composite list partition. Within these
clauses you can specify a subpartition template, which establishes default subpartition
characteristics for subpartitions created as part of this statement and for subsequently
created subpartitions.

After establishing the type of subpartitioning you want for each composite partition,
and optionally defining a subpartition template, you must define at least one list
partition.

• In the list_partition_desc, you must specify the list_values_clause, which has
the same requirements as for noncomposite list partitions.

• Use the table_partition_description to define the physical and storage
characteristics of the each partition.

• In the list_partition_desc, use range_subpartition_desc,
list_subpartition_desc, individual_hash_subparts, or
hash_subparts_by_quantity to specify characteristics for the individual
subpartitions of the partition. The values you specify in these clauses supersede
the for these subpartitions any values you have specified in the
subpartition_template.

Specify AUTOMATIC to create an automatic list-range, list-list, list-hash, or list-interval
composite-partitioned table. This type of table enables the database to create
additional partitions on demand. The optional STORE IN clause lets you specify one or
more tablespaces into which the database will store data for the automatically created
partitions. The AUTOMATIC and STORE IN clauses have the same semantics here as
they have for noncomposite list partitions. Refer to AUTOMATIC and STORE IN in the
documentation on list_partitions for the full semantics of these clauses. Automatic
composite-partitioned tables are subject to the restrictions listed in Restrictions on
Composite List Partitioning and Restrictions on Automatic List Partitioning.

Restrictions on Composite List Partitioning

Composite list partitioning is subject to the same restrictions as described in
"Restrictions on Composite Range Partitioning".

composite_hash_partitions

Use the composite_hash_partitions clause to first partition table using the hash
method, and then partition the partitions further into range, hash, or list subpartitions.

Specify subpartition_by_range, subpartition_by_hash or subpartition_by_list to indicate
the type of subpartitioning you want for each composite range partition. Within these

Chapter 15
CREATE TABLE

15-116

clauses you can specify a subpartition template, which establishes default subpartition
characteristics for subpartitions created as part of this statement or subsequently created
subpartitions.

After establishing the type of subpartitioning you want for the table, you must specify
individual_hash_partitions or hash_partitions_by_quantity.

Restrictions on Composite Hash Partitioning

Composite hash partitioning is subject to the same restrictions as described in "Restrictions
on Composite Range Partitioning".

subpartition_template

The subpartition_template is an optional element of range, list, and hash subpartitioning.
The template lets you define default subpartitions for each table partition. Oracle Database
will create these default subpartition characteristics in any partition for which you do not
explicitly define subpartitions. This clause is useful for creating symmetric partitions. You can
override this clause by explicitly defining subpartitions at the partition level, in the
range_subpartition_desc, list_subpartition_desc, individual_hash_subparts, or
hash_subparts_by_quantity clause.

When defining subpartitions with a template, you can explicitly define range, list, or hash
subpartitions, or you can define a quantity of hash subpartitions.

• To explicitly define subpartitions, use range_subpartition_desc,
list_subpartition_desc, or individual_hash_subparts. You must specify a name for
each subpartition. If you specify the LOB_partitioning_clause of the
partitioning_storage_clause, then you must specify LOB_segname.

• To define a quantity of hash subpartitions, specify a positive integer for
hash_subpartition_quantity. The database creates that number of subpartitions in
each partition and assigns subpartition names of the form SYS_SUBPn.

Note:

When you specify tablespace storage for the subpartition template, it does not
override any tablespace storage you have specified explicitly for the partitions of
table. To specify tablespace storage for subpartitions, do one of these things:

• Omit tablespace storage at the partition level and specify tablespace storage in
the subpartition template.

• Define individual subpartitions with specific tablespace storage.

Restrictions on Subpartition Templates

Subpartition templates are subject to the following restrictions:

• If you specify TABLESPACE for one LOB subpartition, then you must specify TABLESPACE for
all of the LOB subpartitions of that LOB column. You can specify the same tablespace for
more than one LOB subpartition.

• If you specify separate LOB storage for list subpartitions using the
partitioning_storage_clause, either in the subpartition_template or when defining

Chapter 15
CREATE TABLE

15-117

individual subpartitions, then you must specify LOB_segname for both LOB and
varray columns.

subpartition_by_range

Use the subpartition_by_range clause to indicate that the database should
subpartition by range each partition in table. The subpartitioning column list is
unrelated to the partitioning key but is subject to the same restrictions (see column).

You can use the subpartition_template to specify default subpartition characteristic
values. See subpartition_template. The database uses these values for any
subpartition in this partition for which you do not explicitly specify the characteristic.

You can also define range subpartitions individually for each partition using the
range_subpartition_desc of range_partition_desc or list_partition_desc. If you
omit both subpartition_template and the range_subpartition_desc, then the
database creates a single MAXVALUE subpartition.

subpartition_by_list

Use the subpartition_by_list clause to indicate that the database should
subpartition each partition in the table on lists of literal values from the column list. You
can specify a maximum of 16 list subpartitioning key columns.

You can use the subpartition_template to specify default subpartition characteristic
values. See subpartition_template. The database uses these values for any
subpartition in this partition for which you do not explicitly specify the characteristic.

You can also define list subpartitions individually for each partition using the
list_subpartition_desc of range_partition_desc or list_partition_desc. If you
omit both subpartition_template and the list_subpartition_desc, then the
database creates a single DEFAULT subpartition.

Restrictions on List Subpartitioning

List subpartitioning is subject to the same restrictions as described in Restrictions on
Composite Range Partitioning.

subpartition_by_hash

Use the subpartition_by_hash clause to indicate that the database should
subpartition by hash each partition in table. The subpartitioning column list is
unrelated to the partitioning key but is subject to the same restrictions (see column).

You can define the subpartitions using the subpartition_template or the
SUBPARTITIONS integer clause. See subpartition_template. In either case, for optimal
load balancing you should specify a number of partitions that is a power of 2.

If you specify SUBPARTITIONS integer, then you determine the default number of
subpartitions in each partition of table, and optionally one or more tablespaces in
which they are to be stored. The default value is 1. If you omit both this clause and
subpartition_template, then the database will create each partition with one hash
subpartition.

Notes on Composite Partitions

The following notes apply to composite partitions:

Chapter 15
CREATE TABLE

15-118

• For all subpartitions, you can use the range_subpartition_desc,
list_subpartition_desc, individual_hash_subparts, or hash_subparts_by_quantity
to specify individual subpartitions by name, and optionally some other characteristics.

• Alternatively, for hash and list subpartitions:

– You can specify the number of subpartitions and optionally one or more tablespaces
where they are to be stored. In this case, Oracle Database assigns subpartition
names of the form SYS_SUBPn.

– If you omit the subpartition description and if you have created a subpartition
template, then the database uses the template to create subpartitions. If you have
not created a subpartition template, then the database creates one hash subpartition
or one DEFAULT list subpartition.

• For all types of subpartitions, if you omit the subpartitions description entirely, then the
database assigns subpartition names as follows:

– If you have specified a subpartition template and you have specified partition names,
then the database generates subpartition names of the form partition_name
underscore (_) subpartition_name (for example, P1_SUB1).

– If you have not specified a subpartition template or if you have specified a
subpartition template but did not specify partition names, then the database
generates subpartition names of the form SYS_SUBPn.

reference_partitioning

Use this clause to partition the table by reference. Partitioning by reference is a method of
equipartitioning the table being created (the child table) by a referential constraint to an
existing partitioned table (the parent table). When you partition a table by reference, partition
maintenance operations subsequently performed on the parent table automatically cascade
to the child table. Therefore, you cannot perform partition maintenance operations on a
reference-partitioned table directly.

If the parent table is an interval-partitioned table, then partitions in the reference-partitioned
child table that correspond to interval partitions in the parent table will be created during
inserts into the child table. When an interval partition in a child table is created, the partition
name is inherited from the associated parent table partition. If the child table has a table-level
default tablespace, then it will be used as the tablespace for the new interval partition.
Otherwise, the tablespace will be inherited from the parent table partition. Refer to Oracle
Database VLDB and Partitioning Guide for more information on referencing an interval-
partitioned table.

constraint

The partitioning referential constraint must meet the following conditions:

• You must specify a referential integrity constraint defined on the table being created,
which must refer to a primary key or unique constraint on the parent table. The constraint
must be in ENABLE VALIDATE NOT DEFERRABLE state, which is the default when you specify
a referential integrity constraint during table creation.

• All foreign key columns referenced in the constraint must be NOT NULL.

• When you specify the constraint, you cannot specify the ON DELETE SET NULL clause of the
references_clause.

• The parent table referenced in the constraint must be an existing partitioned table. It can
be partitioned by any method.

Chapter 15
CREATE TABLE

15-119

• The foreign and parent keys cannot contain any virtual columns that reference
PL/SQL functions or LOB columns.

reference_partition_desc

Use this optional clause to specify partition names and to define the physical and
storage characteristics of the partition. The subclauses of the
table_partition_description have the same behavior as described for range
partitions in table_partition_description.

If you specify this clause when creating a reference-partitioned child table whose
parent is an interval-partitioned table, then the partition descriptors are used for the
child table's non-interval partitions. Partition descriptors cannot be specified for interval
partitions.

Restrictions on Reference Partitioning

Reference partitioning is subject to the restrictions listed in Restrictions on Partitioning
in General. The following additional restrictions apply:

• Restrictions for reference partitioning are derived from the partitioning strategy of
the parent table.

• Neither the parent table nor the child table can be an automatic list-partitioned
table.

• You cannot specify this clause for an index-organized table, an external table, or a
domain index storage table.

• The parent table can be partitioned by reference, but constraint cannot be self-
referential. The table being created cannot be partitioned based on a reference to
itself.

• If ROW MOVEMENT is enabled for the parent table, it must also be enabled for the child
table.

See Also:

Oracle Database VLDB and Partitioning Guide for more information on
partitioning by reference and "Reference Partitioning Example"

system_partitioning

Use this clause to create system partitions. System partitioning does not entail any
partitioning key columns, nor do system partitions have any range or list bounds or
hash algorithms. Rather, they provide a way to equipartition dependent tables such as
nested table or domain index storage tables with partitioned base tables.

• If you specify only PARTITION BY SYSTEM, then the database creates one partition
with a system-generated name of the form SYS_Pn.

• If you specify PARTITION BY SYSTEM PARTITIONS integer, then the database
creates as many partitions as you specify in integer, which can range from 1 to
1024K-1.

• The description of the partition takes the same syntax as reference partitions, so
they share the reference_partition_desc. You can specify additional partition

Chapter 15
CREATE TABLE

15-120

attributes with the reference_partition_desc syntax. However, within the
table_partition_description, you cannot specify the OVERFLOW clause.

Restrictions on System Partitioning

System partitioning is subject to the following restrictions:

• You cannot system partition an index-organized table or a table that is part of a cluster.

• Composite partitioning is not supported with system partitioning.

• You cannot split a system partition.

• You cannot specify system partitioning in a CREATE TABLE ... AS SELECT statement.

• To insert data into a system-partitioned table using an INSERT INTO ... AS subquery
statement, you must use partition-extended syntax to specify the partition into which the
values returned by the subquery will be inserted.

See Also:

Refer to Oracle Database Data Cartridge Developer's Guide for information on the
uses for system partitioning and "References to Partitioned Tables and Indexes "

consistent_hash_partitions

This clause is valid only for sharded tables. Use this clause to create consistent hash
partitions.

Each sharding key column with a character data type must have one of the following declared
collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS.

consistent_hash_with_subpartitions

This clause is valid only for sharded tables. Use this clause to create consistent hash with
subpartitions.

Each sharding key column with a character data type must have one of the following declared
collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or USING_NLS_SORT_CS.

range_partitionset_clause

Use this clause to create a range partition set.

In the SUBPARTITION BY clause, within the subpartition_template clause, you cannot specify
a tablespace for a subpartition. That is, for range, list, and individual hash subpartitions, you
cannot specify the TABLESPACE clause of the partitioning_storage_clause, and in the
hash_subpartitions_by_quantity clause, you cannot specify the STORE IN (tablespace)
clause.

In the PARTITIONS AUTO clause, within the subpartition_template clause of the
range_partitionset_desc clause, you can specify a tablespace for a subpartition.

Each super sharding or sharding key column with a character data type must have one of the
following declared collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or
USING_NLS_SORT_CS.

Chapter 15
CREATE TABLE

15-121

list_partitionset_clause

Use this clause to create a list partition set.

In the SUBPARTITION BY clause, within the subpartition_template clause, you cannot
specify a tablespace for a subpartition. That is, for range, list, and individual hash
subpartitions, you cannot specify the TABLESPACE clause of the
partitioning_storage_clause, and in the hash_subpartitions_by_quantity clause,
you cannot specify the STORE IN (tablespace) clause.

In the PARTITIONS AUTO clause, within the subpartition_template clause of the
list_partitionset_desc clause, you can specify a tablespace for a subpartition.

Each super sharding or sharding key column with a character data type must have one
of the following declared collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or
USING_NLS_SORT_CS.

attribute_clustering_clause

Use this clause to enable the table for attribute clustering. Attribute clustering lets you
cluster data in close physical proximity based on the content of specified columns.

Attribute clustering can be based only on columns in table or on joined values from
other tables. The latter is called join attribute clustering.

See Also:

Oracle Database Data Warehousing Guide for more information on attribute
clustering

clustering_join

Use this clause to specify join attribute clustering. Use the JOIN clause to specify the
joined values from other tables on which to base the attribute clustering. You can
specify a maximum of four JOIN clauses.

cluster_clause

Use this clause to specify the type of ordering to use for the table: linear ordering or
interleaved ordering. If you do not specify the LINEAR or INTERLEAVED keyword, then
the default is LINEAR.

BY LINEAR ORDER

Use this clause to specify linear ordering. This type of ordering stores data according
to the order of the specified columns. If you specify this clause, then you can specify
only one clustering column group, which can contain at most 10 columns.

BY INTERLEAVED ORDER

Use this clause to specify interleaved ordering. This type of ordering uses a special
multidimensional clustering technique, similar to z-ordering, that permits multicolumn
clustering. If you specify this clause, then you can specify at most four clustering
column groups, with a maximum of 40 columns across all groups.

Chapter 15
CREATE TABLE

15-122

clustering_columns

Use this clause to specify one or more clustering column groups.

clustering_column_group

Use this clause to specify one or more columns to be included in the clustering column group.

Restriction on Attribute Clustering Columns

Each character column in the clustering column group must have one of the following
declared collations: BINARY or USING_NLS_COMP.

clustering_when

Use these clauses to allow or disallow attribute clustering during direct-path insert operations
and data movement operations.

ON LOAD

Specify YES ON LOAD to allow, or NO ON LOAD to disallow, attribute clustering during direct-path
inserts (serial or parallel) resulting either from an INSERT or a MERGE operation.

The default is YES ON LOAD.

ON DATA MOVEMENT

Specify YES ON DATA MOVEMENT to allow, or NO ON DATA MOVEMENT to disallow, attribute clustering
for data movement that occurs during the following operations:

• Data redefinition using the DBMS_REDEFINITION package

• Table partition maintenance operations that are specified by the following clauses of
ALTER TABLE: coalesce_table, merge_table_partitions, move_table_partition, and
split_table_partition

The default is YES ON DATA MOVEMENT.

zonemap_clause

Use this clause to create a zone map on the table. The zone map tracks the columns
specified in the clustering_columns clause.

• Specify WITH MATERIALIZED ZONEMAP to create a zone map. For zonemap_name, specify the
name of the zone map to be created. If you omit zonemap_name, then the name of the
zone map is ZMAP$_table.

• Specify WITHOUT MATERIALIZED ZONEMAP to not create a zone map. This is the default.

If you subsequently drop the table or use the ALTER TABLE statement to DROP CLUSTERING or
MODIFY CLUSTERING ... WITHOUT MATERIALIZED ZONEMAP, then the zone map will be dropped.

See Also:

CREATE MATERIALIZED ZONEMAP for more information on zone maps

Restrictions on Attribute Clustering

The following restrictions apply to attribute clustering:

Chapter 15
CREATE TABLE

15-123

• Attribute clustering is not supported for temporary tables or external tables.

• The table being created must be a heap-organized table. However, tables
specified in the clustering_join clause can be heap-organized or index-
organized tables.

• Clustering columns must be of a scalar data type and cannot be encrypted.

• If you specify BY LINEAR ORDER, then you can specify only one clustering column
group, which can contain at most 10 columns.

• If you specify BY INTERLEAVED ORDER, then you can specify at most four clustering
column groups, with a maximum of 40 columns across all groups.

• For join attribute clustering:

– The number of dimension tables cannot exceed four.

– The join to the table or tables providing the attribute clustering columns must
be on a unique key or primary key column to avoid row duplication.

• Attribute clustering will not order rows that are inserted using MERGE statements or
multitable insert operations.

CACHE | NOCACHE | CACHE READS

Use these clauses to indicate how Oracle Database should store blocks in the buffer
cache. For LOB storage, you can specify CACHE, NOCACHE, or CACHE READS. For other
types of storage, you can specify only CACHE or NOCACHE.

If you omit these clauses, then:

• In a CREATE TABLE statement, NOCACHE is the default.

• In an ALTER TABLE statement, the existing value is not changed.

The behavior of CACHE and NOCACHE described in this section does not apply when
Oracle Database chooses to use direct reads or to perform table scans using parallel
query.

CACHE

For data that is accessed frequently, this clause indicates that the blocks retrieved for
this table are placed at the most recently used end of the least recently used (LRU) list
in the buffer cache when a full table scan is performed. This attribute is useful for small
lookup tables.

See Also:

Oracle Database Concepts for more information on how the database
maintains the least recently used (LRU) list

As a parameter in the LOB_storage_clause, CACHE specifies that the database places
LOB data values in the buffer cache for faster access. The database evaluates this
parameter in conjunction with the logging_clause. If you omit this clause, then the
default value for both BasicFiles and SecureFiles LOBs is NOCACHE LOGGING.

Restriction on CACHE

Chapter 15
CREATE TABLE

15-124

You cannot specify CACHE for an index-organized table. However, index-organized tables
implicitly provide CACHE behavior.

NOCACHE

For data that is not accessed frequently, this clause indicates that the blocks retrieved for this
table are placed at the least recently used end of the LRU list in the buffer cache when a full
table scan is performed. NOCACHE is the default for LOB storage.

As a parameter in the LOB_storage_clause, NOCACHE specifies that the LOB values are not
brought into the buffer cache. NOCACHE is the default for LOB storage.

Restriction on NOCACHE

You cannot specify NOCACHE for an index-organized table.

CACHE READS

CACHE READS applies only to LOB storage. It specifies that LOB values are brought into the
buffer cache only during read operations but not during write operations.

logging_clause

Use this clause to indicate whether the storage of data blocks should be logged or not.

See Also:

logging_clause for a description of the logging_clause when specified as part of
LOB_parameters

result_cache_clause

Use this clause to determine whether the results of statements or query blocks that name this
table are considered for storage in the result cache.

You can use mode DEFAULT or mode FORCE for result caching, with STANDBY enabled or
disabled.

• DEFAULT: Result caching is not determined at the table level. The query is considered for
result caching if the RESULT_CACHE_MODE initialization parameter is set to FORCE, or if that
parameter is set to MANUAL and the RESULT_CACHE hint is specified in the query. This is the
default if you omit this clause.

• FORCE: If all tables names in the query have this setting, then the query is always
considered for caching unless the NO_RESULT_CACHE hint is specified for the query. If one
or more tables named in the query are set to DEFAULT, then the effective table annotation
for that query is considered to be DEFAULT, with the semantics described above.

• The default value of STANDBY is DISABLE.

• You must enable STANDBY on all the dependent objects of a query to save the result of the
query into the result cache.

• A transaction must enable STANDBY on an object in order to generate a redo marker at
transaction commit time on the primary.

You can query the RESULT_CACHE column of the DBA_, ALL_, and USER_TABLES data dictionary
views to learn the result cache mode of the table.

Chapter 15
CREATE TABLE

15-125

The RESULT_CACHE and NO_RESULT_CACHE SQL hints take precedence over these result
cache table annotations and the RESULT_CACHE_MODE initialization parameter. The
RESULT_CACHE_MODE setting of FORCE in turn takes precedence over this table
annotation clause.

Note:

The RESULT_CACHE_MODE setting of FORCE is not recommended, as it can
cause significant performance and latching overhead, as database and
clients will try to cache all queries.

See Also:

• Oracle Call Interface Programmer's Guide and Oracle Database
Concepts for general information about result caching

• Oracle Database Performance Tuning Guide for information about using
this clause

• Oracle Database Reference for information about the
RESULT_CACHE_MODE initialization parameter and the *_TABLES data
dictionary views

• "RESULT_CACHE Hint " and "NO_RESULT_CACHE Hint " for
information about the hints

parallel_clause

The parallel_clause lets you parallelize creation of the table and set the default
degree of parallelism for queries and the DML INSERT, UPDATE, DELETE, and MERGE after
table creation.

Note:

The syntax of the parallel_clause supersedes syntax appearing in earlier
releases of Oracle. The superseded syntax is still supported for backward
compatibility, but may result in slightly different behavior from that
documented.

NOPARALLEL

Specify NOPARALLEL for serial execution. This is the default.

PARALLEL

Specify PARALLEL if you want Oracle to select a degree of parallelism equal to the
number of CPUs available on all participating instances times the value of the
PARALLEL_THREADS_PER_CPU initialization parameter.

Chapter 15
CREATE TABLE

15-126

PARALLEL integer

Specification of integer indicates the degree of parallelism, which is the number of parallel
threads used in the parallel operation. Each parallel thread may use one or two parallel
execution servers. Normally Oracle calculates the optimum degree of parallelism, so it is not
necessary for you to specify integer.

See Also:

parallel_clause for more information on this clause

NOROWDEPENDENCIES | ROWDEPENDENCIES

This clause lets you specify whether table will use row-level dependency tracking. With
this feature, each row in the table has a system change number (SCN) that represents a time
greater than or equal to the commit time of the last transaction that modified the row. You
cannot change this setting after table is created.

ROWDEPENDENCIES

Specify ROWDEPENDENCIES if you want to enable row-level dependency tracking. This setting is
useful primarily to allow for parallel propagation in replication environments. It increases the
size of each row by 6 bytes.

Restriction on the ROWDEPENDENCIES Clause

Oracle does not support table compression for tables that use row-level dependency tracking.
If you specify both the ROWDEPENDENCIES clause and the table_compression clause, then the
table_compression clause is ignored. To remove the ROWDEPENDENCIES attribute, you must
redefine the table using the DBMS_REDEFINITION package or recreate the table.

NOROWDEPENDENCIES

Specify NOROWDEPENDENCIES if you do not want table to use the row-level dependency
tracking feature. This is the default.

enable_disable_clause

The enable_disable_clause lets you specify whether Oracle Database should apply a
constraint. By default, constraints are created in ENABLE VALIDATE state.

Restrictions on Enabling and Disabling Constraints

Enabling and disabling constraints are subject to the following restrictions:

• To enable or disable any integrity constraint, you must have defined the constraint in this
or a previous statement.

• You cannot enable a foreign key constraint unless the referenced unique or primary key
constraint is already enabled.

• In the index_properties clause of the using_index_clause, the INDEXTYPE IS ... clause
is not valid in the definition of a constraint.

Chapter 15
CREATE TABLE

15-127

See Also:

constraint for more information on constraints and "Creating a Table:
ENABLE/DISABLE Examples"

ENABLE Clause

Use this clause if you want the constraint to be applied to the data in the table. This
clause is described fully in "ENABLE Clause" in the documentation on constraints.

DISABLE Clause

Use this clause if you want to disable the integrity constraint. This clause is described
fully in "DISABLE Clause" in the documentation on constraints.

UNIQUE

The UNIQUE clause lets you enable or disable the unique constraint defined on the
specified column or combination of columns.

PRIMARY KEY

The PRIMARY KEY clause lets you enable or disable the primary key constraint defined
on the table.

CONSTRAINT

The CONSTRAINT clause lets you enable or disable the integrity constraint named
constraint_name.

KEEP | DROP INDEX

This clause lets you either preserve or drop the index Oracle Database has been using
to enforce a unique or primary key constraint.

Restriction on Preserving and Dropping Indexes

You can specify this clause only when disabling a unique or primary key constraint.

using_index_clause

The using_index_clause lets you specify an index for Oracle Database to use to
enforce a unique or primary key constraint, or lets you instruct the database to create
the index used to enforce the constraint.

Chapter 15
CREATE TABLE

15-128

See Also:

• CREATE INDEX for a description of index_attributes, the
global_partitioned_index and local_partitioned_index clauses, NOSORT, and the
logging_clause in relation to indexes

• constraint for information on the using_index_clause and on PRIMARY KEY and
UNIQUE constraints

• "Explicit Index Control Example" for an example of using an index to enforce a
constraint

CASCADE

Specify CASCADE to disable any integrity constraints that depend on the specified integrity
constraint. To disable a primary or unique key that is part of a referential integrity constraint,
you must specify this clause.

Restriction on CASCADE

You can specify CASCADE only if you have specified DISABLE.

row_movement_clause

The row_movement_clause lets you specify whether the database can move a table row. It is
possible for a row to move, for example, during table compression or an update operation on
partitioned data.

Note:

If you need static rowids for data access, then do not enable row movement. For a
normal (heap-organized) table, moving a row changes the rowid of the row. For a
moved row in an index-organized table, the logical rowid remains valid, although the
physical guess component of the logical rowid becomes inaccurate.

• Specify ENABLE to allow the database to move a row, thus changing the rowid.

• Specify DISABLE if you want to prevent the database from moving a row, thus preventing
a change of rowid.

If you omit this clause, then the database disables row movement.

Restriction on Row Movement

You cannot specify this clause for a nonpartitioned index-organized table.

logical_replication_clause

You can perform partial database replication for users such as Oracle GoldenGate, and
reduce the supplemental logging overhead of uninteresting tables in interesting schema
where supplemental logging is enabled.

When logical replication is enabled for a table, supplemental logging of all levels (table/
schema/database levels) is honored.

Chapter 15
CREATE TABLE

15-129

When logical replication is disabled for a table, it means that only database level
supplemental logging is honored. This provides a way for partial database replication
users (who will not enable database level column data supplemental logging) to
disable supplemental logging for uninteresting tables, so that even when supplemental
logging is enabled at the schema level, there is no column data supplemental logging
for uninteresting tables.

If you create a table without the logical_replication_clause, logical replication is
not disabled and supplemental logging of all levels is honored. No additional ID or
scheduling-key supplemental logging is added for this table.

If you create a table with DISABLE LOGICAL REPLICATION, logical replication is disabled
for this table. Table-level and schema-level supplemental logging directives are
ignored.

If you create a table with ENABLE LOGICAL REPLICATION ALL KEYS, ID and scheduling-
key (PK, UI, FK, ALLKEYS) supplemental logging is implicitly enabled for the table.

If you create a table with ENABLE LOGICAL REPLICATION ALLOW NOVALIDATE KEYS, ID
and scheduling-key is implicitly enabled for the table. Primary key constraint in
NOVALIDATE mode can be supplementally logged as a unique identifier for the table.

flashback_archive_clause

You must have the FLASHBACK ARCHIVE object privilege on the specified flashback
archive to specify this clause. Use this clause to enable or disable historical tracking
for the table.

• Specify FLASHBACK ARCHIVE to enable tracking for the table. You can specify
flashback_archive to designate a particular flashback archive for this table. The
flashback archive you specify must already exist.

If you omit flashback_archive, then the database uses the default flashback
archive designated for the system. If no default flashback archive has been
designated for the system, then you must specify flashback_archive.

• Specify NO FLASHBACK ARCHIVE to disable tracking for the table. This is the default.

Restrictions on flashback_archive_clause

Flashback data archives are subject to the following restrictions:

• You cannot specify this clause for a nested table, clustered table, temporary table,
remote table, or external table.

• You cannot specify this clause for a table compressed with Hybrid Columnar
Compression.

• The table for which you are specifying this clause cannot contain any LONG or
nested table columns.

• If you specify this clause and subsequently copy the table to a different database
—using the export and import utilities or the transportable tablespace feature—
then the copied table will not be enabled for tracking and the archived data for the
original table will not be available for the copied table.

Chapter 15
CREATE TABLE

15-130

See Also:

• Oracle Database Development Guide for general information on using
Flashback Time Travel

• ALTER FLASHBACK ARCHIVE for information on changing the quota and
retention attributes of the flashback archive, as well as adding or changing
tablespace storage for the flashback archive

ROW ARCHIVAL

Specify this clause to enable table for row archival. This clause lets you implement In-
Database Archiving, which allows you to designate table rows as active or archived. You can
then perform queries on only the active rows within the table.

When you specify this clause, a hidden column ORA_ARCHIVE_STATE is created in the table.
The column is of data type VARCHAR2. You can specify a value of 0 or 1 for this column to
indicate whether a row is active (0) or archived (1). If you do not specify a value for
ORA_ARCHIVE_STATE when inserting data into the table, then the value is set to 0.

• If ROW ARCHIVE VISIBILITY = ACTIVE for the session, then the database will consider only
active rows when performing queries on the table.

• If ROW ARCHIVE VISIBILITY = ALL for the session, then the database will consider all rows
when performing queries on the table.

See Also:

• The ALTER SESSION Semantics clause to learn how to configure row archival
visibility for a session

• The ALTER TABLE [NO] ROW ARCHIVAL clause to learn how to enable or
disable an existing table for row archival

• Oracle Database VLDB and Partitioning Guide for more information on In-
Database Archiving

FOR EXCHANGE WITH TABLE

This clause lets you create a table that matches the structure of an existing partitioned table.
The two tables are then eligible for exchanging partitions and subpartitions. For table,
specify an existing partitioned table. For schema, specify the schema that contains the existing
partitioned table. If you omit schema, then the database assumes the table is in your own
schema.

This operation creates a metadata clone, without data, of the partitioned table. The clone has
the same column ordering and column properties of the original table. Column properties
copied to the clone during this operation include unusable columns, invisible columns, virtual
expression columns, functional index expression columns, and other internal settings and
attributes. Indexes on the existing partitioned table are not created on the clone table.

Chapter 15
CREATE TABLE

15-131

You can subsequently use the exchange_partition_subpart clause of ALTER TABLE to
exchange partitions or subpartitions between the two tables. Refer to
exchange_partition_subpart in the documentation on ALTER TABLE for more
information.

Restrictions on FOR EXCHANGE WITH TABLE

Each super sharding or sharding key column with a character data type must have one
of the following declared collations: BINARY, USING_NLS_COMP, USING_NLS_SORT, or
USING_NLS_SORT_CS.

The following restrictions apply to the FOR EXCHANGE WITH TABLE clause:

• If you specify this clause, then you cannot specify the relational_properties
clause.

• If you specify this clause, then within the table_properties clause, you can
specify only the table_partitioning_clause.

• Within the table_partitioning_clause each key column with a character data type
must have one of the following declared collations: BINARY, USING_NLS_COMP,
USING_NLS_SORT, or USING_NLS_SORT_CS.

• When you create a clone for a partition of a composite-partitioned table, you must
explicitly specifying the appropriate table_partitioning_clause that matches
exactly the subpartitioning of the partition you want to exchange.

• You cannot create a clone of a partitioned index-organized table.

• Oracle does not clone the statistics setup of the partitioned table. For example, if
you plan to perform an exchange with a partitioned table for which incremental
statistics are enabled, you must manually enable the creation of a table synopsis
on the clone table. See Oracle Database SQL Tuning Guide for more information
on maintaining incremental statistics on partitioned tables.

AS subquery

Specify a subquery to determine the contents of the table. The rows returned by the
subquery are inserted into the table upon its creation.

For object tables, subquery can contain either one expression corresponding to the
table type, or the number of top-level attributes of the table type. Refer to SELECT for
more information.

If subquery returns the equivalent of part or all of an existing materialized view, then
the database may rewrite the query to use the materialized view in place of one or
more tables specified in subquery.

See Also:

Oracle Database Data Warehousing Guide for more information on
materialized views and query rewrite

Oracle Database derives data types and lengths from the subquery. Oracle Database
follows the following rules for integrity constraints and other column and table
attributes:

Chapter 15
CREATE TABLE

15-132

• Oracle Database automatically defines on columns in the new table any NOT NULL
constraints that have a state of NOT DEFERRABLE and VALIDATE, and were explicitly created
on the corresponding columns of the selected table if the subquery selects the column
rather than an expression containing the column. If any rows violate the constraint, then
the database does not create the table and returns an error.

• NOT NULL constraints that were implicitly created by Oracle Database on columns of the
selected table (for example, for primary keys) are not carried over to the new table.

• In addition, primary keys, unique keys, foreign keys, check constraints, partitioning
criteria, indexes, and column default values are not carried over to the new table.

• If the selected table is partitioned, then you can choose whether the new table will be
partitioned the same way, partitioned differently, or not partitioned. Partitioning is not
carried over to the new table. Specify any desired partitioning as part of the CREATE TABLE
statement before the AS subquery clause.

• A column that is encrypted using Transparent Data Encryption in the selected table will
not be encrypted in the new table unless you define the column in the new table as
encrypted at create time.

Note:

Oracle recommends that you encrypt sensitive columns before populating them
with data. This will avoid creating clear text copies of sensitive data.

If each column returned by subquery has a column name or is an expression with a specified
column alias, then you can omit the columns from the table definition entirely. In this case, the
names of the columns of table are the same as the columns in subquery. The exception is
creating an index-organized table, for which you must specify the columns in the table
definition because you must specify a primary key column.

You can use subquery in combination with the TO_LOB function to convert the values in a LONG
column in another table to LOB values in a column of the table you are creating.

See Also:

• Oracle Database SecureFiles and Large Objects Developer's Guide for a
discussion of why and when to copy LONG data to a LOB

• "Conversion Functions " for a description of how to use the TO_LOB function

• SELECT for more information on the order_by_clause

• Oracle Database SQL Tuning Guide for information on statistics gathering when
using the AS subquery clause

parallel_clause

If you specify the parallel_clause in this statement, then the database will ignore any value
you specify for the INITIAL storage parameter and will instead use the value of the NEXT
parameter.

Chapter 15
CREATE TABLE

15-133

See Also:

storage_clause for information on these parameters

ORDER BY

The ORDER BY clause lets you order rows returned by the subquery.

When specified with CREATE TABLE, this clause does not necessarily order data across
the entire table. For example, it does not order across partitions. Specify this clause if
you intend to create an index on the same key as the ORDER BY key column. Oracle
Database will cluster data on the ORDER BY key so that it corresponds to the index key.

Restrictions on the Defining Query of a Table

The table query is subject to the following restrictions:

• The number of columns in the table must equal the number of expressions in the
subquery.

• The column definitions can specify only column names, default values, and
integrity constraints, not data types.

• You cannot define a foreign key constraint in a CREATE TABLE statement that
contains AS subquery unless the table is reference partitioned and the constraint is
the table's partitioning referential constraint. In all other cases, you must create the
table without the constraint and then add it later with an ALTER TABLE statement.

object_table

The OF clause lets you explicitly create an object table of type object_type. The
columns of an object table correspond to the top-level attributes of type object_type.
Each row will contain an object instance, and each instance will be assigned a unique,
system-generated object identifier when a row is inserted. If you omit schema, then the
database creates the object table in your own schema.

Object tables, as well as XMLType tables, object views, and XMLType views, do not have
any column names specified for them. Therefore, Oracle defines a system-generated
pseudocolumn OBJECT_ID. You can use this column name in queries and to create
object views with the WITH OBJECT IDENTIFIER clause.

See Also:

"Object Column and Table Examples"

object_table_substitution

Use the object_table_substitution clause to specify whether row objects
corresponding to subtypes can be inserted into this object table.

NOT SUBSTITUTABLE AT ALL LEVELS

Chapter 15
CREATE TABLE

15-134

NOT SUBSTITUTABLE AT ALL LEVELS indicates that the object table being created is not
substitutable. In addition, substitution is disabled for all embedded object attributes and
elements of embedded nested tables and arrays. The default is SUBSTITUTABLE AT ALL
LEVELS.

See Also:

• CREATE TYPE for more information about creating object types

• "User-Defined Types ", "About User-Defined Functions ", "About SQL
Expressions ", CREATE TYPE , and Oracle Database Object-Relational
Developer's Guide for more information about using REF types

object_properties

The properties of object tables are essentially the same as those of relational tables.
However, instead of specifying columns, you specify attributes of the object.

For attribute, specify the qualified column name of an item in an object.

oid_clause

The oid_clause lets you specify whether the object identifier of the object table should be
system generated or should be based on the primary key of the table. The default is SYSTEM
GENERATED.

Restrictions on the oid_clause

This clause is subject to the following restrictions:

• You cannot specify OBJECT IDENTIFIER IS PRIMARY KEY unless you have already specified
a PRIMARY KEY constraint for the table.

• You cannot specify this clause for a nested table.

Note:

A primary key object identifier is locally unique but not necessarily globally unique. If
you require a globally unique identifier, then you must ensure that the primary key is
globally unique.

oid_index_clause

This clause is relevant only if you have specified the oid_clause as SYSTEM GENERATED. It
specifies an index, and optionally its storage characteristics, on the hidden object identifier
column.

For index, specify the name of the index on the hidden system-generated object identifier
column. If you omit index, then the database generates a name.

physical_properties and table_properties

Chapter 15
CREATE TABLE

15-135

The semantics of these clauses are documented in the corresponding sections under
relational tables. See physical_properties and table_properties.

XMLType_table

Use the XMLType_table syntax to create a table of data type XMLType. Most of the
clauses used to create an XMLType table have the same semantics that exist for object
tables. The clauses specific to XMLType tables are described in this section.

Object tables, as well as XMLType tables, object views, and XMLType views, do not have
any column names specified for them. Therefore, Oracle defines a system-generated
pseudocolumn OBJECT_ID. You can use this column name in queries and to create
object views with the WITH OBJECT IDENTIFIER clause.

XMLSchema_spec

This clause lets you specify the URL of a registered XMLSchema, either in the
XMLSCHEMA clause or as part of the ELEMENT clause, and an XML element name.

You must specify an element, although the XMLSchema URL is optional. If you do
specify an XMLSchema URL, then you must already have registered the XMLSchema
using the DBMS_XMLSCHEMA package.

The optional STORE ALL VARRAYS AS clause lets you specify how all varrays in the
XMLType table or column are to be stored.

• STORE ALL VARRAYS AS LOBS indicates that all varrays are to be stored as LOBs.

• STORE ALL VARRAYS AS TABLES indicates that all varrays are to be stored as tables.

The optional ALLOW | DISALLOW clauses are valid only if you have specified BINARY XML
storage.

• ALLOW NONSCHEMA indicates that non-schema-based documents can be stored in
the XMLType column.

• DISALLOW NONSCHEMA indicates that non-schema-based documents cannot be
stored in the XMLType column. This is the default.

• ALLOW ANYSCHEMA indicates that any schema-based document can be stored in the
XMLType column.

• DISALLOW ANYSCHEMA indicates that any schema-based document cannot be stored
in the XMLType column. This is the default.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information on the DBMS_XMLSCHEMA package

• Oracle XML DB Developer's Guide for information on creating and
working with XML data

• "XMLType Table Examples"

Chapter 15
CREATE TABLE

15-136

MEMOPTIMIZE FOR READ

Use this clause to enable fast lookup. Fast lookup improves the performance high frequency
data query operations. The MEMOPTIMIZE_POOL_SIZE initialization parameter controls the size
of the memoptimize pool. Note that the feature uses additional memory from the SGA.

• You must specify this clause as a top-level attribute of the table, it cannot be specified at
the partition or subpartition level.

• You must explicitly enable the table for MEMOPTIMIZE FOR READ before you can read
data from the table.

MEMOPTIMIZE FOR WRITE

Use this clause to enable fast ingest. Fast ingest optimizes memory processing of high
frequency single row data inserts from Internet of Things (IoT) applications.

• MEMOPTIMZE FOR WRITE is a top-level attribute and cannot be used at the partition or
subpartition level.

• A table must be enabled for MEMOPTIMIZE FOR WRITE before data for that table can be
written to the IGA.

PARENT

You can use this clause to create a child table in a sharded table family.

A sharded table family is a set of tables that are sharded in the same way. Corresponding
partitions of all tables in a table family are stored in the same shard. This enables you to
minimize the number of multishard joins when querying data in the table family.

There are two methods for creating a sharded table family. The recommended method
involves using reference partitioning. However, if it is impossible or undesirable to create the
primary and foreign key constraints that are required for reference partitioning, then you can
use the PARENT clause to create a sharded table family.

The rules for creating a sharded table family differ depending on which method you use.
When you create a sharded table family by using the PARENT clause, the following rules apply:

• The sharded table family can contain only two levels of tables: a parent table, and one or
more child tables.

• All tables in the family must be explicitly partitioned using the same partitioning scheme.
Each table can use a different subpartitioning scheme, or none at all.

• You must first create the parent table, and it must be a sharded table.

• You can then use the CREATE SHARDED TABLE ... PARENT ... statement to create each child
table. For table, specify the name of the parent table. For schema, specify the schema
that contains the parent table. If you omit schema, then the database assumes the parent
table is in your own schema.

You can create multiple sharded table families with system sharding but at most one with
composite or user-defined sharding.

Chapter 15
CREATE TABLE

15-137

See Also:

• Using Oracle Sharding

Examples

Creating Tables: General Examples

This statement shows how the employees table owned by the sample human
resources (hr) schema was created. A hypothetical name is given to the table and
constraints so that you can duplicate this example in your test database:

CREATE TABLE employees_demo
 (employee_id NUMBER(6)
 , first_name VARCHAR2(20)
 , last_name VARCHAR2(25)
 CONSTRAINT emp_last_name_nn_demo NOT NULL
 , email VARCHAR2(25)
 CONSTRAINT emp_email_nn_demo NOT NULL
 , phone_number VARCHAR2(20)
 , hire_date DATE DEFAULT SYSDATE
 CONSTRAINT emp_hire_date_nn_demo NOT NULL
 , job_id VARCHAR2(10)
 CONSTRAINT emp_job_nn_demo NOT NULL
 , salary NUMBER(8,2)
 CONSTRAINT emp_salary_nn_demo NOT NULL
 , commission_pct NUMBER(2,2)
 , manager_id NUMBER(6)
 , department_id NUMBER(4)
 , dn VARCHAR2(300)
 , CONSTRAINT emp_salary_min_demo
 CHECK (salary > 0)
 , CONSTRAINT emp_email_uk_demo
 UNIQUE (email)
) ;

This table contains twelve columns. The employee_id column is of data type NUMBER.
The hire_date column is of data type DATE and has a default value of SYSDATE. The
last_name column is of type VARCHAR2 and has a NOT NULL constraint, and so on.

Creating a Table: Storage Example

To define the same employees_demo table in the example tablespace with a small
storage capacity, issue the following statement:

CREATE TABLE employees_demo
 (employee_id NUMBER(6)
 , first_name VARCHAR2(20)
 , last_name VARCHAR2(25)
 CONSTRAINT emp_last_name_nn_demo NOT NULL
 , email VARCHAR2(25)
 CONSTRAINT emp_email_nn_demo NOT NULL
 , phone_number VARCHAR2(20)
 , hire_date DATE DEFAULT SYSDATE
 CONSTRAINT emp_hire_date_nn_demo NOT NULL
 , job_id VARCHAR2(10)
 CONSTRAINT emp_job_nn_demo NOT NULL
 , salary NUMBER(8,2)

Chapter 15
CREATE TABLE

15-138

 CONSTRAINT emp_salary_nn_demo NOT NULL
 , commission_pct NUMBER(2,2)
 , manager_id NUMBER(6)
 , department_id NUMBER(4)
 , dn VARCHAR2(300)
 , CONSTRAINT emp_salary_min_demo
 CHECK (salary > 0)
 , CONSTRAINT emp_email_uk_demo
 UNIQUE (email)
)
 TABLESPACE example
 STORAGE (INITIAL 8M);

Creating a Table with a DEFAULT ON NULL Column Value: Example

The following statement creates a table myemp, which can be used to store employee data.
The department_id column is defined with a DEFAULT ON NULL column value of 50. Therefore,
if a subsequent INSERT statement attempts to assign a NULL value to department_id, then
the value of 50 will be assigned instead.

CREATE TABLE myemp (employee_id number, last_name varchar2(25),
 department_id NUMBER DEFAULT ON NULL 50 NOT NULL);

In the employees table, employee_id 178 has a NULL value for department_id:

SELECT employee_id, last_name, department_id
 FROM employees
 WHERE department_id IS NULL;

EMPLOYEE_ID LAST_NAME DEPARTMENT_ID
----------- ------------------------- -------------
 178 Grant

Populate the myemp table with the employee_id, last_name, and department_id column data
from the employees table:

INSERT INTO myemp (employee_id, last_name, department_id)
 (SELECT employee_id, last_name, department_id from employees);

In the myemp table, employee_id 178 has a value of 50 for department_id:

SELECT employee_id, last_name, department_id
 FROM myemp
 WHERE employee_id = 178;

EMPLOYEE_ID LAST_NAME DEPARTMENT_ID
----------- ------------------------- -------------
 178 Grant 50

Creating a Table with an Identity Column: Examples

The following statement creates a table t1 with an identity column id. The sequence
generator will always assign increasing integer values to id, starting with 1.

CREATE TABLE t1 (id NUMBER GENERATED AS IDENTITY);

The following statement creates a table t2 with an identity column id. The sequence
generator will, by default, assign increasing integer values to id in increments of 10 starting
with 100.

Chapter 15
CREATE TABLE

15-139

CREATE TABLE t2 (id NUMBER GENERATED BY DEFAULT AS IDENTITY (START WITH 100
INCREMENT BY 10));

Creating a Table: Temporary Table Example

The following statement creates a temporary table today_sales for use by sales
representatives in the sample database. Each sales representative session can store
its own sales data for the day in the table. The temporary data is deleted at the end of
the session.

CREATE GLOBAL TEMPORARY TABLE today_sales
 ON COMMIT PRESERVE ROWS
 AS SELECT * FROM orders WHERE order_date = SYSDATE;

Creating a Table with Deferred Segment Creation: Example

The following statement creates a table with deferred segment creation. Oracle
Database will not create a segment for the data of this table until data is inserted into
the table:

CREATE TABLE later (col1 NUMBER, col2 VARCHAR2(20)) SEGMENT CREATION DEFERRED;

Substitutable Table and Column Examples

The following statements create a type hierarchy, which can be used to create a
substitutable table. Type employee_t inherits the name and ssn attributes from type
person_t and in addition has department_id and salary attributes. Type
part_time_emp_t inherits all of the attributes from employee_t and, through
employee_t, those of person_t and in addition has a num_hrs attribute. Type
part_time_emp_t is final by default, so no further subtypes can be created under it.

CREATE TYPE person_t AS OBJECT (name VARCHAR2(100), ssn NUMBER)
 NOT FINAL;
/

CREATE TYPE employee_t UNDER person_t
 (department_id NUMBER, salary NUMBER) NOT FINAL;
/

CREATE TYPE part_time_emp_t UNDER employee_t (num_hrs NUMBER);
/

The following statement creates a substitutable table from the person_t type:

CREATE TABLE persons OF person_t;

The following statement creates a table with a substitutable column of type person_t:

CREATE TABLE books (title VARCHAR2(100), author person_t);

When you insert into persons or books, you can specify values for the attributes of
person_t or any of its subtypes. Examples of insert statements appear in "Inserting
into a Substitutable Tables and Columns: Examples".

You can extract data from such tables using built-in functions and conditions. For
examples, see the functions TREAT and SYS_TYPEID , and the "IS OF type Condition
" condition.

Creating a Table: Parallelism Examples

Chapter 15
CREATE TABLE

15-140

The following statement creates a table using an optimum number of parallel execution
servers to scan employees and to populate dept_80:

CREATE TABLE dept_80
 PARALLEL
 AS SELECT * FROM employees
 WHERE department_id = 80;

Using parallelism speeds up the creation of the table, because the database uses parallel
execution servers to create the table. After the table is created, querying the table is also
faster, because the same degree of parallelism is used to access the table.

The following statement creates the same table serially. Subsequent DML and queries on the
table will also be serially executed.

CREATE TABLE dept_80
 AS SELECT * FROM employees
 WHERE department_id = 80;

Creating a Table: ENABLE/DISABLE Examples

The following statement shows how the sample table departments was created. The example
defines a NOT NULL constraint, and places it in ENABLE VALIDATE state. A hypothetical name is
given to the table so that you can duplicate this example in your test database:

CREATE TABLE departments_demo
 (department_id NUMBER(4)
 , department_name VARCHAR2(30)
 CONSTRAINT dept_name_nn NOT NULL
 , manager_id NUMBER(6)
 , location_id NUMBER(4)
 , dn VARCHAR2(300)
) ;

The following statement creates the same departments_demo table but also defines a
disabled primary key constraint:

CREATE TABLE departments_demo
 (department_id NUMBER(4) PRIMARY KEY DISABLE
 , department_name VARCHAR2(30)
 CONSTRAINT dept_name_nn NOT NULL
 , manager_id NUMBER(6)
 , location_id NUMBER(4)
 , dn VARCHAR2(300)
) ;

Nested Table Example

The following statement shows how the sample table pm.print_media was created with a
nested table column ad_textdocs_ntab:

CREATE TABLE print_media
 (product_id NUMBER(6)
 , ad_id NUMBER(6)
 , ad_composite BLOB
 , ad_sourcetext CLOB
 , ad_finaltext CLOB
 , ad_fltextn NCLOB
 , ad_textdocs_ntab textdoc_tab
 , ad_photo BLOB
 , ad_graphic BFILE

Chapter 15
CREATE TABLE

15-141

 , ad_header adheader_typ
) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab;

Creating a Table: Multilevel Collection Example

The following example shows how an account manager might create a table of
customers using two levels of nested tables:

CREATE TYPE phone AS OBJECT (telephone NUMBER);
/
CREATE TYPE phone_list AS TABLE OF phone;
/
CREATE TYPE my_customers AS OBJECT (
 cust_name VARCHAR2(25),
 phones phone_list);
/
CREATE TYPE customer_list AS TABLE OF my_customers;
/
CREATE TABLE business_contacts (
 company_name VARCHAR2(25),
 company_reps customer_list)
 NESTED TABLE company_reps STORE AS outer_ntab
 (NESTED TABLE phones STORE AS inner_ntab);

The following variation of this example shows how to use the COLUMN_VALUE keyword if
the inner nested table has no column or attribute name:

CREATE TYPE phone AS TABLE OF NUMBER;
/
CREATE TYPE phone_list AS TABLE OF phone;
/
CREATE TABLE my_customers (
 name VARCHAR2(25),
 phone_numbers phone_list)
 NESTED TABLE phone_numbers STORE AS outer_ntab
 (NESTED TABLE COLUMN_VALUE STORE AS inner_ntab);

Creating a Table: LOB Column Example

The following statement is a variation of the statement that created the
pm.print_media table with some added LOB storage characteristics:

CREATE TABLE print_media_new
 (product_id NUMBER(6)
 , ad_id NUMBER(6)
 , ad_composite BLOB
 , ad_sourcetext CLOB
 , ad_finaltext CLOB
 , ad_fltextn NCLOB
 , ad_textdocs_ntab textdoc_tab
 , ad_photo BLOB
 , ad_graphic BFILE
 , ad_header adheader_typ
) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab_new
 LOB (ad_sourcetext, ad_finaltext) STORE AS
 (TABLESPACE example
 STORAGE (INITIAL 6144)
 CHUNK 4000
 NOCACHE LOGGING);

Chapter 15
CREATE TABLE

15-142

In the example, the database rounds the value of CHUNK up to 4096 (the nearest multiple of
the block size of 2048).

Index-Organized Table Example

The following statement is a variation of the sample table hr.countries, which is index
organized:

CREATE TABLE countries_demo
 (country_id CHAR(2)
 CONSTRAINT country_id_nn_demo NOT NULL
 , country_name VARCHAR2(40)
 , currency_name VARCHAR2(25)
 , currency_symbol VARCHAR2(3)
 , region VARCHAR2(15)
 , CONSTRAINT country_c_id_pk_demo
 PRIMARY KEY (country_id))
 ORGANIZATION INDEX
 INCLUDING country_name
 PCTTHRESHOLD 2
 STORAGE
 (INITIAL 4K)
 OVERFLOW
 STORAGE
 (INITIAL 4K);

External Table Example

The following statement creates an external table that represents a subset of the sample
table hr.departments. The TYPE clause specifies that the access driver type for the table is
ORACLE_LOADER. The ACCESS PARAMETERS() clause specifies parameter values for the
ORACLE_LOADER access driver. These parameters are shown in italics and form the
opaque_format_spec. The syntax for opaque_format_spec depends on the access driver type
and is outside the scope of this document. Refer to Oracle Database Utilities for details on
the ORACLE_LOADER access driver and the opaque_format_spec syntax.

CREATE TABLE dept_external (
 deptno NUMBER(6),
 dname VARCHAR2(20),
 loc VARCHAR2(25)
)
ORGANIZATION EXTERNAL
(TYPE oracle_loader
 DEFAULT DIRECTORY admin
 ACCESS PARAMETERS
 (
 RECORDS DELIMITED BY newline
 BADFILE 'ulcase1.bad'
 DISCARDFILE 'ulcase1.dis'
 LOGFILE 'ulcase1.log'
 SKIP 20
 FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"'
 (
 deptno INTEGER EXTERNAL(6),
 dname CHAR(20),
 loc CHAR(25)
)
)
 LOCATION ('ulcase1.ctl')
)
REJECT LIMIT UNLIMITED;

Chapter 15
CREATE TABLE

15-143

See Also:

"Creating a Directory: Examples" to see how the admin directory was created

XMLType Examples

This section contains brief examples of creating an XMLType table or XMLType column.
For a more expanded version of these examples, refer to "Using XML in SQL
Statements ".

XMLType Table Examples

The following example creates a very simple XMLType table with one implicit binary
XML column:

CREATE TABLE xwarehouses OF XMLTYPE;

The following example creates an XMLSchema-based table. The XMLSchema must
already have been created (see "Using XML in SQL Statements " for more
information):

CREATE TABLE xwarehouses OF XMLTYPE
 XMLSCHEMA "http://www.example.com/xwarehouses.xsd"
 ELEMENT "Warehouse";

You can define constraints on an XMLSchema-based table, and you can also create
indexes on XMLSchema-based tables, which greatly enhance subsequent queries.
You can create object-relational views on XMLType tables, and you can create XMLType
views on object-relational tables.

See Also:

• "Using XML in SQL Statements " for an example of adding a constraint

• "Creating an Index on an XMLType Table: Example" for an example of
creating an index

• "Creating an XMLType View: Example" for an example of creating an
XMLType view

XMLType Column Examples

The following example creates a table with an XMLType column stored as a CLOB. This
table does not require an XMLSchema, so the content structure is not predetermined:

CREATE TABLE xwarehouses (
 warehouse_id NUMBER,
 warehouse_spec XMLTYPE)
 XMLTYPE warehouse_spec STORE AS CLOB
 (TABLESPACE example
 STORAGE (INITIAL 6144)
 CHUNK 4000
 NOCACHE LOGGING);

Chapter 15
CREATE TABLE

15-144

The following example creates a similar table, but stores XMLType data in an object relational
XMLType column whose structure is determined by the specified schema:

CREATE TABLE xwarehouses (
 warehouse_id NUMBER,
 warehouse_spec XMLTYPE)
 XMLTYPE warehouse_spec STORE AS OBJECT RELATIONAL
 XMLSCHEMA "http://www.example.com/xwarehouses.xsd"
 ELEMENT "Warehouse";

The following example creates another similar table with an XMLType column stored as a
SecureFiles CLOB. This table does not require an XMLSchema, so the content structure is not
predetermined. SecureFiles LOBs require a tablespace with automatic segment-space
management, so the example uses the tablespace created in "Specifying Segment Space
Management for a Tablespace: Example".

CREATE TABLE xwarehouses (
 warehouse_id NUMBER,
 warehouse_spec XMLTYPE)
 XMLTYPE warehouse_spec STORE AS SECUREFILE CLOB
 (TABLESPACE auto_seg_ts
 STORAGE (INITIAL 6144)
 CACHE);

Partitioning Examples

Range Partitioning Example

The sales table in the sample schema sh is partitioned by range. The following example
shows an abbreviated variation of the sales table. Constraints and storage elements have
been omitted from the example.

CREATE TABLE range_sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
PARTITION BY RANGE (time_id)
 (PARTITION SALES_Q1_1998 VALUES LESS THAN (TO_DATE('01-APR-1998','DD-MON-YYYY')),
 PARTITION SALES_Q2_1998 VALUES LESS THAN (TO_DATE('01-JUL-1998','DD-MON-YYYY')),
 PARTITION SALES_Q3_1998 VALUES LESS THAN (TO_DATE('01-OCT-1998','DD-MON-YYYY')),
 PARTITION SALES_Q4_1998 VALUES LESS THAN (TO_DATE('01-JAN-1999','DD-MON-YYYY')),
 PARTITION SALES_Q1_1999 VALUES LESS THAN (TO_DATE('01-APR-1999','DD-MON-YYYY')),
 PARTITION SALES_Q2_1999 VALUES LESS THAN (TO_DATE('01-JUL-1999','DD-MON-YYYY')),
 PARTITION SALES_Q3_1999 VALUES LESS THAN (TO_DATE('01-OCT-1999','DD-MON-YYYY')),
 PARTITION SALES_Q4_1999 VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-MON-YYYY')),
 PARTITION SALES_Q1_2000 VALUES LESS THAN (TO_DATE('01-APR-2000','DD-MON-YYYY')),
 PARTITION SALES_Q2_2000 VALUES LESS THAN (TO_DATE('01-JUL-2000','DD-MON-YYYY')),
 PARTITION SALES_Q3_2000 VALUES LESS THAN (TO_DATE('01-OCT-2000','DD-MON-YYYY')),
 PARTITION SALES_Q4_2000 VALUES LESS THAN (MAXVALUE))
;

For information about partitioned table maintenance operations, see Oracle Database VLDB
and Partitioning Guide.

Range Partitioning Live SQL Example

Chapter 15
CREATE TABLE

15-145

The following statement creates a table partitioned by range:

CREATE TABLE empl_h
 (
 employee_id NUMBER(6) PRIMARY KEY,
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 phone_number VARCHAR2(20),
 hire_date DATE DEFAULT SYSDATE,
 job_id VARCHAR2(10),
 salary NUMBER(8, 2),
 part_name VARCHAR2(25)
) PARTITION BY RANGE (hire_date) (
PARTITION hire_q1 VALUES less than(to_date('01-APR-2014', 'DD-MON-YYYY')),
PARTITION hire_q2 VALUES less than(to_date('01-JUL-2014', 'DD-MON-YYYY')),
PARTITION hire_q3 VALUES less than(to_date('01-OCT-2014', 'DD-MON-YYYY')),
PARTITION hire_q4 VALUES less than(to_date('01-JAN-2015', 'DD-MON-YYYY'))
);

The following statements insert rows into the partitions:

INSERT INTO empl_h (employee_id, first_name, last_name, email, phone_number,
hire_date, job_id, salary, Part_name)
VALUES (1, 'Jane', 'Doe', 'example.com', '415.555.0100', '10-Feb-2014', '1001',
5001,'HIRE_Q1');

INSERT INTO empl_h (employee_id, first_name, last_name, email, phone_number,
hire_date, job_id, salary, Part_name)
VALUES (2, 'John', 'Doe', 'example.net', '415.555.0101', '10-Apr-2014', '1002',
7001,'HIRE_Q2');

INSERT INTO empl_h (employee_id, first_name, last_name, email, phone_number,
hire_date, job_id, salary, Part_name)
VALUES (3, 'Isabelle', 'Owl', 'example.org', '415.555.0102', '10-Sep-2014',
'1003', 10001,'HIRE_Q3');

INSERT INTO empl_h (employee_id, first_name, last_name, email, phone_number,
hire_date, job_id, salary, Part_name)
VALUES (4, 'Smith', 'Jones', 'example.in', '415.555.0103', '10-Dec-2014',
'1004', 12001,'HIRE_Q4');

The following statements display the partition names using data dictionary tables:

SELECT PARTITION_NAME FROM USER_TAB_PARTITIONS WHERE TABLE_NAME = 'EMPL_H';

PARTITION_NAME

HIRE_Q1
HIRE_Q2
HIRE_Q3
HIRE_Q4

SELECT TABLE_NAME, PARTITIONING_TYPE, STATUS FROM USER_PART_TABLES WHERE
TABLE_NAME = 'EMPL_H';

TABLE_NAME PARTITIONING_TYPE STATUS
---------- ----------------- ------
EMPL_H RANGE VALID

Chapter 15
CREATE TABLE

15-146

The following statement creates a table named parts by selecting a particular column from
the data dictionary table user_tab_partitions:

CREATE TABLE parts (p_name) AS SELECT PARTITION_NAME FROM USER_TAB_PARTITIONS WHERE
TABLE_NAME = 'EMPL_H';

The following statement displays the table data:

select * from parts;

P_NAME

HIRE_Q1
HIRE_Q2
HIRE_Q3
HIRE_Q4

The following statement compares the columns from the two tables and displays the
information based on the comparison:

select E.HIRE_DATE,E.JOB_ID,P.p_name from empl_h E, parts P where E.Part_name =
P.p_name;

HIRE_DATE JOB_ID P_NAME
--------- ---------- ------------
10-FEB-14 1001 HIRE_Q1
10-APR-14 1002 HIRE_Q2
10-SEP-14 1003 HIRE_Q3
10-DEC-14 1004 HIRE_Q4

Interval Partitioning Example

The following example creates a variation of the oe.customers table that is partitioned by
interval on the credit_limit column. One range partition is created to establish the transition
point. All of the original data in the table is within the bounds of the range partition. Then data
is added that exceeds the range partition, and the database creates a new interval partition.

CREATE TABLE customers_demo (
 customer_id number(6),
 cust_first_name varchar2(20),
 cust_last_name varchar2(20),
 credit_limit number(9,2))
PARTITION BY RANGE (credit_limit)
INTERVAL (1000)
(PARTITION p1 VALUES LESS THAN (5001));

INSERT INTO customers_demo
 (customer_id, cust_first_name, cust_last_name, credit_limit)
 (select customer_id, cust_first_name, cust_last_name, credit_limit
 from customers);

Query the USER_TAB_PARTITIONS data dictionary view before the database creates the
interval partition:

SELECT partition_name, high_value FROM user_tab_partitions WHERE table_name =
'CUSTOMERS_DEMO';

PARTITION_NAME HIGH_VALUE
------------------------------ ---------------
P1 5001

Chapter 15
CREATE TABLE

15-147

Insert data into the table that exceeds the high value of the range partition:

INSERT INTO customers_demo
 VALUES (699, 'Fred', 'Flintstone', 5500);

Query the USER_TAB_PARTITIONS view again after the insert to learn the system-
generated name of the interval partition created to accommodate the inserted data.
(The system-generated name will vary for each session.)

SELECT partition_name, high_value FROM user_tab_partitions
 WHERE table_name = 'CUSTOMERS_DEMO'
 ORDER BY partition_name;

PARTITION_NAME HIGH_VALUE
------------------------------ ---------------
P1 5001
SYS_P44 6001

List Partitioning Example

The following statement shows how the sample table oe.customers might have been
created as a list-partitioned table. Some columns and all constraints of the sample
table have been omitted in this example.

CREATE TABLE list_customers
 (customer_id NUMBER(6)
 , cust_first_name VARCHAR2(20)
 , cust_last_name VARCHAR2(20)
 , cust_address CUST_ADDRESS_TYP
 , nls_territory VARCHAR2(30)
 , cust_email VARCHAR2(40))
 PARTITION BY LIST (nls_territory) (
 PARTITION asia VALUES ('CHINA', 'THAILAND'),
 PARTITION europe VALUES ('GERMANY', 'ITALY', 'SWITZERLAND'),
 PARTITION west VALUES ('AMERICA'),
 PARTITION east VALUES ('INDIA'),
 PARTITION rest VALUES (DEFAULT));

Partitioned Table with LOB Columns Example

This statement creates a partitioned table print_media_demo with two partitions p1 and
p2, and a number of LOB columns. The statement uses the sample table
pm.print_media.

CREATE TABLE print_media_demo
 (product_id NUMBER(6)
 , ad_id NUMBER(6)
 , ad_composite BLOB
 , ad_sourcetext CLOB
 , ad_finaltext CLOB
 , ad_fltextn NCLOB
 , ad_textdocs_ntab textdoc_tab
 , ad_photo BLOB
 , ad_graphic BFILE
 , ad_header adheader_typ
) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nestedtab_demo
 LOB (ad_composite, ad_photo, ad_finaltext)
 STORE AS(STORAGE (INITIAL 20M))
 PARTITION BY RANGE (product_id)
 (PARTITION p1 VALUES LESS THAN (3000) TABLESPACE tbs_01
 LOB (ad_composite, ad_photo)

Chapter 15
CREATE TABLE

15-148

 STORE AS (TABLESPACE tbs_02 STORAGE (INITIAL 10M))
 NESTED TABLE ad_textdocs_ntab STORE AS nt_p1 (TABLESPACE example),
 PARTITION P2 VALUES LESS THAN (MAXVALUE)
 LOB (ad_composite, ad_finaltext)
 STORE AS SECUREFILE (TABLESPACE auto_seg_ts)
 NESTED TABLE ad_textdocs_ntab STORE AS nt_p2
)
 TABLESPACE tbs_03;

Partition p1 will be in tablespace tbs_01. The LOB data partitions for ad_composite and
ad_photo will be in tablespace tbs_02. The LOB data partition for the remaining LOB
columns will be in tablespace tbs_01. The storage attribute INITIAL is specified for LOB
columns ad_composite and ad_photo. Other attributes will be inherited from the default table-
level specification. The default LOB storage attributes not specified at the table level will be
inherited from the tablespace tbs_02 for columns ad_composite and ad_photo and from
tablespace tbs_01 for the remaining LOB columns. LOB index partitions will be in the same
tablespaces as the corresponding LOB data partitions. Other storage attributes will be based
on values of the corresponding attributes of the LOB data partitions and default attributes of
the tablespace where the index partitions reside. The nested table partition for
ad_textdocs_ntab will be stored as nt_p1 in tablespace example.

Partition p2 will be in the default tablespace tbs_03. The LOB data for ad_composite and
ad_finaltext will be in tablespace auto_seg_ts as SecureFiles LOBs. The LOB data for the
remaining LOB columns will be in tablespace tbs_03. The LOB index for columns
ad_composite and ad_finaltext will be in tablespace auto_seg_ts. The LOB index for the
remaining LOB columns will be in tablespace tbs_03. The nested table partition for
ad_textdocs_ntab will be stored as nt_p2 in the default tablespace tbs_03.

Hash Partitioning Example

The sample table oe.product_information is not partitioned. However, you might want to
partition such a large table by hash for performance reasons, as shown in this example. The
tablespace names are hypothetical in this example.

CREATE TABLE hash_products
 (product_id NUMBER(6) PRIMARY KEY
 , product_name VARCHAR2(50)
 , product_description VARCHAR2(2000)
 , category_id NUMBER(2)
 , weight_class NUMBER(1)
 , warranty_period INTERVAL YEAR TO MONTH
 , supplier_id NUMBER(6)
 , product_status VARCHAR2(20)
 , list_price NUMBER(8,2)
 , min_price NUMBER(8,2)
 , catalog_url VARCHAR2(50)
 , CONSTRAINT product_status_lov_demo
 CHECK (product_status in ('orderable'
 ,'planned'
 ,'under development'
 ,'obsolete')
))
 PARTITION BY HASH (product_id)
 PARTITIONS 4
 STORE IN (tbs_01, tbs_02, tbs_03, tbs_04);

Reference Partitioning Example

Chapter 15
CREATE TABLE

15-149

The next statement uses the hash_products partitioned table created in the preceding
example. It creates a variation of the oe.order_items table that is partitioned by
reference to the hash partitioning on the product id of hash_products. The resulting
child table will be created with five partitions. For each row of the child table
part_order_items, the database evaluates the foreign key value (product_id) to
determine the partition number of the parent table hash_products to which the
referenced key belongs. The part_order_items row is placed in its corresponding
partition.

CREATE TABLE part_order_items (
 order_id NUMBER(12) PRIMARY KEY,
 line_item_id NUMBER(3),
 product_id NUMBER(6) NOT NULL,
 unit_price NUMBER(8,2),
 quantity NUMBER(8),
 CONSTRAINT product_id_fk
 FOREIGN KEY (product_id) REFERENCES hash_products(product_id))
 PARTITION BY REFERENCE (product_id_fk);

Composite-Partitioned Table Examples

The table created in the "Range Partitioning Example" divides data by time of sale. If
you plan to access recent data according to distribution channel as well as time, then
composite partitioning might be more appropriate. The following example creates a
copy of that range_sales table but specifies range-hash composite partitioning. The
partitions with the most recent data are subpartitioned with both system-generated and
user-defined subpartition names. Constraints and storage attributes have been omitted
from the example.

CREATE TABLE composite_sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
PARTITION BY RANGE (time_id)
SUBPARTITION BY HASH (channel_id)
 (PARTITION SALES_Q1_1998 VALUES LESS THAN (TO_DATE('01-APR-1998','DD-MON-YYYY')),
 PARTITION SALES_Q2_1998 VALUES LESS THAN (TO_DATE('01-JUL-1998','DD-MON-YYYY')),
 PARTITION SALES_Q3_1998 VALUES LESS THAN (TO_DATE('01-OCT-1998','DD-MON-YYYY')),
 PARTITION SALES_Q4_1998 VALUES LESS THAN (TO_DATE('01-JAN-1999','DD-MON-YYYY')),
 PARTITION SALES_Q1_1999 VALUES LESS THAN (TO_DATE('01-APR-1999','DD-MON-YYYY')),
 PARTITION SALES_Q2_1999 VALUES LESS THAN (TO_DATE('01-JUL-1999','DD-MON-YYYY')),
 PARTITION SALES_Q3_1999 VALUES LESS THAN (TO_DATE('01-OCT-1999','DD-MON-YYYY')),
 PARTITION SALES_Q4_1999 VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-MON-YYYY')),
 PARTITION SALES_Q1_2000 VALUES LESS THAN (TO_DATE('01-APR-2000','DD-MON-YYYY')),
 PARTITION SALES_Q2_2000 VALUES LESS THAN (TO_DATE('01-JUL-2000','DD-MON-YYYY'))
 SUBPARTITIONS 8,
 PARTITION SALES_Q3_2000 VALUES LESS THAN (TO_DATE('01-OCT-2000','DD-MON-YYYY'))
 (SUBPARTITION ch_c,
 SUBPARTITION ch_i,
 SUBPARTITION ch_p,
 SUBPARTITION ch_s,
 SUBPARTITION ch_t),
 PARTITION SALES_Q4_2000 VALUES LESS THAN (MAXVALUE)
 SUBPARTITIONS 4)
;

Chapter 15
CREATE TABLE

15-150

The following examples creates a partitioned table of customers based on the sample table
oe.customers. In this example, the table is partitioned on the credit_limit column and list
subpartitioned on the nls_territory column. The subpartition template determines the
subpartitioning of any subsequently added partitions, unless you override the template by
defining individual subpartitions. This composite partitioning makes it possible to query the
table based on a credit limit range within a specified region:

CREATE TABLE customers_part (
 customer_id NUMBER(6),
 cust_first_name VARCHAR2(20),
 cust_last_name VARCHAR2(20),
 nls_territory VARCHAR2(30),
 credit_limit NUMBER(9,2))
 PARTITION BY RANGE (credit_limit)
 SUBPARTITION BY LIST (nls_territory)
 SUBPARTITION TEMPLATE
 (SUBPARTITION east VALUES
 ('CHINA', 'JAPAN', 'INDIA', 'THAILAND'),
 SUBPARTITION west VALUES
 ('AMERICA', 'GERMANY', 'ITALY', 'SWITZERLAND'),
 SUBPARTITION other VALUES (DEFAULT))
 (PARTITION p1 VALUES LESS THAN (1000),
 PARTITION p2 VALUES LESS THAN (2500),
 PARTITION p3 VALUES LESS THAN (MAXVALUE));

Object Column and Table Examples

Creating Object Tables: Examples

Consider object type department_typ:

CREATE TYPE department_typ AS OBJECT
 (d_name VARCHAR2(100),
 d_address VARCHAR2(200));
/

Object table departments_obj_t holds department objects of type department_typ:

CREATE TABLE departments_obj_t OF department_typ;

The following statement creates object table salesreps with a user-defined object type,
salesrep_typ:

CREATE OR REPLACE TYPE salesrep_typ AS OBJECT
 (repId NUMBER,
 repName VARCHAR2(64));

CREATE TABLE salesreps OF salesrep_typ;

Creating a Table with a User-Defined Object Identifier: Example

This example creates an object type and a corresponding object table whose object identifier
is primary key based:

CREATE TYPE employees_typ AS OBJECT
 (e_no NUMBER, e_address CHAR(30));
/

CREATE TABLE employees_obj_t OF employees_typ (e_no PRIMARY KEY)
 OBJECT IDENTIFIER IS PRIMARY KEY;

Chapter 15
CREATE TABLE

15-151

You can subsequently reference the employees_obj_t object table using either
inline_ref_constraint or out_of_line_ref_constraint syntax:

CREATE TABLE departments_t
 (d_no NUMBER,
 mgr_ref REF employees_typ SCOPE IS employees_obj_t);

CREATE TABLE departments_t (
 d_no NUMBER,
 mgr_ref REF employees_typ
 CONSTRAINT mgr_in_emp REFERENCES employees_obj_t);

Specifying Constraints on Type Columns: Example

The following example shows how to define constraints on attributes of an object type
column:

CREATE TYPE address_t AS OBJECT
 (hno NUMBER,
 street VARCHAR2(40),
 city VARCHAR2(20),
 zip VARCHAR2(5),
 phone VARCHAR2(10));
/

CREATE TYPE person AS OBJECT
 (name VARCHAR2(40),
 dateofbirth DATE,
 homeaddress address_t,
 manager REF person);
/

CREATE TABLE persons OF person
 (homeaddress NOT NULL,
 UNIQUE (homeaddress.phone),
 CHECK (homeaddress.zip IS NOT NULL),
 CHECK (homeaddress.city <> 'San Francisco'));

CREATE TABLESPACE
Purpose

Use the CREATE TABLESPACE statement to create a tablespace, which is an allocation
of space in the database that can contain schema objects.

• A permanent tablespace contains persistent schema objects. Objects in
permanent tablespaces are stored in data files.

• An undo tablespace is a type of permanent tablespace used by Oracle Database
to manage undo data if you are running your database in automatic undo
management mode. Oracle strongly recommends that you use automatic undo
management mode rather than using rollback segments for undo.

• A temporary tablespace contains schema objects only for the duration of a
session. Objects in temporary tablespaces are stored in temp files.

When you create a tablespace, it is initially a read/write tablespace. You can
subsequently use the ALTER TABLESPACE statement to take the tablespace offline or
online, add data files or temp files to it, or make it a read-only tablespace.

Chapter 15
CREATE TABLESPACE

15-152

You can also drop a tablespace from the database with the DROP TABLESPACE statement.

See Also:

• Oracle Database Concepts for information on tablespaces

• ALTER TABLESPACE and DROP TABLESPACE for information on modifying
and dropping tablespaces

Prerequisites

You must have the CREATE TABLESPACE system privilege. To create the SYSAUX tablespace,
you must have the SYSDBA system privilege.

Before you can create a tablespace, you must create a database to contain it, and the
database must be open.

See Also:

CREATE DATABASE

To use objects in a tablespace other than the SYSTEM tablespace:

• If you are running the database in automatic undo management mode, then at least one
UNDO tablespace must be online.

• If you are running the database in manual undo management mode, then at least one
rollback segment other than the SYSTEM rollback segment must be online.

Note:

Oracle strongly recommends that you run your database in automatic undo
management mode. For more information, refer to Oracle Database Administrator's
Guide.

Syntax

create_tablespace::=

CREATE

BIGFILE

SMALLFILE
permanent_tablespace_clause

temporary_tablespace_clause

undo_tablespace_clause

;

(permanent_tablespace_clause::=, temporary_tablespace_clause::=,
undo_tablespace_clause::=)

Chapter 15
CREATE TABLESPACE

15-153

permanent_tablespace_clause::=

TABLESPACE tablespace

DATAFILE file_specification

,

permanent_tablespace_attrs

IN SHARDSPACE shardspace

(file_specification::=, permanent_tablespace_attrs::=)

permanent_tablespace_attrs::=

MINIMUM EXTENT size_clause

BLOCKSIZE integer

K

logging_clause

FORCE LOGGING

tablespace_encryption_clause

default_tablespace_params

ONLINE

OFFLINE

extent_management_clause

segment_management_clause

flashback_mode_clause

lost_write_protection

(size_clause::=, logging_clause::=, tablespace_encryption_clause::=,
default_tablespace_params::=, extent_management_clause::=,
segment_management_clause::=, flashback_mode_clause::=)

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

Chapter 15
CREATE TABLESPACE

15-154

tablespace_encryption_clause::=

ENCRYPTION

tablespace_encryption_spec

ENCRYPT

DECRYPT

(tablespace_encryption_spec::=)

tablespace_encryption_spec::=

USING ’ encrypt_algorithm ’

default_tablespace_params::=

DEFAULT

default_table_compression default_index_compression inmemory_clause

ilm_clause storage_clause

(default_table_compression::=, default_index_compression::=, inmemory_clause::=,
ilm_clause::=—part of CREATE TABLE syntax, storage_clause::=)

Note:

If you specify the DEFAULT clause, then you must specify at least one of the clauses
default_table_compression, default_index_compression, inmemory_clause,
ilm_clause, or storage_clause.

default_table_compression::=

TABLE

COMPRESS FOR OLTP

COMPRESS FOR QUERY

LOW

HIGH

COMPRESS FOR ARCHIVE

LOW

HIGH

NOCOMPRESS

Chapter 15
CREATE TABLESPACE

15-155

default_index_compression::=

INDEX

COMPRESS ADVANCED

LOW

HIGH

NOCOMPRESS

inmemory_clause::=

INMEMORY

inmemory_attributes

TEXT

column_name

,

column_name USING policy_name

,

NO INMEMORY

inmemory_attributes::=

inmemory_memcompress inmemory_priority inmemory_distribute

inmemory_duplicate inmemory_spatial

(inmemory_memcompress::=, inmemory_priority::=,
inmemory_distribute_tablespace::=, inmemory_duplicate::=)

inmemory_memcompress::=

MEMCOMPRESS FOR

DML

QUERY

CAPACITY

LOW

HIGH

NO MEMCOMPRESS

MEMCOMPRESS AUTO

Chapter 15
CREATE TABLESPACE

15-156

inmemory_priority::=

PRIORITY

NONE

LOW

MEDIUM

HIGH

CRITICAL

inmemory_distribute_tablespace::=

DISTRIBUTE

AUTO

BY ROWID RANGE

FOR SERVICE

DEFAULT

ALL

service_name

NONE

inmemory_duplicate::=

DUPLICATE

ALL

NO DUPLICATE

extent_management_clause::=

EXTENT MANAGEMENT LOCAL

AUTOALLOCATE

UNIFORM

SIZE size_clause

(size_clause::=)

segment_management_clause::=

SEGMENT SPACE MANAGEMENT

AUTO

MANUAL

Chapter 15
CREATE TABLESPACE

15-157

flashback_mode_clause::=

FLASHBACK

ON

OFF

undo_tablespace_clause::=

UNDO TABLESPACE tablespace

DATAFILE file_specification

,

extent_management_clause tablespace_retention_clause tablespace_encryption_clause

(file_specification::=, extent_management_clause::=, tablespace_retention_clause::=)

tablespace_retention_clause::=

RETENTION

GUARANTEE

NOGUARANTEE

temporary_tablespace_clause::=

TEMPORARY TABLESPACE

LOCAL TEMPORARY TABLESPACE FOR
ALL

LEAF

tablespace

TEMPFILE file_specification

,

tablespace_group_clause extent_management_clause

tablespace_encryption_clause

(file_specification::=, tablespace_group_clause::=, extent_management_clause::=,
tablespace_encryption_clause::=)

Chapter 15
CREATE TABLESPACE

15-158

tablespace_group_clause::=

TABLESPACE GROUP
tablespace_group_name

’ ’

lost_write_protection ::=

ENABLE

DISABLE

REMOVE

SUSPEND

LOST WRITE PROTECTION

Semantics

BIGFILE | SMALLFILE

Use this clause to determine whether the tablespace is a bigfile or smallfile tablespace. This
clause overrides any default tablespace type setting for the database.

• A bigfile tablespace contains only one data file or temp file, which can contain up to
approximately 4 billion (232) blocks. The minimum size of the single data file or temp file
is 12 megabytes (MB) for a tablespace with 32K blocks and 7MB for a tablespace with 8K
blocks. The maximum size of the single data file or temp file is 128 terabytes (TB) for a
tablespace with 32K blocks and 32TB for a tablespace with 8K blocks.

• A smallfile tablespace is a traditional Oracle tablespace, which can contain 1022 data
files or temp files, each of which can contain up to approximately 4 million (222) blocks.

If you omit this clause, then Oracle Database uses the current default tablespace type of
permanent or temporary tablespace that is set for the database. If you specify BIGFILE for a
permanent tablespace, then the database by default creates a locally managed tablespace
with automatic segment-space management.

Restriction on Bigfile Tablespaces

You can specify only one data file in the DATAFILE clause or one temp file in the TEMPFILE
clause.

See Also:

• Oracle Database Administrator's Guide for more information on using bigfile
tablespaces

• "Creating a Bigfile Tablespace: Example"

Chapter 15
CREATE TABLESPACE

15-159

permanent_tablespace_clause

Use the following clauses to create a permanent tablespace. (Some of these clauses
are also used to create a temporary or undo tablespace.)

tablespace

Specify the name of the tablespace to be created. The name must satisfy the
requirements listed in "Database Object Naming Rules ".

Note on the SYSAUX Tablespace

SYSAUX is a required auxiliary system tablespace. You must use the CREATE
TABLESPACE statement to create the SYSAUX tablespace if you are upgrading from a
release earlier than Oracle Database 11g. You must have the SYSDBA system privilege
to specify this clause, and you must have opened the database in UPGRADE mode.

You must specify EXTENT MANAGEMENT LOCAL and SEGMENT SPACE MANAGEMENT AUTO for
the SYSAUX tablespace. The DATAFILE clause is optional only if you have enabled
Oracle Managed Files. See "DATAFILE | TEMPFILE Clause" for the behavior of the
DATAFILE clause.

Take care to allocate sufficient space for the SYSAUX tablespace. For guidelines on
creating this tablespace, refer to Oracle Database Upgrade Guide.

Restrictions on the SYSAUX Tablespace

You cannot specify OFFLINE or TEMPORARY for the SYSAUX tablespace.

DATAFILE | TEMPFILE Clause

Specify the data files to make up the permanent tablespace or the temp files to make
up the temporary tablespace. Use the datafile_tempfile_spec form of
file_specification to create regular data files and temp files in an operating system
file system or to create Oracle Automatic Storage Management (Oracle ASM) disk
group files.

You must specify the DATAFILE or TEMPFILE clause unless you have enabled Oracle
Managed Files by setting a value for the DB_CREATE_FILE_DEST initialization parameter.
For Oracle ASM disk group files, the parameter must be set to a multiple file creation
form of Oracle ASM filenames. If this parameter is set, then the database creates a
system-named 100 MB file in the default file destination specified in the parameter.
The file has AUTOEXTEND enabled and an unlimited maximum size.

Note:

Media recovery does not recognize temp files.

Chapter 15
CREATE TABLESPACE

15-160

See Also:

• Oracle Automatic Storage Management Administrator's Guide for more
information on using Oracle ASM

• file_specification for a full description, including the AUTOEXTEND parameter and
the multiple file creation form of Oracle ASM filenames

Notes on Specifying Data Files and Temp Files

• You can create a tablespace within an Oracle ASM disk group by providing only the disk
group name in the datafile_tempfile_spec. In this case, Oracle ASM creates a data file
in the specified disk group with a system-generated filename. The data file is auto-
extensible with an unlimited maximum size and a default size of 100 MB. You can use the
autoextend_clause to override the default size.

• If you use one of the reference forms of the ASM_filename, which refers to an existing file,
then you must also specify REUSE.

Note:

On some operating systems, Oracle does not allocate space for a temp file until the
temp file blocks are actually accessed. This delay in space allocation results in
faster creation and resizing of temp files, but it requires that sufficient disk space is
available when the temp files are later used. To avoid potential problems, before
you create or resize a temp file, ensure that the available disk space exceeds the
size of the new temp file or the increased size of a resized temp file. The excess
space should allow for anticipated increases in disk space use by unrelated
operations as well. Then proceed with the creation or resizing operation.

See Also:

• file_specification for a full description, including the AUTOEXTEND parameter

• "Enabling Autoextend for a Tablespace: Example" and "Creating Oracle
Managed Files: Examples"

permanent_tablespace_attrs

Use the permanent_tablespace_attrs clauses to set the attributes of the tablespace.

MINIMUM EXTENT Clause

This clause is valid only for a dictionary-managed tablespace. Specify the minimum size of an
extent in the tablespace. This clause lets you control free space fragmentation in the
tablespace by ensuring that the size of every used or free extent in a tablespace is at least as
large as, and is a multiple of, the value specified in the size_clause.

Chapter 15
CREATE TABLESPACE

15-161

See Also:

size_clause for information on that clause and Oracle Database VLDB and
Partitioning Guide for more information about using MINIMUM EXTENT to
control fragmentation

BLOCKSIZE Clause

Use the BLOCKSIZE clause to specify a nonstandard block size for the tablespace. In
order to specify this clause, the DB_CACHE_SIZE and at least one DB_nK_CACHE_SIZE
parameter must be set, and the integer you specify in this clause must correspond with
the setting of one DB_nK_CACHE_SIZE parameter setting.

Restriction on BLOCKSIZE

You cannot specify nonstandard block sizes for a temporary tablespace or if you intend
to assign this tablespace as the temporary tablespace for any users.

Note:

Oracle recommend that you do not store tablespaces with a 2K block size on
4K sector size disks, because performance degradation can result.

See Also:

Oracle Database Reference for information on the DB_nK_CACHE_SIZE
parameter and Oracle Database Concepts for information on multiple block
sizes

logging_clause

Specify the default logging attributes of all tables, indexes, materialized views,
materialized view logs, and partitions within the tablespace. This clause is not valid for
a temporary or undo tablespace.

If you omit this clause, then the default is LOGGING. The exception is creating a
tablespace in a PDB. In this case, if you omit this clause, then the tablespace uses the
logging attribute of the PDB. Refer to the logging_clause of CREATE PLUGGABLE
DATABASE for more information.

The tablespace-level logging attribute can be overridden by logging specifications at
the table, index, materialized view, materialized view log, and partition levels.

See Also:

logging_clause for a full description of this clause

Chapter 15
CREATE TABLESPACE

15-162

FORCE LOGGING

Use this clause to put the tablespace into FORCE LOGGING mode. Oracle Database will log all
changes to all objects in the tablespace except changes to temporary segments, overriding
any NOLOGGING setting for individual objects. The database must be open and in READ WRITE
mode.

This setting does not exclude the NOLOGGING attribute. You can specify both FORCE LOGGING
and NOLOGGING. In this case, NOLOGGING is the default logging mode for objects subsequently
created in the tablespace, but the database ignores this default as long as the tablespace or
the database is in FORCE LOGGING mode. If you subsequently take the tablespace out of FORCE
LOGGING mode, then the NOLOGGING default is once again enforced.

Note:

FORCE LOGGING mode can have performance effects. Refer to Oracle Database
Administrator's Guide for information on when to use this setting.

Restriction on Forced Logging

You cannot specify FORCE LOGGING for an undo or temporary tablespace.

tablespace_encryption_clause

Use this clause to specify whether to create an encrypted or unencrypted tablespace. If you
create an encrypted tablespace, then Transparent Data Encryption (TDE) is applied to all
data files of the tablespace.

ENCRYPT | DECRYPT
Specify ENCRYPT to create an encrypted tablespace. Specify DECRYPT to create an
unencrypted tablespace.

If you omit this clause, then the value of the ENCRYPT_NEW_TABLESPACES initialization
parameter determines whether the tablespace is encrypted upon creation. Refer to Oracle
Database Reference for more information on the ENCRYPT_NEW_TABLESPACES initialization
parameter.

Before issuing this clause, you must already have loaded the TDE master key into database
memory or established a connection to the HSM. For more information, see the
open_keystore clause of ADMINISTER KEY MANAGEMENT or "SET ENCRYPTION WALLET
Clause" of ALTER SYSTEM.

tablespace_encryption_spec

Specify USING 'encrypt_algorithm' to indicate the name of the encryption algorithm to be
used. Valid algorithms are AES256, AES192, AES128 and 3DES168. If the COMPATIBLE
initialization parameter is set to 12.2 or higher, then the following algorithms are also valid:
ARIA128, ARIA192, ARIA256, GOST256, and SEED128.. If you omit this clause, then the database
uses AES128.

Chapter 15
CREATE TABLESPACE

15-163

See Also:

"Creating an Encrypted Tablespace: Example"

default_tablespace_params

The DEFAULT clause lets you specify default parameters for the tablespace.

default_table_compression

Use this clause to specify default compression of data for all tables created in the
tablespace. This clause is not valid for a temporary tablespace. The subclauses of this
clause have the same semantics as they have for the table_compression clause of
the CREATE TABLE statement, with one exception: The COMPRESS FOR OLTP clause here
is equivalent to the ROW STORE COMPRESS ADVANCED clause of CREATE TABLE. Refer to the
table_compression clauses of CREATE TABLE for the full semantics of these subclauses.

default_index_compression

Use this clause to specify default compression of data for all indexes created in the
tablespace. This clause is not valid for a temporary tablespace. The subclauses of this
clause have the same semantics as they have for the advanced_index_compression
clause of the CREATE INDEX statement. Refer to the advanced_index_compression
clause of CREATE INDEX for the full semantics of these subclauses.

inmemory_clause

Use the inmemory_clause to specify the default In-Memory Column Store (IM column
store) settings for all tables and materialized views created in the tablespace. This
clause is not valid for a temporary tablespace.

• Specify INMEMORY to enable all tables and materialized views for the IM column
store.

You can optionally use the inmemory_attributes clause to specify how the table
or materialized view data is stored in the IM column store. The
inmemory_attributes clause has the same semantics in CREATE TABLE and
CREATE TABLESPACE. Refer to the inmemory_attributes clause of CREATE TABLE for
the full semantics of this clause.

• Specify NO INMEMORY to disable all tables and materialized views for the IM column
store. This is the default.

ilm_clause

Use the ilm_clause to specify default Automatic Data Optimization settings for all
tables created in the tablespace. This clause is not valid for a temporary tablespace.
Refer to the ilm_clause of CREATE TABLE for the full semantics of this clause.

storage_clause

Use the storage_clause to specify storage parameters for all objects created in the
tablespace. This clause is not valid for a temporary tablespace or a locally managed
tablespace. For a dictionary-managed tablespace, you can specify the following

Chapter 15
CREATE TABLESPACE

15-164

storage parameters with this clause: ENCRYPT, INITIAL, NEXT, MINEXTENTS, MAXEXTENTS,
MAXSIZE, and PCTINCREASE. Refer to storage_clause for more information.

Note:

The ENCRYPT clause of the storage_clause is supported for backward compatibility.
However, beginning with Oracle Database 12c Release 2 (12.2), you can instead
specify ENCRYPT in the tablespace_encryption_clause. Refer to
tablespace_encryption_clause for more information.

See Also:

"Creating Basic Tablespaces: Examples"

ONLINE | OFFLINE Clauses

Use these clauses to determine whether the tablespace is online or offline. This clause is not
valid for a temporary tablespace.

ONLINE

Specify ONLINE to make the tablespace available immediately after creation to users who
have been granted access to the tablespace. This is the default.

OFFLINE

Specify OFFLINE to make the tablespace unavailable immediately after creation.

The data dictionary view DBA_TABLESPACES indicates whether each tablespace is online or
offline.

extent_management_clause

The extent_management_clause lets you specify how the extents of the tablespace will be
managed.

Note:

After you have specified extent management with this clause, you can change
extent management only by migrating the tablespace.

• AUTOALLOCATE specifies that the tablespace is system managed. Users cannot specify an
extent size. You cannot specify AUTOALLOCATE for a temporary tablespace.

• UNIFORM specifies that the tablespace is managed with uniform extents of SIZE bytes.The
default SIZE is 1 megabyte. All extents of temporary tablespaces are of uniform size, so
this keyword is optional for a temporary tablespace. However, you must specify UNIFORM
in order to specify SIZE. You cannot specify UNIFORM for an undo tablespace.

Chapter 15
CREATE TABLESPACE

15-165

If you do not specify AUTOALLOCATE or UNIFORM, then the default is UNIFORM for
temporary tablespaces and AUTOALLOCATE for all other types of tablespaces.

If you do not specify the extent_management_clause, then Oracle Database interprets
the MINIMUM EXTENT clause and the DEFAULT storage_clause to determine extent
management.

Note:

The DICTIONARY keyword is deprecated. It is still supported for backward
compatibility. However, Oracle recommends that you create locally managed
tablespaces. Locally managed tablespaces are much more efficiently
managed than dictionary-managed tablespaces. The creation of new
dictionary-managed tablespaces is scheduled for desupport.

See Also:

Oracle Database Concepts for a discussion of locally managed tablespaces

Restrictions on Extent Management

Extent management is subject to the following restrictions:

• A permanent locally managed tablespace can contain only permanent objects. If
you need a locally managed tablespace to store temporary objects, for example, if
you will assign it as a user's temporary tablespace, then use the
temporary_tablespace_clause.

• If you specify this clause, then you cannot specify DEFAULT storage_clause,
MINIMUM EXTENT, or the temporary_tablespace_clause.

See Also:

Oracle Database Administrator's Guide for information on changing extent
management by migrating tablespaces and "Creating a Locally Managed
Tablespace: Example"

segment_management_clause

The segment_management_clause is relevant only for permanent, locally managed
tablespaces. It lets you specify whether Oracle Database should track the used and
free space in the segments in the tablespace using free lists or bitmaps. This clause is
not valid for a temporary tablespace.

AUTO

Specify AUTO if you want the database to manage the free space of segments in the
tablespace using a bitmap. If you specify AUTO, then the database ignores any
specification for PCTUSED, FREELIST, and FREELIST GROUPS in subsequent storage

Chapter 15
CREATE TABLESPACE

15-166

specifications for objects in this tablespace. This setting is called automatic segment-space
management and is the default.

MANUAL

Specify MANUAL if you want the database to manage the free space of segments in the
tablespace using free lists. Oracle strongly recommends that you do not use this setting and
that you create tablespaces with automatic segment-space management.

To determine the segment management of an existing tablespace, query the
SEGMENT_SPACE_MANAGEMENT column of the DBA_TABLESPACES or USER_TABLESPACES data
dictionary view.

Note:

If you specify AUTO segment management, then:

• If you set extent management to LOCAL UNIFORM, then you must ensure that
each extent contains at least 5 database blocks.

• If you set extent management to LOCAL AUTOALLOCATE, and if the database block
size is 16K or greater, then Oracle manages segment space by creating extents
with a minimum size of 5 blocks rounded up to 64K.

Restrictions on Automatic Segment-Space Management

This clause is subject to the following restrictions:

• You can specify this clause only for a permanent, locally managed tablespace.

• You cannot specify this clause for the SYSTEM tablespace.

See Also:

• Oracle Automatic Storage Management Administrator's Guide for information
on automatic segment-space management and when to use it

• Oracle Database Reference for information on the data dictionary views

• "Specifying Segment Space Management for a Tablespace: Example"

flashback_mode_clause

Use this clause in conjunction with the ALTER DATABASE FLASHBACK clause to specify whether
the tablespace can participate in FLASHBACK DATABASE operations. This clause is useful if you
have the database in FLASHBACK mode but you do not want Oracle Database to maintain
Flashback log data for this tablespace.

This clause is not valid for temporary or undo tablespaces.

FLASHBACK ON

Specify FLASHBACK ON to put the tablespace in FLASHBACK mode. Oracle Database will save
Flashback log data for this tablespace and the tablespace can participate in a FLASHBACK

Chapter 15
CREATE TABLESPACE

15-167

DATABASE operation. If you omit the flashback_mode_clause, then FLASHBACK ON is the
default.

FLASHBACK OFF

Specify FLASHBACK OFF to take the tablespace out of FLASHBACK mode. Oracle
Database will not save any Flashback log data for this tablespace. You must take the
data files in this tablespace offline or drop them prior to any subsequent FLASHBACK
DATABASE operation. Alternatively, you can take the entire tablespace offline. In either
case, the database does not drop existing Flashback logs.

Note:

The FLASHBACK mode of a tablespace is independent of the FLASHBACK mode
of an individual table.

See Also:

• Oracle Database Backup and Recovery User's Guide for information on
Oracle Flashback Database

• ALTER DATABASE and FLASHBACK DATABASE for information on
setting the FLASHBACK mode of the entire database and reverting the
database to an earlier version

• FLASHBACK TABLE and flashback_query_clause

lost_write_protection

Specify the lost_write_protection clause to create a storage area for lost write
records. This storage area or shadow tablespace must be created, before you can
enable lost write protection on datafiles and databases.

You may create as many shadow tablespaces as you need, and name them as you
would any other tablespace.

Example: Create a Shadow Tablespace in a Database

This example creates the shadow tablespace sh_lwp1 for lost write protection:

CREATE BIGFILE TABLESPACE sh_lwp1 DATAFILE sh_lwp1.df SIZE 10M BLOCKSIZE 8K
 LOST WRITE PROTECTION;

To enable lost write protection on tablespaces, specify the lost_write_protection
clause with ALTER TABLESPACE.

To enable lost write protection on datafiles specify lost_write_protection with ALTER
DATABASE.

undo_tablespace_clause

Specify UNDO to create an undo tablespace. When you run the database in automatic
undo management mode, Oracle Database manages undo space using the undo

Chapter 15
CREATE TABLESPACE

15-168

tablespace instead of rollback segments. This clause is useful if you are now running in
automatic undo management mode but your database was not created in automatic undo
management mode.

Oracle Database always assigns an undo tablespace when you start up the database in
automatic undo management mode. If no undo tablespace has been assigned to this
instance, then the database uses the SYSTEM rollback segment. You can avoid this by creating
an undo tablespace, which the database will implicitly assign to the instance if no other undo
tablespace is currently assigned.

The DATAFILE clause is described in "DATAFILE | TEMPFILE Clause".

extent_management_clause

It is unnecessary to specify the extent_management_clause when creating an undo
tablespace, because undo tablespaces must be locally managed tablespaces that use
AUTOALLOCATE extent management. If you do specify this clause, then you must specify
EXTENT MANAGEMENT LOCAL or EXTENT MANAGEMENT LOCAL AUTOALLOCATE, both of which are the
same as omitting this clause. Refer to extent_management_clause for the full semantics of
this clause.

tablespace_retention_clause

This clause is valid only for undo tablespaces.

• RETENTION GUARANTEE specifies that Oracle Database should preserve unexpired undo
data in all undo segments of tablespace even if doing so forces the failure of ongoing
operations that need undo space in those segments. This setting is useful if you need to
issue an Oracle Flashback Query or an Oracle Flashback Transaction Query to diagnose
and correct a problem with the data.

• RETENTION NOGUARANTEE returns the undo behavior to normal. Space occupied by
unexpired undo data in undo segments can be consumed if necessary by ongoing
transactions. This is the default.

tablespace_encryption_clause

This clause has the same semantics for undo tablespaces as for permanent tablespaces.
Refer to tablespace_encryption_clause in the documentation on permanent tablespaces for
full information.

Restrictions on Undo Tablespaces

Undo tablespaces are subject to the following restrictions:

• You cannot create database objects in this tablespace. It is reserved for system-managed
undo data.

• The only clauses you can specify for an undo tablespace are the DATAFILE clause, the
tablespace_retention_clause, the tablespace_encryption_clause, and the
extent_management_clause to specify local AUTOALLOCATE extent management. You
cannot specify local UNIFORM extent management or dictionary extent management using
the extent_management_clause. All undo tablespaces are created permanent, read/write,
and in logging mode. Values for MINIMUM EXTENT and DEFAULT STORAGE are system
generated.

Chapter 15
CREATE TABLESPACE

15-169

See Also:

• Oracle Database Administrator's Guide for information on automatic
undo management and undo tablespaces and Oracle Database
Reference for information on the UNDO_MANAGEMENT parameter

• CREATE DATABASE for information on creating an undo tablespace
during database creation, and ALTER TABLESPACE and DROP
TABLESPACE

• "Creating an Undo Tablespace: Example"

temporary_tablespace_clause

Use this clause to create a temporary tablespace, which is an allocation of space in
the database that can contain transient data that persists only for the duration of a
session. This transient data cannot be recovered after process or instance failure.

The transient data can be user-generated schema objects such as temporary tables or
system-generated data such as temp space used by hash joins and sort operations.
When a temporary tablespace, or a tablespace group of which this tablespace is a
member, is assigned to a particular user, then Oracle Database uses the tablespace
for sorting operations in transactions initiated by that user.

You can create two types of temporary tablespaces:

• You can create a shared temporary tablespace by specifying the TEMPORARY
TABLESPACE clause. A shared temporary tablespace stores temp files on shared
disk, so that the temporary space is accessible to all database instances. Shared
temporary tablespaces were available in prior releases of Oracle Database and
were called "temporary tablespaces." Elsewhere in this guide, the term "temporary
tablespace" refers to a shared temporary tablespace unless specified otherwise.

• Starting with Oracle Database 12c Release 2 (12.2), you can create a local
temporary tablespace by specifying the LOCAL TEMPORARY TABLESPACE clause.
Local temporary tablespaces are useful in an Oracle Clusterware environment.
They store a separate, nonshared temp files for each database instance, which
can improve I/O performance. A local temporary tablespace must be a BIGFILE
tablespace.

– Specify FOR ALL to instruct the database to create separate, nonshared temp
files for all HUB and LEAF nodes.

– Specify FOR LEAF to instruct the database to create separate nonshared temp
files for only LEAF nodes.

TEMPFILE

The TEMPFILE clause is described in "DATAFILE | TEMPFILE Clause".

tablespace_group_clause

This clause is relevant only for temporary tablespaces. Use this clause to determine
whether tablespace is a member of a tablespace group. A tablespace group lets you
assign multiple temporary tablespaces to a single user and increases the
addressability of temporary tablespaces.

Chapter 15
CREATE TABLESPACE

15-170

• Specify a group name to indicate that tablespace is a member of this tablespace group.
The group name cannot be the same as tablespace or any other existing tablespace. If
the tablespace group already exists, then Oracle Database adds the new tablespace to
that group. If the tablespace group does not exist, then the database creates the group
and adds the new tablespace to that group.

• Specify an empty string (' ') to indicate that tablespace is not a member of any
tablespace group.

Restriction on Tablespace Groups

Tablespace groups support only shared temporary tablespaces. You cannot add a local
temporary tablespace to a tablespace group.

extent_management_clause

The extent_management_clause is described in extent_management_clause .

tablespace_encryption_clause

This clause has the same semantics for temporary tablespaces as for permanent
tablespaces. Refer to tablespace_encryption_clause in the documentation on permanent
tablespaces for full information.

See Also:

• ALTER TABLESPACE and "Adding a Temporary Tablespace to a Tablespace
Group: Example" for information on adding a tablespace to a tablespace group

• CREATE USER for information on assigning a temporary tablespace to a user

• Oracle Database Administrator's Guide for more information on tablespace
groups

Restrictions on Temporary Tablespaces

The data stored in temporary tablespaces persists only for the duration of a session.
Therefore, only a subset of the CREATE TABLESPACE clauses are relevant for temporary
tablespaces. The only clauses you can specify for a temporary tablespace are the TEMPFILE
clause, the tablespace_group_clause, the extent_management_clause, and the
tablespace_encryption_clause.

Examples

These examples assume that your database is using 8K blocks.

Creating a Bigfile Tablespace: Example

The following example creates a bigfile tablespace bigtbs_01 with a data file bigtbs_f1.dbf
of 20 MB:

CREATE BIGFILE TABLESPACE bigtbs_01
 DATAFILE 'bigtbs_f1.dbf'
 SIZE 20M AUTOEXTEND ON;

Creating an Undo Tablespace: Example

Chapter 15
CREATE TABLESPACE

15-171

The following example creates a 10 MB undo tablespace undots1:

CREATE UNDO TABLESPACE undots1
 DATAFILE 'undotbs_1a.dbf'
 SIZE 10M AUTOEXTEND ON
 RETENTION GUARANTEE;

Creating a Temporary Tablespace: Example

This statement shows how the temporary tablespace that serves as the default
temporary tablespace for database users in the sample database was created:

CREATE TEMPORARY TABLESPACE temp_demo
 TEMPFILE 'temp01.dbf' SIZE 5M AUTOEXTEND ON;

Assuming that the default database block size is 2K, and that each bit in the map
represents one extent, then each bit maps 2,500 blocks.

The following example sets the default location for data file creation and then creates a
tablespace with an Oracle-managed temp file in the default location. The temp file is
100 M and is autoextensible with unlimited maximum size. These are the default
values for Oracle Managed Files:

ALTER SYSTEM SET DB_CREATE_FILE_DEST = '$ORACLE_HOME/rdbms/dbs';

CREATE TEMPORARY TABLESPACE tbs_05;

Adding a Temporary Tablespace to a Tablespace Group: Example

The following statement creates the tbs_temp_02 temporary tablespace as a member
of the tbs_grp_01 tablespace group. If the tablespace group does not already exist,
then Oracle Database creates it during execution of this statement:

CREATE TEMPORARY TABLESPACE tbs_temp_02
 TEMPFILE 'temp02.dbf' SIZE 5M AUTOEXTEND ON
 TABLESPACE GROUP tbs_grp_01;

Creating Basic Tablespaces: Examples

This statement creates a tablespace named tbs_01 with one data file:

CREATE TABLESPACE tbs_01
 DATAFILE 'tbs_f2.dbf' SIZE 40M
 ONLINE;

This statement creates tablespace tbs_03 with one data file and allocates every extent
as a multiple of 500K:

CREATE TABLESPACE tbs_03
 DATAFILE 'tbs_f03.dbf' SIZE 20M
 LOGGING;

Enabling Autoextend for a Tablespace: Example

This statement creates a tablespace named tbs_02 with one data file. When more
space is required, 500 kilobyte extents will be added up to a maximum size of 100
megabytes:

CREATE TABLESPACE tbs_02
 DATAFILE 'diskb:tbs_f5.dbf' SIZE 500K REUSE
 AUTOEXTEND ON NEXT 500K MAXSIZE 100M;

Chapter 15
CREATE TABLESPACE

15-172

Creating a Locally Managed Tablespace: Example

The following statement assumes that the database block size is 2K.

CREATE TABLESPACE tbs_04 DATAFILE 'file_1.dbf' SIZE 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128K;

This statement creates a locally managed tablespace in which every extent is 128K and each
bit in the bit map describes 64 blocks.

The following statement creates a locally managed tablespace with uniform extents and
shows an example of a table stored in that tablespace:

CREATE TABLESPACE lmt1 DATAFILE 'lmt_file2.dbf' SIZE 100m REUSE
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1M;

CREATE TABLE lmt_table1 (col1 NUMBER, col2 VARCHAR2(20))
 TABLESPACE lmt1 STORAGE (INITIAL 2m);

The initial segment size of the table is 2M.

The following example creates a locally managed tablespace without uniform extents:

CREATE TABLESPACE lmt2 DATAFILE 'lmt_file3.dbf' SIZE 100m REUSE
 EXTENT MANAGEMENT LOCAL;

CREATE TABLE lmt_table2 (col1 NUMBER, col2 VARCHAR2(20))
 TABLESPACE lmt2 STORAGE (INITIAL 2m MAXSIZE 100m);

The initial segment size of the table is 2M. Oracle Database determines the size of each
extent and the total number of extents allocated to satisfy the initial segment size. The
segment's maximum size is limited to 100M.

Creating an Encrypted Tablespace: Example

In the following example, the first statement enables encryption for the database by opening
the wallet. The second statement creates an encrypted tablespace.

ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "wallet_password";

CREATE TABLESPACE encrypt_ts
 DATAFILE '$ORACLE_HOME/dbs/encrypt_df.dbf' SIZE 1M
 ENCRYPTION USING 'AES256' ENCRYPT;

Specifying Segment Space Management for a Tablespace: Example

The following example creates a tablespace with automatic segment-space management:

CREATE TABLESPACE auto_seg_ts DATAFILE 'file_2.dbf' SIZE 1M
 EXTENT MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO;

Creating Oracle Managed Files: Examples

The following example sets the default location for data file creation and creates a tablespace
with a data file in the default location. The data file is 100M and is autoextensible with an
unlimited maximum size:

ALTER SYSTEM SET DB_CREATE_FILE_DEST = '$ORACLE_HOME/rdbms/dbs';

CREATE TABLESPACE omf_ts1;

Chapter 15
CREATE TABLESPACE

15-173

The following example creates a tablespace with an Oracle-managed data file of 100M
that is not autoextensible:

CREATE TABLESPACE omf_ts2 DATAFILE AUTOEXTEND OFF;

CREATE TABLESPACE SET

Note:

This SQL statement is valid only if you are using Oracle Sharding. For more
information on Oracle Sharding, refer to Oracle Database Administrator’s
Guide.

Purpose

Use the CREATE TABLESPACE SET statement to create a tablespace set. A tablespace
set can be used in a sharded database as a logical storage unit for one or more
sharded tables and indexes.

A tablespace set consists of multiple tablespaces distributed across shards in a
shardspace. The database automatically creates the tablespaces in a tablespace set.
The number of tablespaces is determined automatically and is equal to the number of
chunks in the corresponding shardspace.

All tablespaces in a tablespace set are permanent bigfile tablespaces; a tablespace
set does not contain SYSTEM, undo, or temporary tablespaces. The database
automatically creates one data file for each tablespace. All tablespaces in a
tablespace set share the same attributes. You can modify attributes for all tablespaces
in a tablespace set with the ALTER TABLESPACE SET statement.

See Also:

ALTER TABLESPACE SET and DROP TABLESPACE SET

Prerequisites

You must be connected to a shard catalog database as an SDB user.

You must have the CREATE TABLESPACE system privilege.

Chapter 15
CREATE TABLESPACE SET

15-174

Syntax

create_tablespace_set::=

CREATE TABLESPACE SET tablespace_set

IN SHARDSPACE shardspace

USING TEMPLATE (

DATAFILE file_specification

,

permanent_tablespace_attrs)

;

permanent_tablespace_attrs::=

MINIMUM EXTENT size_clause

BLOCKSIZE integer

K

logging_clause

FORCE LOGGING

tablespace_encryption_clause

default_tablespace_params

ONLINE

OFFLINE

extent_management_clause

segment_management_clause

flashback_mode_clause

lost_write_protection

(file_specification::=, See the following clauses of CREATE TABLESPACE: logging_clause::=,
tablespace_encryption_clause::=, default_tablespace_params::=,
extent_management_clause::=, segment_management_clause::=,
flashback_mode_clause::=)

Semantics

tablespace_set

Specify the name of the tablespace set to be created. The name must satisfy the
requirements listed in Database Object Naming Rules .

Chapter 15
CREATE TABLESPACE SET

15-175

IN SHARDSPACE

Specify this clause if you are using composite sharding. For shardspace_name, specify
the name of the shardspace in which the tablespace set is to be created.

Omit this clause if you are using system-managed sharding. In this case, the
tablespace set is created in the default shardspace for the sharded database.

USING TEMPLATE

The USING TEMPLATE clause allows you to specify attributes for the tablespaces in the
tablespace set.

The DATAFILE and permanent_tablespace_attrs clauses have the same semantics
here as for the CREATE TABLESPACE statement, with the following exceptions:

• For the DATAFILE file_specification clause, you can specify only the SIZE
clause and the autoextend_clause.

• You cannot specify the MINIMUM EXTENT size_clause.

• For the segment_management_clause, you can specify only SEGMENT SPACE
MANAGEMENT AUTO. The MANUAL setting is not supported.

See Also:

file_specification and permanent_tablespace_attrs in the documentation on
CREATE TABLESPACE for the full semantics of these clauses

Examples

Creating a Tablespace Set: Example

The following statement creates tablespace set ts1:

CREATE TABLESPACE SET ts1
 IN SHARDSPACE sgr1
 USING TEMPLATE
 (DATAFILE SIZE 100m
 EXTENT MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO
);

CREATE TRIGGER
Purpose

Triggers are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of
syntax and semantics.

Use the CREATE TRIGGER statement to create a database trigger, which is:

• A stored PL/SQL block associated with a table, a schema, or the database or

Chapter 15
CREATE TRIGGER

15-176

• An anonymous PL/SQL block or a call to a procedure implemented in PL/SQL or Java

Oracle Database automatically executes a trigger when specified conditions occur.

See Also:

ALTER TRIGGER and DROP TRIGGER

Prerequisites

To create a trigger in your own schema on a table in your own schema or on your own
schema (SCHEMA), you must have the CREATE TRIGGER system privilege.

To create a trigger in any schema on a table in any schema, or on another user's schema
(schema.SCHEMA), you must have the CREATE ANY TRIGGER system privilege.

In addition to the preceding privileges, to create a trigger on DATABASE, you must have the
ADMINISTER DATABASE TRIGGER system privilege.

To create a trigger on a pluggable database (PDB), the current container must be that PDB
and you must have the ADMINISTER DATABASE TRIGGER system privilege. For information about
PDBs, see Oracle Database Administrator's Guide.

In addition to the preceding privileges, to create a crossedition trigger, you must be enabled
for editions. For information about enabling editions for a user, see Oracle Database
Development Guide.

If the trigger issues SQL statements or calls procedures or functions, then the owner of the
trigger must have the privileges necessary to perform these operations. These privileges
must be granted directly to the owner rather than acquired through roles.

Syntax

Triggers are defined using PL/SQL. Therefore, the syntax diagram in this book shows only
the SQL keywords. Refer to Oracle Database PL/SQL Language Reference for the PL/SQL
syntax, semantics, and examples.

create_trigger::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

TRIGGER plsql_trigger_source

(plsql_trigger_source: See Oracle Database PL/SQL Language Reference.)

Semantics

OR REPLACE

Specify OR REPLACE to re-create the trigger if it already exists. Use this clause to change the
definition of an existing trigger without first dropping it.

Chapter 15
CREATE TRIGGER

15-177

[EDITIONABLE | NONEDITIONABLE]

Use these clauses to specify whether the trigger is an editioned or noneditioned object
if editioning is enabled for the schema object type TRIGGER in schema. The default is
EDITIONABLE. For information about editioned and noneditioned objects, see Oracle
Database Development Guide.

Restriction on NONEDITIONABLE

You cannot specify NONEDITIONABLE for a crossedition trigger.

plsql_trigger_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of
the plsql_trigger_source.

CREATE TYPE
Purpose

Object types are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of
syntax and semantics.

Use the CREATE TYPE statement to create the specification of an object type, a SQLJ
object type, a named varying array (varray), a nested table type, or an incomplete
object type. You create object types with the CREATE TYPE and the CREATE TYPE BODY
statements. The CREATE TYPE statement specifies the name of the object type, its
attributes, methods, and other properties. The CREATE TYPE BODY statement contains
the code for the methods that implement the type.

Note:

• If you create an object type for which the type specification declares only
attributes but no methods, then you need not specify a type body.

• If you create a SQLJ object type, then you cannot specify a type body.
The implementation of the type is specified as a Java class.

An incomplete type is a type created by a forward type definition. It is called
"incomplete" because it has a name but no attributes or methods. It can be referenced
by other types, and so can be used to define types that refer to each other. However,
you must fully specify the type before you can use it to create a table or an object
column or a column of a nested table type.

Chapter 15
CREATE TYPE

15-178

See Also:

• CREATE TYPE BODY for information on creating the member methods of a
type

• Oracle Database Object-Relational Developer's Guide for more information
about objects, incomplete types, varrays, and nested tables

Prerequisites

To create a type in your own schema, you must have the CREATE TYPE system privilege. To
create a type in another user's schema, you must have the CREATE ANY TYPE system privilege.
You can acquire these privileges explicitly or be granted them through a role.

To create a subtype, you must have the UNDER ANY TYPE system privilege or the UNDER object
privilege on the supertype.

The owner of the type must be explicitly granted the EXECUTE object privilege in order to
access all other types referenced within the definition of the type, or the type owner must be
granted the EXECUTE ANY TYPE system privilege. The owner cannot obtain these privileges
through roles.

If the type owner intends to grant other users access to the type, then the owner must be
granted the EXECUTE object privilege on the referenced types with the GRANT OPTION or the
EXECUTE ANY TYPE system privilege with the ADMIN OPTION. Otherwise, the type owner has
insufficient privileges to grant access on the type to other users.

User-Defined Datatypes Declared as Non-Persistable Datatypes

You can specify a user-defined datatype as non-persistable when creating the datatype.
Instances of non-persistable types cannot persist on disk. Perisistable data types include the
following:

• ANSI-supported data types, for example NUMERIC, DECIMAL, REAL.

• Oracle built-in data types, for example NUMBER, VARCHAR2, TIMESTAMP.

• Oracle-supplied data types, for example ANYDATA, XML Type, ORDImage.

Rules For SQL User-Defined Data Types

• A persistable type cannot have attributes or elements of non-persistable types.

• A non-persistable type can have attributes or elements of both persistable and non-
persistable types.

• A sub-type must inherit the persistence property from its super type.

• A REF type is persistable and can hold references only to objects of persistable types.

• You cannot persist instances of non-persistable types on disk. If you create a table with a
type that has been declared as non-persistable, the CREATE TABLE statement will fail. The
following operations will likewise fail:

– Create or alter a relational table with columns of non-persistable types.

– Create an object table with columns of non-persistable types.

Chapter 15
CREATE TYPE

15-179

– Store instances of non-persistable types in an ANYDATA instance which is
persisted on disk.

You can specify unique PL/SQL attributes in the CREATE TYPE statement in the PL/SQL
context only.

Syntax

Types are defined using PL/SQL. Therefore, the syntax diagram in this book shows
only the SQL keywords. Refer to Oracle Database PL/SQL Language Reference for
the PL/SQL syntax, semantics, and examples.

create_type::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

TYPE plsql_type_source

(plsql_type_source: See Oracle Database PL/SQL Language Reference.)

Semantics

OR REPLACE

Specify OR REPLACE to re-create the type if it already exists. Use this clause to change
the definition of an existing type without first dropping it.

Users previously granted privileges on the re-created object type can use and
reference the object type without being granted privileges again.

If any function-based indexes depend on the type, then Oracle Database marks the
indexes DISABLED.

[EDITIONABLE | NONEDITIONABLE]

Use these clauses to specify whether the type is an editioned or noneditioned object if
editioning is enabled for the schema object type TYPE in schema.The default is
EDITIONABLE. For information about editioned and noneditioned objects, see Oracle
Database Development Guide.

plsql_type_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of
the plsql_type_source.

CREATE TYPE BODY
Purpose

Type bodies are defined using PL/SQL. Therefore, this section provides some general
information but refers to Oracle Database PL/SQL Language Reference for details of
syntax and semantics.

Use the CREATE TYPE BODY to define or implement the member methods defined in the
object type specification. You create object types with the CREATE TYPE and the CREATE

Chapter 15
CREATE TYPE BODY

15-180

TYPE BODY statements. The CREATE TYPE statement specifies the name of the object type, its
attributes, methods, and other properties. The CREATE TYPE BODY statement contains the code
for the methods that implement the type.

For each method specified in an object type specification for which you did not specify the
call_spec, you must specify a corresponding method body in the object type body.

Note:

If you create a SQLJ object type, then specify it as a Java class.

See Also:

• CREATE TYPE for information on creating a type specification

• ALTER TYPE for information on modifying a type specification

Prerequisites

Every member declaration in the CREATE TYPE specification for object types must have a
corresponding construct in the CREATE TYPE or CREATE TYPE BODY statement.

To create or replace a type body in your own schema, you must have the CREATE TYPE or the
CREATE ANY TYPE system privilege. To create an object type in another user's schema, you
must have the CREATE ANY TYPE system privilege. To replace an object type in another user's
schema, you must have the DROP ANY TYPE system privilege.

Syntax

Type bodies are defined using PL/SQL. Therefore, the syntax diagram in this book shows
only the SQL keywords. Refer to Oracle Database PL/SQL Language Reference for the
PL/SQL syntax, semantics, and examples.

create_type_body::=

CREATE

OR REPLACE

EDITIONABLE

NONEDITIONABLE

TYPE BODY plsql_type_body_source

(plsql_type_body_source: See Oracle Database PL/SQL Language Reference.)

Semantics

OR REPLACE

Specify OR REPLACE to re-create the type body if it already exists. Use this clause to change
the definition of an existing type body without first dropping it.

Chapter 15
CREATE TYPE BODY

15-181

Users previously granted privileges on the re-created object type body can use and
reference the object type body without being granted privileges again.

You can use this clause to add new member subprogram definitions to specifications
added with the ALTER TYPE ... REPLACE statement.

[EDITIONABLE | NONEDITIONABLE]

If you do not specify this clause, then the type body inherits EDITIONABLE or
NONEDITIONABLE from the type specification. If you do specify this clause, then it must
match that of the type specification.

plsql_type_body_source

See Oracle Database PL/SQL Language Reference for the syntax and semantics of
the plsql_type_body_source.

CREATE USER
Purpose

Use the CREATE USER statement to create and configure a database user, which is an
account through which you can log in to the database, and to establish the means by
which Oracle Database permits access by the user.

You can issue this statement in an Oracle Automatic Storage Management (Oracle
ASM) cluster to add a user and password combination to the password file that is local
to the Oracle ASM instance of the current node. Each node's Oracle ASM instance
can use this statement to update its own password file. The password file itself must
have been created by the ORAPWD utility.

You can enable a user to connect to the database through a proxy application or
application server. For syntax and discussion, refer to ALTER USER .

Prerequisites

You must have the CREATE USER system privilege. When you create a user with the
CREATE USER statement, the user's privilege domain is empty. To log on to Oracle
Database, a user must have the CREATE SESSION system privilege. Therefore, after
creating a user, you should grant the user at least the CREATE SESSION system
privilege. Refer to GRANT for more information.

Only a user authenticated AS SYSASM can issue this command to modify the Oracle
ASM instance password file.

To specify the CONTAINER clause, you must be connected to a multitenant container
database (CDB). To specify CONTAINER = ALL, the current container must be the root.
To specify CONTAINER = CURRENT, the current container must be a pluggable database
(PDB).

Chapter 15
CREATE USER

15-182

Syntax

create_user::=

CREATE USER user

IDENTIFIED

BY password

HTTP

DIGEST
ENABLE

DISABLE

EXTERNALLY

AS ’
certificate_DN

kerberos_principal_name
’

GLOBALLY

AS ’

directory_DN

’

NO AUTHENTICATION

DEFAULT COLLATION collation_name

DEFAULT TABLESPACE tablespace

LOCAL

TEMPORARY TABLESPACE
tablespace

tablespace_group_name

QUOTA
size_clause

UNLIMITED
ON tablespace

PROFILE profile

PASSWORD EXPIRE

ACCOUNT
LOCK

UNLOCK

ENABLE EDITIONS

CONTAINER =
CURRENT

ALL

;

(size_clause::=)

Semantics

user

Specify the name of the user to be created. This name can contain only characters from your
database character set and must follow the rules described in the section "Database Object
Naming Rules ". Oracle recommends that the user name contain at least one single-byte
character regardless of whether the database character set also contains multibyte
characters.

Chapter 15
CREATE USER

15-183

In a non-CDB, a user name cannot begin with C## or c##.

Note:

A multitenant container database is the only supported architecture in Oracle
Database 20c. While the documentation is being revised, legacy terminology
may persist. In most cases, "database" and "non-CDB" refer to a CDB or
PDB, depending on context. In some contexts, such as upgrades, "non-CDB"
refers to a non-CDB from a previous release.

In a CDB, the requirements for a user name are as follows:

• The name of a common user must begin with characters that are a case-
insensitive match to the prefix specified by the COMMON_USER_PREFIX initialization
parameter. By default, the prefix is C##.

• The name of a local user must not begin with characters that are a case-
insensitive match to the prefix specified by the COMMON_USER_PREFIX initialization
parameter. Regardless of the value of COMMON_USER_PREFIX, the name of a local
user can never begin with C## or c##.

Note:

If the value of COMMON_USER_PREFIX is an empty string, then there are no
requirements for common or local user names with one exception: the name
of a local user can never begin with C## or c##. Oracle recommends against
using an empty string value because it might result in conflicts between the
names of local and common users when a PDB is plugged into a different
CDB, or when opening a PDB that was closed when a common user was
created.

Note:

Oracle recommends that user names and passwords be encoded in ASCII or
EBCDIC characters only, depending on your platform.

See Also:

"Creating a Database User: Example"

IDENTIFIED Clause

The IDENTIFIED clause lets you indicate how Oracle Database authenticates the user.

Chapter 15
CREATE USER

15-184

BY password

The BY password clause lets you creates a local user and indicates that the user must
specify password to log on to the database. Passwords are case sensitive. Any subsequent
CONNECT string used to connect this user to the database must specify the password using the
same case (upper, lower, or mixed) that is used in this CREATE USER statement or a
subsequent ALTER USER statement. Passwords can contain any single-byte, multibyte, or
special characters, or any combination of these, from your database character set, with the
exception of the double quotation mark (") and the return character. If a password starts with
a non-alphabetic character, or contains a character other than an alphanumeric character, the
underscore (_), dollar sign ($), or pound sign (#), then it must be enclosed in double quotation
marks. Otherwise, enclosing a password in double quotation marks is optional.

See Also:

Oracle Database Security Guide for more information about case-sensitive
passwords, password complexity, and other password guidelines

Passwords must follow the rules described in the section "Database Object Naming Rules ",
unless you are using one of the three Oracle Database password complexity verification
routines. These routines requires a more complex combination of characters than the normal
naming rules permit. You implement these routines with the UTLPWDMG.SQL script, which is
further described in Oracle Database Security Guide.

Note:

Oracle recommends that user names and passwords be encoded in ASCII or
EBCDIC characters only, depending on your platform.

See Also:

Oracle Database Security Guide to for a detailed discussion of password
management and protection

[HTTP] DIGEST Clause

This clause lets you ENABLE or DISABLE HTTP Digest Access Authentication for the user. The
default is DISABLE.

The HTTP keyword is optional and is provided for semantic clarity.

Restriction on the [HTTP] DIGEST Clause

You cannot specify this clause for external or global users.

Chapter 15
CREATE USER

15-185

EXTERNALLY Clause

Specify EXTERNALLY to create an external user. Such a user must be authenticated by
an external service, such as an operating system or a third-party service. In this case,
Oracle Database relies on authentication by the operating system or third-party service
to ensure that a specific external user has access to a specific database user.

AS 'certificate_DN'

This clause is required for and used for SSL-authenticated external users only. The
certificate_DN is the distinguished name in the user's PKI certificate in the user's
wallet. The maximum length of certificate_DN is 1024 characters.

AS 'kerberos_principal_name'

This clause is required for and used for Kerberos-authenticated external users only.
The maximum length of kerberos_principal_name is 1024 characters.

Note:

Oracle strongly recommends that you do not use IDENTIFIED EXTERNALLY
with operating systems that have inherently weak login security.

Restriction on Creating External Users

Oracle ASM does not support the creation of external users.

See Also:

• Oracle Database Enterprise User Security Administrator's Guide for
more information on externally identified users

• "Creating External Database Users: Examples"

GLOBALLY Clause

The GLOBALLY clause lets you create a global user. Such a user must be authorized
by the enterprise directory service (Oracle Internet Directory).

The directory_DN string can take one of two forms:

• The X.509 name at the enterprise directory service that identifies this user. It
should be of the form CN=username,other_attributes, where other_attributes
is the rest of the user's distinguished name (DN) in the directory. This form uses
the LDAP Data Interchange Format (LDIF) and creates a private global schema.

• A null string (' ') indicating that the enterprise directory service will map
authenticated global users to this database schema with the appropriate roles.
This form is the same as specifying the GLOBALLY keyword alone and creates a
shared global schema.

The maximum length of directory_DN is 1024 characters.

Chapter 15
CREATE USER

15-186

You can control the ability of an application server to connect as the specified user and to
activate that user's roles using the ALTER USER statement.

Restriction on Creating Global Users

Oracle ASM does not support the creation of global users.

See Also:

• Oracle Database Security Guide for more information on global users

• ALTER USER

• "Creating a Global Database User: Example"

NO AUTHENTICATION Clause

Use the NO AUTHENTICATION clause to create a schema that does not have a password and
cannot be logged into. This is intended for schema only accounts and reduces maintenance
by removing default passwords and any requirement to rotate the password.

DEFAULT COLLATION Clause

This clause lets you specify the default collation for the schema owned by the user. The
default collation is assigned to tables, views, and materialized views that are subsequently
created in the schema.

For collation_name, specify a valid named collation or pseudo-collation.

If you omit this clause, then the default collation for the schema owned by the user is set to
the USING_NLS_COMP pseudo-collation.

You can override this clause and assign a different default collation to a particular table,
materialized view, or view by specifying the DEFAULT COLLATION clause of the CREATE or ALTER
statement for the table, materialized view, or view. You can also override the default collations
of all schemas for the duration of a database session by setting the default collation for the
session. See the DEFAULT_COLLATION clause of ALTER SESSION for more details.

You can specify the DEFAULT COLLATION clause only if the COMPATIBLE initialization parameter
is set to 12.2 or greater, and the MAX_STRING_SIZE initialization parameter is set to EXTENDED.

DEFAULT TABLESPACE Clause

Specify the default tablespace for objects that are created in the user's schema. If you omit
this clause, then the user's objects are stored in the database default tablespace. If no default
tablespace has been specified for the database, then the user's objects are stored in the
SYSTEM tablespace.

Restriction on Default Tablespaces

You cannot specify a locally managed temporary tablespace, including an undo tablespace,
or a dictionary-managed temporary tablespace, as a user's default tablespace.

Chapter 15
CREATE USER

15-187

See Also:

• CREATE TABLESPACE for more information on tablespaces in general
and undo tablespaces in particular

• Oracle Database Security Guide for more information on assigning
default tablespaces to users

[LOCAL] TEMPORARY TABLESPACE Clause

Specify the tablespace or tablespace group for the user's temporary segments. If you
omit this clause, then the user's temporary segments are stored in the database
default temporary tablespace or, if none has been specified, in the SYSTEM tablespace.

• Specify tablespace to indicate the user's temporary tablespace. Specify
TEMPORARY TABLESPACE to indicate a shared temporary tablespace. Specify LOCAL
TEMPORARY TABLESPACE to indicate a local temporary tablespace. If you are
connected to a CDB, then you can specify CDB$DEFAULT to use the CDB-wide
default temporary tablespace.

• Specify tablespace_group_name to indicate that the user can save temporary
segments in any tablespace in the tablespace group specified by
tablespace_group_name. Local temporary tablespaces cannot be part of a
tablespace group.

Restrictions on Temporary Tablespace

This clause is subject to the following restrictions:

• The tablespace must be a temporary tablespace and must have a standard block
size.

• The tablespace cannot be an undo tablespace or a tablespace with automatic
segment-space management.

See Also:

• Oracle Database Administrator's Guide for information about tablespace
groups and Oracle Database Security Guide for information on assigning
temporary tablespaces to users

• CREATE TABLESPACE for more information on undo tablespaces and
segment management

• "Assigning a Tablespace Group: Example"

QUOTA Clause

Use the QUOTA clause to specify the maximum amount of space the user can allocate
in the tablespace.

A CREATE USER statement can have multiple QUOTA clauses for multiple tablespaces.

UNLIMITED lets the user allocate space in the tablespace without bound.

Chapter 15
CREATE USER

15-188

The maximum amount of space that you can specify is 2 terabytes (TB). If you need more
space, then specify UNLIMITED.

Restriction on the QUOTA Clause

You cannot specify this clause for a temporary tablespace.

See Also:

size_clause for information on that clause and Oracle Database Security Guide for
more information on assigning tablespace quotas

PROFILE Clause

Specify the profile you want to assign to the user. The profile limits the amount of database
resources the user can use. If you omit this clause, then Oracle Database assigns the
DEFAULT profile to the user.

You can use the CREATE USER statement to create a new user, and associate the user with a
profile that has the PASSWORD_ROLLOVER_TIME configured.

You must first set the password rollover period using CREATE PROFILE or ALTER PROFILE.

In the example u1 is the user, with password p1. prof1 is the profile with
PASSWORD_ROLLOVER_TIME set.

CREATE USER u1 IDENTIFIED BY p1 PROFILE prof1 ;

Note:

Oracle recommends that you use the Database Resource Manager to establish
database resource limits rather than SQL profiles. The Database Resource
Manager offers a more flexible means of managing and tracking resource use. For
more information on the Database Resource Manager, refer to Oracle Database
Administrator's Guide.

See Also:

• GRANT and CREATE PROFILE

• Configuring Authentication

PASSWORD EXPIRE Clause

Specify PASSWORD EXPIRE if you want the user's password to expire. This setting forces the
user or the DBA to change the password before the user can log in to the database.

Chapter 15
CREATE USER

15-189

ACCOUNT Clause

Specify ACCOUNT LOCK to lock the user's account and disable access. Specify ACCOUNT
UNLOCK to unlock the user's account and enable access to the account. The default is
ACCOUNT UNLOCK.

ENABLE EDITIONS

This clause is not reversible. Specify ENABLE EDITIONS to allow the user to create
multiple versions of editionable objects in this schema using editions. Editionable
objects in schemas that are not editions-enabled cannot be editioned.

Note the following before enabling editions with ALTER USER:

• Enabling editions is not a live operation.

• When a database is upgraded from Release 11.2 to Release 12.1, users who were
enabled for editions in the pre-upgrade database are enabled for editions in the
post-upgrade database and the default schema object types are editionable in
their schemas. The default schema object types are displayed by the static data
dictionary view DBA_EDITIONED_TYPES . Users who were not enabled for editions in
the pre-upgrade database are not enabled for editions in the post-upgrade
database and no schema object types are editionable in their schemas.

• To see which users already have editions enabled, see the EDITIONS_ENABLED
column of the static data dictionary view DBA_USERS or USER_USERS .

Restriction on Enabling Editions

The FOR clause is ignored when used with ENABLE EDITIONS. This only applies to the
CREATE USER statement, not the ALTER USER statement.

You cannot enable editions for any schemas supplied by Oracle.

See Also:

• Enabling Editions for a User

• Oracle Database Reference for more information about the
V$EDITIONABLE_TYPES dynamic performance view

CONTAINER Clause

The CONTAINER clause applies when you are connected to a CDB. However, it is not
necessary to specify the CONTAINER clause because its default values are the only
allowed values.

• To create a common user, you must be connected to the root. You can optionally
specify CONTAINER = ALL, which is the default when you are connected to the root.

• To create a local user, you must be connected to a PDB. You can optionally
specify CONTAINER = CURRENT, which is the default when you are connected to a
PDB.

Chapter 15
CREATE USER

15-190

While creating a common user, any default tablespace, temporary tablespace, or profile
specified using the following clauses must exist in all the containers belonging to the CDB:

• DEFAULT TABLESPACE
• TEMPORARY TABLESPACE
• QUOTA
• PROFILE
If these objects do not exist in all the containers, the CREATE USER statement fails.

Examples

All of the following examples use the example tablespace, which exists in the seed database
and is accessible to the sample schemas.

Creating a Database User: Example

If you create a new user with PASSWORD EXPIRE, then the user's password must be changed
before the user attempts to log in to the database. You can create the user sidney by issuing
the following statement:

CREATE USER sidney
 IDENTIFIED BY out_standing1
 DEFAULT TABLESPACE example
 QUOTA 10M ON example
 TEMPORARY TABLESPACE temp
 QUOTA 5M ON system
 PROFILE app_user
 PASSWORD EXPIRE;

The user sidney has the following characteristics:

• The password out_standing1
• Default tablespace example, with a quota of 10 megabytes

• Temporary tablespace temp
• Access to the tablespace SYSTEM, with a quota of 5 megabytes

• Limits on database resources defined by the profile app_user (which was created in
"Creating a Profile: Example")

• An expired password, which must be changed before sidney can log in to the database

Creating External Database Users: Examples

The following example creates an external user, who must be identified by an external source
before accessing the database:

CREATE USER app_user1
 IDENTIFIED EXTERNALLY
 DEFAULT TABLESPACE example
 QUOTA 5M ON example
 PROFILE app_user;

The user app_user1 has the following additional characteristics:

• Default tablespace example
• Default temporary tablespace example

Chapter 15
CREATE USER

15-191

• 5M of space on the tablespace example and unlimited quota on the temporary
tablespace of the database

• Limits on database resources defined by the app_user profile

To create another user accessible only by an operating system account, prefix the user
name with the value of the initialization parameter OS_AUTHENT_PREFIX. For example, if
this value is "ops$", then you can create the externally identified user external_user
with the following statement:

CREATE USER ops$external_user
 IDENTIFIED EXTERNALLY
 DEFAULT TABLESPACE example
 QUOTA 5M ON example
 PROFILE app_user;

Creating a Global Database User: Example

The following example creates a global user. When you create a global user, you can
specify the X.509 name that identifies this user at the enterprise directory server:

CREATE USER global_user
 IDENTIFIED GLOBALLY AS 'CN=analyst, OU=division1, O=oracle, C=US'
 DEFAULT TABLESPACE example
 QUOTA 5M ON example;

Creating a Common User in a CDB

The following example creates a common user called c##comm_user in a CDB. Before
you run this CREATE USER statement, ensure that the tablespaces example and
temp_tbs exist in all of the containers in the CDB.

CREATE USER c##comm_user
 IDENTIFIED BY comm_pwd
 DEFAULT TABLESPACE example
 QUOTA 20M ON example
 TEMPORARY TABLESPACE temp_tbs;

The user comm_user has the following additional characteristics:

• The password comm_pwd
• Default tablespace example, with a quota of 20 megabytes

• Temporary tablespace temp_tbs

CREATE VIEW
Purpose

Use the CREATE VIEW statement to define a view, which is a logical table based on one
or more tables or views. A view contains no data itself. The tables upon which a view
is based are called base tables.

You can also create an object view or a relational view that supports LOBs, object
types, REF data types, nested table, or varray types on top of the existing view
mechanism. An object view is a view of a user-defined type, where each row contains
objects, each object with a unique object identifier.

Chapter 15
CREATE VIEW

15-192

You can also create XMLType views, which are similar to object views but display data from
XMLSchema-based tables of XMLType.

See Also:

• Oracle Database Concepts, Oracle Database Development Guide, and Oracle
Database Administrator's Guide for information on various types of views and
their uses

• Oracle XML DB Developer's Guide for information on XMLType views

• ALTER VIEW and DROP VIEW for information on modifying a view and
removing a view from the database

Prerequisites

To create a view in your own schema, you must have the CREATE VIEW system privilege. To
create a view in another user's schema, you must have the CREATE ANY VIEW system privilege.

To create a subview, you must have the UNDER ANY VIEW system privilege or the UNDER object
privilege on the superview.

The owner of the schema containing the view must have the privileges necessary to either
select (READ or SELECT privilege), insert, update, or delete rows from all the tables or views on
which the view is based. The owner must be granted these privileges directly, rather than
through a role.

To use the basic constructor method of an object type when creating an object view, one of
the following must be true:

• The object type must belong to the same schema as the view to be created.

• You must have the EXECUTE ANY TYPE system privileges.

• You must have the EXECUTE object privilege on that object type.

See Also:

SELECT , INSERT , UPDATE , and DELETE for information on the privileges
required by the owner of a view on the base tables or views of the view being
created

Chapter 15
CREATE VIEW

15-193

Syntax

create_view::=

CREATE

OR REPLACE

NO

FORCE

EDITIONING

EDITIONABLE

EDITIONING

NONEDITIONABLE

VIEW

schema .

view

SHARING =

METADATA

DATA

EXTENDED DATA

NONE

(
alias

VISIBLE

INVISIBLE inline_constraint

out_of_line_constraint

,

)

object_view_clause

XMLType_view_clause

DEFAULT COLLATION collation_name
BEQUEATH

CURRENT_USER

DEFINER

AS subquery

subquery_restriction_clause

CONTAINER_MAP

CONTAINERS_DEFAULT

;

(inline_constraint::= and out_of_line_constraint::=, object_view_clause::=,
XMLType_view_clause::=, subquery::=—part of SELECT,
subquery_restriction_clause::=)

Chapter 15
CREATE VIEW

15-194

object_view_clause::=

OF

schema .

type_name

WITH OBJECT
IDENTIFIER

ID

DEFAULT

(attribute

,

)

UNDER

schema .

superview

(

out_of_line_constraint

attribute inline_constraint

,

)

(inline_constraint::= and out_of_line_constraint::=)

XMLType_view_clause::=

OF XMLTYPE

XMLSchema_spec

WITH OBJECT
IDENTIFIER

ID

DEFAULT

(expr

,

)

XMLSchema_spec::=

XMLSCHEMA XMLSchema_URL

ELEMENT

element

XMLSchema_URL # element

STORE ALL VARRAYS AS

LOBS

TABLES

ALLOW

DISALLOW

NONSCHEMA

ALLOW

DISALLOW

ANYSCHEMA

subquery_restriction_clause::=

WITH

READ ONLY

CHECK OPTION

CONSTRAINT constraint

Chapter 15
CREATE VIEW

15-195

Semantics

OR REPLACE

Specify OR REPLACE to re-create the view if it already exists. You can use this clause to
change the definition of an existing view without dropping, re-creating, and regranting
object privileges previously granted on it.

INSTEAD OF triggers defined on a conventional view are dropped when the view is re-
created. DML triggers defined on an editioning view are retained when an editioning
view is re-created. However, such triggers can be rendered permanently invalid if the
editioning view has changed so that it can no longer be compiled—for example if an
editioning view column referenced in the trigger definition has been dropped.

If any materialized views are dependent on view, then those materialized views will be
marked UNUSABLE and will require a full refresh to restore them to a usable state.
Invalid materialized views cannot be used by query rewrite and cannot be refreshed
until they are recompiled.

You cannot replace a conventional view with an editioning view or an editioning view
with a conventional view. See Oracle Database Development Guide for more
information on editioning views.

See Also:

• ALTER MATERIALIZED VIEW for information on refreshing invalid
materialized views

• Oracle Database Concepts for information on materialized views in
general

• CREATE TRIGGER for more information about the INSTEAD OF clause

FORCE

Specify FORCE if you want to create the view regardless of whether the base tables of
the view or the referenced object types exist or the owner of the schema containing
the view has privileges on them. These conditions must be true before any SELECT,
INSERT, UPDATE, or DELETE statements can be issued against the view.

If the view definition contains any constraints, CREATE VIEW ... FORCE fails if the base
table does not exist or the referenced object type does not exist. CREATE VIEW ... FORCE
also fails if the view definition names a constraint that does not exist.

NO FORCE

Specify NOFORCE if you want to create the view only if the base tables exist and the
owner of the schema containing the view has privileges on them. This is the default.

EDITIONING

Use this clause to create an editioning view. An editioning view is a single-table view
that selects all rows from the base table and displays a subset of the base table
columns. You can use an editioning view to isolate an application from DDL changes

Chapter 15
CREATE VIEW

15-196

to the base table during administrative operations such as upgrades. You can obtain
information about the relationship of existing editioning view to their base tables by querying
the USER_, ALL_, and DBA_EDITIONING_VIEW data dictionary views.

The owner of an editioning view must be editions-enabled. Refer to ENABLE EDITIONS for
more information.

Notes on Editioning Views

Editioning views differ from conventional views in several important ways:

• Editioning views are intended only to select and provide aliases for a subset of columns
in a table. Therefore, the syntax for creating an editioning view is more limited than the
syntax for creating a conventional view. Any violation of the restrictions that follow causes
the creation of the view to fail, even if you specify FORCE.

• You can create DML triggers on editioning views. In this case, the database considers the
editioning view to be the base object of the trigger. Such triggers fire when a DML
operation target the editioning view itself. They do not fire if the DML operation targets
the base table.

• You cannot create INSTEAD OF triggers on editioning views.

Restrictions on Editioning Views

Editioning views are subject to the following restrictions:

• Within any edition, you can create only one editioning view for any single table.

• You cannot specify the object_view_clause, XMLType_view_clause, or BEQUEATH clause.

• You cannot define a constraint WITH CHECK OPTION on an editioning view.

• In the select list of the defining subquery, you can specify only simple references to the
columns of the base table, and you can specify each column of the base table only once
in the select list. The asterisk wildcard symbol * and t_alias.* are supported to
designate all columns of a base table.

• The FROM clause of the defining subquery of the view can reference only a single existing
database table. Joins are not permitted. The base table must be in the same schema as
the view being created. You cannot use a synonym to identify the table, but you can
specify a table alias.

• The following clauses of the defining subquery are not valid for editioning views:
subquery_factoring_clause, DISTINCT or UNIQUE, where_clause,
hierarchical_query_clause, group_by_clause, HAVING condition, model_clause, or the
set operators (UNION, INTERSECT, or MINUS)

See Also:

• Oracle Database Development Guide for detailed information about editioning
views

• CREATE EDITION for information about editions, including an example of an
editioning view

Chapter 15
CREATE VIEW

15-197

EDITIONABLE | NONEDITIONABLE

Use these clauses to specify whether the view becomes an editioned or noneditioned
object if editioning is enabled for the schema object type VIEW in schema. The default is
EDITIONABLE. For information about editioned and noneditioned objects, see Oracle
Database Development Guide.

schema

Specify the schema to contain the view. If you omit schema, then Oracle Database
creates the view in your own schema.

view

Specify the name of the view or the object view. The name must satisfy the
requirements listed in "Database Object Naming Rules ".

Restriction on Views

If a view has INSTEAD OF triggers, then any views created on it must have INSTEAD OF
triggers, even if the views are inherently updatable.

See Also:

"Creating a View: Example"

SHARING

This clause applies only when creating a view in an application root. This type of view
is called an application common object and its data can be shared with the application
PDBs that belong to the application root. To determine how the view data is shared,
specify one of the following sharing attributes:

• METADATA - A metadata link shares the view’s metadata, but its data is unique to
each container. This type of view is referred to as a metadata-linked application
common object.

• DATA - A data link shares the view, and its data is the same for all containers in the
application container. Its data is stored only in the application root. This type of
view is referred to as a data-linked application common object.

• EXTENDED DATA - An extended data link shares the view, and its data in the
application root is the same for all containers in the application container.
However, each application PDB in the application container can store data that is
unique to the application PDB. For this type of view, data is stored in the
application root and, optionally, in each application PDB. This type of view is
referred to as an extended data-linked application common object.

• NONE - The view is not shared.

If you omit this clause, then the database uses the value of the DEFAULT_SHARING
initialization parameter to determine the sharing attribute of the view. If the
DEFAULT_SHARING initialization parameter does not have a value, then the default is
METADATA.

Chapter 15
CREATE VIEW

15-198

When creating a conventional view, you can specify METADATA, DATA, EXTENDED DATA, or NONE.

When creating an object view or an XMLTYPE view, you can specify only METADATA or NONE.

You cannot change the sharing attribute of a view after it is created.

See Also:

• Oracle Database Reference for more information on the DEFAULT_SHARING
initialization parameter

• Oracle Database Administrator’s Guide for complete information on creating
application common objects

alias

Specify names for the expressions selected by the defining query of the view. The number of
aliases must match the number of expressions selected by the view. Aliases must follow the
rules for naming Oracle Database schema objects. Aliases must be unique within the view.

If you omit the aliases, then the database derives them from the columns or column aliases in
the query. For this reason, you must use aliases if the query contains expressions rather than
only column names. Also, you must specify aliases if the view definition includes constraints.

Restriction on View Aliases

You cannot specify an alias when creating an object view.

See Also:

"Syntax for Schema Objects and Parts in SQL Statements"

VISIBLE | INVISIBLE

Use this clause to specify whether a view column is VISIBLE or INVISIBLE. By default, view
columns are VISIBLE regardless of their visibility in the base tables, unless you specify
INVISIBLE. This applies to conventional views and editioning views. For complete information
on these clauses, refer to "VISIBLE | INVISIBLE" in the documentation on CREATE TABLE.

inline_constraint and out_of_line_constraint

You can specify constraints on views and object views. You define the constraint at the view
level using the out_of_line_constraint clause. You define the constraint as part of column
or attribute specification using the inline_constraint clause after the appropriate alias.

Oracle Database does not enforce view constraints. For a full discussion of view constraints,
including restrictions, refer to "View Constraints ".

Chapter 15
CREATE VIEW

15-199

See Also:

"Creating a View with Constraints: Example"

object_view_clause

The object_view_clause lets you define a view on an object type.

See Also:

"Creating an Object View: Example"

OF type_name Clause

Use this clause to explicitly create an object view of type type_name. The columns of
an object view correspond to the top-level attributes of type type_name. Each row will
contain an object instance and each instance will be associated with an object
identifier as specified in the WITH OBJECT IDENTIFIER clause. If you omit schema, then
the database creates the object view in your own schema.

Object tables, as well as XMLType tables, object views, and XMLType views, do not have
any column names specified for them. Therefore, Oracle Database defines a system-
generated pseudocolumn OBJECT_ID. You can use this column name in queries and to
create object views with the WITH OBJECT IDENTIFIER clause.

WITH OBJECT IDENTIFIER Clause

Use the WITH OBJECT IDENTIFIER clause to specify a top-level (root) object view. This
clause lets you specify the attributes of the object type that will be used as a key to
identify each row in the object view. In most cases these attributes correspond to the
primary key columns of the base table. You must ensure that the attribute list is unique
and identifies exactly one row in the view. The WITH OBJECT IDENTIFIER and WITH
OBJECT ID clauses can be used interchangeably and are provided for semantic clarity.

Restrictions on Object Views

Object views are subject to the following restrictions:

• If you try to dereference or pin a primary key REF that resolves to more than one
instance in the object view, then the database returns an error.

• You cannot specify this clause if you are creating a subview, because subviews
inherit object identifiers from superviews.

If the object view is defined on an object table or an object view, then you can omit this
clause or specify DEFAULT.

DEFAULT

Specify DEFAULT if you want the database to use the intrinsic object identifier of the
underlying object table or object view to uniquely identify each row.

attribute

Chapter 15
CREATE VIEW

15-200

For attribute, specify an attribute of the object type from which the database should create
the object identifier for the object view.

UNDER Clause

Use the UNDER clause to specify a subview based on an object superview.

Restrictions on Subviews

Subviews are subject to the following restrictions:

• You must create a subview in the same schema as the superview.

• The object type type_name must be the immediate subtype of superview.

• You can create only one subview of a particular type under the same superview.

See Also:

• CREATE TYPE for information about creating objects

• Oracle Database Reference for information on data dictionary views

XMLType_view_clause

Use this clause to create an XMLType view, which displays data from an XMLSchema-based
table of type XMLType. The XMLSchema_spec indicates the XMLSchema to be used to map the
XML data to its object-relational equivalents. The XMLSchema must already have been
created before you can create an XMLType view.

The WITH OBJECT IDENTIFIER and WITH OBJECT ID clauses can be used interchangeably and
are provided for semantic clarity.

Object tables, as well as XMLType tables, object views, and XMLType views, do not have any
column names specified for them. Therefore, Oracle Database defines a system-generated
pseudocolumn OBJECT_ID. You can use this column name in queries and to create object
views with the WITH OBJECT IDENTIFIER clause.

See Also:

• Oracle XML DB Developer's Guide for information on XMLType views and
XMLSchemas

• "Creating an XMLType View: Example" and "Creating a View on an XMLType
Table: Example"

DEFAULT COLLATION

Use this clause to specify the default collation for the view. The default collation is used as
the derived collation for all the character literals included in the defining query of the view.
The default collation is not used by the view columns; the collations for the view columns are
derived from the view’s defining subquery. The CREATE VIEW statement fails with an error if

Chapter 15
CREATE VIEW

15-201

any of its character columns is based on an expression in the defining subquery that
has no derived collation.

For collation_name, specify a valid named collation or pseudo-collation.

If you omit this clause, then the default collation for the view is set to the effective
schema default collation of the schema containing the view. Refer to the
DEFAULT_COLLATION clause of ALTER SESSION for more information on the effective
schema default collation.

You can specify the DEFAULT COLLATION clause only if the COMPATIBLE initialization
parameter is set to 12.2 or greater, and the MAX_STRING_SIZE initialization parameter is
set to EXTENDED.

To change the default collation for a view, you must recreate the view.

Restriction on the Default Collation for Views

If the defining query of the view contains the WITH plsql_declarations clause, then
the default collation of the view must be USING_NLS_COMP.

BEQUEATH

Use the BEQUEATH clause to specify whether functions referenced in the view are
executed using the view invoker's rights or the view definer's rights.

CURRENT_USER

If you specify BEQUEATH CURRENT_USER, then functions referenced by the view are
executed using the view invoker's rights as long as one of the following conditions is
met:

• The view owner has the INHERIT PRIVILEGES object privilege on the invoking user.

• The view owner has the INHERIT ANY PRIVILEGES system privilege.

If a query of the view invokes an identity- or privilege-sensitive SQL function, or an
invoker's rights PL/SQL or Java function, then the current schema, current user, and
currently enabled roles within the operation's execution are inherited from the querying
user's environment, rather than from the owner of the view.

This clause does not turn the view itself into an invoker's rights object. Name
resolution within the view is still handled using the view owner's schema, and privilege
checking for the view is done using the view owner's privileges.

DEFINER

If you specify BEQUEATH DEFINER, then functions referenced by the view are executed
using the view definer's rights. If a query on the view invokes an identity- or privilege-
sensitive SQL function, or an invoker's rights PL/SQL or Java function, then the current
schema, current user, and currently enabled roles within the operation's execution are
inherited from the owner of the view.

Name resolution within the view is handled using the view owner's schema, and
privilege checking for the view is done using the view owner's privileges.

This is the default.

Restriction on the BEQUEATH Clause

You cannot specify this clause with the EDITIONING clause.

Chapter 15
CREATE VIEW

15-202

See Also:

Oracle Database Security Guide for more information on controlling invoker's rights
and definer's rights in views

AS subquery

Specify a subquery that identifies columns and rows of the table(s) that the view is based on.
The select list of the subquery can contain up to 1000 expressions.

If you create views that refer to remote tables and views, then the database links you specify
must have been created using the CONNECT TO clause of the CREATE DATABASE LINK statement,
and you must qualify them with a schema name in the view subquery.

If you create a view with the flashback_query_clause in the defining query, then the
database does not interpret the AS OF expression at create time but rather each time a user
subsequently queries the view.

See Also:

"Creating a Join View: Example" and Oracle Database Development Guide for
more information on Oracle Flashback Query

Restrictions on the Defining Query of a View

The view query is subject to the following restrictions:

• The subquery cannot select the CURRVAL or NEXTVAL pseudocolumns.

• If the subquery selects the ROWID, ROWNUM, or LEVEL pseudocolumns, then those columns
must have aliases in the view subquery.

• If the subquery uses an asterisk (*) to select all columns of a table, and you later add new
columns to the table, then the view will not contain those columns until you re-create the
view by issuing a CREATE OR REPLACE VIEW statement.

• For object views, the number of elements in the subquery select list must be the same as
the number of top-level attributes for the object type. The data type of each of the
selecting elements must be the same as the corresponding top-level attribute.

• You cannot specify the SAMPLE clause.

The preceding restrictions apply to materialized views as well.

Notes on Updatable Views

The following notes apply to updatable views:

An updatable view is one you can use to insert, update, or delete base table rows. You can
create a view to be inherently updatable, or you can create an INSTEAD OF trigger on any
view to make it updatable.

To learn whether and in what ways the columns of an inherently updatable view can be
modified, query the USER_UPDATABLE_COLUMNS data dictionary view. The information displayed

Chapter 15
CREATE VIEW

15-203

by this view is meaningful only for inherently updatable views. For a view to be
inherently updatable, the following conditions must be met:

• Each column in the view must map to a column of a single table. For example, if a
view column maps to the output of a TABLE clause (an unnested collection), then
the view is not inherently updatable.

• The view must not contain any of the following constructs:

A set operator
A DISTINCT operator
An aggregate or analytic function
A GROUP BY, ORDER BY, MODEL, CONNECT BY, or START WITH clause
A collection expression in a SELECT list
A subquery in a SELECT list
A subquery designated WITH READ ONLY
Joins, with some exceptions, as documented in Oracle Database
Administrator's Guide

• In addition, if an inherently updatable view contains pseudocolumns or
expressions, then you cannot update base table rows with an UPDATE statement
that refers to any of these pseudocolumns or expressions.

• If you want a join view to be updatable, then all of the following conditions must be
true:

– The DML statement must affect only one table underlying the join.

– For an INSERT statement, the view must not be created WITH CHECK OPTION,
and all columns into which values are inserted must come from a key-
preserved table. A key-preserved table is one for which every primary key or
unique key value in the base table is also unique in the join view.

– For an UPDATE statement, the view must not be created WITH CHECK OPTION,
and all columns updated must be extracted from a key-preserved table.

– For a DELETE statement, if the join results in more than one key-preserved
table, then Oracle Database deletes from the first table named in the FROM
clause, whether or not the view was created WITH CHECK OPTION.

See Also:

• Oracle Database Administrator's Guide for more information on
updatable views

• "Creating an Updatable View: Example", "Creating a Join View:
Example" for an example of updatable join views and key-preserved
tables, and Oracle Database PL/SQL Language Reference for an
example of an INSTEAD OF trigger on a view that is not inherently
updatable

subquery_restriction_clause

Use the subquery_restriction_clause to restrict the defining query of the view in one
of the following ways:

Chapter 15
CREATE VIEW

15-204

WITH READ ONLY

Specify WITH READ ONLY to indicate that the table or view cannot be updated.

WITH CHECK OPTION

Specify WITH CHECK OPTION to indicate that Oracle Database prohibits any changes to the
table or view that would produce rows that are not included in the subquery. When used in
the subquery of a DML statement, you can specify this clause in a subquery in the FROM
clause but not in subquery in the WHERE clause.

CONSTRAINT constraint

Specify the name of the READ ONLY or CHECK OPTION constraint. If you omit this identifier, then
Oracle automatically assigns the constraint a name of the form SYS_Cn, where n is an integer
that makes the constraint name unique within the database.

Note:

For tables, WITH CHECK OPTION guarantees that inserts and updates result in tables
that the defining table subquery can select. For views, WITH CHECK OPTION cannot
make this guarantee if:

• There is a subquery within the defining query of this view or any view on which
this view is based or

• INSERT, UPDATE, or DELETE operations are performed using INSTEAD OF triggers.

Restriction on the subquery_restriction_clause

You cannot specify this clause if you specify an ORDER BY clause.

See Also:

"Creating a Read-Only View: Example"

CONTAINER_MAP

Specify the CONTAINER_MAP clause to enable the view to be queried using a container map.

CONTAINERS_DEFAULT

Specify the CONTAINERS_DEFAULT clause to enable the view for the CONTAINERS clause.

Examples

Creating a View: Example

The following statement creates a view of the sample table employees named emp_view. The
view shows the employees in department 20 and their annual salary:

CREATE VIEW emp_view AS
 SELECT last_name, salary*12 annual_salary

Chapter 15
CREATE VIEW

15-205

 FROM employees
 WHERE department_id = 20;

The view declaration need not define a name for the column based on the expression
salary*12, because the subquery uses a column alias (annual_salary) for this
expression.

Creating an Editioning View: Example

The following statement creates an editioning view of the orders table:

CREATE EDITIONING VIEW ed_orders_view (o_id, o_date, o_status)
 AS SELECT order_id, order_date, order_status FROM orders
 WITH READ ONLY;

You can use this view to isolate an application from DDL changes to the orders table
during an administrative operation such as an upgrade. You can create a DML trigger
on this view, so that the trigger fires when a DML operation targets the view itself, but
does not fire if the DML operation targets the orders table.

Creating a View with Constraints: Example

The following statement creates a restricted view of the sample table hr.employees
and defines a unique constraint on the email view column and a primary key
constraint for the view on the emp_id view column:

CREATE VIEW emp_sal (emp_id, last_name,
 email UNIQUE RELY DISABLE NOVALIDATE,
 CONSTRAINT id_pk PRIMARY KEY (emp_id) RELY DISABLE NOVALIDATE)
 AS SELECT employee_id, last_name, email FROM employees;

Creating an Updatable View: Example

The following statement creates an updatable view named clerk of all clerks in the
employees table. Only the employees' IDs, last names, department numbers, and jobs
are visible in this view, and these columns can be updated only in rows where the
employee is a kind of clerk:

CREATE VIEW clerk AS
 SELECT employee_id, last_name, department_id, job_id
 FROM employees
 WHERE job_id = 'PU_CLERK'
 or job_id = 'SH_CLERK'
 or job_id = 'ST_CLERK';

This view lets you change the job_id of a purchasing clerk to purchasing manager
(PU_MAN):

UPDATE clerk SET job_id = 'PU_MAN' WHERE employee_id = 118;

The next example creates the same view WITH CHECK OPTION. You cannot
subsequently insert a new row into clerk if the new employee is not a clerk. You can
update an employee's job_id from one type of clerk to another type of clerk, but the
update in the preceding statement would fail, because the view cannot access
employees with non-clerk job_id.

CREATE VIEW clerk AS
 SELECT employee_id, last_name, department_id, job_id
 FROM employees
 WHERE job_id = 'PU_CLERK'

Chapter 15
CREATE VIEW

15-206

 or job_id = 'SH_CLERK'
 or job_id = 'ST_CLERK'
 WITH CHECK OPTION;

Creating a Join View: Example

A join view is one whose view subquery contains a join. If at least one column in the join has
a unique index, then it may be possible to modify one base table in a join view. You can query
USER_UPDATABLE_COLUMNS to see whether the columns in a join view are updatable. For
example:

CREATE VIEW locations_view AS
 SELECT d.department_id, d.department_name, l.location_id, l.city
 FROM departments d, locations l
 WHERE d.location_id = l.location_id;

SELECT column_name, updatable
 FROM user_updatable_columns
 WHERE table_name = 'LOCATIONS_VIEW'
 ORDER BY column_name, updatable;

COLUMN_NAME UPD
------------------------------ ---
DEPARTMENT_ID YES
DEPARTMENT_NAME YES
LOCATION_ID NO
CITY NO

In the preceding example, the primary key index on the location_id column of the
locations table is not unique in the locations_view view. Therefore, locations is not a key-
preserved table and columns from that base table are not updatable.

INSERT INTO locations_view VALUES
 (999, 'Entertainment', 87, 'Roma');
INSERT INTO locations_view VALUES
*
ERROR at line 1:
ORA-01776: cannot modify more than one base table through a join view

You can insert, update, or delete a row from the departments base table, because all the
columns in the view mapping to the departments table are marked as updatable and because
the primary key of departments is retained in the view.

INSERT INTO locations_view (department_id, department_name)
 VALUES (999, 'Entertainment');

1 row created.

Note:

For you to insert into the table using the view, the view must contain all NOT NULL
columns of all tables in the join, unless you have specified DEFAULT values for the
NOT NULL columns.

Chapter 15
CREATE VIEW

15-207

See Also:

Oracle Database Administrator's Guide for more information on updating join
views

Creating a Read-Only View: Example

The following statement creates a read-only view named customer_ro of the
oe.customers table. Only the customers' last names, language, and credit limit are
visible in this view:

CREATE VIEW customer_ro (name, language, credit)
 AS SELECT cust_last_name, nls_language, credit_limit
 FROM customers
 WITH READ ONLY;

Creating an Object View: Example

The following example shows the creation of the type inventory_typ in the oc
schema, and the oc_inventories view that is based on that type:

CREATE TYPE inventory_typ
 OID '82A4AF6A4CD4656DE034080020E0EE3D'
 AS OBJECT
 (product_id NUMBER(6)
 , warehouse warehouse_typ
 , quantity_on_hand NUMBER(8)
) ;
/
CREATE OR REPLACE VIEW oc_inventories OF inventory_typ
 WITH OBJECT OID (product_id)
 AS SELECT i.product_id,
 warehouse_typ(w.warehouse_id, w.warehouse_name, w.location_id),
 i.quantity_on_hand
 FROM inventories i, warehouses w
 WHERE i.warehouse_id=w.warehouse_id;

Creating a View on an XMLType Table: Example

The following example builds a regular view on the XMLType table xwarehouses, which
was created in "Examples ":

CREATE VIEW warehouse_view AS
 SELECT VALUE(p) AS warehouse_xml
 FROM xwarehouses p;

You select from such a view as follows:

SELECT e.warehouse_xml.getclobval()
 FROM warehouse_view e
 WHERE EXISTSNODE(warehouse_xml, '//Docks') =1;

Creating an XMLType View: Example

In some cases you may have an object-relational table upon which you would like to
build an XMLType view. The following example creates an object-relational table
resembling the XMLType column warehouse_spec in the sample table oe.warehouses,
and then creates an XMLType view of that table:

Chapter 15
CREATE VIEW

15-208

CREATE TABLE warehouse_table
(
 WarehouseID NUMBER,
 Area NUMBER,
 Docks NUMBER,
 DockType VARCHAR2(100),
 WaterAccess VARCHAR2(10),
 RailAccess VARCHAR2(10),
 Parking VARCHAR2(20),
 VClearance NUMBER
);

INSERT INTO warehouse_table
 VALUES(5, 103000,3,'Side Load','false','true','Lot',15);

CREATE VIEW warehouse_view OF XMLTYPE
 XMLSCHEMA "http://www.example.com/xwarehouses.xsd"
 ELEMENT "Warehouse"
 WITH OBJECT ID
 (extract(OBJECT_VALUE, '/Warehouse/Area/text()').getnumberval())
 AS SELECT XMLELEMENT("Warehouse",
 XMLFOREST(WarehouseID as "Building",
 area as "Area",
 docks as "Docks",
 docktype as "DockType",
 wateraccess as "WaterAccess",
 railaccess as "RailAccess",
 parking as "Parking",
 VClearance as "VClearance"))
 FROM warehouse_table;

You query this view as follows:

SELECT VALUE(e) FROM warehouse_view e;

DELETE
Purpose

Use the DELETE statement to remove rows from:

• An unpartitioned or partitioned table

• The unpartitioned or partitioned base table of a view

• The unpartitioned or partitioned container table of a writable materialized view

• The unpartitioned or partitioned master table of an updatable materialized view

Prerequisites

For you to delete rows from a table, the table must be in your own schema or you must have
the DELETE object privilege on the table.

For you to delete rows from an updatable materialized view, the materialized view must be in
your own schema or you must have the DELETE object privilege on the materialized view.

For you to delete rows from the base table of a view, the owner of the schema containing the
view must have the DELETE object privilege on the base table. Also, if the view is in a schema
other than your own, then you must have the DELETE object privilege on the view.

Chapter 15
DELETE

15-209

The DELETE ANY TABLE system privilege also allows you to delete rows from any table
or table partition or from the base table of any view.

To delete rows from an object on a remote database, you must also have the READ or
SELECT object privilege on the object.

If the SQL92_SECURITY initialization parameter is set to TRUE and the DELETE operation
references table columns, such as the columns in a where_clause, then you must also
have the SELECT object privilege on the object from which you want to delete rows.

You cannot delete rows from a table if a function-based index on the table has become
invalid. You must first validate the function-based index.

Syntax

delete::=

DELETE

hint FROM dml_table_expression_clause

ONLY (dml_table_expression_clause)

t_alias

where_clause returning_clause error_logging_clause

;

(DML_table_expression_clause::=, where_clause::=, returning_clause::=,
error_logging_clause::=)

DML_table_expression_clause::=

schema . table

partition_extension_clause

@ dblink

view

materialized view

@ dblink

(subquery

subquery_restriction_clause

)

table_collection_expression

(partition_extension_clause::=, subquery::=, subquery_restriction_clause::=,
table_collection_expression::=)

Chapter 15
DELETE

15-210

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

subquery_restriction_clause::=

WITH

READ ONLY

CHECK OPTION

CONSTRAINT constraint

table_collection_expression::=

TABLE (collection_expression)

(+)

where_clause::=

WHERE condition

returning_clause::=

RETURN

RETURNING
expr

,

INTO data_item

,

error_logging_clause::=

LOG ERRORS

INTO

schema .

table (simple_expression)

REJECT LIMIT
integer

UNLIMITED

Chapter 15
DELETE

15-211

Semantics

hint

Specify a comment that passes instructions to the optimizer on choosing an execution
plan for the statement.

See Also:

"Hints " for the syntax and description of hints

from_clause

Use the FROM clause to specify the database objects from which you are deleting rows.

The ONLY syntax is relevant only for views. Use the ONLY clause if the view in the FROM
clause belongs to a view hierarchy and you do not want to delete rows from any of its
subviews.

DML_table_expression_clause

Use this clause to specify the objects from which data is being deleted.

schema

Specify the schema containing the table or view. If you omit schema, then Oracle
Database assumes the table or view is in your own schema.

table | view | materialized view | subquery

Specify the name of a table, view, materialized view, or the column or columns
resulting from a subquery, from which the rows are to be deleted.

When you delete rows from an updatable view, Oracle Database deletes rows from the
base table.

You cannot delete rows from a read-only materialized view. If you delete rows from a
writable materialized view, then the database removes the rows from the underlying
container table. However, the deletions are overwritten at the next refresh operation. If
you delete rows from an updatable materialized view that is part of a materialized view
group, then the database also removes the corresponding rows from the master table.

If table or the base table of view or the master table of materialized_view contains
one or more domain index columns, then this statement executes the appropriate
indextype delete routine.

See Also:

Oracle Database Data Cartridge Developer's Guide for more information on
these routines

Chapter 15
DELETE

15-212

Issuing a DELETE statement against a table fires any DELETE triggers defined on the table.

All table or index space released by the deleted rows is retained by the table and index.

partition_extension_clause

Specify the name or partition key value of the partition or subpartition targeted for deletes
within the object.

You need not specify the partition name when deleting values from a partitioned object.
However, in some cases, specifying the partition name is more efficient than a complicated
where_clause.

See Also:

"References to Partitioned Tables and Indexes " and "Deleting Rows from a
Partition: Example"

dblink

Specify the complete or partial name of a database link to a remote database where the
object is located. You can delete rows from a remote object only if you are using Oracle
Database distributed functionality.

Note:

Starting with Oracle Database 12c Release 2 (12.2), the DELETE statement accepts
remote LOB locators as bind variables. Refer to the “Distributed LOBs” chapter in
Oracle Database SecureFiles and Large Objects Developer's Guide for more
information.

See Also:

"References to Objects in Remote Databases " for information on referring to
database links and "Deleting Rows from a Remote Database: Example"

If you omit dblink, then the database assumes that the object is located on the local
database.

subquery_restriction_clause

The subquery_restriction_clause lets you restrict the subquery in one of the following
ways:

WITH READ ONLY

Specify WITH READ ONLY to indicate that the table or view cannot be updated.

WITH CHECK OPTION

Chapter 15
DELETE

15-213

Specify WITH CHECK OPTION to indicate that Oracle Database prohibits any changes to
the table or view that would produce rows that are not included in the subquery. When
used in the subquery of a DML statement, you can specify this clause in a subquery in
the FROM clause but not in subquery in the WHERE clause.

CONSTRAINT constraint

Specify the name of the CHECK OPTION constraint. If you omit this identifier, then Oracle
automatically assigns the constraint a name of the form SYS_Cn, where n is an integer
that makes the constraint name unique within the database.

See Also:

"Using the WITH CHECK OPTION Clause: Example"

table_collection_expression

The table_collection_expression lets you inform Oracle that the value of
collection_expression should be treated as a table for purposes of query and DML
operations. The collection_expression can be a subquery, a column, a function, or a
collection constructor. Regardless of its form, it must return a collection value—that is,
a value whose type is nested table or varray. This process of extracting the elements
of a collection is called collection unnesting.

The optional plus (+) is relevant if you are joining the TABLE collection expression with
the parent table. The + creates an outer join of the two, so that the query returns rows
from the outer table even if the collection expression is null.

Note:

In earlier releases of Oracle, when collection_expression was a subquery,
table_collection_expression was expressed as THE subquery. That usage
is now deprecated.

You can use a table_collection_expression in a correlated subquery to delete rows
with values that also exist in another table.

See Also:

"Table Collections: Examples"

collection_expression

Specify a subquery that selects a nested table column from the object from which you
are deleting.

Restrictions on the dml_table_expression_clause Clause

This clause is subject to the following restrictions:

Chapter 15
DELETE

15-214

• You cannot execute this statement if table or the base or master table of view or
materialized_view contains any domain indexes marked IN_PROGRESS or FAILED.

• You cannot insert into a partition if any affected index partitions are marked UNUSABLE.

• You cannot specify the ORDER BY clause in the subquery of the
DML_table_expression_clause.

• You cannot delete from a view except through INSTEAD OF triggers if the defining query of
the view contains one of the following constructs:

A set operator
A DISTINCT operator
An aggregate or analytic function
A GROUP BY, ORDER BY, MODEL, CONNECT BY, or START WITH clause
A collection expression in a SELECT list
A subquery in a SELECT list
A subquery designated WITH READ ONLY
Joins, with some exceptions, as documented in Oracle Database Administrator's
Guide

If you specify an index, index partition, or index subpartition that has been marked UNUSABLE,
then the DELETE statement will fail unless the SKIP_UNUSABLE_INDEXES initialization parameter
has been set to true.

See Also:

ALTER SESSION

t_alias

Provide a correlation name for the table, view, materialized view, subquery, or collection
value to be referenced elsewhere in the statement. This alias is required if the
DML_table_expression_clause references any object type attributes or object type methods.
Table aliases are generally used in DELETE statements with correlated queries.

where_clause

Use the where_clause to delete only rows that satisfy the condition. The condition can
reference the object from which you are deleting and can contain a subquery. You can delete
rows from a remote object only if you are using Oracle Database distributed functionality.
Refer to Conditions for the syntax of condition.

If this clause contains a subquery that refers to remote objects, then the DELETE operation
can run in parallel as long as the reference does not loop back to an object on the local
database. However, if the subquery in the DML_table_expression_clause refers to any
remote objects, then the DELETE operation will run serially without notification. Refer to the
parallel_clause in the CREATE TABLE documentation for additional information.

If you omit dblink, then the database assumes that the table or view is located on the local
database.

If you omit the where_clause, then the database deletes all rows of the object.

Chapter 15
DELETE

15-215

returning_clause

This clause lets you return values from deleted columns, and thereby eliminate the
need to issue a SELECT statement following the DELETE statement.

The returning clause retrieves the rows affected by a DML statement. You can specify
this clause for tables and materialized views and for views with a single base table.

When operating on a single row, a DML statement with a returning_clause can
retrieve column expressions using the affected row, rowid, and REFs to the affected
row and store them in host variables or PL/SQL variables.

When operating on multiple rows, a DML statement with the returning_clause stores
values from expressions, rowids, and REFs involving the affected rows in bind arrays.

expr

Each item in the expr list must be a valid expression syntax.

INTO

The INTO clause indicates that the values of the changed rows are to be stored in the
variable(s) specified in data_item list.

data_item

Each data_item is a host variable or PL/SQL variable that stores the retrieved expr
value.

For each expression in the RETURNING list, you must specify a corresponding type-
compatible PL/SQL variable or host variable in the INTO list.

Restrictions on the RETURNING Clause

The following restrictions apply to the RETURNING clause:

• The expr is restricted as follows:

– For UPDATE and DELETE statements each expr must be a simple expression or
a single-set aggregate function expression. You cannot combine simple
expressions and single-set aggregate function expressions in the same
returning_clause. For INSERT statements, each expr must be a simple
expression. Aggregate functions are not supported in an INSERT statement
RETURNING clause.

– Single-set aggregate function expressions cannot include the DISTINCT
keyword.

• If the expr list contains a primary key column or other NOT NULL column, then the
update statement fails if the table has a BEFORE UPDATE trigger defined on it.

• You cannot specify the returning_clause for a multitable insert.

• You cannot use this clause with parallel DML or with remote objects.

• You cannot retrieve LONG types with this clause.

• You cannot specify this clause for a view on which an INSTEAD OF trigger has been
defined.

Chapter 15
DELETE

15-216

See Also:

• Oracle Database PL/SQL Language Reference for information on using the
BULK COLLECT clause to return multiple values to collection variables

• "Using the RETURNING Clause: Example"

error_logging_clause

The error_logging_clause has the same behavior in DELETE statement as it does in an
INSERT statement. Refer to the INSERT statement error_logging_clause for more information.

See Also:

"Inserting Into a Table with Error Logging: Example"

Examples

Deleting Rows: Examples

The following statement deletes all rows from the sample table oe.product_descriptions
where the value of the language_id column is AR:

DELETE FROM product_descriptions
 WHERE language_id = 'AR';

The following statement deletes from the sample table hr.employees purchasing clerks
whose commission rate is less than 10%:

DELETE FROM employees
 WHERE job_id = 'SA_REP'
 AND commission_pct < .2;

The following statement has the same effect as the preceding example, but uses a subquery:

DELETE FROM (SELECT * FROM employees)
 WHERE job_id = 'SA_REP'
 AND commission_pct < .2;

Deleting Rows from a Remote Database: Example

The following statement deletes specified rows from the locations table owned by the user
hr on a database accessible by the database link remote:

DELETE FROM hr.locations@remote
 WHERE location_id > 3000;

Deleting Nested Table Rows: Example

For an example that deletes nested table rows, refer to "Table Collections: Examples".

Deleting Rows from a Partition: Example

The following example removes rows from partition sales_q1_1998 of the sh.sales table:

Chapter 15
DELETE

15-217

DELETE FROM sales PARTITION (sales_q1_1998)
 WHERE amount_sold > 1000;

Using the RETURNING Clause: Example

The following example returns column salary from the deleted rows and stores the
result in bind variable :bnd1. The bind variable must already have been declared.

DELETE FROM employees
 WHERE job_id = 'SA_REP'
 AND hire_date + TO_YMINTERVAL('01-00') < SYSDATE
 RETURNING salary INTO :bnd1;

Deleting Data from a Table: Example

The following statements create a table named product_price_history and insert data
into it:

CREATE TABLE product_price_history (
 product_id INTEGER NOT NULL,
 price INTEGER NOT NULL,
 currency_code VARCHAR2(3 CHAR) NOT NULL,
 effective_from_date DATE NOT NULL,
 effective_to_date DATE,
 CONSTRAINT product_price_history_pk
 PRIMARY KEY (product_id, currency_code, effective_from_date)
) PARTITION BY RANGE (effective_from_date) (
 PARTITION p0 VALUES less than (DATE'2015-01-02'),
 PARTITION p1 VALUES less than (DATE'2015-01-03'),
 PARTITION p2 VALUES less than (DATE'2015-01-04')
);

INSERT INTO product_price_history
 WITH prices AS (
 SELECT 1, 100, 'USD', DATE'2015-01-01', DATE'2015-01-02'
 FROM dual UNION ALL
 SELECT 1, 60, 'GBP', DATE'2015-01-01', DATE'2015-01-02'
 FROM dual UNION ALL
 SELECT 1, 110, 'EUR', DATE'2015-01-01', DATE'2015-01-02'
 FROM dual UNION ALL
 SELECT 1, 101, 'USD', DATE'2015-01-02', DATE'2015-01-03'
 FROM dual UNION ALL
 SELECT 1, 62, 'GBP', DATE'2015-01-02', DATE'2015-01-03'
 FROM dual UNION ALL
 SELECT 1, 109, 'EUR', DATE'2015-01-02', DATE'2015-01-03'
 FROM dual UNION ALL
 SELECT 1, 105, 'USD', DATE'2015-01-03', NULL
 FROM dual UNION ALL
 SELECT 1, 61, 'GBP', DATE'2015-01-03', NULL
 FROM dual UNION ALL
 SELECT 1, 107, 'EUR', DATE'2015-01-03', NULL
 FROM dual UNION ALL
 SELECT 2, 30, 'USD', DATE'2015-01-01', DATE'2015-01-03'
 FROM dual UNION ALL
 SELECT 2, 33, 'USD', DATE'2015-01-03', NULL
 FROM dual UNION ALL
 SELECT 3, 100, 'GBP', DATE'2015-01-03', NULL
 FROM dual
)
SELECT *
FROM prices;

Chapter 15
DELETE

15-218

The following statement deletes the rows from the table product_price_history where
product_id is 3:

DELETE FROM product_price_history WHERE product_id = 3;

The following procedure deletes the rows from the product_price_history where product_id is
2 and effective_to_date is NULL:

DECLARE
 currency product_price_history.currency_code%TYPE;
BEGIN
 DELETE product_price_history
 WHERE product_id = 2
 AND effective_to_date IS NULL
 returning currency_code INTO currency;

 dbms_output.Put_line(currency);
END;

USD

The following statement deletes the rows from the table product_price_history where
currency_code is ‘EUR’:

DELETE (SELECT * FROM product_price_history) WHERE currency_code = 'EUR';

The following statement uses a subquery to delete rows from product_price_history:

DELETE product_price_history pp
WHERE (product_id, currency_code, effective_from_date)
 IN (SELECT product_id, currency_code, Max(effective_from_date)
 FROM product_price_history
 GROUP BY product_id, currency_code);

The following statement uses partitions to delete rows from product_price_history:

DELETE product_price_history partition (p1);

The following statement displays the table information:

SELECT * FROM product_price_history;

PRODUCT_ID PRICE CUR EFFECTIVE EFFECTIVE
---------- ---------- --- --------- ---------
 1 100 USD 01-JAN-15 02-JAN-15
 1 60 GBP 01-JAN-15 02-JAN-15

The following statement deletes all rows from product_price_history:

DELETE product_price_history;

Live SQL:

View and run a related example on Oracle Live SQL at Deleting Data from a Table

Chapter 15
DELETE

15-219

https://livesql.oracle.com/apex/livesql/docs/sqlrf/delete/delete-basic.html

DISASSOCIATE STATISTICS
Purpose

Use the DISASSOCIATE STATISTICS statement to disassociate default statistics or a
statistics type from columns, standalone functions, packages, types, domain indexes,
or indextypes.

See Also:

ASSOCIATE STATISTICS for more information on statistics type
associations

Prerequisites

To issue this statement, you must have the appropriate privileges to alter the
underlying table, function, package, type, domain index, or indextype.

Syntax

disassociate_statistics::=

DISASSOCIATE STATISTICS FROM

COLUMNS

schema .

table . column

,

FUNCTIONS

schema .

function

,

PACKAGES

schema .

package

,

TYPES

schema .

type

,

INDEXES

schema .

index

,

INDEXTYPES

schema .

indextype

,

FORCE

;

Chapter 15
DISASSOCIATE STATISTICS

15-220

Semantics

FROM COLUMNS | FUNCTIONS | PACKAGES | TYPES | INDEXES | INDEXTYPES

Specify one or more columns, standalone functions, packages, types, domain indexes, or
indextypes from which you are disassociating statistics.

If you do not specify schema, then Oracle Database assumes the object is in your own
schema.

If you have collected user-defined statistics on the object, then the statement fails unless you
specify FORCE.

FORCE

Specify FORCE to remove the association regardless of whether any statistics exist for the
object using the statistics type. If statistics do exist, then the statistics are deleted before the
association is deleted.

Note:

When you drop an object with which a statistics type has been associated, Oracle
Database automatically disassociates the statistics type with the FORCE option and
drops all statistics that have been collected with the statistics type.

Examples

Disassociating Statistics: Example

This statement disassociates statistics from the emp_mgmt package. See Oracle Database
PL/SQL Language Reference for the example that creates this package in the hr schema.

DISASSOCIATE STATISTICS FROM PACKAGES hr.emp_mgmt;

DROP ANALYTIC VIEW
Purpose

Use the DROP ANALYTIC VIEW statement to drop an analytic view. An ANALYTIC VIEW object is a
component of analytic views.

Prerequisites

To drop an analytic view in your own schema, you must have the DROP ANALYTIC VIEW system
privilege. To drop an analytic view in another user's schema, you must have the DROP ANY
ANALYTIC VIEW system privilege.

Syntax

drop_analytic_view::=

DROP ANALYTIC VIEW

schema .

analytic_view_name ;

Chapter 15
DROP ANALYTIC VIEW

15-221

Semantics

schema

Specify the schema in which the analytic view exists. If you do not specify a schema,
then Oracle Database looks for the analytic view in your own schema.

analytic_view_name

Specify the name of the analytic view to drop.

Example

The following statement drops the specified analytic view object:

DROP ANALYTIC VIEW sales_av;

DROP ATTRIBUTE DIMENSION
Purpose

Use the DROP ATTRIBUTE DIMENSION statement to drop an attribute dimension. An
ATTRIBUTE DIMENSION object is a component of analytic views.

Prerequisites

To drop an attribute dimension in your own schema, you must have the DROP
ATTRIBUTE DIMENSION system privilege. To drop an analytic view in another user's
schema, you must have the DROP ANY ATTRIBUTE DIMENSION system privilege.

Syntax

drop_attribute_dimension::=

DROP ATTRIBUTE DIMENSION

schema .

attr_dimension_name ;

Semantics

schema

Specify the schema in which the attribute dimension exists. If you do not specify a
schema, then Oracle Database looks for the attribute dimension in your own schema.

attr_dimension_name

Specify the name of the attribute dimension to drop.

Example

The following statement drops the specified attribute dimension object:

DROP ATTRIBUTE DIMENSION product_attr_dim;

Chapter 15
DROP ATTRIBUTE DIMENSION

15-222

DROP AUDIT POLICY (Unified Auditing)
This section describes the DROP AUDIT POLICY statement for unified auditing. This type of
auditing is new beginning with Oracle Database 12c and provides a full set of enhanced
auditing features. Refer to Oracle Database Security Guide for more information on unified
auditing.

Purpose

Use the DROP AUDIT POLICY statement to remove a unified audit policy from the database.

See Also:

• CREATE AUDIT POLICY (Unified Auditing)

• ALTER AUDIT POLICY (Unified Auditing)

• AUDIT (Unified Auditing)

• NOAUDIT (Unified Auditing)

Prerequisites

You must have the AUDIT SYSTEM system privilege or the AUDIT_ADMIN role.

To drop a common unified audit policy, the current container must be the root and you must
have the commonly granted AUDIT SYSTEM privilege or the AUDIT_ADMIN common role. To drop
a local unified audit policy, the current container must be the container in which the audit
policy was created and you must have the commonly granted AUDIT SYSTEM privilege or the
AUDIT_ADMIN common role, or you must have the locally granted AUDIT SYSTEM privilege or
the AUDIT_ADMIN local role in the container.

Syntax

drop_audit_policy::=

DROP AUDIT POLICY policy ;

Semantics

policy

Specify the name of the unified audit policy you want to drop. The policy must have been
created using the CREATE AUDIT POLICY statement.

You can find the names of all unified audit policies by querying the AUDIT_UNIFIED_POLICIES
view and the names of all enabled unified audit policies by querying the
AUDIT_UNIFIED_ENABLED_POLICIES view

Restriction on Dropping Unified Audit Policies

Chapter 15
DROP AUDIT POLICY (Unified Auditing)

15-223

You cannot drop an enabled unified audit policy. You must first disable the policy using
the NOAUDIT statement.

See Also:

• CREATE AUDIT POLICY (Unified Auditing)

• Oracle Database Reference for more information on the
AUDIT_UNIFIED_POLICIES and AUDIT_UNIFIED_ENABLED_POLICIES views

Examples

Dropping a Unified Audit Policy: Example

The following statement drops unified audit policy table_pol:

DROP AUDIT POLICY table_pol;

DROP CLUSTER
Purpose

Use the DROP CLUSTER clause to remove a cluster from the database.

Note:

When you drop a cluster, any tables in the recycle bin that were once part of
that cluster are purged from the recycle bin and can no longer be recovered
with a FLASHBACK TABLE operation.

You cannot uncluster an individual table. Instead you must perform these steps:

1. Create a new table with the same structure and contents as the old one, but with
no CLUSTER clause.

2. Drop the old table.

3. Use the RENAME statement to give the new table the name of the old one.

4. Grant privileges on the new unclustered table. Grants on the old clustered table do
not apply.

See Also:

CREATE TABLE, DROP TABLE , RENAME , GRANT for information on
these steps

Chapter 15
DROP CLUSTER

15-224

Prerequisites

The cluster must be in your own schema or you must have the DROP ANY CLUSTER system
privilege.

Syntax

drop_cluster::=

DROP CLUSTER

schema .

cluster

INCLUDING TABLES

CASCADE CONSTRAINTS

;

Semantics

schema

Specify the schema containing the cluster. If you omit schema, then the database assumes
the cluster is in your own schema.

cluster

Specify the name of the cluster to be dropped. Dropping a cluster also drops the cluster index
and returns all cluster space, including data blocks for the index, to the appropriate
tablespace(s).

INCLUDING TABLES

Specify INCLUDING TABLES to drop all tables that belong to the cluster.

CASCADE CONSTRAINTS

Specify CASCADE CONSTRAINTS to drop all referential integrity constraints from tables outside
the cluster that refer to primary and unique keys in tables of the cluster. If you omit this clause
and such referential integrity constraints exist, then the database returns an error and does
not drop the cluster.

Examples

Dropping a Cluster: Examples

The following examples drop the clusters created in the "Examples" section of CREATE
CLUSTER.

The following statements drops the language cluster:

DROP CLUSTER language;

The following statement drops the personnel cluster as well as tables dept_10 and dept_20
and any referential integrity constraints that refer to primary or unique keys in those tables:

DROP CLUSTER personnel
 INCLUDING TABLES
 CASCADE CONSTRAINTS;

Chapter 15
DROP CLUSTER

15-225

16
SQL Statements: DROP CONTEXT to DROP
JAVA

This chapter contains the following SQL statements:

• DROP CONTEXT

• DROP DATABASE

• DROP DATABASE LINK

• DROP DIMENSION

• DROP DIRECTORY

• DROP DISKGROUP

• DROP EDITION

• DROP FLASHBACK ARCHIVE

• DROP FUNCTION

• DROP HIERARCHY

• DROP INDEX

• DROP INDEXTYPE

• DROP INMEMORY JOIN GROUP

• DROP JAVA

DROP CONTEXT
Purpose

Use the DROP CONTEXT statement to remove a context namespace from the database.

Removing a context namespace does not invalidate any context under that namespace that
has been set for a user session. However, the context will be invalid when the user next
attempts to set that context.

See Also:

CREATE CONTEXT and Oracle Database Security Guide for more information on
contexts

Prerequisites

You must have the DROP ANY CONTEXT system privilege.

16-1

Syntax

drop_context::=

DROP CONTEXT namespace ;

Semantics

namespace

Specify the name of the context namespace to drop. You cannot drop the built-in
namespace USERENV.

See Also:

SYS_CONTEXT for information on the USERENV namespace

Examples

Dropping an Application Context: Example

The following statement drops the context created in CREATE CONTEXT:

DROP CONTEXT hr_context;

DROP DATABASE
Purpose

Note:

You cannot roll back a DROP DATABASE statement.

Use the DROP DATABASE statement to drop the database. This statement is useful when
you want to drop a test database or drop an old database after successful migration to
a new host.

See Also:

Oracle Database Backup and Recovery User's Guide for more information
on dropping the database

Chapter 16
DROP DATABASE

16-2

Prerequisites

You must have the SYSDBA system privilege to issue this statement. The database must be
mounted in exclusive and restricted mode, and it must be closed.

Syntax

drop_database::=

DROP DATABASE ;

Semantics

When you issue this statement, Oracle Database drops the database and deletes all control
files and data files listed in the control file. If the database used a server parameter file
(spfile), then the spfile is also deleted.

Archived logs and backups are not removed, but you can use Recovery Manager (RMAN) to
remove them. If the database is on raw disks, then this statement does not delete the actual
raw disk special files.

DROP DATABASE LINK
Purpose

Use the DROP DATABASE LINK statement to remove a database link from the database.

See Also:

CREATE DATABASE LINK for information on creating database links

Prerequisites

A private database link must be in your own schema. To drop a PUBLIC database link, you
must have the DROP PUBLIC DATABASE LINK system privilege.

Syntax

drop_database_link::=

DROP

PUBLIC

DATABASE LINK dblink ;

Semantics

PUBLIC

You must specify PUBLIC to drop a PUBLIC database link.

Chapter 16
DROP DATABASE LINK

16-3

dblink

Specify the name of the database link to be dropped.

Restriction on Dropping Database Links

You cannot drop a database link in another user's schema, and you cannot qualify
dblink with the name of a schema, because periods are permitted in names of
database links. Therefore, Oracle Database interprets the entire name, such as
ralph.linktosales, as the name of a database link in your schema rather than as a
database link named linktosales in the schema ralph.

Examples

Dropping a Database Link: Example

The following statement drops the public database link named remote, which was
created in "Defining a Public Database Link: Example":

DROP PUBLIC DATABASE LINK remote;

DROP DIMENSION
Purpose

Use the DROP DIMENSION statement to remove the named dimension.

This statement does not invalidate materialized views that use relationships specified
in dimensions. However, requests that have been rewritten by query rewrite may be
invalidated, and subsequent operations on such views may execute more slowly.

See Also:

• CREATE DIMENSION and ALTER DIMENSION for information on
creating and modifying a dimension

• Oracle Database Concepts for general information about dimensions

Prerequisites

The dimension must be in your own schema or you must have the DROP ANY DIMENSION
system privilege to use this statement.

Syntax

drop_dimension::=

DROP DIMENSION

schema .

dimension ;

Chapter 16
DROP DIMENSION

16-4

Semantics

schema

Specify the name of the schema in which the dimension is located. If you omit schema, then
Oracle Database assumes the dimension is in your own schema.

dimension

Specify the name of the dimension you want to drop. The dimension must already exist.

Examples

Dropping a Dimension: Example

This example drops the sh.customers_dim dimension:

DROP DIMENSION customers_dim;

See Also:

"Creating a Dimension: Examples" and "Modifying a Dimension: Examples" for
examples of creating and modifying this dimension

DROP DIRECTORY
Purpose

Use the DROP DIRECTORY statement to remove a directory object from the database.

See Also:

CREATE DIRECTORY for information on creating a directory

Prerequisites

To drop a directory, you must have the DROP ANY DIRECTORY system privilege.

Note:

Do not drop a directory when files in the associated file system are being accessed
by PL/SQL or OCI programs.

Chapter 16
DROP DIRECTORY

16-5

Syntax

drop_directory::=

DROP DIRECTORY directory_name ;

Semantics

directory_name

Specify the name of the directory database object to be dropped.

Oracle Database removes the directory object but does not delete the associated
operating system directory on the server file system.

Examples

Dropping a Directory: Example

The following statement drops the directory object bfile_dir:

DROP DIRECTORY bfile_dir;

See Also:

"Creating a Directory: Examples"

DROP DISKGROUP

Note:

This SQL statement is valid only if you are using Oracle ASM and you have
started an Oracle ASM instance. You must issue this statement from within
the Oracle ASM instance, not from a normal database instance. For
information on starting an Oracle ASM instance, refer to Oracle Automatic
Storage Management Administrator's Guide.

Purpose

The DROP DISKGROUP statement lets you drop an Oracle ASM disk group along with all
the files in the disk group. Oracle ASM first ensures that no files in the disk group are
open. It then drops the disk group and all its member disks and clears the disk header.

Chapter 16
DROP DISKGROUP

16-6

See Also:

• CREATE DISKGROUP and ALTER DISKGROUP for information on creating
and modifying disk groups

• Oracle Automatic Storage Management Administrator's Guide for information
on Oracle ASM and using disks groups to simplify database administration

Prerequisites

You must have the SYSASM system privilege and you must have an Oracle ASM instance
started, from which you issue this statement. The disk group to be dropped must be mounted.

Syntax

drop_diskgroup::=

DROP DISKGROUP diskgroup_name

FORCE

INCLUDING

EXCLUDING
CONTENTS

;

Semantics

diskgroup_name

Specify the name of the disk group you want to drop.

INCLUDING CONTENTS

Specify INCLUDING CONTENTS to confirm that Oracle ASM should drop all the files in the disk
group. You must specify this clause if the disk group contains any files.

FORCE

This clause clears the headers on the disk belonging to a disk group that cannot be mounted
by the Oracle ASM instance. The disk group cannot be mounted by any instance of the
database.

The Oracle ASM instance first determines whether the disk group is being used by any other
Oracle ASM instance using the same storage subsystem. If it is being used, and if the disk
group is in the same cluster, or on the same node, then the statement fails. If the disk group
is in a different cluster, then the system further checks to determine whether the disk group is
mounted by any instance in the other cluster. If it is mounted elsewhere, then the statement
fails. However, this latter check is not as definitive as the checks for disk groups in the same
cluster. Therefore, use this clause with caution.

EXCLUDING CONTENTS

Specify EXCLUDING CONTENTS to ensure that Oracle ASM drops the disk group only when the
disk group is empty. This is the default. If the disk group is not empty, then an error will be
returned.

Chapter 16
DROP DISKGROUP

16-7

Examples

Dropping a Diskgroup: Example

The following statement drops the Oracle ASM disk group dgroup_01, which was
created in "Creating a Diskgroup: Example", and all of the files in the disk group:

DROP DISKGROUP dgroup_01 INCLUDING CONTENTS;

DROP EDITION
Purpose

Use the DROP EDITION statement to drop an edition, along with all actual editionable
objects it contains. An actual editionable object is an editionable object that has been
created or modified in an edition.

See Also:

CREATE EDITION for a listing of editionable object types

Prerequisites

You must have the DROP ANY EDITION system privilege, granted either directly or
through a role.

Syntax

drop_edition::=

DROP EDITION edition

CASCADE

;

Semantics

Objects that are not editionable, or that are editionable but have not been actualized in
the current edition, are not dropped.

You must specify CASCADE if the specified edition contains any actual editionable
objects.

This statement is subject to the following conditions and restrictions:

• The specified edition cannot have both a parent edition and a child edition.

• DROP EDITION will fail if you attempt to drop the default edition.

• DROP EDITION will fail if you attempt to drop the root edition and the recycle bin
contains at least one object that used to be in that edition before it was dropped.
Under these circumstances, even DROP EDITION CASCADE will fail. In this case, you
can purge all objects from the recycle bin with the PURGE DBA_RECYCLEBIN
statement and then drop the edition. Refer to PURGE for more information.

Chapter 16
DROP EDITION

16-8

DROP EDITION will also fail if you attempt to drop the leaf edition and the recycle bin
contains at least one object that used to be in that edition before it was dropped.
However, under these circumstances, DROP EDITION CASCADE will succeed.

The only type of editioned object that might be in the recycle bin is a trigger.

See Also:

• Oracle Database Development Guide

• Oracle Database PL/SQL Packages and Types Reference

Examples

For examples that use this statement, refer to CREATE EDITION .

DROP FLASHBACK ARCHIVE
Purpose

Use the DROP FLASHBACK ARCHIVE clause to remove a flashback archive from the system. This
statement removes the flashback archive and all the historical data in it, but does not drop the
tablespaces that were used by the flashback archive.

Prerequisites

You must have the FLASHBACK ARCHIVE ADMINISTER system privilege to drop a flashback
archive.

Syntax

drop_flashback_archive::=

DROP FLASHBACK ARCHIVE flashback_archive ;

Semantics

flashback_archive

Specify the name of the flashback archive you want to drop.

See Also:

CREATE FLASHBACK ARCHIVE for information on creating flashback archives
and for some simple examples of using flashback archives

Chapter 16
DROP FLASHBACK ARCHIVE

16-9

DROP FUNCTION
Purpose

Functions are defined using PL/SQL. Refer to Oracle Database PL/SQL Language
Reference for complete information on creating, altering, and dropping functions.

Use the DROP FUNCTION statement to remove a standalone stored function from the
database.

Note:

Do not use this statement to remove a function that is part of a package.
Instead, either drop the entire package using the DROP PACKAGE statement or
redefine the package without the function using the CREATE PACKAGE
statement with the OR REPLACE clause.

Prerequisites

The function must be in your own schema or you must have the DROP ANY PROCEDURE
system privilege.

Syntax

drop_function::=

DROP FUNCTION

schema .

function_name ;

Semantics

schema

Specify the schema containing the function. If you omit schema, then Oracle Database
assumes the function is in your own schema.

function_name

Specify the name of the function to be dropped.

Oracle Database invalidates any local objects that depend on, or call, the dropped
function. If you subsequently reference one of these objects, then the database tries to
recompile the object and returns an error if you have not re-created the dropped
function.

If any statistics types are associated with the function, then the database disassociates
the statistics types with the FORCE option and drops any user-defined statistics
collected with the statistics type.

Chapter 16
DROP FUNCTION

16-10

See Also:

• Oracle Database Concepts for more information on how Oracle Database
maintains dependencies among schema objects, including remote objects

• ASSOCIATE STATISTICS and DISASSOCIATE STATISTICS for more
information on statistics type associations

Examples

Dropping a Function: Example

The following statement drops the function SecondMax in the sample schema oe and
invalidates all objects that depend upon SecondMax:

DROP FUNCTION oe.SecondMax;

See Also:

Oracle Database PL/SQL Language Reference for the example that creates the
SecondMax function

DROP HIERARCHY
Purpose

Use the DROP HIERARCHY statement to drop a hierarchy. A HIERARCHY object is a component of
analytic views.

Prerequisites

To drop a hierarchy in your own schema, you must have the DROP HIERARCHY system
privilege. To drop a hierarchy in another user's schema, you must have the DROP ANY
HIERARCHY system privilege.

Syntax

drop_hierarchy::=

DROP HIERARCHY

schema .

hierarchy_name ;

Semantics

schema

Specify the schema in which the hierarchy exists. If you do not specify a schema, then Oracle
Database looks for the hierarchy in your own schema.

Chapter 16
DROP HIERARCHY

16-11

hierarchy_name

Specify the name of the hierarchy to drop.

Example

The following statement drops the specified hierarchy object:

DROP HIERARCHY product_hier;

DROP INDEX
Purpose

Use the DROP INDEX statement to remove an index or domain index from the database.

When you drop a global partitioned index, a range-partitioned index, or a hash-
partitioned index, all the index partitions are also dropped. If you drop a composite-
partitioned index, then all the index partitions and subpartitions are also dropped.

In addition, when you drop a domain index:

• Oracle Database invokes the appropriate routine.

• If any statistics are associated with the domain index, then Oracle Database
disassociates the statistics types with the FORCE clause and removes the user-
defined statistics collected with the statistics type.

See Also:

– Oracle Database Data Cartridge Developer's Guide for information
on the routines

– CREATE INDEX and ALTER INDEX for information on creating and
modifying an index

– The domain_index_clause of CREATE INDEX for more information
on domain indexes

– ASSOCIATE STATISTICS and DISASSOCIATE STATISTICS for
more information on statistics type associations

Prerequisites

The index must be in your own schema or you must have the DROP ANY INDEX system
privilege.

Chapter 16
DROP INDEX

16-12

Syntax

drop_index::=

DROP INDEX

schema .

index

ONLINE FORCE

DEFERRED

IMMEDIATE

INVALIDATION

;

Semantics

schema

Specify the schema containing the index. If you omit schema, then Oracle Database assumes
the index is in your own schema.

index

Specify the name of the index to be dropped. When the index is dropped, all data blocks
allocated to the index are returned to the tablespace that contained the index.

ONLINE

Specify ONLINE to indicate that DML operations on the table or partition will be allowed while
dropping the index.

FORCE

FORCE applies only to domain indexes. This clause drops the domain index even if the
indextype routine invocation returns an error or the index is marked IN PROGRESS. Without
FORCE, you cannot drop a domain index if its indextype routine invocation returns an error or
the index is marked IN PROGRESS.

Note:

When dropping a domain index with FORCE option, the index will be dropped
regardless of any errors happening in the indextype routine. The errors raised by
the indextype routine are not reported.

Only use the FORCE option when the index or index partitions are marked IN
PROGRESS or when DROP INDEX has already failed.

{ DEFERRED | IMMEDIATE } INVALIDATION

This clause lets you control when the database invalidates dependent cursors while dropping
the index. It has the same semantics here as for the ALTER INDEX statement, with the
following addition: When you drop an index with DEFERRED INVALIDATION, Oracle database
will immediately invalidate any DML statement or query that references the dropped index in
its plan.

See { DEFERRED | IMMEDIATE } INVALIDATION in the documentation on ALTER INDEX for
the full semantics of this clause.

Chapter 16
DROP INDEX

16-13

Restrictions on Dropping Indexes

The following restrictions apply to dropping indexes:

• You cannot drop a domain index if the index or any of its index partitions is marked
IN_PROGRESS.

• You cannot specify the ONLINE clause when dropping a domain index, a cluster
index, or an index on a queue table.

Examples

Dropping an Index: Example

This statement drops an index named ord_customer_ix_demo, which was created in
"Compressing an Index: Example":

DROP INDEX ord_customer_ix_demo;

DROP INDEXTYPE
Purpose

Use the DROP INDEXTYPE statement to drop an indextype as well as any association
with a statistics type.

See Also:

CREATE INDEXTYPE for more information on indextypes

Prerequisites

The indextype must be in your own schema or you must have the DROP ANY INDEXTYPE
system privilege.

Syntax

drop_indextype::=

DROP INDEXTYPE

schema .

indextype

FORCE

;

Semantics

schema

Specify the schema containing the indextype. If you omit schema, then Oracle
Database assumes the indextype is in your own schema.

indextype

Specify the name of the indextype to be dropped.

Chapter 16
DROP INDEXTYPE

16-14

If any statistics types have been associated with indextype, then the database disassociates
the statistics type from the indextype and drops any statistics that have been collected using
the statistics type.

See Also:

ASSOCIATE STATISTICS and DISASSOCIATE STATISTICS for more information
on statistics associations

FORCE

Specify FORCE to drop the indextype even if the indextype is currently being referenced by one
or more domain indexes. Oracle Database marks those domain indexes INVALID. Without
FORCE, you cannot drop an indextype if any domain indexes reference the indextype.

Examples

Dropping an Indextype: Example

The following statement drops the indextype position_indextype, created in "Using
Extensible Indexing ", and marks INVALID any domain indexes defined on this indextype:

DROP INDEXTYPE position_indextype FORCE;

DROP INMEMORY JOIN GROUP
Purpose

Use the DROP INMEMORY JOIN GROUP statement to remove a join group from the database.

See Also:

• CREATE INMEMORY JOIN GROUP and ALTER INMEMORY JOIN GROUP

• Oracle Database In-Memory Guide for more information on join groups

Prerequisites

If the join group is in another user’s schema, then you must have the DROP ANY TABLE system
privilege.

Syntax

drop_inmemory_join_group::=

DROP INMEMORY JOIN GROUP

schema .

join_group ;

Chapter 16
DROP INMEMORY JOIN GROUP

16-15

Semantics

schema

Specify the schema containing the join group. If you omit schema, then the database
assumes the join group is in your own schema.

join_group

Specify the name of the join group to be dropped.

You can view existing join groups by querying the DBA_JOINGROUPS or
USER_JOINGROUPS data dictionary view. Refer to Oracle Database Reference for more
information on these views.

Examples

The following statement drops the join group prod_id1:

DROP INMEMORY JOIN GROUP prod_id1;

DROP JAVA
Purpose

Use the DROP JAVA statement to drop a Java source, class, or resource schema object.

See Also:

• CREATE JAVA for information on creating Java objects

• Oracle Database Java Developer's Guide for more information on
resolving Java sources, classes, and resources

Prerequisites

The Java source, class, or resource must be in your own schema or you must have
the DROP ANY PROCEDURE system privilege. You also must have the EXECUTE object
privilege on Java classes to use this command.

Syntax

drop_java::=

DR0P JAVA

SOURCE

CLASS

RESOURCE

schema .

object_name ;

Chapter 16
DROP JAVA

16-16

Semantics

JAVA SOURCE

Specify SOURCE to drop a Java source schema object and all Java class schema objects
derived from it.

JAVA CLASS

Specify CLASS to drop a Java class schema object.

JAVA RESOURCE

Specify RESOURCE to drop a Java resource schema object.

object_name

Specify the name of an existing Java class, source, or resource schema object. Enclose the
object_name in double quotation marks to preserve lower- or mixed-case names.

Examples

Dropping a Java Class Object: Example

The following statement drops the Java class Agent, created in "Creating a Java Class
Object: Example":

DROP JAVA CLASS "Agent";

Chapter 16
DROP JAVA

16-17

17
SQL Statements: DROP LIBRARY to DROP
SYNONYM

This chapter contains the following SQL statements:

• DROP LIBRARY

• DROP LOCKDOWN PROFILE

• DROP MATERIALIZED VIEW

• DROP MATERIALIZED VIEW LOG

• DROP MATERIALIZED ZONEMAP

• DROP OPERATOR

• DROP OUTLINE

• DROP PACKAGE

• DROP PLUGGABLE DATABASE

• DROP PROCEDURE

• DROP PROFILE

• DROP RESTORE POINT

• DROP ROLE

• DROP ROLLBACK SEGMENT

• DROP SEQUENCE

• DROP SYNONYM

DROP LIBRARY
Purpose

Use the DROP LIBRARY statement to remove an external procedure library from the database.

See Also:

CREATE LIBRARY for information on creating a library

Prerequisites

You must have the DROP ANY LIBRARY system privilege.

17-1

Syntax

drop_library::=

DROP LIBRARY library_name ;

Semantics

library_name

Specify the name of the external procedure library being dropped.

Examples

Dropping a Library: Example

The following statement drops the ext_lib library:

DROP LIBRARY ext_lib;

DROP LOCKDOWN PROFILE
Purpose

Use the DROP LOCKDOWN PROFILE statement to remove a PDB lockdown profile from the
database. A PDB that was assigned the dropped profile will continue to be assigned
the profile, but will not be subject to the restrictions imposed by the dropped profile.

If the PDB_LOCKDOWN initialization parameter for a CDB, an application root, or a PDB
has the value of the dropped lockdown profile, then the restrictions imposed by the
dropped profile will be disabled when you drop it. However, the value of the
PDB_LOCKDOWN initialization parameter will remain until you explicitly unset it.

See Also:

• CREATE LOCKDOWN PROFILE and ALTER LOCKDOWN PROFILE

• Oracle Database Security Guide for more information on PDB lockdown
profiles

Prerequisites

• You must issue this statement from the CDB Root or the Application Root.

• You must have the DROP LOCKDOWN PROFILE system privilege in the container where
you mean to issue the statement.

Chapter 17
DROP LOCKDOWN PROFILE

17-2

Syntax

drop_lockdown_profile::=

DROP LOCKDOWN PROFILE profile_name ;

Semantics

profile_name

Specify the name of the PDB lockdown profile to be dropped.

You can find the names of existing PDB lockdown profiles by querying the
DBA_LOCKDOWN_PROFILES data dictionary view.

See Also:

Oracle Database Reference for more information on the DBA_LOCKDOWN_PROFILES
data dictionary view and the PDB_LOCKDOWN initialization parameter

Example

The following statement drops PDB lockdown profile hr_prof:

DROP LOCKDOWN PROFILE hr_prof;

DROP MATERIALIZED VIEW
Purpose

Use the DROP MATERIALIZED VIEW statement to remove an existing materialized view from the
database.

When you drop a materialized view, Oracle Database does not place it in the recycle bin.
Therefore, you cannot subsequently either purge or undrop the materialized view.

Note:

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward
compatibility.

Chapter 17
DROP MATERIALIZED VIEW

17-3

See Also:

• CREATE MATERIALIZED VIEW for more information on the various
types of materialized views

• ALTER MATERIALIZED VIEW for information on modifying a
materialized view

• Oracle Database Administrator’s Guide for information on materialized
views in a replication environment

• Oracle Database Data Warehousing Guide for information on
materialized views in a data warehousing environment

Prerequisites

The materialized view must be in your own schema or you must have the DROP ANY
MATERIALIZED VIEW system privilege. You must also have the privileges to drop the
internal table, views, and index that the database uses to maintain the materialized
view data.

See Also:

DROP TABLE , DROP VIEW , and DROP INDEX for information on
privileges required to drop objects that the database uses to maintain the
materialized view

Syntax

drop_materialized_view::=

DROP MATERIALIZED VIEW

schema .

materialized_view

PRESERVE TABLE

;

Semantics

schema

Specify the schema containing the materialized view. If you omit schema, then Oracle
Database assumes the materialized view is in your own schema.

materialized_view

Specify the name of the existing materialized view to be dropped.

• If you drop a simple materialized view that is the least recently refreshed
materialized view of a master table, then the database automatically purges from
the master table materialized view log only the rows needed to refresh the
dropped materialized view.

Chapter 17
DROP MATERIALIZED VIEW

17-4

• If you drop a materialized view that was created on a prebuilt table, then the database
drops the materialized view, and the prebuilt table reverts to its identity as a table.

• When you drop a master table, the database does not automatically drop materialized
views based on the table. However, the database returns an error when it tries to refresh
a materialized view based on a master table that has been dropped.

• If you drop a materialized view, then any compiled requests that were rewritten to use the
materialized view will be invalidated and recompiled automatically. If the materialized
view was prebuilt on a table, then the table is not dropped, but it can no longer be
maintained by the materialized view refresh mechanism.

PRESERVE TABLE Clause

This clause lets you retain the materialized view container table and its contents after the
materialized view object is dropped. The resulting table has the same name as the dropped
materialized view.

Oracle Database removes all metadata associated with the materialized view. However,
indexes created on the container table automatically during creation of the materialized view
are preserved, with one exception: the index created during the creation of a rowid
materialized view is dropped. Also, if the materialized view has any nested table columns,
then the storage tables for those columns are preserved, along with their metadata.

Restriction on the PRESERVE TABLE Clause

This clause is not valid for materialized views that have been imported from releases earlier
than Oracle9i, when these objects were called "snapshots".

Examples

Dropping a Materialized View: Examples

The following statement drops the materialized view emp_data in the sample schema hr:

DROP MATERIALIZED VIEW emp_data;

The following statement drops the sales_by_month_by_state materialized view and the
underlying table of the materialized view, unless the underlying table was registered in the
CREATE MATERIALIZED VIEW statement with the ON PREBUILT TABLE clause:

DROP MATERIALIZED VIEW sales_by_month_by_state;

DROP MATERIALIZED VIEW LOG
Purpose

Use the DROP MATERIALIZED VIEW LOG statement to remove a materialized view log from the
database.

Note:

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward
compatibility.

Chapter 17
DROP MATERIALIZED VIEW LOG

17-5

See Also:

• CREATE MATERIALIZED VIEW and ALTER MATERIALIZED VIEW for
more information on materialized views

• CREATE MATERIALIZED VIEW LOG for information on materialized
view logs

• Oracle Database Administrator’s Guide for information on materialized
views in a replication environment

• Oracle Database Data Warehousing Guide for information on
materialized views in a data warehousing environment

Prerequisites

To drop a materialized view log, you must have the privileges needed to drop a table.

See Also:

DROP TABLE

Syntax

drop_materialized_view_log::=

DROP MATERIALIZED VIEW LOG ON

schema .

table ;

Semantics

schema

Specify the schema containing the materialized view log and its master table. If you
omit schema, then Oracle Database assumes the materialized view log and master
table are in your own schema.

table

Specify the name of the master table associated with the materialized view log to be
dropped.

After you drop a materialized view log that was created FOR FAST REFRESH, some
materialized views based on the materialized view log master table can no longer be
fast refreshed. These materialized views include rowid materialized views, primary key
materialized views, and subquery materialized views.

Chapter 17
DROP MATERIALIZED VIEW LOG

17-6

See Also:

Oracle Database Data Warehousing Guide for a description of these types of
materialized views

After you drop a materialized view log that was created FOR SYNCHRONOUS REFRESH (a staging
log), the materialized views based on the staging log master table can no longer be
synchronous refreshed.

Examples

Dropping a Materialized View Log: Example

The following statement drops the materialized view log on the oe.customers master table:

DROP MATERIALIZED VIEW LOG ON customers;

DROP MATERIALIZED ZONEMAP
Purpose

Use the DROP MATERIALIZED ZONEMAP statement to remove an existing zone map from the
database.

Prerequisites

The zone map must be in your own schema or you must have the DROP ANY MATERIALIZED
VIEW system privilege. You must also have the privileges to drop the internal table and
indexes that the database uses to maintain the zone map data.

See Also:

DROP TABLE and DROP INDEX for information on privileges required to drop
objects that the database uses to maintain the zone map

Syntax

drop_materialized_zonemap::=

DROP MATERIALIZED ZONEMAP

schema .

zonemap_name ;

Semantics

schema

Specify the schema containing the zone map. If you omit schema, then Oracle Database
assumes the zone map is in your own schema.

Chapter 17
DROP MATERIALIZED ZONEMAP

17-7

zonemap_name

Specify the name of the existing zone map to be dropped.

Example

Dropping a Zone Map: Examples

The following statement drops the zone map sales_zmap:

DROP MATERIALIZED ZONEMAP sales_zmap;

DROP OPERATOR
Purpose

Use the DROP OPERATOR statement to drop a user-defined operator.

See Also:

• CREATE OPERATOR and ALTER OPERATOR for information on
creating and modifying operators

• "User-Defined Operators " and Oracle Database Data Cartridge
Developer's Guide for more information on operators in general

• ALTER INDEXTYPE for information on dropping an operator of a user-
defined indextype

Prerequisites

The operator must be in your schema or you must have the DROP ANY OPERATOR system
privilege.

Syntax

drop_operator::=

DROP OPERATOR

schema .

operator

FORCE

;

Semantics

schema

Specify the schema containing the operator. If you omit schema, then Oracle Database
assumes the operator is in your own schema.

operator

Specify the name of the operator to be dropped.

Chapter 17
DROP OPERATOR

17-8

FORCE

Specify FORCE to drop the operator even if it is currently being referenced by one or more
schema objects, such as indextypes, packages, functions, procedures, and so on. The
database marks any such dependent objects INVALID. Without FORCE, you cannot drop an
operator if any schema objects reference it.

Examples

Dropping a User-Defined Operator: Example

The following statement drops the operator eq_op:

DROP OPERATOR eq_op;

Because the FORCE clause is not specified, this operation will fail if any of the bindings of this
operator are referenced by an indextype.

DROP OUTLINE
Purpose

Note:

• Stored outlines are deprecated. They are still supported for backward
compatibility. However, Oracle recommends that you use SQL plan
management instead. SQL plan management creates SQL plan baselines,
which offer superior SQL performance stability compared with stored outlines.

• You can migrate existing stored outlines to SQL plan baselines by using the
MIGRATE_STORED_OUTLINE function of the DBMS_SPM package or Enterprise
Manager Cloud Control. When the migration is complete, the stored outlines
are marked as migrated and can be removed. You can drop all migrated stored
outlines on your system by using the DROP_MIGRATED_STORED_OUTLINE function
of the DBMS_SPM package.

• See Also: Oracle Database SQL Tuning Guide for more information about SQL
plan management and Oracle Database PL/SQL Packages and Types
Reference for information about the DBMS_SPM package

Use the DROP OUTLINE statement to drop a stored outline.

See Also:

CREATE OUTLINE for information on creating an outline

Prerequisites

To drop an outline, you must have the DROP ANY OUTLINE system privilege.

Chapter 17
DROP OUTLINE

17-9

Syntax

drop_outline::=

DROP OUTLINE outline ;

Semantics

outline

Specify the name of the outline to be dropped.

After the outline is dropped, if the SQL statement for which the stored outline was
created is compiled, then the optimizer generates a new execution plan without the
influence of the outline.

Examples

Dropping an Outline: Example

The following statement drops the stored outline called salaries.

DROP OUTLINE salaries;

DROP PACKAGE
Purpose

Packages are defined using PL/SQL. Refer to Oracle Database PL/SQL Language
Reference for complete information on creating, altering, and dropping packages.

Use the DROP PACKAGE statement to remove a stored package from the database. This
statement drops the body and specification of a package.

Note:

Do not use this statement to remove a single object from a package. Instead,
re-create the package without the object using the CREATE PACKAGE and
CREATE PACKAGE BODY statements with the OR REPLACE clause.

Prerequisites

The package must be in your own schema or you must have the DROP ANY PROCEDURE
system privilege.

Syntax

drop_package::=

DROP PACKAGE

BODY schema .

package ;

Chapter 17
DROP PACKAGE

17-10

Semantics

BODY

Specify BODY to drop only the body of the package. If you omit this clause, then Oracle
Database drops both the body and specification of the package.

When you drop only the body of a package but not its specification, the database does not
invalidate dependent objects. However, you cannot call one of the procedures or stored
functions declared in the package specification until you re-create the package body.

schema

Specify the schema containing the package. If you omit schema, then the database assumes
the package is in your own schema.

package

Specify the name of the package to be dropped.

Oracle Database invalidates any local objects that depend on the package specification. If
you subsequently reference one of these objects, then the database tries to recompile the
object and returns an error if you have not re-created the dropped package.

If any statistics types are associated with the package, then the database disassociates the
statistics types with the FORCE clause and drops any user-defined statistics collected with the
statistics types.

See Also:

ASSOCIATE STATISTICS and DISASSOCIATE STATISTICS

Examples

Dropping a Package: Example

The following statement drops the specification and body of the emp_mgmt package,
invalidating all objects that depend on the specification. See Oracle Database PL/SQL
Language Reference for the example that creates this package.

DROP PACKAGE emp_mgmt;

DROP PLUGGABLE DATABASE
Purpose

Use the DROP PLUGGABLE DATABASE statement to drop a pluggable database (PDB). The PDB
can be a traditional PDB, an application container, an application seed, or an application
PDB.

When you drop a PDB, the control file of the multitenant container database (CDB) is
modified to remove all references to the dropped PDB and its data files. Archived logs and
backups associated with the dropped PDB are not deleted. You can delete them using Oracle

Chapter 17
DROP PLUGGABLE DATABASE

17-11

Recovery Manager (RMAN), or you can retain them in case you subsequently want to
perform point-in-time recovery of the PDB.

Caution:

You cannot roll back a DROP PLUGGABLE DATABASE statement.

Prerequisites

You must be connected to a CDB.

To drop a traditional PDB or an application container, the current container must be the
root, you must be authenticated AS SYSDBA or AS SYSOPER, and the SYSDBA or SYSOPER
privilege must be either granted to you commonly, or granted to you locally in the root
and locally in traditional PDB or application container you want to drop. The application
container must be empty, that is, it must not contain an application seed or any
application PDBs.

To drop an application seed, the current container must be the root or the application
root, you must be authenticated AS SYSDBA or AS SYSOPER, and the SYSDBA or SYSOPER
privilege must be either granted to you commonly, or granted to you locally in the root
or application root.

To drop an application PDB, the current container must be the root or the application
root, you must be authenticated AS SYSDBA or AS SYSOPER, and the SYSDBA or SYSOPER
privilege must be either granted to you commonly, or granted to you locally in the root
or application root, and locally in the application PDB you want to drop.

To specify KEEP DATAFILES (the default), the PDB you want to drop must be unplugged.

To specify INCLUDING DATAFILES, the PDB you want to drop must be in mounted mode
or it must be unplugged.

Syntax

drop_pluggable_database::=

DROP PLUGGABLE DATABASE pdb_name

KEEP

INCLUDING
DATAFILES

;

Semantics

pdb_name

Specify the name of the PDB you want to drop. You cannot drop the seed (PDB$SEED).
However, you can drop an application seed.

Chapter 17
DROP PLUGGABLE DATABASE

17-12

KEEP DATAFILES

Specify KEEP DATAFILES to retain the data files associated with the PDB after the PDB is
dropped. The temp file for the PDB is deleted because it is no longer needed. This is the
default.

Keeping data files may be useful in scenarios where a PDB that is unplugged from one CDB
is plugged into another CDB, with both CDBs sharing storage devices.

INCLUDING DATAFILES

Specify INCLUDING DATAFILES to delete the data files associated with the PDB being dropped.
The temp file for the PDB is also deleted.

Restriction on Dropping SNAPSHOT COPY PDBs

If a PDB was created with the SNAPSHOT COPY clause, then you must specify INCLUDING
DATAFILES when you drop the PDB.

Examples

Dropping a PDB: Example

The following statement drops the PDB pdb1 and its associated data files:

DROP PLUGGABLE DATABASE pdb1
 INCLUDING DATAFILES;

DROP PMEM FILESTORE
Purpose

You can drop a PMEM file store with this command.

Syntax

drop_pmem_filestore::=

DROP PMEM FILESTORE filestore_name

FORCE

INCLUDING

EXCLUDING

CONTENTS

;

Semantics

INCLUDING CONTENTS

Specify INCLUDING CONTENTS to confirm that Oracle should remove all the files in the PMEM
file store.

EXCLUDING CONTENTS

Specify EXCLUDING CONTENTS to ensure that Oracle drops the PMEM file store only when the
file store is empty.

Chapter 17
DROP PMEM FILESTORE

17-13

FORCE

Specify FORCE along with INCLUDING CONTENTS if you suspect that the file store is
corrupt.

Note that this option does not check if the file store has content in it prior to deleting it.

If you specify neither INCLUDING CONTENTS nor EXCLUDING CONTENTS, you must ensure
that the file store is empty. EXCLUDING CONTENTS is the default behavior.

Example

DROP PMEM FILESTORE cloud_db_1 EXCLUDING CONTENTS

DROP PROCEDURE
Purpose

Procedures are defined using PL/SQL. Refer to Oracle Database PL/SQL Language
Reference for complete information on creating, altering, and dropping procedures.

Use the DROP PROCEDURE statement to remove a standalone stored procedure from the
database. Do not use this statement to remove a procedure that is part of a package.
Instead, either drop the entire package using the DROP PACKAGE statement, or redefine
the package without the procedure using the CREATE PACKAGE statement with the OR
REPLACE clause.

Prerequisites

The procedure must be in your own schema or you must have the DROP ANY PROCEDURE
system privilege.

Syntax

drop_procedure::=

DROP PR0CEDURE

schema .

procedure ;

Semantics

schema

Specify the schema containing the procedure. If you omit schema, then Oracle
Database assumes the procedure is in your own schema.

procedure

Specify the name of the procedure to be dropped.

When you drop a procedure, Oracle Database invalidates any local objects that
depend upon the dropped procedure. If you subsequently reference one of these
objects, then the database tries to recompile the object and returns an error message
if you have not re-created the dropped procedure.

Chapter 17
DROP PROCEDURE

17-14

Examples

Dropping a Procedure: Example

The following statement drops the procedure remove_emp owned by the user hr and
invalidates all objects that depend upon remove_emp:

DROP PROCEDURE hr.remove_emp;

DROP PROFILE
Purpose

Use the DROP PROFILE statement to remove a profile from the database. You can drop any
profile except the DEFAULT profile.

See Also:

CREATE PROFILE and ALTER PROFILE on creating and modifying a profile

Prerequisites

You must have the DROP PROFILE system privilege.

Syntax

drop_profile::=

DROP PROFILE profile

CASCADE

;

Semantics

profile

Specify the name of the profile to be dropped.

CASCADE

Specify CASCADE to deassign the profile from any users to whom it is assigned. Oracle
Database automatically assigns the DEFAULT profile to such users. You must specify this
clause to drop a profile that is currently assigned to users.

Examples

Dropping a Profile: Example

The following statement drops the profile app_user, which was created in "Creating a Profile:
Example". Oracle Database drops the profile app_user and assigns the DEFAULT profile to any
users currently assigned the app_user profile:

DROP PROFILE app_user CASCADE;

Chapter 17
DROP PROFILE

17-15

DROP RESTORE POINT
Purpose

Use the DROP RESTORE POINT statement to remove a normal restore point or a
guaranteed restore point from the database.

• You need not drop normal restore points. The database automatically drops the
oldest restore points when necessary, as described in the semantics for
restore_point. However, you can drop a normal restore point if you want to reuse
the name.

• Guaranteed restore points are not dropped automatically. Therefore, if you want to
remove a guaranteed restore point from the database, then you must do so
explicitly using this statement.

See Also:

CREATE RESTORE POINT , FLASHBACK DATABASE, and FLASHBACK
TABLE for information on creating and using restore points

Prerequisites

To drop a normal restore point, you must have the SELECT ANY DICTIONARY, FLASHBACK
ANY TABLE, SYSBACKUP, or SYSDG system privilege.

To drop a guaranteed restore point, you must fulfill one of the following conditions:

• You must connect AS SYSDBA, or AS SYSBACKUP, or AS SYSDG.

• You must have been granted the SYSDBA privilege, and be using a multitenant
database.

• You must be running as user SYS, and be using a a multitenant database.

You can drop a restore point when connected to a multitenant container database
(CDB) as follows:

• To drop a normal CDB restore point, the current container must be the root and
you must have the SELECT ANY DICTIONARY or FLASHBACK ANY TABLE system
privilege, either granted commonly or granted locally in the root, or the SYSDBA,
SYSBACKUP, or SYSDG system privilege granted commonly.

• To drop a guaranteed CDB restore point, the current container must be the root
and you must have the SYSDBA, SYSBACKUP, or SYSDG system privilege granted
commonly.

• To drop a normal PDB restore point, the current container must be the root and
you must have the SELECT ANY DICTIONARY, FLASHBACK ANY TABLE, SYSDBA,
SYSBACKUP, or SYSDG system privilege, granted commonly, or the current container
must be the PDB in which you want to create the restore point and you must have
the SELECT ANY DICTIONARY, FLASHBACK ANY TABLE, SYSDBA, SYSBACKUP, or SYSDG
system privilege, granted commonly or granted locally in that PDB.

Chapter 17
DROP RESTORE POINT

17-16

• To drop a guaranteed PDB restore point, the current container must be the root and you
must have the SYSDBA, SYSBACKUP, or SYSDG system privilege, granted commonly, or the
current container must be the PDB in which you want to create the restore point and you
must have the SYSDBA, SYSBACKUP, or SYSDG system privilege, granted commonly or
granted locally in that PDB.

Syntax

drop_restore_point::=

DROP RESTORE POINT restore_point

FOR PLUGGABLE DATABASE pdb_name

;

Semantics

restore_point

Specify the name of the restore point you want to drop.

FOR PLUGGABLE DATABASE

This clause enables you to drop a PDB restore point when you are connected to the root. For
pdb_name, specify the name of the PDB that contains the restore point you want to drop.

If you are connected to the PDB from which you want to drop the restore point, then it is not
necessary to specify this clause. However, if you specify this clause, then you must specify
the name of the PDB to which you are connected.

Examples

Dropping a Restore Point: Example

The following example drops the good_data restore point, which was created in "Creating and
Using a Restore Point: Example":

DROP RESTORE POINT good_data;

DROP ROLE
Purpose

Use the DROP ROLE statement to remove a role from the database. When you drop a role,
Oracle Database revokes it from all users and roles to whom it has been granted and
removes it from the database. User sessions in which the role is already enabled are not
affected. However, no new user session can enable the role after it is dropped.

See Also:

• CREATE ROLE and ALTER ROLE for information on creating roles and
changing the authorization needed to enable a role

• SET ROLE for information on disabling roles for the current session

Chapter 17
DROP ROLE

17-17

Prerequisites

You must have been granted the role with the ADMIN OPTION or you must have the DROP
ANY ROLE system privilege.

Syntax

drop_role::=

DROP ROLE role ;

Semantics

role

Specify the name of the role to be dropped.

Examples

Dropping a Role: Example

To drop the role dw_manager, which was created in "Creating a Role: Example", issue
the following statement:

DROP ROLE dw_manager;

DROP ROLLBACK SEGMENT
Purpose

Use the DROP ROLLBACK SEGMENT to remove a rollback segment from the database.
When you drop a rollback segment, all space allocated to the rollback segment returns
to the tablespace.

Note:

If your database is running in automatic undo mode, then this is the only
valid operation on rollback segments. In that mode, you cannot create or
alter a rollback segment.

Prerequisites

You must have the DROP ROLLBACK SEGMENT system privilege, and the rollback segment
must be offline.

Syntax

drop_rollback_segment::=

DROP ROLLBACK SEGMENT rollback_segment ;

Chapter 17
DROP ROLLBACK SEGMENT

17-18

Semantics

rollback_segment

Specify the name the rollback segment to be dropped.

Restrictions on Dropping Rollback Segments

This statement is subject to the following restrictions:

• You can drop a rollback segment only if it is offline. To determine whether a rollback
segment is offline, query the data dictionary view DBA_ROLLBACK_SEGS. Offline rollback
segments have the value AVAILABLE in the STATUS column. You can take a rollback
segment offline with the OFFLINE clause of the ALTER ROLLBACK SEGMENT statement.

• You cannot drop the SYSTEM rollback segment.

Examples

Dropping a Rollback Segment: Example

The following syntax drops the rollback segment created in "Creating a Rollback Segment:
Example":

DROP ROLLBACK SEGMENT rbs_one;

DROP SEQUENCE
Purpose

Use the DROP SEQUENCE statement to remove a sequence from the database.

You can also use this statement to restart a sequence by dropping and then re-creating it. For
example, if you have a sequence with a current value of 150 and you would like to restart the
sequence with a value of 27, then you can drop the sequence and then re-create it with the
same name and a START WITH value of 27.

See Also:

CREATE SEQUENCE and ALTER SEQUENCE for more information on creating
and modifying a sequence

Prerequisites

The sequence must be in your own schema or you must have the DROP ANY SEQUENCE system
privilege.

Chapter 17
DROP SEQUENCE

17-19

Syntax

drop_sequence::=

DROP SEQUENCE

schema .

sequence_name ;

Semantics

schema

Specify the schema containing the sequence. If you omit schema, then Oracle
Database assumes the sequence is in your own schema.

sequence_name

Specify the name of the sequence to be dropped.

Examples

Dropping a Sequence: Example

The following statement drops the sequence customers_seq owned by the user oe,
which was created in "Creating a Sequence: Example". To issue this statement, you
must either be connected as user oe or have the DROP ANY SEQUENCE system privilege:

DROP SEQUENCE oe.customers_seq;

DROP SYNONYM
Purpose

Use the DROP SYNONYM statement to remove a synonym from the database or to change
the definition of a synonym by dropping and re-creating it.

See Also:

CREATE SYNONYM for more information on synonyms

Prerequisites

To drop a private synonym, either the synonym must be in your own schema or you
must have the DROP ANY SYNONYM system privilege.

To drop a PUBLIC synonym, you must have the DROP PUBLIC SYNONYM system privilege.

Syntax

drop_synonym::=

drop_synonym::=

Chapter 17
DROP SYNONYM

17-20

DROP

PUBLIC

SYNONYM

schema .

synonym

FORCE

;

Semantics

PUBLIC

You must specify PUBLIC to drop a public synonym. You cannot specify schema if you have
specified PUBLIC.

schema

Specify the schema containing the synonym. If you omit schema, then Oracle Database
assumes the synonym is in your own schema.

synonym

Specify the name of the synonym to be dropped.

If you drop a synonym for the master table of a materialized view, and if the defining query of
the materialized view specified the synonym rather than the actual table name, then Oracle
Database marks the materialized view unusable.

If an object type synonym has any dependent tables or user-defined types, then you cannot
drop the synonym unless you also specify FORCE.

FORCE

Specify FORCE to drop the synonym even if it has dependent tables or user-defined types.

Note:

Oracle does not recommend that you specify FORCE to drop object type synonyms
with dependencies. This operation can result in invalidation of other user-defined
types or marking UNUSED the table columns that depend on the synonym. For
information about type dependencies, see Oracle Database Object-Relational
Developer's Guide.

Examples

Dropping a Synonym: Example

To drop the public synonym named customers, which was created in "Oracle Database
Resolution of Synonyms: Example", issue the following statement:

DROP PUBLIC SYNONYM customers;

Chapter 17
DROP SYNONYM

17-21

18
SQL Statements: DROP TABLE to LOCK
TABLE

This chapter contains the following SQL statements:

• DROP TABLE

• DROP TABLESPACE

• DROP TABLESPACE SET

• DROP TRIGGER

• DROP TYPE

• DROP TYPE BODY

• DROP USER

• DROP VIEW

• EXPLAIN PLAN

• FLASHBACK DATABASE

• FLASHBACK TABLE

• GRANT

• INSERT

• LOCK TABLE

DROP TABLE
Purpose

Use the DROP TABLE statement to move a table or object table to the recycle bin or to remove
the table and all its data from the database entirely.

Note:

Unless you specify the PURGE clause, the DROP TABLE statement does not result in
space being released back to the tablespace for use by other objects, and the
space continues to count toward the user's space quota.

For an external table, this statement removes only the table metadata in the database. It has
no affect on the actual data, which resides outside of the database.

When you drop a table that is part of a cluster, the table is moved to the recycle bin. However,
if you subsequently drop the cluster, then the table is purged from the recycle bin and can no
longer be recovered with a FLASHBACK TABLE operation.

18-1

Dropping a table invalidates dependent objects and removes object privileges on the
table. If you want to re-create the table, then you must regrant object privileges on the
table, re-create the indexes, integrity constraints, and triggers for the table, and
respecify its storage parameters. Truncating has none of these effects. Therefore,
removing rows with the TRUNCATE statement can be more efficient than dropping and
re-creating a table.

See Also:

• CREATE TABLE and ALTER TABLE for information on creating and
modifying tables

• TRUNCATE TABLE and DELETE for information on removing data from
a table

• FLASHBACK TABLE for information on retrieving a dropped table from
the recycle bin

Prerequisites

The table must be in your own schema or you must have the DROP ANY TABLE system
privilege.

You can perform DDL operations (such as ALTER TABLE, DROP TABLE, CREATE INDEX) on
a temporary table only when no session is bound to it. A session becomes bound to a
temporary table by performing an INSERT operation on the table. A session becomes
unbound to the temporary table by issuing a TRUNCATE statement or at session
termination, or, for a transaction-specific temporary table, by issuing a COMMIT or
ROLLBACK statement.

Dropping Private Temporary Tables

You can drop a private temporary table using the existing DROP TABLE command.
Dropping a private temporary table will not commit an existing transaction. This applies
to both transaction-specific and session-specific private temporary tables. Note that a
dropped private temporary table will not go into the RECYCLEBIN.

Dropping Immutable Tables

Use the DROP TABLE statement to drop an immutable table. It is recommended that you
include the PURGE option while dropping an immutable table. Dropping an immutable
table removes its definition from the data dictionary, deletes all its rows, and deletes
any indexes and triggers defined on the table.

The immutable table must be contained in your schema, or you must have the DROP
ANY TABLE system privilege.

An immutable table can be dropped only after it has not been modified for a period of
time that is defined by its retention period.

An empty immutable table can be dropped regardless of its retention period.

Chapter 18
DROP TABLE

18-2

Syntax

drop_table::=

DROP TABLE

schema .

table

CASCADE CONSTRAINTS PURGE

;

Semantics

schema

Specify the schema containing the table. If you omit schema, then Oracle Database assumes
the table is in your own schema.

table

Specify the name of the table to be dropped. Oracle Database automatically performs the
following operations:

• All rows from the table are dropped.

• All table indexes and domain indexes are dropped, as well as any triggers defined on the
table, regardless of who created them or whose schema contains them. If table is
partitioned, then any corresponding local index partitions are also dropped.

• All the storage tables of nested tables and LOBs of table are dropped.

• When you drop a range-, hash-, or list-partitioned table, then the database drops all the
table partitions. If you drop a composite-partitioned table, then all the partitions and
subpartitions are also dropped.

• When you drop a partitioned table with the PURGE keyword, the statement executes as a
series of subtransactions, each of which drops a subset of partitions or subpartitions and
their metadata. This division of the drop operation into subtransactions optimizes the
processing of internal system resource consumption (for example, the library cache),
especially for the dropping of very large partitioned tables. As soon as the first
subtransaction commits, the table is marked UNUSABLE. If any of the subtransactions fails,
then the only operation allowed on the table is another DROP TABLE ... PURGE statement.
Such a statement will resume work from where the previous DROP TABLE statement failed,
assuming that you have corrected any errors that the previous operation encountered.

You can list the tables marked UNUSABLE by such a drop operation by querying the status
column of the *_TABLES, *_PART_TABLES, *_ALL_TABLES, or *_OBJECT_TABLES data
dictionary views, as appropriate.

See Also:

Oracle Database VLDB and Partitioning Guide for more information on
dropping partitioned tables.

• For an index-organized table, any mapping tables defined on the index-organized table
are dropped.

Chapter 18
DROP TABLE

18-3

• For a domain index, the appropriate drop routines are invoked. Refer to Oracle
Database Data Cartridge Developer's Guide for more information on these
routines.

• If any statistics types are associated with the table, then the database
disassociates the statistics types with the FORCE clause and removes any user-
defined statistics collected with the statistics type.

See Also:

ASSOCIATE STATISTICS and DISASSOCIATE STATISTICS for more
information on statistics type associations

• If the table is not part of a cluster, then the database returns all data blocks
allocated to the table and its indexes to the tablespaces containing the table and
its indexes.

To drop a cluster and all its the tables, use the DROP CLUSTER statement with the
INCLUDING TABLES clause to avoid dropping each table individually. See DROP
CLUSTER .

• If the table is a base table for a view, a container or master table of a materialized
view, or if it is referenced in a stored procedure, function, or package, then the
database invalidates these dependent objects but does not drop them. You cannot
use these objects unless you re-create the table or drop and re-create the objects
so that they no longer depend on the table.

If you choose to re-create the table, then it must contain all the columns selected
by the subqueries originally used to define the materialized views and all the
columns referenced in the stored procedures, functions, or packages. Any users
previously granted object privileges on the views, stored procedures, functions, or
packages need not be regranted these privileges.

If the table is a master table for a materialized view, then the materialized view can
still be queried, but it cannot be refreshed unless the table is re-created so that it
contains all the columns selected by the defining query of the materialized view.

If the table has a materialized view log, then the database drops this log and any
other direct-path INSERT refresh information associated with the table.

Restrictions on Dropping Tables

• You cannot directly drop the storage table of a nested table. Instead, you must
drop the nested table column using the ALTER TABLE ... DROP COLUMN clause.

• You cannot drop the parent table of a reference-partitioned table. You must first
drop all reference-partitioned child tables.

• You cannot drop a table that uses a flashback data archive for historical tracking.
You must first disable the table's use of the flashback archive.

CASCADE CONSTRAINTS

Specify CASCADE CONSTRAINTS to drop all referential integrity constraints that refer to
primary and unique keys in the dropped table. If you omit this clause, and such
referential integrity constraints exist, then the database returns an error and does not
drop the table.

Chapter 18
DROP TABLE

18-4

PURGE

Specify PURGE if you want to drop the table and release the space associated with it in a
single step. If you specify PURGE, then the database does not place the table and its
dependent objects into the recycle bin.

Note:

You cannot roll back a DROP TABLE statement with the PURGE clause, nor can you
recover the table if you have dropped it with the PURGE clause.

Using this clause is equivalent to first dropping the table and then purging it from the recycle
bin. This clause lets you save one step in the process. It also provides enhanced security if
you want to prevent sensitive material from appearing in the recycle bin.

See Also:

Oracle Database Administrator's Guide for information on the recycle bin and
naming conventions for objects in the recycle bin

Examples

Dropping a Table: Example

The following statement drops the oe.list_customers table created in "List Partitioning
Example".

DROP TABLE list_customers PURGE;

DROP TABLESPACE
Purpose

Use the DROP TABLESPACE statement to remove a tablespace from the database.

When you drop a tablespace, Oracle Database does not place it in the recycle bin. Therefore,
you cannot subsequently either purge or undrop the tablespace.

See Also:

CREATE TABLESPACE and ALTER TABLESPACE for information on creating and
modifying a tablespace

Prerequisites

You must have the DROP TABLESPACE system privilege. You cannot drop a tablespace if it
contains any rollback segments holding active transactions.

Chapter 18
DROP TABLESPACE

18-5

Syntax

drop_tablespace::=

DROP TABLESPACE tablespace

DROP

KEEP
QUOTA

INCLUDING CONTENTS

AND

KEEP
DATAFILES

CASCADE CONSTRAINTS

;

Semantics

tablespace

Specify the name of the tablespace to be dropped, including those of shadow
tablespaces, that store lost write protection updates.

You can drop a tablespace regardless of whether it is online or offline. Oracle
recommends that you take the tablespace offline before dropping it to ensure that no
SQL statements in currently running transactions access any of the objects in the
tablespace.

You cannot drop the SYSTEM tablespace. You can drop the SYSAUX tablespace only if
you have the SYSDBA system privilege and you have started the database in UPGRADE
mode.

You may want to alert any users who have been assigned the tablespace as either a
default or temporary tablespace. After the tablespace has been dropped, these users
cannot allocate space for objects or sort areas in the tablespace. You can reassign
users new default and temporary tablespaces with the ALTER USER statement.

Any objects that were previously dropped from the tablespace and moved to the
recycle bin are purged from the recycle bin. Oracle Database removes from the data
dictionary all metadata about the tablespace and all data files and temp files in the
tablespace. The database also automatically drops from the operating system any
Oracle-managed data files and temp files in the tablespace. Other data files and temp
files are not removed from the operating system unless you specify INCLUDING
CONTENTS AND DATAFILES.

You cannot use this statement to drop a tablespace group. However, if tablespace is
the only tablespace in a tablespace group, then Oracle Database removes the
tablespace group from the data dictionary as well.

Restrictions on Dropping Tablespaces

Dropping tablespaces is subject to the following restrictions:

• You cannot drop a tablespace that contains a domain index or any objects created
by a domain index.

Chapter 18
DROP TABLESPACE

18-6

• You cannot drop an undo tablespace if it is being used by any instance or if it contains
any undo data needed to roll back uncommitted transactions.

• You cannot drop a tablespace that has been designated as the default tablespace for the
database. You must first reassign another tablespace as the default tablespace and then
drop the old default tablespace.

• You cannot drop a temporary tablespace if it is part of the database default temporary
tablespace group. You must first remove the tablespace from the database default
temporary tablespace group and then drop it.

• You cannot drop a temporary tablespace if it contains segments that are in use by
existing sessions. In this case, no error is raised. The database waits until there are no
segments in use by existing sessions and then drops the tablespace.

• You cannot drop a tablespace, even with the INCLUDING CONTENTS and CASCADE
CONSTRAINTS clauses, if doing so would disable a primary key or unique constraint in
another tablespace. For example, if the tablespace being dropped contains a primary key
index, but the primary key column itself is in a different tablespace, then you cannot drop
the tablespace until you have manually disabled the primary key constraint in the other
tablespace.

See Also:

Oracle Database Data Cartridge Developer's Guide and Oracle Database Concepts
for more information on domain indexes

{ DROP | KEEP } QUOTA

Specify DROP QUOTA to drop all user quotas for the tablespace. Specify KEEP QUOTA to retain all
user quotas for the tablespace. The default is KEEP QUOTA.

You can view all user quotas for a tablespace by querying the DBA_TS_QUOTAS data dictionary
view.

INCLUDING CONTENTS

Specify INCLUDING CONTENTS to drop all the contents of the tablespace, including those of
shadow tablespaces that store lost write protection updates. You must specify this clause to
drop a tablespace that contains any database objects. If you omit this clause, and the
tablespace is not empty, then the database returns an error and does not drop the
tablespace.

DROP TABLESPACE fails, even if you specify INCLUDING CONTENTS, if the tablespace contains
some, but not all, of the partitions or subpartitions of a single table. If all the partitions or
subpartitions of a partitioned table reside in tablespace, then DROP TABLESPACE ... INCLUDING
CONTENTS drops tablespace, as well as any associated index segments, LOB data and index
segments, and nested table data and index segments of table in other tablespace(s).

For a partitioned index-organized table, if all the primary key index segments are in this
tablespace, then this clause will also drop any overflow segments that exist in other
tablespaces, as well as any associated mapping table in other tablespaces. If some of the
primary key index segments are not in this tablespace, then the statement will fail. In that
case, before you can drop the tablespace, you must use ALTER TABLE ... MOVE PARTITION to
move those primary key index segments into this tablespace, drop the partitions whose

Chapter 18
DROP TABLESPACE

18-7

overflow data segments are not in this tablespace, and drop the partitioned index-
organized table.

If the tablespace contains a master table of a materialized view, then the database
invalidates the materialized view.

If the tablespace contains a materialized view log, then the database drops the log and
any other direct-path INSERT refresh information associated with the table.

AND DATAFILES

When you specify INCLUDING CONTENTS, the AND DATAFILES clause lets you instruct the
database to delete the associated operating system files as well. Oracle Database
writes a message to the alert log for each operating system file deleted. This clause is
not needed for Oracle Managed Files, because they are removed from the system
even if you do not specify AND DATAFILES.

KEEP DATAFILES

When you specify INCLUDING CONTENTS, the KEEP DATAFILES clause lets you instruct
the database to leave untouched the associated operating system files, including
Oracle Managed Files. You must specify this clause if you are using Oracle Managed
Files and you do not want the associated operating system files removed by the
INCLUDING CONTENTS clause.

CASCADE CONSTRAINTS

Specify CASCADE CONSTRAINTS to drop all referential integrity constraints from tables
outside tablespace that refer to primary and unique keys of tables inside tablespace.
If you omit this clause and such referential integrity constraints exist, then Oracle
Database returns an error and does not drop the tablespace.

Examples

Dropping a Tablespace: Example

The following statement drops the tbs_01 tablespace and drops all referential integrity
constraints that refer to primary and unique keys inside tbs_01:

DROP TABLESPACE tbs_01
 INCLUDING CONTENTS
 CASCADE CONSTRAINTS;

Dropping a Shadow Tablespace: Example

The following statement tries to move the tracked data in the shadow tablespace to
another shadow tablespace. This only works if there are shadow tablespaces in the
PDB with enough free space.

DROP TABLESPACE <shadow_tablespace_name>

The following statement drops the shadow tablespace and all its contents. All the
tracking data is lost.

Dropping Shadow Tablespace Including Contents: Example

DROP TABLESPACE <shadow_tablespace_name>
 INCLUDING CONTENTS

Deleting Operating System Files: Example

Chapter 18
DROP TABLESPACE

18-8

The following example drops the tbs_02 tablespace and deletes all associated operating
system data files:

DROP TABLESPACE tbs_02
 INCLUDING CONTENTS AND DATAFILES;

DROP TABLESPACE SET

Note:

This SQL statement is valid only if you are using Oracle Sharding. For more
information on Oracle Sharding, refer to Oracle Database Administrator’s Guide.

Purpose

Use the DROP TABLESPACE SET statement to drop a tablespace set from a shardgroup.

When you drop a tablespace set, Oracle Database does not place it in the recycle bin.
Therefore, you cannot subsequently either purge or undrop the tablespace set.

See Also:

CREATE TABLESPACE SET and ALTER TABLESPACE SET

Prerequisites

You must be connected to a shard catalog database as an SDB user.

You must have the DROP TABLESPACE system privilege. You cannot drop a tablespace set if its
tablespaces contain any rollback segments holding active transactions.

Syntax

drop_tablespace_set::=

DROP TABLESPACE SET tablespace_set

INCLUDING CONTENTS

AND

KEEP
DATAFILES

CASCADE CONSTRAINTS

;

Semantics

tablespace_set

Specify the name of the tablespace set to be dropped.

Chapter 18
DROP TABLESPACE SET

18-9

INCLUDING CONTENTS

This clause lets you specify how the database manages objects and datafiles
associated with the tablespaces in the tablespace set during the drop operation. The
INCLUDING CONTENTS clause has the same semantics here as for the DROP TABLESPACE
statement. See INCLUDING CONTENTS for the full semantics of this clause.

Examples

Dropping a Tablespace Set: Example

The following statement drops the tablespace set ts1:

DROP TABLESPACE SET ts1;

DROP TRIGGER
Purpose

Triggers are defined using PL/SQL. Refer to Oracle Database PL/SQL Language
Reference for complete information on creating, altering, and dropping triggers.

Use the DROP TRIGGER statement to remove a database trigger from the database.

See Also:

CREATE TRIGGER and ALTER TRIGGER

Prerequisites

The trigger must be in your own schema or you must have the DROP ANY TRIGGER
system privilege. To drop a trigger on DATABASE in another user's schema, you must
also have the ADMINISTER DATABASE TRIGGER system privilege.

Syntax

drop_trigger::=

DROP TRIGGER

schema .

trigger ;

Semantics

schema

Specify the schema containing the trigger. If you omit schema, then Oracle Database
assumes the trigger is in your own schema.

Chapter 18
DROP TRIGGER

18-10

trigger

Specify the name of the trigger to be dropped. Oracle Database removes it from the database
and does not fire it again.

Examples

Dropping a Trigger: Example

The following statement drops the salary_check trigger in the schema hr:

DROP TRIGGER hr.salary_check;

DROP TYPE
Purpose

Object types are defined using PL/SQL. Refer to Oracle Database PL/SQL Language
Reference for complete information on creating, altering, and dropping object types.

Use the DROP TYPE statement to drop the specification and body of an object type, a varray, or
a nested table type.

Prerequisites

The object type, varray, or nested table type must be in your own schema or you must have
the DROP ANY TYPE system privilege.

Syntax

drop_type::=

DROP TYPE

schema .

type_name

FORCE

VALIDATE

;

Semantics

schema

Specify the schema containing the type. If you omit schema, then Oracle Database assumes
the type is in your own schema.

type_name

Specify the name of the object, varray, or nested table type to be dropped. You can drop only
types with no type or table dependencies.

If type_name is a supertype, then this statement will fail unless you also specify FORCE. If you
specify FORCE, then the database invalidates all subtypes depending on this supertype.

If type_name is a statistics type, then this statement will fail unless you also specify FORCE. If
you specify FORCE, then the database first disassociates all objects that are associated with
type_name and then drops type_name.

Chapter 18
DROP TYPE

18-11

See Also:

ASSOCIATE STATISTICS and DISASSOCIATE STATISTICS for more
information on statistics types

If type_name is an object type that has been associated with a statistics type, then the
database first attempts to disassociate type_name from the statistics type and then
drops type_name. However, if statistics have been collected using the statistics type,
then the database will be unable to disassociate type_name from the statistics type,
and this statement will fail.

If type_name is an implementation type for an indextype, then the indextype will be
marked INVALID.

If type_name has a public synonym defined on it, then the database will also drop the
synonym.

Unless you specify FORCE, you can drop only object types, nested tables, or varray
types that are standalone schema objects with no dependencies. This is the default
behavior.

See Also:

CREATE INDEXTYPE

FORCE

Specify FORCE to drop the type even if it has dependent database objects. Oracle
Database marks UNUSED all columns dependent on the type to be dropped, and those
columns become inaccessible.

Note:

Oracle does not recommend that you specify FORCE to drop object types with
dependencies. This operation is not recoverable and could cause the data in
the dependent tables or columns to become inaccessible.

VALIDATE

If you specify VALIDATE when dropping a type, then Oracle Database checks for stored
instances of this type within substitutable columns of any of its supertypes. If no such
instances are found, then the database completes the drop operation.

This clause is meaningful only for subtypes. Oracle recommends the use of this option
to safely drop subtypes that do not have any explicit type or table dependencies.

Examples

Dropping an Object Type: Example

Chapter 18
DROP TYPE

18-12

The following statement removes object type person_t. See Oracle Database PL/SQL
Language Reference for the example that creates this object type. Any columns that are
dependent on person_t are marked UNUSED and become inaccessible.

DROP TYPE person_t FORCE;

DROP TYPE BODY
Purpose

Object types are defined using PL/SQL. Refer to Oracle Database PL/SQL Language
Reference for complete information on creating, altering, and dropping object types.

Use the DROP TYPE BODY statement to drop the body of an object type, varray, or nested table
type. When you drop a type body, the object type specification still exists, and you can re-
create the type body. Prior to re-creating the body, you can still use the object type, although
you cannot call the member functions.

Prerequisites

The object type body must be in your own schema or you must have the DROP ANY TYPE
system privilege.

Syntax

drop_type_body::=

DROP TYPE BODY

schema .

type_name ;

Semantics

schema

Specify the schema containing the object type. If you omit schema, then Oracle Database
assumes the object type is in your own schema.

type_name

Specify the name of the object type body to be dropped.

Restriction on Dropping Type Bodies

You can drop a type body only if it has no type or table dependencies.

Examples

Dropping an Object Type Body: Example

The following statement removes object type body data_typ1. See Oracle Database PL/SQL
Language Reference for the example that creates this object type.

DROP TYPE BODY data_typ1;

Chapter 18
DROP TYPE BODY

18-13

DROP USER
Purpose

Use the DROP USER statement to remove a database user and optionally remove the
user's objects.

In an Oracle Automatic Storage Management (Oracle ASM) cluster, a user
authenticated AS SYSASM can use this clause to remove a user from the password file
that is local to the Oracle ASM instance of the current node.

When you drop a user, Oracle Database also purges all of that user's schema objects
from the recycle bin.

Note:

Do not attempt to drop the users SYS or SYSTEM. Doing so will corrupt your
database.

See Also:

CREATE USER and ALTER USER for information on creating and modifying
a user

Prerequisites

You must have the DROP USER system privilege. In an Oracle ASM cluster, you must be
authenticated AS SYSASM.

Syntax

drop_user::=

DROP USER user

CASCADE

;

Semantics

user

Specify the user to be dropped. Oracle Database does not drop users whose schemas
contain objects unless you specify CASCADE or unless you first explicitly drop the user's
objects.

Restriction on Dropping Users

Chapter 18
DROP USER

18-14

You cannot drop a user whose schema contains a table that uses a flashback data archive for
historical tracking. You must first disable the table's use of the flashback data archive.

CASCADE

Specify CASCADE to drop all objects in the user's schema before dropping the user. You must
specify this clause to drop a user whose schema contains any objects.

• If the user's schema contains tables, then Oracle Database drops the tables and
automatically drops any referential integrity constraints on tables in other schemas that
refer to primary and unique keys on these tables.

• If this clause results in tables being dropped, then the database also drops all domain
indexes created on columns of those tables and invokes appropriate drop routines.

See Also:

Oracle Database Data Cartridge Developer's Guide for more information on
these routines

• Oracle Database invalidates, but does not drop, the following objects in other schemas:

– Views or synonyms for objects in the dropped user's schema

– Stored procedures, functions, or packages that query objects in the dropped user's
schema

• Oracle Database does not drop materialized views in other schemas that are based on
tables in the dropped user's schema. However, because the base tables no longer exist,
the materialized views in the other schemas can no longer be refreshed.

• Oracle Database drops all triggers in the user's schema.

• Oracle Database does not drop roles created by the user.

Note:

Oracle Database also drops with FORCE all types owned by the user. See the
FORCE keyword of DROP TYPE .

Examples

Dropping a Database User: Example

If user Sidney's schema contains no objects, then you can drop sidney by issuing the
statement:

DROP USER sidney;

If Sidney's schema contains objects, then you must use the CASCADE clause to drop sidney
and the objects:

DROP USER sidney CASCADE;

Chapter 18
DROP USER

18-15

DROP VIEW
Purpose

Use the DROP VIEW statement to remove a view or an object view from the database.
You can change the definition of a view by dropping and re-creating it.

See Also:

CREATE VIEW and ALTER VIEW for information on creating and modifying
a view

Prerequisites

The view must be in your own schema or you must have the DROP ANY VIEW system
privilege.

Syntax

drop_view::=

DROP VIEW

schema .

view

CASCADE CONSTRAINTS

;

Semantics

schema

Specify the schema containing the view. If you omit schema, then Oracle Database
assumes the view is in your own schema.

view

Specify the name of the view to be dropped.

Oracle Database does not drop views, materialized views, and synonyms that are
dependent on the view but marks them INVALID. You can drop them or redefine views
and synonyms, or you can define other views in such a way that the invalid views and
synonyms become valid again.

If any subviews have been defined on view, then the database invalidates the
subviews as well. To determine whether the view has any subviews, query the
SUPERVIEW_NAME column of the USER_, ALL_, or DBA_VIEWS data dictionary views.

Chapter 18
DROP VIEW

18-16

See Also:

• CREATE TABLE and CREATE SYNONYM

• ALTER MATERIALIZED VIEW for information on revalidating invalid
materialized views

CASCADE CONSTRAINTS

Specify CASCADE CONSTRAINTS to drop all referential integrity constraints that refer to primary
and unique keys in the view to be dropped. If you omit this clause, and such constraints exist,
then the DROP statement fails.

Examples

Dropping a View: Example

The following statement drops the emp_view view, which was created in "Creating a View:
Example":

DROP VIEW emp_view;

EXPLAIN PLAN
Purpose

Use the EXPLAIN PLAN statement to determine the execution plan Oracle Database follows to
execute a specified SQL statement. This statement inserts a row describing each step of the
execution plan into a specified table. You can also issue the EXPLAIN PLAN statement as part
of the SQL trace facility.

This statement also determines the cost of executing the statement. If any domain indexes
are defined on the table, then user-defined CPU and I/O costs will also be inserted.

The definition of a sample output table PLAN_TABLE is available in a SQL script on your
distribution media. Your output table must have the same column names and data types as
this table. The common name of this script is UTLXPLAN.SQL. The exact name and location
depend on your operating system.

Oracle Database provides information on cached cursors through several dynamic
performance views:

• For information on the work areas used by SQL cursors, query V$SQL_WORKAREA.

• For information on the execution plan for a cached cursor, query V$SQL_PLAN.

• For execution statistics at each step or operation of an execution plan of cached cursors
(for example, number of produced rows, number of blocks read), query
V$SQL_PLAN_STATISTICS.

• For a selective precomputed join of the preceding three views, query
V$SQL_PLAN_STATISTICS_ALL.

• Execution statistics at each step or operation of an execution plan of cached cursors are
displayed in V$SQL_PLAN_MONITOR if the statement execution is monitored. You can force
monitoring using the MONITOR hint.

Chapter 18
EXPLAIN PLAN

18-17

See Also:

• Oracle Database SQL Tuning Guide for information on the output of
EXPLAIN PLAN, how to use the SQL trace facility, and how to generate
and interpret execution plans

• Oracle Database Reference for information on dynamic performance
views

Prerequisites

To issue an EXPLAIN PLAN statement, you must have the privileges necessary to insert
rows into an existing output table that you specify to hold the execution plan.

You must also have the privileges necessary to execute the SQL statement for which
you are determining the execution plan. If the SQL statement accesses a view, then
you must have privileges to access any tables and views on which the view is based. If
the view is based on another view that is based on a table, then you must have
privileges to access both the other view and its underlying table.

To examine the execution plan produced by an EXPLAIN PLAN statement, you must
have the privileges necessary to query the output table.

The EXPLAIN PLAN statement is a data manipulation language (DML) statement, rather
than a data definition language (DDL) statement. Therefore, Oracle Database does not
implicitly commit the changes made by an EXPLAIN PLAN statement. If you want to keep
the rows generated by an EXPLAIN PLAN statement in the output table, then you must
commit the transaction containing the statement.

See Also:

INSERT and SELECT for information on the privileges you need to populate
and query the plan table

Syntax

explain_plan::=

EXPLAIN PLAN

SET STATEMENT_ID = string

INTO

schema .

table

@ dblink

FOR statement ;

Chapter 18
EXPLAIN PLAN

18-18

Semantics

SET STATEMENT_ID Clause

Specify a value for the STATEMENT_ID column for the rows of the execution plan in the output
table. You can then use this value to identify these rows among others in the output table. Be
sure to specify a STATEMENT_ID value if your output table contains rows from many execution
plans. If you omit this clause, then the STATEMENT_ID value defaults to null.

INTO table Clause

Specify the name of the output table, and optionally its schema and database. This table
must exist before you use the EXPLAIN PLAN statement.

If you omit schema, then the database assumes the table is in your own schema.

The dblink can be a complete or partial name of a database link to a remote Oracle
Database where the output table is located. You can specify a remote output table only if you
are using Oracle Database distributed functionality. If you omit dblink, then the database
assumes the table is on your local database. See "References to Objects in Remote
Databases " for information on referring to database links.

If you omit INTO altogether, then the database assumes an output table named PLAN_TABLE in
your own schema on your local database.

FOR statement Clause

Specify a SELECT, INSERT, UPDATE, DELETE, MERGE, CREATE TABLE, CREATE INDEX, or ALTER
INDEX ... REBUILD statement for which the execution plan is generated.

Notes on EXPLAIN PLAN

The following notes apply to EXPLAIN PLAN:

• If statement includes the parallel_clause, then the resulting execution plan will indicate
parallel execution. However, EXPLAIN PLAN actually inserts the statement into the plan
table, so that the parallel DML statement you submit is no longer the first DML statement
in the transaction. This violates the Oracle Database restriction of one parallel DML
statement in a single transaction, and the statement will be executed serially. To maintain
parallel execution of the statements, you must commit or roll back the EXPLAIN PLAN
statement, and then submit the parallel DML statement.

• To determine the execution plan for an operation on a temporary table, EXPLAIN PLAN
must be run from the same session, because the data in temporary tables is session
specific.

Examples

EXPLAIN PLAN Examples

The following statement determines the execution plan and cost for an UPDATE statement and
inserts rows describing the execution plan into the specified plan_table table with the
STATEMENT_ID value of 'Raise in Tokyo':

EXPLAIN PLAN
 SET STATEMENT_ID = 'Raise in Tokyo'
 INTO plan_table
 FOR UPDATE employees

Chapter 18
EXPLAIN PLAN

18-19

 SET salary = salary * 1.10
 WHERE department_id =
 (SELECT department_id FROM departments
 WHERE location_id = 1700);

The following SELECT statement queries the plan_table table and returns the
execution plan and the cost:

SELECT id, LPAD(' ',2*(LEVEL-1))||operation operation, options,
 object_name, object_alias, position
 FROM plan_table
 START WITH id = 0 AND statement_id = 'Raise in Tokyo'
 CONNECT BY PRIOR id = parent_id AND statement_id = 'Raise in Tokyo'
 ORDER BY id;

The query returns this execution plan:

 ID OPERATION OPTIONS OBJECT_NAME OBJECT_ALIAS POSITION
--- -------------------- -------------------- -------------------- -------------------- --------
 0 UPDATE STATEMENT 4
 1 UPDATE EMPLOYEES 1
 2 INDEX RANGE SCAN EMP_DEPARTMENT_IX EMPLOYEES@UPD$1 1
 3 TABLE ACCESS BY INDEX ROWID DEPARTMENTS DEPARTMENTS@SEL$1 1
 4 INDEX RANGE SCAN DEPT_LOCATION_IX DEPARTMENTS@SEL$1 1

The value in the POSITION column of the first row shows that the statement has a cost
of 4.

EXPLAIN PLAN: Partitioned Example

The sample table sh.sales is partitioned on the time_id column. Partition
sales_q3_2000 contains time values less than Oct. 1, 2000, and there is a local index
sales_time_bix on the time_id column.

Consider the query:

EXPLAIN PLAN FOR
 SELECT * FROM sales
 WHERE time_id BETWEEN :h AND '01-OCT-2000';

where :h represents an already declared bind variable. EXPLAIN PLAN executes this
query with PLAN_TABLE as the output table. The basic execution plan, including
partitioning information, is obtained with the following query:

SELECT operation, options, partition_start, partition_stop,
 partition_id
 FROM plan_table;

FLASHBACK DATABASE
Purpose

Use the FLASHBACK DATABASE statement to return the database to a past time or system
change number (SCN). This statement provides a fast alternative to performing
incomplete database recovery.

Following a FLASHBACK DATABASE operation, in order to have write access to the
flashed back database, you must reopen it with an ALTER DATABASE OPEN RESETLOGS
statement.

Chapter 18
FLASHBACK DATABASE

18-20

See Also:

Oracle Database Backup and Recovery User's Guide for more information on
FLASHBACK DATABASE

Prerequisites

You must have the SYSDBA, SYSBACKUP, or SYSDG system privilege.

If you are connected to a multitenant container database (CDB):

• To flash back a CDB, you must be connected to the root and you must have the SYSDBA,
SYSBACKUP, or SYSDG system privilege granted commonly.

• To flash back a PDB you must be connected to the root and you must have the SYSDBA,
SYSBACKUP, or SYSDG system privilege granted commonly, or you must be connected to
the PDB you want to flash back and you must have the SYSDBA, SYSBACKUP, or SYSDG
system privilege, granted commonly or granted locally in that PDB.

A fast recovery area must have been prepared for the database. The database must have
been put in FLASHBACK mode with an ALTER DATABASE FLASHBACK ON statement unless you are
flashing the database back to a guaranteed restore point. The database must be mounted but
not open.

In addition:

• The database must run in ARCHIVELOG mode.

• The database must be mounted, but not open, with a current control file. The control file
cannot be a backup or re-created. When the database control file is restored from backup
or re-created, all existing flashback log information is discarded.

• The database must contain no online tablespaces for which flashback functionality was
disabled with the SQL statement ALTER TABLESPACE ... FLASHBACK OFF.

See Also:

• Oracle Database Backup and Recovery User's Guide and the ALTER
DATABASE ... flashback_mode_clause for information on putting the database in
FLASHBACK mode

• CREATE RESTORE POINT for information on restore points and guaranteed
restore points

Chapter 18
FLASHBACK DATABASE

18-21

Syntax

flashback_database::=

FLASHBACK

STANDBY PLUGGABLE

DATABASE

database

TO

SCN

TIMESTAMP
expr

RESTORE POINT restore_point

TO BEFORE

SCN

TIMESTAMP
expr

RESETLOGS

;

Semantics

When you issue a FLASHBACK DATABASE statement, Oracle Database first verifies that
all required archived and online redo logs are available. If they are available, then it
reverts all currently online data files in the database to the SCN or time specified in
this statement.

• The amount of Flashback data retained in the database is controlled by the
DB_FLASHBACK_RETENTION_TARGET initialization parameter and the size of the fast
recovery area. You can determine how far back you can flash back the database
by querying the V$FLASHBACK_DATABASE_LOG view.

• If insufficient data remains in the database to perform the flashback, then you can
use standard recovery procedures to recover the database to a past point in time.

• If insufficient data remains for a set of data files, then the database returns an
error. In this case, you can take those data files offline and reissue the statement
to revert the remainder of the database. You can then attempt to recover the offline
data files using standard recovery procedures.

See Also:

Oracle Database Backup and Recovery User's Guide for more information
on recovering data files

STANDBY

Specify STANDBY to revert the standby database to an earlier SCN or time. If the
database is not a standby database, then the database returns an error. If you omit
this clause, then database can be either a primary or a standby database.

Chapter 18
FLASHBACK DATABASE

18-22

See Also:

Oracle Data Guard Concepts and Administration for information on how you can
use FLASHBACK DATABASE on a standby database to achieve different delays

PLUGGABLE

Specify PLUGGABLE to flash back a PDB. You must specify this clause whether the current
container is the root or the PDB you want to flash back.

Restrictions on Flashing Back a PDB

• You cannot flash back a proxy PDB.

• If the CDB is in shared undo mode, then you can only flash back a PDB to a clean PDB
restore point. Refer to the CLEAN clause of CREATE RESTORE POINT for more information.

database

If you are flashing back a CDB, then you can optionally specify the name of the database to
be flashed back. If you omit database, then Oracle Database flashes back the database
identified by the value of the initialization parameter DB_NAME.

If you are flashing back a PDB and the current container is the root, then use database to
specify the name of the PDB to be flashed back. If you are flashing back a PDB and the
current container is that PDB, then you can optionally use database to specify the PDB
name.

TO SCN Clause

Specify a system change number (SCN):

• TO SCN reverts the database back to its state at the specified SCN.

• TO BEFORE SCN reverts the database back to its state at the system change number just
preceding the specified SCN.

You can determine the current SCN by querying the CURRENT_SCN column of the V$DATABASE
view. This in turn lets you save the SCN to a spool file, for example, before running a high-
risk batch job.

TO TIMESTAMP Clause

Specify a valid datetime expression.

• TO TIMESTAMP reverts the database back to its state at the specified timestamp.

• TO BEFORE TIMESTAMP reverts the database back to its state one second before the
specified timestamp.

You can represent the timestamp as an offset from a determinate value, such as SYSDATE, or
as an absolute system timestamp.

TO RESTORE POINT Clause

Specify this clause to flash back the database to the specified restore point. If you have not
enabled flashback database, then this is the only clause you can specify in this FLASHBACK

Chapter 18
FLASHBACK DATABASE

18-23

DATABASE statement. If the database is not in FLASHBACK mode, as described in the
"Prerequisites" section above, then this is the only clause you can specify for this
statement.

RESETLOGS

Specify TO BEFORE RESETLOGS to flash the database back to just before the last
resetlogs operation (ALTER DATABASE OPEN RESETLOGS).

See Also:

Oracle Database Backup and Recovery User's Guide for more information
about this clause

Examples

Assuming that you have prepared a fast recovery area for the database and enabled
media recovery, enable database FLASHBACK mode and open the database with the
following statements:

STARTUP MOUNT
ALTER DATABASE FLASHBACK ON;
ALTER DATABASE OPEN;

With your database open for at least a day, you can flash back the database one day
with the following statements:

SHUTDOWN DATABASE
STARTUP MOUNT
FLASHBACK DATABASE TO TIMESTAMP SYSDATE-1;

FLASHBACK TABLE
Purpose

Use the FLASHBACK TABLE statement to restore an earlier state of a table in the event of
human or application error. The time in the past to which the table can be flashed back
is dependent on the amount of undo data in the system. Also, Oracle Database cannot
restore a table to an earlier state across any DDL operations that change the structure
of the table.

Note:

Oracle strongly recommends that you run your database in automatic undo
mode by leaving the UNDO_MANAGEMENT initialization parameter set to AUTO,
which is the default. In addition, set the UNDO_RETENTION initialization
parameter to an interval large enough to include the oldest data you
anticipate needing. For more information refer to the documentation on the
UNDO_MANAGEMENT and UNDO_RETENTION initialization parameters.

Chapter 18
FLASHBACK TABLE

18-24

You cannot roll back a FLASHBACK TABLE statement. However, you can issue another
FLASHBACK TABLE statement and specify a time just prior to the current time. Therefore, it is
advisable to record the current SCN before issuing a FLASHBACK TABLE clause.

See Also:

• To set the UNDO_RETENTION initialization parameter, see Setting the Minimum
Undo Retention Period

• FLASHBACK DATABASE for information on reverting the entire database to an
earlier version

• the flashback_query_clause of SELECT for information on retrieving past data
from a table

• Oracle Database Backup and Recovery User's Guide for additional information
on using the FLASHBACK TABLE statement

Prerequisites

To flash back a table to an earlier SCN or timestamp, you must have either the FLASHBACK
object privilege on the table or the FLASHBACK ANY TABLE system privilege. In addition, you
must have the READ or SELECT object privilege on the table, and you must have the INSERT,
DELETE, and ALTER object privileges on the table.

Row movement must be enabled for all tables in the Flashback list unless you are flashing
back the table TO BEFORE DROP. That operation is called a flashback drop operation, and it
uses dropped data in the recycle bin rather than undo data. Refer to row_movement_clause
for information on enabling row movement.

To flash back a table to a restore point, you must have the SELECT ANY DICTIONARY or
FLASHBACK ANY TABLE system privilege or the SELECT_CATALOG_ROLE role.

To flash back a table to before a DROP TABLE operation, you need only the privileges
necessary to drop the table.

Syntax

flashback_table::=

FLASHBACK TABLE

schema .

table

,

TO

SCN

TIMESTAMP
expr

RESTORE POINT restore_point

ENABLE

DISABLE
TRIGGERS

BEFORE DROP

RENAME TO table

;

Chapter 18
FLASHBACK TABLE

18-25

Semantics

During an Oracle Flashback Table operation, Oracle Database acquires exclusive
DML locks on all the tables specified in the Flashback list. These locks prevent any
operations on the tables while they are reverting to their earlier state.

The Flashback Table operation is executed in a single transaction, regardless of the
number of tables specified in the Flashback list. Either all of the tables revert to the
earlier state or none of them do. If the Flashback Table operation fails on any table,
then the entire statement fails.

At the completion of the Flashback Table operation, the data in table is consistent with
table at the earlier time. However, FLASHBACK TABLE TO SCN or TIMESTAMP does not
preserve rowids, and FLASHBACK TABLE TO BEFORE DROP does not recover referential
constraints.

Oracle Database does not revert statistics associated with table to their earlier form.
Indexes on table that exist currently are reverted and reflect the state of the table at
the Flashback point. If the index exists now but did not yet exist at the Flashback point,
then the database updates the index to reflect the state of the table at the Flashback
point. However, indexes that were dropped during the interval between the Flashback
point and the current time are not restored.

schema

Specify the schema containing the table. If you omit schema, then the database
assumes the table is in your own schema.

table

Specify the name of one or more tables containing data you want to revert to an earlier
version.

Restrictions on Flashing Back Tables

This statement is subject to the following restrictions:

• Flashback Table operations are not valid for the following type objects: tables that
are part of a cluster, materialized views, Advanced Queuing (AQ) tables, static
data dictionary tables, system tables, remote tables, object tables, nested tables,
or individual table partitions or subpartitions.

• The following DDL operations change the structure of a table, so that you cannot
subsequently use the TO SCN or TO TIMESTAMP clause to flash the table back to a
time preceding the operation: upgrading, moving, or truncating a table; adding a
constraint to a table, adding a table to a cluster; modifying or dropping a column;
changing a column encryption key; adding, dropping, merging, splitting,
coalescing, or truncating a partition or subpartition (with the exception of adding a
range partition).

TO SCN Clause

Specify the system change number (SCN) corresponding to the point in time to which
you want to return the table. The expr must evaluate to a number representing a valid
SCN.

Chapter 18
FLASHBACK TABLE

18-26

TO TIMESTAMP Clause

Specify a timestamp value corresponding to the point in time to which you want to return the
table. The expr must evaluate to a valid timestamp in the past. The table will be flashed back
to a time within approximately 3 seconds of the specified timestamp.

TO RESTORE POINT Clause

Specify a restore point to which you want to flash back the table. The restore point must
already have been created.

See Also:

CREATE RESTORE POINT for information on creating restore points

ENABLE | DISABLE TRIGGERS

By default, Oracle Database disables all enabled triggers defined on table during the
Flashback Table operation and then reenables them after the Flashback Table operation is
complete. Specify ENABLE TRIGGERS if you want to override this default behavior and keep the
triggers enabled during the Flashback process.

This clause affects only those database triggers defined on table that are already enabled.
To enable currently disabled triggers selectively, use the ALTER TABLE ...
enable_disable_clause before you issue the FLASHBACK TABLE statement with the ENABLE
TRIGGERS clause.

TO BEFORE DROP Clause

Use this clause to retrieve from the recycle bin a table that has been dropped, along with all
possible dependent objects. The table must have resided in a locally managed tablespace
other than the SYSTEM tablespace.

See Also:

• Oracle Database Administrator's Guide for information on the recycle bin and
naming conventions for objects in the recycle bin

• PURGE for information on removing objects permanently from the recycle bin

You can specify either the original user-specified name of the table or the system-generated
name Oracle Database assigned to the object when it was dropped.

• System-generated recycle bin object names are unique. Therefore, if you specify the
system-generated name, then the database retrieves that specified object.

To see the contents of your recycle bin, query the USER_RECYCLEBIN data dictionary view.
You can use the RECYCLEBIN synonym instead. The following two statements return the
same rows:

Chapter 18
FLASHBACK TABLE

18-27

SELECT * FROM RECYCLEBIN;
SELECT * FROM USER_RECYCLEBIN;

• If you specify the user-specified name, and if the recycle bin contains more than
one object of that name, then the database retrieves the object that was moved to
the recycle bin most recently. If you want to retrieve an older version of the table,
then do one of these things:

– Specify the system-generated recycle bin name of the table you want to
retrieve.

– Issue additional FLASHBACK TABLE ... TO BEFORE DROP statements until you
retrieve the table you want.

Oracle Database attempts to preserve the original table name. If a new table of the
same name has been created in the same schema since the original table was
dropped, then the database returns an error unless you also specify the RENAME TO
clause.

RENAME TO Clause

Use this clause to specify a new name for the table being retrieved from the recycle
bin.

Notes on Flashing Back Dropped Tables

The following notes apply to flashing back dropped tables:

• Oracle Database retrieves all indexes defined on the table retrieved from the
recycle bin except for bitmap join indexes and domain indexes. (Bitmap join
indexes and domain indexes are not put in the recycle bin during a DROP TABLE
operation, so cannot be retrieved.)

• The database also retrieves all triggers and constraints defined on the table except
for referential integrity constraints that reference other tables.

The retrieved indexes, triggers, and constraints have recycle bin names. Therefore
it is advisable to query the USER_RECYCLEBIN view before issuing a FLASHBACK
TABLE ... TO BEFORE DROP statement so that you can rename the retrieved triggers
and constraints to more usable names.

• When you drop a table, all materialized view logs defined on the table are also
dropped but are not placed in the recycle bin. Therefore, the materialized view
logs cannot be flashed back along with the table.

• When you drop a table, any indexes on the table are dropped and put into the
recycle bin along with the table. If subsequent space pressures arise, then the
database reclaims space from the recycle bin by first purging indexes. In this case,
when you flash back the table, you may not get back all of the indexes that were
defined on the table.

• You cannot flash back a table if it has been purged, either by a user or by Oracle
Database as a result of some space reclamation operation.

Examples

Restoring a Table to an Earlier State: Examples

The examples below create a new table, employees_test, with row movement
enabled, update values within the new table, and issue the FLASHBACK TABLE
statement.

Chapter 18
FLASHBACK TABLE

18-28

Create table employees_test, with row movement enabled, from table employees of the
sample hr schema:

CREATE TABLE employees_test
 AS SELECT * FROM employees;

As a benchmark, list those salaries less than 2500:

SELECT salary
 FROM employees_test
 WHERE salary < 2500;

 SALARY

 2400
 2200
 2100
 2400
 2200

Note:

To allow time for the SCN to propagate to the mapping table used by the FLASHBACK
TABLE statement, wait a minimum of 5 minutes prior to issuing the following
statement. This wait would not be necessary if a previously existing table were
being used in this example.

Enable row movement for the table:

ALTER TABLE employees_test
 ENABLE ROW MOVEMENT;

Issue a 10% salary increase to those employees earning less than 2500:

UPDATE employees_test
 SET salary = salary * 1.1
 WHERE salary < 2500;

5 rows updated.
COMMIT;

As a second benchmark, list those salaries that remain less than 2500 following the 10%
increase:

SELECT salary
 FROM employees_test
 WHERE salary < 2500;

 SALARY

 2420
 2310
 2420

Chapter 18
FLASHBACK TABLE

18-29

Restore the table employees_test to its state prior to the current system time. The
unrealistic duration of 1 minute is used so that you can test this series of examples
quickly. Under normal circumstances a much greater interval would have elapsed.

FLASHBACK TABLE employees_test
 TO TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' minute);

List those salaries less than 2500. After the FLASHBACK TABLE statement issued above,
this list should match the list in the first benchmark.

SELECT salary
 FROM employees_test
 WHERE salary < 2500;

 SALARY

 2400
 2200
 2100
 2400
 2200

Retrieving a Dropped Table: Example

If you accidentally drop the pm.print_media table and want to retrieve it, then issue
the following statement:

FLASHBACK TABLE print_media TO BEFORE DROP;

If another print_media table has been created in the pm schema, then use the RENAME
TO clause to rename the retrieved table:

FLASHBACK TABLE print_media TO BEFORE DROP RENAME TO print_media_old;

If you know that the employees table has been dropped multiple times, and you want
to retrieve the oldest version, then query the USER_RECYLEBIN table to determine the
system-generated name, and then use that name in the FLASHBACK TABLE statement.
(System-generated names in your database will differ from those shown here.)

SELECT object_name, droptime FROM user_recyclebin
 WHERE original_name = 'PRINT_MEDIA';

OBJECT_NAME DROPTIME
------------------------------ -------------------
RB$$45703$TABLE$0 2003-06-03:15:26:39
RB$$45704$TABLE$0 2003-06-12:12:27:27
RB$$45705$TABLE$0 2003-07-08:09:28:01

GRANT
Purpose

Use the GRANT statement to grant:

• System privileges to users and roles. Table 18-1 lists the system privileges
(organized by the database object operated upon).

Note that ANY system privileges, for example, SELECT ANY TABLE, will not work on
SYS objects or other dictionary objects.

Chapter 18
GRANT

18-30

• Roles to users, roles, and program units. The granted roles can be either user-defined
(local or external) or predefined. For a list of predefined roles, refer to Oracle Database
Security Guide.

• Object privileges for a particular object to users and roles. Table 18-2 lists the object
privileges (organized by the database object operated upon).

Note:

Global roles (created with IDENTIFIED GLOBALLY) are granted through enterprise
roles and cannot be granted using the GRANT statement.

Notes on Authorizing Database Users

You can authorize database users through means other than the database and the GRANT
statement.

• Many Oracle Database privileges are granted through supplied PL/SQL and Java
packages. For information on those privileges, refer to the documentation for the
appropriate package.

• Some operating systems have facilities that let you grant roles to Oracle Database users
with the initialization parameter OS_ROLES. If you choose to grant roles to users through
operating system facilities, then you cannot also grant roles to users with the GRANT
statement, although you can use the GRANT statement to grant system privileges to users
and system privileges and roles to other roles.

Note on Oracle Automatic Storage Management

A user authenticated AS SYSASM can use this statement to grant the system privileges SYSASM,
SYSOPER, and SYSDBA to a user in the Oracle ASM password file of the current node.

Note on Editionable Objects

A GRANT operation to grant object privileges on an editionable object actualizes the object in
the current edition. See Oracle Database Development Guide for more information about
editions and editionable objects.

See Also:

• CREATE USER and CREATE ROLE for definitions of local, global, and external
privileges

• Oracle Database Security Guide for information about other authorization
methods and for information about privileges

• REVOKE for information on revoking grants

Prerequisites

To grant a system privilege, one of the following conditions must be met:

Chapter 18
GRANT

18-31

• You must have been granted the GRANT ANY PRIVILEGE system privilege. In this
case, if you grant the system privilege to a role, then a user to whom the role has
been granted does not have the privilege unless the role is enabled in user's
session.

• You must have been granted the system privilege with the ADMIN OPTION. In this
case, if you grant the system privilege to a role, then a user to whom the role has
been granted has the privilege regardless whether the role is enabled in the user's
session.

To grant a role to a user or another role, you must have been directly granted the
role with the ADMIN OPTION, or you must have been granted the GRANT ANY ROLE system
privilege, or you must have created the role.

To grant a role to a program unit in your own schema, you must have been directly
granted the role with either the ADMIN OPTION or the DELEGATE OPTION, or you must
have been granted the GRANT ANY ROLE system privilege, or you must have created the
role.

To grant a role to a program unit in another user's schema, you must be the user
SYS and the role must have been created by the schema owner or directly granted to
the schema owner.

To grant an object privilege on a user, by specifying the ON USER clause of the
on_object_clause, you must be the user on whom the privilege is granted, or you
must have been granted the object privilege on that user with the WITH GRANT OPTION,
or you must have been granted the GRANT ANY OBJECT PRIVILEGE system privilege. If
you can grant an object privilege on a user only because you have the GRANT ANY
OBJECT PRIVILEGE, then the GRANTOR column of the *_TAB_PRIVS views displays the
user on whom the privilege is granted rather than the user who issued the GRANT
statement.

To grant an object privilege on all other types of objects, you must own the object,
or the owner of the object must have granted you the object privileges with the WITH
GRANT OPTION, or you must have been granted the GRANT ANY OBJECT PRIVILEGE
system privilege. If you have the GRANT ANY OBJECT PRIVILEGE, then you can grant the
object privilege only if the object owner could have granted the same object privilege.
In this case, the GRANTOR column of the *_TAB_PRIVS views displays the object owner
rather than the user who issued the GRANT statement.

You can revoke privileges on an object if you have the GRANT ANY object privilege. This
does not apply to SYS objects. The ANY keyword in reference to a system privilege
means that the user can perform the privilege on any objects owned by any user
except for SYS.

To specify the CONTAINER clause, you must be connected to a multitenant container
database (CDB). To specify CONTAINER = ALL, the current container must be the root.

Chapter 18
GRANT

18-32

Syntax

grant::=

GRANT

grant_system_privileges

grant_object_privileges

CONTAINER =
CURRENT

ALL

grant_roles_to_programs

;

(grant_system_privileges::=, grant_object_privileges::=, grant_roles_to_programs::=)

grant_system_privileges::=

system_privilege

role

ALL PRIVILEGES

,

TO
grantee_clause

grantee_identified_by

WITH
ADMIN

DELEGATE
OPTION

(grantee_clause::=, grantee_identified_by::=)

grantee_clause::=

user

role

PUBLIC

,

grantee_identified_by::=

user

,

IDENTIFIED BY password

,

Chapter 18
GRANT

18-33

grant_object_privileges::=

object_privilege

ALL

PRIVILEGES

(column

,

)

,

on_object_clause

TO grantee_clause

WITH HIERARCHY OPTION WITH GRANT OPTION

(on_object_clause::=, grantee_clause::=)

on_object_clause::=

ON

schema .

object

USER user

,

DIRECTORY directory_name

EDITION edition_name

MINING MODEL

schema .

mining_model_name

JAVA
SOURCE

RESOURCE

schema .

object

SQL TRANSLATION PROFILE

schema .

profile

grant_roles_to_programs::=

role

,

TO program_unit

,

program_unit::=

FUNCTION

schema .

function_name

PROCEDURE

schema .

procedure_name

PACKAGE

schema .

package_name

Chapter 18
GRANT

18-34

Semantics

grant_system_privileges

Use these clauses to grant system privileges.

system_privilege

Specify the system privilege you want to grant. Table 18-1 lists the system privileges,
organized by the database object operated upon.

• If you grant a privilege to a user, then the database adds the privilege to the user's
privilege domain. The user can immediately exercise the privilege. Oracle recommends
that you only grant the ANY privileges to trusted users.

• If you grant a privilege to a role, then the database adds the privilege to the privilege
domain of the role. Users who have been granted and have enabled the role can
immediately exercise the privilege. Other users who have been granted the role can
enable the role and exercise the privilege.

See Also:

Granting a System Privilege to a User: Example and "Granting System
Privileges to a Role: Example"

• If you grant a privilege to PUBLIC, then the database adds the privilege to the privilege
domains of each user. All users can immediately perform operations authorized by the
privilege. Oracle recommends against granting system privileges to PUBLIC.

role

Specify the role you want to grant. You can grant an Oracle Database predefined role or a
user-defined role.

• If you grant a role to a user, then the database makes the role available to the user. The
user can immediately enable the role and exercise the privileges in the privilege domain
of the role.

In the case of a secure application role, you need not grant such a role directly to the
user. You can let the associated PL/SQL package do this, assuming the user passes
appropriate security policies. For more information, see the CREATE ROLE semantics for
USING package and Oracle Database Security Guide

• If you grant a role to another role, then the database adds the privilege domain of the
granted role to the privilege domain of the grantee role. Users who have been granted
the grantee role can enable it and exercise the privileges in the granted role's privilege
domain.

• If you grant a role to PUBLIC, then the database makes the role available to all users. All
users can immediately enable the role and exercise the privileges in the privilege domain
of the role.

ALL PRIVILEGES

Specify ALL PRIVILEGES to grant all of the system privileges listed in Table 18-1, except the
SELECT ANY DICTIONARY, ALTER DATABASE LINK, and ALTER PUBLIC DATABASE LINK privileges.

Chapter 18
GRANT

18-35

However, grant and revoke ALL PRIVILEGES do not apply to ADMINISTER KEY
MANAGEMENT. Granting ALL PRIVILEGES does not grant ADMINISTER KEY MANAGEMENT.
Similarly, revoking ALL PRIVILEGES does not revoke ADMINISTER KEY MANAGEMENT.

See Also:

• Oracle Database Security Guide for information on the Oracle predefined
roles

• "Granting a Role to a Role: Example"

• CREATE ROLE for information on creating a user-defined role

grantee_clause

Use the grantee_clause to specify the users or roles to which the system privilege,
role, or object privilege is granted.

PUBLIC

Specify PUBLIC to grant the privileges to all users. Oracle recommends against
granting system privileges to PUBLIC.

Restriction on Grantees

A user, role, or PUBLIC cannot appear more than once in the grantee_clause.

grantee_identified_by

The grantee_identified_by clause lets you assign passwords to users when granting
them system privileges and roles. You must specify an equal number of users and
passwords. The first password is assigned to the first user, the second password is
assigned to the second user, and so on. If a specified user exists, then the database
resets the user's password. If a specified user does not exist, then the database
creates the user with the password.

See Also:

CREATE USER for restrictions on usernames and passwords and "Assigning
User Passwords When Granting a System Privilege: Example"

WITH ADMIN OPTION

Specify WITH ADMIN OPTION to enable the grantee to:

• Grant the privilege or role to another user or role, unless the role is a GLOBAL role

• Revoke the privilege or role from another user or role

• Alter the privilege or role to change the authorization needed to access it

• Drop the privilege or role

• Grant the role to a program unit in the grantee's schema.

Chapter 18
GRANT

18-36

• Revoke the role from a program unit in the grantee's schema.

If you grant a system privilege or role to a user without specifying WITH ADMIN OPTION, and
then subsequently grant the privilege or role to the user WITH ADMIN OPTION, then the user has
the ADMIN OPTION on the privilege or role.

To revoke the ADMIN OPTION on a system privilege or role from a user, you must revoke the
privilege or role from the user altogether and then grant the privilege or role to the user
without the ADMIN OPTION.

See Also:

"Granting a Role with the ADMIN OPTION: Example"

WITH DELEGATE OPTION

You can specify this clause only when granting a role to a user.

Specify WITH DELEGATE OPTION to enable the grantee to:

• Grant the role to a program unit in the grantee's schema

• Revoke the role from a program unit in the grantee's schema

If you grant a role to a user without specifying WITH DELEGATE OPTION, and then subsequently
grant the role to the user WITH DELEGATE OPTION, then the user has the DELEGATE OPTION on
the role.

To revoke the DELEGATE OPTION on a role from a user, you must revoke the role from the user
altogether and then grant the role to the user without the DELEGATE OPTION.

See Also:

• "Granting a Role with the DELEGATE OPTION: Example"

• The grant_roles_to_programs clause for more information on granting roles to
program units

Restrictions on Granting System Privileges and Roles

Privileges and roles are subject to the following restrictions:

• A privilege or role cannot appear more than once in the list of privileges and roles to be
granted.

• You cannot grant a role to itself.

• You cannot grant a role IDENTIFIED GLOBALLY to anything.

• You cannot grant a role IDENTIFIED EXTERNALLY to a global user or global role.

• You cannot grant roles circularly. For example, if you grant the role banker to the role
teller, then you cannot subsequently grant teller to banker.

Chapter 18
GRANT

18-37

• You cannot grant an IDENTIFIED BY role, IDENTIFIED USING role, or IDENTIFIED
EXTERNALLY role to another role.

grant_object_privileges

Use these clauses to grant object privileges.

object_privilege

Specify the object privilege you want to grant. Table 18-2 lists the object privileges,
organized by the type of object on which they can be granted. When you grant an
object privilege on a editionable object, either to a user or to a role, the object is
actualized in the edition in which the grant is made. Refer to CREATE EDITION for
information on editionable object types and editions.

Note:

To grant SELECT on a view to another user, either you must own all of the
objects underlying the view or you must have been granted the SELECT object
privilege WITH GRANT OPTION on all of those underlying objects. This is true
even if the grantee already has SELECT privileges on those underlying
objects.

To grant READ on a view to another user, either you must own all of the
objects underlying the view or you must have been granted the READ or
SELECT object privilege WITH GRANT OPTION on all of those underlying objects.
This is true even if the grantee already has the READ or SELECT privilege on
those underlying objects.

Restriction on Object Privileges

A privilege cannot appear more than once in the list of privileges to be granted.

ALL [PRIVILEGES]

Specify ALL to grant all the privileges for the object that you have been granted with
the GRANT OPTION. The user who owns the schema containing an object automatically
has all privileges on the object with the GRANT OPTION. The keyword PRIVILEGES is
provided for semantic clarity and is optional.

column

Specify the table or view column on which privileges are to be granted. You can
specify columns only when granting the INSERT, REFERENCES, or UPDATE privilege. If you
do not list columns, then the grantee has the specified privilege on all columns in the
table or view.

For information on existing column object grants, query the USER_, ALL_, or
DBA_COL_PRIVS data dictionary view.

Chapter 18
GRANT

18-38

See Also:

Oracle Database Reference for information on the data dictionary views and
"Granting Multiple Object Privileges on Individual Columns: Example"

on_object_clause

The on_object_clause identifies the object on which the privileges are granted. Users,
directory objects, editions, data mining models, Java source and resource schema objects,
and SQL translation profiles are identified separately because they reside in separate
namespaces.

See Also:

"Granting Object Privileges to a Role: Example"

object

Specify the schema object on which the privileges are to be granted. If you do not qualify
object with schema, then the database assumes the object is in your own schema. The object
can be one of the following types:

• Table, view, or materialized view

• Sequence

• Procedure, function, or package

• User-defined type

• Synonym for any of the preceding items

• Directory, library, operator, or indextype

• Java source, class, or resource

You cannot grant privileges directly to a single partition of a partitioned table.

See Also:

"Granting Object Privileges on a Table to a User: Example", "Granting Object
Privileges on a View: Example", and "Granting Object Privileges to a Sequence in
Another Schema: Example"

ON USER

Specify the database user you want to grant privileges to.

Restriction on Granting Privileges on Users

You cannot grant privileges on user PUBLIC.

Chapter 18
GRANT

18-39

See Also:

"Granting an Object Privilege on a User: Example"

ON DIRECTORY

Specify the name of the directory object on which privileges are to be granted. You
cannot qualify directory_name with a schema name.

See Also:

CREATE DIRECTORY and "Granting an Object Privilege on a Directory:
Example"

ON EDITION

Specify the name of the edition on which the USE object privilege is to be granted. You
cannot qualify edition_name with a schema name.

ON MINING MODEL

Specify the name of the mining model on which privileges are to be granted. If you do
not qualify mining_model_name with schema, then the database assumes that the
mining model is in your own schema.

ON JAVA SOURCE | RESOURCE

Specify the name of the Java source or resource schema object on which privileges
are to be granted. If you do not qualify object with schema, then the database
assumes that the object is in your own schema.

See Also:

CREATE JAVA

ON SQL TRANSLATION PROFILE

Specify the name of the SQL translation profile on which privileges are to be granted.
If you do not qualify profile with schema, then the database assumes that the profile
is in your own schema.

WITH HIERARCHY OPTION

Specify WITH HIERARCHY OPTION to grant the specified object privilege on all subobjects
of object, such as subviews created under a view, including subobjects created
subsequent to this statement.

This clause is meaningful only in combination with the READ or SELECT object privilege.

WITH GRANT OPTION

Chapter 18
GRANT

18-40

Specify WITH GRANT OPTION to enable the grantee to grant the object privileges to other users
and roles.

If you grant an object privilege to a user without specifying WITH GRANT OPTION, and then
subsequently grant the privilege to the user WITH GRANT OPTION, then the user has the GRANT
OPTION on the privilege.

To revoke the GRANT OPTION on an object privilege from a user, you must revoke the privilege
from the user altogether and then grant the privilege to the user without the GRANT OPTION.

Restriction on Granting WITH GRANT OPTION

You can specify WITH GRANT OPTION only when granting to a user or to PUBLIC, not when
granting to a role.

grant_roles_to_programs

Use this clause to grant roles to program units. Such roles are called code based access
control (CBAC) roles.

role

Specify the role you want to grant. You can grant an Oracle Database predefined role or a
user-defined role. The role must have been created by or directly granted to the schema
owner of the program unit.

program_unit

Specify the program unit to which the role is to be granted. You can specify a PL/SQL
function, procedure, or package. If you do not specify schema, then Oracle Database
assumes the function, procedure, or package is in your own schema.

See Also:

Oracle Database Security Guide for more information on granting code based
access control roles to program units

CONTAINER Clause

If the current container is a pluggable database (PDB):

• Specify CONTAINER = CURRENT to locally grant a system privilege, object privilege, or role
to a user or role. The privilege or role is granted to the user or role only in the current
PDB.

If the current container is the root:

• Specify CONTAINER = CURRENT to locally grant a system privilege, object privilege, or role
to a common user or common role. The privilege or role is granted to the user or role only
in the root.

• Specify CONTAINER = ALL to commonly grant a system privilege, object privilege on a
common object, or role, to a common user or common role.

If you omit this clause, then CONTAINER = CURRENT is the default.

Chapter 18
GRANT

18-41

Note:

If you specify the CONTAINER clause when granting a privilege or role, then
the current container must be the same container and you must specify the
same CONTAINER clause when you revoke the privilege or role. Refer to the
CONTAINER Clause of the REVOKE statement for more information.

Listings of System and Object Privileges

Table 18-1 System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

Advisor Framework Privileges: All of the advisor framework privileges are part of the DBA role.

ADVISOR Access the advisor framework through PL/SQL packages such as
DBMS_ADVISOR and DBMS_SQLTUNE.

ADMINISTER SQL TUNING SET Create, drop, select (read), load (write), and delete SQL tuning
sets owned by the grantee through the DBMS_SQLTUNE package.

ADMINISTER ANY SQL TUNING SET Create, drop, select (read), load (write), and delete SQL tuning
sets owned by any user through the DBMS_SQLTUNE package.

CREATE ANY SQL PROFILE Accept a SQL Profile recommended by the SQL Tuning Advisor,
which is accessed through Enterprise Manager or by the
DBMS_SQLTUNE package.

Note: This privilege has been deprecated in favor of ADMINISTER
SQL MANAGEMENT OBJECT.

ALTER ANY SQL PROFILE Alter the attributes of an existing SQL Profile.

Note: This privilege has been deprecated in favor of ADMINISTER
SQL MANAGEMENT OBJECT.

DROP ANY SQL PROFILE Drop existing SQL Profiles.

Note: This privilege has been deprecated in favor of ADMINISTER
SQL MANAGEMENT OBJECT.

ADMINISTER SQL MANAGEMENT OBJECT Create, alter, and drop SQL Profiles owned by any user through
the DBMS_SQLTUNE package.

ANALYTIC VIEWS —

CREATE ANALYTIC VIEW Create analytic views in the grantee's schema.

CREATE ANY ANALYTIC VIEW Create analytic views in any schema except SYS, AUDSYS.
ALTER ANY ANALYTIC VIEW Rename analytic views in any schema except SYS, AUDSYS.

DROP ANY ANALYTIC VIEW Drop analytic views in any schema except SYS, AUDSYS .

ATTRIBUTE DIMENSIONS —

CREATE ATTRIBUTE DIMENSION Create attribute dimensions in the grantee's schema.

CREATE ANY ATTRIBUTE DIMENSION Create attribute dimensions in any schema except SYS,AUDSYS.

ALTER ANY ATTRIBUTE DIMENSION Rename attribute dimensions in any schema except SYS,AUDSYS.

DROP ANY ATTRIBUTE DIMENSION Drop attribute dimensions in any schema except SYS,AUDSYS.

CLUSTERS: —

Chapter 18
GRANT

18-42

Table 18-1 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

CREATE CLUSTER Create clusters in the grantee's schema.

CREATE ANY CLUSTER Create clusters in any schema except SYS,AUDSYS. Behaves
similarly to CREATE ANY TABLE.

ALTER ANY CLUSTER Alter clusters in any schema except SYS, AUDSYS.

DROP ANY CLUSTER Drop clusters in any schema except SYS,AUDSYS.

CONTEXTS: —

CREATE ANY CONTEXT Create any context namespace.

DROP ANY CONTEXT Drop any context namespace.

DATA REDACTION: —

EXEMPT REDACTION POLICY Bypass any existing Oracle Data Redaction policies and view
actual data from tables or views on which Data Redaction policies
are defined.

DATABASE: —

ALTER DATABASE Alter the database.

ALTER SYSTEM Issue ALTER SYSTEM statements.

AUDIT SYSTEM Issue AUDIT statements.

DATABASE LINKS: —

CREATE DATABASE LINK Create private database links in the grantee's schema.

CREATE PUBLIC DATABASE LINK Create public database links.

ALTER DATABASE LINK Modify a fixed-user database link when the password of the
connection or authentication user changes.

ALTER PUBLIC DATABASE LINK Modify a public fixed-user database link when the password of the
connection or authentication user changes.

DROP PUBLIC DATABASE LINK Drop public database links.

DEBUGGING: —

DEBUG CONNECT SESSION Connect the current session to a debugger.

DEBUG ANY PROCEDURE Debug all PL/SQL and Java code in any database object. Display
information on all SQL statements executed by the application.

Note: Granting this privilege is equivalent to granting the DEBUG
object privilege on all applicable objects in the database.

DICTIONARIES: —

ANALYZE ANY DICTIONARY Analyze any data dictionary object.

DIMENSIONS: —

CREATE DIMENSION Create dimensions in the grantee's schema.

CREATE ANY DIMENSION Create dimensions in any schema except SYS,AUDSYS.

ALTER ANY DIMENSION Alter dimensions in any schema except SYS,AUDSYS.

DROP ANY DIMENSION Drop dimensions in any schema except SYS,AUDSYS.

DIRECTORIES: —

Chapter 18
GRANT

18-43

Table 18-1 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

CREATE ANY DIRECTORY Create directory database objects.

DROP ANY DIRECTORY Drop directory database objects.

EDITIONS: —

CREATE ANY EDITION Create editions.

DROP ANY EDITION Drop editions.

FLASHBACK DATA ARCHIVES: —

FLASHBACK ARCHIVE ADMINISTER Create, alter, or drop any flashback data archive.

HIERARCHIES —

CREATE HIERARCHY Create hierarchies in the grantee's schema.

CREATE ANY HIERARCHY Create hierarchies in any schema except SYS,AUDSYS.

ALTER ANY HIERARCHY Rename hierarchies in any schema except SYS,AUDSYS.

DROP ANY HIERARCHY Drop hierarchies in any schema except SYS, AUDSYS.

INDEXES: —

CREATE ANY INDEX Create in any schema, except SYS, AUDSYS, a domain index or an
index on any table in any schema except SYS,AUDSYS.

ALTER ANY INDEX Alter indexes in any schema except SYS,AUDSYS.

DROP ANY INDEX Drop indexes in any schema except SYS,AUDSYS.

INDEXTYPES: —

CREATE INDEXTYPE Create indextypes in the grantee's schema.

CREATE ANY INDEXTYPE Create indextypes in any schema except SYS and create
comments on indextypes in any schema except SYS.

ALTER ANY INDEXTYPE Modify indextypes in any schema except SYS,AUDSYS.

DROP ANY INDEXTYPE Drop indextypes in any schema except SYS,AUDSYS.

EXECUTE ANY INDEXTYPE Reference indextypes in any schema except SYS,AUDSYS.

JOB SCHEDULER OBJECTS: The following privileges are needed to execute procedures in the
DBMS_SCHEDULER package. This privileges do not apply to
lightweight jobs, which are not database objects. Refer to Oracle
Database Administrator's Guide for more information about
lightweight jobs.

CREATE JOB Create, alter, or drop jobs, chains, schedules, programs,
credentials, resource objects, or incompatibility resource objects in
the grantee's schema.

CREATE ANY JOB Create, alter, or drop jobs, chains, schedules, programs,
credentials, resource objects, or incompatibility resource objects in
any schema except SYS,AUDSYS.

Note: This extremely powerful privilege allows the grantee to
execute code as any other user. It should be granted with caution.

CREATE EXTERNAL JOB Create in the grantee's schema an executable scheduler job that
runs on the operating system.

EXECUTE ANY CLASS Specify any job class in a job in the grantee's schema.

Chapter 18
GRANT

18-44

Table 18-1 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

EXECUTE ANY PROGRAM Use any program in a job in the grantee's schema.

MANAGE SCHEDULER Create, alter, or drop any job class, window, or window group.

USE ANY JOB RESOURCE Associate any schedule resource object with any program or job in
the grantee’s schema.

KEY MANAGEMENT FRAMEWORK: —

ADMINISTER KEY MANAGEMENT Manage keys and keystores.

LIBRARIES: Caution: CREATE LIBARARY, CREATE ANY LIBRARY, ALTER ANY
LIBRARY, and EXECUTE ANY LIBRARY are extremely powerful
privileges that should be granted only to trusted users. Refer to
Oracle Database Security Guide before granting these privileges.

CREATE LIBRARY Create external procedure or function libraries in the grantee's
schema.

CREATE ANY LIBRARY Create external procedure or function libraries in any schema
except SYS,AUDSYS.

ALTER ANY LIBRARY Alter external procedure or function libraries in any schema except
SYS,AUDSYS.

DROP ANY LIBRARY Drop external procedure or function libraries in any schema except
SYS,AUDSYS.

EXECUTE ANY LIBRARY Use external procedure or function libraries in any schema except
SYS,AUDSYS.

LOGMINER: —

LOGMINING Execute procedures in the DBMS_LOGMNR package in a CDB or a
PDB. Query the contents of the V$LOGMNR_CONTENTS view.

MATERIALIZED VIEWS: —

CREATE MATERIALIZED VIEW Create materialized views in the grantee's schema.

CREATE ANY MATERIALIZED VIEW Create materialized views in any schema except SYS,AUDSYS.

ALTER ANY MATERIALIZED VIEW Alter materialized views in any schema except SYS,AUDSYS.

DROP ANY MATERIALIZED VIEW Drop materialized views in any schema except SYS,AUDSYS.

QUERY REWRITE This privilege has been deprecated. No privileges are needed for
a user to enable rewrite for a materialized view that references
tables or views in the user's own schema.

GLOBAL QUERY REWRITE Enable rewrite using a materialized view when that materialized
view references tables or views in any schema except SYS.

ON COMMIT REFRESH Create a refresh-on-commit materialized view on any table in the
database.

Alter a refresh-on-demand materialized view on any table in the
database to refresh-on-commit.

FLASHBACK ANY TABLE Issue a SQL Flashback Query on any table, view, or materialized
view in any schema except SYS. This privilege is not needed to
execute the DBMS_FLASHBACK procedures.

MINING MODELS: —

Chapter 18
GRANT

18-45

Table 18-1 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

CREATE MINING MODEL Create mining models in the grantee's schema using the
DBMS_DATA_MINING.CREATE_MODEL procedure.

CREATE ANY MINING MODEL Create mining models in any schema, except SYS, AUDSYS, using
the DBMS_DATA_MINING.CREATE_MODEL procedure.

ALTER ANY MINING MODEL Change the mining model name or the associated cost matrix of a
model in any schema, except SYS, AUDSYS, using the applicable
DBMS_DATA_MINING procedures.

DROP ANY MINING MODEL Drop mining models in any schema, except SYS,AUDSYS, using
the DBMS_DATA_MINING.DROP_MODEL procedure.

SELECT ANY MINING MODEL Score or view mining models in any schema except SYS,
AUDSYS. Scoring is done either with the PREDICTION family of
SQL functions or with the DBMS_DATA_MINING.APPLY procedure.
Viewing the model is done with the
DBMS_DATA_MINING.GET_MODEL_DETAILS_* procedures.

COMMENT ANY MINING MODEL Create comments on mining models in any schema, except SYS,
AUDSYS, using the SQL COMMENT statement.

OLAP CUBES: The following privileges are valid when you are using Oracle
Database with the OLAP option.

CREATE CUBE Create OLAP cubes in the grantee's schema.

CREATE ANY CUBE Create OLAP cubes in any schema except SYS,AUDSYS.

ALTER ANY CUBE Alter OLAP cubes in any schema except SYS,AUDSYS.

DROP ANY CUBE Drop OLAP cubes in any schema except SYS,AUDSYS.

SELECT ANY CUBE Query or view OLAP cubes in any schema except SYS,AUDSYS.

UPDATE ANY CUBE Update OLAP cubes in any schema except SYS,AUDSYS.

OLAP CUBE MEASURE FOLDERS: The following privileges are valid when you are using Oracle
Database with the OLAP option.

CREATE MEASURE FOLDER Create OLAP measure folders in the grantee's schema.

CREATE ANY MEASURE FOLDER Create OLAP measure folders in any schema except
SYS,AUDSYS.

DELETE ANY MEASURE FOLDER Delete a measure from an OLAP measure folder in any schema
except SYS,AUDSYS.

DROP ANY MEASURE FOLDER Drop OLAP measure folders in any schema except SYS,AUDSYS.

INSERT ANY MEASURE FOLDER Insert a measure into an OLAP measure folder in any schema
except SYS,AUDSYS.

OLAP CUBE DIMENSIONS: The following privileges are valid when you are using Oracle
Database with the OLAP option.

CREATE CUBE DIMENSION Create OLAP cube dimension in the grantee's schema.

CREATE ANY CUBE DIMENSION Create OLAP cube dimensions in any schema except
SYS,AUDSYS.

ALTER ANY CUBE DIMENSION Alter OLAP cube dimensions in any schema except SYS,AUDSYS.

Chapter 18
GRANT

18-46

Table 18-1 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

DELETE ANY CUBE DIMENSION Delete from OLAP cube dimensions in any schema except SYS,
AUDSYS.

DROP ANY CUBE DIMENSION Drop OLAP cube dimensions in any schema except SYS,AUDSYS.

INSERT ANY CUBE DIMENSION Insert into OLAP cube dimensions in any schema except
SYS,AUDSYS.

SELECT ANY CUBE DIMENSION View or query OLAP cube dimensions in any schema except
SYS,AUDSYS.

UPDATE ANY CUBE DIMENSION Update OLAP cube dimensions in any schema except
SYS,AUDSYS.

OLAP CUBE BUILD PROCESSES: —

CREATE CUBE BUILD PROCESS Create OLAP cube build processes in the grantee's schema.

CREATE ANY CUBE BUILD PROCESS Create OLAP cube build processes in any schema except
SYS,AUDSYS.

DROP ANY CUBE BUILD PROCESS Drop OLAP cube build processes in any schema except
SYS,AUDSYS.

UPDATE ANY CUBE BUILD PROCESS Update OLAP cube build processes in any schema except
SYS,AUDSYS.

OPERATORS: —

CREATE OPERATOR Create an operator and its bindings in the grantee's schema.

CREATE ANY OPERATOR Create an operator and its bindings in any schema and create a
comment on an operator in any schema.

ALTER ANY OPERATOR Modify operators in any schema.

DROP ANY OPERATOR Drop operators in any schema.

EXECUTE ANY OPERATOR Reference operators in any schema.

OUTLINES: —

CREATE ANY OUTLINE Create public outlines that can be used in any schema that uses
outlines.

ALTER ANY OUTLINE Modify outlines.

DROP ANY OUTLINE Drop outlines.

PDB LOCKDOWN PROFILES: —

CREATE LOCKDOWN PROFILE Create PDB lockdown profiles.

ALTER LOCKDOWN PROFILE Alter PDB lockdown profiles.

DROP LOCKDOWN PROFILE Drop PDB lockdown profiles.

PLAN MANAGEMENT: —

ADMINISTER SQL MANAGEMENT OBJECT Perform controlled manipulation of plan history and SQL plan
baselines maintained for various SQL statements.

PLUGGABLE DATABASES: —

Chapter 18
GRANT

18-47

Table 18-1 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

CREATE PLUGGABLE DATABASE Create a PDB.

Plug in a PDB that was previously unplugged from a CDB.

Clone a PDB.

SET CONTAINER Allow a common user to switch into the container for which this
privilege was granted. This privilege can be granted only to a
common user or common role.

PROCEDURES: —

CREATE PROCEDURE Create stored procedures, functions, or packages in the grantee's
schema.

CREATE ANY PROCEDURE Create stored procedures, functions, or packages in any schema
except SYS,AUDSYS.

ALTER ANY PROCEDURE Alter stored procedures, functions, or packages in any schema
except SYS,AUDSYS.

DROP ANY PROCEDURE Drop stored procedures, functions, or packages in any schema
except SYS,AUDSYS.

EXECUTE ANY PROCEDURE Execute procedures or functions, either standalone or packaged.

Reference public package variables in any schema except
SYS,AUDSYS.

INHERIT ANY REMOTE PRIVILEGES Execute definer's rights procedures or functions that contain
current user database links.

PROFILES: —

CREATE PROFILE Create profiles.

ALTER PROFILE Alter profiles.

DROP PROFILE Drop profiles.

ROLES: —

CREATE ROLE Create roles.

ALTER ANY ROLE Alter any role in the database.

DROP ANY ROLE Drop roles.

GRANT ANY ROLE Grant any role in the database.

ROLLBACK SEGMENTS: —

CREATE ROLLBACK SEGMENT Create rollback segments.

ALTER ROLLBACK SEGMENT Alter rollback segments.

DROP ROLLBACK SEGMENT Drop rollback segments.

SEQUENCES: —

CREATE SEQUENCE Create sequences in the grantee's schema.

CREATE ANY SEQUENCE Create sequences in any schema except SYS,AUDSYS.

ALTER ANY SEQUENCE Alter sequences in any schema except SYS,AUDSYS.

DROP ANY SEQUENCE Drop sequences in any schema except SYS,AUDSYS.

SELECT ANY SEQUENCE Reference sequences in any schema except SYS,AUDSYS.

Chapter 18
GRANT

18-48

Table 18-1 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

SESSIONS: —

CREATE SESSION Connect to the database.

ALTER RESOURCE COST Set costs for session resources.

ALTER SESSION Enable and disable the SQL trace facility.

RESTRICTED SESSION Logon after the instance is started using the SQL*Plus STARTUP
RESTRICT statement.

SNAPSHOTS: See MATERIALIZED VIEWS
SQL TRANSLATION PROFILES: —

CREATE SQL TRANSLATION PROFILE Create SQL translation profiles in the grantee's schema.

CREATE ANY SQL TRANSLATION PROFILE Create SQL translation profiles in any schema except
SYS,AUDSYS.

ALTER ANY SQL TRANSLATION PROFILE Alter the translator, custom SQL statement translations, or custom
error translations of a SQL translation profile in any schema
except SYS,AUDSYS.

USE ANY SQL TRANSLATION PROFILE Use SQL translation profiles in any schema except SYS,AUDSYS.

DROP ANY SQL TRANSLATION PROFILE Drop SQL translation profiles in any schema except SYS,AUDSYS.

TRANSLATE ANY SQL Translate SQL through the grantee's SQL translation profile for
any user.

SYNONYMS: Caution: CREATE PUBLIC SYNONYM and DROP PUBLIC SYNONYM
are extremely powerful privileges that should be granted only to
trusted users. Refer to Oracle Database Security Guide before
granting these privileges.

CREATE SYNONYM Create synonyms in the grantee's schema.

CREATE ANY SYNONYM Create private synonyms in any schema except SYS,AUDSYS.

CREATE PUBLIC SYNONYM Create public synonyms.

DROP ANY SYNONYM Drop private synonyms in any schema except SYS,AUDSYS.

DROP PUBLIC SYNONYM Drop public synonyms.

TABLES: Note: For external tables, the only valid privileges are CREATE ANY
TABLE, ALTER ANY TABLE, DROP ANY TABLE, READ ANY TABLE,
and SELECT ANY TABLE.

CREATE TABLE Create tables in the grantee's schema.

CREATE ANY TABLE Create a table in any schema except SYS,AUDSYS. The owner of
the schema containing the table must have space quota on the
tablespace to contain the table.

ALTER ANY TABLE Alter a table or view in any schema except SYS, AUDSYS.

BACKUP ANY TABLE Use the Export utility to incrementally export objects from the
schema of other users except SYS,AUDSYS.

DELETE ANY TABLE Delete rows from tables, table partitions, or views in any schema
except SYS,AUDSYS.

Chapter 18
GRANT

18-49

Table 18-1 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

DROP ANY TABLE Drop or truncate tables or table partitions in any schema except
SYS,AUDSYS.

INSERT ANY TABLE Insert rows into tables and views in any schema except
SYS,AUDSYS.

LOCK ANY TABLE Lock tables and views in any schema except SYS,AUDSYS.

READ ANY TABLE Query tables, views, or materialized views in any schema except
SYS,AUDSYS.

SELECT ANY TABLE Query tables, views, or materialized views in any schema except
SYS,AUDSYS. Obtain row locks using a SELECT ... FOR UPDATE.

FLASHBACK ANY TABLE Issue a SQL Flashback Query on any table, view, or materialized
view in any schema except SYS,AUDSYS. This privilege is not
needed to execute the DBMS_FLASHBACK procedures.

UPDATE ANY TABLE Update rows in tables and views in any schema except
SYS,AUDSYS.

REDEFINE ANY TABLE Perform online redefinition without granting any of the privileges in
USER or FULL mode.

TABLESPACES: —

CREATE TABLESPACE Create tablespaces.

ALTER TABLESPACE Alter tablespaces.

DROP TABLESPACE Drop tablespaces.

MANAGE TABLESPACE Take tablespaces offline and online and begin and end tablespace
backups.

UNLIMITED TABLESPACE Use an unlimited amount of any tablespace. This privilege
overrides any specific quotas assigned. If you revoke this privilege
from a user, then the user's schema objects remain but further
tablespace allocation is denied unless authorized by specific
tablespace quotas. You cannot grant this system privilege to roles.

TRIGGERS: —

CREATE TRIGGER Create database triggers in the grantee's schema.

CREATE ANY TRIGGER Create database triggers in any schema except SYS, AUDSYS.

ALTER ANY TRIGGER Enable, disable, or compile database triggers in any schema
except SYS,AUDSYS.

DROP ANY TRIGGER Drop database triggers in any schema except SYS,AUDSYS.

ADMINISTER DATABASE TRIGGER Create a trigger on DATABASE. You must also have the CREATE
TRIGGER or CREATE ANY TRIGGER system privilege.

TYPES: —

CREATE TYPE Create object types and object type bodies in the grantee's
schema.

CREATE ANY TYPE Create object types and object type bodies in any schema except
SYS,AUDSYS.

ALTER ANY TYPE Alter object types in any schema except SYS,AUDSYS.

Chapter 18
GRANT

18-50

Table 18-1 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

DROP ANY TYPE Drop object types and object type bodies in any schema except
SYS,AUDSYS.

EXECUTE ANY TYPE Use and reference object types and collection types in any
schema except SYS,AUDSYS, and invoke methods of an object
type in any schema, except SYS,AUDSYS, if you make the grant to
a specific user. If you grant EXECUTE ANY TYPE to a role, then
users holding the enabled role will not be able to invoke methods
of an object type in any schema.

UNDER ANY TYPE Create subtypes under any nonfinal object types.

USERS: —

CREATE USER Create users. This privilege also allows the creator to:

• Assign quotas on any tablespace.
• Set default and temporary tablespaces.
• Assign a profile as part of a CREATE USER statement.

ALTER USER Alter any user except SYS. This privilege authorizes the grantee to:

• Change another user's password or authentication method.
• Assign quotas on any tablespace.
• Set default and temporary tablespaces.
• Assign a profile and default roles.

DROP USER Drop users

VIEWS: —

CREATE VIEW Create views in the grantee's schema.

CREATE ANY VIEW Create views in any schema except SYS,AUDSYS.

DROP ANY VIEW Drop views in any schema except SYS,AUDSYS.

UNDER ANY VIEW Create subviews under any object views.

FLASHBACK ANY TABLE Issue a SQL Flashback Query on any table, view, or materialized
view in any schema except SYS,AUDSYS. This privilege is not
needed to execute the DBMS_FLASHBACK procedures.

MERGE ANY VIEW If a user has been granted the MERGE ANY VIEW privilege, then for
any query issued by that user, the optimizer can use view merging
to improve query performance without performing the checks that
would otherwise be performed to ensure that view merging does
not violate any security intentions of the view creator. See also
Oracle Database Reference for information on the
OPTIMIZER_SECURE_VIEW_MERGING parameter and Oracle
Database SQL Tuning Guide for information on view merging.

MISCELLANEOUS: —

ANALYZE ANY Analyze a table, cluster, or index in any schema except SYS.

AUDIT ANY Audit an object in any schema, except SYS,AUDSYS, using AUDIT
schema_objects statements.

Chapter 18
GRANT

18-51

Table 18-1 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

BECOME USER Allow users of the Data Pump Import utility (impdp) and the
original Import utility (imp) to assume the identity of another user
in order to perform operations that cannot be directly performed by
a third party (for example, loading objects such as object privilege
grants).

Allow Streams administrators to create or alter capture users and
apply users in a Streams environment. By default this privilege is
part of the DBA role. Database Vault removes this privileges from
the DBA role. Therefore, this privilege is needed by Streams only
in an environment where Database Vault is installed.

CHANGE NOTIFICATION Create a registration on queries and receive database change
notifications in response to DML or DDL changes to the objects
associated with the registered queries. Refer to Oracle Database
Development Guide for more information on database change
notification.

COMMENT ANY TABLE Comment on a table, view, or column in any schema except
SYS,AUDSYS.

ENABLE DIAGNOSTICS • Set debug-events via ALTER SESSION or ALTER SYSTEM
• Set debug-actions to execute during an event via ALTER

SESSION or ALTER SYSTEM
• Execute debug-actions immediately via ALTER SESSION or

ALTER SYSTEM by specifying the IMMEDIATE keyword
instead of an event name

• Set the event parameter in the spfile via ALTER SYSTEM
EXEMPT ACCESS POLICY Bypass fine-grained access control.

Caution: This is a very powerful system privilege, as it lets the
grantee bypass application-driven security policies. Database
administrators should use caution when granting this privilege.

FORCE ANY TRANSACTION Force the commit or rollback of any in-doubt distributed
transaction in the local database.

Induce the failure of a distributed transaction.

FORCE TRANSACTION Force the commit or rollback of the grantee's in-doubt distributed
transactions in the local database.

GRANT ANY OBJECT PRIVILEGE Grant any object privilege that the object owner is permitted to
grant.

Revoke any object privilege that was granted by the object owner
or by some other user with the GRANT ANY OBJECT PRIVILEGE
privilege.

GRANT ANY PRIVILEGE Grant any system privilege.

INHERIT ANY PRIVILEGES Execute invoker's rights procedures owned by the grantee with the
privileges of the invoker.

KEEP DATE TIME The SYSDATE and SYSTIMESTAMP functions return their original
values during replay for Application Continuity when the grantee is
running the application. This privilege is useful for providing bind
variable consistency after recoverable errors.

Note: If this privilege is granted or revoked between runtime and
failover of a request, then the original values are not returned
during replay for Application Continuity for that request.

Chapter 18
GRANT

18-52

Table 18-1 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

KEEP SYSGUID The SYS_GUID function returns its original value during replay for
Application Continuity when the grantee is running the application.
This privilege is useful for providing bind variable consistency after
recoverable errors.

Note: If this privilege is granted or revoked between runtime and
failover of a request, then the original value is not returned during
replay for Application Continuity for that request.

PURGE DBA_RECYCLEBIN Remove all objects from the system-wide recycle bin.

RESUMABLE Enable resumable space allocation.

SELECT ANY DICTIONARY Query any data dictionary object in the SYS schema, with the
exception of the following objects: DEFAULT_PWD$, ENC$, LINK$,
USER$, USER_HISTORY$, and XS$VERIFIERS.

SELECT ANY TRANSACTION Query the contents of the FLASHBACK_TRANSACTION_QUERY
view.

Caution: This is a very powerful system privilege, as it lets the
grantee view all data in the database, including past data. This
privilege should be granted only to users who need to use the
Oracle Flashback Transaction Query feature.

SYSBACKUP Perform the following backup and recovery operations:

STARTUP and SHUTDOWN.

CREATE CONTROLFILE.

CREATE PFILE and CREATE SPFILE.

FLASHBACK DATABASE.

Create, use, view, and drop restore points (including guaranteed
restore points).

Execute procedures in the DBMS_DATAPUMP, DBMS_PIPE,
DBMS_TDB, and DBMS_TTS packages.

SELECT on X$ tables, V$ views, and GV$ views.

Includes the ALTER DATABASE, ALTER SESSION, ALTER SYSTEM,
ALTER TABLESPACE, CREATE ANY CLUSTER, CREATE ANY
DIRECTORY, CREATE ANY TABLE, CREATE SESSION, DROP
DATABASE, DROP TABLESPACE, RESUMABLE, SELECT ANY
DICTIONARY, SELECT ANY TRANSACTION, UNLIMITED
TABLESPACE privileges and the SELECT_CATALOG_ROLE role.

SYSDBA STARTUP and SHUTDOWN.

ALTER DATABASE: open, mount, back up, or change character set.

CREATE DATABASE.

DROP DATABASE.

ARCHIVELOG and RECOVERY.

CREATE SPFILE.

Includes the RESTRICTED SESSION privilege.

Chapter 18
GRANT

18-53

Table 18-1 (Cont.) System Privileges (Organized by the Database Object Operated Upon)

System Privilege Name Operations Authorized

SYSDG Perform the following Oracle Data Guard operations:

STARTUP and SHUTDOWN.

FLASHBACK DATABASE.

Create, use, view, and drop restore points (including guaranteed
restore points).

SELECT on X$ tables, V$ views, and GV$ views.

Includes the ALTER DATABASE, ALTER SESSION, ALTER SYSTEM,
CREATE SESSION, and SELECT ANY DICTIONARY privileges.

SYSKM Perform the following encryption key management operations:

Connect to the database even if the database is not open.

SELECT on the following views when the database is open:
V$CLIENT_SECRETS, V$ENCRYPTED_TABLESPACES,
V$ENCRYPTION_KEYS, V$ENCRYPTION_WALLET and V$WALLET.

Includes the ADMINISTER KEY MANAGEMENT and CREATE SESSION
privileges.

SYSOPER STARTUP and SHUTDOWN operations.

ALTER DATABASE: open, mount, or back up.

ARCHIVELOG and RECOVERY.

CREATE SPFILE.

Includes the RESTRICTED SESSION privilege.

Table 18-2 Object Privileges (Organized by the Database Object Operated Upon)

Object Privilege Name Operations Authorized

ANALYTIC VIEW PRIVILEGES The following analytic view privileges authorize operations on analytic views.

ALTER Rename the analytic view.

READ Query the object with the SELECT statement.

SELECT Query the object with the SELECT statement.

ATTRIBUTE DIMENSION
PRIVILEGES

The following attribute dimension privileges authorize operations on
attribute dimensions..

ALTER Rename the attribute dimension.

DIRECTORY PRIVILEGES The following directory privileges provide secured access to the files stored
in the operating system directory to which the directory object serves as a
pointer. The directory object contains the full path name of the operating
system directory where the files reside. Because the files are actually stored
outside the database, Oracle Database server processes also need to have
appropriate file permissions on the file system server. Granting object
privileges on the directory database object to individual database users, rather
than on the operating system, allows the database to enforce security during
file operations.

READ Read files in the directory.

Chapter 18
GRANT

18-54

Table 18-2 (Cont.) Object Privileges (Organized by the Database Object Operated Upon)

Object Privilege Name Operations Authorized

WRITE Write files in the directory. This privilege is useful only in connection with
external tables. It allows the grantee to determine whether the external table
agent can write a log file or a bad file to the directory.

Restriction: This privilege does not allow the grantee to write to a BFILE.

EXECUTE Execute a preprocessor program that resides in the directory. A preprocessor
program converts data to a supported format when loading data records from
an external table with the ORACLE_LOADER access driver. Refer to Oracle
Database Utilities for more information. This privilege does not implicitly allow
READ access on the external table data.

EDITION PRIVILEGE The following edition privilege authorizes the use of an edition.

USE Use an edition.

FLASHBACK DATA ARCHIVE
PRIVILEGE

The following flashback data archive privilege authorizes operations on
flashback data archives.

FLASHBACK ARCHIVE Enable or disable historical tracking for a table.

HIERARCHY PRIVILEGES The following hierarchy privileges authorize operations on hierarchies.

ALTER Rename the hierarchy.

READ Query the object with the SELECT statement.

SELECT Query the object with the SELECT statement.

INDEXTYPE PRIVILEGE The following indextype privilege authorizes operations on indextypes.

EXECUTE Reference an indextype.

LIBRARY PRIVILEGE The following library privilege authorizes operations on a library.

EXECUTE Use and reference the specified object and invoke its methods.

Caution: This extremely powerful privilege should be granted only to trusted
users. Refer to Oracle Database Security Guide before granting this privilege.

MATERIALIZED VIEW
PRIVILEGES

The following materialized view privileges authorize operations on a
materialized view. The DELETE, INSERT, and UPDATE privileges can be
granted only to updatable materialized views.

ON COMMIT REFRESH Create a refresh-on-commit materialized view on the specified table.

QUERY REWRITE Create a materialized view for query rewrite using the specified table.

READ Query the materialized view.

SELECT Query the materialized view. Obtain row locks with the SELECT ... FOR UPDATE
or LOCK TABLE statement.

MINING MODEL PRIVILEGES The following mining model privileges authorize operations on a mining model.
These privileges are not required for models within the users own schema.

ALTER Change the mining model name or the associated cost matrix using the
applicable DBMS_DATA_MINING procedures.

SELECT Score or view the mining model. Scoring is done with the PREDICTION family
of SQL functions or with the DBMS_DATA_MINING.APPLY procedure. Viewing
the model is done with the DBMS_DATA_MINING.GET_MODEL_DETAILS_*
procedures.

OBJECT TYPE PRIVILEGES The following object type privileges authorize operations on a database
object type.

Chapter 18
GRANT

18-55

Table 18-2 (Cont.) Object Privileges (Organized by the Database Object Operated Upon)

Object Privilege Name Operations Authorized

DEBUG Access, through a debugger, all public and nonpublic variables, methods, and
types defined on the object type.

Place a breakpoint or stop at a line or instruction boundary within the type
body.

EXECUTE Use and reference the specified object and invoke its methods.

Access, through a debugger, public variables, types, and methods defined on
the object type.

UNDER Create a subtype under this type. You can grant this object privilege only if you
have the UNDER ANY TYPE privilege WITH GRANT OPTION on the immediate
supertype of this type.

OLAP PRIVILEGES The following object privileges are valid if you are using Oracle Database with
the OLAP option.

INSERT Insert members into the OLAP cube dimension or measures into the
measures folder.

ALTER Change the definition of the OLAP cube dimension or cube.

DELETE Delete members from the OLAP cube dimension or measures from the
measures folder.

SELECT View or query the OLAP cube or cube dimension.

UPDATE Update measure values of the OLAP cube or attribute values of the cube
dimension.

OPERATOR PRIVILEGE The following operator privilege authorizes operations on user-defined
operators.

EXECUTE Reference an operator.

PROCEDURE, FUNCTION,
PACKAGE PRIVILEGES

The following procedure, function, and package privileges authorize
operations on procedures, functions, and packages. These privileges also
apply to Java sources, classes, and resources, which Oracle Database
treats as though they were procedures for purposes of granting object
privileges.

DEBUG Access, through a debugger, all public and nonpublic variables, methods, and
types defined on the object.

Place a breakpoint or stop at a line or instruction boundary within the
procedure, function, or package. This privilege grants access to the
declarations in the method or package specification and body.

Chapter 18
GRANT

18-56

Table 18-2 (Cont.) Object Privileges (Organized by the Database Object Operated Upon)

Object Privilege Name Operations Authorized

EXECUTE Execute the procedure or function directly, or access any program object
declared in the specification of a package, or compile the object implicitly
during a call to a currently invalid or uncompiled function or procedure. This
privilege does not allow the grantee to explicitly compile using ALTER
PROCEDURE or ALTER FUNCTION. For explicit compilation you need the
appropriate ALTER system privilege.

Access, through a debugger, public variables, types, and methods defined on
the procedure, function, or package. This privilege grants access to the
declarations in the method or package specification only.

Job scheduler objects are created using the DBMS_SCHEDULER package. After
these objects are created, you can grant the EXECUTE object privilege on job
scheduler classes and programs. You can also grant ALTER privilege on job
scheduler jobs, programs, and schedules.

Note: Users do not need this privilege to execute a procedure, function, or
package indirectly.

SCHEDULER PRIVILEGES Job scheduler objects are created using the DBMS_SCHEDULER package. After
these objects are created, you can grant the following privileges.

EXECUTE Operations on job classes, programs, chains, and credentials.

ALTER Modifications to jobs, programs, chains, credentials, and schedules.

USE Associate the specified scheduler resource object with programs and jobs.

SEQUENCE PRIVILEGES The following sequence privileges authorize operations on a sequence.

ALTER Change the sequence definition with the ALTER SEQUENCE statement.

KEEP SEQUENCE The sequence pseudocolumn NEXTVAL retains its original value during replay
for Application Continuity when the grantee is running the application. This
privilege is useful for providing bind variable consistency when replaying after
recoverable errors.

If this privilege is granted or revoked between runtime and failover of a
request, then the original value of NEXTVAL is not retained during replay for
Application Continuity for that request.

Note: This privilege is not granted by the GRANT ALL PRIVILEGES ON
sequence statement. You must explicitly grant this privilege.

Note: This privilege is part of the DBA role.

SELECT Examine and increment values of the sequence with the CURRVAL and
NEXTVAL pseudocolumns.

SQL TRANSLATION PROFILE
PRIVILEGES

The following SQL translation profile privileges authorize operations on a
SQL translation profile.

ALTER Alter the translator, custom SQL statement translations, or custom error
translations of a SQL translation profile.

USE Use a SQL translation profile.

SYNONYM PRIVILEGES Synonym privileges are the same as the privileges for the target object.
Granting a privilege on a synonym is equivalent to granting the privilege on the
base object. Similarly, granting a privilege on a base object is equivalent to
granting the privilege on all synonyms for the object. If you grant to a user a
privilege on a synonym, then the user can use either the synonym name or the
base object name in the SQL statement that exercises the privilege.

Chapter 18
GRANT

18-57

Table 18-2 (Cont.) Object Privileges (Organized by the Database Object Operated Upon)

Object Privilege Name Operations Authorized

TABLE PRIVILEGES The following table privileges authorize operations on a table. Any one of
following object privileges, except the READ privilege, allows the grantee to
lock the table in any lock mode with the LOCK TABLE statement.

Note: For external tables, the only valid object privileges are ALTER, READ,
and SELECT.

ALTER Change the table definition with the ALTER TABLE statement.

DEBUG Access, through a debugger:

• PL/SQL code in the body of any triggers defined on the table
• Information on SQL statements that reference the table directly

DELETE Remove rows from the table with the DELETE statement.

Note: You must grant the SELECT privilege on the table along with the DELETE
privilege if the table is on a remote database.

INDEX Create an index on the table with the CREATE INDEX statement.

INSERT Add new rows to the table with the INSERT statement.

Note: You must grant the SELECT privilege on the table along with the INSERT
privilege if the table is on a remote database.

READ Query the table with the SELECT statement. Does not allow SELECT ... FOR
UPDATE.

REFERENCES Create a constraint that refers to the table. You cannot grant this privilege to a
role.

SELECT To allow access to specific tables during queries, grant the SELECT privilege
on the table.

Query the table with the SELECT statement, including SELECT ... FOR UPDATE.

UPDATE Change data in the table with the UPDATE statement.

Note: You must grant the SELECT privilege on the table along with the UPDATE
privilege if the table is on a remote database.

FLASHBACK To allow access to a specific table during queries, grant the FLASHBACK
privilege on the table.

Issue a SQL Flashback Query on the table.

USER PRIVILEGES The following privileges authorize operations on a user.

INHERIT PRIVILEGES Execute invoker's rights procedures or functions owned by the grantee with the
privileges of the invoker when the invoker is the user on whom this privilege is
granted.

INHERIT REMOTE PRIVILEGES Allow the user on whom this privilege is granted to execute definer's rights
procedures or functions that contain current user database links and are
owned by the grantee.

TRANSLATE SQL Translate SQL through the grantee's SQL translation profile for the user on
whom this privilege is granted.

VIEW PRIVILEGES The following view privileges authorize operations on a view. Any one of the
following object privileges, except the READ privilege, allows the grantee to
lock the view in any lock mode with the LOCK TABLE statement.

To grant a privilege on a view, you must have that privilege with the GRANT
OPTION on all of the base tables of the view.

Chapter 18
GRANT

18-58

Table 18-2 (Cont.) Object Privileges (Organized by the Database Object Operated Upon)

Object Privilege Name Operations Authorized

DEBUG Access, through a debugger:

• PL/SQL code in the body of any triggers defined on the view
• Information on SQL statements that reference the view directly

DELETE Remove rows from the view with the DELETE statement.

INSERT Add new rows to the view with the INSERT statement.

MERGE VIEW This object privilege has the same behavior as the system privilege MERGE
ANY VIEW, except that the privilege is limited to the views specified in the ON
clause. For any query issued by the grantee on the specified views, the
optimizer can use view merging to improve query performance without
performing the checks that would otherwise be performed to ensure that view
merging does not violate any security intentions of the view creator.

READ Query the view with the SELECT statement. Does not allow SELECT ... FOR
UPDATE.

REFERENCES Define foreign key constraints on the view.

SELECT Query the view with the SELECT statement, including SELECT ... FOR UPDATE.

See Also: object_privilege for additional information on granting this object
privilege on a view

UNDER Create a subview under this view. You can grant this object privilege only if you
have the UNDER ANY VIEW privilege WITH GRANT OPTION on the immediate
superview of this view.

UPDATE Change data in the view with the UPDATE statement.

FLASHBACK To allow access to a specific view during queries, grant the FLASHBACK
privilege on the view.

Issue a SQL Flashback Query on the view.

Examples

Granting a System Privilege to a User: Example

To grant the CREATE SESSION system privilege to the sample user hr, allowing hr to log on to
Oracle Database, issue the following statement:

GRANT CREATE SESSION
 TO hr;

Assigning User Passwords When Granting a System Privilege: Example

Assume that user hr exists and user newuser does not exist. The following statement resets
the user hr password to password1, creates user newuser with password2, and grants both
users the CREATE SESSION system privilege:

GRANT CREATE SESSION
 TO hr, newuser IDENTIFIED BY password1, password2;

Granting System Privileges to a Role: Example

The following statement grants appropriate system privileges to a data warehouse manager
role, which was created in the "Creating a Role: Example":

Chapter 18
GRANT

18-59

GRANT
 CREATE ANY MATERIALIZED VIEW
 , ALTER ANY MATERIALIZED VIEW
 , DROP ANY MATERIALIZED VIEW
 , QUERY REWRITE
 , GLOBAL QUERY REWRITE
 TO dw_manager
 WITH ADMIN OPTION;

The dw_manager privilege domain now contains the system privileges related to
materialized views.

Granting a Role with the ADMIN OPTION: Example

To grant the dw_manager role with the ADMIN OPTION to the sample user sh, issue the
following statement:

GRANT dw_manager
 TO sh
 WITH ADMIN OPTION;

User sh can now perform the following operations with the dw_manager role:

• Enable the role and exercise any privileges in the privilege domain of the role,
including the CREATE MATERIALIZED VIEW system privilege

• Grant and revoke the role to and from other users

• Drop the role

• Grant and revoke the dw_manager role to and from program units in the sh schema

Granting a Role with the DELEGATE OPTION: Example

To grant the dw_manager role with the DELEGATE OPTION to the sample user sh, issue
the following statement:

GRANT dw_manager
 TO sh
 WITH DELEGATE OPTION;

User sh can now grant and revoke the dw_manager role to and from program units in
the sh schema.

Granting Object Privileges to a Role: Example

The following example grants the SELECT object privileges to a data warehouse user
role, which was created in the "Creating a Role: Example":

GRANT SELECT ON sh.sales TO warehouse_user;

Granting a Role to a Role: Example

The following statement grants the warehouse_user role to the dw_manager role. Both
roles were created in the "Creating a Role: Example":

GRANT warehouse_user TO dw_manager;

The dw_manager role now contains all of the privileges in the domain of the
warehouse_user role.

Granting an Object Privilege on a User: Example

Chapter 18
GRANT

18-60

To grant the INHERIT PRIVILEGES object privilege on user sh to user hr, issue the following
statement:

GRANT INHERIT PRIVILEGES ON USER sh TO hr;

Granting an Object Privilege on a Directory: Example

To grant READ on directory bfile_dir to user hr, with the GRANT OPTION, issue the following
statement:

GRANT READ ON DIRECTORY bfile_dir TO hr
 WITH GRANT OPTION;

Granting Object Privileges on a Table to a User: Example

To grant all privileges on the table oe.bonuses, which was created in "Merging into a Table:
Example", to the user hr with the GRANT OPTION, issue the following statement:

GRANT ALL ON bonuses TO hr
 WITH GRANT OPTION;

The user hr can subsequently perform the following operations:

• Exercise any privilege on the bonuses table

• Grant any privilege on the bonuses table to another user or role

Granting Object Privileges on a View: Example

To grant SELECT and UPDATE privileges on the view emp_view, which was created in "Creating
a View: Example", to all users, issue the following statement:

GRANT SELECT, UPDATE
 ON emp_view TO PUBLIC;

All users can subsequently query and update the view of employee details.

Granting Object Privileges to a Sequence in Another Schema: Example

To grant SELECT privilege on the customers_seq sequence in the schema oe to the user hr,
issue the following statement:

GRANT SELECT
 ON oe.customers_seq TO hr;

The user hr can subsequently generate the next value of the sequence with the following
statement:

SELECT oe.customers_seq.NEXTVAL
 FROM DUAL;

Granting Multiple Object Privileges on Individual Columns: Example

To grant to user oe the REFERENCES privilege on the employee_id column and the UPDATE
privilege on the employee_id, salary, and commission_pct columns of the employees table in
the schema hr, issue the following statement:

GRANT REFERENCES (employee_id),
 UPDATE (employee_id, salary, commission_pct)
 ON hr.employees
 TO oe;

Chapter 18
GRANT

18-61

The user oe can subsequently update values of the employee_id, salary, and
commission_pct columns. User oe can also define referential integrity constraints that
refer to the employee_id column. However, because the GRANT statement lists only
these columns, oe cannot perform operations on any of the other columns of the
employees table.

For example, oe can create a table with a constraint:

CREATE TABLE dependent
 (dependno NUMBER,
 dependname VARCHAR2(10),
 employee NUMBER
 CONSTRAINT in_emp REFERENCES hr.employees(employee_id));

The constraint in_emp ensures that all dependents in the dependent table correspond
to an employee in the employees table in the schema hr.

INSERT
Purpose

Use the INSERT statement to add rows to a table, the base table of a view, a partition of
a partitioned table or a subpartition of a composite-partitioned table, or an object table
or the base table of an object view.

Prerequisites

For you to insert rows into a table, the table must be in your own schema or you must
have the INSERT object privilege on the table.

For you to insert rows into the base table of a view, the owner of the schema
containing the view must have the INSERT object privilege on the base table. Also, if
the view is in a schema other than your own, then you must have the INSERT object
privilege on the view.

If you have the INSERT ANY TABLE system privilege, then you can also insert rows into
any table or the base table of any view.

You must also have the READ or SELECT object privilege on the table into which you
want to insert rows if the table is on a remote database.

Conventional and Direct-Path INSERT

You can use the INSERT statement to insert data into a table, partition, or view in two
ways: conventional INSERT and direct-path INSERT. When you issue a conventional
INSERT statement, Oracle Database reuses free space in the table into which you are
inserting and maintains referential integrity constraints. With direct-path INSERT, the
database appends the inserted data after existing data in the table. Data is written
directly into data files, bypassing the buffer cache. Free space in the existing data is
not reused. This alternative enhances performance during insert operations and is
similar to the functionality of the Oracle direct-path loader utility, SQL*Loader. When
you insert into a table that has been created in parallel mode, direct-path INSERT is the
default.

The manner in which the database generates redo and undo data depends in part on
whether you are using conventional or direct-path INSERT:

Chapter 18
INSERT

18-62

• Conventional INSERT always generates maximal redo and undo for changes to both data
and metadata, regardless of the logging setting of the table and the archivelog and force
logging settings of the database.

• Direct-path INSERT generates both redo and undo for metadata changes, because these
are needed for operation recovery. For data changes, undo and redo are generated as
follows:

– Direct-path INSERT always bypasses undo generation for data changes.

– If the database is not in ARCHIVELOG or FORCE LOGGING mode, then no redo is
generated for data changes, regardless of the logging setting of the table.

– If the database is in ARCHIVELOG mode (but not in FORCE LOGGING mode), then direct-
path INSERT generates data redo for LOGGING tables but not for NOLOGGING tables.

– If the database is in ARCHIVELOG and FORCE LOGGING mode, then direct-path SQL
generate data redo for both LOGGING and NOLOGGING tables.

Direct-path INSERT is subject to a number of restrictions. If any of these restrictions is
violated, then Oracle Database executes conventional INSERT serially without returning any
message, unless otherwise noted:

• You can have multiple direct-path INSERT statements in a single transaction, with or
without other DML statements. However, after one DML statement alters a particular
table, partition, or index, no other DML statement in the transaction can access that table,
partition, or index.

• Queries that access the same table, partition, or index are allowed before the direct-path
INSERT statement, but not after it.

• If any serial or parallel statement attempts to access a table that has already been
modified by a direct-path INSERT in the same transaction, then the database returns an
error and rejects the statement.

• The target table cannot be of a cluster.

• The target table cannot contain object type columns.

• Direct-path INSERT is not supported for an index-organized table (IOT) if it has a mapping
table, or if it is reference by a materialized view.

• Direct-path INSERT into a single partition of an index-organized table (IOT), into a
partitioned IOT with only one partition, or into an IOT that is not partitioned, will be done
serially, even if the IOT was created in parallel mode or you specify the APPEND or
APPEND_VALUES hint. However, direct-path INSERT operations into a partitioned IOT will
honor parallel mode as long as the partition-extended name is not used and the IOT has
more than one partition.

• The target table cannot have any triggers or referential integrity constraints defined on it.

• The target table cannot be replicated.

• A transaction containing a direct-path INSERT statement cannot be or become distributed.

You cannot query or modify direct-path inserted data immediately after the insert is complete.
If you attempt to do so, an ORA-12838 error is generated. You must first issue a COMMIT
statement before attempting to read or modify the newly-inserted data.

Chapter 18
INSERT

18-63

See Also:

• Oracle Database Administrator's Guide for a more complete description
of direct-path INSERT

• Oracle Database Utilities for information on SQL*Loader

• Oracle Database SQL Tuning Guide for information on statistics
gathering when inserting into an empty table using direct-path INSERT

Syntax

insert::=

INSERT

hint single_table_insert

multi_table_insert
;

(single_table_insert::=, multi_table_insert::=)

single_table_insert::=

insert_into_clause
values_clause

returning_clause

subquery

error_logging_clause

(insert_into_clause::=, values_clause::=, returning_clause::=, subquery::=,
error_logging_clause::=)

insert_into_clause::=

INTO dml_table_expression_clause

t_alias (column

,

)

(DML_table_expression_clause::=)

values_clause::=

VALUES (
expr

DEFAULT

,

)

Chapter 18
INSERT

18-64

returning_clause::=

RETURN

RETURNING
expr

,

INTO data_item

,

multi_table_insert::=

ALL insert_into_clause

values_clause error_logging_clause

conditional_insert_clause
subquery

(insert_into_clause::=, values_clause::=, conditional_insert_clause::=, subquery::=,
error_logging_clause::=)

conditional_insert_clause::=

ALL

FIRST

WHEN condition THEN insert_into_clause

values_clause error_logging_clause

ELSE insert_into_clause

values_clause error_logging_clause

(insert_into_clause::=, values_clause::=)

DML_table_expression_clause::=

schema . table

partition_extension_clause

@ dblink

view

materialized view

@ dblink

(subquery

subquery_restriction_clause

)

table_collection_expression

Chapter 18
INSERT

18-65

(partition_extension_clause::=, subquery::=—part of SELECT,
subquery_restriction_clause::=, table_collection_expression::=)

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

subquery_restriction_clause::=

WITH

READ ONLY

CHECK OPTION

CONSTRAINT constraint

table_collection_expression::=

TABLE (collection_expression)

(+)

error_logging_clause::=

LOG ERRORS

INTO

schema .

table (simple_expression)

REJECT LIMIT
integer

UNLIMITED

Semantics

hint

Specify a comment that passes instructions to the optimizer on choosing an execution
plan for the statement.

For a multitable insert, if you specify the PARALLEL hint for any target table, then the
entire multitable insert statement is parallelized even if the target tables have not been
created or altered with PARALLEL specified. If you do not specify the PARALLEL hint,

Chapter 18
INSERT

18-66

then the insert operation will not be parallelized unless all target tables were created or
altered with PARALLEL specified.

See Also:

• "Hints " for the syntax and description of hints

• "Restrictions on Multitable Inserts"

single_table_insert

In a single-table insert, you insert values into one row of a table, view, or materialized view
by specifying values explicitly or by retrieving the values through a subquery.

You can use the flashback_query_clause in subquery to insert past data into table. Refer to
the flashback_query_clause of SELECT for more information on this clause.

Restriction on Single-table Inserts

If you retrieve values through a subquery, then the select list of the subquery must have the
same number of columns as the column list of the INSERT statement. If you omit the column
list, then the subquery must provide values for every column in the table.

See Also:

"Inserting Values into Tables: Examples"

insert_into_clause

Use the INSERT INTO clause to specify the target object or objects into which the database is
to insert data.

DML_table_expression_clause

Use the INTO DML_table_expression_clause to specify the objects into which data is being
inserted.

schema

Specify the schema containing the table, view, or materialized view. If you omit schema, then
the database assumes the object is in your own schema.

table | view | materialized_view | subquery

Specify the name of the table or object table, view or object view, materialized view, or the
column or columns returned by a subquery, into which rows are to be inserted. If you specify
a view or object view, then the database inserts rows into the base table of the view.

You cannot insert rows into a read-only materialized view. If you insert rows into a writable
materialized view, then the database inserts the rows into the underlying container table.
However, the insertions are overwritten at the next refresh operation. If you insert rows into
an updatable materialized view that is part of a materialized view group, then the database
also inserts the corresponding rows into the master table.

Chapter 18
INSERT

18-67

If any value to be inserted is a REF to an object table, and if the object table has a
primary key object identifier, then the column into which you insert the REF must be a
REF column with a referential integrity or SCOPE constraint to the object table.

If table, or the base table of view, contains one or more domain index columns, then
this statement executes the appropriate indextype insert routine.

Issuing an INSERT statement against a table fires any INSERT triggers defined on the
table.

See Also:

Oracle Database Data Cartridge Developer's Guide for more information on
these routines

Restrictions on the DML_table_expression_clause

This clause is subject to the following restrictions:

• You cannot execute this statement if table or the base table of view contains any
domain indexes marked IN_PROGRESS or FAILED.

• You cannot insert into a partition if any affected index partitions are marked
UNUSABLE.

• With regard to the ORDER BY clause of the subquery in the
DML_table_expression_clause, ordering is guaranteed only for the rows being
inserted, and only within each extent of the table. Ordering of new rows with
respect to existing rows is not guaranteed.

• If a view was created using the WITH CHECK OPTION, then you can insert into the
view only rows that satisfy the defining query of the view.

• If a view was created using a single base table, then you can insert rows into the
view and then retrieve those values using the returning_clause.

• You cannot insert rows into a view except with INSTEAD OF triggers if the defining
query of the view contains one of the following constructs:

A set operator
A DISTINCT operator
An aggregate or analytic function
A GROUP BY, ORDER BY, MODEL, CONNECT BY, or START WITH clause
A collection expression in a SELECT list
A subquery in a SELECT list
A subquery designated WITH READ ONLY
Joins, with some exceptions, as documented in Oracle Database
Administrator's Guide

• If you specify an index, index partition, or index subpartition that has been marked
UNUSABLE, then the INSERT statement will fail unless the SKIP_UNUSABLE_INDEXES
session parameter has been set to TRUE. Refer to ALTER SESSION for
information on the SKIP_UNUSABLE_INDEXES session parameter.

Chapter 18
INSERT

18-68

partition_extension_clause

Specify the name or partition key value of the partition or subpartition within table, or the
base table of view, targeted for inserts.

If a row to be inserted does not map into a specified partition or subpartition, then the
database returns an error.

Restriction on Target Partitions and Subpartitions

This clause is not valid for object tables or object views.

See Also:

"References to Partitioned Tables and Indexes "

dblink

Specify a complete or partial name of a database link to a remote database where the table
or view is located. You can insert rows into a remote table or view only if you are using Oracle
Database distributed functionality.

If you omit dblink, then Oracle Database assumes that the table or view is on the local
database.

Note:

Starting with Oracle Database 12c Release 2 (12.2), the INSERT statement accepts
remote LOB locators as bind variables. Refer to the “Distributed LOBs” chapter in
Oracle Database SecureFiles and Large Objects Developer's Guide for more
information.

See Also:

• "Syntax for Schema Objects and Parts in SQL Statements" and "References to
Objects in Remote Databases " for information on referring to database links

• "Inserting into a Remote Database: Example"

subquery_restriction_clause

Use the subquery_restriction_clause to restrict the subquery in one of the following ways:

WITH READ ONLY

Specify WITH READ ONLY to indicate that the table or view cannot be updated.

WITH CHECK OPTION

Specify WITH CHECK OPTION to indicate that Oracle Database prohibits any changes to the
table or view that would produce rows that are not included in the subquery. When used in

Chapter 18
INSERT

18-69

the subquery of a DML statement, you can specify this clause in a subquery in the
FROM clause but not in subquery in the WHERE clause.

CONSTRAINT constraint

Specify the name of the CHECK OPTION constraint. If you omit this identifier, then Oracle
automatically assigns the constraint a name of the form SYS_Cn, where n is an integer
that makes the constraint name unique within the database.

See Also:

"Using the WITH CHECK OPTION Clause: Example"

table_collection_expression

The table_collection_expression lets you inform Oracle that the value of
collection_expression should be treated as a table for purposes of query and DML
operations. The collection_expression can be a subquery, a column, a function, or a
collection constructor. Regardless of its form, it must return a collection value—that is,
a value whose type is nested table or varray. This process of extracting the elements
of a collection is called collection unnesting.

The optional plus (+) is relevant if you are joining the TABLE collection expression with
the parent table. The + creates an outer join of the two, so that the query returns rows
from the outer table even if the collection expression is null.

Note:

In earlier releases of Oracle, when collection_expression was a subquery,
table_collection_expression was expressed as THE subquery. That usage
is now deprecated.

See Also:

"Table Collections: Examples"

t_alias

Specify a correlation name, which is an alias for the table, view, materialized view, or
subquery to be referenced elsewhere in the statement.

Restriction on Table Aliases

You cannot specify t_alias during a multitable insert.

column

Specify a column of the table, view, or materialized view. In the inserted row, each
column in this list is assigned a value from the values_clause or the subquery. If you

Chapter 18
INSERT

18-70

want to assign a value to an INVISIBLE column, then you must include the column in this list.

If you omit one or more of the table's columns from this list, then the column value of that
column for the inserted row is the column default value as specified when the table was
created or last altered. If any omitted column has a NOT NULL constraint and no default value,
then the database returns an error indicating that the constraint has been violated and rolls
back the INSERT statement. Refer to CREATE TABLE for more information on default column
values.

If you omit the column list altogether, then the values_clause or query must specify values
for all columns in the table.

values_clause

For a single-table insert operation, specify a row of values to be inserted into the table or
view. You must specify a value in the values_clause for each column in the column list. If you
omit the column list, then the values_clause must provide values for every column in the
table.

For a multitable insert operation, each expression in the values_clause must refer to
columns returned by the select list of the subquery. If you omit the values_clause, then the
select list of the subquery determines the values to be inserted, so it must have the same
number of columns as the column list of the corresponding insert_into_clause. If you do
not specify a column list in the insert_into_clause, then the computed row must provide
values for all columns in the target table.

For both types of insert operations, if you specify a column list in the insert_into_clause,
then the database assigns to each column in the list a corresponding value from the values
clause or the subquery. You can specify DEFAULT for any value in the values_clause. If you
have specified a default value for the corresponding column of the table or view, then that
value is inserted. If no default value for the corresponding column has been specified, then
the database inserts null. Refer to "About SQL Expressions " and SELECT for syntax of valid
expressions.

Restrictions on Inserted Values

The value are subject to the following restrictions:

• You cannot insert a BFILE value until you have initialized the BFILE locator to null or to a
directory name and filename.

See Also:

– BFILENAME for information on initializing BFILE values and for an example
of inserting into a BFILE

– Oracle Database SecureFiles and Large Objects Developer's Guide for
information on initializing BFILE locators

• When inserting into a list-partitioned table, you cannot insert a value into the partitioning
key column that does not already exist in the partition_key_value list of one of the
partitions.

• You cannot specify DEFAULT when inserting into a view.

Chapter 18
INSERT

18-71

• If you insert string literals into a RAW column, then during subsequent queries
Oracle Database will perform a full table scan rather than using any index that
might exist on the RAW column.

See Also:

– "Using XML in SQL Statements " for information on inserting values
into an XMLType table

– "Inserting into a Substitutable Tables and Columns: Examples",
"Inserting Using the TO_LOB Function: Example", "Inserting
Sequence Values: Example", and "Inserting Using Bind Variables:
Example"

returning_clause

The returning clause retrieves the rows affected by a DML statement. You can specify
this clause for tables and materialized views and for views with a single base table.

When operating on a single row, a DML statement with a returning_clause can
retrieve column expressions using the affected row, rowid, and REFs to the affected
row and store them in host variables or PL/SQL variables.

When operating on multiple rows, a DML statement with the returning_clause stores
values from expressions, rowids, and REFs involving the affected rows in bind arrays.

expr

Each item in the expr list must be a valid expression syntax.

INTO

The INTO clause indicates that the values of the changed rows are to be stored in the
variable(s) specified in data_item list.

data_item

Each data_item is a host variable or PL/SQL variable that stores the retrieved expr
value.

For each expression in the RETURNING list, you must specify a corresponding type-
compatible PL/SQL variable or host variable in the INTO list.

Restrictions

The following restrictions apply to the RETURNING clause:

• The expr is restricted as follows:

– For UPDATE and DELETE statements each expr must be a simple expression or
a single-set aggregate function expression. You cannot combine simple
expressions and single-set aggregate function expressions in the same
returning_clause. For INSERT statements, each expr must be a simple
expression. Aggregate functions are not supported in an INSERT statement
RETURNING clause.

Chapter 18
INSERT

18-72

– Single-set aggregate function expressions cannot include the DISTINCT keyword.

• If the expr list contains a primary key column or other NOT NULL column, then the update
statement fails if the table has a BEFORE UPDATE trigger defined on it.

• You cannot specify the returning_clause for a multitable insert.

• You cannot use this clause with parallel DML or with remote objects.

• You cannot retrieve LONG types with this clause.

• You cannot specify this clause for a view on which an INSTEAD OF trigger has been
defined.

See Also:

Oracle Database PL/SQL Language Reference for information on using the BULK
COLLECT clause to return multiple values to collection variables

multi_table_insert

In a multitable insert, you insert computed rows derived from the rows returned from the
evaluation of a subquery into one or more tables.

Table aliases are not defined by the select list of the subquery. Therefore, they are not visible
in the clauses dependent on the select list. For example, this can happen when trying to refer
to an object column in an expression. To use an expression with a table alias, you must put
the expression into the select list with a column alias, and then refer to the column alias in the
VALUES clause or WHEN condition of the multitable insert.

ALL into_clause

Specify ALL followed by multiple insert_into_clauses to perform an unconditional
multitable insert. Oracle Database executes each insert_into_clause once for each row
returned by the subquery.

conditional_insert_clause

Specify the conditional_insert_clause to perform a conditional multitable insert. Oracle
Database filters each insert_into_clause through the corresponding WHEN condition, which
determines whether that insert_into_clause is executed. Each expression in the WHEN
condition must refer to columns returned by the select list of the subquery. A single multitable
insert statement can contain up to 127 WHEN clauses.

ALL

If you specify ALL, the default value, then the database evaluates each WHEN clause
regardless of the results of the evaluation of any other WHEN clause. For each WHEN clause
whose condition evaluates to true, the database executes the corresponding INTO clause list.

FIRST

If you specify FIRST, then the database evaluates each WHEN clause in the order in which it
appears in the statement. For the first WHEN clause that evaluates to true, the database
executes the corresponding INTO clause and skips subsequent WHEN clauses for the given
row.

Chapter 18
INSERT

18-73

ELSE clause

For a given row, if no WHEN clause evaluates to true, then:

• If you have specified an ELSE clause, then the database executes the INTO clause
list associated with the ELSE clause.

• If you did not specify an else clause, then the database takes no action for that
row.

See Also:

"Multitable Inserts: Examples"

Restrictions on Multitable Inserts

Multitable inserts are subject to the following restrictions:

• You can perform multitable inserts only on tables, not on views or materialized
views.

• You cannot perform a multitable insert into a remote table.

• You cannot specify a TABLE collection expression when performing a multitable
insert.

• Multitable inserts are not parallelized if any target table is index organized or if any
target table has a bitmap index defined on it.

• Plan stability is not supported for multitable insert statements.

• You cannot specify a sequence in any part of a multitable insert statement. A
multitable insert is considered a single SQL statement. Therefore, the first
reference to NEXTVAL generates the next number, and all subsequent references in
the statement return the same number.

subquery

Specify a subquery that returns rows that are inserted into the table. The subquery can
refer to any table, view, or materialized view, including the target tables of the INSERT
statement. If the subquery selects no rows, then the database inserts no rows into the
table.

You can use subquery in combination with the TO_LOB function to convert the values in
a LONG column to LOB values in another column in the same or another table.

• To migrate LONG values to LOB values in another column in a view, you must
perform the migration on the base table and then add the LOB column to the view.

• To migrate LONG values on a remote table to LOB values in a local table, you must
perform the migration on the remote table using the TO_LOB function, and then
perform an INSERT ... subquery operation to copy the LOB values from the remote
table into the local table.

Notes on Inserting with a Subquery

The following notes apply when inserting with a subquery:

Chapter 18
INSERT

18-74

• If subquery returns the partial or total equivalent of a materialized view, then the database
may use the materialized view for query rewrite in place of one or more tables specified
in subquery.

See Also:

Oracle Database Data Warehousing Guide for more information on materialized
views and query rewrite

• If subquery refers to remote objects, then the INSERT operation can run in parallel as long
as the reference does not loop back to an object on the local database. However, if the
subquery in the DML_table_expression_clause refers to any remote objects, then the
INSERT operation will run serially without notification. See parallel_clause for more
information.

• If subquery includes an ORDER BY clause, then it will override row ordering specified using
attribute clustering table properties.

See Also:

• "Inserting Values with a Subquery: Example"

• BFILENAME for an example of inserting into a BFILE
• Oracle Database SecureFiles and Large Objects Developer's Guide for

information on initializing BFILEs

• "About SQL Expressions " and SELECT for syntax of valid expressions

error_logging_clause

The error_logging_clause lets you capture DML errors and the log column values of the
affected rows and save them in an error logging table.

INTO table

Specify the name of the error logging table. If you omit this clause, then the database assigns
the default name generated by the DBMS_ERRLOG package. The default error log table name is
ERR$_ followed by the first 25 characters of the name of the table upon which the DML
operation is being executed.

simple_expression

Specify the value to be used as a statement tag, so that you can identify the errors from this
statement in the error logging table. The expression can be either a text literal, a number
literal, or a general SQL expression such as a bind variable. You can also use a function
expression if you convert it to a text literal — for example, TO_CHAR(SYSDATE).

REJECT LIMIT

This clause lets you specify an integer as an upper limit for the number of errors to be logged
before the statement terminates and rolls back any changes made by the statement. The
default rejection limit is zero. For parallel DML operations, the reject limit is applied to each
parallel server.

Chapter 18
INSERT

18-75

Restrictions on DML Error Logging

• The following conditions cause the statement to fail and roll back without invoking
the error logging capability:

– Violated deferred constraints.

– Any direct-path INSERT or MERGE operation that raises a unique constraint or
index violation.

– Any update operation UPDATE or MERGE that raises a unique constraint or index
violation.

• You cannot track errors in the error logging table for LONG, LOB, or object type
columns. However, the table that is the target of the DML operation can contain
these types of columns.

– If you create or modify the corresponding error logging table so that it contains
a column of an unsupported type, and if the name of that column corresponds
to an unsupported column in the target DML table, then the DML statement
fails at parse time.

– If the error logging table does not contain any unsupported column types, then
all DML errors are logged until the reject limit of errors is reached. For rows on
which errors occur, column values with corresponding columns in the error
logging table are logged along with the control information.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information on using the create_error_log procedure of the
DBMS_ERRLOG package and Oracle Database Administrator's Guide for
general information on DML error logging.

• "Inserting Into a Table with Error Logging: Example"

Examples

Inserting Values into Tables: Examples

The following statement inserts a row into the sample table departments:

INSERT INTO departments
 VALUES (280, 'Recreation', 121, 1700);

If the departments table had been created with a default value of 121 for the
manager_id column, then you could issue the same statement as follows:

INSERT INTO departments
 VALUES (280, 'Recreation', DEFAULT, 1700);

The following statement inserts a row with six columns into the employees table. One
of these columns is assigned NULL and another is assigned a number in scientific
notation:

INSERT INTO employees (employee_id, last_name, email,
 hire_date, job_id, salary, commission_pct)

Chapter 18
INSERT

18-76

 VALUES (207, 'Gregory', 'pgregory@example.com',
 sysdate, 'PU_CLERK', 1.2E3, NULL);

The following statement has the same effect as the preceding example, but uses a subquery
in the DML_table_expression_clause:

INSERT INTO
 (SELECT employee_id, last_name, email, hire_date, job_id,
 salary, commission_pct FROM employees)
 VALUES (207, 'Gregory', 'pgregory@example.com',
 sysdate, 'PU_CLERK', 1.2E3, NULL);

Inserting Values with a Subquery: Example

The following statement copies employees whose commission exceeds 25% of their salary
into the bonuses table, which was created in "Merging into a Table: Example":

INSERT INTO bonuses
 SELECT employee_id, salary*1.1
 FROM employees
 WHERE commission_pct > 0.25;

Inserting Into a Table with Error Logging: Example

The following statements create a raises table in the sample schema hr, create an error
logging table using the DBMS_ERRLOG package, and populate the raises table with data from
the employees table. One of the inserts violates the check constraint on raises, and that row
can be seen in errlog. If more than ten errors had occurred, then the statement would have
aborted, rolling back any insertions made:

CREATE TABLE raises (emp_id NUMBER, sal NUMBER
 CONSTRAINT check_sal CHECK(sal > 8000));

EXECUTE DBMS_ERRLOG.CREATE_ERROR_LOG('raises', 'errlog');

INSERT INTO raises
 SELECT employee_id, salary*1.1 FROM employees
 WHERE commission_pct > .2
 LOG ERRORS INTO errlog ('my_bad') REJECT LIMIT 10;

SELECT ORA_ERR_MESG$, ORA_ERR_TAG$, emp_id, sal FROM errlog;

ORA_ERR_MESG$ ORA_ERR_TAG$ EMP_ID SAL
--------------------------- -------------------- ------ -------
ORA-02290: check constraint my_bad 161 7700
 (HR.SYS_C004266) violated

Inserting into a Remote Database: Example

The following statement inserts a row into the employees table owned by the user hr on the
database accessible by the database link remote:

INSERT INTO employees@remote
 VALUES (8002, 'Juan', 'Fernandez', 'juanf@example.com', NULL,
 TO_DATE('04-OCT-1992', 'DD-MON-YYYY'), 'SH_CLERK', 3000,
 NULL, 121, 20);

Inserting Sequence Values: Example

The following statement inserts a new row containing the next value of the departments_seq
sequence into the departments table:

Chapter 18
INSERT

18-77

INSERT INTO departments
 VALUES (departments_seq.nextval, 'Entertainment', 162, 1400);

Inserting Using Bind Variables: Example

The following example returns the values of the inserted rows into output bind
variables :bnd1 and :bnd2. The bind variables must first be declared.

INSERT INTO employees
 (employee_id, last_name, email, hire_date, job_id, salary)
 VALUES
 (employees_seq.nextval, 'Doe', 'john.doe@example.com',
 SYSDATE, 'SH_CLERK', 2400)
 RETURNING salary*12, job_id INTO :bnd1, :bnd2;

Inserting into a Substitutable Tables and Columns: Examples

The following example inserts into the persons table, which is created in "Substitutable
Table and Column Examples". The first statement uses the root type person_t. The
second insert uses the employee_t subtype of person_t, and the third insert uses the
part_time_emp_t subtype of employee_t:

INSERT INTO persons VALUES (person_t('Bob', 1234));
INSERT INTO persons VALUES (employee_t('Joe', 32456, 12, 100000));
INSERT INTO persons VALUES (
 part_time_emp_t('Tim', 5678, 13, 1000, 20));

The following example inserts into the books table, which was created in "Substitutable
Table and Column Examples". Notice that specification of the attribute values is
identical to that for the substitutable table example:

INSERT INTO books VALUES (
 'An Autobiography', person_t('Bob', 1234));
INSERT INTO books VALUES (
 'Business Rules', employee_t('Joe', 3456, 12, 10000));
INSERT INTO books VALUES (
 'Mixing School and Work',
 part_time_emp_t('Tim', 5678, 13, 1000, 20));

You can extract data from substitutable tables and columns using built-in functions and
conditions. For examples, see the functions TREAT and SYS_TYPEID , and "IS OF
type Condition ".

Inserting Using the TO_LOB Function: Example

The following example copies LONG data to a LOB column in the following long_tab
table:

CREATE TABLE long_tab (pic_id NUMBER, long_pics LONG RAW);

First you must create a table with a LOB.

CREATE TABLE lob_tab (pic_id NUMBER, lob_pics BLOB);

Next, use an INSERT ... SELECT statement to copy the data in all rows for the LONG
column into the newly created LOB column:

INSERT INTO lob_tab
 SELECT pic_id, TO_LOB(long_pics) FROM long_tab;

Chapter 18
INSERT

18-78

When you are confident that the migration has been successful, you can drop the long_pics
table. Alternatively, if the table contains other columns, then you can simply drop the LONG
column from the table as follows:

ALTER TABLE long_tab DROP COLUMN long_pics;

Multitable Inserts: Examples

The following example uses the multitable insert syntax to insert into the sample table
sh.sales some data from an input table with a different structure.

Note:

A number of NOT NULL constraints on the sales table have been disabled for
purposes of this example, because the example ignores a number of table columns
for the sake of brevity.

The input table looks like this:

SELECT * FROM sales_input_table;

PRODUCT_ID CUSTOMER_ID WEEKLY_ST SALES_SUN SALES_MON SALES_TUE SALES_WED SALES_THU SALES_FRI SALES_SAT
---------- ----------- --------- ---------- ---------- ---------- -------------------- ---------- ----------
 111 222 01-OCT-00 100 200 300 400 500 600 700
 222 333 08-OCT-00 200 300 400 500 600 700 800
 333 444 15-OCT-00 300 400 500 600 700 800 900

The multitable insert statement looks like this:

INSERT ALL
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date, sales_sun)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+1, sales_mon)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+2, sales_tue)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+3, sales_wed)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+4, sales_thu)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+5, sales_fri)
 INTO sales (prod_id, cust_id, time_id, amount)
 VALUES (product_id, customer_id, weekly_start_date+6, sales_sat)
 SELECT product_id, customer_id, weekly_start_date, sales_sun,
 sales_mon, sales_tue, sales_wed, sales_thu, sales_fri, sales_sat
 FROM sales_input_table;

Assuming these are the only rows in the sales table, the contents now look like this:

SELECT * FROM sales
 ORDER BY prod_id, cust_id, time_id;

 PROD_ID CUST_ID TIME_ID C PROMO_ID QUANTITY_SOLD AMOUNT COST
---------- ---------- --------- - ---------- ------------- ---------- ----------
 111 222 01-OCT-00 100
 111 222 02-OCT-00 200

Chapter 18
INSERT

18-79

 111 222 03-OCT-00 300
 111 222 04-OCT-00 400
 111 222 05-OCT-00 500
 111 222 06-OCT-00 600
 111 222 07-OCT-00 700
 222 333 08-OCT-00 200
 222 333 09-OCT-00 300
 222 333 10-OCT-00 400
 222 333 11-OCT-00 500
 222 333 12-OCT-00 600
 222 333 13-OCT-00 700
 222 333 14-OCT-00 800
 333 444 15-OCT-00 300
 333 444 16-OCT-00 400
 333 444 17-OCT-00 500
 333 444 18-OCT-00 600
 333 444 19-OCT-00 700
 333 444 20-OCT-00 800
 333 444 21-OCT-00 900

The next examples insert into multiple tables. Suppose you want to provide to sales
representatives some information on orders of various sizes. The following example
creates tables for small, medium, large, and special orders and populates those tables
with data from the sample table oe.orders:

CREATE TABLE small_orders
 (order_id NUMBER(12) NOT NULL,
 customer_id NUMBER(6) NOT NULL,
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6)
);

CREATE TABLE medium_orders AS SELECT * FROM small_orders;

CREATE TABLE large_orders AS SELECT * FROM small_orders;

CREATE TABLE special_orders
 (order_id NUMBER(12) NOT NULL,
 customer_id NUMBER(6) NOT NULL,
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6),
 credit_limit NUMBER(9,2),
 cust_email VARCHAR2(40)
);

The first multitable insert populates only the tables for small, medium, and large
orders:

INSERT ALL
 WHEN order_total <= 100000 THEN
 INTO small_orders
 WHEN order_total > 1000000 AND order_total <= 200000 THEN
 INTO medium_orders
 WHEN order_total > 200000 THEN
 INTO large_orders
 SELECT order_id, order_total, sales_rep_id, customer_id
 FROM orders;

You can accomplish the same thing using the ELSE clause in place of the insert into the
large_orders table:

Chapter 18
INSERT

18-80

INSERT ALL
 WHEN order_total <= 100000 THEN
 INTO small_orders
 WHEN order_total > 100000 AND order_total <= 200000 THEN
 INTO medium_orders
 ELSE
 INTO large_orders
 SELECT order_id, order_total, sales_rep_id, customer_id
 FROM orders;

The next example inserts into the small, medium, and large tables, as in the preceding
example, and also puts orders greater than 290,000 into the special_orders table. This table
also shows how to use column aliases to simplify the statement:

INSERT ALL
 WHEN ottl <= 100000 THEN
 INTO small_orders
 VALUES(oid, ottl, sid, cid)
 WHEN ottl > 100000 and ottl <= 200000 THEN
 INTO medium_orders
 VALUES(oid, ottl, sid, cid)
 WHEN ottl > 200000 THEN
 into large_orders
 VALUES(oid, ottl, sid, cid)
 WHEN ottl > 290000 THEN
 INTO special_orders
 SELECT o.order_id oid, o.customer_id cid, o.order_total ottl,
 o.sales_rep_id sid, c.credit_limit cl, c.cust_email cem
 FROM orders o, customers c
 WHERE o.customer_id = c.customer_id;

Finally, the next example uses the FIRST clause to put orders greater than 290,000 into the
special_orders table and exclude those orders from the large_orders table:

INSERT FIRST
 WHEN ottl <= 100000 THEN
 INTO small_orders
 VALUES(oid, ottl, sid, cid)
 WHEN ottl > 100000 and ottl <= 200000 THEN
 INTO medium_orders
 VALUES(oid, ottl, sid, cid)
 WHEN ottl > 290000 THEN
 INTO special_orders
 WHEN ottl > 200000 THEN
 INTO large_orders
 VALUES(oid, ottl, sid, cid)
 SELECT o.order_id oid, o.customer_id cid, o.order_total ottl,
 o.sales_rep_id sid, c.credit_limit cl, c.cust_email cem
 FROM orders o, customers c
 WHERE o.customer_id = c.customer_id;

Inserting Multiple Rows Using a Single Statement: Example

The following statements create three tables named people, patients and staff:

CREATE TABLE people (
 person_id INTEGER NOT NULL PRIMARY KEY,
 given_name VARCHAR2(100) NOT NULL,
 family_name VARCHAR2(100) NOT NULL,
 title VARCHAR2(20),
 birth_date DATE

Chapter 18
INSERT

18-81

);

CREATE TABLE patients (
 patient_id INTEGER NOT NULL PRIMARY KEY REFERENCES people
(person_id),
 last_admission_date DATE
);

CREATE TABLE staff (
 staff_id INTEGER NOT NULL PRIMARY KEY REFERENCES people (person_id),
 hired_date DATE
);

The following statement inserts a row into the people table:

INSERT INTO people
VALUES (1, 'Dave', 'Badger', 'Mr', date'1960-05-01');

The following statement returns an error as there is no value provided for the
birth_date column:

INSERT INTO people
VALUES (2, 'Simon', 'Fox', 'Mr');

The following statement inserts a row into the people table:

INSERT INTO people (person_id, given_name, family_name, title)
VALUES (2, 'Simon', 'Fox', 'Mr');

The following statement inserts a row into the people table and the value for the title
column is populated by selecting a static value from the dual table:

INSERT INTO people (person_id, given_name, family_name, title)
VALUES (3, 'Dave', 'Frog', (SELECT 'Mr' FROM dual));

The following statement inserts multiple rows into the people table using ‘SELECT’
statement:

INSERT INTO people (person_id, given_name, family_name, title)
 WITH names AS (
 SELECT 4, 'Ruth', 'Fox', 'Mrs' FROM dual UNION ALL
 SELECT 5, 'Isabelle', 'Squirrel', 'Miss' FROM dual UNION ALL
 SELECT 6, 'Justin', 'Frog', 'Master' FROM dual UNION ALL
 SELECT 7, 'Lisa', 'Owl', 'Dr' FROM dual
)
 SELECT * FROM names;

The following statement rolls back all the previous DML operations:

ROLLBACK;

The following statement inserts multiple rows into the people table using ‘SELECT’
statement with a ‘WHERE’ condition:

INSERT INTO people (person_id, given_name, family_name, title)
 WITH names AS (
 SELECT 4, 'Ruth', 'Fox' family_name, 'Mrs' FROM dual UNION ALL
 SELECT 5, 'Isabelle', 'Squirrel' family_name, 'Miss' FROM dual UNION ALL
 SELECT 6, 'Justin', 'Frog' family_name, 'Master' FROM dual UNION ALL
 SELECT 7, 'Lisa', 'Owl' family_name, 'Dr' FROM dual
)

Chapter 18
INSERT

18-82

 SELECT * FROM names
 WHERE family_name LIKE 'F%';

The following statement rolls back all the previous DML operations:

ROLLBACK;

The following statement inserts multiple rows into people, patients and staff table using
‘INSERT ALL’ statement:

INSERT ALL
 /* Every one is a person */
 INTO people (person_id, given_name, family_name, title)
 VALUES (id, given_name, family_name, title)
 INTO patients (patient_id, last_admission_date)
 VALUES (id, admission_date)
 INTO staff (staff_id, hired_date)
 VALUES (id, hired_date)
 WITH names AS (
 SELECT 4 id, 'Ruth' given_name, 'Fox' family_name, 'Mrs' title,
 NULL hired_date, DATE'2009-12-31' admission_date
 FROM dual UNION ALL
 SELECT 5 id, 'Isabelle' given_name, 'Squirrel' family_name, 'Miss' title ,
 NULL hired_date, DATE'2014-01-01' admission_date
 FROM dual UNION ALL
 SELECT 6 id, 'Justin' given_name, 'Frog' family_name, 'Master' title,
 NULL hired_date, DATE'2015-04-22' admission_date
 FROM dual UNION ALL
 SELECT 7 id, 'Lisa' given_name, 'Owl' family_name, 'Dr' title,
 DATE'2015-01-01' hired_date, NULL admission_date
 FROM dual
)
 SELECT * FROM names;

The following statement rolls back all the previous DML operations:

ROLLBACK;

The following statement inserts multiple rows into people, patients and staff table using
‘INSERT ALL’ statement with various conditions:

INSERT ALL
 /* Everyone is a person, so insert all rows into people */
 WHEN 1=1 THEN
 INTO people (person_id, given_name, family_name, title)
 VALUES (id, given_name, family_name, title)
 /* Only people with an admission date are patients */
 WHEN admission_date IS NOT NULL THEN
 INTO patients (patient_id, last_admission_date)
 VALUES (id, admission_date)
 /* Only people with a hired date are staff */
 WHEN hired_date IS NOT NULL THEN
 INTO staff (staff_id, hired_date)
 VALUES (id, hired_date)
 WITH names AS (
 SELECT 4 id, 'Ruth' given_name, 'Fox' family_name, 'Mrs' title,
 NULL hired_date, DATE'2009-12-31' admission_date
 FROM dual UNION ALL
 SELECT 5 id, 'Isabelle' given_name, 'Squirrel' family_name, 'Miss' title ,
 NULL hired_date, DATE'2014-01-01' admission_date
 FROM dual UNION ALL
 SELECT 6 id, 'Justin' given_name, 'Frog' family_name, 'Master' title,

Chapter 18
INSERT

18-83

 NULL hired_date, DATE'2015-04-22' admission_date
 FROM dual UNION ALL
 SELECT 7 id, 'Lisa' given_name, 'Owl' family_name, 'Dr' title,
 DATE'2015-01-01' hired_date, NULL admission_date
 FROM dual
)
 SELECT * FROM names;

LOCK TABLE
Purpose

Use the LOCK TABLE statement to lock one or more tables, table partitions, or table
subpartitions in a specified mode. This lock manually overrides automatic locking and
permits or denies access to a table or view by other users for the duration of your
operation.

Some forms of locks can be placed on the same table at the same time. Other locks
allow only one lock for a table.

A locked table remains locked until you either commit your transaction or roll it back,
either entirely or to a savepoint before you locked the table.

A lock never prevents other users from querying the table. A query never places a lock
on a table. Readers never block writers and writers never block readers.

See Also:

• Oracle Database Concepts for a complete description of the interaction
of lock modes

• COMMIT

• ROLLBACK

• SAVEPOINT

Prerequisites

The table or view must be in your own schema, or you must have the LOCK ANY TABLE
system privilege, or you must have any object privilege (except the READ object
privilege) on the table or view.

Chapter 18
LOCK TABLE

18-84

Syntax

lock_table::=

LOCK TABLE

schema . table

view

partition_extension_clause

@ dblink

,

IN lockmode MODE

NOWAIT

WAIT integer

;

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

Semantics

schema

Specify the schema containing the table or view. If you omit schema, then Oracle Database
assumes the table or view is in your own schema.

table | view

Specify the name of the table or view to be locked.

If you specify view, then Oracle Database locks the base tables of the view.

If you specify the partition_extension_clause, then Oracle Database first acquires an
implicit lock on the table. The table lock is the same as the lock you specify for the partition or
subpartition, with two exceptions:

• If you specify a SHARE lock for the subpartition, then the database acquires an implicit ROW
SHARE lock on the table.

• If you specify an EXCLUSIVE lock for the subpartition, then the database acquires an
implicit ROW EXCLUSIVE lock on the table.

Chapter 18
LOCK TABLE

18-85

If you specify PARTITION and table is composite-partitioned, then the database
acquires locks on all the subpartitions of the partition.

Restrictions on Locking Tables

The following restrictions apply to locking tables:

• If view is part of a hierarchy, then it must be the root of the hierarchy.

• You can acquire locks on only the existing partitions in an automatic list-partitioned
table. That is, when you specify the following statement, the partition key value
must correspond to a partition that already exists in the table; it cannot correspond
to a partition that might be created on-demand at a later time:

LOCK TABLE ... PARTITION FOR (partition_key_value) ...

dblink

Specify a database link to a remote Oracle Database where the table or view is
located. You can lock tables and views on a remote database only if you are using
Oracle distributed functionality. All tables locked by a LOCK TABLE statement must be on
the same database.

If you omit dblink, then Oracle Database assumes the table or view is on the local
database.

See Also:

"References to Objects in Remote Databases " for information on specifying
database links

lockmode Clause

Specify one of the following modes:

ROW SHARE

ROW SHARE permits concurrent access to the locked table but prohibits users from
locking the entire table for exclusive access. ROW SHARE is synonymous with SHARE
UPDATE, which is included for compatibility with earlier versions of Oracle Database.

ROW EXCLUSIVE

ROW EXCLUSIVE is the same as ROW SHARE, but it also prohibits locking in SHARE mode.
ROW EXCLUSIVE locks are automatically obtained when updating, inserting, or deleting.

SHARE UPDATE

See ROW SHARE.

SHARE

SHARE permits concurrent queries but prohibits updates to the locked table.

SHARE ROW EXCLUSIVE

Chapter 18
LOCK TABLE

18-86

SHARE ROW EXCLUSIVE is used to look at a whole table and to allow others to look at rows in
the table but to prohibit others from locking the table in SHARE mode or from updating rows.

EXCLUSIVE

EXCLUSIVE permits queries on the locked table but prohibits any other activity on it.

NOWAIT

Specify NOWAIT if you want the database to return control to you immediately if the specified
table, partition, or table subpartition is already locked by another user. In this case, the
database returns a message indicating that the table, partition, or subpartition is already
locked by another user.

WAIT

Use the WAIT clause to indicate that the LOCK TABLE statement should wait up to the specified
number of seconds to acquire a DML lock. There is no limit on the value of integer.

If you specify neither NOWAIT nor WAIT, then the database waits indefinitely until the table is
available, locks it, and returns control to you. When the database is executing DDL
statements concurrently with DML statements, a timeout or deadlock can sometimes result.
The database detects such timeouts and deadlocks and returns an error.

See Also:

Oracle Database Administrator's Guide for more information about locking tables

Examples

Locking a Table: Example

The following statement locks the employees table in exclusive mode but does not wait if
another user already has locked the table:

LOCK TABLE employees
 IN EXCLUSIVE MODE
 NOWAIT;

The following statement locks the remote employees table that is accessible through the
database link remote:

LOCK TABLE employees@remote
 IN SHARE MODE;

Chapter 18
LOCK TABLE

18-87

19
SQL Statements: MERGE to UPDATE

This chapter contains the following SQL statements:

• MERGE

• NOAUDIT (Traditional Auditing)

• NOAUDIT (Unified Auditing)

• PURGE

• RENAME

• REVOKE

• ROLLBACK

• SAVEPOINT

• SELECT

• SET CONSTRAINT[S]

• SET ROLE

• SET TRANSACTION

• TRUNCATE CLUSTER

• TRUNCATE TABLE

• UPDATE

MERGE
Purpose

Use the MERGE statement to select rows from one or more sources for update or insertion into
a table or view. You can specify conditions to determine whether to update or insert into the
target table or view.

This statement is a convenient way to combine multiple operations. It lets you avoid multiple
INSERT, UPDATE, and DELETE DML statements.

MERGE is a deterministic statement. You cannot update the same row of the target table
multiple times in the same MERGE statement.

19-1

Note:

In previous releases of Oracle Database, when you created an Oracle Virtual
Private Database policy on an application that included the MERGE INTO
statement, the MERGE INTO statement would be prevented with an ORA-28132:
Merge into syntax does not support security policies error, due to
the presence of the Virtual Private Database policy. Beginning with Oracle
Database 11g Release 2 (11.2.0.2), you can create policies on applications
that include MERGE INTO operations. To do so, in the DBMS_RLS.ADD_POLICY
statement_types parameter, include the INSERT, UPDATE, and DELETE
statements, or just omit the statement_types parameter altogether. Refer to
Oracle Database Security Guide for more information on enforcing policies
on specific SQL statement types.

Prerequisites

You must have the INSERT and UPDATE object privileges on the target table and the
SELECT object privilege on the source objects. To specify the DELETE clause of the
merge_update_clause, you must also have the DELETE object privilege on the target
table or view.

Syntax

merge::=

MERGE

hint

INTO

schema . table

view

t_alias

USING

schema . table

view

(subquery)

t_alias

ON (condition)

merge_update_clause merge_insert_clause error_logging_clause

;

Note:

You must specify at least one of the clauses merge_update_clause or
merge_insert_clause.

(merge_update_clause::=, merge_insert_clause::=, error_logging_clause::=

merge_update_clause::=

Chapter 19
MERGE

19-2

WHEN MATCHED THEN UPDATE SET column =
expr

DEFAULT

,

where_clause DELETE where_clause

merge_insert_clause::=

WHEN NOT MATCHED THEN INSERT

(column

,

)

VALUES (
expr

DEFAULT

,

)

where_clause

where_clause::=

WHERE condition

error_logging_clause::=

LOG ERRORS

INTO

schema .

table (simple_expression)

REJECT LIMIT
integer

UNLIMITED

Semantics

INTO Clause

Use the INTO clause to specify the target table or view you are updating or inserting into. In
order to merge data into a view, the view must be updatable. Refer to "Notes on Updatable
Views" for more information.

Restriction on Target Views

Chapter 19
MERGE

19-3

You cannot specify a target view on which an INSTEAD OF trigger has been defined.

USING Clause

Use the USING clause to specify the source you are updating or inserting from.

ON Clause

Use the ON clause to specify the condition upon which the MERGE operation either
updates or inserts. For each row in the target table for which the search condition is
true, Oracle Database updates the row with corresponding data from the source . If the
condition is not true for any rows, then the database inserts into the target table based
on the corresponding source row.

merge_update_clause

The merge_update_clause specifies the new column values of the target table or view.
Oracle performs this update if the condition of the ON clause is true. If the update
clause is executed, then all update triggers defined on the target table are activated.

Specify the where_clause if you want the database to execute the update operation
only if the specified condition is true. The condition can refer to either the data source
or the target table. If the condition is not true, then the database skips the update
operation when merging the row into the table.

Specify the DELETE where_clause to clean up data in a table while populating or
updating it. The only rows affected by this clause are those rows in the destination
table that are updated by the merge operation. The DELETE WHERE condition evaluates
the updated value, not the original value that was evaluated by the UPDATE SET ...
WHERE condition. If a row of the destination table meets the DELETE condition but is not
included in the join defined by the ON clause, then it is not deleted. Any delete triggers
defined on the target table will be activated for each row deletion.

You can specify this clause by itself or with the merge_insert_clause. If you specify
both, then they can be in either order.

Restrictions on the merge_update_clause

This clause is subject to the following restrictions:

• You cannot update a column that is referenced in the ON condition clause.

• You cannot specify DEFAULT when updating a view.

merge_insert_clause

The merge_insert_clause specifies values to insert into the column of the target table
if the condition of the ON clause is false. If the insert clause is executed, then all insert
triggers defined on the target table are activated. If you omit the column list after the
INSERT keyword, then the number of columns in the target table must match the
number of values in the VALUES clause.

To insert all of the source rows into the table, you can use a constant filter predicate
in the ON clause condition. An example of a constant filter predicate is ON (0=1). Oracle
Database recognizes such a predicate and makes an unconditional insert of all source
rows into the table. This approach is different from omitting the merge_update_clause.
In that case, the database still must perform a join. With constant filter predicate, no
join is performed.

Chapter 19
MERGE

19-4

Specify the where_clause if you want Oracle Database to execute the insert operation only if
the specified condition is true. The condition can refer only to the data source columns.
Oracle Database skips the insert operation for all rows for which the condition is not true.

You can specify the merge_insert_clause by itself or with the merge_update_clause. If you
specify both, then they can be in either order.

Restriction on the merge_insert_clause

You cannot specify DEFAULT when inserting into a view.

error_logging_clause

The error_logging_clause has the same behavior in a MERGE statement as in an INSERT
statement. Refer to the INSERT statement error_logging_clause for more information.

See Also:

"Inserting Into a Table with Error Logging: Example"

Examples

Merging into a Table: Example

The following example uses the bonuses table in the sample schema oe with a default bonus
of 100. It then inserts into the bonuses table all employees who made sales, based on the
sales_rep_id column of the oe.orders table. Finally, the human resources manager decides
that employees with a salary of $8000 or less should receive a bonus. Those who have not
made sales get a bonus of 1% of their salary. Those who already made sales get an increase
in their bonus equal to 1% of their salary. The MERGE statement implements these changes in
one step:

CREATE TABLE bonuses (employee_id NUMBER, bonus NUMBER DEFAULT 100);

INSERT INTO bonuses(employee_id)
 (SELECT e.employee_id FROM hr.employees e, oe.orders o
 WHERE e.employee_id = o.sales_rep_id
 GROUP BY e.employee_id);

SELECT * FROM bonuses ORDER BY employee_id;

EMPLOYEE_ID BONUS
----------- ----------
 153 100
 154 100
 155 100
 156 100
 158 100
 159 100
 160 100
 161 100
 163 100

MERGE INTO bonuses D
 USING (SELECT employee_id, salary, department_id FROM hr.employees
 WHERE department_id = 80) S
 ON (D.employee_id = S.employee_id)

Chapter 19
MERGE

19-5

 WHEN MATCHED THEN UPDATE SET D.bonus = D.bonus + S.salary*.01
 DELETE WHERE (S.salary > 8000)
 WHEN NOT MATCHED THEN INSERT (D.employee_id, D.bonus)
 VALUES (S.employee_id, S.salary*.01)
 WHERE (S.salary <= 8000);

SELECT * FROM bonuses ORDER BY employee_id;

EMPLOYEE_ID BONUS
----------- ----------
 153 180
 154 175
 155 170
 159 180
 160 175
 161 170
 164 72
 165 68
 166 64
 167 62
 171 74
 172 73
 173 61
 179 62

Conditional Insert and Update: Example

The following example conditionally inserts and updates table data by using the MERGE
statement.

The following statements create two tables named people_source and people_target
and populate them with names:

CREATE TABLE people_source (
 person_id INTEGER NOT NULL PRIMARY KEY,
 first_name VARCHAR2(20) NOT NULL,
 last_name VARCHAR2(20) NOT NULL,
 title VARCHAR2(10) NOT NULL
);

CREATE TABLE people_target (
 person_id INTEGER NOT NULL PRIMARY KEY,
 first_name VARCHAR2(20) NOT NULL,
 last_name VARCHAR2(20) NOT NULL,
 title VARCHAR2(10) NOT NULL
);

INSERT INTO people_target VALUES (1, 'John', 'Smith', 'Mr');
INSERT INTO people_target VALUES (2, 'alice', 'jones', 'Mrs');
INSERT INTO people_source VALUES (2, 'Alice', 'Jones', 'Mrs.');
INSERT INTO people_source VALUES (3, 'Jane', 'Doe', 'Miss');
INSERT INTO people_source VALUES (4, 'Dave', 'Brown', 'Mr');

COMMIT;

Chapter 19
MERGE

19-6

The following statement compares the contents of people_target and people_source by
using the person_id column. The values in the people_target table are updated when there
is a match in the people_source table:

MERGE INTO people_target pt
USING people_source ps
ON (pt.person_id = ps.person_id)
WHEN MATCHED THEN UPDATE
 SET pt.first_name = ps.first_name,
 pt.last_name = ps.last_name,
 pt.title = ps.title;

The following statements display the contents of the people_target table and perform a
rollback:

SELECT * FROM people_target;

PERSON_ID FIRST_NAME LAST_NAME TITLE
---------- -------------------- -------------------- ----------
 1 John Smith Mr
 2 Alice Jones Mrs.

ROLLBACK;

This statement compares the contents of the people_target and people_source tables by
using the person_id column. The values in the people_target table are updated only when
there is no match in the people_source table:

MERGE INTO people_target pt
USING people_source ps
ON (pt.person_id = ps.person_id)
WHEN NOT MATCHED THEN INSERT
 (pt.person_id, pt.first_name, pt.last_name, pt.title)
 VALUES (ps.person_id, ps.first_name, ps.last_name, ps.title);

The following statements display the contents of the people_target table and perform a
rollback:

SELECT * FROM people_target;

PERSON_ID FIRST_NAME LAST_NAME TITLE
---------- -------------------- -------------------- ----------
 1 John Smith Mr
 2 alice jones Mrs
 3 Jane Doe Miss
 4 Dave Brown Mr

ROLLBACK;

The following statement compares the contents of the people_target and people_source
tables by using the person_id column and conditionally inserts and updates data in the
people_target table. For each matching row in the people_source table, the values in the

Chapter 19
MERGE

19-7

people_target table are updated by using the values from the people_source table.
Any unmatched rows from the people_source table are added to the people_target
table:

MERGE INTO people_target pt
USING people_source ps
ON (pt.person_id = ps.person_id)
WHEN MATCHED THEN UPDATE
 SET pt.first_name = ps.first_name,
 pt.last_name = ps.last_name,
 pt.title = ps.title
WHEN NOT MATCHED THEN INSERT
 (pt.person_id, pt.first_name, pt.last_name, pt.title)
 VALUES (ps.person_id, ps.first_name, ps.last_name, ps.title);

The following statements display the contents of the people_target table and perform
a rollback:

SELECT * FROM people_target;

PERSON_ID FIRST_NAME LAST_NAME TITLE
---------- ------------- ------------------ ----------
 1 John Smith Mr
 2 Alice Jones Mrs.
 3 Jane Doe Miss
 4 Dave Brown Mr

ROLLBACK;

The following statement compares the people_target and people_source tables by
using the person_id column. When the person_id matches, the corresponding rows in
the people_target table are updated by using values from the people_source table.
The DELETE clause removes all the values in people_target where title is ‘Mrs.’.
When the person_id does not match, the rows from the people_source table are
added to the people_target table. The WHERE clause ensures that only values that
have title as ‘Mr’ are added to the people_target table:

MERGE INTO people_target pt
USING people_source ps
ON (pt.person_id = ps.person_id)
WHEN MATCHED THEN UPDATE
 SET pt.first_name = ps.first_name,
 pt.last_name = ps.last_name,
 pt.title = ps.title
 DELETE where pt.title = 'Mrs.'
WHEN NOT MATCHED THEN INSERT
 (pt.person_id, pt.first_name, pt.last_name, pt.title)
 VALUES (ps.person_id, ps.first_name, ps.last_name, ps.title)
 WHERE ps.title = 'Mr';

Chapter 19
MERGE

19-8

The following statements display the contents of the people_target table and perform a
rollback:

SELECT * FROM people_target;

PERSON_ID FIRST_NAME LAST_NAME TITLE
---------- -------------------- -------------------- ----------
 1 John Smith Mr
 4 Dave Brown Mr

ROLLBACK;

Dealing with Inputs from an Application

Usually applications have to check for the existence of a row first in order to decide whether
to INSERT a new row, or UPDATE an already existing one. The MERGE statement eliminates the
need for such a check by allowing the use of bind variables inside the USING statement as a
source.

The following statements demonstrate the use of bind variables to insert a new row into the
people_target:

var person_id NUMBER;
var first_name VARCHAR2(20);
var last_name VARCHAR2(20);
var title VARCHAR2(10);

exec :person_id := 3;
exec :first_name := 'Gerald';
exec :last_name := 'Walker';
exec :title := 'Mr';

MERGE INTO people_target pt
 USING (SELECT :person_id AS person_id,
 :first_name AS first_name,
 :last_name AS last_name,
 :title AS title FROM DUAL) ps
 ON (pt.person_id = ps.person_id)
WHEN MATCHED THEN UPDATE
SET pt.first_name = ps.first_name,
 pt.last_name = ps.last_name,
 pt.title = ps.title
WHEN NOT MATCHED THEN INSERT
 (pt.person_id, pt.first_name, pt.last_name, pt.title)
 VALUES (ps.person_id, ps.first_name, ps.last_name, ps.title);

The following statements display the contents of the people_target table and perform a
rollback:

SELECT * FROM people_target;

 PERSON_ID FIRST_NAME LAST_NAME TITLE

Chapter 19
MERGE

19-9

---------- -------------------- -------------------- ----------
 1 John Smith Mr
 2 alice jones Mrs
 3 Gerald Walker Mr

ROLLBACK;

The following statements demonstrate the use of bind variables to update an already
existing row in the people_target. Note that the MERGE statement is identical to the
one just used to insert a new row:

var person_id NUMBER;
var first_name VARCHAR2(20);
var last_name VARCHAR2(20);
var title VARCHAR2(10);

exec :person_id := 2;
exec :first_name := 'Alice';
exec :last_name := 'Jones';
exec :title := 'Mrs';

MERGE INTO people_target pt
 USING (SELECT :person_id AS person_id,
 :first_name AS first_name,
 :last_name AS last_name,
 :title AS title FROM DUAL) ps
 ON (pt.person_id = ps.person_id)
WHEN MATCHED THEN UPDATE
SET pt.first_name = ps.first_name,
 pt.last_name = ps.last_name,
 pt.title = ps.title
WHEN NOT MATCHED THEN INSERT
 (pt.person_id, pt.first_name, pt.last_name, pt.title)
 VALUES (ps.person_id, ps.first_name, ps.last_name, ps.title);

The following statements display the contents of the people_target table and perform
a rollback:

SELECT * FROM people_target;

PERSON_ID FIRST_NAME LAST_NAME TITLE
---------- -------------------- -------------------- ----------
 1 John Smith Mr
 2 Alice Jones Mrs

ROLLBACK;

NOAUDIT (Traditional Auditing)
This section describes the NOAUDIT statement for traditional auditing, which is the
same auditing functionality used in releases earlier than Oracle Database 12c.

Chapter 19
NOAUDIT (Traditional Auditing)

19-10

Beginning with Oracle Database 12c, Oracle introduces unified auditing, which provides a
full set of enhanced auditing features. For backward compatibility, traditional auditing is still
supported. However, Oracle recommends that you plan the migration of your existing audit
settings to the new unified audit policy syntax. For new audit requirements, Oracle
recommends that you use the new unified auditing. Traditional auditing may be desupported
in a future major release.

See Also:

NOAUDIT (Unified Auditing) for a description of the NOAUDIT statement for unified
auditing

Purpose

Use the NOAUDIT statement to stop auditing operations previously enabled by the AUDIT
statement.

The NOAUDIT statement must have the same syntax as the previous AUDIT statement. Further,
it reverses the effects only of that particular statement. For example, suppose one AUDIT
statement A enables auditing for a specific user. A second statement B enables auditing for
all users. A NOAUDIT statement C to disable auditing for all users reverses statement B.
However, statement C leaves statement A in effect and continues to audit the user that
statement A specified.

See Also:

AUDIT (Traditional Auditing)

Prerequisites

To stop auditing of SQL statements, you must have the AUDIT SYSTEM system privilege.

To stop auditing of schema objects, you must be the owner of the object on which you stop
auditing or you must have the AUDIT ANY system privilege. In addition, if the object you chose
for auditing is a directory, then even if you created it, you must have the AUDIT ANY system
privilege.

To specify the CONTAINER clause, you must be connected to a multitenant container database
(CDB). To specify CONTAINER = ALL, the current container must be the root and you must have
the commonly granted AUDIT SYSTEM privilege in order to stop auditing for the issuances of a
SQL statement, or the commonly granted AUDIT ANY privilege in order to stop auditing for the
operations on a schema object. To specify CONTAINER = CURRENT, the current container must
be a pluggable database (PDB) and you must have the locally granted AUDIT SYSTEM privilege
in order to stop auditing the issuances of a SQL statement, or the locally granted AUDIT ANY
privilege in order to stop auditing operations on a schema object.

Chapter 19
NOAUDIT (Traditional Auditing)

19-11

Syntax

noaudit::=

NOAUDIT

audit_operation_clause

auditing_by_clause

audit_schema_object_clause

NETWORK

DIRECT_PATH LOAD

auditing_by_clause

WHENEVER

NOT

SUCCESSFUL

CONTAINER =
CURRENT

ALL

;

(audit_operation_clause::=, auditing_by_clause::=, audit_schema_object_clause::=)

audit_operation_clause::=

sql_statement_shortcut

ALL

ALL STATEMENTS

,

system_privilege

ALL PRIVILEGES

,

auditing_by_clause::=

BY user

,

audit_schema_object_clause::=

sql_operation

,

ALL
auditing_on_clause

Chapter 19
NOAUDIT (Traditional Auditing)

19-12

auditing_on_clause::=

ON

schema .

object

DIRECTORY directory_name

MINING MODEL

schema .

model

SQL TRANSLATION PROFILE

schema .

profile

DEFAULT

Semantics

audit_operation_clause

Use the audit_operation_clause to stop auditing of a particular SQL statement.

statement_option

For sql_statement_shortcut, specify the shortcut for the SQL statements for which auditing
is to be stopped. Refer to Table 12-1 and Table 12-2 for a list of the SQL statement shortcuts
and the SQL statements they audit.

ALL

Specify ALL to stop auditing of all statement options currently being audited because of an
earlier AUDIT ALL ... statement. You cannot use this clause to reverse an earlier AUDIT ALL
STATEMENTS ... statement.

ALL STATEMENTS

Specify ALL STATEMENTS to reverse an earlier AUDIT ALL STATEMENTS ... statement. You
cannot use this clause to reverse an earlier AUDIT ALL ... statement.

system_privilege

For system_privilege, specify the system privilege for which auditing is to be stopped. Refer
to Table 18-1 for a list of the system privileges and the statements they authorize.

ALL PRIVILEGES

Specify ALL PRIVILEGES to stop auditing of all system privileges currently being audited.

auditing_by_clause

Use the auditing_by_clause to stop auditing only for SQL statements issued by the
specified users in their subsequent sessions. If you omit this clause, then Oracle Database
stops auditing for all users' statements, except for the situation described for WHENEVER
SUCCESSFUL.

audit_schema_object_clause

Use the audit_schema_object_clause to stop auditing of a particular database object.

Chapter 19
NOAUDIT (Traditional Auditing)

19-13

sql_operation

For sql_operation, specify the type of operation for which auditing is to be stopped on
the object specified in the ON clause. Refer to Table 12-3 for a list of these options.

ALL

Specify ALL as a shortcut equivalent to specifying all SQL operations applicable for the
type of object.

auditing_on_clause

The auditing_on_clause lets you specify the particular schema object for which
auditing is to be stopped.

• For object, specify the object name of a table, view, sequence, stored procedure,
function, or package, materialized view, or library. If you do not qualify object with
schema, then Oracle Database assumes the object is in your own schema. Refer to
AUDIT (Traditional Auditing) for information on auditing specific schema objects.

• The DIRECTORY clause lets you specify the name of the directory on which auditing
is to be stopped.

• The SQL TRANSLATION PROFILE clause lets you specify the SQL translation profile
on which auditing is to be stopped.

• Specify DEFAULT to remove the specified object options as default object options
for subsequently created objects.

NETWORK

Use this clause to discontinue auditing of database link usage and logins.

DIRECT_PATH LOAD

Use this clause to discontinue auditing of SQL*Loader direct path loads.

WHENEVER [NOT] SUCCESSFUL

Specify WHENEVER SUCCESSFUL to stop auditing only for SQL statements and operations
on schema objects that complete successfully.

Specify WHENEVER NOT SUCCESSFUL to stop auditing only for SQL statements and
operations that result in Oracle Database errors.

If you omit this clause, then the database stops auditing for all statements or
operations, regardless of success or failure.

CONTAINER Clause

Use the CONTAINER clause to specify the scope of the NOAUDIT command.

• Specify CONTAINER = CURRENT to stop auditing in the PDB to which you are
connected. If you specify the auditing_by_clause, then user must be a common
user or local user in the current PDB. If you specify the auditing_on_clause, then
the objects must be local objects in the current PDB.

• Specify CONTAINER = ALL to stop auditing across the entire CDB. If you specify the
auditing_by_clause, then user must be a common user. If you do not specify the
auditing_by_clause, then auditing is stopped for all common users and all local

Chapter 19
NOAUDIT (Traditional Auditing)

19-14

users in each PDB. If you specify the auditing_on_clause, then the objects must be
common objects.

If you omit this clause, then CONTAINER = CURRENT is the default.

Examples

Stop Auditing of SQL Statements Related to Roles: Example

If you have chosen auditing for every SQL statement that creates or drops a role, then you
can stop auditing of such statements by issuing the following statement:

NOAUDIT ROLE;

Stop Auditing of Updates or Queries on Objects Owned by a Particular User: Example

If you have chosen auditing for any statement that queries or updates any table issued by the
users hr and oe, then you can stop auditing for queries by hr by issuing the following
statement:

NOAUDIT SELECT TABLE BY hr;

The preceding statement stops auditing only queries by hr, so the database continues to
audit queries and updates by oe as well as updates by hr.

Stop Auditing of Statements Authorized by a Particular Object Privilege: Example

To stop auditing on all statements that are authorized by DELETE ANY TABLE system privilege,
issue the following statement:

NOAUDIT DELETE ANY TABLE;

Stop Auditing of Queries on a Particular Object: Example

If you have chosen auditing for every SQL statement that queries the employees table in the
schema hr, then you can stop auditing for such queries by issuing the following statement:

NOAUDIT SELECT
 ON hr.employees;

Stop Auditing of Queries that Complete Successfully: Example

You can stop auditing for queries that complete successfully by issuing the following
statement:

NOAUDIT SELECT
 ON hr.employees
 WHENEVER SUCCESSFUL;

This statement stops auditing only for successful queries. Oracle Database continues to audit
queries resulting in Oracle Database errors.

NOAUDIT (Unified Auditing)
This section describes the NOAUDIT statement for unified auditing. This type of auditing is
new beginning with Oracle Database 12c and provides a full set of enhanced auditing
features. Refer to Oracle Database Security Guide for more information on unified auditing.

Chapter 19
NOAUDIT (Unified Auditing)

19-15

Purpose

Use the NOAUDIT statement to:

• Disable a unified audit policy for all users or for specified users

• Exclude the values of context attributes from audit records

Changes made to the audit policy become effective immediately in the current session
and in all active sessions without re-login.

See Also:

• AUDIT (Unified Auditing)

• CREATE AUDIT POLICY (Unified Auditing)

• ALTER AUDIT POLICY (Unified Auditing)

• DROP AUDIT POLICY (Unified Auditing)

Prerequisites

You must have the AUDIT SYSTEM system privilege or the AUDIT_ADMIN role.

If you are connected to a multitenant container database (CDB), then to disable a
common unified audit policy, the current container must be the root and you must have
the commonly granted AUDIT SYSTEM privilege or the AUDIT_ADMIN common role. To
disable a local unified audit policy, the current container must be the container in which
the audit policy was created and you must have the commonly granted AUDIT SYSTEM
privilege or the AUDIT_ADMIN common role, or you must have the locally granted AUDIT
SYSTEM privilege or the AUDIT_ADMIN local role in the container.

To specify the NOAUDIT CONTEXT ... statement when connected to a CDB, you must
have the commonly granted AUDIT SYSTEM privilege or the AUDIT_ADMIN common role,
or you must have the locally granted AUDIT SYSTEM privilege or the AUDIT_ADMIN local
role in the current session's container.

Syntax

unified_noaudit::=

NOAUDIT

POLICY policy

BY user

,

by_users_with_roles WHENEVER

NOT

SUCCESSFUL

CONTEXT NAMESPACE namespace ATTRIBUTES attribute

,

,

BY user

,

Chapter 19
NOAUDIT (Unified Auditing)

19-16

by_users_with_roles::=

BY USERS WITH GRANTED ROLES role

,

Semantics

policy

Specify the name of the unified audit policy you want to disable.

You can find descriptions of all unified audit policies by querying the
AUDIT_UNIFIED_POLICIES view and descriptions of all enabled unified audit policies by
querying the AUDIT_UNIFIED_ENABLED_POLICIES view.

See Also:

Oracle Database Reference for more information on the AUDIT_UNIFIED_POLICIES
and AUDIT_UNIFIED_ENABLED_POLICIES views

CONTEXT Clause

Specify the CONTEXT clause to exclude the values of context attributes in audit records.

• For namespace, specify the context namespace.

• For attribute, specify one or more context attributes whose values you want to exclude
from audit records.

If you specify the CONTEXT clause when the current container is the root of a CDB, then the
values of context attributes will be included in audit records only for events executed in the
root. If you specify the optional BY clause, then user must be a common user.

If you specify the CONTEXT clause when the current container is a pluggable database (PDB),
then the values of context attributes will be included in audit records only for events executed
in that PDB. If you specify the optional BY clause, then user must be a common user or a
local user in that PDB.

You can find the application context attributes that are configured to be captured in the audit
trail by querying the AUDIT_UNIFIED_CONTEXTS view.

See Also:

Oracle Database Reference for more information on the AUDIT_UNIFIED_CONTEXTS
view

BY

You can specify the BY clause for the NOAUDIT POLICY and NOAUDIT CONTEXT statements.

Chapter 19
NOAUDIT (Unified Auditing)

19-17

NOAUDIT POLICY ... BY

The behavior of the BY clause depends on whether policy is enabled for all users or
specific users.

• If policy is enabled for all users, then you can disable policy for all users by
omitting the BY clause. If you specify the BY clause, then the NOAUDIT POLICY
statement will have no effect.

• If policy is enabled for one or more users (using the AUDIT POLICY ... BY ...
statement), then you can:

– Disable policy for one or more of those users by specifying the BY clause
followed by the users for whom you want policy disabled

– Completely disable policy by specifying the BY clause followed by all of the
users for whom policy is enabled

If you do not specify the BY clause, then the NOAUDIT POLICY statement will have
no effect.

• If policy is enabled for all users except specific users (using the AUDIT POLICY ...
EXCEPT ... statement), then you can disable policy for all users by omitting the BY
clause. If you specify the BY clause, then the NOAUDIT POLICY statement will have
no effect.

If policy is a common unified audit policy, then user must be a common user. If
policy is a local unified audit policy, then user must be a common user or a local user
in the container to which you are connected.

NOAUDIT CONTEXT ... BY

The behavior of the BY clause depends on whether attribute is configured to be
included in audit records for all users or specific users.

• If attribute is configured to be included in audit records for all users, then you
can exclude attribute from audit records for all users by omitting the BY clause. If
you specify the BY clause, then the NOAUDIT CONTEXT statement will have no effect.

• If attribute is configured to be included in audit records for specific users, then
you can exclude attribute for one or more of those users by specifying the BY
clause followed by the users for whom you want attribute excluded. If you do not
specify the BY clause, then the NOAUDIT CONTEXT statement will have no effect.

by_users_with_roles

Specify this clause to disable policy only for users who have been directly granted the
specified roles. If you subsequently grant one of the roles to an additional user, then
the policy is automatically disabled for that user.

When you are connected to a CDB, if policy is a common unified audit policy, then
role must be a common role. If policy is a local unified audit policy, then role must be
a common role or a local role in the container to which you are connected.

Examples

The following examples disable unified audit policies that were created in the CREATE
AUDIT POLICY "Examples" and enabled in the AUDIT "Examples".

Chapter 19
NOAUDIT (Unified Auditing)

19-18

Disabling a Unified Audit Policy for All Users: Example

Assume that unified audit policy table_pol is enabled for all users. The following statement
disables table_pol for all users:

NOAUDIT POLICY table_pol;

The following statement returns no rows, which verifies that table_pol is disabled for all
users:

SELECT *
 FROM audit_unified_enabled_policies
 WHERE policy_name = 'TABLE_POL';

Disabling a Unified Audit Policy for Specific Users: Example

Assume that unified audit policy dml_pol is enabled for users hr and sh, as shown by the
following query:

SELECT policy_name, enabled_option, entity_name
 FROM audit_unified_enabled_policies
 WHERE policy_name = 'DML_POL'
 ORDER BY entity_name;

POLICY_NAME ENABLED_OPTION ENTITY_NAME
----------- ----------- ---------
DML_POL BY HR
DML_POL BY SH

The following statement disables dml_pol for user hr:

NOAUDIT POLICY dml_pol BY hr;

The following statement verifies that dml_pol is now enabled for only user sh:

SELECT policy_name, enabled_option, entity_name
 FROM audit_unified_enabled_policies
 WHERE policy_name = 'DML_POL';

POLICY_NAME ENABLED_OPTION ENTITY_NAME
----------- ----------- ---------
DML_POL BY SH

The following statement disables dml_pol for user sh:

NOAUDIT POLICY dml_pol BY sh;

The following statement returns no rows, which verifies that dml_pol is disabled for all users:

SELECT *
 FROM audit_unified_enabled_policies
 WHERE policy_name = 'DML_POL';

Excluding Values of Context Attributes in Audit Records: Example

The following statement instructs the database to exclude the values of namespace USERENV
attributes CURRENT_USER and DB_NAME from all audit records for user hr:

NOAUDIT CONTEXT NAMESPACE userenv
 ATTRIBUTES current_user, db_name
 BY hr;

Chapter 19
NOAUDIT (Unified Auditing)

19-19

PURGE
Purpose

Use the PURGE statement to:

• Remove a table or index from your recycle bin and release all of the space
associated with the object

• Remove part or all of a dropped tablespace or tablespace set from the recycle bin

• Remove the entire recycle bin

Note:

You cannot roll back a PURGE statement, nor can you recover an object after it
is purged.

To see the contents of your recycle bin, query the USER_RECYCLEBIN data dictionary
view. You can use the RECYCLEBIN synonym instead. The following two statements
return the same rows:

SELECT * FROM RECYCLEBIN;
SELECT * FROM USER_RECYCLEBIN;

See Also:

• Oracle Database Administrator's Guide for information on the recycle bin
and naming conventions for objects in the recycle bin

• FLASHBACK TABLE for information on retrieving dropped tables from
the recycle bin

• Oracle Database Reference for information on using the RECYCLEBIN
initialization parameter to control whether dropped tables go into the
recycle bin

Prerequisites

To purge a table, the table must reside in your own schema or you must have the DROP
ANY TABLE system privilege, or you must have the SYSDBA system privilege.

To purge an index, the index must reside in your own schema or you must have the
DROP ANY INDEX system privilege, or you must have the SYSDBA system privilege.

To purge a tablespace or tablespace set, you must have the DROP TABLESPACE system
privilege, or you must have the SYSDBA system privilege.

To purge a tablespace set, you must also be connected to a shard catalog database
as an SDB user.

Chapter 19
PURGE

19-20

To perform the PURGE DBA_RECYCLEBIN operation, you must have the SYSDBA or PURGE
DBA_RECYCLEBIN system privilege.

Syntax

purge::=

PURGE

TABLE table

INDEX index

TABLESPACE tablespace

USER user

TABLESPACE SET tablespace_set

USER user

RECYCLEBIN

DBA_RECYCLEBIN

;

Semantics

TABLE or INDEX

Specify the name of the table or index in the recycle bin that you want to purge. You can
specify either the original user-specified name or the system-generated name Oracle
Database assigned to the object when it was dropped.

• If you specify the user-specified name, and if the recycle bin contains more than one
object of that name, then the database purges the object that has been in the recycle bin
the longest.

• System-generated recycle bin object names are unique. Therefore, if you specify the
system-generated name, then the database purges that specified object.

When the database purges a table, all table partitions, LOBs and LOB partitions, indexes,
and other dependent objects of that table are also purged.

TABLESPACE or TABLESPACE SET

Use this clause to purge all the objects residing in the specified tablespace or tablespace set
from the recycle bin.

USER user

Use this clause to reclaim space in a tablespace or tablespace set for a specified user. This
operation is useful when a particular user is running low on disk quota for the specified
tablespace or tablespace set.

RECYCLEBIN

Use this clause to purge the current user's recycle bin. Oracle Database will remove all
objects from the user's recycle bin and release all space associated with objects in the
recycle bin.

Chapter 19
PURGE

19-21

DBA_RECYCLEBIN

This clause is valid only if you have the SYSDBA or PURGE DBA_RECYCLEBIN system
privilege. It lets you remove all objects from the system-wide recycle bin, and is
equivalent to purging the recycle bin of every user. This operation is useful, for
example, before backward migration.

Examples

Remove a File From Your Recycle Bin: Example

The following statement removes the table test from the recycle bin. If more than one
version of test resides in the recycle bin, then Oracle Database removes the version
that has been there the longest:

PURGE TABLE test;

To determine system-generated name of the table you want removed from your
recycle bin, issue a SELECT statement on your recycle bin. Using that object name, you
can remove the table by issuing a statement similar to the following statement. (The
system-generated name will differ from the one shown in the example.)

PURGE TABLE RB$$33750$TABLE$0;

Remove the Contents of Your Recycle Bin: Example

To remove the entire contents of your recycle bin, issue the following statement:

PURGE RECYCLEBIN;

RENAME
Purpose

Note:

You cannot roll back a RENAME statement.

Use the RENAME statement to rename a table, view, sequence, or private synonym.

• Oracle Database automatically transfers integrity constraints, indexes, and grants
on the old object to the new object.

• Oracle Database invalidates all objects that depend on the renamed object, such
as views, synonyms, and stored procedures and functions that refer to a renamed
table.

See Also:

CREATE SYNONYM and DROP SYNONYM

Chapter 19
RENAME

19-22

Prerequisites

The object must be in your own schema.

Syntax

rename::=

RENAME old_name TO new_name ;

Semantics

old_name

Specify the name of an existing table, view, sequence, or private synonym.

new_name

Specify the new name to be given to the existing object. The new name must not already be
used by another schema object in the same namespace and must follow the rules for naming
schema objects.

Restrictions on Renaming Objects

Renaming objects is subject to the following restrictions:

• You cannot rename a public synonym. Instead, drop the public synonym and then re-
create the public synonym with the new name.

• You cannot rename a type synonym that has any dependent tables or dependent valid
user-defined object types.

See Also:

"Database Object Naming Rules "

Examples

Renaming a Database Object: Example

The following example uses a copy of the sample table hr.departments. To change the
name of table departments_new to emp_departments, issue the following statement:

RENAME departments_new TO emp_departments;

You cannot use this statement directly to rename columns. However, you can rename a
column using the ALTER TABLE ... rename_column_clause.

See Also:

rename_column_clause

Chapter 19
RENAME

19-23

Another way to rename a column is to use the RENAME statement together with the
CREATE TABLE statement with AS subquery. This method is useful if you are changing
the structure of a table rather than only renaming a column. The following statements
re-create the sample table hr.job_history, renaming a column from department_id
to dept_id:

CREATE TABLE temporary
 (employee_id, start_date, end_date, job_id, dept_id)
AS SELECT
 employee_id, start_date, end_date, job_id, department_id
FROM job_history;

DROP TABLE job_history;

RENAME temporary TO job_history;

Any integrity constraints defined on table job_history will be lost in the preceding
example. You will have to redefine them on the new job_history table using an ALTER
TABLE statement.

REVOKE
Purpose

Use the REVOKE statement to:

• Revoke system privileges from users and roles

• Revoke roles from users, roles, and program units.

• Revoke object privileges for a particular object from users and roles

Note on Oracle Automatic Storage Management

A user authenticated AS SYSASM can use this statement to revoke the system privileges
SYSASM, SYSOPER, and SYSDBA from a user in the Oracle ASM password file of the
current node.

Note on Editionable Objects

A REVOKE operation to revoke object privileges on an editionable object actualizes the
object in the current edition. See Oracle Database Development Guide for more
information about editions and editionable objects.

See Also:

• GRANT for information on granting system privileges and roles

• Table 18-2 for a listing of the object privileges for each type of object

Prerequisites

To revoke a system privilege, you must have been granted the privilege with the
ADMIN OPTION. You can revoke any privilege if you have the GRANT ANY PRIVILEGE
system privilege.

Chapter 19
REVOKE

19-24

To revoke a role from a user or another role, you must have been directly granted the role
with the ADMIN OPTION or you must have created the role. You can revoke any role if you have
the GRANT ANY ROLE system privilege.

To revoke a role from a program unit, you must be the user SYS or you must be the schema
owner of the program unit.

To revoke an object privilege, one of the following conditions must be met:

• You must previously have granted the object privilege to the user or role.

• You must have the GRANT ANY OBJECT PRIVILEGE system privilege. In this case, you can
revoke any object privilege that was granted by the object owner or on behalf of the
owner by a user with the GRANT ANY OBJECT PRIVILEGE. However, you cannot revoke an
object privilege that was granted by way of a WITH GRANT OPTION grant.

• You can revoke privileges on an object if you have the GRANT ANY object privilege. This
does not apply to SYS objects. The ANY keyword in reference to a system privilege means
that the user can perform the privilege on any objects owned by any user except for SYS.

See Also:

"Revoke Operations that Use GRANT ANY OBJECT PRIVILEGE: Example"

The REVOKE statement can revoke only privileges and roles that were previously granted
directly with a GRANT statement. You cannot use this statement to revoke:

• Privileges or roles not granted to the revokee

• Roles or object privileges granted through the operating system

• Privileges or roles granted to the revokee through roles

To specify the CONTAINER clause, you must be connected to a multitenant container database
(CDB). To specify CONTAINER = ALL, the current container must be the root.

Syntax

revoke::=

REVOKE

revoke_system_privilege

revoke_object_privileges

CONTAINER =
CURRENT

ALL

revoke_roles_from_programs

;

(revoke_system_privileges::=, revoke_object_privileges::=, revoke_roles_from_programs::=)

Chapter 19
REVOKE

19-25

revoke_system_privileges::=

system_privilege

role

ALL PRIVILEGES

,

FROM revokee_clause

(revokee_clause::=)

revoke_object_privileges::=

object_privilege

ALL

PRIVILEGES

,

on_object_clause

FROM revokee_clause

CASCADE CONSTRAINTS

FORCE

(on_object_clause::=, revokee_clause::=)

revokee_clause::=

user

role

PUBLIC

,

on_object_clause::=

Chapter 19
REVOKE

19-26

ON

schema .

object

USER user

,

DIRECTORY directory_name

EDITION edition_name

MINING MODEL

schema .

mining_model_name

JAVA
SOURCE

RESOURCE

schema .

object

SQL TRANSLATION PROFILE

schema .

profile

revoke_roles_from_programs::=

role

,

ALL
FROM program_unit

,

program_unit::=

FUNCTION

schema .

function_name

PROCEDURE

schema .

procedure_name

PACKAGE

schema .

package_name

Semantics

revoke_system_privileges

Use these clauses to revoke system privileges.

system_privilege

Specify the system privilege to be revoked. Refer to Table 18-1 for a list of the system
privileges.

If you revoke a system privilege from a user, then the database removes the privilege from
the user's privilege domain. Effective immediately, the user cannot exercise the privilege.

If you revoke a system privilege from a role, then the database removes the privilege from
the privilege domain of the role. Effective immediately, users with the role enabled cannot

Chapter 19
REVOKE

19-27

exercise the privilege. Also, other users who have been granted the role and
subsequently enable the role cannot exercise the privilege.

See Also:

"Revoking a System Privilege from a User: Example" and "Revoking a
System Privilege from a Role: Example"

If you revoke a system privilege from PUBLIC, then the database removes the privilege
from the privilege domain of each user who has been granted the privilege through
PUBLIC. Effective immediately, such users can no longer exercise the privilege.
However, the privilege is not revoked from users who have been granted the privilege
directly or through roles.

Oracle Database provides a shortcut for specifying all system privileges at once:
Specify ALL PRIVILEGES to revoke all the system privileges listed in Table 18-1.

Restriction on Revoking System Privileges

A system privilege cannot appear more than once in the list of privileges to be
revoked.

role

Specify the role to be revoked.

If you revoke a role from a user, then the database makes the role unavailable to the
user. If the role is currently enabled for the user, then the user can continue to exercise
the privileges in the role's privilege domain as long as it remains enabled. However,
the user cannot subsequently enable the role.

If you revoke a role from another role, then the database removes the privilege
domain of the revoked role from the privilege domain of the revokee role. Users who
have been granted and have enabled the revokee role can continue to exercise the
privileges in the privilege domain of the revoked role as long as the revokee role
remains enabled. However, other users who have been granted the revokee role and
subsequently enable it cannot exercise the privileges in the privilege domain of the
revoked role.

See Also:

"Revoking a Role from a User: Example" and "Revoking a Role from a Role:
Example"

If you revoke a role from PUBLIC, then the database makes the role unavailable to all
users who have been granted the role through PUBLIC. Any user who has enabled the
role can continue to exercise the privileges in its privilege domain as long as it remains
enabled. However, users cannot subsequently enable the role. The role is not revoked
from users who have been granted the role directly or through other roles.

Restriction on Revoking System Roles

Chapter 19
REVOKE

19-28

A system role cannot appear more than once in the list of roles to be revoked. For information
on the predefined roles, refer to Oracle Database Security Guide.

revokee_clause

Use the revokee_clause to specify the users or roles from which the system privilege, role, or
object privilege is to be revoked.

PUBLIC

Specify PUBLIC to revoke the privileges or roles from all users.

revoke_object_privileges

Use these clauses to revoke object privileges.

object_privilege

Specify the object privilege to be revoked. The object privileges, categorized by the type of
object to which they apply, are described in Table 18-2.

Note:

Each privilege authorizes some operation. By revoking a privilege, you prevent the
revokee from performing that operation. However, multiple users may grant the
same privilege to the same user, role, or PUBLIC. To remove the privilege from the
grantee's privilege domain, all grantors must revoke the privilege. If even one
grantor does not revoke the privilege, then the grantee can still exercise the
privilege by virtue of that grant.

If you revoke an object privilege from a user, then the database removes the privilege from
the user's privilege domain. Effective immediately, the user cannot exercise the privilege.

• If that user has granted that privilege to other users or roles, then the database also
revokes the privilege from those other users or roles.

• If that user's schema contains a procedure, function, or package that contains SQL
statements that exercise the privilege, then the procedure, function, or package can no
longer be executed.

• If that user's schema contains a view on that object, then the database invalidates the
view.

• If you revoke the REFERENCES object privilege from a user who has exercised the privilege
to define referential integrity constraints, then you must specify the CASCADE CONSTRAINTS
clause.

If you revoke an object privilege from a role, then the database removes the privilege from
the privilege domain of the role. Effective immediately, users with the role enabled cannot
exercise the privilege. Other users who have been granted the role cannot exercise the
privilege after enabling the role.

If you revoke an object privilege from PUBLIC, then the database removes the privilege from
the privilege domain of each user who has been granted the privilege through PUBLIC.
Effective immediately, all such users are restricted from exercising the privilege. However, the
privilege is not revoked from users who have been granted the privilege directly or through
roles.

Chapter 19
REVOKE

19-29

ALL [PRIVILEGES]

Specify ALL to revoke all object privileges that you have granted to the revokee. (The
keyword PRIVILEGES is provided for semantic clarity and is optional.)

If no privileges have been granted on the object, then the database takes no action
and does not return an error.

Restriction on Revoking Object Privileges

A privilege cannot appear more than once in the list of privileges to be revoked. A
user, a role, or PUBLIC cannot appear more than once in the FROM clause.

See Also:

"Revoking an Object Privilege from a User: Example", "Revoking Object
Privileges from PUBLIC: Example", and "Revoking All Object Privileges from
a User: Example"

CASCADE CONSTRAINTS

This clause is relevant only if you revoke the REFERENCES privilege or ALL [PRIVILEGES].
It drops any referential integrity constraints that the revokee has defined using the
REFERENCES privilege, which might have been granted either explicitly or implicitly
through a grant of ALL [PRIVILEGES].

See Also:

"Revoking an Object Privilege with CASCADE CONSTRAINTS: Example"

FORCE

Specify FORCE to revoke the EXECUTE object privilege on user-defined type objects with
table or type dependencies. You must use FORCE to revoke the EXECUTE object privilege
on user-defined type objects with table dependencies.

If you specify FORCE, then all privileges are revoked, all dependent objects are marked
INVALID, data in dependent tables becomes inaccessible, and all dependent function-
based indexes are marked UNUSABLE. Regranting the necessary type privilege will
revalidate the table.

See Also:

Oracle Database Concepts for detailed information about type dependencies
and user-defined object privileges

on_object_clause

The on_object_clause identifies the objects on which privileges are to be revoked.

Chapter 19
REVOKE

19-30

object

Specify the object on which the object privileges are to be revoked. This object can be:

• A table, view, sequence, procedure, stored function, package, or materialized view

• A synonym for a table, view, sequence, procedure, stored function, package, materialized
view, or user-defined type

• A library, indextype, or user-defined operator

If you do not qualify object with schema, then the database assumes the object is in your own
schema.

See Also:

"Revoking an Object Privilege on a Sequence from a User: Example"

If you revoke the READ or SELECT object privilege on the containing table or materialized view
of a materialized view, whether the privilege was granted with or without the GRANT OPTION,
then the database invalidates the materialized view.

If you revoke the READ or SELECT object privilege on any of the master tables of a materialized
view, whether the privilege was granted with or without the GRANT OPTION, then the database
invalidates both the materialized view and its containing table or materialized view.

ON USER

Specify the database user you want to revoke privileges from.

See Also:

"Revoking an Object Privilege on a User from a User: Example"

ON DIRECTORY

Specify the name of the directory object on which privileges are to be revoked. You cannot
qualify directory_name with a schema name.

See Also:

CREATE DIRECTORY and "Revoking an Object Privilege on a Directory from a
User: Example"

ON EDITION

Specify the name of the edition on which the USE object privilege is to be revoked. You cannot
qualify edition_name with a schema name.

ON MINING MODEL

Chapter 19
REVOKE

19-31

Specify the name of the mining model on which privileges are to be revoked. If you do
not qualify mining_model_name with schema, then the database assumes that the
mining model is in your own schema.

ON JAVA SOURCE | RESOURCE

Specify the name of the Java source or resource schema object on which privileges
are to be revoked. If you do not qualify object with schema, then the database
assumes that the object is in your own schema.

ON SQL TRANSLATION PROFILE

Specify the name of the SQL translation profile on which privileges are to be revoked.
If you do not qualify profile with schema, then the database assumes the profile is in
your own schema.

revoke_roles_from_programs

Use this clause to revoke code based access control (CBAC) roles from program
units.

role

Specify the role you want to revoke.

ALL

Specify ALL to revoke all roles that are granted to the program unit.

program_unit

Specify the program unit from which the role is to be revoked. You can specify a
PL/SQL function, procedure, or package. If you do not specify schema, then Oracle
Database assumes the function, procedure, or package is in your own schema.

See Also:

Oracle Database Security Guide for more information on revoking CBAC
roles from program units

CONTAINER Clause

If the current container is a pluggable database (PDB):

• Specify CONTAINER = CURRENT to revoke a locally granted system privilege, object
privilege, or role from a local user, common user, local role, or common role. The
privilege or role is revoked from the user or role only in the current PDB. This
clause does not revoke privileges granted with CONTAINER = ALL.

If the current container is the root:

• Specify CONTAINER = CURRENT to revoke a locally granted system privilege, object
privilege, or role from a common user or common role. The privilege or role is
revoked from the user or role only in the root. This clause does not revoke
privileges granted with CONTAINER = ALL.

Chapter 19
REVOKE

19-32

• Specify CONTAINER = ALL to revoke a commonly granted system privilege, object privilege
on a common object, or role from a common user or common role. The privilege or role is
revoked from the user or role across the entire CDB. This clause can revoke only a
privilege or role granted with CONTAINER = ALL from the specified common user or
common role. This clause does not revoke privileges granted locally with CONTAINER =
CURRENT. However, any locally granted privileges that depend on the commonly granted
privilege being revoked are also revoked.

If you omit this clause, then CONTAINER = CURRENT is the default.

Examples

Revoking a System Privilege from a User: Example

The following statement revokes the DROP ANY TABLE system privilege from the users hr and
oe:

REVOKE DROP ANY TABLE
 FROM hr, oe;

The users hr and oe can no longer drop tables in schemas other than their own.

Revoking a Role from a User: Example

The following statement revokes the role dw_manager from the user sh:

REVOKE dw_manager
 FROM sh;

The user sh can no longer enable the dw_manager role.

Revoking a System Privilege from a Role: Example

The following statement revokes the CREATE TABLESPACE system privilege from the
dw_manager role:

REVOKE CREATE TABLESPACE
 FROM dw_manager;

Enabling the dw_manager role no longer allows users to create tablespaces.

Revoking a Role from a Role: Example

To revoke the role dw_user from the role dw_manager, issue the following statement:

REVOKE dw_user
 FROM dw_manager;

The dw_user role privileges are no longer granted to dw_manager.

Revoking an Object Privilege from a User: Example

You can grant DELETE, INSERT, READ, SELECT, and UPDATE privileges on the table orders to the
user hr with the following statement:

GRANT ALL
 ON orders TO hr;

To revoke the DELETE privilege on orders from hr, issue the following statement:

Chapter 19
REVOKE

19-33

REVOKE DELETE
 ON orders FROM hr;

Revoking All Object Privileges from a User: Example

To revoke the remaining privileges on orders that you granted to hr, issue the
following statement:

REVOKE ALL
 ON orders FROM hr;

Revoking Object Privileges from PUBLIC: Example

You can grant SELECT and UPDATE privileges on the view emp_details_view to all users
by granting the privileges to the role PUBLIC:

GRANT SELECT, UPDATE
 ON emp_details_view TO public;

The following statement revokes UPDATE privilege on emp_details_view from all users:

REVOKE UPDATE
 ON emp_details_view FROM public;

Users can no longer update the emp_details_view view, although users can still query
it. However, if you have also granted the UPDATE privilege on emp_details_view to any
users, either directly or through roles, then these users retain the privilege.

Revoking an Object Privilege on a User from a User: Example

You can grant the user hr the INHERIT PRIVILEGES privilege on user sh with the
following statement:

GRANT INHERIT PRIVILEGES ON USER sh TO hr;

To revoke the INHERIT PRIVILEGES privilege on user sh from user hr, issue the
following statement:

REVOKE INHERIT PRIVILEGES ON USER sh FROM hr;

Revoking an Object Privilege on a Sequence from a User: Example

You can grant the user oe the SELECT privilege on the departments_seq sequence in
the schema hr with the following statement:

GRANT SELECT
 ON hr.departments_seq TO oe;

To revoke the SELECT privilege on departments_seq from oe, issue the following
statement:

REVOKE SELECT
 ON hr.departments_seq FROM oe;

However, if the user hr has also granted SELECT privilege on departments to sh, then
sh can still use departments by virtue of hr's grant.

Revoking an Object Privilege with CASCADE CONSTRAINTS: Example

You can grant to oe the privileges REFERENCES and UPDATE on the employees table in
the schema hr with the following statement:

Chapter 19
REVOKE

19-34

GRANT REFERENCES, UPDATE
 ON hr.employees TO oe;

The user oe can exercise the REFERENCES privilege to define a constraint in his or her own
dependent table that refers to the employees table in the schema hr:

CREATE TABLE dependent
(dependno NUMBER,
 dependname VARCHAR2(10),
 employee NUMBER
 CONSTRAINT in_emp REFERENCES hr.employees(employee_id));

You can revoke the REFERENCES privilege on hr.employees from oe by issuing the following
statement that contains the CASCADE CONSTRAINTS clause:

REVOKE REFERENCES
 ON hr.employees
 FROM oe
 CASCADE CONSTRAINTS;

Revoking oe's REFERENCES privilege on hr.employees causes Oracle Database to drop the
in_emp constraint, because oe required the privilege to define the constraint.

However, if oe has also been granted the REFERENCES privilege on hr.employees by a user
other than you, then the database does not drop the constraint. oe still has the privilege
necessary for the constraint by virtue of the other user's grant.

Revoking an Object Privilege on a Directory from a User: Example

You can revoke the READ object privilege on directory bfile_dir from hr by issuing the
following statement:

REVOKE READ ON DIRECTORY bfile_dir FROM hr;

Revoke Operations that Use GRANT ANY OBJECT PRIVILEGE: Example

Suppose that the database administrator has granted GRANT ANY OBJECT PRIVILEGE to user
sh. Now suppose that user hr grants the update privilege on the employees table to oe:

CONNECT hr
GRANT UPDATE ON employees TO oe WITH GRANT OPTION;

This grant gives user oe the right to pass the object privilege along to another user:

CONNECT oe
GRANT UPDATE ON hr.employees TO pm;

User sh, who has the GRANT ANY OBJECT PRIVILEGE, can now act on behalf of user hr and
revoke the update privilege from user oe, because oe was granted the privilege by hr:

CONNECT sh
REVOKE UPDATE ON hr.employees FROM oe;

User sh cannot revoke the update privilege from user pm explicitly, because pm received the
grant neither from the object owner (hr), nor from sh, nor from another user with GRANT ANY
OBJECT PRIVILEGE, but from user oe. However, the preceding statement cascades, removing
all privileges that depend on the one revoked. Therefore the object privilege is implicitly
revoked from pm as well.

Chapter 19
REVOKE

19-35

ROLLBACK
Purpose

Use the ROLLBACK statement to undo work done in the current transaction or to
manually undo the work done by an in-doubt distributed transaction.

Note:

Oracle recommends that you explicitly end transactions in application
programs using either a COMMIT or ROLLBACK statement. If you do not
explicitly commit the transaction and the program terminates abnormally,
then Oracle Database rolls back the last uncommitted transaction.

See Also:

• Oracle Database Concepts for information on transactions

• Oracle Database Heterogeneous Connectivity User's Guide for
information on distributed transactions

• SET TRANSACTION for information on setting characteristics of the
current transaction

• COMMIT and SAVEPOINT

Prerequisites

To roll back your current transaction, no privileges are necessary.

To manually roll back an in-doubt distributed transaction that you originally committed,
you must have the FORCE TRANSACTION system privilege. To manually roll back an in-
doubt distributed transaction originally committed by another user, you must have the
FORCE ANY TRANSACTION system privilege.

Syntax

rollback::=

ROLLBACK

WORK

TO

SAVEPOINT

savepoint

FORCE string

;

Chapter 19
ROLLBACK

19-36

Semantics

WORK

The keyword WORK is optional and is provided for SQL standard compatibility.

TO SAVEPOINT Clause

Specify the savepoint to which you want to roll back the current transaction. If you omit this
clause, then the ROLLBACK statement rolls back the entire transaction.

Using ROLLBACK without the TO SAVEPOINT clause performs the following operations:

• Ends the transaction

• Undoes all changes in the current transaction

• Erases all savepoints in the transaction

• Releases any transaction locks

See Also:

SAVEPOINT

Using ROLLBACK with the TO SAVEPOINT clause performs the following operations:

• Rolls back just the portion of the transaction after the savepoint. It does not end the
transaction.

• Erases all savepoints created after that savepoint. The named savepoint is retained, so
you can roll back to the same savepoint multiple times. Prior savepoints are also
retained.

• Releases all table and row locks acquired since the savepoint. Other transactions that
have requested access to rows locked after the savepoint must continue to wait until the
transaction is committed or rolled back. Other transactions that have not already
requested the rows can request and access the rows immediately.

Restriction on In-doubt Transactions

You cannot manually roll back an in-doubt transaction to a savepoint.

FORCE Clause

Specify FORCE to manually roll back an in-doubt distributed transaction. The transaction is
identified by the string containing its local or global transaction ID. To find the IDs of such
transactions, query the data dictionary view DBA_2PC_PENDING.

A ROLLBACK statement with a FORCE clause rolls back only the specified transaction. Such a
statement does not affect your current transaction.

Chapter 19
ROLLBACK

19-37

See Also:

Oracle Database Administrator's Guide for more information on distributed
transactions and rolling back in-doubt transactions

Examples

Rolling Back Transactions: Examples

The following statement rolls back your entire current transaction:

ROLLBACK;

The following statement rolls back your current transaction to savepoint banda_sal:

ROLLBACK TO SAVEPOINT banda_sal;

See "Creating Savepoints: Example" for a full version of the preceding example.

The following statement manually rolls back an in-doubt distributed transaction:

ROLLBACK WORK
 FORCE '25.32.87';

SAVEPOINT
Purpose

Use the SAVEPOINT statement to create a name for a system change number (SCN), to
which you can later roll back.

See Also:

• Oracle Database Concepts for information on savepoints.

• ROLLBACK for information on rolling back transactions

• SET TRANSACTION for information on setting characteristics of the
current transaction

Prerequisites

None.

Syntax

savepoint::=

SAVEPOINT savepoint ;

Chapter 19
SAVEPOINT

19-38

Semantics

savepoint

Specify the name of the savepoint to be created.

Savepoint names must be distinct within a given transaction. If you create a second
savepoint with the same identifier as an earlier savepoint, then the earlier savepoint is
erased. After a savepoint has been created, you can either continue processing, commit your
work, roll back the entire transaction, or roll back to the savepoint.

Examples

Creating Savepoints: Example

To update the salary for Banda and Greene in the sample table hr.employees, check that the
total department salary does not exceed 314,000, then reenter the salary for Greene:

UPDATE employees
 SET salary = 7000
 WHERE last_name = 'Banda';
SAVEPOINT banda_sal;

UPDATE employees
 SET salary = 12000
 WHERE last_name = 'Greene';
SAVEPOINT greene_sal;

SELECT SUM(salary) FROM employees;

ROLLBACK TO SAVEPOINT banda_sal;

UPDATE employees
 SET salary = 11000
 WHERE last_name = 'Greene';

COMMIT;

SELECT
Purpose

Use a SELECT statement or subquery to retrieve data from one or more tables, object tables,
views, object views, materialized views, analytic views, or hierarchies.

If part or all of the result of a SELECT statement is equivalent to an existing materialized view,
then Oracle Database may use the materialized view in place of one or more tables specified
in the SELECT statement. This substitution is called query rewrite. It takes place only if cost
optimization is enabled and the QUERY_REWRITE_ENABLED parameter is set to TRUE. To
determine whether query rewrite has occurred, use the EXPLAIN PLAN statement.

Chapter 19
SELECT

19-39

See Also:

• SQL Queries and Subqueries for general information on queries and
subqueries

• Oracle Database Data Warehousing Guide for more information on
materialized views, query rewrite, and analytic views and hierarchies

• If you are querying JSON data see Query JSON Data

• If you are querying XML data see Querying XML Content Stored in
Oracle XML DB

• EXPLAIN PLAN

Prerequisites

For you to select data from a table, materialized view, analytic view, or hierarchy, the
object must be in your own schema or you must have the READ or SELECT privilege on
the table, materialized view, analytic view, or hierarchy.

For you to select rows from the base tables of a view:

• The object must be in your own schema or you must have the READ or SELECT
privilege on it, and

• Whoever owns the schema containing the object must have the READ or SELECT
privilege on the base tables.

The READ ANY TABLE or SELECT ANY TABLE system privilege also allows you to select
data from any table, materialized view, analytic view, or hierarchy, or the base table of
any materialized view, analytic view, or hierarchy.

To specify the FOR UPDATE clause, the preceding prerequisites apply with the following
exception: The READ and READ ANY TABLE privileges, where mentioned, do not allow you
to specify the FOR UPDATE clause.

To issue an Oracle Flashback Query using the flashback_query_clause, you must
have the READ or SELECT privilege on the objects in the select list. In addition, either
you must have FLASHBACK object privilege on the objects in the select list, or you must
have FLASHBACK ANY TABLE system privilege.

Syntax

select::=

subquery

for_update_clause

;

(subquery::=, for_update_clause::=)

subquery::=

Chapter 19
SELECT

19-40

query_block

subquery

UNION

ALL

INTERSECT

MINUS

subquery

(subquery)

order_by_clause row_limiting_clause

(query_block::=, order_by_clause::=, row_limiting_clause::=)

query_block::=

with_clause

SELECT

hint

DISTINCT

UNIQUE

ALL

select_list

FROM

table_reference

join_clause

(join_clause)

inline_analytic_view

,

where_clause hierarchical_query_clause

group_by_clause model_clause window_clause

(with_clause::=, select_list::=, table_reference::=, join_clause::=, inline_analytic_view,
where_clause::=, hierarchical_query_clause::=, group_by_clause::=, model_clause::=)

with_clause::=

WITH

plsql_declarations

subquery_factoring_clause

subav_factoring_clause

,

Note:

You cannot specify only the WITH keyword. You must specify at least one of the
clauses plsql_declarations, subquery_factoring_clause, or
subav_factoring_clause.

Chapter 19
SELECT

19-41

plsql_declarations::=

function_declaration

procedure_declaration

subquery_factoring_clause::=

query_name

(c_alias

,

)

AS (subquery)

search_clause cycle_clause

search_clause::=

SEARCH
DEPTH

BREADTH
FIRST BY c_alias

ASC

DESC

NULLS FIRST

NULLS LAST

,

SET ordering_column

cycle_clause::=

CYCLE c_alias

,

SET cycle_mark_c_alias TO cycle_value DEFAULT no_cycle_value

subav_factoring_clause::=

subav_name ANALYTIC VIEW AS (sub_av_clause)

sub_av_clause::=

USING

schema .

base_av_name

hierarchies_clause filter_clauses add_meas_clause

Chapter 19
SELECT

19-42

hierarchies_clause::=

HIERARCHIES (

attr_dim_alias .

hier_alias

,

)

filter_clauses::=

FILTER FACT (filter_clause

,

)

filter_clause::=

hier_ids TO predicate

hier_ids::=

hier_id

hier_id

,

hier_id::=

MEASURES

dim_alias . hier_alias

add_meas_clause::=

ADD MEASURES (cube_meas

,

)

cube_meas::=

meas_name

base_meas_clause

calc_meas_clause

Chapter 19
SELECT

19-43

base_meas_clause::=

FACT FOR MEASURE base_meas meas_aggregate_clause

calc_meas_clause::=

meas_name AS (expression)

select_list::=

*

query_name

schema .
table

view

materialized view

t_alias

.*

expr

AS

c_alias

,

table_reference::=

ONLY (query_table_expression)

query_table_expression

flashback_query_clause

pivot_clause

unpivot_clause

row_pattern_clause

containers_clause

shards_clause

t_alias

(query_table_expression::=, flashback_query_clause::=, pivot_clause::=,
unpivot_clause::=, row_pattern_clause::=, containers_clause::=)

Chapter 19
SELECT

19-44

flashback_query_clause::=

VERSIONS

BETWEEN
SCN

TIMESTAMP

PERIOD FOR valid_time_column BETWEEN

expr

MINVALUE
AND

expr

MAXVALUE

AS OF

SCN

TIMESTAMP
expr

PERIOD FOR valid_time_column expr

query_table_expression::=

query_name

schema .

table

modified_external_table

partition_extension_clause

@ dblink

view

materialized view

@ dblink

hierarchy

analytic_view

HIERARCHIES (

attr_dim .

hierarchy

,

)

inline_external_table

sample_clause

LATERAL

(subquery

subquery_restriction_clause

)

table_collection_expression

(analytic_view, hierarchy, subquery_restriction_clause::=, table_collection_expression::=)

inline_external_table::=

EXTERNAL ((column_definition

,

) inline_external_table_properties)

inline_external_table_properties::=

TYPE access_driver_type

external_table_data_props

REJECT LIMIT
integer

UNLIMITED

Chapter 19
SELECT

19-45

modified_external_table::=

EXTERNAL MODIFY modify_external_table_properties

modify_external_table_properties::=

DEFAULT DIRECTORY directory LOCATION (

directory :

’ location_specifier ’

,

)

ACCESS PARAMETERS

BADFILE filename

LOGFILE filename

DISCARDFILE filename
REJECT LIMIT

integer

UNLIMITED

pivot_clause::=

PIVOT

XML

(aggregate_function (expr)

AS

alias

,

pivot_for_clause pivot_in_clause)

pivot_for_clause::=

FOR

column

(column

,

)

pivot_in_clause::=

IN (

expr

(expr

,

)

AS

alias

,

subquery

ANY

,

)

Chapter 19
SELECT

19-46

unpivot_clause::=

UNPIVOT

INCLUDE

EXCLUDE
NULLS

(

column

(column

,

)

pivot_for_clause unpivot_in_clause)

unpivot_in_clause::=

IN (

column

(column

,

)

AS

literal

(literal

,

)

,

)

sample_clause::=

SAMPLE

BLOCK

(sample_percent)

SEED (seed_value)

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

subquery_restriction_clause::=

Chapter 19
SELECT

19-47

WITH

READ ONLY

CHECK OPTION

CONSTRAINT constraint

table_collection_expression::=

TABLE (collection_expression)

(+)

containers_clause::=

CONTAINERS (

schema . table

view
)

shards_clause::=

SHARDS (

schema . table

view
)

join_clause::=

table_reference

inner_cross_join_clause

outer_join_clause

cross_outer_apply_clause

(inner_cross_join_clause::=, outer_join_clause::=, cross_outer_apply_clause::=)

inner_cross_join_clause::=

INNER

JOIN table_reference

ON condition

USING (column

,

)

CROSS

NATURAL

INNER JOIN table_reference

Chapter 19
SELECT

19-48

(table_reference::=)

outer_join_clause::=

query_partition_clause NATURAL

outer_join_type JOIN

table_reference

query_partition_clause

ON condition

USING (column

,

)

(query_partition_clause::=, outer_join_type::=, table_reference::=)

query_partition_clause::=

PARTITION BY

expr

,

(expr

,

)

outer_join_type::=

FULL

LEFT

RIGHT

OUTER

cross_outer_apply_clause::=

CROSS

OUTER
APPLY

table_reference

collection_expression

(table_reference::=, query_partition_clause::=)

inline_analytic_view

ANALYTIC VIEW sub_av_clause

AS

inline_av_alias

Chapter 19
SELECT

19-49

(sub_av_clause::=)

where_clause::=

WHERE condition

hierarchical_query_clause::=

CONNECT BY

NOCYCLE

condition

START WITH condition

START WITH condition CONNECT BY

NOCYCLE

condition

(condition can be any condition as described in Conditions)

group_by_clause::=

GROUP BY

expr

rollup_cube_clause

grouping_sets_clause

,

HAVING condition

(rollup_cube_clause::=, grouping_sets_clause::=)

rollup_cube_clause::=

ROLLUP

CUBE
(grouping_expression_list)

(grouping_expression_list::=)

grouping_sets_clause::=

GROUPING SETS (
rollup_cube_clause

grouping_expression_list

,

)

Chapter 19
SELECT

19-50

(rollup_cube_clause::=, grouping_expression_list::=)

grouping_expression_list::=

expression_list

,

expression_list::=

expr

,

(

expr

,

)

model_clause::=

MODEL

cell_reference_options return_rows_clause reference_model

main_model

(cell_reference_options::=, return_rows_clause::=, reference_model::=, main_model::=)

cell_reference_options::=

IGNORE

KEEP

NAV UNIQUE

DIMENSION

SINGLE REFERENCE

return_rows_clause::=

RETURN

UPDATED

ALL

ROWS

reference_model::=

REFERENCE reference_model_name ON (subquery) model_column_clauses

cell_reference_options

Chapter 19
SELECT

19-51

(model_column_clauses::=, cell_reference_options::=)

main_model::=

MAIN main_model_name

model_column_clauses

cell_reference_options

model_rules_clause

(model_column_clauses::=, cell_reference_options::=, model_rules_clause::=)

model_column_clauses::=

PARTITION BY (expr

c_alias

,

)

DIMENSION BY (expr

c_alias

,

) MEASURES (expr

c_alias

,

)

model_rules_clause::=

RULES

UPDATE

UPSERT

ALL
AUTOMATIC

SEQUENTIAL
ORDER

model_iterate_clause

(

UPDATE

UPSERT

ALL

cell_assignment

order_by_clause

= expr

,

)

(model_iterate_clause::=, cell_assignment::=, order_by_clause::=)

model_iterate_clause::=

ITERATE (number)

UNTIL (condition)

Chapter 19
SELECT

19-52

cell_assignment::=

measure_column [

condition

expr

single_column_for_loop

,

multi_column_for_loop

]

(single_column_for_loop::=, multi_column_for_loop::=)

single_column_for_loop::=

FOR dimension_column

IN (
literal

,

subquery
)

LIKE pattern

FROM literal TO literal
INCREMENT

DECREMENT
literal

multi_column_for_loop::=

FOR (dimension_column

,

) IN (
(literal

,

)

,

subquery
)

order_by_clause::=

ORDER

SIBLINGS

BY

expr

position

c_alias

ASC

DESC

NULLS FIRST

NULLS LAST

,

Chapter 19
SELECT

19-53

window_clause::=

WINDOW

window_name AS window_specification

,

window_specification::=

existing_window_name query_partition_clause order_by_clause windowing_clause

row_limiting_clause::=

OFFSET offset
ROW

ROWS

FETCH
FIRST

NEXT

rowcount

percent PERCENT ROW

ROWS

ONLY

WITH TIES

for_update_clause::=

FOR UPDATE

OF

schema . table

view
.

column

,

NOWAIT

WAIT integer

SKIP LOCKED

row_pattern_clause::=

Chapter 19
SELECT

19-54

MATCH_RECOGNIZE (

row_pattern_partition_by row_pattern_order_by row_pattern_measures

row_pattern_rows_per_match row_pattern_skip_to

PATTERN (row_pattern)

row_pattern_subset_clause

DEFINE row_pattern_definition_list)

(row_pattern_partition_by::=, row_pattern_order_by::=, row_pattern_measures::=,
row_pattern_rows_per_match::=, row_pattern_skip_to::=, row_pattern::=,
row_pattern_subset_clause::=, row_pattern_definition_list::=)

row_pattern_partition_by::=

PARTITION BY column

,

row_pattern_order_by::=

ORDER BY column

,

row_pattern_measures::=

MEASURES row_pattern_measure_column

,

row_pattern_measure_column::=

expr AS c_alias

row_pattern_rows_per_match::=

ONE ROW

ALL ROWS

PER MATCH

Chapter 19
SELECT

19-55

row_pattern_skip_to::=

AFTER MATCH SKIP

TO NEXT

PAST LAST

ROW

TO

FIRST

LAST

variable_name

row_pattern::=

row_pattern |

row_pattern_term

row_pattern_term::=

row_pattern_term

row_pattern_factor

row_pattern_factor::=

row_pattern_primary

row_pattern_quantifier

row_pattern_primary::=

variable_name

$

^

(

row_pattern

)

{ – row_pattern – }

row_pattern_permute

row_pattern_permute::=

PERMUTE (row_pattern

,

)

Chapter 19
SELECT

19-56

row_pattern_quantifier::=

*

?

+

?

?

?

{

unsigned_integer

,

unsigned_integer

}

?

{ unsigned_integer }

row_pattern_subset_clause::=

SUBSET row_pattern_subset_item

,

row_pattern_subset_item::=

variable_name = (variable_name

,

)

row_pattern_definition_list::=

row_pattern_definition

,

row_pattern_definition::=

variable_name AS condition

row_pattern_rec_func::=

row_pattern_classifier_func

row_pattern_match_num_func

row_pattern_navigation_func

row_pattern_aggregate_func

Chapter 19
SELECT

19-57

(row_pattern_classifier_func::=, row_pattern_match_num_func::=,
row_pattern_navigation_func::=, row_pattern_aggregate_func::=)

row_pattern_classifier_func::=

CLASSIFIER ()

row_pattern_match_num_func::=

MATCH_NUMBER ()

row_pattern_navigation_func::=

row_pattern_nav_logical

row_pattern_nav_physical

row_pattern_nav_compound

(row_pattern_nav_logical::=, row_pattern_nav_physical::=,
row_pattern_nav_compound::=)

row_pattern_nav_logical::=

RUNNING

FINAL FIRST

LAST
(expr

, offset

)

row_pattern_nav_physical::=

PREV

NEXT
(expr

, offset

)

row_pattern_nav_compound::=

PREV

NEXT
(

RUNNING

FINAL FIRST

LAST
(expr

, offset

)

, offset

)

Chapter 19
SELECT

19-58

row_pattern_aggregate_func::=

RUNNING

FINAL

aggregate_function

Semantics

with_clause

Use the with_clause to define the following:

• PL/SQL procedures and functions (using the plsql_declarations clause)

• Subquery blocks (using subquery_factoring_clause or subav_factoring_clause, or
both)

plsql_declarations

The plsql_declarations clause lets you declare and define PL/SQL functions and
procedures. You can then reference the PL/SQL functions in the query in which you specify
this clause, as well as its subqueries, if any. For the purposes of name resolution, these
function names have precedence over schema-level stored functions.

If the query in which you specify this clause is not a top-level SELECT statement, then the
following rules apply to the top-level SQL statement that contains the query:

• If the top-level statement is a SELECT statement, then it must have either a WITH
plsql_declarations clause or the WITH_PLSQL hint.

• If the top-level statement is a DELETE, MERGE, INSERT, or UPDATE statement, then it must
have the WITH_PLSQL hint.

The WITH_PLSQL hint only enables you to specify the WITH plsql_declarations clause within
the statement. It is not an optimizer hint.

See Also:

• Oracle Database PL/SQL Language Reference for syntax and restrictions for
function_declaration and procedure_declaration.

• "Using a PL/SQL Function in the WITH Clause: Examples"

subquery_factoring_clause

The subquery_factoring_clause lets you assign a name (query_name) to a subquery block.
You can then reference the subquery block multiple places in the query by specifying
query_name. Oracle Database optimizes the query by treating the query_name as either an
inline view or as a temporary table. The query_name is subject to the same naming
conventions and restrictions as database schema objects. Refer to "Database Object Naming
Rules " for information on database object names.

Chapter 19
SELECT

19-59

The column aliases following the query_name and the set operators separating multiple
subqueries in the AS clause are valid and required for recursive subquery factoring.
The search_clause and cycle_clause are valid only for recursive subquery factoring
but are not required. See "Recursive Subquery Factoring".

You can specify this clause in any top-level SELECT statement and in most types of
subqueries. The query name is visible to the main query and to all subsequent
subqueries. For recursive subquery factoring, the query name is even visible to the
subquery that defines the query name itself.

Recursive Subquery Factoring

If a subquery_factoring_clause refers to its own query_name in the subquery that
defines it, then the subquery_factoring_clause is said to be recursive. A recursive
subquery_factoring_clause must contain two query blocks: the first is the anchor
member and the second is the recursive member. The anchor member must appear
before the recursive member, and it cannot reference query_name. The anchor
member can be composed of one or more query blocks combined by the set
operators: UNION ALL, UNION, INTERSECT or MINUS. The recursive member must follow
the anchor member and must reference query_name exactly once. You must combine
the recursive member with the anchor member using the UNION ALL set operator.

The number of column aliases following WITH query_name and the number of columns
in the SELECT lists of the anchor and recursive query blocks must be the same.

The recursive member cannot contain any of the following elements:

• The DISTINCT keyword or a GROUP BY clause

• The model_clause

• An aggregate function. However, analytic functions are permitted in the select list.

• Subqueries that refer to query_name.

• Outer joins that refer to query_name as the right table.

In previous releases of Oracle Database, the recursive member of a recursive WITH
clause ran serially regardless of the parallelism of the entire query (also known as the
top-level SELECT statement). Beginning with Oracle Database 12c Release 2 (12.2),
the recursive member runs in parallel if the optimizer determines that the top-level
SELECT statement can be executed in parallel.

search_clause

Use the SEARCH clause to specify an ordering for the rows.

• Specify BREADTH FIRST BY if you want sibling rows returned before any child rows
are returned.

• Specify DEPTH FIRST BY if you want child rows returned before any siblings rows
are returned.

• Sibling rows are ordered by the columns listed after the BY keyword.

• The c_alias list following the SEARCH keyword must contain column names from
the column alias list for query_name.

• The ordering_column is automatically added to the column list for the query
name. The query that selects from query_name can include an ORDER BY on

Chapter 19
SELECT

19-60

ordering_column to return the rows in the order that was specified by the SEARCH clause.

cycle_clause

Use the CYCLE clause to mark cycles in the recursion.

• The c_alias list following the CYCLE keyword must contain column names from the
column alias list for query_name. Oracle Database uses these columns to detect a cycle.

• cycle_value and no_cycle_value should be character strings of length 1.

• If a cycle is detected, then the cycle mark column specified by cycle_mark_c_alias for
the row causing the cycle is set to the value specified for cycle_value. The recursion will
then stop for this row. That is, it will not look for child rows for the offending row, but it will
continue for other noncyclic rows.

• If no cycles are found, then the cycle mark column is set to the default value specified for
no_cycle_value.

• The cycle mark column is automatically added to the column list for the query_name.

• A row is considered to form a cycle if one of its ancestor rows has the same values for
the cycle columns.

If you omit the CYCLE clause, then the recursive WITH clause returns an error if cycles are
discovered. In this case, a row forms a cycle if one of its ancestor rows has the same values
for all the columns in the column alias list for query_name that are referenced in the WHERE
clause of the recursive member.

Restrictions on Subquery Factoring

This clause is subject to the following restrictions:

• You can specify only one subquery_factoring_clause in a single SQL statement. Any
query_name defined in the subquery_factoring_clause can be used in any subsequent
named query block in the subquery_factoring_clause.

• In a compound query with set operators, you cannot use the query_name for any of the
component queries, but you can use the query_name in the FROM clause of any of the
component queries.

• You cannot specify duplicate names in the column alias list for query_name.

• The name used for the ordering_column has to be different from the name used for
cycle_mark_c_alias.

• The ordering_column and cycle mark column names cannot already be in the column
alias list for query_name.

See Also:

• Oracle Database Concepts for information about inline views

• "Subquery Factoring: Example"

• "Recursive Subquery Factoring: Examples"

Chapter 19
SELECT

19-61

subav_factoring_clause

With the subav_factoring_clause, you can define a transitory analytic view that filters
fact data prior to aggregation or adds calculated measures to a query of an analytic
view. The subav_name argument assigns a name to the transitory analytic view. You
can then reference the transitory analytic view multiple places in the query by
specifying subav_name. The subav_name is subject to the same naming conventions
and restrictions as database schema objects. Refer to "Database Object Naming
Rules " for information on database object names.

You can specify this clause in any top-level SELECT statement and in most types of
subqueries. The query name is visible to the main query and to all subsequent
subqueries.

The sub_av_clause argument defines a transitory analytic view.

sub_av_clause

With the USING keyword, specify the name of an analytic view, which may be a
transitory analytic view previously defined in the WITH clause or it may be a persistent
analytic view. A persistent analytic view is defined in a CREATE ANALYTIC VIEW
statement. If the analytic view is a persistent one, then the current user must have
select access on it.

See Also:

Analytic Views: Examples

hierarchies_clause

The hierarchies_clause specifies the hierarchies of the base analytic view that the
results of the transitory analytic view are dimensioned by. With the HIERARCHIES
keyword, specify the alias of one or more hierarchies of the base analytic view.

If you do not specify a HIERARCHIES clause, then the default hierarchies of the base
analytic view are used.

filter_clauses

You may specify a given hier_alias in at most one filter_clause.

filter_clause

The filter clause applies the specified predicate condition to the fact table, which
reduces the number of rows returned from the table before aggregation of the
measure values. The predicate may contain any SQL row function or operation. The
predicate may refer to any attribute of the specified hierarchy or it may refer to a
measure of the analytic view if you specify the MEASURES keyword.

For example, the following clause restricts the aggregation of measure values to those
for the first and second quarters of every year of a time hierarchy.

FILTER FACT (time_hier TO quarter_of_year IN (1,2))

Chapter 19
SELECT

19-62

If you then select from the transitory analytic view the sales for the years 2000 and 2001, the
values returned are the aggregated values of the first and second quarters only.

An example of specifying a predicate for a measure in the filter clause is the following.

FILTER FACT (MEASURES TO sales BETWEEN 100 AND 200)

attr_dim_alias

The alias of an attribute dimension in the base analytic view. The
USER_ANALYTIC_VIEW_DIMENSIONS view contains the aliases of the attribute dimensions in an
analytic view.

hier_alias

The alias of a hierarchy in the base analytic view. The USER_ANALYTIC_VIEW_HIERS view
contains the aliases of the hierarchies in an analytic view.

add_meas_clause

With the ADD MEASURES keywords, you may add calculated measures to the transitory analytic
view.

calc_meas_clause

Specify a name for the calculated measure and an analytic view expression that specifies
values for the calculated measure. The analytic view expression can be any valid
calc_meas_expression as described in Analytic View Expressions. For example, the
following adds a calculated measure named “share_sales.”

ADD MEASURES (share_sales AS (SHARE_OF(sales HIERARCHY time_hier PARENT)))

hint

Specify a comment that passes instructions to the optimizer on choosing an execution plan
for the statement.

See Also:

"Hints " for the syntax and description of hints

DISTINCT | UNIQUE

Specify DISTINCT or UNIQUE if you want the database to return only one copy of each set of
duplicate rows selected. These two keywords are synonymous. Duplicate rows are those with
matching values for each expression in the select list.

Restrictions on DISTINCT and UNIQUE Queries

These types of queries are subject to the following restrictions:

• When you specify DISTINCT or UNIQUE, the total number of bytes in all select list
expressions is limited to the size of a data block minus some overhead. This size is
specified by the initialization parameter DB_BLOCK_SIZE.

Chapter 19
SELECT

19-63

• You cannot specify DISTINCT if the select_list contains LOB columns.

ALL

Specify ALL if you want the database to return all rows selected, including all copies of
duplicates. The default is ALL.

select_list

The select_list lets you specify the columns you want to retrieve from the database.

* (all-column wildcard)

Specify the all-column wildcard (asterisk) to select all columns, excluding
pseudocolumns and INVISIBLE columns, from all tables, views, or materialized views
listed in the FROM clause. The columns are returned in the order indicated by the
COLUMN_ID column of the *_TAB_COLUMNS data dictionary view for the table, view, or
materialized view.

If you are selecting from a table rather than from a view or a materialized view, then
columns that have been marked as UNUSED by the ALTER TABLE SET UNUSED statement
are not selected.

See Also:

ALTER TABLE, "Simple Query Examples", and "Selecting from the DUAL
Table: Example"

query_name.*

Specify query_name followed by a period and the asterisk to select all columns from
the specified subquery block. For query_name, specify a subquery block name already
specified in the subquery_factoring_clause. You must have specified the
subquery_factoring_clause in order to specify query_name in the select_list. If you
specify query_name in the select_list, then you also must specify query_name in the
query_table_expression (FROM clause).

table.* | view.* | materialized view.*

Specify the object name followed by a period and the asterisk to select all columns
from the specified table, view, or materialized view. Oracle Database returns a set of
columns in the order in which the columns were specified when the object was
created. A query that selects rows from two or more tables, views, or materialized
views is a join.

You can use the schema qualifier to select from a table, view, or materialized view in a
schema other than your own. If you omit schema, then the database assumes the table,
view, or materialized view is in your own schema.

See Also:

"Joins "

Chapter 19
SELECT

19-64

t_alias .*

Specify a correlation name (alias) followed by a period and the asterisk to select all columns
from the object with that correlation name specified in the FROM clause of the same subquery.
The object can be a table, view, materialized view, or subquery. Oracle Database returns a
set of columns in the order in which the columns were specified when the object was created.
A query that selects rows from two or more objects is a join.

expr

Specify an expression representing the information you want to select. A column name in this
list can be qualified with schema only if the table, view, or materialized view containing the
column is qualified with schema in the FROM clause. If you specify a member method of an
object type, then you must follow the method name with parentheses even if the method
takes no arguments.

The expression can also hold a scalar value that can be return values of PL/SQL functions,
subqueries that return a single value per row, and SQL macros.

c_alias

Specify an alias for the column expression. Oracle Database will use this alias in the column
heading of the result set. The AS keyword is optional. The alias effectively renames the select
list item for the duration of the query. The alias can be used in the order_by_clause but not
other clauses in the query.

See Also:

• Oracle Database Data Warehousing Guide for information on using the expr AS
c_alias syntax with the UNION ALL operator in queries of multiple materialized
views

• "About SQL Expressions " for the syntax of expr

Restrictions on the Select List

The select list is subject to the following restrictions:

• If you also specify a group_by_clause in this statement, then this select list can contain
only the following types of expressions:

– Constants

– Aggregate functions and the functions USER, UID, and SYSDATE
– Expressions identical to those in the group_by_clause. If the group_by_clause is in a

subquery, then all columns in the select list of the subquery must match the GROUP BY
columns in the subquery. If the select list and GROUP BY columns of a top-level query
or of a subquery do not match, then the statement results in ORA-00979.

– Expressions involving the preceding expressions that evaluate to the same value for
all rows in a group

• You can select a rowid from a join view only if the join has one and only one key-
preserved table. The rowid of that table becomes the rowid of the view.

Chapter 19
SELECT

19-65

See Also:

Oracle Database Administrator's Guide for information on key-preserved
tables

• If two or more tables have some column names in common, and if you are
specifying a join in the FROM clause, then you must qualify column names with
names of tables or table aliases.

FROM Clause

The FROM clause lets you specify the objects from which data is selected.

You can invoke a polymorphic table function (PTF) in the query block of the FROM
clause like other existing table functions. A PTF is a table function whose operands
can have more than one type.

With Oracle Database 21c, you can write SQL table macros and use them inside the
FROM clause, where it would be legal to call a PL/SQL function. SQL table macros are
expressions, typically used in a FROM clause, to act as a sort of polymorphic
(parameterized) views. You must define these macro functions in PL/SQL and call
them from SQL for them to function as macros.

See Also:

• PL/SQL Optimization and Tuning

• Defining SQL Macros

ONLY

The ONLY clause applies only to views. Specify ONLY if the view in the FROM clause is a
view belonging to a hierarchy and you do not want to include rows from any of its
subviews.

query_table_expression

Use the query_table_expression clause to identify a subquery block, table, view,
materialized view, analytic view, hierarchy, partition, or subpartition, or to specify a
subquery that identifies the objects. In order to specify a subquery block, you must
have specified the subquery block name (query_name in the
subquery_factoring_clause or subav_name in the subav_factoring_clause).

The analytic view in the expression may be a transitory analytic view defined in the
with_clause or a persistent analytic view.

See Also:

"Using Subqueries: Examples"

Chapter 19
SELECT

19-66

LATERAL

Specify LATERAL to designate subquery as a lateral inline view. Within a lateral inline view,
you can specify tables that appear to the left of the lateral inline view in the FROM clause of a
query. You can specify this left correlation anywhere within subquery (such as the SELECT,
FROM, and WHERE clauses) and at any nesting level.

Restrictions on LATERAL

Lateral inline views are subject to the following restrictions:

• If you specify LATERAL, then you cannot specify the pivot_clause, the unpivot_clause,
or a pattern in the table_reference clause.

• If a lateral inline view contains the query_partition_clause, and it is the right side of a
join clause, then it cannot contain a left correlation to the left table in the join clause.
However, it can contain a left correlation to a table to its left in the FROM clause that is not
the left table.

• A lateral inline view cannot contain a left correlation to the first table in a right outer join or
full outer join.

See Also:

"Using Lateral Inline Views: Example"

inline_external_table

Specify this clause to inline an external table in a query. You must specify the table columns
and properties for the external table that will be inlined in the query.

inline_external_table_properties

This clause extends the external_table_data_props with the REJECT LIMIT and
access_driver_type options. Use this clause to specify the properties of the external table.

In addition to supporting external data residing in operating file systems and Big Data sources
and formats such as HDFS and Hive, Oracle supports external data residing in objects.

modified_external_table

You can use this clause to override some external table properties specified by the CREATE
TABLE or ALTER TABLE statements from within a query.

You can override external table parameters at runtime.

Restrictions

• You must specify the key words EXTERNAL MODIFY in the query. If you do not specify the
keywords, you will see a Missing or invalid option error.

• You must reference an external table in the query. If you do not, you will see an error.

• You must specify at least one property in the query. One of DEFAULT DIRECTORY,
LOCATION, ACCESS PARAMETERS, or REJECT LIMIT.

Chapter 19
SELECT

19-67

• If you specify more than one external table properties, they must be listed in order.
First the DEFAULT DIRECTORY must be specified, followed by the ACCESS
PARAMETERS, LOCATION and REJECT LIMIT. Otherwise an error will be raised.

• In the DEFAULT DIRECTORY clause, you must specify only one proper default
directory. Otherwise a Missing DEFAULT keyword error will occur.

• You must enclose a filename in the LOCATION clause within quotes. Otherwise a
Missing keyword error will occur. Note that the access driver will decide whether
or not to allow a LOCATION clause in the query. If the clause is disallowed for a
particular access driver, an error will be raised.

• For ORACLE_LOADER and ORACLE_DATAPUMP access drivers, the external file location
in the LOCATION clause must be specified in the following format: directory:
location, i.e, the directory and location must be separated by a colon. Multiple
locations in the clause must be separated by a comma. Otherwise, a Missing
keyword error will occur.

• Note that LOCATION will be made optional in CREATE TABLE, and must be specified
either when creating or querying the external table. Otherwise an error will be
raised in the access driver.

• When populating external data using ORACLE DATAPUMP via CTAS, the external file
location must be specified. This will be the only case where LOCATION clause is
mandatory in CREATE TABLE.

• When overriding access parameters, a proper access parameter list must be
provided in the ACCESS PARAMETERS clause, with enclosing parentheses.

Note that the syntax and allowable values for the access parameters in the
modified_external_table clause are the same as for the external table DDL for
each access driver. For more see Oracle Database Utilities for additional details
regarding syntax and permissible values.

• If you specify the REJECT LIMIT, then it must either be UNLIMITED or some valid
value that is within range. Otherwise a Reject limit out of range error will be
raised.

modify_external_table_properties

You can specify the external table properties that you want to modify at run time using
this clause. The parameters that you can modify are DEFAULT DIRECTORY, LOCATION,
ACCESS PARAMETERS (BADFILE, LOGFILE, DISCARDFILE) and REJECT LIMIT.

Example: Overriding External Table Parameters in a Query

 SELECT * FROM
 sales_external EXTERNAL MODIFY (LOCATION 'sales_9.csv’ REJECT LIMIT UNLIMITED);

flashback_query_clause

Use the flashback_query_clause to retrieve data from a table, view, or materialized
view based on time dimensions associated with the data.

This clause implements SQL-driven Flashback, which lets you specify the following:

• A different system change number or timestamp for each object in the select list,
using the clauses VERSIONS BETWEEN { SCN | TIMESTAMP } or VERSIONS AS OF { SCN
| TIMESTAMP }. You can also implement session-level Flashback using the
DBMS_FLASHBACK package.

Chapter 19
SELECT

19-68

• A valid time period for each object in the select list, using the clauses VERSIONS PERIOD
FOR or AS OF PERIOD FOR. You can also implement valid-time session-level Flashback
using the DBMS_FLASHBACK_ARCHIVE package.

A Flashback Query lets you retrieve a history of changes made to a row. You can retrieve the
corresponding identifier of the transaction that made the change using the VERSIONS_XID
pseudocolumn. You can also retrieve information about the transaction that resulted in a
particular row version by issuing an Oracle Flashback Transaction Query. You do this by
querying the FLASHBACK_TRANSACTION_QUERY data dictionary view for a particular transaction
ID.

VERSIONS BETWEEN { SCN | TIMESTAMP }

Specify VERSIONS BETWEEN to retrieve multiple versions of the rows returned by the query.
Oracle Database returns all committed versions of the rows that existed between two SCNs
or between two timestamp values. The first specified SCN or timestamp must be earlier than
the second specified SCN or timestamp. The rows returned include deleted and subsequently
reinserted versions of the rows.

• Specify VERSIONS BETWEEN SCN ... to retrieve the versions of the row that existed between
two SCNs. Both expressions must evaluate to a number and cannot evaluate to NULL.
MINVALUE and MAXVALUE resolve to the SCN of the oldest and most recent data available,
respectively.

• Specify VERSIONS BETWEEN TIMESTAMP ... to retrieve the versions of the row that existed
between two timestamps. Both expressions must evaluate to a timestamp value and
cannot evaluate to NULL. MINVALUE and MAXVALUE resolve to the timestamp of the oldest
and most recent data available, respectively.

AS OF { SCN | TIMESTAMP }

Specify AS OF to retrieve the single version of the rows returned by the query at a particular
change number (SCN) or timestamp. If you specify SCN, then expr must evaluate to a
number. If you specify TIMESTAMP, then expr must evaluate to a timestamp value. In either
case, expr cannot evaluate to NULL. Oracle Database returns rows as they existed at the
specified system change number or time.

Oracle Database provides a group of version query pseudocolumns that let you retrieve
additional information about the various row versions. Refer to "Version Query
Pseudocolumns " for more information.

When both clauses are used together, the AS OF clause determines the SCN or moment in
time from which the database issues the query. The VERSIONS clause determines the versions
of the rows as seen from the AS OF point. The database returns null for a row version if the
transaction started before the first BETWEEN value or ended after the AS OF point.

VERSIONS PERIOD FOR

Specify VERSIONS PERIOD FOR to retrieve rows from table based on whether they are
considered valid during the specified time period. In order to use this clause, table must
support Temporal Validity.

• For valid_time_column, specify the name of the valid time dimension column for table.

• Use the BETWEEN clause to specify the time period during which rows are considered
valid. Both expressions must evaluate to a timestamp value and cannot evaluate to
NULL. MINVALUE resolves to the earliest date or timestamp in the start time column of
table. MAXVALUE resolves to latest date or timestamp in the end time column of table.

Chapter 19
SELECT

19-69

AS OF PERIOD FOR

Specify AS OF PERIOD FOR to retrieve rows from table based on whether they are
considered valid as of the specified time. In order to use this clause, table must
support Temporal Validity.

• For valid_time_column, specify the name of the valid time dimension column for
table.

• Use expr to specify the time as of which rows are considered valid. The
expression must evaluate to a timestamp value and cannot evaluate to NULL.

See Also:

• Oracle Database Development Guide for more information on Temporal
Validity

• CREATE TABLE period_definition to learn how to configure a table to
support Temporal Validity and for information about the
valid_time_column, start time column, and end time column

Note on Flashback Queries

When performing a flashback query, Oracle Database might not use query
optimizations that it would use for other types of queries, which could have a negative
impact on performance. In particular, this occurs when you specify multiple flashback
queries in a hierarchical query.

Restrictions on Flashback Queries

These queries are subject to the following restrictions:

• You cannot specify a column expression or a subquery in the expression of the AS
OF clause.

• You cannot specify the AS OF clause if you have specified the for_update_clause.

• You cannot use the AS OF clause in the defining query of a materialized view.

• You cannot use the VERSIONS clause in flashback queries to temporary or external
tables, or tables that are part of a cluster.

• You cannot use the VERSIONS clause in flashback queries to views. However, you
can use the VERSIONS syntax in the defining query of a view.

• You cannot specify the flashback_query_clause if you have specified query_name
in the query_table_expression.

Chapter 19
SELECT

19-70

See Also:

• Oracle Database Development Guide for more information on Oracle Flashback
Query

• "Using Flashback Queries: Example"

• Oracle Database Development Guide and Oracle Database PL/SQL Packages
and Types Reference for information about session-level Flashback using the
DBMS_FLASHBACK package

• Oracle Database Administrator's Guide and to the description of
FLASHBACK_TRANSACTION_QUERY in the Oracle Database Reference for more
information about transaction history

partition_extension_clause

For PARTITION or SUBPARTITION, specify the name or key value of the partition or subpartition
within table from which you want to retrieve data.

For range- and list-partitioned data, as an alternative to this clause, you can specify a
condition in the WHERE clause that restricts the retrieval to one or more partitions of table.
Oracle Database will interpret the condition and fetch data from only those partitions. It is not
possible to formulate such a WHERE condition for hash-partitioned data.

See Also:

"References to Partitioned Tables and Indexes " and "Selecting from a Partition:
Example"

dblink

For dblink, specify the complete or partial name for a database link to a remote database
where the table, view, or materialized view is located. This database need not be an Oracle
Database.

See Also:

• "References to Objects in Remote Databases " for more information on
referring to database links

• "Distributed Queries " for more information about distributed queries and "Using
Distributed Queries: Example"

If you omit dblink, then the database assumes that the table, view, or materialized view is on
the local database.

Restrictions on Database Links

Database links are subject to the following restrictions:

Chapter 19
SELECT

19-71

• You cannot query a user-defined type or an object REF on a remote table.

• You cannot query columns of type ANYTYPE, ANYDATA, or ANYDATASET from remote
tables.

table | view | materialized_view | analytic_view | hierarchy

Specify the name of a table, view, materialized view, analytic view, or hierarchy from
which data is selected.

analytic_view

A persistent analytic view defined with the CREATE ANALYTIC VIEW statement or a
transitory analytic view defined in a WITH clause.

See Also:

Analytic Views: Examples

hierarchy

A hierarchy defined with the CREATE HIERARCHY statement.

sample_clause

The sample_clause lets you instruct the database to select from a random sample of
data from the table, rather than from the entire table.

See Also:

"Selecting a Sample: Examples"

BLOCK

BLOCK instructs the database to attempt to perform random block sampling instead of
random row sampling.

Block sampling is possible only during full table scans or index fast full scans. If a
more efficient execution path exists, then Oracle Database does not perform block
sampling. If you want to guarantee block sampling for a particular table or index, then
use the FULL or INDEX_FFS hint.

Beginning with Oracle Database 12c Release 2 (12.2.), you can specify block
sampling for external tables. In earlier releases, specifying block sampling for external
tables had no effect; row sampling was performed.

sample_percent

For sample_percent, specify the percentage of the total row or block count to be
included in the sample. The value must be in the range .000001 to, but not including,
100. This percentage indicates the probability of each row, or each cluster of rows in
the case of block sampling, being selected as part of the sample. It does not mean that
the database will retrieve exactly sample_percent of the rows of table.

Chapter 19
SELECT

19-72

WARNING:

The use of statistically incorrect assumptions when using this feature can lead to
incorrect or undesirable results.

SEED seed_value

Specify this clause to instruct the database to attempt to return the same sample from one
execution to the next. The seed_value must be an integer between 0 and 4294967295. If you
omit this clause, then the resulting sample will change from one execution to the next.

Restrictions on sample_clause

The following restrictions apply to the SAMPLE clause:

• You cannot specify the SAMPLE clause in a subquery in a DML statement.

• You can specify the SAMPLE clause in a query on a base table, a container table of a
materialized view, or a view that is key preserving. You cannot specify this clause on a
view that is not key preserving.

subquery_restriction_clause

The subquery_restriction_clause lets you restrict the subquery in one of the following
ways:

WITH READ ONLY

Specify WITH READ ONLY to indicate that the table or view cannot be updated.

WITH CHECK OPTION

Specify WITH CHECK OPTION to indicate that Oracle Database prohibits any changes to the
table or view that would produce rows that are not included in the subquery. When used in
the subquery of a DML statement, you can specify this clause in a subquery in the FROM
clause but not in subquery in the WHERE clause.

CONSTRAINT constraint

Specify the name of the CHECK OPTION constraint. If you omit this identifier, then Oracle
automatically assigns the constraint a name of the form SYS_Cn, where n is an integer that
makes the constraint name unique within the database.

See Also:

"Using the WITH CHECK OPTION Clause: Example"

table_collection_expression

The table_collection_expression lets you inform Oracle that the value of
collection_expression should be treated as a table for purposes of query and DML
operations. The collection_expression can be a subquery, a column, a function, or a
collection constructor. Regardless of its form, it must return a collection value—that is, a

Chapter 19
SELECT

19-73

value whose type is nested table or varray. This process of extracting the elements of
a collection is called collection unnesting.

The optional plus (+) is relevant if you are joining the TABLE collection expression with
the parent table. The + creates an outer join of the two, so that the query returns rows
from the outer table even if the collection expression is null.

Note:

In earlier releases of Oracle, when collection_expression was a subquery,
table_collection_expression was expressed as THE subquery. That usage
is now deprecated.

The collection_expression can reference columns of tables defined to its left in the
FROM clause. This is called left correlation. Left correlation can occur only in
table_collection_expression. Other subqueries cannot contains references to
columns defined outside the subquery.

The optional (+) lets you specify that table_collection_expression should return a
row with all fields set to null if the collection is null or empty. The (+) is valid only if
collection_expression uses left correlation. The result is similar to that of an outer
join.

When you use the (+) syntax in the WHERE clause of a subquery in an UPDATE or
DELETE operation, you must specify two tables in the FROM clause of the subquery.
Oracle Database ignores the outer join syntax unless there is a join in the subquery
itself.

See Also:

• "Outer Joins "

• "Table Collections: Examples" and "Collection Unnesting: Examples"

t_alias

Specify a correlation name, which is an alias for the table, view, materialized view, or
subquery for evaluating the query. This alias is required if the select list references any
object type attributes or object type methods. Correlation names are most often used
in a correlated query. Other references to the table, view, or materialized view
throughout the query must refer to this alias.

See Also:

"Using Correlated Subqueries: Examples"

Chapter 19
SELECT

19-74

pivot_clause

The pivot_clause lets you write cross-tabulation queries that rotate rows into columns,
aggregating data in the process of the rotation. The output of a pivot operation typically
includes more columns and fewer rows than the starting data set. The pivot_clause
performs the following steps:

1. The pivot_clause computes the aggregation functions specified at the beginning of the
clause. Aggregation functions must specify a GROUP BY clause to return multiple values,
yet the pivot_clause does not contain an explicit GROUP BY clause. Instead, the
pivot_clause performs an implicit GROUP BY. The implicit grouping is based on all the
columns not referred to in the pivot_clause, along with the set of values specified in the
pivot_in_clause.). If you specify more than one aggregation function, then you must
provide aliases for at least all but one of the aggregation functions.

2. The grouping columns and aggregated values calculated in Step 1 are configured to
produce the following cross-tabular output:

a. All the implicit grouping columns not referred to in the pivot_clause, followed by

b. New columns corresponding to values in the pivot_in_clause. Each aggregated
value is transposed to the appropriate new column in the cross-tabulation. If you
specify the XML keyword, then the result is a single new column that expresses the
data as an XML string. The database generates a name for each new column. If you
do not provide an alias for an aggregation function, then the database uses each
pivot column value as the name for each new column to which that aggregated value
is transposed. If you provide an alias for an aggregation function, then the database
generates a name for each new column to which that aggregated value is transposed
by concatenating the pivot column name, the underscore character (_), and the
aggregation function alias. If a generated column name exceeds the maximum length
of a column name, then an ORA-00918 error is returned. To avoid this issue, specify
a shorter alias for the pivot column heading, the aggregation function, or both.

The subclauses of the pivot_clause have the following semantics:

XML

The optional XML keyword generates XML output for the query. The XML keyword permits the
pivot_in_clause to contain either a subquery or the wildcard keyword ANY. Subqueries and
ANY wildcards are useful when the pivot_in_clause values are not known in advance. With
XML output, the values of the pivot column are evaluated at execution time. You cannot
specify XML when you specify explicit pivot values using expressions in the pivot_in_clause.

When XML output is generated, the aggregate function is applied to each distinct pivot value,
and the database returns a column of XMLType containing an XML string for all value and
measure pairs.

expr

For expr, specify an expression that evaluates to a constant value of a pivot column. You can
optionally provide an alias for each pivot column value. If there is no alias, the column
heading becomes a quoted identifier.

subquery

A subquery is used only in conjunction with the XML keyword. When you specify a subquery,
all values found by the subquery are used for pivoting. The output is not the same cross-
tabular format returned by non-XML pivot queries. Instead of multiple columns specified in

Chapter 19
SELECT

19-75

the pivot_in_clause, the subquery produces a single XML string column. The XML
string for each row holds aggregated data corresponding to the implicit GROUP BY value
of that row. The XML string for each output row includes all pivot values found by the
subquery, even if there are no corresponding rows in the input data.

The subquery must return a list of unique values at the execution time of the pivot
query. If the subquery does not return a unique value, then Oracle Database raises a
run-time error. Use the DISTINCT keyword in the subquery if you are not sure the query
will return unique values.

ANY

The ANY keyword is used only in conjunction with the XML keyword. The ANY keyword
acts as a wildcard and is similar in effect to subquery. The output is not the same
cross-tabular format returned by non-XML pivot queries. Instead of multiple columns
specified in the pivot_in_clause, the ANY keyword produces a single XML string
column. The XML string for each row holds aggregated data corresponding to the
implicit GROUP BY value of that row. However, in contrast to the behavior when you
specify subquery, the ANY wildcard produces an XML string for each output row that
includes only the pivot values found in the input data corresponding to that row.

See Also:

Oracle Database Data Warehousing Guide for more information about PIVOT
and UNPIVOT and "Using PIVOT and UNPIVOT: Examples"

unpivot_clause

The unpivot_clause rotates columns into rows.

• The INCLUDE | EXCLUDE NULLS clause gives you the option of including or excluding
null-valued rows. INCLUDE NULLS causes the unpivot operation to include null-
valued rows; EXCLUDE NULLS eliminates null-values rows from the return set. If you
omit this clause, then the unpivot operation excludes nulls.

• For column, specify a name for each output column that will hold measure values,
such as sales_quantity.

• In the pivot_for_clause, specify a name for each output column that will hold
descriptor values, such as quarter or product.

• In the unpivot_in_clause, specify the input data columns whose names will
become values in the output columns of the pivot_for_clause. These input data
columns have names specifying a category value, such as Q1, Q2, Q3, Q4. The
optional AS clause lets you map the input data column names to the specified
literal values in the output columns.

The unpivot operation turns a set of value columns into one column. Therefore, the
data types of all the value columns must be in the same data type group, such as
numeric or character.

• If all the value columns are CHAR, then the unpivoted column is CHAR. If any value
column is VARCHAR2, then the unpivoted column is VARCHAR2.

Chapter 19
SELECT

19-76

• If all the value columns are NUMBER, then the unpivoted column is NUMBER. If any value
column is BINARY_DOUBLE, then the unpivoted column is BINARY_DOUBLE. If no value
column is BINARY_DOUBLE but any value column is BINARY_FLOAT, then the unpivoted
column is BINARY_FLOAT.

containers_clause

The CONTAINERS clause is useful in a multitenant container database (CDB). This clause lets
you query data in the specified table or view across all containers in a CDB.

• To query data in a CDB, you must be a common user connected to the CDB root, and the
table or view must exist in the root and all PDBs. The query returns all rows from the
table or view in the CDB root and in all open PDBs.

• To query data in an application container, you must be a common user connected to the
application root, and the table or view must exist in the application root and all PDBs in
the application container. The query returns all rows from the table or view in the
application root and in all open PDBs in the application container.

The table or view must be in your own schema. It is not necessary to specify schema, but if
you do then you must specify your own schema.

The query returns all rows from the table or view in the root and in all open PDBs, except
PDBs that are open in RESTRICTED mode. If the queried table or view does not already
contain a CON_ID column, then the query adds a CON_ID column to the query result, which
identifies the container whose data a given row represents.

See Also:

• CONTAINERS Hint

• Oracle Database Administrator's Guide for more information on the CONTAINERS
clause

shards_clause

Use the shards_clause to query Oracle supplied objects such as V$, DBA/USER/ALL views,
and dictionary tables across shards. You can execute a query with the shards_clause only
on the shard catalog database.

This feature enables easier centralized management by providing the ability to execute
queries across all shards from a central shard catalog.

join_clause

Use the appropriate join_clause syntax to identify tables that are part of a join from which to
select data. The inner_cross_join_clause lets you specify an inner or cross join. The
outer_join_clause lets you specify an outer join. The cross_outer_apply_clause lets you
specify a variation of an ANSI CROSS JOIN or an ANSI LEFT OUTER JOIN with left correlation
support.

When you join more than two row sources, you can use parentheses to override default
precedence. For example, the following syntax:

SELECT ... FROM a JOIN (b JOIN c) ...

Chapter 19
SELECT

19-77

results in a join of b and c, and then a join of that result set with a.

See Also:

"Joins " for more information on joins, "Using Join Queries: Examples",
"Using Self Joins: Example", and "Using Outer Joins: Examples"

inner_cross_join_clause

Inner joins return only those rows that satisfy the join condition.

INNER

Specify INNER to explicitly specify an inner join.

JOIN

The JOIN keyword explicitly states that a join is being performed. You can use this
syntax to replace the comma-delimited table expressions used in WHERE clause joins
with FROM clause join syntax.

ON condition

Use the ON clause to specify a join condition. Doing so lets you specify join conditions
separate from any search or filter conditions in the WHERE clause.

USING (column)

When you are specifying an equijoin of columns that have the same name in both
tables, the USING column clause indicates the columns to be used. You can use this
clause only if the join columns in both tables have the same name. Within this clause,
do not qualify the column name with a table name or table alias.

CROSS

The CROSS keyword indicates that a cross join is being performed. A cross join
produces the cross-product of two relations and is essentially the same as the comma-
delimited Oracle Database notation.

NATURAL

The NATURAL keyword indicates that a natural join is being performed. Refer to
NATURAL for the full semantics of this clause.

outer_join_clause

Outer joins return all rows that satisfy the join condition and also return some or all of
those rows from one table for which no rows from the other satisfy the join condition.
You can specify two types of outer joins: a conventional outer join using the
table_reference syntax on both sides of the join, or a partitioned outer join using the
query_partition_clause on one side or the other. A partitioned outer join is similar to
a conventional outer join except that the join takes place between the outer table and
each partition of the inner table. This type of join lets you selectively make sparse data
more dense along the dimensions of interest. This process is called data
densification.

query_partition_clause

Chapter 19
SELECT

19-78

The query_partition_clause lets you define a partitioned outer join. Such a join extends
the conventional outer join syntax by applying the outer join to partitions returned by the
query. Oracle Database creates a partition of rows for each expression you specify in the
PARTITION BY clause. The rows in each query partition have same value for the PARTITION BY
expression.

The query_partition_clause can be on either side of the outer join. The result of a
partitioned outer join is a UNION of the outer joins of each of the partitions in the partitioned
result set and the table on the other side of the join. This type of result is useful for filling gaps
in sparse data, which simplifies analytic calculations.

If you omit this clause, then the database treats the entire table expression—everything
specified in table_reference—as a single partition, resulting in a conventional outer join.

To use the query_partition_clause in an analytic function, use the upper branch of the
syntax (without parentheses). To use this clause in a model query (in the
model_column_clauses) or a partitioned outer join (in the outer_join_clause), use the lower
branch of the syntax (with parentheses).

Restrictions on Partitioned Outer Joins

Partitioned outer joins are subject to the following restrictions:

• You can specify the query_partition_clause on either the right or left side of the join,
but not both.

• You cannot specify a FULL partitioned outer join.

• If you specify the query_partition_clause in an outer join with an ON clause, then you
cannot specify a subquery in the ON condition.

See Also:

"Using Partitioned Outer Joins: Examples"

NATURAL

The NATURAL keyword indicates that a natural join is being performed. A natural join is based
on all columns in the two tables that have the same name. It selects rows from the two tables
that have equal values in the relevant columns. If two columns with the same name do not
have compatible data types, then an error is raised. When specifying columns that are
involved in the natural join, do not qualify the column name with a table name or table alias.

On occasion, the table pairings in natural or cross joins may be ambiguous. For example,
consider the following join syntax:

 a NATURAL LEFT JOIN b LEFT JOIN c ON b.c1 = c.c1

This example can be interpreted in either of the following ways:

 a NATURAL LEFT JOIN (b LEFT JOIN c ON b.c1 = c.c1)
 (a NATURAL LEFT JOIN b) LEFT JOIN c ON b.c1 = c.c1

To avoid this ambiguity, you can use parentheses to specify the pairings of joined tables. In
the absence of such parentheses, the database uses left associativity, pairing the tables from
left to right.

Chapter 19
SELECT

19-79

Restriction on Natural Joins

You cannot specify a LOB column, columns of ANYTYPE, ANYDATA, or ANYDATASET, or a
collection column as part of a natural join.

outer_join_type

The outer_join_type indicates the kind of outer join being performed:

• Specify RIGHT to indicate a right outer join.

• Specify LEFT to indicate a left outer join.

• Specify FULL to indicate a full or two-sided outer join. In addition to the inner join,
rows from both tables that have not been returned in the result of the inner join will
be preserved and extended with nulls.

• You can specify the optional OUTER keyword following RIGHT, LEFT, or FULL to
explicitly clarify that an outer join is being performed.

ON condition

Use the ON clause to specify a join condition. Doing so lets you specify join conditions
separate from any search or filter conditions in the WHERE clause.

Restriction on the ON condition Clause

You cannot specify this clause with a NATURAL outer join.

USING column

In an outer join with the USING clause, the query returns a single column that coalesces
the two matching columns in the join. The coalesce function is as follows:

COALESCE (a, b) = a if a NOT NULL, else b.

Therefore:

• A left outer join returns all the common column values from the left table in the
FROM clause.

• A right outer join returns all the common column values from the right table in the
FROM clause.

• A full outer join returns all the common column values from both joined tables.

Restriction on the USING column Clause

The USING column clause is subject to the following restrictions:

• Within this clause, do not qualify the column name with a table name or table alias.

• You cannot specify a LOB column or a collection column in the USING column
clause.

• You cannot specify this clause with a NATURAL outer join.

Chapter 19
SELECT

19-80

See Also:

• "Outer Joins " for additional rules and restrictions pertaining to outer joins

• Oracle Database Data Warehousing Guide for a complete discussion of
partitioned outer joins and data densification

• "Using Outer Joins: Examples"

cross_outer_apply_clause

This clause allows you to perform a variation of an ANSI CROSS JOIN or an ANSI LEFT OUTER
JOIN with left correlation support. You can specify a table_reference or
collection_expression to the right of the APPLY keyword. The table_reference can be a
table, inline view, or TABLE collection expression. The collection_expression can be a
subquery, a column, a function, or a collection constructor. Regardless of its form, it must
return a collection value—that is, a value whose type is nested table or varray. The
table_reference or collection_expression can reference columns of tables defined in the
FROM clause to the left of the APPLY keyword. This is called left correlation.

• Specify CROSS APPLY to perform a variation of an ANSI CROSS JOIN. Only rows from the
table on the left side of the join that produce a result set from table_reference or
collection_expression are returned.

• Specify OUTER APPLY to perform a variation of an ANSI LEFT OUTER JOIN. All rows from the
table on the left side of the join are returned. Rows that do not produce a result set from
table_reference or collection_expression have the NULL value in the corresponding
column(s).

Restriction on the cross_outer_apply_clause

The table_reference cannot be a lateral inline view.

See Also:

Using CROSS APPLY and OUTER APPLY Joins: Examples

inline_analytic_view

An inline analytic view is a transitory analytic view that is specified in the FROM clause. To
create an inline analytic view, use the ANALYTIC VIEW keyword and specify a sub_av_clause
that defines the analytic view. Optionally, you may specify an inline_av_alias, which is an
alias for the inline analytic view. The rules for the inline_av_alias are the same as the rules
for an inline view alias.

See Also:

Analytic Views: Examples

Chapter 19
SELECT

19-81

where_clause

The WHERE condition lets you restrict the rows selected to those that satisfy one or
more conditions. For condition, specify any valid SQL condition.

If you omit this clause, then the database returns all rows from the tables, views, or
materialized views in the FROM clause.

Note:

If this clause refers to a DATE column of a partitioned table or index, then the
database performs partition pruning only if:

• You created the table or index partitions by fully specifying the year using
the TO_DATE function with a 4-digit format mask, and

• You specify the date in the where_clause of the query using the TO_DATE
function and either a 2- or 4-digit format mask.

With Oracle Database 21c you can write macros for scalar expressions and use them
inside the where_clause , where it would be legal to call a PLSQL function.

You must define these macro functions in PL/SQL and call them from SQL for them to
function as macros.

See Also:

• Conditions for the syntax description of condition

• "Selecting from a Partition: Example"

• Defining SQL Macros

hierarchical_query_clause

The hierarchical_query_clause lets you select rows in a hierarchical order.

SELECT statements that contain hierarchical queries can contain the LEVEL
pseudocolumn in the select list. LEVEL returns the value 1 for a root node, 2 for a child
node of a root node, 3 for a grandchild, and so on. The number of levels returned by a
hierarchical query may be limited by available user memory.

Oracle processes hierarchical queries as follows:

• A join, if present, is evaluated first, whether the join is specified in the FROM clause
or with WHERE clause predicates.

• The CONNECT BY condition is evaluated.

• Any remaining WHERE clause predicates are evaluated.

Chapter 19
SELECT

19-82

If you specify this clause, then do not specify either ORDER BY or GROUP BY, because they will
destroy the hierarchical order of the CONNECT BY results. If you want to order rows of siblings
of the same parent, then use the ORDER SIBLINGS BY clause.

See Also:

"Hierarchical Queries " for a discussion of hierarchical queries and "Using the
LEVEL Pseudocolumn: Examples"

START WITH Clause

Specify a condition that identifies the row(s) to be used as the root(s) of a hierarchical query.
The condition can be any condition as described in Conditions. Oracle Database uses as
root(s) all rows that satisfy this condition. If you omit this clause, then the database uses all
rows in the table as root rows.

CONNECT BY Clause

Specify a condition that identifies the relationship between parent rows and child rows of the
hierarchy. The condition can be any condition as described in Conditions. However, it must
use the PRIOR operator to refer to the parent row.

See Also:

• Pseudocolumns for more information on LEVEL
• "Hierarchical Queries " for general information on hierarchical queries

• "Hierarchical Query: Examples"

group_by_clause

Specify the GROUP BY clause if you want the database to group the selected rows based on
the value of expr(s) for each row and return a single row of summary information for each
group. If this clause contains CUBE or ROLLUP extensions, then the database produces
superaggregate groupings in addition to the regular groupings.

Expressions in the GROUP BY clause can contain any columns of the tables, views, or
materialized views in the FROM clause, regardless of whether the columns appear in the select
list.

The GROUP BY clause groups rows but does not guarantee the order of the result set. To order
the groupings, use the ORDER BY clause.

Chapter 19
SELECT

19-83

See Also:

• Oracle Database Data Warehousing Guide for an expanded discussion
and examples of using SQL grouping syntax for data aggregation

• the GROUP_ID , GROUPING , and GROUPING_ID functions for
examples

• "Using the GROUP BY Clause: Examples"

• Restrictions for Linguistic Collations for information on implications of
how GROUP BY character values are compared linguistically

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules for the expressions in the GROUP BY clause

ROLLUP

The ROLLUP operation in the simple_grouping_clause groups the selected rows based
on the values of the first n, n-1, n-2, ... 0 expressions in the GROUP BY specification, and
returns a single row of summary for each group. You can use the ROLLUP operation to
produce subtotal values by using it with the SUM function. When used with SUM,
ROLLUP generates subtotals from the most detailed level to the grand total. Aggregate
functions such as COUNT can be used to produce other kinds of superaggregates.

For example, given three expressions (n=3) in the ROLLUP clause of the
simple_grouping_clause, the operation results in n+1 = 3+1 = 4 groupings.

Rows grouped on the values of the first n expressions are called regular rows, and
the others are called superaggregate rows.

See Also:

Oracle Database Data Warehousing Guide for information on using ROLLUP
with materialized views

CUBE

The CUBE operation in the simple_grouping_clause groups the selected rows based
on the values of all possible combinations of expressions in the specification. It returns
a single row of summary information for each group. You can use the CUBE operation to
produce cross-tabulation values.

For example, given three expressions (n=3) in the CUBE clause of the
simple_grouping_clause, the operation results in 2n = 23 = 8 groupings. Rows
grouped on the values of n expressions are called regular rows, and the rest are
called superaggregate rows.

Chapter 19
SELECT

19-84

See Also:

• Oracle Database Data Warehousing Guide for information on using CUBE with
materialized views

• "Using the GROUP BY CUBE Clause: Example"

GROUPING SETS

GROUPING SETS are a further extension of the GROUP BY clause that let you specify multiple
groupings of data. Doing so facilitates efficient aggregation by pruning the aggregates you do
not need. You specify just the desired groups, and the database does not need to perform the
full set of aggregations generated by CUBE or ROLLUP. Oracle Database computes all
groupings specified in the GROUPING SETS clause and combines the results of individual
groupings with a UNION ALL operation. The UNION ALL means that the result set can include
duplicate rows.

Within the GROUP BY clause, you can combine expressions in various ways:

• To specify composite columns, group columns within parentheses so that the database
treats them as a unit while computing ROLLUP or CUBE operations.

• To specify concatenated grouping sets, separate multiple grouping sets, ROLLUP, and
CUBE operations with commas so that the database combines them into a single GROUP BY
clause. The result is a cross-product of groupings from each grouping set.

See Also:

"Using the GROUPING SETS Clause: Example"

HAVING Clause

Use the HAVING clause to restrict the groups of returned rows to those groups for which the
specified condition is TRUE. If you omit this clause, then the database returns summary rows
for all groups.

Specify GROUP BY and HAVING after the where_clause and hierarchical_query_clause. If you
specify both GROUP BY and HAVING, then they can appear in either order.

With Oracle Database 21c you can write macros for scalar expressions and use them inside
the HAVING clause, where it would be legal to call a PL/SQL function.

You must define these macro functions in PL/SQL and call them from SQL for them to
function as macros.

See Also:

• "Using the HAVING Condition: Example"

• Defining SQL Macros

Chapter 19
SELECT

19-85

Restrictions on the GROUP BY Clause

This clause is subject to the following restrictions:

• You cannot specify LOB columns, nested tables, or varrays as part of expr.

• The expressions can be of any form except scalar subquery expressions.

• If the group_by_clause references any object type columns, then the query will not
be parallelized.

model_clause

The model_clause lets you view selected rows as a multidimensional array and
randomly access cells within that array. Using the model_clause, you can specify a
series of cell assignments, referred to as rules, that invoke calculations on individual
cells and ranges of cells. These rules operate on the results of a query and do not
update any database tables.

When using the model_clause in a query, the SELECT and ORDER BY clauses must refer
only to those columns defined in the model_column_clauses.

See Also:

• The syntax description of expr in "About SQL Expressions " and the
syntax description of condition in Conditions

• Oracle Database Data Warehousing Guide for an expanded discussion
and examples

• "The MODEL clause: Examples"

main_model

The main_model clause defines how the selected rows will be viewed in a
multidimensional array and what rules will operate on which cells in that array.

model_column_clauses

The model_column_clauses define and classify the columns of a query into three
groups: partition columns, dimension columns, and measure columns. For expr, you
can specify a column, constant, host variable, single-row function, aggregate function,
or any expression involving them. If expr is a column, then the column alias (c_alias)
is optional. If expr is not a column, then the column alias is required. If you specify a
column alias, then you must use the alias to refer to the column in the
model_rules_clause, SELECT list, and the query ORDER BY clauses.

PARTITION BY

The PARTITION BY clause specifies the columns that will be used to divide the selected
rows into partitions based on the values of the specified columns.

DIMENSION BY

The DIMENSION BY clause specifies the columns that will identify a row within a
partition. The values of the dimension columns, along with those of the partition
columns, serve as array indexes to the measure columns within a row.

Chapter 19
SELECT

19-86

MEASURES

The MEASURES clause identifies the columns on which the calculations can be performed.
Measure columns in individual rows are treated like cells that you can reference, by
specifying the values for the partition and dimension columns, and update.

cell_reference_options

Use the cell_reference_options clause to specify how null and absent values are treated in
rules and how column uniqueness is constrained.

IGNORE NAV

When you specify IGNORE NAV, the database returns the following values for the null and
absent values of the data type specified:

• Zero for numeric data types

• 01-JAN-2000 for datetime data types

• An empty string for character data types

• Null for all other data types

KEEP NAV

When you specify KEEP NAV, the database returns null for both null and absent cell values.
KEEP NAV is the default.

UNIQUE SINGLE REFERENCE

When you specify UNIQUE SINGLE REFERENCE, the database checks only single-cell references
on the right-hand side of the rule for uniqueness, not the entire query result set.

UNIQUE DIMENSION

When you specify UNIQUE DIMENSION, the database checks that the PARTITION BY and
DIMENSION BY columns form a unique key to the query. UNIQUE DIMENSION is the default.

model_rules_clause

Use the model_rules_clause to specify the cells to be updated, the rules for updating those
cells, and optionally, how the rules are to be applied and processed.

Each rule represents an assignment and consists of a left-hand side and right-hand side. The
left-hand side of the rule identifies the cells to be updated by the right-hand side of the rule.
The right-hand side of the rule evaluates to the values to be assigned to the cells specified on
the left-hand side of the rule.

UPSERT ALL

UPSERT ALL allows UPSERT behavior for a rule with both positional and symbolic references on
the left-hand side of the rule. When evaluating an UPSERT ALL rule, Oracle performs the
following steps to create a list of cell references to be upserted:

1. Find the existing cells that satisfy all the symbolic predicates of the cell reference.

2. Using just the dimensions that have symbolic references, find the distinct dimension
value combinations of these cells.

3. Perform a cross product of these value combinations with the dimension values specified
by way of positional references.

Chapter 19
SELECT

19-87

Refer to Oracle Database Data Warehousing Guide for more information on the
semantics of UPSERT ALL.

UPSERT

When you specify UPSERT, the database applies the rules to those cells referenced on
the left-hand side of the rule that exist in the multidimensional array, and inserts new
rows for those that do not exist. UPSERT behavior applies only when positional
referencing is used on the left-hand side and a single cell is referenced. UPSERT is the
default. Refer to cell_assignment for more information on positional referencing and
single-cell references.

UPDATE and UPSERT can be specified for individual rules as well. When either UPDATE or
UPSERT is specified for a specific rule, it takes precedence over the option specified in
the RULES clause.

Note:

If an UPSERT ALL, UPSERT, or UPDATE rule does not contain the appropriate
predicates, then the database may implicitly convert it to a different type of
rule:

• If an UPSERT rule contains an existential predicate, then the rule is treated
as an UPDATE rule.

• An UPSERT ALL rule must have at least one existential predicate and one
qualified predicate on its left side. If it has no existential predicate, then it
is treated as an UPSERT rule. If it has no qualified predicate, then it is
treated as an UPDATE rule

UPDATE

When you specify UPDATE, the database applies the rules to those cells referenced on
the left-hand side of the rule that exist in the multidimensional array. If the cells do not
exist, then the assignment is ignored.

AUTOMATIC ORDER

When you specify AUTOMATIC ORDER, the database evaluates the rules based on their
dependency order. In this case, a cell can be assigned a value once only.

SEQUENTIAL ORDER

When you specify SEQUENTIAL ORDER, the database evaluates the rules in the order
they appear. In this case, a cell can be assigned a value more than once. SEQUENTIAL
ORDER is the default.

ITERATE ... [UNTIL]

Use ITERATE ... [UNTIL] to specify the number of times to cycle through the rules and,
optionally, an early termination condition. The parentheses around the UNTIL condition
are optional.

When you specify ITERATE ... [UNTIL], rules are evaluated in the order in which they
appear. Oracle Database returns an error if both AUTOMATIC ORDER and ITERATE ...
[UNTIL] are specified in the model_rules_clause.

Chapter 19
SELECT

19-88

cell_assignment

The cell_assignment clause, which is the left-hand side of the rule, specifies one or more
cells to be updated. When a cell_assignment references a single cell, it is called a single-
cell reference. When more than one cell is referenced, it is called a multiple-cell reference.

All dimension columns defined in the model_clause must be qualified in the cell_assignment
clause. A dimension can be qualified using either symbolic or positional referencing.

A symbolic reference qualifies a single dimension column using a Boolean condition like
dimension_column=constant. A positional reference is one where the dimension column is
implied by its position in the DIMENSION BY clause. The only difference between symbolic
references and positional references is in the treatment of nulls.

Using a single-cell symbolic reference such as a[x=null,y=2000], no cells qualify because
x=null evaluates to FALSE. However, using a single-cell positional reference such as
a[null,2000], a cell where x is null and y is 2000 qualifies because null = null evaluates to
TRUE. With single-cell positional referencing, you can reference, update, and insert cells
where dimension columns are null.

You can specify a condition or an expression representing a dimension column value using
either symbolic or positional referencing. condition cannot contain aggregate functions or
the CV function, and condition must reference a single dimension column. expr cannot
contain a subquery. Refer to "Model Expressions" for information on model expressions.

single_column_for_loop

The single_column_for_loop clause lets you specify a range of cells to be updated within a
single dimension column.

The IN clause lets you specify the values of the dimension column as either a list of values or
as a subquery. When using subquery, it cannot:

• Be a correlated query

• Return more than 10,000 rows

• Be a query defined in the WITH clause

The FROM clause lets you specify a range of values for a dimension column with discrete
increments within the range. The FROM clause can only be used for those columns with a data
type for which addition and subtraction is supported. The INCREMENT and DECREMENT values
must be positive.

Optionally, you can specify the LIKE clause within the FROM clause. In the LIKE clause,
pattern is a character string containing a single pattern-matching character %. This character
is replaced during execution with the current incremented or decremented value in the FROM
clause.

If all dimensions other than those used by a FOR loop involve a single-cell reference, then the
expressions can insert new rows. The number of dimension value combinations generated by
FOR loops is counted as part of the 10,000 row limit of the MODEL clause.

multi_column_for_loop

The multi_column_for_loop clause lets you specify a range of cells to be updated across
multiple dimension columns. The IN clause lets you specify the values of the dimension
columns as either multiple lists of values or as a subquery. When using subquery, it cannot:

• Be a correlated query

Chapter 19
SELECT

19-89

• Return more than 10,000 rows

• Be a query defined in the WITH clause

If all dimensions other than those used by a FOR loop involve a single-cell reference,
then the expressions can insert new rows. The number of dimension value
combinations generated by FOR loops is counted as part of the 10,000 row limit of the
MODEL clause.

See Also:

Oracle Database Data Warehousing Guide for more information about using
FOR loops in the MODEL clause

order_by_clause

Use the ORDER BY clause to specify the order in which cells on the left-hand side of the
rule are to be evaluated. The expr must resolve to a dimension or measure column. If
the ORDER BY clause is not specified, then the order defaults to the order of the columns
as specified in the DIMENSION BY clause. See order_by_clause for more information.

Restrictions on the order_by_clause

Use of the ORDER BY clause in the model rule is subject to the following restrictions:

• You cannot specify SIBLINGS, position, or c_alias in the order_by_clause of the
model_clause.

• You cannot specify this clause on the left-hand side of the model rule and also
specify a FOR loop on the right-hand side of the rule.

expr

Specify an expression representing the value or values of the cell or cells specified on
the right-hand side of the rule. expr cannot contain a subquery. Refer to "Model
Expressions" for information on model expressions.

return_rows_clause

The return_rows_clause lets you specify whether to return all rows selected or only
those rows updated by the model rules. ALL is the default.

reference_model

Use the reference_model clause when you need to access multiple arrays from inside
the model_clause. This clause defines a read-only multidimensional array based on
the results of a query.

The subclauses of the reference_model clause have the same semantics as for the
main_model clause. Refer to model_column_clauses and cell_reference_options.

Restrictions on the reference_model Clause

This clause is subject to the following restrictions:

• PARTITION BY columns cannot be specified for reference models.

Chapter 19
SELECT

19-90

• The subquery of the reference model cannot refer to columns in an outer subquery.

Set Operators: UNION, UNION ALL, INTERSECT, MINUS

The set operators combine the rows returned by two SELECT statements into a single result.
The number and data types of the columns selected by each component query must be the
same, but the column lengths can be different. The names of the columns in the result set are
the names of the expressions in the select list preceding the set operator.

If you combine more than two queries with set operators, then the database evaluates
adjacent queries from left to right. The parentheses around the subquery are optional. You
can use them to specify a different order of evaluation.

Refer to "The Set Operators" for information on these operators, including restrictions on their
use.

order_by_clause

Use the ORDER BY clause to order rows returned by the statement. Without an
order_by_clause, no guarantee exists that the same query executed more than once will
retrieve rows in the same order.

SIBLINGS

The SIBLINGS keyword is valid only if you also specify the hierarchical_query_clause
(CONNECT BY). ORDER SIBLINGS BY preserves any ordering specified in the hierarchical query
clause and then applies the order_by_clause to the siblings of the hierarchy.

expr

expr orders rows based on their value for expr. The expression is based on columns in the
select list or columns in the tables, views, or materialized views in the FROM clause.

position

Specify position to order rows based on their value for the expression in this position of the
select list. The position value must be an integer.

You can specify multiple expressions in the order_by_clause. Oracle Database first sorts
rows based on their values for the first expression. Rows with the same value for the first
expression are then sorted based on their values for the second expression, and so on. The
database sorts nulls following all others in ascending order and preceding all others in
descending order. Refer to "Sorting Query Results " for a discussion of ordering query results.

ASC | DESC

Specify whether the ordering sequence is ascending or descending. ASC is the default.

NULLS FIRST | NULLS LAST

Specify whether returned rows containing null values should appear first or last in the
ordering sequence.

NULLS LAST is the default for ascending order, and NULLS FIRST is the default for descending
order.

Restrictions on the ORDER BY Clause

The following restrictions apply to the ORDER BY clause:

Chapter 19
SELECT

19-91

• If you have specified the DISTINCT operator in this statement, then this clause
cannot refer to columns unless they appear in the select list.

• An order_by_clause can contain no more than 255 expressions.

• You cannot order by a LOB, LONG, or LONG RAW column, nested table, or varray.

• If you specify a group_by_clause in the same statement, then this
order_by_clause is restricted to the following expressions:

– Constants

– Aggregate functions

– Analytic functions

– The functions USER, UID, and SYSDATE
– Expressions identical to those in the group_by_clause

– Expressions comprising the preceding expressions that evaluate to the same
value for all rows in a group

See Also:

• "Using the ORDER BY Clause: Examples"

• Restrictions for Linguistic Collations for information on implications of
how ORDER BY character values are compared linguistically

• Appendix C in Oracle Database Globalization Support Guide for the
collation determination rules for the expressions in the ORDER BY clause

window_clause

Oracle Database Release 21c supports the window_clause in the query_block clause.

Rules

• If you use a new window_specification to specify an existing_window_name then

– existing_window_name must refer to an earlier entry in the window_name list

– You cannot use existing_window_name with windowing_clause

– You cannot define a new window with the query_partition_clause. If
existing_window_name has order_by_clause, then the new window definition
cannot have order_by_clause.

• You cannot use the model_clause with window_clause .

• Note that OVER window_name is not equivalent to OVER (window_name …). OVER
(window_name …) implies copying and modifying the window specification, and will
be rejected if the referenced window specification includes a windowing_clause.

Example

The following query shows the usage of window_clause specified as part of table
expression and window functions specified using the window name as defined in
window clause.

Chapter 19
SELECT

19-92

SELECT
 ename, mgr,
 FIRST_VALUE(sal) OVER w AS 'first',
 LAST_VALUE(sal) OVER w AS 'last',
 NTH_VALUE(sal, 2) OVER w AS 'second',
 NTH_VALUE(sal, 4) OVER w AS 'fourth'
 FROM emp
 WINDOW w AS (PARTITION BY deptno ORDER BY sal ROWS UNBOUNDED PRECEDING);

row_limiting_clause

The row_limiting_clause allows you to limit the rows returned by the query. You can specify
an offset, and the number of rows or percentage of rows to return. You can use this clause to
implement top-N reporting. For consistent results, specify the order_by_clause to ensure a
deterministic sort order.

OFFSET

Use this clause to specify the number of rows to skip before row limiting begins. offset must
be a number or an expression that evaluates to a numeric value. If you specify a negative
number, then offset is treated as 0. If you specify NULL, or a number greater than or equal
to the number of rows returned by the query, then 0 rows are returned. If offset includes a
fraction, then the fractional portion is truncated. If you do not specify this clause, then offset
is 0 and row limiting begins with the first row.

ROW | ROWS

These keywords can be used interchangeably and are provided for semantic clarity.

FETCH

Use this clause to specify the number of rows or percentage of rows to return. If you do not
specify this clause, then all rows are returned, beginning at row offset + 1.

FIRST | NEXT

These keywords can be used interchangeably and are provided for semantic clarity.

rowcount | percent PERCENT

Use rowcount to specify the number of rows to return. rowcount must be a number or an
expression that evaluates to a numeric value. If you specify a negative number, then
rowcount is treated as 0. If rowcount is greater than the number of rows available beginning
at row offset + 1, then all available rows are returned. If rowcount includes a fraction, then
the fractional portion is truncated. If rowcount is NULL, then 0 rows are returned.

Use percent PERCENT to specify the percentage of the total number of selected rows to
return. percent must be a number or an expression that evaluates to a numeric value. If you
specify a negative number, then percent is treated as 0. If percent is NULL, then 0 rows are
returned.

If you do not specify rowcount or percent PERCENT, then 1 row is returned.

ROW | ROWS

These keywords can be used interchangeably and are provided for semantic clarity.

ONLY | WITH TIES

Specify ONLY to return exactly the specified number of rows or percentage of rows.

Chapter 19
SELECT

19-93

Specify WITH TIES to return additional rows with the same sort key as the last row
fetched. If you specify WITH TIES, then you must specify the order_by_clause. If you
do not specify the order_by_clause, then no additional rows will be returned.

Restrictions on the row_limiting_clause

This clause is subject to the following restrictions:

• You cannot specify this clause with the for_update_clause.

• If you specify this clause, then the select list cannot contain the sequence
pseudocolumns CURRVAL or NEXTVAL.

• Materialized views are not eligible for an incremental refresh if the defining query
contains the row_limiting_clause.

• If the select list contains columns with identical names and you specify the
row_limiting_clause, then an ORA-00918 error occurs. This error occurs
whether the identically named columns are in the same table or in different tables.
You can work around this issue by specifying unique column aliases for the
identically named columns.

See Also:

"Row Limiting: Examples"

for_update_clause

The FOR UPDATE clause lets you lock the selected rows so that other users cannot lock
or update the rows until you end your transaction. You can specify this clause only in a
top-level SELECT statement, not in subqueries.

Note:

Prior to updating a LOB value, you must lock the row containing the LOB.
One way to lock the row is with an embedded SELECT ... FOR UPDATE
statement. You can do this using one of the programmatic languages or
DBMS_LOB package. For more information on lock rows before writing to a
LOB, see Oracle Database SecureFiles and Large Objects Developer's
Guide.

Nested table rows are not locked as a result of locking the parent table rows. If you
want the nested table rows to be locked, then you must lock them explicitly.

Restrictions on the FOR UPDATE Clause

This clause is subject to the following restrictions:

• You cannot specify this clause with the following other constructs: the DISTINCT
operator, CURSOR expression, set operators, group_by_clause, or aggregate
functions.

Chapter 19
SELECT

19-94

• The tables locked by this clause must all be located on the same database and on the
same database as any LONG columns and sequences referenced in the same statement.

See Also:

"Using the FOR UPDATE Clause: Examples"

Using the FOR UPDATE Clause on Views

In general, this clause is not supported on views. However, in some cases, a SELECT ... FOR
UPDATE query on a view can succeed without any errors. This occurs when the view has been
merged to its containing query block internally by the query optimizer, and SELECT ... FOR
UPDATE succeeds on the internally transformed query. The examples in this section illustrate
when using the FOR UPDATE clause on a view can succeed or fail.

• Using the FOR UPDATE clause on merged views

An error can occur when you use the FOR UPDATE clause on a merged view if both of the
following conditions apply:

– The underlying column of the view is an expression

– The FOR UPDATE clause applies to a column list

The following statement succeeds because the underlying column of the view is not an
expression:

SELECT employee_id FROM (SELECT * FROM employees)
 FOR UPDATE OF employee_id;

The following statement succeeds because, while the underlying column of the view is an
expression, the FOR UPDATE clause does not apply to a column list:

SELECT employee_id FROM (SELECT employee_id+1 AS employee_id FROM employees)
 FOR UPDATE;

The following statement fails because the underlying column of the view is an expression
and the FOR UPDATE clause applies to a column list:

SELECT employee_id FROM (SELECT employee_id+1 AS employee_id FROM employees)
 FOR UPDATE OF employee_id;
 *
Error at line 2:
ORA-01733: virtual column not allowed here

• Using the FOR UPDATE clause on non-merged views

Since the FOR UPDATE clause is not supported on views, anything that prevents view
merging, such as the NO_MERGE hint, parameters that disallow view merging, or something
in the query structure that prevents view merging, will result in an ORA-02014 error.

In the following example, the GROUP BY statement prevents view merging, which causes
an error:

SELECT avgsal
 FROM (SELECT AVG(salary) AS avgsal FROM employees GROUP BY job_id)
 FOR UPDATE;
FROM (SELECT AVG(salary) AS avgsal FROM employees GROUP BY job_id)
 *

Chapter 19
SELECT

19-95

ERROR at line 2:
ORA-02014: cannot select FOR UPDATE from view with DISTINCT, GROUP BY, etc.

Note:

Due to the complexity of the view merging mechanism, Oracle recommends
against using the FOR UPDATE clause on views.

OF ... column

Use the OF ... column clause to lock the select rows only for a particular table or view in
a join. The columns in the OF clause only indicate which table or view rows are locked.
The specific columns that you specify are not significant. However, you must specify
an actual column name, not a column alias. If you omit this clause, then the database
locks the selected rows from all the tables in the query.

NOWAIT | WAIT

The NOWAIT and WAIT clauses let you tell the database how to proceed if the SELECT
statement attempts to lock a row that is locked by another user.

• Specify NOWAIT to return control to you immediately if a lock exists.

• Specify WAIT to instruct the database to wait integer seconds for the row to
become available and then return control to you.

If you specify neither WAIT nor NOWAIT, then the database waits until the row is
available and then returns the results of the SELECT statement.

SKIP LOCKED

SKIP LOCKED is an alternative way to handle a contending transaction that is locking
some rows of interest. Specify SKIP LOCKED to instruct the database to attempt to lock
the rows specified by the WHERE clause and to skip any rows that are found to be
already locked by another transaction. This feature is designed for use in
multiconsumer queue environments. It enables queue consumers to skip rows that are
locked by other consumers and obtain unlocked rows without waiting for the other
consumers to finish. Refer to Oracle Database Advanced Queuing User's Guide for
more information.

Note on the WAIT and SKIP LOCKED Clauses

If you specify WAIT or SKIP LOCKED and the table is locked in exclusive mode, then the
database will not return the results of the SELECT statement until the lock on the table is
released. In the case of WAIT, the SELECT FOR UPDATE clause is blocked regardless of
the wait time specified.

row_pattern_clause

The MATCH_RECOGNIZE clause lets you perform pattern matching. Use this clause to
recognize patterns in a sequence of rows in table, which is called the row pattern
input table. The result of a query that uses the MATCH_RECOGNIZE clause is called the
row pattern output table.

The MATCH_RECOGNIZE enables you to do the following tasks:

Chapter 19
SELECT

19-96

• Logically partition and order the data with the PARTITION BY and ORDER BY clauses.

• Define measures, which are expressions usable in other parts of the SQL query, in the
MEASURES clause.

• Define patterns of rows to seek using the PATTERN clause. These patterns use regular
expression syntax, a powerful and expressive feature, applied to the pattern variables
you define.

• Specify the logical conditions required to map a row to a row pattern variable in the
DEFINE clause.

See Also:

• Oracle Database Data Warehousing Guide for more information on pattern
matching

• "Row Pattern Matching: Example"

row_pattern_partition_by

Specify PARTITION BY to divide the rows in the row pattern input table into logical groups
called row pattern partitions. Use column to specify one or more partitioning columns. Each
partition consists of the set of rows in the row pattern input table that have the same value(s)
on the partitioning column(s).

If you specify this clause, then matches are found within partitions and do not cross partition
boundaries. If you do not specify this clause, then all rows of the row input table constitute a
single row pattern partition.

row_pattern_order_by

Specify ORDER BY to order rows within each row pattern partition. Use column to specify one or
more ordering columns. If you specify multiple columns, then Oracle Database first sorts rows
based on their values for the first column. Rows with the same value for the first column are
then sorted based on their values for the second column, and so on. Oracle Database sorts
nulls following all others in ascending order.

If you do not specify this clause, then the result of the row_pattern_clause is
nondeterministic and you may get inconsistent results each time you run the query.

row_pattern_measures

Use the MEASURES clause to define one or more row pattern measure columns. These
columns are included in the row pattern output table and contain values that are useful for
analyzing data.

When you define a row pattern measure column, using the row_pattern_measure_column
clause, you specify its pattern measure expression. The values in the column are calculated
by evaluating the pattern measure expression whenever a match is found.

row_pattern_measure_column

Use this clause to define a row pattern measure column.

Chapter 19
SELECT

19-97

• For expr, specify the pattern measure expression. A pattern measure expression
is an expression as described in Expressions that can contain only the following
elements:

– Constants: Text literals and numeric literals

– References to any column of the row pattern input table

– The CLASSIFIER function, which returns the name of the primary row pattern
variable to which the row is mapped. Refer to row_pattern_classifier_func for
more information.

– The MATCH_NUMBER function, which returns the sequential number of a row
pattern match within the row pattern partition. Refer to
row_pattern_match_num_func for more information.

– Row pattern navigation functions: PREV, NEXT, FIRST, and LAST. Refer to
row_pattern_navigation_func for more information.

– Row pattern aggregate functions: AVG , COUNT , MAX , MIN , or SUM . Refer
to row_pattern_aggregate_func for more information.

• For c_alias, specify the alias for the pattern measure expression. Oracle
Database uses this alias in the column heading of the row pattern output table.
The AS keyword is optional. The alias can be used in other parts of the query, such
as the SELECT ... ORDER BY clause.

row_pattern_rows_per_match

This clause lets you specify whether the row pattern output table includes summary or
detailed data about each match.

• If you specify ONE ROW PER MATCH, then each match produces one summary row.
This is the default.

• If you specify ALL ROWS PER MATCH, then each match that spans multiple rows will
produce one output row for each row in the match.

row_pattern_skip_to

This clause lets you specify the point to resume row pattern matching after a non-
empty match is found.

• Specify AFTER MATCH SKIP TO NEXT ROW to resume pattern matching at the row after
the first row of the current match.

• Specify AFTER MATCH SKIP PAST LAST ROW to resume pattern matching at the next
row after the last row of the current match. This is the default.

• Specify AFTER MATCH SKIP TO FIRST variable_name to resume pattern matching at
the first row that is mapped to pattern variable variable_name. The variable_name
must be defined in the DEFINE clause.

• Specify AFTER MATCH SKIP TO LAST variable_name to resume pattern matching at
the last row that is mapped to pattern variable variable_name. The variable_name
must be defined in the DEFINE clause.

• AFTER MATCH SKIP TO variable_name has the same behavior as AFTER MATCH SKIP
TO LAST variable_name.

Chapter 19
SELECT

19-98

See Also:

Oracle Database Data Warehousing Guide for more information on the AFTER MATCH
SKIP clauses

PATTERN

Use the PATTERN clause to define which pattern variables must be matched, the sequence in
which they must be matched, and the quantity of rows that must be matched for each pattern
variable.

A row pattern match consists of a set of contiguous rows in a row pattern partition. Each row
of the match is mapped to a pattern variable. The mapping of rows to pattern variables must
conform to the regular expression specified in the row_pattern clause, and all conditions in
the DEFINE clause must be true.

Note:

It is outside the scope of this document to explain regular expression concepts and
details. If you are not familiar with regular expressions, then you are encouraged to
familiarize yourself with the topic using other sources.

The precedence of the elements that you specify in the regular expression of the PATTERNS
clause, in decreasing order, is as follows:

• Row pattern elements (specified in the row_pattern_primary clause)

• Row pattern quantifiers (specified in the row_pattern_quantifier clause)

• Concatenation (specified in the row_pattern_term clause)

• Alternation (specified in the row_pattern clause)

See Also:

Oracle Database Data Warehousing Guide for more information on the PATTERN
clause

row_pattern

Use this clause to specify the row pattern. A row pattern is a regular expression that can take
one of the following forms:

• A single row pattern term

For example: PATTERN(A)
• A row pattern, a vertical bar, and a row pattern term

For example: PATTERN(A|B)
• A recursively built row pattern, a vertical bar, and a row pattern term

Chapter 19
SELECT

19-99

For example: PATTERN(A|B|C)
The vertical bar in this clause represents alternation. Alternation matches a single
regular expression from a list of several possible regular expressions. Alternatives are
preferred in the order they are specified. For example, if you specify PATTERN(A|B|C),
then Oracle Database attempts to match A first. If A is not matched, then it attempts to
match B. If B is not matched, then it attempts to match C.

row_pattern_term

This clause lets you specify a row pattern term. A row pattern term can take one of the
following forms:

• A single row pattern factor

For example: PATTERN(A)
• A row pattern term followed by a row pattern factor.

For example: PATTERN(A B)
• A recursively built row pattern term followed by a row pattern factor

For example: PATTERN(A B C)
The syntax used in the second and third examples represents concatenation.
Concatenation is used to list two or more items in a pattern to be matched and the
order in which they are to be matched. For example, if you specify PATTERN(A B C),
then Oracle Database first matches A, then uses the resulting matched rows to match
B, then uses the resulting matched rows to match C. Only rows that match A, B, and C,
are included in the row pattern match.

row_pattern_factor

This clause lets you specify a row pattern factor. A row pattern factor consists of a row
pattern element, specified using the row_pattern_primary clause, and an optional row
pattern quantifier, specified using the row_pattern_quantifier clause.

row_pattern_primary

Use this clause to specify the row pattern element. Table 19-1 lists the valid row
pattern elements and their descriptions.

Table 19-1 Row Pattern Elements

Row Pattern Element Description

variable_name Specify a primary pattern variable name that is defined in the
row_pattern_definition clause. You cannot specify a union
pattern variable that is defined in the
row_pattern_subset_item clause.

$ $ matches the position after the last row in the partition. This
element is an anchor. Anchors work in terms of positions rather
than rows.

^ ^ matches the position before the first row in the partition. This
element is an anchor. Anchors work in terms of positions rather
than rows

([row_pattern]) Use row_pattern to specify the row pattern to be matched. An
empty pattern () matches an empty set of rows.

Chapter 19
SELECT

19-100

Table 19-1 (Cont.) Row Pattern Elements

Row Pattern Element Description

{- row_pattern -} Exclusion syntax. Use row_pattern to specify parts of the
pattern to be excluded from the output of ALL ROWS PER MATCH.

row_pattern_permute Use row_pattern_permute to specify a pattern that is a
permutation of row pattern elements. Refer to
row_pattern_permute for the full semantics of this clause.

row_pattern_permute

Use the PERMUTE clause to express a pattern that is a permutation of the specified row pattern
elements. For example, PATTERN (PERMUTE (A, B, C)) is equivalent to an alternation of all
permutations of the three row pattern elements A, B, and C, similar to the following:

PATTERN (A B C | A C B | B A C | B C A | C A B | C B A)

Note that the row pattern elements are expanded lexicographically and that each element to
permute must be separated by a comma from the other elements.

See Also:

Oracle Database Data Warehousing Guide for more information on permutations

row_pattern_quantifier

Use this clause to specify the row pattern quantifier, which is a postfix operator that defines
the number of iterations accepted for a match.

Row pattern quantifiers are referred to as greedy; they will attempt to match as many
instances of the regular expression on which they are applied as possible. The exception is
row pattern quantifiers that have a question mark (?) as a suffix, which are referred to as
reluctant. They will attempt to match as few instances as possible of the regular expression
on which they are applied.

Table 19-2 lists the valid row pattern quantifiers and the number of iterations they accept for a
match. In this table, n and m represent unsigned integers.

Table 19-2 Row Pattern Quantifiers

Row Pattern
Quantifier

Number of Iterations Accepted for a Match

* 0 or more iterations (greedy)

*? 0 or more iterations (reluctant)

+ 1 or more iterations (greedy)

+? 1 or more iterations (reluctant)

? 0 or 1 iterations (greedy)

?? 0 or 1 iterations (reluctant)

Chapter 19
SELECT

19-101

Table 19-2 (Cont.) Row Pattern Quantifiers

Row Pattern
Quantifier

Number of Iterations Accepted for a Match

{n,} n or more iterations, (n >= 0) (greedy)

{n,}? n or more iterations, (n >= 0) (reluctant)

{n,m} Between n and m iterations, inclusive, (0 <= n <= m, 0 < m) (greedy)

{n,m}? Between n and m iterations, inclusive, (0 <= n <= m, 0 < m) (reluctant)

{,m} Between 0 and m iterations, inclusive (m > 0) (greedy)

{,m}? Between 0 and m iterations, inclusive (m > 0) (reluctant)

{n}? n iterations, (n > 0)

See Also:

Oracle Database Data Warehousing Guide for more information on row
pattern quantifiers

row_pattern_subset_clause

The SUBSET clause lets you specify one or more union row pattern variables. Use the
row_pattern_subset_item clause to declare each union row pattern variable.

You can specify union row pattern variables in the following clauses:

• MEASURES clause: In the expression for a row pattern measure column. That is, in
expression expr of the row_pattern_measure_column clause.

• DEFINE clause: In the condition that defines a primary pattern variable. That is, in
condition of the row_pattern_definition clause

row_pattern_subset_item

This clause lets you create a grouping of multiple pattern variables that can be referred
to with a variable name of its own. The variable name that refers to this grouping is
called a union row pattern variable.

• For variable_name on the left side of the equal sign, specify the name of the union
row pattern variable.

• On the right side of the equal sign, specify a comma-separated list of distinct
primary row pattern variables within parentheses. This list cannot include any
union row pattern variables.

See Also:

Oracle Database Data Warehousing Guide for more information on defining
union row pattern variables

Chapter 19
SELECT

19-102

DEFINE

Use the DEFINE clause to specify one or more row pattern definitions. A row pattern definition
specifies the conditions that a row must meet in order to be mapped to a specific pattern
variable.

The DEFINE clause only supports running semantics.

See Also:

• Oracle Database Data Warehousing Guide for more information on the DEFINE
clause

• Oracle Database Data Warehousing Guide for more information on running and
final semantics

row_pattern_definition_list

This clause lets you specify one or more row pattern definitions.

row_pattern_definition

This clause lets you specify a row pattern definition, which contains the conditions that a row
must meet in order to be mapped to the specified pattern variable.

• For variable_name, specify the name of the pattern variable.

• For condition, specify a condition as described in Conditions, with the following
extension: condition can contain any of the functions described by
row_pattern_navigation_func::= and row_pattern_aggregate_func::=.

row_pattern_rec_func

This clause comprises the following clauses, which let you specify row pattern recognition
functions:

• row_pattern_classifier_func: Use this clause to specify the CLASSIFIER function,
which returns a character string whose value is the name of the variable to which the row
is mapped.

• row_pattern_match_num_func: Use this clause to specify the MATCH_NUMBER function,
which returns a numeric value with scale 0 (zero) whose value is the sequential number
of the match within the row pattern partition.

• row_pattern_navigation_func: Use this clause to specify functions that perform row
pattern navigation operations.

• row_pattern_aggregate_func: Use this clause to specify an aggregate function in the
expression for a row pattern measure column or in the condition that defines a primary
pattern variable.

You can specify row pattern recognition functions in the following clauses:

• MEASURES clause: In the expression for a row pattern measure column. That is, in
expression expr of the row_pattern_measure_column clause.

Chapter 19
SELECT

19-103

• DEFINE clause: In the condition that defines a primary pattern variable. That is, in
condition of the row_pattern_definition clause

A row pattern recognition function may behave differently depending whether you
specify it in the MEASURES or DEFINE clause. These details are explained in the
semantics for each clause.

row_pattern_classifier_func

The CLASSIFIER function returns a character string whose value is the name of the
variable to which the row is mapped.

• In the MEASURES clause:

– If you specify ONE ROW PER MATCH, then the query uses the last row of the match
when processing the MEASURES clause, so the CLASSIFIER function returns the
name of the pattern variable to which the last row of the match is mapped.

– If you specify ALL ROWS PER MATCH, then for each row of the match found, the
CLASSIFIER function returns the name of the pattern variable to which the row
is mapped.

For empty matches—that is, matches that contain no rows, the CLASSIFER function
returns NULL.

• In the DEFINE clause, the CLASSIFIER function returns the name of the primary
pattern variable to which the current row is mapped.

row_pattern_match_num_func

The MATCH_NUMBER function returns a numeric value with scale 0 (zero) whose value is
the sequential number of the match within the row pattern partition.

Matches within a row pattern partition are numbered sequentially starting with 1 in the
order in which they are found. If multiple rows satisfy a match, then they are all
assigned the same match number. Note that match numbering starts over again at 1 in
each row pattern partition, because there is no inherent ordering between row pattern
partitions.

• In the MEASURES clause: You can use MATCH_NUMBER to obtain the sequential
number of the match within the row pattern.

• In the DEFINE clause: You can use MATCH_NUMBER to define conditions that depend
upon the match number.

row_pattern_navigation_func

This clause lets you perform the following row pattern navigation operations:

• Navigate among the group of rows mapped to a pattern variable using the FIRST
and LAST functions of the row_pattern_nav_logical clause.

• Navigate among all rows in a row pattern partition using the PREV and NEXT
functions of the row_pattern_nav_physical clause

• Nest the FIRST or LAST function within the PREV or NEXT function using the
row_pattern_nav_compound clause.

row_pattern_nav_logical

This clause lets you use the FIRST and LAST functions to navigate among the group of
rows mapped to a pattern variable using an optional logical offset.

Chapter 19
SELECT

19-104

• The FIRST function returns the value of expression expr when evaluated in the first row of
the group of rows mapped to the pattern variable that is specified in expr. If no rows are
mapped to the pattern variable, then the FIRST function returns NULL.

• The LAST function returns the value of expression expr when evaluated in the last row of
the group of rows mapped to the pattern variable that is specified in expr. If no rows are
mapped to the pattern variable, then the LAST function returns NULL.

• Use expr to specify the expression to be evaluated. It must contain at least one row
pattern column reference. If it contains more than one row pattern column reference, then
all must refer to the same pattern variable.

• Use the optional offset to specify the logical offset within the set of rows mapped to the
pattern variable. When specified with the FIRST function, the offset is the number of rows
from the first row, in ascending order. When specified with the LAST function, the offset is
the number of rows from the last row in descending order. The default offset is 0.

For offset, specify a non-negative integer. It must be a runtime constant (literal, bind
variable, or expressions involving them), but not a column or subquery.

If you specify an offset that is greater than or equal to the number of rows mapped to
the pattern variable minus 1, then the function returns NULL.

You can specify running or final semantics for the FIRST and LAST functions as follows:

• The MEASURES clause supports running and final semantics. Specify RUNNING for running
semantics. Specify FINAL for final semantics. The default is RUNNING.

• The DEFINE clause supports only running semantics. Therefore, running semantics will be
used whether you specify or omit RUNNING. You cannot specify FINAL.

See Also:

– Oracle Database Data Warehousing Guide for more information on the
FIRST and LAST functions

– Oracle Database Data Warehousing Guide for more information on running
and final semantics

row_pattern_nav_physical

This clause lets you use the PREV and NEXT functions to navigate all rows in a row pattern
partition using an optional physical offset.

• The PREV function returns the value of expression expr when evaluated in the previous
row in the partition. If there is no previous row in the partition, then the PREV function
returns NULL.

• The NEXT function returns the value of expression expr when evaluated in the next row in
the partition. If there is no next row in the partition, then the NEXT function returns NULL.

• Use expr to specify the expression to be evaluated. It must contain at least one row
pattern column reference. If it contains more than one row pattern column reference, then
all must refer to the same pattern variable.

• Use the optional offset to specify the physical offset within the partition. When specified
with the PREV function, it is the number of rows before the current row. When specified

Chapter 19
SELECT

19-105

with the NEXT function, it is the number of rows after the current row. The default is
1. If you specify an offset of 0, then the current row is evaluated.

For offset, specify a non-negative integer. It must be a runtime constant (literal,
bind variable, or expressions involving them), but not a column or subquery.

The PREV and NEXT functions always use running semantics. Therefore, you cannot
specify the RUNNING or FINAL keywords with this clause.

See Also:

• Oracle Database Data Warehousing Guide for more information on the
PREV and NEXT functions

• Oracle Database Data Warehousing Guide for more information on
running and final semantics

row_pattern_nav_compound

This clause lets you nest the row_pattern_nav_logical clause within the
row_pattern_nav_physical clause. That is, it lets you nest the FIRST or LAST function
within the PREV or NEXT function. The row_pattern_nav_logical clause is evaluated
first and then the result is supplied to the row_pattern_nav_physical clause.

Refer to row_pattern_nav_logical and row_pattern_nav_physical for the full semantics
of these clauses.

See Also:

Oracle Database Data Warehousing Guide for more information on nesting
the FIRST and LAST functions within the PREV and NEXT functions

row_pattern_aggregate_func

This clause lets you use an aggregate function in the expression for a row pattern
measure column or in the condition that defines a primary pattern variable.

For aggregate_function, specify any one of the AVG , COUNT , MAX , MIN , or SUM
functions. The DISTINCT keyword is not supported.

You can specify running or final semantics for aggregate functions as follows:

• The MEASURES clause supports running and final semantics. Specify RUNNING for
running semantics. Specify FINAL for final semantics. The default is RUNNING.

• The DEFINE clause supports only running semantics. Therefore, running semantics
will be used whether you specify or omit RUNNING. You cannot specify FINAL.

Chapter 19
SELECT

19-106

See Also:

• Oracle Database Data Warehousing Guide for more information on aggregate
functions

• Oracle Database Data Warehousing Guide for more information on running and
final semantics

Examples

SQL Macros - Scalar Valued Macros: Examples

Print Hello <name>

A PL/SQL function greet is defined as a scalar SQL Macro that returns the string 'Hello,
<name>! ' when called from a SQL SELECT statement.

create or replace function greet(name varchar2 default 'World')
 return varchar2 SQL_MACRO(Scalar) is
begin
 return q'{ 'Hello, ' || name || '!' }';
end;
/

You can call greet in two ways:

Option 1: Without passing an explicit argument . In this case the default argument is used
and 'Hello World' is returned.

SELECT greet ('World') from dual;
–---------------
Hello, World!

Option 2: Passing an explicit argument . In this case the argument passed is used and
'Hello Bob' is returned.

SELECT greet ('Bob') from dual;
–---------------
Hello, Bob!

Split String Based on Delimiter

The PL/SQL function split_part splits a string on the specified delimiter and returns the part
at the specified position.

create or replace function split_part(string varchar2,
 delimiter varchar2,
 position pls_integer)
 return varchar2 SQL_MACRO(Scalar) is
begin
 return q'{
 regexp_substr(replace(string, delimiter||delimiter, delimiter||' '||delimiter),
 '[^'||delimiter||']+', 1, position, 'imx')
 }';
end;
/
SELECT split_part(sysdate, '-', 2) month from dual;
 –-------------

Chapter 19
SELECT

19-107

 MONTH
 –----
 OCT

SQL Macros - Table Valued Macros: Examples

The macro function budget computes the amount of each department's budget for a
given job. It returns the number of employees in each department with the specified
job title.

create or replace function budget(job varchar2) return varchar2 SQL_MACRO is
begin
 return q'{
 select deptno, sum(sal) budget
 from emp
 where job = budget.job
 group by deptno
 }';
end;
/

SELECT * FROM budget ('MANAGER');
 DEPTNO BUDGET
–---------- –-------
 20 2975
 30 2850
 10 2450

Using a PL/SQL Function in the WITH Clause: Examples

The following example declares and defines a PL/SQL function get_domain in the WITH
clause. The get_domain function returns the domain name from a URL string,
assuming that the URL string has the "www" prefix immediately preceding the domain
name, and the domain name is separated by dots on the left and right. The SELECT
statement uses get_domain to find distinct catalog domain names from the orders
table in the oe schema.

WITH
 FUNCTION get_domain(url VARCHAR2) RETURN VARCHAR2 IS
 pos BINARY_INTEGER;
 len BINARY_INTEGER;
 BEGIN
 pos := INSTR(url, 'www.');
 len := INSTR(SUBSTR(url, pos + 4), '.') - 1;
 RETURN SUBSTR(url, pos + 4, len);
 END;
SELECT DISTINCT get_domain(catalog_url)
 FROM product_information;
/

Subquery Factoring: Example

The following statement creates the query names dept_costs and avg_cost for the
initial query block containing a join, and then uses the query names in the body of the
main query.

WITH
 dept_costs AS (
 SELECT department_name, SUM(salary) dept_total

Chapter 19
SELECT

19-108

 FROM employees e, departments d
 WHERE e.department_id = d.department_id
 GROUP BY department_name),
 avg_cost AS (
 SELECT SUM(dept_total)/COUNT(*) avg
 FROM dept_costs)
SELECT * FROM dept_costs
 WHERE dept_total >
 (SELECT avg FROM avg_cost)
 ORDER BY department_name;

DEPARTMENT_NAME DEPT_TOTAL
------------------------------ ----------
Sales 304500
Shipping 156400

Recursive Subquery Factoring: Examples

The following statement shows the employees who directly or indirectly report to employee
101 and their reporting level.

WITH
 reports_to_101 (eid, emp_last, mgr_id, reportLevel) AS
 (
 SELECT employee_id, last_name, manager_id, 0 reportLevel
 FROM employees
 WHERE employee_id = 101
 UNION ALL
 SELECT e.employee_id, e.last_name, e.manager_id, reportLevel+1
 FROM reports_to_101 r, employees e
 WHERE r.eid = e.manager_id
)
SELECT eid, emp_last, mgr_id, reportLevel
FROM reports_to_101
ORDER BY reportLevel, eid;

 EID EMP_LAST MGR_ID REPORTLEVEL
---------- ------------------------- ---------- -----------
 101 Kochhar 100 0
 108 Greenberg 101 1
 200 Whalen 101 1
 203 Mavris 101 1
 204 Baer 101 1
 205 Higgins 101 1
 109 Faviet 108 2
 110 Chen 108 2
 111 Sciarra 108 2
 112 Urman 108 2
 113 Popp 108 2
 206 Gietz 205 2

The following statement shows employees who directly or indirectly report to employee 101,
their reporting level, and their management chain.

WITH
 reports_to_101 (eid, emp_last, mgr_id, reportLevel, mgr_list) AS
 (
 SELECT employee_id, last_name, manager_id, 0 reportLevel,
 CAST(manager_id AS VARCHAR2(2000))
 FROM employees
 WHERE employee_id = 101

Chapter 19
SELECT

19-109

 UNION ALL
 SELECT e.employee_id, e.last_name, e.manager_id, reportLevel+1,
 CAST(mgr_list || ',' || manager_id AS VARCHAR2(2000))
 FROM reports_to_101 r, employees e
 WHERE r.eid = e.manager_id
)
SELECT eid, emp_last, mgr_id, reportLevel, mgr_list
FROM reports_to_101
ORDER BY reportLevel, eid;

 EID EMP_LAST MGR_ID REPORTLEVEL MGR_LIST
 ---------- ------------------------- ---------- ----------- --------
 101 Kochhar 100 0 100
 108 Greenberg 101 1 100,101
 200 Whalen 101 1 100,101
 203 Mavris 101 1 100,101
 204 Baer 101 1 100,101
 205 Higgins 101 1 100,101
 109 Faviet 108 2 100,101,108
 110 Chen 108 2 100,101,108
 111 Sciarra 108 2 100,101,108
 112 Urman 108 2 100,101,108
 113 Popp 108 2 100,101,108
 206 Gietz 205 2 100,101,205

The following statement shows the employees who directly or indirectly report to
employee 101 and their reporting level. It stops at reporting level 1.

WITH
 reports_to_101 (eid, emp_last, mgr_id, reportLevel) AS
 (
 SELECT employee_id, last_name, manager_id, 0 reportLevel
 FROM employees
 WHERE employee_id = 101
 UNION ALL
 SELECT e.employee_id, e.last_name, e.manager_id, reportLevel+1
 FROM reports_to_101 r, employees e
 WHERE r.eid = e.manager_id
)
SELECT eid, emp_last, mgr_id, reportLevel
FROM reports_to_101
WHERE reportLevel <= 1
ORDER BY reportLevel, eid;

 EID EMP_LAST MGR_ID REPORTLEVEL
---------- ------------------------- ---------- -----------
 101 Kochhar 100 0
 108 Greenberg 101 1
 200 Whalen 101 1
 203 Mavris 101 1
 204 Baer 101 1
 205 Higgins 101 1

The following statement shows the entire organization, indenting for each level of
management.

WITH
 org_chart (eid, emp_last, mgr_id, reportLevel, salary, job_id) AS
 (
 SELECT employee_id, last_name, manager_id, 0 reportLevel, salary, job_id
 FROM employees

Chapter 19
SELECT

19-110

 WHERE manager_id is null
 UNION ALL
 SELECT e.employee_id, e.last_name, e.manager_id,
 r.reportLevel+1 reportLevel, e.salary, e.job_id
 FROM org_chart r, employees e
 WHERE r.eid = e.manager_id
)
 SEARCH DEPTH FIRST BY emp_last SET order1
SELECT lpad(' ',2*reportLevel)||emp_last emp_name, eid, mgr_id, salary, job_id
FROM org_chart
ORDER BY order1;

EMP_NAME EID MGR_ID SALARY JOB_ID
-------------------- ---------- ---------- ---------- ----------
King 100 24000 AD_PRES
 Cambrault 148 100 11000 SA_MAN
 Bates 172 148 7300 SA_REP
 Bloom 169 148 10000 SA_REP
 Fox 170 148 9600 SA_REP
 Kumar 173 148 6100 SA_REP
 Ozer 168 148 11500 SA_REP
 Smith 171 148 7400 SA_REP
 De Haan 102 100 17000 AD_VP
 Hunold 103 102 9000 IT_PROG
 Austin 105 103 4800 IT_PROG
 Ernst 104 103 6000 IT_PROG
 Lorentz 107 103 4200 IT_PROG
 Pataballa 106 103 4800 IT_PROG
 Errazuriz 147 100 12000 SA_MAN
 Ande 166 147 6400 SA_REP
. . .

The following statement shows the entire organization, indenting for each level of
management, with each level ordered by hire_date. The value of is_cycle is set to Y for any
employee who has the same hire_date as any manager above him in the management
chain.

WITH
 dup_hiredate (eid, emp_last, mgr_id, reportLevel, hire_date, job_id) AS
 (
 SELECT employee_id, last_name, manager_id, 0 reportLevel, hire_date, job_id
 FROM employees
 WHERE manager_id is null
 UNION ALL
 SELECT e.employee_id, e.last_name, e.manager_id,
 r.reportLevel+1 reportLevel, e.hire_date, e.job_id
 FROM dup_hiredate r, employees e
 WHERE r.eid = e.manager_id
)
 SEARCH DEPTH FIRST BY hire_date SET order1
 CYCLE hire_date SET is_cycle TO 'Y' DEFAULT 'N'
SELECT lpad(' ',2*reportLevel)||emp_last emp_name, eid, mgr_id,
 hire_date, job_id, is_cycle
FROM dup_hiredate
ORDER BY order1;

EMP_NAME EID MGR_ID HIRE_DATE JOB_ID IS_CYCLE
-------------------- ---------- ---------- --------- ---------- --------
King 100 17-JUN-03 AD_PRES N
 De Haan 102 100 13-JAN-01 AD_VP N
 Hunold 103 102 03-JAN-06 IT_PROG N

Chapter 19
SELECT

19-111

 Austin 105 103 25-JUN-05 IT_PROG N
. . .
 Kochhar 101 100 21-SEP-05 AD_VP N
 Mavris 203 101 07-JUN-02 HR_REP N
 Baer 204 101 07-JUN-02 PR_REP N
 Higgins 205 101 07-JUN-02 AC_MGR N
 Gietz 206 205 07-JUN-02 AC_ACCOUNT Y
 Greenberg 108 101 17-AUG-02 FI_MGR N
 Faviet 109 108 16-AUG-02 FI_ACCOUNT N
 Chen 110 108 28-SEP-05 FI_ACCOUNT N
. . .

The following statement counts the number of employees under each manager.

WITH
 emp_count (eid, emp_last, mgr_id, mgrLevel, salary, cnt_employees) AS
 (
 SELECT employee_id, last_name, manager_id, 0 mgrLevel, salary, 0
cnt_employees
 FROM employees
 UNION ALL
 SELECT e.employee_id, e.last_name, e.manager_id,
 r.mgrLevel+1 mgrLevel, e.salary, 1 cnt_employees
 FROM emp_count r, employees e
 WHERE e.employee_id = r.mgr_id
)
 SEARCH DEPTH FIRST BY emp_last SET order1
SELECT emp_last, eid, mgr_id, salary, sum(cnt_employees), max(mgrLevel) mgrLevel
FROM emp_count
GROUP BY emp_last, eid, mgr_id, salary
HAVING max(mgrLevel) > 0
ORDER BY mgr_id NULLS FIRST, emp_last;

EMP_LAST EID MGR_ID SALARY SUM(CNT_EMPLOYEES) MGRLEVEL
------------------ ---------- ---------- ---------- ------------------ ----------
King 100 24000 106 3
Cambrault 148 100 11000 7 2
De Haan 102 100 17000 5 2
Errazuriz 147 100 12000 6 1
Fripp 121 100 8200 8 1
Hartstein 201 100 13000 1 1
Kaufling 122 100 7900 8 1
. . .

Analytic Views: Examples

The following statement uses the persistent analytic view sales_av. The query selects
the member_name hierarchical attribute of time_hier, which is the alias of a hierarchy of
the same name, and values from the sales and units measures of the analytic view
that are dimensioned by the time attribute dimension used by the time_hier hierarchy..
The results of the selection are filtered to those for the YEAR level of the hierarchy.
The results are returned in hierarchical order.

SELECT time_hier.member_name as TIME,
 sales,
 units
FROM
 sales_av HIERARCHIES(time_hier)

Chapter 19
SELECT

19-112

WHERE time_hier.level_name = 'YEAR'
ORDER BY time_hier.hier_order;

The results of the query are the following:

TIME SALES UNITS
------ ------------- ---------
CY2011 6755115980.73 24462444
CY2012 6901682398.95 24400619
CY2013 7240938717.57 24407259
CY2014 7579746352.89 24402666
CY2015 7941102885.15 24475206

Transitory Analytic View Examples

The following statement defines the transitory analytic view my_av in the WITH clause. The
transitory analytic view is based on the persistent analytic view sales_av. The lag_sales
calculated measure is a LAG calculation that is used at query time.

WITH
 my_av ANALYTIC VIEW AS (
 USING sales_av HIERARCHIES (time_hier)
 ADD MEASURES (
 lag_sales AS (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1))
)
)
SELECT time_hier.member_name time, sales, lag_sales
FROM my_av HIERARCHIES (time_hier)
WHERE time_hier.level_name = 'YEAR'
ORDER BY time_hier.hier_order;

The results of the query are the following:

TIME SALES LAG_SALES
------ ---------- ----------
CY2011 6755115981 (null)
CY2012 6901682399 6755115981
CY2013 7240938718 6901682399
CY2014 7579746353 7240938718
CY2015 7941102885 7579746353

The following statement defines a transitory analytic view that uses a filter clause.

WITH
 my_av ANALYTIC VIEW AS (
 USING sales_av HIERARCHIES (time_hier)
 FILTER FACT (
 time_hier TO quarter_of_year IN (1, 2)
 AND year_name IN ('CY2011', 'CY2012')
)
)
SELECT time_hier.member_name time, sales
 FROM my_av HIERARCHIES (time_hier)

Chapter 19
SELECT

19-113

 WHERE time_hier.level_name IN ('YEAR', 'QUARTER')
 ORDER BY time_hier.hier_order;

The results of the query are the following:

TIME SALES
-------- ----------
CY2011 3340459835
Q1CY2011 1625299627
Q2CY2011 1715160208
CY2012 3397271965
Q1CY2012 1644857783
Q2CY2012 1752414182

Inline Analytic View Example

The following statement defines an inline analytic view in the FROM clause. The
transitory analytic view is based on the persistent analytic view sales_av. The
lag_sales calculated measure is a LAG calculation that is used at query time.

SELECT time_hier.member_name time, sales, lag_sales
FROM
 ANALYTIC VIEW (
 USING sales_av HIERARCHIES (time_hier)
 ADD MEASURES (
 lag_sales AS (LAG(sales) OVER (HIERARCHY time_hier OFFSET 1))
)
)
WHERE time_hier.level_name = 'YEAR'
ORDER BY time_hier.hier_order;

The results of the query are the following:

TIME SALES LAG_SALES
------ ---------- ----------
CY2011 6755115981 (null)
CY2012 6901682399 6755115981
CY2013 7240938718 6901682399
CY2014 7579746353 7240938718
CY2015 7941102885 7579746353

Simple Query Examples

The following statement selects rows from the employees table with the department
number of 30:

SELECT *
 FROM employees
 WHERE department_id = 30
 ORDER BY last_name;

The following statement selects the name, job, salary and department number of all
employees except purchasing clerks from department number 30:

Chapter 19
SELECT

19-114

SELECT last_name, job_id, salary, department_id
 FROM employees
 WHERE NOT (job_id = 'PU_CLERK' AND department_id = 30)
 ORDER BY last_name;

The following statement selects from subqueries in the FROM clause and for each department
returns the total employees and salaries as a decimal value of all the departments:

SELECT a.department_id "Department",
 a.num_emp/b.total_count "%_Employees",
 a.sal_sum/b.total_sal "%_Salary"
FROM
(SELECT department_id, COUNT(*) num_emp, SUM(salary) sal_sum
 FROM employees
 GROUP BY department_id) a,
(SELECT COUNT(*) total_count, SUM(salary) total_sal
 FROM employees) b
ORDER BY a.department_id;

Selecting from a Partition: Example

You can select rows from a single partition of a partitioned table by specifying the keyword
PARTITION in the FROM clause. This SQL statement assigns an alias for and retrieves rows
from the sales_q2_2000 partition of the sample table sh.sales:

SELECT * FROM sales PARTITION (sales_q2_2000) s
 WHERE s.amount_sold > 1500
 ORDER BY cust_id, time_id, channel_id;

The following example selects rows from the oe.orders table for orders earlier than a
specified date:

SELECT * FROM orders
 WHERE order_date < TO_DATE('2006-06-15', 'YYYY-MM-DD');

Selecting a Sample: Examples

The following query estimates the number of orders in the oe.orders table:

SELECT COUNT(*) * 10 FROM orders SAMPLE (10);

COUNT(*)*10

 70

Because the query returns an estimate, the actual return value may differ from one query to
the next.

SELECT COUNT(*) * 10 FROM orders SAMPLE (10);

COUNT(*)*10

 80

The following query adds a seed value to the preceding query. Oracle Database always
returns the same estimate given the same seed value:

SELECT COUNT(*) * 10 FROM orders SAMPLE(10) SEED (1);

COUNT(*)*10

Chapter 19
SELECT

19-115

 130

SELECT COUNT(*) * 10 FROM orders SAMPLE(10) SEED(4);

COUNT(*)*10

 120

SELECT COUNT(*) * 10 FROM orders SAMPLE(10) SEED (1);

COUNT(*)*10

 130

Using Flashback Queries: Example

The following statements show a current value from the sample table hr.employees
and then change the value. The intervals used in these examples are very short for
demonstration purposes. Time intervals in your own environment are likely to be
larger.

SELECT salary FROM employees
 WHERE last_name = 'Chung';

 SALARY

 3800

UPDATE employees SET salary = 4000
 WHERE last_name = 'Chung';
1 row updated.

SELECT salary FROM employees
 WHERE last_name = 'Chung';

 SALARY

 4000

To learn what the value was before the update, you can use the following Flashback
Query:

SELECT salary FROM employees
 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' MINUTE)
 WHERE last_name = 'Chung';

 SALARY

 3800

To learn what the values were during a particular time period, you can use a version
Flashback Query:

SELECT salary FROM employees
 VERSIONS BETWEEN TIMESTAMP
 SYSTIMESTAMP - INTERVAL '10' MINUTE AND
 SYSTIMESTAMP - INTERVAL '1' MINUTE
 WHERE last_name = 'Chung';

To revert to the earlier value, use the Flashback Query as the subquery of another
UPDATE statement:

Chapter 19
SELECT

19-116

UPDATE employees SET salary =
 (SELECT salary FROM employees
 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '2' MINUTE)
 WHERE last_name = 'Chung')
 WHERE last_name = 'Chung';
1 row updated.

SELECT salary FROM employees
 WHERE last_name = 'Chung';

 SALARY

 3800

Using the GROUP BY Clause: Examples

To return the minimum and maximum salaries for each department in the employees table,
issue the following statement:

SELECT department_id, MIN(salary), MAX (salary)
 FROM employees
 GROUP BY department_id
 ORDER BY department_id;

To return the minimum and maximum salaries for the clerks in each department, issue the
following statement:

SELECT department_id, MIN(salary), MAX (salary)
 FROM employees
 WHERE job_id = 'PU_CLERK'
 GROUP BY department_id
 ORDER BY department_id;

Using the GROUP BY CUBE Clause: Example

To return the number of employees and their average yearly salary across all possible
combinations of department and job category, issue the following query on the sample tables
hr.employees and hr.departments:

SELECT DECODE(GROUPING(department_name), 1, 'All Departments',
 department_name) AS department_name,
 DECODE(GROUPING(job_id), 1, 'All Jobs', job_id) AS job_id,
 COUNT(*) "Total Empl", AVG(salary) * 12 "Average Sal"
 FROM employees e, departments d
 WHERE d.department_id = e.department_id
 GROUP BY CUBE (department_name, job_id)
 ORDER BY department_name, job_id;

DEPARTMENT_NAME JOB_ID Total Empl Average Sal
------------------------------ ---------- ---------- -----------
Accounting AC_ACCOUNT 1 99600
Accounting AC_MGR 1 144000
Accounting All Jobs 2 121800
Administration AD_ASST 1 52800
. . .
Shipping ST_CLERK 20 33420
Shipping ST_MAN 5 87360

Using the GROUPING SETS Clause: Example

The following example finds the sum of sales aggregated for three precisely specified groups:

Chapter 19
SELECT

19-117

• (channel_desc, calendar_month_desc, country_id)
• (channel_desc, country_id)
• (calendar_month_desc, country_id)
Without the GROUPING SETS syntax, you would have to write less efficient queries with
more complicated SQL. For example, you could run three separate queries and UNION
them, or run a query with a CUBE(channel_desc, calendar_month_desc,
country_id) operation and filter out five of the eight groups it would generate.

SELECT channel_desc, calendar_month_desc, co.country_id,
 TO_CHAR(sum(amount_sold) , '9,999,999,999') SALES$
 FROM sales, customers, times, channels, countries co
 WHERE sales.time_id=times.time_id
 AND sales.cust_id=customers.cust_id
 AND sales.channel_id= channels.channel_id
 AND customers.country_id = co.country_id
 AND channels.channel_desc IN ('Direct Sales', 'Internet')
 AND times.calendar_month_desc IN ('2000-09', '2000-10')
 AND co.country_iso_code IN ('UK', 'US')
 GROUP BY GROUPING SETS(
 (channel_desc, calendar_month_desc, co.country_id),
 (channel_desc, co.country_id),
 (calendar_month_desc, co.country_id));

CHANNEL_DESC CALENDAR COUNTRY_ID SALES$
-------------------- -------- ---------- ----------
Internet 2000-09 52790 124,224
Direct Sales 2000-09 52790 638,201
Internet 2000-10 52790 137,054
Direct Sales 2000-10 52790 682,297
 2000-09 52790 762,425
 2000-10 52790 819,351
Internet 52790 261,278
Direct Sales 52790 1,320,497

See Also:

The functions GROUP_ID , GROUPING , and GROUPING_ID for more
information on those functions

Hierarchical Query: Examples

The following query with a CONNECT BY clause defines a hierarchical relationship in
which the employee_id value of the parent row is equal to the manager_id value of the
child row:

SELECT last_name, employee_id, manager_id FROM employees
 CONNECT BY employee_id = manager_id
 ORDER BY last_name;

In the following CONNECT BY clause, the PRIOR operator applies only to the employee_id
value. To evaluate this condition, the database evaluates employee_id values for the
parent row and manager_id, salary, and commission_pct values for the child row:

SELECT last_name, employee_id, manager_id FROM employees
 CONNECT BY PRIOR employee_id = manager_id

Chapter 19
SELECT

19-118

 AND salary > commission_pct
 ORDER BY last_name;

To qualify as a child row, a row must have a manager_id value equal to the employee_id
value of the parent row and it must have a salary value greater than its commission_pct
value.

Using the HAVING Condition: Example

To return the minimum and maximum salaries for the employees in each department whose
lowest salary is less than $5,000, issue the next statement:

SELECT department_id, MIN(salary), MAX (salary)
 FROM employees
 GROUP BY department_id
 HAVING MIN(salary) < 5000
 ORDER BY department_id;

DEPARTMENT_ID MIN(SALARY) MAX(SALARY)
------------- ----------- -----------
 10 4400 4400
 30 2500 11000
 50 2100 8200
 60 4200 9000

The following example uses a correlated subquery in a HAVING clause that eliminates from the
result set any departments without managers and managers without departments:

SELECT department_id, manager_id
 FROM employees
 GROUP BY department_id, manager_id HAVING (department_id, manager_id) IN
 (SELECT department_id, manager_id FROM employees x
 WHERE x.department_id = employees.department_id)
 ORDER BY department_id;

Using the ORDER BY Clause: Examples

To select all purchasing clerk records from employees and order the results by salary in
descending order, issue the following statement:

SELECT *
 FROM employees
 WHERE job_id = 'PU_CLERK'
 ORDER BY salary DESC;

To select information from employees ordered first by ascending department number and then
by descending salary, issue the following statement:

SELECT last_name, department_id, salary
 FROM employees
 ORDER BY department_id ASC, salary DESC, last_name;

To select the same information as the previous SELECT and use the positional ORDER BY
notation, issue the following statement, which orders by ascending department_id, then
descending salary, and finally alphabetically by last_name:

SELECT last_name, department_id, salary
 FROM employees
 ORDER BY 2 ASC, 3 DESC, 1;

The MODEL clause: Examples

Chapter 19
SELECT

19-119

The view created below is based on the sample sh schema and is used by the
example that follows.

CREATE OR REPLACE VIEW sales_view_ref AS
 SELECT country_name country,
 prod_name prod,
 calendar_year year,
 SUM(amount_sold) sale,
 COUNT(amount_sold) cnt
 FROM sales,times,customers,countries,products
 WHERE sales.time_id = times.time_id
 AND sales.prod_id = products.prod_id
 AND sales.cust_id = customers.cust_id
 AND customers.country_id = countries.country_id
 AND (customers.country_id = 52779
 OR customers.country_id = 52776)
 AND (prod_name = 'Standard Mouse'
 OR prod_name = 'Mouse Pad')
 GROUP BY country_name,prod_name,calendar_year;

SELECT country, prod, year, sale
 FROM sales_view_ref
 ORDER BY country, prod, year;

COUNTRY PROD YEAR SALE
---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3000.72
France Mouse Pad 2001 3269.09
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 2164.54
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 7375.46
Germany Mouse Pad 2001 9535.08
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 6456.13

16 rows selected.

The next example creates a multidimensional array from sales_view_ref with
columns containing country, product, year, and sales. It also:

• Assigns the sum of the sales of the Mouse Pad for years 1999 and 2000 to the
sales of the Mouse Pad for year 2001, if a row containing sales of the Mouse Pad
for year 2001 exists.

• Assigns the value of sales of the Standard Mouse for year 2001 to sales of the
Standard Mouse for year 2002, creating a new row if a row containing sales of the
Standard Mouse for year 2002 does not exist.

SELECT country,prod,year,s
 FROM sales_view_ref
 MODEL
 PARTITION BY (country)
 DIMENSION BY (prod, year)

Chapter 19
SELECT

19-120

 MEASURES (sale s)
 IGNORE NAV
 UNIQUE DIMENSION
 RULES UPSERT SEQUENTIAL ORDER
 (
 s[prod='Mouse Pad', year=2001] =
 s['Mouse Pad', 1999] + s['Mouse Pad', 2000],
 s['Standard Mouse', 2002] = s['Standard Mouse', 2001]
)
 ORDER BY country, prod, year;

COUNTRY PROD YEAR SALE
---------- ----------------------------------- -------- ---------
France Mouse Pad 1998 2509.42
France Mouse Pad 1999 3678.69
France Mouse Pad 2000 3000.72
France Mouse Pad 2001 6679.41
France Standard Mouse 1998 2390.83
France Standard Mouse 1999 2280.45
France Standard Mouse 2000 1274.31
France Standard Mouse 2001 2164.54
France Standard Mouse 2002 2164.54
Germany Mouse Pad 1998 5827.87
Germany Mouse Pad 1999 8346.44
Germany Mouse Pad 2000 7375.46
Germany Mouse Pad 2001 15721.9
Germany Standard Mouse 1998 7116.11
Germany Standard Mouse 1999 6263.14
Germany Standard Mouse 2000 2637.31
Germany Standard Mouse 2001 6456.13
Germany Standard Mouse 2002 6456.13

18 rows selected.

The first rule uses UPDATE behavior because symbolic referencing is used on the left-hand
side of the rule. The rows represented by the left-hand side of the rule exist, so the measure
columns are updated. If the rows did not exist, then no action would have been taken.

The second rule uses UPSERT behavior because positional referencing is used on the left-
hand side and a single cell is referenced. The rows do not exist, so new rows are inserted
and the related measure columns are updated. If the rows did exist, then the measure
columns would have been updated.

See Also:

Oracle Database Data Warehousing Guide for an expanded discussion and
examples

The next example uses the same sales_view_ref view and the analytic function SUM to
calculate a cumulative sum (csum) of sales per country and per year.

SELECT country, year, sale, csum
 FROM
 (SELECT country, year, SUM(sale) sale
 FROM sales_view_ref
 GROUP BY country, year
)

Chapter 19
SELECT

19-121

 MODEL DIMENSION BY (country, year)
 MEASURES (sale, 0 csum)
 RULES (csum[any, any]=
 SUM(sale) OVER (PARTITION BY country
 ORDER BY year
 ROWS UNBOUNDED PRECEDING)
)
 ORDER BY country, year;

COUNTRY YEAR SALE CSUM
--------------- ---------- ---------- ----------
France 1998 4900.25 4900.25
France 1999 5959.14 10859.39
France 2000 4275.03 15134.42
France 2001 5433.63 20568.05
Germany 1998 12943.98 12943.98
Germany 1999 14609.58 27553.56
Germany 2000 10012.77 37566.33
Germany 2001 15991.21 53557.54

8 rows selected.

Row Limiting: Examples

The following statement returns the 5 employees with the lowest employee_id values:

SELECT employee_id, last_name
 FROM employees
 ORDER BY employee_id
 FETCH FIRST 5 ROWS ONLY;

EMPLOYEE_ID LAST_NAME
----------- -------------------------
 100 King
 101 Kochhar
 102 De Haan
 103 Hunold
 104 Ernst

The following statement returns the next 5 employees with the lowest employee_id
values:

SELECT employee_id, last_name
 FROM employees
 ORDER BY employee_id
 OFFSET 5 ROWS FETCH NEXT 5 ROWS ONLY;

EMPLOYEE_ID LAST_NAME
----------- -------------------------
 105 Austin
 106 Pataballa
 107 Lorentz
 108 Greenberg
 109 Faviet

The following statement returns the 5 percent of employees with the lowest salaries:

SELECT employee_id, last_name, salary
 FROM employees
 ORDER BY salary
 FETCH FIRST 5 PERCENT ROWS ONLY;

Chapter 19
SELECT

19-122

EMPLOYEE_ID LAST_NAME SALARY
----------- ------------------------- ----------
 132 Olson 2100
 128 Markle 2200
 136 Philtanker 2200
 127 Landry 2400
 135 Gee 2400
 119 Colmenares 2500

Because WITH TIES is specified, the following statement returns the 5 percent of employees
with the lowest salaries, plus all additional employees with the same salary as the last row
fetched in the previous example:

SELECT employee_id, last_name, salary
 FROM employees
 ORDER BY salary
 FETCH FIRST 5 PERCENT ROWS WITH TIES;

EMPLOYEE_ID LAST_NAME SALARY
----------- ------------------------- ----------
 132 Olson 2100
 128 Markle 2200
 136 Philtanker 2200
 127 Landry 2400
 135 Gee 2400
 119 Colmenares 2500
 131 Marlow 2500
 140 Patel 2500
 144 Vargas 2500
 182 Sullivan 2500
 191 Perkins 2500

Using the FOR UPDATE Clause: Examples

The following statement locks rows in the employees table with purchasing clerks located in
Oxford, which has location_id 2500, and locks rows in the departments table with
departments in Oxford that have purchasing clerks:

SELECT e.employee_id, e.salary, e.commission_pct
 FROM employees e, departments d
 WHERE job_id = 'SA_REP'
 AND e.department_id = d.department_id
 AND location_id = 2500
 ORDER BY e.employee_id
 FOR UPDATE;

The following statement locks only those rows in the employees table with purchasing clerks
located in Oxford. No rows are locked in the departments table:

SELECT e.employee_id, e.salary, e.commission_pct
 FROM employees e JOIN departments d
 USING (department_id)
 WHERE job_id = 'SA_REP'
 AND location_id = 2500
 ORDER BY e.employee_id
 FOR UPDATE OF e.salary;

Using the WITH CHECK OPTION Clause: Example

The following statement is legal even though the third value inserted violates the condition of
the subquery where_clause:

Chapter 19
SELECT

19-123

INSERT INTO (SELECT department_id, department_name, location_id
 FROM departments WHERE location_id < 2000)
 VALUES (9999, 'Entertainment', 2500);

However, the following statement is illegal because it contains the WITH CHECK OPTION
clause:

INSERT INTO (SELECT department_id, department_name, location_id
 FROM departments WHERE location_id < 2000 WITH CHECK OPTION)
 VALUES (9999, 'Entertainment', 2500);
 *
ERROR at line 2:
ORA-01402: view WITH CHECK OPTION where-clause violation

Using PIVOT and UNPIVOT: Examples

The oe.orders table contains information about when an order was placed
(order_date), how it was place (order_mode), and the total amount of the order
(order_total), as well as other information. The following example shows how to use
the PIVOT clause to pivot order_mode values into columns, aggregating order_total
data in the process, to get yearly totals by order mode:

CREATE TABLE pivot_table AS
SELECT * FROM
(SELECT EXTRACT(YEAR FROM order_date) year, order_mode, order_total FROM orders)
PIVOT
(SUM(order_total) FOR order_mode IN ('direct' AS Store, 'online' AS Internet));

SELECT * FROM pivot_table ORDER BY year;

 YEAR STORE INTERNET
---------- ---------- ----------
 2004 5546.6
 2006 371895.5 100056.6
 2007 1274078.8 1271019.5
 2008 252108.3 393349.4

The UNPIVOT clause lets you rotate specified columns so that the input column
headings are output as values of one or more descriptor columns, and the input
column values are output as values of one or more measures columns. The first query
that follows shows that nulls are excluded by default. The second query shows that
you can include nulls using the INCLUDE NULLS clause.

SELECT * FROM pivot_table
 UNPIVOT (yearly_total FOR order_mode IN (store AS 'direct',
 internet AS 'online'))
 ORDER BY year, order_mode;

 YEAR ORDER_ YEARLY_TOTAL
---------- ------ ------------
 2004 direct 5546.6
 2006 direct 371895.5
 2006 online 100056.6
 2007 direct 1274078.8
 2007 online 1271019.5
 2008 direct 252108.3
 2008 online 393349.4

7 rows selected.

Chapter 19
SELECT

19-124

SELECT * FROM pivot_table
 UNPIVOT INCLUDE NULLS
 (yearly_total FOR order_mode IN (store AS 'direct', internet AS 'online'))
 ORDER BY year, order_mode;

 YEAR ORDER_ YEARLY_TOTAL
---------- ------ ------------
 2004 direct 5546.6
 2004 online
 2006 direct 371895.5
 2006 online 100056.6
 2007 direct 1274078.8
 2007 online 1271019.5
 2008 direct 252108.3
 2008 online 393349.4

8 rows selected.

Using Join Queries: Examples

The following examples show various ways of joining tables in a query. In the first example,
an equijoin returns the name and job of each employee and the number and name of the
department in which the employee works:

SELECT last_name, job_id, departments.department_id, department_name
 FROM employees, departments
 WHERE employees.department_id = departments.department_id
 ORDER BY last_name, job_id;

LAST_NAME JOB_ID DEPARTMENT_ID DEPARTMENT_NAME
------------------- ---------- ------------- ----------------------
Abel SA_REP 80 Sales
Ande SA_REP 80 Sales
Atkinson ST_CLERK 50 Shipping
Austin IT_PROG 60 IT
. . .

You must use a join to return this data because employee names and jobs are stored in a
different table than department names. Oracle Database combines rows of the two tables
according to this join condition:

employees.department_id = departments.department_id

The following equijoin returns the name, job, department number, and department name of all
sales managers:

SELECT last_name, job_id, departments.department_id, department_name
 FROM employees, departments
 WHERE employees.department_id = departments.department_id
 AND job_id = 'SA_MAN'
 ORDER BY last_name;

LAST_NAME JOB_ID DEPARTMENT_ID DEPARTMENT_NAME
------------------- ---------- ------------- -----------------------
Cambrault SA_MAN 80 Sales
Errazuriz SA_MAN 80 Sales
Partners SA_MAN 80 Sales
Russell SA_MAN 80 Sales
Zlotkey SA_MAN 80 Sales

Chapter 19
SELECT

19-125

This query is identical to the preceding example, except that it uses an additional
where_clause condition to return only rows with a job value of 'SA_MAN'.

Using Subqueries: Examples

To determine who works in the same department as employee 'Lorentz', issue the
following statement:

SELECT last_name, department_id FROM employees
 WHERE department_id =
 (SELECT department_id FROM employees
 WHERE last_name = 'Lorentz')
 ORDER BY last_name, department_id;

To give all employees in the employees table a 10% raise if they have changed jobs—if
they appear in the job_history table—issue the following statement:

UPDATE employees
 SET salary = salary * 1.1
 WHERE employee_id IN (SELECT employee_id FROM job_history);

To create a second version of the departments table new_departments, with only three
of the columns of the original table, issue the following statement:

CREATE TABLE new_departments
 (department_id, department_name, location_id)
 AS SELECT department_id, department_name, location_id
 FROM departments;

Using Self Joins: Example

The following query uses a self join to return the name of each employee along with
the name of the employee's manager. A WHERE clause is added to shorten the output.

SELECT e1.last_name||' works for '||e2.last_name
 "Employees and Their Managers"
 FROM employees e1, employees e2
 WHERE e1.manager_id = e2.employee_id
 AND e1.last_name LIKE 'R%'
 ORDER BY e1.last_name;

Employees and Their Managers

Rajs works for Mourgos
Raphaely works for King
Rogers works for Kaufling
Russell works for King

The join condition for this query uses the aliases e1 and e2 for the sample table
employees:

e1.manager_id = e2.employee_id

Using Outer Joins: Examples

The following example shows how a partitioned outer join fills data gaps in rows to
facilitate analytic function specification and reliable report formatting. The example first
creates a small data table to be used in the join:

SELECT d.department_id, e.last_name
 FROM departments d LEFT OUTER JOIN employees e

Chapter 19
SELECT

19-126

 ON d.department_id = e.department_id
 ORDER BY d.department_id, e.last_name;

Users familiar with the traditional Oracle Database outer joins syntax will recognize the same
query in this form:

SELECT d.department_id, e.last_name
 FROM departments d, employees e
 WHERE d.department_id = e.department_id(+)
 ORDER BY d.department_id, e.last_name;

Oracle strongly recommends that you use the more flexible FROM clause join syntax shown in
the former example.

The left outer join returns all departments, including those without any employees. The same
statement with a right outer join returns all employees, including those not yet assigned to a
department:

Note:

The employee Zeuss was added to the employees table for these examples, and is
not part of the sample data.

SELECT d.department_id, e.last_name
 FROM departments d RIGHT OUTER JOIN employees e
 ON d.department_id = e.department_id
 ORDER BY d.department_id, e.last_name;

DEPARTMENT_ID LAST_NAME
------------- -------------------------
. . .
 110 Gietz
 110 Higgins
 Grant
 Zeuss

It is not clear from this result whether employees Grant and Zeuss have department_id NULL,
or whether their department_id is not in the departments table. To determine this requires a
full outer join:

SELECT d.department_id as d_dept_id, e.department_id as e_dept_id,
 e.last_name
 FROM departments d FULL OUTER JOIN employees e
 ON d.department_id = e.department_id
 ORDER BY d.department_id, e.last_name;

 D_DEPT_ID E_DEPT_ID LAST_NAME
---------- ---------- -------------------------
 . . .
 110 110 Gietz
 110 110 Higgins
 . . .
 260
 270
 999 Zeuss
 Grant

Chapter 19
SELECT

19-127

Because the column names in this example are the same in both tables in the join, you
can also use the common column feature by specifying the USING clause of the join
syntax. The output is the same as for the preceding example except that the USING
clause coalesces the two matching columns department_id into a single column
output:

SELECT department_id AS d_e_dept_id, e.last_name
 FROM departments d FULL OUTER JOIN employees e
 USING (department_id)
 ORDER BY department_id, e.last_name;

D_E_DEPT_ID LAST_NAME
----------- -------------------------
 . . .
 110 Higgins
 110 Gietz
 . . .
 260
 270
 999 Zeuss
 Grant

Using Partitioned Outer Joins: Examples

The following example shows how a partitioned outer join fills in gaps in rows to
facilitate analytic calculation specification and reliable report formatting. The example
first creates and populates a simple table to be used in the join:

CREATE TABLE inventory (time_id DATE,
 product VARCHAR2(10),
 quantity NUMBER);

INSERT INTO inventory VALUES (TO_DATE('01/04/01', 'DD/MM/YY'), 'bottle', 10);
INSERT INTO inventory VALUES (TO_DATE('06/04/01', 'DD/MM/YY'), 'bottle', 10);
INSERT INTO inventory VALUES (TO_DATE('01/04/01', 'DD/MM/YY'), 'can', 10);
INSERT INTO inventory VALUES (TO_DATE('04/04/01', 'DD/MM/YY'), 'can', 10);

SELECT times.time_id, product, quantity FROM inventory
 PARTITION BY (product)
 RIGHT OUTER JOIN times ON (times.time_id = inventory.time_id)
 WHERE times.time_id BETWEEN TO_DATE('01/04/01', 'DD/MM/YY')
 AND TO_DATE('06/04/01', 'DD/MM/YY')
 ORDER BY 2,1;

TIME_ID PRODUCT QUANTITY
--------- ---------- ----------
01-APR-01 bottle 10
02-APR-01 bottle
03-APR-01 bottle
04-APR-01 bottle
05-APR-01 bottle
06-APR-01 bottle 10
01-APR-01 can 10
02-APR-01 can
03-APR-01 can
04-APR-01 can 10
05-APR-01 can
06-APR-01 can

12 rows selected.

Chapter 19
SELECT

19-128

The data is now more dense along the time dimension for each partition of the product
dimension. However, each of the newly added rows within each partition is null in the quantity
column. It is more useful to see the nulls replaced by the preceding non-NULL value in time
order. You can achieve this by applying the analytic function LAST_VALUE on top of the query
result:

SELECT time_id, product, LAST_VALUE(quantity IGNORE NULLS)
 OVER (PARTITION BY product ORDER BY time_id) quantity
 FROM (SELECT times.time_id, product, quantity
 FROM inventory PARTITION BY (product)
 RIGHT OUTER JOIN times ON (times.time_id = inventory.time_id)
 WHERE times.time_id BETWEEN TO_DATE('01/04/01', 'DD/MM/YY')
 AND TO_DATE('06/04/01', 'DD/MM/YY'))
 ORDER BY 2,1;

TIME_ID PRODUCT QUANTITY
--------- ---------- ----------
01-APR-01 bottle 10
02-APR-01 bottle 10
03-APR-01 bottle 10
04-APR-01 bottle 10
05-APR-01 bottle 10
06-APR-01 bottle 10
01-APR-01 can 10
02-APR-01 can 10
03-APR-01 can 10
04-APR-01 can 10
05-APR-01 can 10
06-APR-01 can 10

12 rows selected.

See Also:

Oracle Database Data Warehousing Guide for an expanded discussion on filling
gaps in time series calculations and examples of usage

Using Antijoins: Example

The following example selects a list of employees who are not in a particular set of
departments:

SELECT * FROM employees
 WHERE department_id NOT IN
 (SELECT department_id FROM departments
 WHERE location_id = 1700)
 ORDER BY last_name;

Using Semijoins: Example

In the following example, only one row needs to be returned from the departments table,
even though many rows in the employees table might match the subquery. If no index has
been defined on the salary column in employees, then a semijoin can be used to improve
query performance.

SELECT * FROM departments
 WHERE EXISTS

Chapter 19
SELECT

19-129

 (SELECT * FROM employees
 WHERE departments.department_id = employees.department_id
 AND employees.salary > 2500)
 ORDER BY department_name;

Using CROSS APPLY and OUTER APPLY Joins: Examples

The following statement uses the CROSS APPLY clause of the
cross_outer_apply_clause. The join returns only rows from the table on the left side
of the join (departments) that produce a result from the inline view on the right side of
the join. That is, the join returns only the departments that have at least one employee.
The WHERE clause restricts the result set to include only the Marketing, Operations, and
Public Relations departments. However, the Operations department is not included in
the result set because it has no employees.

SELECT d.department_name, v.employee_id, v.last_name
 FROM departments d CROSS APPLY (SELECT * FROM employees e
 WHERE e.department_id = d.department_id) v
 WHERE d.department_name IN ('Marketing', 'Operations', 'Public Relations')
 ORDER BY d.department_name, v.employee_id;

DEPARTMENT_NAME EMPLOYEE_ID LAST_NAME
------------------------------ ----------- -------------------------
Marketing 201 Hartstein
Marketing 202 Fay
Public Relations 204 Baer

The following statement uses the OUTER APPLY clause of the
cross_outer_apply_clause. The join returns all rows from the table on the left side of
the join (departments) regardless of whether they produce a result from the inline view
on the right side of the join. That is, the join returns all departments regardless of
whether the departments have any employees. The WHERE clause restricts the result
set to include only the Marketing, Operations, and Public Relations departments. The
Operations department is included in the result set even though it has no employees.

SELECT d.department_name, v.employee_id, v.last_name
 FROM departments d OUTER APPLY (SELECT * FROM employees e
 WHERE e.department_id = d.department_id) v
 WHERE d.department_name IN ('Marketing', 'Operations', 'Public Relations')
 ORDER by d.department_name, v.employee_id;

DEPARTMENT_NAME EMPLOYEE_ID LAST_NAME
------------------------------ ----------- -------------------------
Marketing 201 Hartstein
Marketing 202 Fay
Operations
Public Relations 204 Baer

Using Lateral Inline Views: Example

The following example shows a join with two operands. The second operand is an
inline view that specifies the first operand, table e, in the WHERE clause. This results in
an error.

SELECT * FROM employees e, (SELECT * FROM departments d
 WHERE e.department_id = d.department_id);
ORA-00904: "E"."DEPARTMENT_ID": invalid identifier

Chapter 19
SELECT

19-130

The following example shows a join with two operands. The second operand is a lateral inline
view that specifies the first operand, table e, in the WHERE clause and succeeds without an
error.

SELECT * FROM employees e, LATERAL(SELECT * FROM departments d
 WHERE e.department_id = d.department_id);

Table Collections: Examples

You can perform DML operations on nested tables only if they are defined as columns of a
table. Therefore, when the query_table_expr_clause of an INSERT, DELETE, or UPDATE
statement is a table_collection_expression, the collection expression must be a subquery
that uses the TABLE collection expression to select the nested table column of the table. The
examples that follow are based on the following scenario:

Suppose the database contains a table hr_info with columns department_id, location_id,
and manager_id, and a column of nested table type people which has last_name,
department_id, and salary columns for all the employees of each respective manager:

CREATE TYPE people_typ AS OBJECT (
 last_name VARCHAR2(25),
 department_id NUMBER(4),
 salary NUMBER(8,2));
/
CREATE TYPE people_tab_typ AS TABLE OF people_typ;
/
CREATE TABLE hr_info (
 department_id NUMBER(4),
 location_id NUMBER(4),
 manager_id NUMBER(6),
 people people_tab_typ)
 NESTED TABLE people STORE AS people_stor_tab;

INSERT INTO hr_info VALUES (280, 1800, 999, people_tab_typ());

The following example inserts into the people nested table column of the hr_info table for
department 280:

INSERT INTO TABLE(SELECT h.people FROM hr_info h
 WHERE h.department_id = 280)
 VALUES ('Smith', 280, 1750);

The next example updates the department 280 people nested table:

UPDATE TABLE(SELECT h.people FROM hr_info h
 WHERE h.department_id = 280) p
 SET p.salary = p.salary + 100;

The next example deletes from the department 280 people nested table:

DELETE TABLE(SELECT h.people FROM hr_info h
 WHERE h.department_id = 280) p
 WHERE p.salary > 1700;

Collection Unnesting: Examples

To select data from a nested table column, use the TABLE collection expression to treat the
nested table as columns of a table. This process is called collection unnesting.

Chapter 19
SELECT

19-131

You could get all the rows from hr_info, which was created in the preceding example,
and all the rows from the people nested table column of hr_info using the following
statement:

SELECT t1.department_id, t2.* FROM hr_info t1, TABLE(t1.people) t2
 WHERE t2.department_id = t1.department_id;

Now suppose that people is not a nested table column of hr_info, but is instead a
separate table with columns last_name, department_id, address, hiredate, and
salary. You can extract the same rows as in the preceding example with this
statement:

SELECT t1.department_id, t2.*
 FROM hr_info t1, TABLE(CAST(MULTISET(
 SELECT t3.last_name, t3.department_id, t3.salary
 FROM people t3
 WHERE t3.department_id = t1.department_id)
 AS people_tab_typ)) t2;

Finally, suppose that people is neither a nested table column of table hr_info nor a
table itself. Instead, you have created a function people_func that extracts from
various sources the name, department, and salary of all employees. You can get the
same information as in the preceding examples with the following query:

SELECT t1.department_id, t2.* FROM hr_info t1, TABLE(CAST
 (people_func(...) AS people_tab_typ)) t2;

See Also:

Oracle Database Object-Relational Developer's Guide for more examples of
collection unnesting.

Using the LEVEL Pseudocolumn: Examples

The following statement returns all employees in hierarchical order. The root row is
defined to be the employee whose job is AD_VP. The child rows of a parent row are
defined to be those who have the employee number of the parent row as their
manager number.

SELECT LPAD(' ',2*(LEVEL-1)) || last_name org_chart,
 employee_id, manager_id, job_id
 FROM employees
 START WITH job_id = 'AD_VP'
 CONNECT BY PRIOR employee_id = manager_id;

ORG_CHART EMPLOYEE_ID MANAGER_ID JOB_ID
------------------ ----------- ---------- ----------
Kochhar 101 100 AD_VP
 Greenberg 108 101 FI_MGR
 Faviet 109 108 FI_ACCOUNT
 Chen 110 108 FI_ACCOUNT
 Sciarra 111 108 FI_ACCOUNT
 Urman 112 108 FI_ACCOUNT
 Popp 113 108 FI_ACCOUNT
 Whalen 200 101 AD_ASST
 Mavris 203 101 HR_REP
 Baer 204 101 PR_REP

Chapter 19
SELECT

19-132

 Higgins 205 101 AC_MGR
 Gietz 206 205 AC_ACCOUNT
De Haan 102 100 AD_VP
 Hunold 103 102 IT_PROG
 Ernst 104 103 IT_PROG
 Austin 105 103 IT_PROG
 Pataballa 106 103 IT_PROG
 Lorentz 107 103 IT_PROG

The following statement is similar to the previous one, except that it does not select
employees with the job FI_MGR.

SELECT LPAD(' ',2*(LEVEL-1)) || last_name org_chart,
 employee_id, manager_id, job_id
 FROM employees
 WHERE job_id != 'FI_MGR'
 START WITH job_id = 'AD_VP'
 CONNECT BY PRIOR employee_id = manager_id;

ORG_CHART EMPLOYEE_ID MANAGER_ID JOB_ID
------------------ ----------- ---------- ----------
Kochhar 101 100 AD_VP
 Faviet 109 108 FI_ACCOUNT
 Chen 110 108 FI_ACCOUNT
 Sciarra 111 108 FI_ACCOUNT
 Urman 112 108 FI_ACCOUNT
 Popp 113 108 FI_ACCOUNT
 Whalen 200 101 AD_ASST
 Mavris 203 101 HR_REP
 Baer 204 101 PR_REP
 Higgins 205 101 AC_MGR
 Gietz 206 205 AC_ACCOUNT
De Haan 102 100 AD_VP
 Hunold 103 102 IT_PROG
 Ernst 104 103 IT_PROG
 Austin 105 103 IT_PROG
 Pataballa 106 103 IT_PROG
 Lorentz 107 103 IT_PROG

Oracle Database does not return the manager Greenberg, although it does return employees
who are managed by Greenberg.

The following statement is similar to the first one, except that it uses the LEVEL pseudocolumn
to select only the first two levels of the management hierarchy:

SELECT LPAD(' ',2*(LEVEL-1)) || last_name org_chart,
employee_id, manager_id, job_id
 FROM employees
 START WITH job_id = 'AD_PRES'
 CONNECT BY PRIOR employee_id = manager_id AND LEVEL <= 2;

ORG_CHART EMPLOYEE_ID MANAGER_ID JOB_ID
------------------ ----------- ---------- ----------
King 100 AD_PRES
 Kochhar 101 100 AD_VP
 De Haan 102 100 AD_VP
 Raphaely 114 100 PU_MAN
 Weiss 120 100 ST_MAN
 Fripp 121 100 ST_MAN
 Kaufling 122 100 ST_MAN

Chapter 19
SELECT

19-133

 Vollman 123 100 ST_MAN
 Mourgos 124 100 ST_MAN
 Russell 145 100 SA_MAN
 Partners 146 100 SA_MAN
 Errazuriz 147 100 SA_MAN
 Cambrault 148 100 SA_MAN
 Zlotkey 149 100 SA_MAN
 Hartstein 201 100 MK_MAN

Using Distributed Queries: Example

This example shows a query that joins the departments table on the local database
with the employees table on the remote database:

SELECT last_name, department_name
 FROM employees@remote, departments
 WHERE employees.department_id = departments.department_id;

Using Correlated Subqueries: Examples

The following examples show the general syntax of a correlated subquery:

SELECT select_list
 FROM table1 t_alias1
 WHERE expr operator
 (SELECT column_list
 FROM table2 t_alias2
 WHERE t_alias1.column
 operator t_alias2.column);

UPDATE table1 t_alias1
 SET column =
 (SELECT expr
 FROM table2 t_alias2
 WHERE t_alias1.column = t_alias2.column);

DELETE FROM table1 t_alias1
 WHERE column operator
 (SELECT expr
 FROM table2 t_alias2
 WHERE t_alias1.column = t_alias2.column);

The following statement returns data about employees whose salaries exceed their
department average. The following statement assigns an alias to employees, the table
containing the salary information, and then uses the alias in a correlated subquery:

SELECT department_id, last_name, salary
 FROM employees x
 WHERE salary > (SELECT AVG(salary)
 FROM employees
 WHERE x.department_id = department_id)
 ORDER BY department_id;

For each row of the employees table, the parent query uses the correlated subquery to
compute the average salary for members of the same department. The correlated
subquery performs the following steps for each row of the employees table:

1. The department_id of the row is determined.

2. The department_id is then used to evaluate the parent query.

Chapter 19
SELECT

19-134

3. If the salary in that row is greater than the average salary of the departments of that row,
then the row is returned.

The subquery is evaluated once for each row of the employees table.

Selecting from the DUAL Table: Example

The following statement returns the current date:

SELECT SYSDATE FROM DUAL;

You could select SYSDATE from the employees table, but the database would return 14 rows of
the same SYSDATE, one for every row of the employees table. Selecting from DUAL is more
convenient.

Selecting Sequence Values: Examples

The following statement increments the employees_seq sequence and returns the new value:

SELECT employees_seq.nextval
 FROM DUAL;

The following statement selects the current value of employees_seq:

SELECT employees_seq.currval
 FROM DUAL;

Row Pattern Matching: Example

This example uses row pattern matching to query stock price data. The following statements
create table Ticker and inserts stock price data into the table:

CREATE TABLE Ticker (SYMBOL VARCHAR2(10), tstamp DATE, price NUMBER);

INSERT INTO Ticker VALUES('ACME', '01-Apr-11', 12);
INSERT INTO Ticker VALUES('ACME', '02-Apr-11', 17);
INSERT INTO Ticker VALUES('ACME', '03-Apr-11', 19);
INSERT INTO Ticker VALUES('ACME', '04-Apr-11', 21);
INSERT INTO Ticker VALUES('ACME', '05-Apr-11', 25);
INSERT INTO Ticker VALUES('ACME', '06-Apr-11', 12);
INSERT INTO Ticker VALUES('ACME', '07-Apr-11', 15);
INSERT INTO Ticker VALUES('ACME', '08-Apr-11', 20);
INSERT INTO Ticker VALUES('ACME', '09-Apr-11', 24);
INSERT INTO Ticker VALUES('ACME', '10-Apr-11', 25);
INSERT INTO Ticker VALUES('ACME', '11-Apr-11', 19);
INSERT INTO Ticker VALUES('ACME', '12-Apr-11', 15);
INSERT INTO Ticker VALUES('ACME', '13-Apr-11', 25);
INSERT INTO Ticker VALUES('ACME', '14-Apr-11', 25);
INSERT INTO Ticker VALUES('ACME', '15-Apr-11', 14);
INSERT INTO Ticker VALUES('ACME', '16-Apr-11', 12);
INSERT INTO Ticker VALUES('ACME', '17-Apr-11', 14);
INSERT INTO Ticker VALUES('ACME', '18-Apr-11', 24);
INSERT INTO Ticker VALUES('ACME', '19-Apr-11', 23);
INSERT INTO Ticker VALUES('ACME', '20-Apr-11', 22);

The following query uses row pattern matching to find all cases where stock prices dipped to
a bottom price and then rose. This is generally called a V-shape. The resulting output
contains only three rows because the query specifies ONE ROW PER MATCH, and three matches
were found.

SELECT *
FROM Ticker MATCH_RECOGNIZE (

Chapter 19
SELECT

19-135

 PARTITION BY symbol
 ORDER BY tstamp
 MEASURES STRT.tstamp AS start_tstamp,
 LAST(DOWN.tstamp) AS bottom_tstamp,
 LAST(UP.tstamp) AS end_tstamp
 ONE ROW PER MATCH
 AFTER MATCH SKIP TO LAST UP
 PATTERN (STRT DOWN+ UP+)
 DEFINE
 DOWN AS DOWN.price < PREV(DOWN.price),
 UP AS UP.price > PREV(UP.price)
) MR
ORDER BY MR.symbol, MR.start_tstamp;

SYMBOL START_TST BOTTOM_TS END_TSTAM
---------- --------- --------- ---------
ACME 05-APR-11 06-APR-11 10-APR-11
ACME 10-APR-11 12-APR-11 13-APR-11
ACME 14-APR-11 16-APR-11 18-APR-11

SET CONSTRAINT[S]
Purpose

Use the SET CONSTRAINTS statement to specify, for a particular transaction, whether a
deferrable constraint is checked following each DML statement (IMMEDIATE) or when
the transaction is committed (DEFERRED). You can use this statement to set the mode
for a list of constraint names or for ALL constraints.

The SET CONSTRAINTS mode lasts for the duration of the transaction or until another SET
CONSTRAINTS statement resets the mode.

Note:

You can also use an ALTER SESSION statement with the SET CONSTRAINTS
clause to set all deferrable constraints. This is equivalent to making issuing a
SET CONSTRAINTS statement at the start of each transaction in the current
session.

You cannot specify this statement inside of a trigger definition.

SET CONSTRAINTS can be a distributed statement. Existing database links that have
transactions in process are notified when a SET CONSTRAINTS ALL statement is issued,
and new links are notified that it was issued as soon as they start a transaction.

Prerequisites

To specify when a deferrable constraint is checked, you must have the READ or SELECT
privilege on the table to which the constraint is applied unless the table is in your
schema.

Chapter 19
SET CONSTRAINT[S]

19-136

Syntax

set_constraints::=

SET

CONSTRAINT

CONSTRAINTS

constraint

,

ALL

IMMEDIATE

DEFERRED

;

Semantics

constraint

Specify the name of one or more integrity constraints.

ALL

Specify ALL to set all deferrable constraints for this transaction.

IMMEDIATE

Specify IMMEDIATE to cause the specified constraints to be checked immediately on execution
of each constrained DML statement. Oracle Database first checks any constraints that were
deferred earlier in the transaction and then continues immediately checking constraints of any
further statements in that transaction, as long as all the checked constraints are consistent
and no other SET CONSTRAINTS statement is issued. If any constraint fails the check, then an
error is signaled. At that point, a COMMIT statement causes the whole transaction to undo.

Making constraints immediate at the end of a transaction is a way of checking whether
COMMIT can succeed. You can avoid unexpected rollbacks by setting constraints to IMMEDIATE
as the last statement in a transaction. If any constraint fails the check, you can then correct
the error before committing the transaction.

DEFERRED

Specify DEFERRED to indicate that the conditions specified by the deferrable constraint are
checked when the transaction is committed.

Note:

You can verify the success of deferrable constraints prior to committing them by
issuing a SET CONSTRAINTS ALL IMMEDIATE statement.

Examples

Setting Constraints: Examples

The following statement sets all deferrable constraints in this transaction to be checked
immediately following each DML statement:

SET CONSTRAINTS ALL IMMEDIATE;

Chapter 19
SET CONSTRAINT[S]

19-137

The following statement checks three deferred constraints when the transaction is
committed. This example fails if the constraints were specified to be NOT DEFERRABLE.

SET CONSTRAINTS emp_job_nn, emp_salary_min,
 hr.jhist_dept_fk@remote DEFERRED;

SET ROLE
Purpose

When a user logs on to Oracle Database, the database enables all privileges granted
explicitly to the user and all privileges in the user's default roles. During the session,
the user or an application can use the SET ROLE statement any number of times to
enable or disable the roles currently enabled for the session.

You cannot enable more than 148 user-defined roles at one time.

Note:

• For most roles, you cannot enable or disable a role unless it was granted
to you either directly or through other roles. However, a secure
application role can be granted and enabled by its associated PL/SQL
package. See the CREATE ROLE semantics for USING package and
Oracle Database Security Guide for information about secure application
roles.

• SET ROLE succeeds only if there are no definer's rights units on the call
stack. If at least one DR unit is on the call stack, then issuing the SET
ROLE command causes ORA-06565. See Oracle Database PL/SQL
Language Reference for more information about definer's rights units.

• To run the SET ROLE command from PL/SQL, you must use dynamic
SQL, preferably the EXECUTE IMMEDIATE statement. See Oracle Database
PL/SQL Language Reference for more information about this statement.

You can see which roles are currently enabled by examining the SESSION_ROLES data
dictionary view.

See Also:

• CREATE ROLE for information on creating roles

• ALTER USER for information on changing a user's default roles

• Oracle Database Reference for information on the SESSION_ROLES
session parameter

Prerequisites

You must already have been granted the roles that you name in the SET ROLE
statement.

Chapter 19
SET ROLE

19-138

Syntax

set_role::=

SET ROLE

role

IDENTIFIED BY password

,

ALL

EXCEPT role

,

NONE

;

Semantics

role

Specify one or more roles to be enabled for the current session. All roles not specified are
disabled for the current session or until another SET ROLE statement is issued in the current
session.

In the IDENTIFIED BY password clause, specify the password for a role. If the role has a
password, then you must specify the password to enable the role.

Restriction on Setting Roles

You cannot specify a role identified globally. Global roles are enabled by default at login, and
cannot be reenabled later.

ALL Clause

Specify ALL to enable all roles granted to you for the current session except those optionally
listed in the EXCEPT clause.

Roles listed in the EXCEPT clause must be roles granted directly to you. They cannot be roles
granted to you through other roles.

If you list a role in the EXCEPT clause that has been granted to you both directly and through
another role, then the role remains enabled by virtue of the role to which it has been granted.

Restrictions on the ALL Clause

The following restrictions apply to the ALL clause:

• You cannot use this clause to enable roles with passwords that have been granted
directly to you.

• You cannot use this clause to enable a secure application role, which is a role that can be
enabled only by applications using an authorized package. Refer to Oracle Database
Security Guide for information on creating a secure application role and Oracle Database
2 Day + Security Guide for a tutorial.

NONE

Specify NONE to disable all roles for the current session, including the DEFAULT role.

Chapter 19
SET ROLE

19-139

Examples

Setting Roles: Examples

To enable the role dw_manager identified by the password warehouse for your current
session, issue the following statement:

SET ROLE dw_manager IDENTIFIED BY warehouse;

To enable all roles granted to you for the current session, issue the following
statement:

SET ROLE ALL;

To enable all roles granted to you except dw_manager, issue the following statement:

SET ROLE ALL EXCEPT dw_manager;

To disable all roles granted to you for the current session, issue the following
statement:

SET ROLE NONE;

SET TRANSACTION
Purpose

Use the SET TRANSACTION statement to establish the current transaction as read-only
or read/write, establish its isolation level, assign it to a specified rollback segment, or
assign a name to the transaction.

A transaction implicitly begins with any operation that obtains a TX lock:

• When a statement that modifies data is issued

• When a SELECT ... FOR UPDATE statement is issued

• When a transaction is explicitly started with a SET TRANSACTION statement or the
DBMS_TRANSACTION package

Issuing either a COMMIT or ROLLBACK statement explicitly ends the current transaction.

The operations performed by a SET TRANSACTION statement affect only your current
transaction, not other users or other transactions. Your transaction ends whenever you
issue a COMMIT or ROLLBACK statement. Oracle Database implicitly commits the current
transaction before and after executing a data definition language (DDL) statement.

See Also:

COMMIT and ROLLBACK

Prerequisites

If you use a SET TRANSACTION statement, then it must be the first statement in your
transaction. However, a transaction need not have a SET TRANSACTION statement.

Chapter 19
SET TRANSACTION

19-140

Syntax

set_transaction::=

SET TRANSACTION

READ
ONLY

WRITE

ISOLATION LEVEL
SERIALIZABLE

READ COMMITTED

USE ROLLBACK SEGMENT rollback_segment

NAME string

NAME string

;

Semantics

READ ONLY

The READ ONLY clause establishes the current transaction as a read-only transaction. This
clause established transaction-level read consistency.

All subsequent queries in that transaction see only changes that were committed before the
transaction began. Read-only transactions are useful for reports that run multiple queries
against one or more tables while other users update these same tables.

This clause is not supported for the user SYS. Queries by SYS will return changes made during
the transaction even if SYS has set the transaction to be READ ONLY.

Restriction on Read-only Transactions

Only the following statements are permitted in a read-only transaction:

• Subqueries—SELECT statements without the for_update_clause

• LOCK TABLE
• SET ROLE
• ALTER SESSION
• ALTER SYSTEM

READ WRITE

Specify READ WRITE to establish the current transaction as a read/write transaction. This
clause establishes statement-level read consistency, which is the default.

Restriction on Read/Write Transactions

You cannot toggle between transaction-level and statement-level read consistency in the
same transaction.

ISOLATION LEVEL Clause

• The SERIALIZABLE setting specifies serializable transaction isolation mode as defined in
the SQL standard. If a serializable transaction contains data manipulation language

Chapter 19
SET TRANSACTION

19-141

(DML) that attempts to update any resource that may have been updated in a
transaction uncommitted at the start of the serializable transaction, then the DML
statement fails.

• The READ COMMITTED setting is the default Oracle Database transaction behavior. If
the transaction contains DML that requires row locks held by another transaction,
then the DML statement waits until the row locks are released.

USE ROLLBACK SEGMENT Clause

Note:

This clause is relevant and valid only if you are using rollback segments for
undo. Oracle strongly recommends that you use automatic undo
management to handle undo space. If you follow this recommendation and
run your database in automatic undo mode, then Oracle Database ignores
this clause.

Specify USE ROLLBACK SEGMENT to assign the current transaction to the specified
rollback segment. This clause also implicitly establishes the transaction as a read/write
transaction.

Parallel DML requires more than one rollback segment. Therefore, if your transaction
contains parallel DML operations, then the database ignores this clause.

NAME Clause

Use the NAME clause to assign a name to the current transaction. This clause is
especially useful in distributed database environments when you must identify and
resolve in-doubt transactions. The string value is limited to 255 bytes.

If you specify a name for a distributed transaction, then when the transaction commits,
the name becomes the commit comment, overriding any comment specified explicitly
in the COMMIT statement.

See Also:

Oracle Database Concepts for more information about transaction naming

Examples

Setting Transactions: Examples

The following statements could be run at midnight of the last day of every month to
count the products and quantities on hand in the Toronto warehouse in the sample
Order Entry (oe) schema. This report would not be affected by any other user who
might be adding or removing inventory to a different warehouse.

COMMIT;

SET TRANSACTION READ ONLY NAME 'Toronto';

Chapter 19
SET TRANSACTION

19-142

SELECT product_id, quantity_on_hand FROM inventories
 WHERE warehouse_id = 5
 ORDER BY product_id;

COMMIT;

The first COMMIT statement ensures that SET TRANSACTION is the first statement in the
transaction. The last COMMIT statement does not actually make permanent any changes to the
database. It simply ends the read-only transaction.

TRUNCATE CLUSTER
Purpose

Note:

You cannot roll back a TRUNCATE CLUSTER statement.

Use the TRUNCATE CLUSTER statement to remove all rows from a cluster. By default, Oracle
Database also performs the following tasks:

• Deallocates all space used by the removed rows except that specified by the MINEXTENTS
storage parameter

• Sets the NEXT storage parameter to the size of the last extent removed from the segment
by the truncation process

Removing rows with the TRUNCATE statement can be more efficient than dropping and re-
creating a cluster. Dropping and re-creating a cluster invalidates dependent objects of the
cluster, requires you to regrant object privileges on the cluster, and requires you to re-create
the indexes and cluster on the table and respecify its storage parameters. Truncating has
none of these effects.

Removing rows with the TRUNCATE CLUSTER statement can be faster than removing all rows
with the DELETE statement, especially if the cluster has numerous indexes and other
dependencies.

See Also:

• DELETE and DROP CLUSTER for information on other ways of dropping data
from a cluster

• TRUNCATE TABLE for information on truncating a table

Prerequisites

To truncate a cluster, the cluster must be in your schema or you must have DROP ANY TABLE
system privilege.

Chapter 19
TRUNCATE CLUSTER

19-143

See Also:

"Restrictions on Truncating Tables"

Syntax

truncate_cluster::=

TRUNCATE CLUSTER

schema .

cluster

DROP

REUSE

STORAGE

;

Semantics

CLUSTER Clause

Specify the schema and name of the cluster to be truncated. You can truncate only an
indexed cluster, not a hash cluster. If you omit schema, then the database assumes the
cluster is in your own schema.

When you truncate a cluster, the database also automatically deletes all data in the
indexes of the cluster tables.

STORAGE Clauses

The STORAGE clauses let you determine what happens to the space freed by the
truncated rows. The DROP STORAGE clause and REUSE STORAGE clause also apply to the
space freed by the data deleted from associated indexes.

DROP STORAGE

Specify DROP STORAGE to deallocate all space from the deleted rows from the cluster
except the space allocated by the MINEXTENTS parameter of the cluster. This space can
subsequently be used by other objects in the tablespace. Oracle Database also sets
the NEXT storage parameter to the size of the last extent removed from the segment in
the truncation process. This is the default.

REUSE STORAGE

Specify REUSE STORAGE to retain the space from the deleted rows allocated to the
cluster. Storage values are not reset to the values when the table or cluster was
created. This space can subsequently be used only by new data in the cluster
resulting from insert or update operations. This clause leaves storage parameters at
their current settings.

If you have specified more than one free list for the object you are truncating, then the
REUSE STORAGE clause also removes any mapping of free lists to instances and resets
the high-water mark to the beginning of the first extent.

Examples

Truncating a Cluster: Example

Chapter 19
TRUNCATE CLUSTER

19-144

The following statement removes all rows from all tables in the personnel cluster, but leaves
the freed space allocated to the tables:

TRUNCATE CLUSTER personnel REUSE STORAGE;

The preceding statement also removes all data from all indexes on the tables in the
personnel cluster.

TRUNCATE TABLE
Purpose

Note:

You cannot roll back a TRUNCATE TABLE statement, nor can you use a FLASHBACK
TABLE statement to retrieve the contents of a table that has been truncated.

Use the TRUNCATE TABLE statement to remove all rows from a table. By default, Oracle
Database also performs the following tasks:

• Deallocates all space used by the removed rows except that specified by the MINEXTENTS
storage parameter

• Sets the NEXT storage parameter to the size of the last extent removed from the segment
by the truncation process

Removing rows with the TRUNCATE TABLE statement can be more efficient than dropping and
re-creating a table. Dropping and re-creating a table invalidates dependent objects of the
table, and requires you to repeat the following actions:

• Grant object privileges on the table

• Create the indexes, integrity constraints, and triggers on the table

• Specify the storage parameters of the table

Truncating has none of these effects.

Removing rows with the TRUNCATE TABLE statement can be faster than removing all rows with
the DELETE statement, especially if the table has numerous triggers, indexes, and other
dependencies.

See Also:

• DELETE and DROP TABLE for information on other ways of removing data
from a table

• TRUNCATE CLUSTER for information on truncating a cluster

Prerequisites

To truncate a table, the table must be in your schema or you must have the DROP ANY TABLE
system privilege.

Chapter 19
TRUNCATE TABLE

19-145

To specify the CASCADE clause, all affected child tables must be in your schema or you
must have the DROP ANY TABLE system privilege.

You can truncate a private temporary table with the existing TRUNCATE TABLE
command. Truncating a private temporary table will not commit and existing
transaction. This applies to both transaction-specific and session-specific private
temporary tables. Note that a truncated private temporary table will not go into the
RECYCLEBIN.

See Also:

"Restrictions on Truncating Tables"

Syntax

truncate_table::=

TRUNCATE TABLE

schema .

table

PRESERVE

PURGE

MATERIALIZED VIEW LOG

DROP

ALL

REUSE

STORAGE

CASCADE

;

Semantics

TABLE Clause

Specify the schema and name of the table to be truncated. This table cannot be part of
a cluster. If you omit schema, then Oracle Database assumes the table is in your own
schema.

• You can truncate index-organized tables and temporary tables. When you truncate
a temporary table, only the rows created during the current session are removed.

• Oracle Database changes the NEXT storage parameter of table to be the size of
the last extent deleted from the segment in the process of truncation.

• Oracle Database also automatically truncates and resets any existing UNUSABLE
indicators for the following indexes on table: range and hash partitions of local
indexes and subpartitions of local indexes.

• If table is not empty, then the database marks UNUSABLE all nonpartitioned indexes
and all partitions of global partitioned indexes on the table. However, when the
table is truncated, the index is also truncated, and a new high water mark is
calculated for the index segment. This operation is equivalent to creating a new
segment for the index. Therefore, at the end of the truncate operation, the indexes
are once again USABLE.

Chapter 19
TRUNCATE TABLE

19-146

• For a domain index, this statement invokes the appropriate truncate routine to truncate
the domain index data.

See Also:

Oracle Database Data Cartridge Developer's Guide for more information on
domain indexes

• If a regular or index-organized table contains LOB columns, then all LOB data and LOB
index segments are truncated.

• If table is partitioned, then all partitions or subpartitions, as well as the LOB data and
LOB index segments for each partition or subpartition, are truncated.

Note:

When you truncate a table, Oracle Database automatically removes all data in
the table's indexes and any materialized view direct-path INSERT information
held in association with the table. This information is independent of any
materialized view log. If this direct-path INSERT information is removed, then an
incremental refresh of the materialized view may lose data.

• All cursors are invalidated.

Restrictions on Truncating Tables

This statement is subject to the following restrictions:

• You cannot roll back a TRUNCATE TABLE statement.

• You cannot flash back to the state of the table before the truncate operation.

• You cannot individually truncate a table that is part of a cluster. You must either truncate
the cluster, delete all rows from the table, or drop and re-create the table.

• You cannot truncate the parent table of an enabled foreign key constraint. You must
disable the constraint before truncating the table. An exception is that you can truncate
the table if the integrity constraint is self-referential.

• If a domain index is defined on table, then neither the index nor any index partitions can
be marked IN_PROGRESS.

• You cannot truncate the parent table of a reference-partitioned table. You must first drop
the reference-partitioned child table.

• You cannot truncate a duplicated table.

MATERIALIZED VIEW LOG Clause

The MATERIALIZED VIEW LOG clause lets you specify whether a materialized view log defined
on the table is to be preserved or purged when the table is truncated. This clause permits
materialized view master tables to be reorganized through export or import without affecting
the ability of primary key materialized views defined on the master to be fast refreshed. To
support continued fast refresh of primary key materialized views, the materialized view log
must record primary key information.

Chapter 19
TRUNCATE TABLE

19-147

Note:

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for
backward compatibility.

PRESERVE

Specify PRESERVE if any materialized view log should be preserved when the master
table is truncated. This is the default.

PURGE

Specify PURGE if any materialized view log should be purged when the master table is
truncated.

See Also:

Oracle Database Administrator’s Guide for more information about
materialized view logs and the TRUNCATE statement

STORAGE Clauses

The STORAGE clauses let you determine what happens to the space freed by the
truncated rows. The DROP STORAGE clause, DROP ALL STORAGE clause, and REUSE
STORAGE clause also apply to the space freed by the data deleted from associated
indexes.

DROP STORAGE

Specify DROP STORAGE to deallocate all space from the deleted rows from the table
except the space allocated by the MINEXTENTS parameter of the table. This space can
subsequently be used by other objects in the tablespace. Oracle Database also sets
the NEXT storage parameter to the size of the last extent removed from the segment in
the truncation process. This setting, which is the default, is useful for small and
medium-sized objects. The extent management in locally managed tablespace is very
fast in these cases, so there is no need to reserve space.

DROP ALL STORAGE

Specify DROP ALL STORAGE to deallocate all space from the deleted rows from the table,
including the space allocated by the MINEXTENTS parameter. All segments for the table,
as well as all segments for its dependent objects, will be deallocated.

Restrictions on DROP ALL STORAGE

This clause is subject to the same restrictions as described in "Restrictions on
Deferred Segment Creation".

REUSE STORAGE

Specify REUSE STORAGE to retain the space from the deleted rows allocated to the table.
Storage values are not reset to the values when the table was created. This space can

Chapter 19
TRUNCATE TABLE

19-148

subsequently be used only by new data in the table resulting from insert or update
operations. This clause leaves storage parameters at their current settings.

This setting is useful as an alternative to deleting all rows of a very large table—when the
number of rows is very large, the table entails many thousands of extents, and when data is
to be reinserted in the future.

This clause is not valid for temporary tables. A session becomes unbound from the temporary
table when the table is truncated, so the storage is automatically dropped.

If you have specified more than one free list for the object you are truncating, then the REUSE
STORAGE clause also removes any mapping of free lists to instances and resets the high-water
mark to the beginning of the first extent.

CASCADE

If you specify CASCADE, then Oracle Database truncates all child tables that reference table
with an enabled ON DELETE CASCADE referential constraint. This is a recursive operation that
will truncate all child tables, granchild tables, and so on, using the specified options.

Examples

Truncating a Table: Example

The following statement removes all rows from a hypothetical copy of the sample table
hr.employees and returns the freed space to the tablespace containing employees:

TRUNCATE TABLE employees_demo;

The preceding statement also removes all data from all indexes on employees and returns the
freed space to the tablespaces containing them.

Preserving Materialized View Logs After Truncate: Example

The following statements are examples of TRUNCATE statements that preserve materialized
view logs:

TRUNCATE TABLE sales_demo PRESERVE MATERIALIZED VIEW LOG;

TRUNCATE TABLE orders_demo;

UPDATE
Purpose

Use the UPDATE statement to change existing values in a table or in the base table of a view
or the master table of a materialized view.

Prerequisites

For you to update values in a table, the table must be in your own schema or you must have
the UPDATE object privilege on the table.

For you to update values in the base table of a view:

• You must have the UPDATE object privilege on the view, and

• Whoever owns the schema containing the view must have the UPDATE object privilege on
the base table.

Chapter 19
UPDATE

19-149

The UPDATE ANY TABLE system privilege also allows you to update values in any table
or in the base table of any view.

To update values in an object on a remote database, you must also have the READ or
SELECT object privilege on the object.

If the SQL92_SECURITY initialization parameter is set to TRUE and the UPDATE operation
references table columns, such as the columns in a where_clause, then you must also
have the SELECT object privilege on the object you want to update.

Syntax

update::=

UPDATE

hint dml_table_expression_clause

ONLY (dml_table_expression_clause)

t_alias

update_set_clause

where_clause returning_clause error_logging_clause

;

(DML_table_expression_clause::=, update_set_clause::=, where_clause::=,
returning_clause::=, error_logging_clause::=)

DML_table_expression_clause::=

schema . table

partition_extension_clause

@ dblink

view

materialized view

@ dblink

(subquery

subquery_restriction_clause

)

table_collection_expression

(partition_extension_clause::=, subquery::=--part of SELECT,
subquery_restriction_clause::=, table_collection_expression::=)

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

Chapter 19
UPDATE

19-150

subquery_restriction_clause::=

WITH

READ ONLY

CHECK OPTION

CONSTRAINT constraint

table_collection_expression::=

TABLE (collection_expression)

(+)

update_set_clause::=

SET

(column

,

) = (subquery)

column =

expr

(subquery)

DEFAULT

,

VALUE (t_alias) =
expr

(subquery)

where_clause::=

WHERE condition

returning_clause::=

RETURN

RETURNING
expr

,

INTO data_item

,

error_logging_clause::=

Chapter 19
UPDATE

19-151

LOG ERRORS

INTO

schema .

table (simple_expression)

REJECT LIMIT
integer

UNLIMITED

Semantics

hint

Specify a comment that passes instructions to the optimizer on choosing an execution
plan for the statement.

You can place a parallel hint immediately after the UPDATE keyword to parallelize both
the underlying scan and UPDATE operations.

See Also:

• "Hints " for the syntax and description of hints

• Oracle Database Concepts for detailed information about parallel
execution

DML_table_expression_clause

The ONLY clause applies only to views. Specify ONLY syntax if the view in the UPDATE
clause is a view that belongs to a hierarchy and you do not want to update rows from
any of its subviews.

See Also:

"Restrictions on the DML_table_expression_clause" and "Updating a Table:
Examples"

schema

Specify the schema containing the object to be updated. If you omit schema, then the
database assumes the object is in your own schema.

table | view | materialized_view |subquery

Specify the name of the table, view, materialized view, or the columns returned by a
subquery to be updated. Issuing an UPDATE statement against a table fires any UPDATE
triggers associated with the table.

• If you specify view, then the database updates the base table of the view. You
cannot update a view except with INSTEAD OF triggers if the defining query of the
view contains one of the following constructs:

Chapter 19
UPDATE

19-152

A set operator
A DISTINCT operator
An aggregate or analytic function
A GROUP BY, ORDER BY, MODEL, CONNECT BY, or START WITH clause
A collection expression in a SELECT list
A subquery in a SELECT list
A subquery designated WITH READ ONLY
A recursive WITH clause
Joins, with some exceptions, as documented in Oracle Database Administrator's
Guide

• You cannot update more than one base table through a view.

• In addition, if the view was created with the WITH CHECK OPTION, then you can update the
view only if the resulting data satisfies the view's defining query.

• If table or the base table of view contains one or more domain index columns, then this
statement executes the appropriate indextype update routine.

• You cannot update rows in a read-only materialized view. If you update rows in a writable
materialized view, then the database updates the rows from the underlying container
table. However, the updates are overwritten at the next refresh operation. If you update
rows in an updatable materialized view that is part of a materialized view group, then the
database also updates the corresponding rows in the master table.

See Also:

• Oracle Database Data Cartridge Developer's Guide for more information on the
indextype update routines

• CREATE MATERIALIZED VIEW for information on creating updatable
materialized views

partition_extension_clause

Specify the name or partition key value of the partition or subpartition within table targeted
for updates. You need not specify the partition name when updating values in a partitioned
table. However in some cases specifying the partition name can be more efficient than a
complicated where_clause.

See Also:

"References to Partitioned Tables and Indexes " and "Updating a Partition:
Example"

dblink

Specify a complete or partial name of a database link to a remote database where the object
is located. You can use a database link to update a remote object only if you are using Oracle
Database distributed functionality.

Chapter 19
UPDATE

19-153

If you omit dblink, then the database assumes the object is on the local database.

Note:

Starting with Oracle Database 12c Release 2 (12.2), the UPDATE statement
accepts remote LOB locators as bind variables. Refer to the “Distributed
LOBs” chapter in Oracle Database SecureFiles and Large Objects
Developer's Guide for more information.

See Also:

"References to Objects in Remote Databases " for information on referring to
database links

subquery_restriction_clause

Use the subquery_restriction_clause to restrict the subquery in one of the following
ways:

WITH READ ONLY

Specify WITH READ ONLY to indicate that the table or view cannot be updated.

WITH CHECK OPTION

Specify WITH CHECK OPTION to indicate that Oracle Database prohibits any changes to
the table or view that would produce rows that are not included in the subquery. When
used in the subquery of a DML statement, you can specify this clause in a subquery in
the FROM clause but not in subquery in the WHERE clause.

CONSTRAINT constraint

Specify the name of the CHECK OPTION constraint. If you omit this identifier, then Oracle
automatically assigns the constraint a name of the form SYS_Cn, where n is an integer
that makes the constraint name unique within the database.

See Also:

"Using the WITH CHECK OPTION Clause: Example"

table_collection_expression

The table_collection_expression lets you inform Oracle that the value of
collection_expression should be treated as a table for purposes of query and DML
operations. The collection_expression can be a subquery, a column, a function, or a
collection constructor. Regardless of its form, it must return a collection value—that is,
a value whose type is nested table or varray. This process of extracting the elements
of a collection is called collection unnesting.

Chapter 19
UPDATE

19-154

The optional plus (+) is relevant if you are joining the TABLE collection expression with the
parent table. The + creates an outer join of the two, so that the query returns rows from the
outer table even if the collection expression is null.

Note:

In earlier releases of Oracle, when collection_expression was a subquery,
table_collection_expression was expressed as THE subquery. That usage is now
deprecated.

You can use a table_collection_expression to update rows in one table based on rows
from another table. For example, you could roll up four quarterly sales tables into a yearly
sales table.

t_alias

Specify a correlation name (alias) for the table, view, or subquery to be referenced
elsewhere in the statement. This alias is required if the DML_table_expression_clause
references any object type attributes or object type methods.

See Also:

"Correlated Update: Example"

Restrictions on the DML_table_expression_clause

This clause is subject to the following restrictions:

• You cannot execute this statement if table or the base table of view contains any domain
indexes marked IN_PROGRESS or FAILED.

• You cannot insert into a partition if any affected index partitions are marked UNUSABLE.

• You cannot specify the order_by_clause in the subquery of the
DML_table_expression_clause.

• If you specify an index, index partition, or index subpartition that has been marked
UNUSABLE, then the UPDATE statement will fail unless the SKIP_UNUSABLE_INDEXES session
parameter has been set to TRUE.

See Also:

ALTER SESSION for information on the SKIP_UNUSABLE_INDEXES session
parameter

update_set_clause

The update_set_clause lets you set column values.

column

Chapter 19
UPDATE

19-155

Specify the name of a column of the object that is to be updated. If you omit a column
of the table from the update_set_clause, then the value of that column remains
unchanged.

If column refers to a LOB object attribute, then you must first initialize it with a value of
empty or null. You cannot update it with a literal. Also, if you are updating a LOB value
using some method other than a direct UPDATE SQL statement, then you must first lock
the row containing the LOB. See for_update_clause for more information.

If column is a virtual column, you cannot specify it here. Rather, you must update the
values from which the virtual column is derived.

If column is part of the partitioning key of a partitioned table, then UPDATE will fail if you
change a value in the column that would move the row to a different partition or
subpartition, unless you enable row movement. Refer to the row_movement_clause of
CREATE TABLE or ALTER TABLE.

In addition, if column is part of the partitioning key of a list-partitioned table, then
UPDATE will fail if you specify a value for the column that does not already exist in the
partition_key_value list of one of the partitions.

subquery

Specify a subquery that returns exactly one row for each row updated.

• If you specify only one column in the update_set_clause, then the subquery can
return only one value.

• If you specify multiple columns in the update_set_clause, then the subquery must
return as many values as you have specified columns.

• If the subquery returns no rows, then the column is assigned a null.

• If this subquery refers to remote objects, then the UPDATE operation can run in
parallel as long as the reference does not loop back to an object on the local
database. However, if the subquery in the DML_table_expression_clause refers to
any remote objects, then the UPDATE operation will run serially without notification.

You can use the flashback_query_clause within the subquery to update table with
past data. Refer to the flashback_query_clause of SELECT for more information on this
clause.

See Also:

• SELECT and "Using Subqueries "

• parallel_clause in the CREATE TABLE documentation

expr

Specify an expression that resolves to the new value assigned to the corresponding
column.

Chapter 19
UPDATE

19-156

Note:

Expressions for the syntax of expr and "Updating an Object Table: Example"

DEFAULT

Specify DEFAULT to set the column to the value previously specified as the default value for
the column. If no default value for the corresponding column has been specified, then the
database sets the column to null.

Restriction on Updating to Default Values

You cannot specify DEFAULT if you are updating a view.

You cannot use the DEFAULT clause in an UPDATE statement if the table that you are specifying
has an Oracle Label Security policy enabled.

VALUE Clause

The VALUE clause lets you specify the entire row of an object table.

Restriction on the VALUE clause

You can specify this clause only for an object table.

Note:

If you insert string literals into a RAW column, then during subsequent queries,
Oracle Database will perform a full table scan rather than using any index that might
exist on the RAW column.

See Also:

"Updating an Object Table: Example"

where_clause

The where_clause lets you restrict the rows updated to those for which the specified
condition is true. If you omit this clause, then the database updates all rows in the table or
view. Refer to Conditions for the syntax of condition.

The where_clause determines the rows in which values are updated. If you do not specify the
where_clause, then all rows are updated. For each row that satisfies the where_clause, the
columns to the left of the equality operator (=) in the update_set_clause are set to the values
of the corresponding expressions to the right of the operator. The expressions are evaluated
as the row is updated.

Chapter 19
UPDATE

19-157

returning_clause

The returning clause retrieves the rows affected by a DML statement. You can specify
this clause for tables and materialized views and for views with a single base table.

When operating on a single row, a DML statement with a returning_clause can
retrieve column expressions using the affected row, rowid, and REFs to the affected
row and store them in host variables or PL/SQL variables.

When operating on multiple rows, a DML statement with the returning_clause stores
values from expressions, rowids, and REFs involving the affected rows in bind arrays.

expr

Each item in the expr list must be a valid expression syntax.

INTO

The INTO clause indicates that the values of the changed rows are to be stored in the
variable(s) specified in data_item list.

data_item

Each data_item is a host variable or PL/SQL variable that stores the retrieved expr
value.

For each expression in the RETURNING list, you must specify a corresponding type-
compatible PL/SQL variable or host variable in the INTO list.

Restrictions

The following restrictions apply to the RETURNING clause:

• The expr is restricted as follows:

– For UPDATE and DELETE statements each expr must be a simple expression or
a single-set aggregate function expression. You cannot combine simple
expressions and single-set aggregate function expressions in the same
returning_clause. For INSERT statements, each expr must be a simple
expression. Aggregate functions are not supported in an INSERT statement
RETURNING clause.

– Single-set aggregate function expressions cannot include the DISTINCT
keyword.

• If the expr list contains a primary key column or other NOT NULL column, then the
update statement fails if the table has a BEFORE UPDATE trigger defined on it.

• You cannot specify the returning_clause for a multitable insert.

• You cannot use this clause with parallel DML or with remote objects.

• You cannot retrieve LONG types with this clause.

• You cannot specify this clause for a view on which an INSTEAD OF trigger has been
defined.

Chapter 19
UPDATE

19-158

See Also:

Oracle Database PL/SQL Language Reference for information on using the BULK
COLLECT clause to return multiple values to collection variables

error_logging_clause

The error_logging_clause has the same behavior in an UPDATE statement as it does in an
INSERT statement. Refer to the INSERT statement error_logging_clause for more information.

See Also:

"Inserting Into a Table with Error Logging: Example"

Examples

Updating a Table: Examples

The following statement gives null commissions to all employees with the job SH_CLERK:

UPDATE employees
 SET commission_pct = NULL
 WHERE job_id = 'SH_CLERK';

The following statement promotes Douglas Grant to manager of Department 20 with a $1,000
raise:

UPDATE employees SET
 job_id = 'SA_MAN', salary = salary + 1000, department_id = 120
 WHERE first_name||' '||last_name = 'Douglas Grant';

The following statement increases the salary of an employee in the employees table on the
remote database:

UPDATE employees@remote
 SET salary = salary*1.1
 WHERE last_name = 'Baer';

The next example shows the following syntactic constructs of the UPDATE statement:

• Both forms of the update_set_clause together in a single statement

• A correlated subquery

• A where_clause to limit the updated rows

UPDATE employees a
 SET department_id =
 (SELECT department_id
 FROM departments
 WHERE location_id = '2100'),
 (salary, commission_pct) =
 (SELECT 1.1*AVG(salary), 1.5*AVG(commission_pct)
 FROM employees b
 WHERE a.department_id = b.department_id)

Chapter 19
UPDATE

19-159

 WHERE department_id IN
 (SELECT department_id
 FROM departments
 WHERE location_id = 2900
 OR location_id = 2700);

The preceding UPDATE statement performs the following operations:

• Updates only those employees who work in Geneva or Munich (locations 2900
and 2700)

• Sets department_id for these employees to the department_id corresponding to
Bombay (location_id 2100)

• Sets each employee's salary to 1.1 times the average salary of their department

• Sets each employee's commission to 1.5 times the average commission of their
department

Updating a Partition: Example

The following example updates values in a single partition of the sales table:

UPDATE sales PARTITION (sales_q1_1999) s
 SET s.promo_id = 494
 WHERE amount_sold > 1000;

Updating an Object Table: Example

The following statement creates two object tables, people_demo1 and people_demo2, of
the people_typ object created in Table Collections: Examples. The example shows
how to update a row of people_demo1 by selecting a row from people_demo2:

CREATE TABLE people_demo1 OF people_typ;

CREATE TABLE people_demo2 OF people_typ;

UPDATE people_demo1 p SET VALUE(p) =
 (SELECT VALUE(q) FROM people_demo2 q
 WHERE p.department_id = q.department_id)
 WHERE p.department_id = 10;

The example uses the VALUE object reference function in both the SET clause and the
subquery.

Correlated Update: Example

For an example that uses a correlated subquery to update nested table rows, refer to
"Table Collections: Examples".

Using the RETURNING Clause During UPDATE: Example

The following example returns values from the updated row and stores the result in
PL/SQL variables bnd1, bnd2, bnd3:

UPDATE employees
 SET job_id ='SA_MAN', salary = salary + 1000, department_id = 140
 WHERE last_name = 'Jones'
 RETURNING salary*0.25, last_name, department_id
 INTO :bnd1, :bnd2, :bnd3;

Chapter 19
UPDATE

19-160

The following example shows that you can specify a single-set aggregate function in the
expression of the returning clause:

UPDATE employees
 SET salary = salary * 1.1
 WHERE department_id = 100
 RETURNING SUM(salary) INTO :bnd1;

Chapter 19
UPDATE

19-161

A
How to Read Syntax Diagrams

This appendix describes how to read syntax diagrams.

This reference presents Oracle SQL syntax in both graphic diagrams and in text (Backus-
Naur Form—BNF). This appendix contains these sections:

• Graphic Syntax Diagrams

• Backus-Naur Form Syntax

Graphic Syntax Diagrams
Syntax diagrams are drawings that illustrate valid SQL syntax. To read a diagram, trace it
from left to right, in the direction shown by the arrows.

Commands and other keywords appear in UPPERCASE inside rectangles. Type them
exactly as shown in the rectangles. Parameters appear in lowercase inside ovals. Variables
are used for the parameters. Punctuation, operators, delimiters, and terminators appear
inside circles.

If the syntax diagram has more than one path, then you can choose any path. For example,
in the following syntax you can specify either NOPARALLEL or PARALLEL:

parallel_clause::=

NOPARALLEL

PARALLEL

integer

If you have the choice of more than one keyword, operator, or parameter, then your options
appear in a vertical list. For example, in the following syntax diagram, you can specify one or
more of the four parameters in the stack:

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

The following table shows parameters that appear in the syntax diagrams and provides
examples of the values you might substitute for them in your statements:

A-1

Table A-1 Syntax Parameters

Parameter Description Examples

table The substitution value must be the name of an
object of the type specified by the parameter. For
a list of all types of objects, see the section,
"Schema Objects ".

employees

c The substitution value must be a single character
from your database character set.

T
s

'text' The substitution value must be a text string in
single quotation marks. See the syntax
description of 'text' in "Text Literals ".

'Employee records'

char The substitution value must be an expression of
data type CHAR or VARCHAR2 or a character
literal in single quotation marks.

last_name
'Smith'

condition The substitution value must be a condition that
evaluates to TRUE or FALSE. See the syntax
description of condition in Conditions.

last_name >'A'

date
d

The substitution value must be a date constant
or an expression of DATE data type.

TO_DATE(
'01-Jan-2002',
'DD-MON-YYYY')

expr The substitution value can be an expression of
any data type as defined in the syntax
description of expr in "About SQL Expressions ".

salary + 1000

integer The substitution value must be an integer as
defined by the syntax description of integer in
"Integer Literals ".

72

number
m
n

The substitution value must be an expression of
NUMBER data type or a number constant as
defined in the syntax description of number in
"Numeric Literals ".

AVG(salary)
15 * 7

raw The substitution value must be an expression of
data type RAW.

HEXTORAW('7D')

subquery The substitution value must be a SELECT
statement that will be used in another SQL
statement. See SELECT .

SELECT last_name
FROM employees

db_name The substitution value must be the name of a
nondefault database in an embedded SQL
program.

sales_db

db_string The substitution value must be the database
identification string for an Oracle Net database
connection. For details, see the user's guide for
your specific Oracle Net protocol.

—

Required Keywords and Parameters
Required keywords and parameters can appear singly or in a vertical list of
alternatives. Single required keywords and parameters appear on the main path,

Appendix A
Graphic Syntax Diagrams

A-2

which is the horizontal line you are currently traveling. In the following example,
library_name is a required parameter:

drop_library::=

DROP LIBRARY library_name ;

If there is a library named HQ_LIB, then, according to the diagram, the following statement is
valid:

DROP LIBRARY hq_lib;

If multiple keywords or parameters appear in a vertical list that intersects the main path, then
one of them is required. You must choose one of the keywords or parameters, but not
necessarily the one that appears on the main path. In the following example, you must
choose ALL, STANDBY, or NONE:

security_clause::=

GUARD

ALL

STANDBY

NONE

Optional Keywords and Parameters
If keywords and parameters appear in a vertical list above the main path, then they are
optional. In the following example, instead of traveling down a vertical line, you can continue
along the main path:

deallocate_unused_clause::=

DEALLOCATE UNUSED

KEEP size_clause

size_clause::=

integer

K

M

G

T

P

E

Appendix A
Graphic Syntax Diagrams

A-3

According to the diagrams, all of the following statements are valid:

DEALLOCATE UNUSED;
DEALLOCATE UNUSED KEEP 1000;
DEALLOCATE UNUSED KEEP 10G;
DEALLOCATE UNUSED 8T;

Syntax Loops
Loops let you repeat the syntax within them as many times as you like. In the following
example, after choosing one value expression, you can go back repeatedly to choose
another, separated by commas.

query_partition_clause::=

PARTITION BY

expr

,

(expr

,

)

Multipart Diagrams
Read a multipart diagram as if all the main paths were joined end to end. The following
example is a three-part diagram:

alter_java::=

ALTER JAVA
SOURCE

CLASS

schema .

object_name

RESOLVER ((match_string

, schema_name

–
))

COMPILE

RESOLVE

invoker_rights_clause

;

According to the diagram, the following statement is valid:

ALTER JAVA SOURCE jsource_1 COMPILE;

Appendix A
Graphic Syntax Diagrams

A-4

Backus-Naur Form Syntax
Each graphic syntax diagram in this reference is followed by a link to a text description of the
graphic. The text descriptions consist of a simple variant of Backus-Naur Form (BNF) that
includes the following symbols and conventions:

Symbol or Convention Meaning

[] Brackets enclose optional items.

{ } Braces enclose items only one of which is required.

| A vertical bar separates alternatives within brackets or braces.

... Ellipsis points show that the preceding syntactic element can be
repeated.

delimiters Delimiters other than brackets, braces, vertical bars, and ellipses must
be entered as shown.

boldface Words appearing in boldface are keywords. They must be typed as
shown. (Keywords are case-sensitive in some, but not all, operating
systems.) Words that are not in boldface are placeholders for which you
must substitute a name or value.

Appendix A
Backus-Naur Form Syntax

A-5

B
Automatic and Manual Locking Mechanisms
During SQL Operations

This appendix describes mechanisms that lock data either automatically or as specified by
the user during SQL statements. For a general discussion of locking mechanisms in the
context of data concurrency and consistency, see Oracle Database Concepts.

This appendix contains the following sections:

• Automatic Locks in DML Operations

• Automatic Locks in DDL Operations

• Manual Data Locking

• List of Nonblocking DDLs

List of Nonblocking DDLs
Nonblocking DDLs added at each release from 11.2 to 12.2.0.2 are listed here.

Release 11.2

The following nonblocking DDLs are added as of Release 11.2. Some nonblocking DDLs are
downgraded to blocking in the presence of supplemental logging.

List of Nonblocking DDLs Added in 11.2

• create index online

• alter index rebuild online

• alter index rebuild partition online

• alter index rebuild subpartition online

• alter index visible / novisible

List of Nonblocking DDLs Added in 11.2 that Downgrade to Blocking During
Supplemental Logging

• alter table add column not null with default value

• alter table add constraint enable novalidate

• alter table modify constraint validate

• alter table add column (without any default)

Release 12.1

The following nonblocking DDLs are added as of Release 12.1. Some nonblocking DDLs are
downgraded to blocking in the presence of supplemental logging.

List of Nonblocking DDLs Added in 12.1

B-1

• drop index online

• alter index unusable online

• alter table move partition online

• alter table move subpartition online

List of Nonblocking DDLs Added in 12.1 that Downgrade to Blocking During
Supplemental Logging

• alter table set unused column online

• alter table drop constraint online

• alter table modify column visible / invisible

• alter table add nullable column with default value

Release 12.2.0.1

List of Nonblocking DDLs Added in 12.2.0.1

• alter table split partition [subpartition] online

• alter table move online (move of a non-partitioned table)

• alter table modify partition by .. online (to convert a non-partitioned table to
partitioned state)

Release 12.2.0.2

List of Nonblocking DDLs Added in 12.2.0.2

• Alter table merge partition online

• alter table modify partition by .. online (to change the partitioning schema of a
table)

Automatic Locks in DML Operations
The purpose of a DML lock, also called a data lock, is to guarantee the integrity of
data being accessed concurrently by multiple users. For example, a DML lock can
prevent multiple customers from buying the last copy of a book available from an
online bookseller. DML locks prevent destructive interference of simultaneous
conflicting DML or DDL operations.

DML statements automatically acquire locks at both the table level and the row level.
In the sections that follow, the acronym in parentheses after each type of lock or lock
mode is the abbreviation used in the Locks Monitor of Oracle Enterprise Manager.
Enterprise Manager might display "TM" for any table lock, rather than indicate the
mode of table lock (such as RS or SRX).

The types of row and table locks are summarized here. For a more complete
discussion of the types of row and table locks, see Oracle Database Concepts.

Row Locks (TX)

A row lock, also called a TX lock, is a lock on a single row of a table. A transaction
acquires a row lock for each row modified by one of the following statements: INSERT,
UPDATE, DELETE, MERGE, and SELECT ... FOR UPDATE. The row lock exists until the
transaction commits or rolls back.

Appendix B
Automatic Locks in DML Operations

B-2

When a transaction obtains a row lock for a row, the transaction also acquires a table lock for
the table in which the row resides. The table lock prevents conflicting DDL operations that
would override data changes in a current transaction.

Table Locks (TM)

A transaction automatically acquires a table lock (TM lock) when a table is modified with the
following statements: INSERT, UPDATE, DELETE, MERGE, and SELECT ... FOR UPDATE. These DML
operations require table locks to reserve DML access to the table on behalf of a transaction
and to prevent DDL operations that would conflict with the transaction. You can explicitly
obtain a table lock using the LOCK TABLE statement, as described in "Manual Data Locking".

A table lock can be held in any of the following modes:

• A row share lock (RS), also called a subshare table lock (SS), indicates that the
transaction holding the lock on the table has locked rows in the table and intends to
update them. An SS lock is the least restrictive mode of table lock, offering the highest
degree of concurrency for a table.

• A row exclusive lock (RX), also called a subexclusive table lock (SX), indicates that
the transaction holding the lock has updated table rows or issued SELECT ... FOR UPDATE.
An SX lock allows other transactions to query, insert, update, delete, or lock rows
concurrently in the same table. Therefore, SX locks allow multiple transactions to obtain
simultaneous SX and SS locks for the same table.

• A share table lock (S) held by one transaction allows other transactions to query the
table (without using SELECT ... FOR UPDATE) but allows updates only if a single transaction
holds the share table lock. Multiple transactions may hold a share table lock concurrently,
so holding this lock is not sufficient to ensure that a transaction can modify the table.

• A share row exclusive table lock (SRX), also called a share-subexclusive table lock
(SSX), is more restrictive than a share table lock. Only one transaction at a time can
acquire an SSX lock on a given table. An SSX lock held by a transaction allows other
transactions to query the table (except for SELECT ... FOR UPDATE) but not to update the
table.

• An exclusive table lock (X) is the most restrictive mode of table lock, allowing the
transaction that holds the lock exclusive write access to the table. Only one transaction
can obtain an X lock for a table.

See Also:

"Manual Data Locking"

Locks in DML Operations

Oracle Database automatically obtains row-level and table-level locks on behalf of DML
operations. The type of operation determines the locking behavior. Table B-1 summarizes the
information in this section.

Appendix B
Automatic Locks in DML Operations

B-3

Note:

The implicit SX locks shown for the DML statements in Table B-1 can
sometimes be exclusive (X) locks for a short time owing to side effects from
constraints.

Table B-1 Summary of Locks Obtained by DML Statements

SQL Statement Row
Locks

Table
Lock
Mode

RS RX S SRX X

SELECT ... FROM table... — none Y Y Y Y Y

INSERT INTO table ... Yes SX Y Y N N N

UPDATE table ... Yes SX Y1 Y1 N N N

MERGE INTO table ... Yes SX Y Y N N N

DELETE FROM table ... Yes SX Y1 Y1 N N N

SELECT ... FROM table FOR UPDATE OF ... Yes SX Y1 Y1 N N N

LOCK TABLE table IN ... —

 ROW SHARE MODE SS Y Y Y Y N

 ROW EXCLUSIVE MODE SX Y Y N N N

 SHARE MODE S Y N Y N N

 SHARE ROW EXCLUSIVE MODE SSX Y N N N N

 EXCLUSIVE MODE X N N N N N

1 Yes, if no conflicting row locks are held by another transaction. Otherwise, waits occur.

Locks When Rows Are Queried

A query can be explicit, as in the SELECT statement, or implicit, as in most INSERT,
MERGE, UPDATE, and DELETE statements. The only DML statement that does not
necessarily include a query component is an INSERT statement with a VALUES clause.
Because queries only read data, they are the SQL statements least likely to interfere
with other SQL statements.

The following characteristics apply to a query without the FOR UPDATE clause:

• The query acquires no data locks. Therefore, other transactions can query and
update a table being queried, including the specific rows being queried. Because
queries without the FOR UPDATE clause do not acquire any data locks to block other
operations, such queries are often referred to as nonblocking queries.

• The query does not have to wait for any data locks to be released. Therefore, the
query can always proceed. An exception to this rule is that queries may have to
wait for data locks in some very specific cases of pending distributed transactions.

Appendix B
Automatic Locks in DML Operations

B-4

Locks When Rows Are Modified

Some databases use a lock manager to maintain a list of locks in memory. Oracle Database,
in contrast, stores lock information in the data block that contains the locked row. Each row
lock affects only a single row.

Oracle Database uses a queuing mechanism for acquisition of row locks. If a transaction
requires a row lock, and if the row is not already locked, then the transaction acquires a lock
in the row's data block. The transaction itself has an entry in the interested transaction list
(ITL) section of the block header. Each row modified by this transaction points to a copy of
the transaction ID stored in the ITL. Thus, 100 rows in the same block modified by a single
transaction require 100 row locks, but all 100 rows reference a single transaction ID.

When a transaction ends, the transaction ID remains in the ITL section of the data block
header. If a new transaction wants to modify a row, then it uses the transaction ID to
determine whether the lock is active. If the lock is active, then the session of the new
transaction asks to be notified when the lock is released; otherwise, the new transaction
acquires the lock.

The characteristics of INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE statements are as
follows:

• A transaction containing a DML statement acquires exclusive row locks on the rows
modified by the statement. Therefore, other transactions cannot update or delete the
locked rows until the locking transaction either commits or rolls back.

• In addition to these row locks, a transaction containing a DML statement that modifies
data also requires at least a subexclusive table lock (SX) on the table that contains the
affected rows. If the transaction already holds an S, SRX, or X table lock for the table,
which are more restrictive than an SX lock, then the SX lock is not needed and is not
acquired. If the containing transaction already holds only an SS lock, however, then
Oracle Database automatically converts the SS lock to an SX lock.

• A transaction that contains a DML statement does not require row locks on any rows
selected by a subquery or an implicit query.

In the following sample UPDATE statement, the SELECT statement in parentheses is a
subquery, whereas the WHERE a > 5 clause is an implicit query:

UPDATE t SET x = (SELECT y FROM t2 WHERE t2.z = t.z) WHERE a > 5;

A subquery or implicit query inside a DML statement is guaranteed to be consistent as of
the start of the query and does not see the effects of the DML statement of which it forms
a part.

• A query in a transaction can see the changes made by previous DML statements in the
same transaction, but not the uncommitted changes of other transactions.

See Also:

Oracle Database Concepts for information on locks in foreign keys

Appendix B
Automatic Locks in DML Operations

B-5

Automatic Locks in DDL Operations
A data dictionary (DDL) lock protects the definition of a schema object while it is
acted upon or referred to by an ongoing DDL operation. For example, when a user
creates a procedure, Oracle Database automatically acquires DDL locks for all
schema objects referenced in the procedure definition. The DDL locks prevent these
objects from being altered or dropped before procedure compilation is complete.

Oracle Database acquires a DDL lock automatically on behalf of any DDL transaction
requiring it. Users cannot explicitly request DDL locks. Only individual schema objects
that are modified or referenced are locked during DDL operations. The whole data
dictionary is never locked.

DDL operations also acquire DML locks on the schema object to be modified.

Exclusive DDL Locks
An exclusive DDL lock prevents other session from obtaining a DDL or DML lock.

Most DDL operations require exclusive DDL locks to prevent destructive interference
with other DDL operations that might modify or reference the same schema object. For
example, a DROP TABLE operation is not allowed to drop a table while an ALTER TABLE
operation is adding a column to it, and vice versa. However, a query against the table
is not blocked.

Exclusive DDL locks last for the duration of DDL statement execution and automatic
commit. During the acquisition of an exclusive DDL lock, if another DDL lock is already
held on the schema object by another operation, then the acquisition waits until the
older DDL lock is released and then proceeds.

Share DDL Locks
A share DDL lock for a resource prevents destructive interference with conflicting
DDL operations, but allows data concurrency for similar DDL operations.

For example, when a CREATE PROCEDURE statement is run, the containing transaction
acquires share DDL locks for all referenced tables. Other transactions can
concurrently create procedures that reference the same tables and acquire concurrent
share DDL locks on the same tables, but no transaction can acquire an exclusive DDL
lock on any referenced table.

A share DDL lock lasts for the duration of DDL statement execution and automatic
commit. Thus, a transaction holding a share DDL lock is guaranteed that the definition
of the referenced schema object is constant for the duration of the transaction.

Breakable Parse Locks
A parse lock is held by a SQL statement or PL/SQL program unit for each schema
object that it references. Parse locks are acquired so that the associated shared SQL
area can be invalidated if a referenced object is altered or dropped. A parse lock is
called a breakable parse lock because it does not disallow any DDL operation and
can be broken to allow conflicting DDL operations.

Appendix B
Automatic Locks in DDL Operations

B-6

A parse lock is acquired in the shared pool during the parse phase of SQL statement
execution. The lock is held as long as the shared SQL area for that statement remains in the
shared pool.

Manual Data Locking
Oracle Database always performs locking automatically to ensure data concurrency, data
integrity, and statement-level read consistency. However, you can override the Oracle default
locking mechanisms. This can be useful in situations such as the following:

• When your application requires consistent data for the duration of the transaction, not
reflecting changes by other transactions, you can achieve transaction-level read
consistency by using explicit locking, read-only transactions, serializable transactions, or
by overriding default locking.

• When your application requires that a transaction have exclusive access to a resource so
that the transaction does not have to wait for other transactions to complete, you can
explicitly lock the data for the duration of the transaction.

You can override automatic locking at two levels:

• Transaction. You can override transaction-level locking with the following SQL
statements:

– SET TRANSACTION ISOLATION LEVEL
– LOCK TABLE
– SELECT ... FOR UPDATE
Locks acquired by these statements are released after the transaction commits or rolls
back.

• Session. A session can set the required transaction isolate level with an ALTER SESSION
SET ISOLATION LEVEL statement.

Note:

When overriding Oracle default locking, the database administrator or application
developer should ensure that data integrity is guaranteed, data concurrency is
acceptable, and deadlocks are not possible or, if possible, are appropriately
handled. For more information on these criteria, see Oracle Database Concepts.

Appendix B
Manual Data Locking

B-7

C
Oracle and Standard SQL

This appendix declares Oracle's conformance to the SQL standards established by the
American National Standards Institute (ANSI) and the International Organization for
Standardization (ISO).

The ISO SQL standard consists of nine parts (SQL/Framework, SQL/Foundation, SQL/CLI,
SQL/PSM, SQL/MED, SQL/OLB, SQL/Schemata, SQL/JRT, and SQL/XML). The ANSI SQL
standard consists of the same nine parts.

The mandatory portion of SQL is known as Core SQL and is found in SQL:2016 Part 2
(Foundation) and Part 11 (Schemata). The Foundation features are analyzed in Annex F of
Part 2 in the table "Feature taxonomy and definition for mandatory features." The Schemata
features are analyzed in Annex F of Part 11 in the table "Feature taxonomy and definition for
mandatory features."

This appendix contains the following sections:

• ANSI Standards

• ISO Standards

• Oracle Compliance to Core SQL

• Oracle Support for Optional Features of SQL/Foundation

• Oracle Compliance with SQL/CLI

• Oracle Compliance with SQL/PSM

• Oracle Compliance with SQL/MED

• Oracle Compliance with SQL/OLB

• Oracle Compliance with SQL/JRT

• Oracle Compliance with SQL/XML

• Oracle Compliance with FIPS 127-2

• Oracle Extensions to Standard SQL

• Oracle Compliance with Older Standards

• Character Set Support

ANSI Standards
The following documents of the American National Standards Institute (ANSI) relate to SQL:

• INCITS/ANSI/ISO/IEC 9075-1:2016, Information technology—Database languages—SQL
—Part 1: Framework (SQL/Framework)

• INCITS/ANSI/ISO/IEC 9075-2:2016, Information technology—Database languages—SQL
—Part 2: Foundation (SQL/Foundation)

• INCITS/ANSI/ISO/IEC 9075-3:2016, Information technology—Database languages—SQL
—Part 3: Call-Level Interface (SQL/CLI)

C-1

• INCITS/ANSI/ISO/IEC 9075-4:2016, Information technology—Database languages
—SQL—Part 4: Persistent Stored Modules (SQL/PSM)

• INCITS/ANSI/ISO/IEC 9075-9:2016, Information technology—Database languages
—SQL—Part 9: Management of External Data (SQL/MED)

• INCITS/ANSI/ISO/IEC 9075-10:2016, Information technology—Database
languages—SQL—Part 10: Object Language Bindings (SQL/OLB)

• INCITS/ANSI/ISO/IEC 9075-11:2016, Information technology—Database
languages—SQL—Part 11: Information and Definition Schemas (SQL/Schemata)

• INCITS/ANSI/ISO/IEC 9075-13:2016, Information technology—Database
languages—SQL—Part 13: SQL Routines and Types using the Java Programming
Language (SQL/JRT)

• INCITS/ANSI/ISO/IEC 9075-14:2016, Information technology—Database
languages—SQL—Part 14: XML-Related Specifications (SQL/XML)

These standards are identical to the corresponding ISO standards listed in the next
section.

You can obtain a copy of ANSI standards from this address:

American National Standards Institute
25 West 43rd Street, fourth floor
New York, NY 10036 USA
Telephone: +1.212.642.4900
Fax: +1.212.398.0023
Web site: http://www.ansi.org/

You can also obtain the standards from their Web site:

http://webstore.ansi.org/default.aspx

A subset of ANSI standards, including the SQL standard, are INCITS standards. You
can obtain these from the InterNational Committee for Information Technology
Standards (INCITS) at:

http://www.incits.org/

ISO Standards
The following documents of the International Organization for Standardization (ISO)
relate to SQL:

• ISO/IEC 9075-1:2016, Information technology—Database languages—SQL—Part
1: Framework (SQL/Framework)

• ISO/IEC 9075-2:2016, Information technology—Database languages—SQL—Part
2: Foundation (SQL/Foundation)

• ISO/IEC 9075-3:2016, Information technology—Database languages—SQL—Part
3: Call-Level Interface (SQL/CLI)

• ISO/IEC 9075-4:2016, Information technology—Database languages—SQL—Part
4: Persistent Stored Modules (SQL/PSM)

• ISO/IEC 9075-9:2016, Information technology—Database languages—SQL—Part
9: Management of External Data (SQL/MED)

Appendix C
ISO Standards

C-2

http://www.ansi.org/
http://webstore.ansi.org/default.aspx
http://www.incits.org/

• ISO/IEC 9075-10:2016, Information technology—Database languages—SQL—Part 10:
Object Language Bindings (SQL/OLB)

• ISO/IEC 9075-11:2016, Information technology—Database languages—SQL—Part 11:
Information and Definition Schemas (SQL/Schemata)

• ISO/IEC 9075-13:2016, Information technology—Database languages—SQL—Part 13:
SQL Routines and Types using the Java Programming Language (SQL/JRT)

• ISO/IEC 9075-14:2016, Information technology—Database languages—SQL—Part 14:
XML-Related Specifications (SQL/XML)

You can obtain a copy of ISO standards from this address:

International Organization for Standardization
1, ch. de la Voie-Creuse
Case postale 56
CH-1211, Geneva 20, Switzerland
Phone: +41.22.749.0111
Fax: +41.22.733.3430
Web site: http://www.iso.org/

or from their Web store:

http://www.iso.org/iso/store.htm

Oracle Compliance to Core SQL
The ANSI and ISO SQL standards require conformance claims to state the type of
conformance and the implemented facilities. The minimum claim of conformance is called
Core SQL and is defined in Part 2, SQL/Foundation, and Part 11, SQL/Schemata, of the
standard. The following products provide full or partial conformance with Core SQL as
described in the tables that follow:

• Oracle Database server, release 12.2

• OTT (Oracle Type Translator), release 12.2

• Pro*C/C++, release 12.2

• Pro*COBOL, release 12.2

The SQL standards conformance features can be used either as a guide to portability, or as a
guide to functionality. From the standpoint of portability, the user is interested in conformance
to both the precise syntax and semantics of the standard feature. From the standpoint of
functionality, the user is less concerned about the precise syntax and more concerned with
issues of semantics. The tables in this appendix use the following terms regarding support for
standard syntax and semantics:

• Full Support: The feature is supported with standard syntax and semantics.

• Partial Support: Some, but not all, of the standard syntax is supported; whatever is
supported has standard semantics.

• Enhanced Support: The standard semantics is supported, as well as additional
functionality.

• Equivalent Support: The standard semantics is supported using non-standard syntax.

• Similar Support: Neither the standard's syntax nor semantics are supported precisely, but
similar functionality is provided.

Appendix C
Oracle Compliance to Core SQL

C-3

http://www.iso.org/iso/store.htm

Oracle's support for the features of Core SQL is listed in Table C-1:

Table C-1 Oracle Support of Core SQL Features

Feature ID,
Feature

Support

E011, Numeric
data types

Oracle fully supports this feature.

E021, Character
data types

Oracle fully supports these subfeatures:

• E021-01, CHARACTER data type

• E021-07, Character concatenation
• E021-08, UPPER and LOWER functions

• E021-09, TRIM function

• E021-10, Implicit casting among character data types
Oracle partially supports these subfeatures:

• E021-02, CHARACTER VARYING data type (Oracle does not distinguish a
zero-length VARCHAR string from NULL)

• E021-03, Character literals (Oracle regards the zero-length literal '' as
being null)

• E021-12, Character comparison (Oracle's rules for padding the shorter
of two strings to be compared differs from the standard)

Oracle has equivalent functionality for these subfeatures:

• E021-04, CHARACTER_LENGTH function: use LENGTH function instead

• E021-05, OCTET_LENGTH function: use LENGTHB function instead

• E021-06, SUBSTRING function: use SUBSTR function instead

• E021-11, POSITION function: use INSTR function instead

E031, Identifiers Oracle supports this feature, with the following exceptions:

• Oracle does not support the escape sequence to permit a double quote
within a quoted identifier

• A non-quoted identifier may not be equivalent to an Oracle reserved
word (the list of Oracle reserved words differs from the standard's list)

• A column name may not be ROWID, even as a quoted identifier

Oracle extends this feature as follows:

• An identifier may be up to 128 characters long
• A non-quoted identifier may have dollar sign ($) or pound sign (#)

E051, Basic
query
specification

Oracle fully supports the following subfeatures:

• E051-01, SELECT DISTINCT
• E051-02, GROUP BY clause

• E051-04, GROUP BY can contain columns not in SELECT list

• E051-05, SELECT list items can be renamed

• E051-06, HAVING clause

• E051-07, Qualified * in SELECT list

Oracle partially supports the following subfeatures:

• E051-08, Correlation names in FROM clause (Oracle supports
correlation names, but not the optional AS keyword)

Oracle has equivalent functionality for the following subfeature:

• E051-09, Rename columns in the FROM clause (column names can be
renamed in a subquery in the FROM clause)

Appendix C
Oracle Compliance to Core SQL

C-4

Table C-1 (Cont.) Oracle Support of Core SQL Features

Feature ID,
Feature

Support

E061, Basic
predicates and
search
conditions

Oracle fully supports this feature, except that Oracle comparison of
character strings differs from the standard as follows: In the standard, two
character strings of unequal length are compared by either padding the
shorter string with spaces or a fictitious character that is less than all actual
characters. The decision on padding is made on the basis of the character
set. In Oracle, the decision is based on whether the comparands are of fixed
or varying length.

E071, Basic
query
expressions

Oracle fully supports the following subfeatures:

• E071-01, UNION DISTINCT table operator

• E071-02, UNION ALL table operator

• E071-05, Columns combined by table operators need not have exactly
the same type

• E071-06, table operators in subqueries
Oracle has equivalent functionality for the following subfeature:

• E071-03, EXCEPT DISTINCT table operator: Use MINUS instead of
EXCEPT DISTINCT

E081, Basic
privileges

Oracle fully supports all subfeatures of this feature, except E081-09, USAGE
privileges. In the standard, the USAGE privilege permits the user to use
domains, collations, character sets, transliterations, user-defined types and
sequence generators. Oracle does not support domains or transliterations.
No privileges are required to access collations and character sets. The
Oracle privilege to use a user-defined type is EXECUTE. The Oracle privilege
to use a sequence type is SELECT.

E091, Set
functions

Oracle fully supports this feature.

E101, Basic data
manipulation

Oracle fully supports this feature.

E111, Single row
SELECT
statement

Oracle fully supports this feature.

E121, Basic
cursor support

Oracle fully supports the following subfeatures:

• E121-02, ORDER BY columns need not be in SELECT list

• E121-03, Value expressions in ORDER BY clause

• E121-04, OPEN statement

• E121-06, Positioned UPDATE statement

• E121-07, Positioned DELETE statement

• E121-08, CLOSE statement

Oracle provides partial support for the following subfeatures:

• E121-01, DECLARE CURSOR - fully supported, except for the FOR READ
ONLY syntax

• E121-10 FETCH statement, implicit NEXT - fully supported, except for the
noise word FROM

Oracle provides enhanced support for the following subfeature:

• E121-17, WITH HOLD cursors (in the standard, a cursor is not held
through a ROLLBACK, but Oracle does hold through ROLLBACK)

Appendix C
Oracle Compliance to Core SQL

C-5

Table C-1 (Cont.) Oracle Support of Core SQL Features

Feature ID,
Feature

Support

E131, Null value
support

Oracle fully supports this feature, with this exception: In Oracle, a null of
character type is indistinguishable from a zero-length character string.

E141, Basic
integrity
constraints

Oracle fully supports this feature.

E151,
Transaction
support

Oracle fully supports this feature.

E152, Basic SET
TRANSACTION
statement

Oracle fully supports this feature.

E153, Updatable
queries with
subqueries

Oracle fully supports this feature.

E161, SQL
comments using
leading double
minus

Oracle fully supports this feature.

E171,
SQLSTATE
support

Oracle fully supports this feature.

E182, Host
language binding

Oracle fully supports this feature through Pro*C/C++ and Pro*COBOL

F021, Basic
information
schema

Oracle does not have any of the views in this feature. However, Oracle
makes the same information available in other metadata views:

• Instead of TABLES, use ALL_TABLES.

• Instead of COLUMNS, use ALL_TAB_COLUMNS.

• Instead of VIEWS, use ALL_VIEWS.

However, Oracle's ALL_VIEWS does not display whether a user view
was defined WITH CHECK OPTION or if it is updatable. To see whether a
view has WITH CHECK OPTION, use ALL_CONSTRAINTS, with
TABLE_NAME equal to the view name and look for CONSTRAINT_TYPE
equal to 'V'.

• Instead of TABLE_CONSTRAINTS, REFERENTIAL_CONSTRAINTS, and
CHECK_CONSTRAINTS, use ALL_CONSTRAINTS.

However, Oracle's ALL_CONSTRAINTS does not display whether a
constraint is deferrable or initially deferred.

Appendix C
Oracle Compliance to Core SQL

C-6

Table C-1 (Cont.) Oracle Support of Core SQL Features

Feature ID,
Feature

Support

F031, Basic
schema
manipulation

Oracle fully supports these subfeatures:

• F031-01, CREATE TABLE statement to create persistent base tables

• F031-02, CREATE VIEW statement

• F031-03, GRANT statement

Oracle provides equivalent support for this subfeature:

• F031-04, ALTER TABLE statement: ADD COLUMN clause (Oracle does not
support the optional keyword COLUMN in this syntax. Also, Oracle
requires the column definition to be enclosed in parentheses, unlike the
standard.)

Oracle does not support these subfeatures (because Oracle does not
support the keyword RESTRICT):

• F031-13, DROP TABLE statement: RESTRICT clause

• F031-16, DROP VIEW statement: RESTRICT clause

• F031-19, REVOKE statement: RESTRICT clause

(Oracle DROP commands enhance the standard by invalidating dependent
objects, so that they can be subsequently revalidated without user action,
rather than either cascading all drops to dependent objects or prohibiting a
drop if there is a dependent object.)

F041, Basic
joined table

Oracle fully supports this feature.

F051, Basic date
and time

Oracle fully supports this feature, except the following subfeatures are not
supported:

• F051-02, TIME data type

• F051-07, LOCALTIME
F081, UNION and
EXCEPT in views

Oracle fully supports UNION in views. The equivalent in Oracle of the
standard's EXCEPT is called MINUS, which is fully supported in views.

F131, Grouped
operations

Oracle fully supports this feature.

F181, Multiple
module support

Oracle fully supports this feature.

F201, CAST
function

Oracle fully supports this feature.

F221, Explicit
defaults

Oracle's DEFAULT ON NULL capability in a column definition provides
equivalent functionality for the INSERT statement though not for the UPDATE
statement.

F261, CASE
expressions

Oracle fully supports this feature.

F311, Schema
definition
statement

Oracle fully supports this feature.

F471, Scalar
subquery values

Oracle fully supports this feature.

F481, Expanded
null predicate

Oracle fully supports this feature.

Appendix C
Oracle Compliance to Core SQL

C-7

Table C-1 (Cont.) Oracle Support of Core SQL Features

Feature ID,
Feature

Support

F501, Feature
and
conformance
views

Oracle does not support this feature.

F812, Basic
flagging

Oracle has a flagger, but it flags SQL-92 compliance rather than SQL:2011
compliance.

S011, Distinct
types

Distinct types are strongly typed scalar types. A distinct type can be
emulated in Oracle using an object type with only one attribute. The
standard's Information Schema view called USER_DEFINED_TYPES is
equivalent to Oracle's metadata view ALL_TYPES.

T321, Basic
SQL-invoked
routines

Oracle fully supports these subfeatures:

• T321-03, function invocation
• T321-04, CALL statement

Oracle supports these subfeatures with syntactic differences:

• T321-01, user-defined functions with no overloading
• T321-02, user-defined procedures with no overloading
The Oracle syntax for CREATE FUNCTION and CREATE PROCEDURE differs
from the standard as follows:

• In the standard, the mode of a parameter (IN, OUT, or INOUT) comes
before the parameter name, whereas in Oracle it comes after the
parameter name.

• The standard uses INOUT, whereas Oracle uses IN OUT.

• Oracle requires either IS or AS after the return type and before the
definition of the routine body, while the standard lacks these keywords.

• If the routine body is in C (for example), then the standard uses the
keywords LANGUAGE C EXTERNAL NAME to name the routine, whereas
Oracle uses LANGUAGE C NAME.

• If the routine body is in SQL, then Oracle uses its proprietary procedural
extension called PL/SQL.

Oracle supports the following subfeature in PL/SQL but not in Oracle SQL:

• T321-05, RETURN statement

Oracle provides equivalent functionality for the following subfeatures:

• T321-06, ROUTINES view: Use the ALL PROCEDURES metadata view.

• T321-07, PARAMETERS view: Use the ALL_ARGUMENTS and
ALL_METHOD_PARAMS metadata views.

T631, IN
predicate with
one list element

Oracle fully supports this feature.

Oracle Support for Optional Features of SQL/Foundation
Oracle's support for optional features of SQL/Foundation is listed in Table C-2:

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-8

Table C-2 Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

B012, Embedded C Oracle fully supports this feature.

B013, Embedded COBOL Oracle fully supports this feature.

B021, Direct SQL Oracle fully supports this feature, as SQL*Plus.

B031, Basic dynamic SQL Oracle supports dynamic SQL in two styles, documented in the
embedded language manuals as "Oracle dynamic SQL" and "ANSI
dynamic SQL."

ANSI dynamic SQL is an implementation of the standard, with the
following restrictions:

• Oracle supports a subset of the descriptor items.
• For <input using clause>, Oracle only supports <using input

descriptor>.
• For <output using clause>, Oracle only supports <into

descriptor>.
• Dynamic parameters are indicated by a colon followed by an

identifier rather than a question mark.
Oracle dynamic SQL is similar to standard dynamic SQL, with the
following modifications:

• Parameters are indicated by a colon followed by an identifier,
instead of a question mark.

• Oracle's DESCRIBE SELECT LIST FOR statement replaces the
standard's DESCRIBE OUTPUT.

• Oracle provides DECLARE STATEMENT if you want to declare a
cursor using a dynamic SQL statement physically prior to the
PREPARE statement that prepares the dynamic SQL statement.

B032, Extended dynamic SQL In ANSI dynamic SQL, Oracle only implements the ability to declare
global statements and global cursors from this feature; the rest of the
feature is not supported.

In Oracle dynamic SQL, Oracle's DESCRIBE BIND VARIABLES is
equivalent to the standard's DESCRIBE INPUT; the rest of this feature
is not supported.

B122, Routine language C Oracle supports external routines written in C, though Oracle does
not support the standard syntax for creating such routines.

B128, Routine language SQL Oracle supports routines written in PL/SQL, which is Oracle's
equivalent to the standard procedural language SQL/PSM.

F032, CASCADE drop behavior In Oracle, a DROP command invalidates all of the dropped object's
dependent objects. Invalidated objects are effectively unusable until
the dropped object is redefined in such a way to allow successful
recompilation of the invalidated object.

F033, ALTER TABLE statement:
DROP COLUMN clause

Oracle provides a DROP COLUMN clause, but without the RESTRICT or
CASCADE options found in the standard.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-9

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

F034, Extended REVOKE
statement

Oracle supports the following parts of this feature:

• F034-01, REVOKE statement performed by other than the owner
of a schema object

• F034-03, REVOKE statement to revoke a privilege that the grantee
has WITH GRANT OPTION

Oracle provides equivalent functionality for the following parts of this
feature:

• CASCADE: In Oracle, a REVOKE invalidates all dependent objects,
which become effectively unusable until the metadata is changed
through subsequent CREATE and GRANT commands enabling the
invalidated object to be successfully recompiled.

F052, Intervals and datetime
arithmetic

Oracle only supports the INTERVAL YEAR TO MONTH and INTERVAL
DAY TO SECOND data types.

F111, Isolations levels other
than SERIALIZABLE

In addition to SERIALIZABLE, Oracle supports the READ COMMITTED
isolation level.

F121, Basic diagnostics
management

Much of the functionality of this feature is provided through the
SQLCA in embedded languages.

F191, Referential delete
actions

Oracle supports ON DELETE CASCADE and ON DELETE SET NULL.

F200, TRUNCATE TABLE Oracle fully supports this feature, and extends it by permitting
truncation of a table that references itself in a referential integrity
constraint, and the ability to cascade to child tables with enabled ON
DELETE CASCADE referential constraints.

F231, Privilege tables Oracle makes this information available in the following metadata
views:

• Instead of TABLE_PRIVILEGES, use ALL_TAB_PRIVS.

• Instead of COLUMN_PRIVILEGES, use ALL_COL_PRIVS.

• Oracle does not support USAGE privileges so there is no
equivalent to USAGE_PRIVILEGES.

F281, LIKE enhancements Oracle fully supports this feature.

F291, UNIQUE predicate The IS A SET condition may be used to test whether a multiset is a
set; that is, each row is unique. Thus, the equivalent of

UNIQUE <table subquery>

is

CAST (<table subquery> AS MULTISET) IS A SET

F302, INTERSECT table
operator

Oracle supports INTERSECT but not INTERSECT ALL. Syntactically,
Oracle differs from the standard in that UNION, INTERSECT, and
MINUS have the same precedence.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-10

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

F312, MERGE statement The Oracle MERGE statement is almost the same as the standard,
with these exceptions:

• Oracle does not support the optional AS keyword before a table
alias.

• Oracle does not support the ability to rename columns of the
table specified in the USING clause with a parenthesized list of
column names following the table alias.

• Oracle does not support the <override clause>.

F314, MERGE statement with
DELETE branch

Oracle has similar functionality, though in Oracle you must first update
a row, after which you can delete it if the revised row meets a
condition.

F321, User authorization Oracle provides equivalent functionality for the following subfeatures:

• Use SYS_CONTEXT ('USERENV', 'SESSION_USER') instead of
SESSION_USER

• Use SYS_CONTEXT ('USERENV', 'CURRENT_USER') instead of
CURRENT_USER

Oracle does not support the following subfeatures:

• SYSTEM_USER
• SET SESSION AUTHORIZATION statement

F341, Usage tables Oracle makes this information available in the views
ALL_DEPENDENCIES, DBA_DEPENDENCIES, and
USER_DEPENDENCIES.

F381, Extended schema
manipulation

Oracle fully supports the following element of this feature:

• Oracle supports the standard syntax to add a table constraint
using ALTER TABLE.

Oracle partially supports the following element of this feature:

• Oracle supports the standard syntax to drop a table constraint,
except that Oracle does not support RESTRICT.

Oracle provides equivalent functionality for the following element of
this feature:

• To alter the default value of a column, use the MODIFY option of
ALTER TABLE.

Oracle does not support the following parts of this feature:

• DROP SCHEMA statement

• ALTER ROUTINE statement

F382, Alter column data type Oracle supports this functionality, though with non-standard syntax.
As an extension to the standard, Oracle allows you to reduce the size
or precision of a column.

F383, Set column not null
clause

Oracle provides equivalent functionality for the two subfeatures of this
feature:

• To add a NOT NULL constraint to an existing column, use ALTER
TABLE ... MODIFY

• To drop a NOT NULL constraint, use ALTER TABLE to drop the
constraint by name

F384, Drop identity property
clause

Oracle provides equivalent functionality using ALTER TABLE ...
MODIFY (... DROP IDENTITY)

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-11

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

F386, Set identity column
generation clause

Oracle provides equivalent functionality. Oracle's syntax and
semantics are the same as the standard, with this exception:

• Oracle does not support RESTART; use START WITH instead.
When restarting an identity column, the values of the other
parameters for the identity column are reset to their defaults
unless explicitly set in the ALTER TABLE statement.

Oracle's START WITH LIMIT VALUE option is an extension on the
standard.

F391, Long identifiers Oracle supports identifiers up to 128 characters in length.

F393, Unicode escapes in
literals

The Oracle UNISTR function supports numeric escape sequences for
all Unicode characters.

F394, Optional normal form
specification

This feature adds the keywords NFC, NFD, NFKC, and NKD to the
NORMALIZE function and the IS NORMAL predicate. Without these
keywords, NFC is the default (see Feature T061, UCS support).
Oracle supports all four normalization forms, with nonstandard
syntax, as follows:

• For NFC, use COMPOSE
• For NFD, use DECOMPOSE with the CANONICAL option

• For NFKD, use DECOMPOSE with the COMPATIBILITY option

• For NFKC, use DECOMPOSE with the CANONICAL option followed
by COMPOSE

Oracle does not support the IS NORMAL predicate.

F401, Extended joined table Oracle supports FULL outer joins, CROSS joins, and NATURAL joins.

F402, Named column joins for
LOBs, arrays and multisets

Oracle supports named column joins for columns whose declared
type is nested table. Oracle does not support named column joins for
LOBs or arrays.

F403, Partitioned join tables Oracle supports this feature, except with FULL outer joins.

F411, Time zone specification Oracle fully supports TIMESTAMP WITH TIME ZONE, but does not
support TIME WITH TIME ZONE.

F421, National character Oracle fully supports this feature.

F431, Read-only scrollable
cursors

Oracle fully supports this feature.

F441, Extended set function
support

Oracle supports the following parts of this feature:

• The ability in the WHERE clause to reference a column that is
defined using an aggregate, either in a view or an inline view

• COUNT without DISTINCT of an expression

• Aggregates that reference columns that are outer references with
respect to the aggregating query. However, Oracle defines the
aggregating query as the innermost query containing the
aggregate, rather than the innermost query that defines a range
variable referenced in the aggregate.

F442, Mixed column references
in set functions

Oracle fully supports this feature.

F461, Named character sets Oracle supports many character sets with Oracle-defined names.
Oracle does not support any other aspect of this feature.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-12

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

F491, Constraint management Oracle fully supports this feature.

F492, Optional table constraint
enforcement

ENFORCED in the standard is equivalent to ENABLE VALIDATE in
Oracle. NOT ENFORCED in the standard is equivalent to DISABLE
NOVALIDATE in Oracle. Other combinations of the ENABLE | DISABLE,
VALIDATE | NOVALIDATE, and RELY | NORELY options are extensions
of the standard.

F531, Temporary tables Oracle supports GLOBAL TEMPORARY tables.

F555, Enhanced seconds
precision

Oracle provides enhanced support for this feature, supporting up to 9
places after the decimal point.

F561, Full value expressions Oracle fully supports this feature.

F571, Truth value tests Oracle's LNNVL function is equivalent to the standard's IS NOT TRUE
predicate.

F591, Derived tables Oracle supports <derived table>, with the exception of:

• Oracle does not support the optional AS keyword before a table
alias.

• Oracle does not support <derived column list>.

F641, Row and table
constructors

In Oracle, a row constructor may be used in an equality or inequality
comparison with another row constructor or with a subquery. Oracle
does not support anything else in this feature.

F690, Collation support Oracle's NLSSORT function may be used to change the collation of
character expressions.

F693, SQL-sessions and client
module collations

To set a session collation, use ALTER SESSION SET NLS_COMP =
'LINGUISTIC' and also set NLS_SORT to your desired collation.
Oracle does not support client module collations.

F695, Translation support The Oracle CONVERT function can convert between the database
character set and the national character set. For other character sets,
store the data in the RAW data type and use the PL/SQL package
function UTL_RAW.CONVERT. Oracle does not provide the ability to add
or drop character set conversions.

F721, Deferrable constraints Oracle fully supports this feature.

F731, INSERT column
privileges

Oracle fully supports this feature.

F761, Session management Oracle provides the following equivalents for elements of this feature:

• The equivalent to the standard's SET SESSION
CHARACTERISTICS AS TRANSACTION SERIALIZABLE is ALTER
SESSION SET ISOLATION_LEVEL = SERIALIZABLE.

• The equivalent to the standard's SET SCHEMA is ALTER SESSION
SET CURRENT_SCHEMA.

• The equivalent to the standard's SET COLLATION is ALTER
SESSION SET NLS_SORT.

F763, CURRENT_SCHEMA Oracle's equivalent is SYS_CONTEXT ('USERENV',
'CURRENT_SCHEMA')

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-13

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

F771, Connection management Oracle's CONNECT statement provides the same functionality as the
standard's CONNECT statement, though with different syntax. Instead
of using the standard's SET CONNECTION, Oracle provides the AT
clause to indicate which connection a SQL statement should be
performed on. Oracle embedded languages let you disconnect from a
connection by using the RELEASE option of either COMMIT or
ROLLBACK.

F781, Self-referencing
operations

Oracle fully supports this feature.

F801, Full set function Oracle fully supports this feature.

F831, Full cursor update Oracle supports the combination of FOR UPDATE and ORDER BY
clauses in a query.

F841, LIKE_REGEX predicate Oracle's equivalent is REGEXP_LIKE. Oracle's pattern syntax lacks
some of the features of the standard's. Oracle's match parameter has
the same capabilities as the standard's, though with a few spelling
differences.

F842, OCCURRENCES_REGEX
function

Oracle's equivalent is REGEXP_COUNT. Oracle's pattern syntax lacks
some of the features of the standard's. Oracle's match parameter has
the same capabilities as the standard's, though with a few spelling
differences.

F843, POSITION_REGEX
function

Oracle's equivalent is REGEXP_INSTR. Oracle's pattern syntax lacks
some of the features of the standard's. Oracle's match parameter has
the same capabilities as the standard's, though with a few spelling
differences.

F844, SUBSTRING_REGEX
function

Oracle's equivalent is REGEXP_SUBSTR. Oracle's pattern syntax lacks
some of the features of the standard's. Oracle's match parameter has
the same capabilities as the standard's, though with a few spelling
differences.

F845, TRANSLATE_REGEX
function

Oracle's equivalent is REGEXP_REPLACE. Oracle's pattern syntax
lacks some of the features of the standard's. Oracle's match
parameter has the same capabilities as the standard's, though with a
few spelling differences.

F850, Top-level <order by
clause> in <query expression>

Oracle fully supports this feature.

F851, <order by clause> in
subqueries

Oracle fully supports this feature.

F852, Top-level <order by
clause> in views

Oracle fully supports this feature.

F855, Nested <order by
clause> in <query expression>

Oracle fully supports this feature.

F856, Nested <fetch first
clause> in <query expression>

Oracle fully supports this feature.

F857, Top-level <fetch first
clause> in a <query
expression>

Oracle fully supports this feature.

F858, <fetch first clause> in
subqueries

Oracle fully supports this feature.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-14

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

F859, Top-level <fetch first
clause> in views

Oracle fully supports this feature.

F860, Dynamic <fetch first row
count> in <fetch first clause>

Oracle fully supports this feature.

F861, Top-level <result offset
clause> in <query expression>

Oracle fully supports this feature.

F862, <result offset clause> in
subqueries

Oracle fully supports this feature.

F863, Nested <result offset
clause> in <query expression>

Oracle fully supports this feature.

F864, Top-level <result offset
clause> in views

Oracle fully supports this feature.

F865, Dynamic <offset row
count> in <result offset clause>

Oracle fully supports this feature.

F866, FETCH FIRST clause:
PERCENT option

Oracle fully supports this feature.

F867, FETCH FIRST clause:
WITH TIES option

Oracle fully supports this feature.

R010, Row pattern recognition:
FROM clause

Oracle fully supports this feature.

S023, Basic structured types Oracle's object types are equivalent to structured types in the
standard.

S024, Enhanced structured
types

Oracle's syntax is non-standard, but provides equivalents for the
following:

• NOT INSTANTIABLE
• STATIC methods

• RELATIVE, MAP, and STATE orderings. The keyword in Oracle for
RELATIVE orderings is ORDER. There is no keyword for STATE
orderings (this is the default, if no other ordering is defined).
Unlike the standard, Oracle does not support EQUALS ONLY on
non-STATE orderings. (See also Feature S251, User-defined
orderings.)

• SELF AS RESULT in the signature of constructor methods

S025, Final structured types Oracle's final object types are equivalent to final structured types in
the standard.

S026, Self-referencing
structured types

In Oracle, an object type OT may have a reference that references
OT.

S041, Basic reference types Oracle's reference types are equivalent to reference types in the
standard. To dereference a reference, dot notation is used, instead of
-> as in the standard.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-15

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

S043, Enhanced reference
types

Oracle supports the following elements of this feature:

• DEREF operator to return the object referenced by a reference

• SCOPE clause as a constraint on columns of tables or
materialized views

• Adding and dropping the scope of a column
• References that are either system-generated or derived from the

primary key (but not from any other list of columns, nor from a list
of attributes of the type)

S051, Create table of type Oracle's object tables are equivalent to tables of structured type in the
standard.

S081, Subtables Oracle supports hierarchies of object views, but not of object base
tables. To emulate a hierarchy of base tables, create a hierarchy of
views on those base tables.

S091, Basic array support Oracle VARRAY types are equivalent to array types in the standard.
However, Oracle does not support storage of arrays of LOBs. To
access a single element of an array using a subscript, you must use
PL/SQL. Oracle supports the following aspects of this feature with
nonstandard syntax:

• To construct an instance of varray type, including an empty array,
use the varray type constructor.

• To unnest a varray in the FROM clause, use the TABLE operator.

• To get the cardinality of a varray, use the COUNT method in PL/
SQL.

S092, Arrays of user-defined
types

Oracle supports VARRAYs of object types.

S094, Arrays of reference types Oracle supports VARRAYs of references.

S095, Array constructors by
query

Oracle supports this using CAST (MULTISET (SELECT ...) AS
varray_type). The ability to order the elements of the array using
ORDER BY is not supported.

S097, Array element
assignment

In PL/SQL, you can assign to array elements, using syntax that is
similar to the standard (SQL/PSM).

S098, ARRAY_AGG Oracle does not have an aggregate that results in a varray. Instead,
the COLLECT aggregate may be used to create a multiset, which can
be cast to an array of the element type.

S111, ONLY in query
expressions

Oracle supports the ONLY clause for view hierarchies; Oracle does
not support hierarchies of base tables.

S151, Type predicate Oracle fully supports this feature.

S161, Subtype treatment Oracle fully supports this feature.

S162, Subtype treatment for
references

Supported, with a minor syntactic difference: The standard requires
parentheses around the referenced type's name; Oracle does not
support parentheses in this position.

S201, SQL-invoked routines on
arrays

PL/SQL provides the ability to pass arrays as parameters and return
arrays as the result of functions. Procedures and functions written in
C may pass arrays and return arrays as the result of functions using
the Oracle Type Translator (OTT).

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-16

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

S202, SQL-invoked routines on
multisets

A PL/SQL routine may have nested tables as parameters, and may
return a nested table. Routines written in C may pass arrays and
return arrays as the result of functions using the Oracle Type
Translator.

S232, Array locators Oracle Type Translator supports descriptors for arrays, which achieve
the same purpose as locators.

S233, Multiset locators Oracle supports locators for nested tables.

S241, Transform functions The Oracle Type Translator provides the same capability as
transforms.

S251, User-defined orderings Oracle's object type ordering capabilities correspond to the standard's
capabilities as follows:

• Oracle's MAP ordering corresponds to the standard's ORDER FULL
BY MAP ordering.

• Oracle's ORDER ordering corresponds to the standard's ORDER
FULL BY RELATIVE ordering.

• If an Oracle object type has neither MAP nor ORDER declared,
then this corresponds to EQUALS ONLY BY STATE in the standard.

• Oracle does not have unordered object types; you can alter the
ordering but you cannot drop it.

S261, Specified type method The GetTypeName method of the ANYDATA type may be used to learn
the name of a type.

S271, Basic multiset support Multisets in the standard are supported as nested table types in
Oracle. The Oracle nested table data type based on a scalar type ST
is equivalent, in standard terminology, to a multiset of rows having a
single field of type ST and named column_value. The Oracle nested
table type based on an object type is equivalent to a multiset of
structured type in the standard.

Oracle supports the following elements of this feature on nested
tables using the same syntax as the standard has for multisets:

• The CARDINALITY function

• The SET function

• The MEMBER predicate

• The IS A SET predicate

• The COLLECT aggregate

All other aspects of this feature are supported with non-standard
syntax, as follows:

• To create an empty multiset, denoted MULTISET[] in the
standard, use an empty constructor of the nested table type.

• To obtain the sole element of a multiset with one element,
denoted ELEMENT (<multiset value expression>) in the standard,
use a scalar subquery to select the single element from the
nested table.

• To construct a multiset by enumeration, use the constructor of
the nested table type.

• To construct a multiset by query, use CAST with a multiset
argument, casting to the nested table type.

• To unnest a multiset, use the TABLE operator in the FROM clause.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-17

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

S272, Multisets of user-defined
types

Oracle's nested table type permits a multiset of structured types.
Oracle does not have distinct types, so a multiset of distinct types is
not supported.

S274, Multisets of reference
types

A nested table type can have one or more columns of reference type.

S275, Advanced multiset
support

Oracle supports the following elements of this feature on nested
tables using the same syntax as the standard has for multisets:

• The MULTISET UNION, MULTISET INTERSECTION, and
MULTISET EXCEPT operators

• The SUBMULTISET predicate

• = and <> predicates

Oracle does not support the FUSION or INTERSECTION aggregates.

S281, Nested collection types Oracle permits nesting of its collection types (varray and nested
table).

S401, Distinct types based on
array types

Oracle's varray types are strongly typed.

S403,
ARRAY_MAX_CARDINALITY

In PL/SQL, the LIMIT method of a varray returns its maximum
cardinality.

S404, TRIM_ARRAY In PL/SQL, the TRIM method of a varray can be used to trim the
varray.

T041, Basic LOB data type
support

Oracle supports the following aspects of this feature:

• The keywords BLOB, CLOB, and NCLOB
• Concatenation, UPPER, LOWER on CLOBs

Oracle provides equivalent support for the following aspects of this
feature:

• Use INSTR instead of POSITION.

• Use LENGTH instead of CHAR_LENGTH.

Oracle does not support the following aspects of this feature:

• The keywords BINARY LARGE OBJECT, CHARACTER LARGE
OBJECT, and NATIONAL CHARACTER LARGE OBJECT as
synonyms for BLOB, CLOB, and NCLOB, respectively

• <binary string literal>
• The ability to specify an upper bound on the length of a BLOB or

CLOB
• Concatenation of BLOBs

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-18

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

T042, Extended LOB support Oracle fully supports the following element of this feature:

• TRIM function on a CLOB argument

Oracle provides equivalent functionality for the following elements of
this feature:

• BLOB and CLOB substring, supported using SUBSTR
• SIMILAR predicate, supported using REGEXPR_LIKE to perform

pattern matching with a Perl-like syntax
The following elements of this feature are not supported:

• Comparison predicates with BLOB or CLOB operands

• CAST with a BLOB or CLOB operand

• OVERLAY (This may be emulated using SUBSTR and string
concatenation.)

• LIKE predicate with BLOB or CLOB operands

T051, Row types Oracle object types can be used in place of the standard's row types.

T061, UCS support Oracle provides equivalent functionality for the following elements of
this feature:

• Oracle supports the keyword CHAR instead of CHARACTERS, and
BYTE instead of OCTETS, in a character data type declaration.

• The Oracle COMPOSE function is equivalent to the standard's
NORMALIZE function.

Oracle does not support the IS NORMALIZED predicate.

T071, BIGINT data type On many implementations, BIGINT refers to a binary integer type
with 64 bits, which supports almost 19 decimal digits. The Oracle
NUMBER type supports 39 decimal digits.

T111, Updatable joins, unions
and columns

Oracle's updatable join views are similar to the standard's updatable
join capabilities. Unlike the standard, Oracle does not require an
updatable join view to display the strong candidate key in the SELECT
list. Although an updatable join view might have more than one key-
preserved table, only one of them may be modified using an UPDATE
or DELETE, unlike the standard, which modifies all key-preserved
tables of an updatable join.

T121, WITH (excluding
RECURSIVE) in query
expression

Oracle fully supports this feature.

T122, WITH (excluding
RECURSIVE) in subquery

Oracle fully supports this feature.

T131, Recursive query Oracle supports the use of a WITH clause element that references
itself, but without the RECURSIVE keyword. Alternatively, Oracle's
START WITH and CONNECT BY clauses can be used to perform many
recursive queries.

T132, Recursive query in
subquery

Oracle supports the use of a WITH clause element that references
itself, but without the RECURSIVE keyword. Alternatively, Oracle's
START WITH and CONNECT BY clauses can be used to perform many
recursive queries.

T141, SIMILAR predicate Oracle provides REGEXP_LIKE for pattern matching with a Perl-like
syntax.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-19

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

T172, AS subquery clause in
table definition

Oracle's AS subquery feature of CREATE TABLE has substantially the
same functionality as the standard, though there are some syntactic
differences.

T174, Identity columns Oracle supports this feature, with the following syntactic differences:

• Oracle uses NOMINVALUE and NOMAXVALUE instead of the
standard's NO MINVALUE and NO MAXVALUE.

• To restart an identity column, in an ALTER TABLE MODIFY
statement, use START WITH LIMIT VALUE to restart at the
highest value (for an increasing identity column) or the lowest
value (for a decreasing identity column); use START WITH
number to restart at a specific number.

GENERATED BY DEFAULT ON NULL is an Oracle extension.

T175, Generated columns Oracle supports this feature, with the following restrictions:

• Generated columns are not supported in temporary tables.
• The data type of a generated column may not be LOB or XML.

T176, Sequence generator
support

Oracle's sequences have the same capabilities as the standard's,
though with different syntax.

T178, Identity columns: simple
restart option

Oracle's START WITH LIMIT VALUE is the same as the standard's
simple restart if the identity column has not cycled.

T180, System-versioned tables Oracle's Flashback capability is substantially the same as the
standard's system-versioned tables. Some key differences are:

• In Oracle you do not need to designate particular tables for
journaling; all tables are journaled.

• In Oracle, LOB columns need to be individually designated for
journaling, because of the potential for large amounts of data.
The standard has no analogous provision.

• In Oracle you need a privilege in order to read historical data.
• In the standard, journaled tables have columns to record the start

and end timestamps for the row. In Oracle, this is provided
through pseudocolumns.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-20

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

T181, Application-time period
tables

Oracle supports the following elements of this feature:

• Application-time period definition during CREATE TABLE
• Adding and dropping an application-time period definition using

ALTER TABLE with a minor syntactic difference: Oracle requires
parentheses around the period specification; the standard does
not support parentheses in this position.

Oracle extends this feature:

• With the ability to have more than one application-time period per
table.

• By making the start time and end time columns optional. In this
case, Oracle will create these columns implicitly.

• By allowing NULL for the start time column to indicate that the
row is considered valid for any point in time before the value of
the end time column.

• By allowing NULL for the end time column to indicate that the row
is considered valid for any point in time on or after the value of
the start time column.

• By querying an application-time period table using the flashback
query options VERSIONS PERIOD FOR and AS OF PERIOD FOR.

T201, Comparable data types
for referential constraints

Oracle fully supports this feature.

T211, Basic trigger capability Oracle's triggers differ from the standard as follows:

• Oracle does not provide the optional syntax FOR EACH
STATEMENT for the default case, the statement trigger.

• Oracle does not support OLD TABLE and NEW TABLE; the
transition tables specified in the standard (the multiset of before
and after images of affected rows) are not available.

• The trigger body is written in PL/SQL, which is functionally
equivalent to the standard's procedural language PSM, but not
the same.

• In the trigger body, the new and old transition variables are
referenced beginning with a colon.

• Oracle's row triggers are executed as the row is processed,
instead of buffering them and executing all of them after
processing all rows. The standard's semantics are deterministic,
but Oracle's in-flight row triggers are more performant.

• Oracle's before-row and before-statement triggers can perform
DML statements, which is forbidden in the standard. However,
Oracle's after-row statements cannot perform DML, while it is
permitted in the standard.

• When multiple triggers apply, the standard says they are
executed in order of definition. In Oracle the execution order is
nondeterministic, unless specified using FOLLOWS.

• Oracle uses the system privileges CREATE TRIGGER and CREATE
ANY TRIGGER to regulate creation of triggers, instead of the
standard's TRIGGER privilege, which is a table privilege.

T212, Enhanced trigger
capability

This feature permits statements triggers, which Oracle supports, as
described for feature T211, Basic trigger capability.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-21

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

T213, INSTEAD OF triggers Oracle supports INSTEAD OF triggers on views, with syntax and
semantics agreeing with the standard except as noted for feature
T211, Basic trigger capability. Oracle permits an INSTEAD OF trigger
on a view that specified WITH CHECK OPTION, unlike the standard.

T241, START TRANSACTION
statement

Oracle's SET TRANSACTION statement starts a transaction making it
equivalent to the standard's START TRANSACTION rather than the
standard's SET TRANSACTION. Oracle's READ ONLY transactions are
at SERIALIZABLE isolation level.

T271, Savepoints Oracle supports this feature, except:

• Oracle does not support RELEASE SAVEPOINT.

• Oracle does not support savepoint levels.

T285, Enhanced derived
column names

This feature pertains only to derived columns in a SELECT list with no
column alias and consisting of a SQL parameter reference. In that
case, the column name defaults to the parameter name, the same as
in the standard.

T323, Explicit security for
external routines

The Oracle syntax AUTHID { CURRENT USER | DEFINER } when used
when creating an external function, procedure, or package is
equivalent to the standard's EXTERNAL SECURITY { DEFINER |
INVOKER }.

T324, Explicit security for SQL
routines

Oracle's syntax AUTHID { CURRENT USER | DEFINER } when used
when creating a PL/SQL function, procedure, or package is
equivalent to the standard's SQL SECURITY { DEFINER | INVOKER }.

T325, Qualified SQL parameter
reference

PL/SQL supports the use of a routine name to qualify a parameter
name.

T326, Table functions Oracle provides equivalents for the following elements of this feature:

• <multiset value constructor by query> is supported using CAST
(MULTISET (<query expression>) AS <nested table
type>)

• <table function derived table> is supported using the TABLE
operator in the FROM clause with a varray or nested table as the
argument

• <collection value expression> is equivalent to an Oracle
expression resulting in a varray or nested table

• <returns table type> is equivalent to a PL/SQL function that
returns a nested table

T331, Basic roles Oracle supports this feature, except for REVOKE ADMIN OPTION FOR
<role name>.

T341, Overloading of SQL-
invoked functions and
procedures

Oracle supports overloading of functions and procedures. However,
the rules for handling certain data type combinations are not the
same as the standard. For example, the standard permits the
coexistence of two functions of the same name differing only in the
numeric types of the arguments, whereas Oracle does not permit this.

T351, Bracketed comments Oracle fully supports this feature.

T431, Extended grouping
capabilities

Oracle fully supports this feature.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-22

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

T432, Nested and
concatenated GROUPING SETS

Oracle supports concatenated GROUPING SETS, but not nested
GROUPING SETS.

T433, Multiargument function
GROUPING

The Oracle GROUP_ID function can be used to conveniently
distinguish groups in a grouped query, serving the same purpose as
the standard multiargument GROUPING function.

T441, ABS and MOD functions Oracle supports the ABS function. Oracle's MOD function is similar to
the standard, though the behavior is different if the two arguments are
of opposite sign.

T471, Result sets return value PL/SQL ref cursors provide all the functionality of the standard's
result set cursors.

T491, LATERAL derived tables Oracle fully supports this feature.

T501, Enhanced EXISTS
predicate

Oracle fully supports this feature.

T511, Transaction counts Oracle supports the count of transactions committed and rolled back
via the system views V$STATNAME and V$SESSTAT.

T521, Named arguments in
CALL statement

Oracle fully supports this feature.

T522, Default values for IN
parameters of SQL-invoked
procedures

Oracle fully supports this feature.

T524, Named arguments in
routine invocations other than a
CALL statement

Oracle fully supports this feature.

T525, Default values for
parameters of SQL-invoked
functions

Oracle fully supports this feature.

T571, Array-returning external
SQL-invoked function

Oracle table functions returning a varray can be defined in external
programming languages. When declaring such functions in SQL, use
the CREATE FUNCTION command with the PIPELINED USING clause.

T572, Multiset-returning
external SQL-invoked function

Oracle table functions returning a nested table can be defined in
external programming languages. When declaring such functions in
SQL, use the CREATE FUNCTION command with the PIPELINED
USING clause. In the body of the function, use the OCITable
interface. The function must be invoked within the TABLE operator in
the FROM clause.

T581, Regular expressions
substring functions

Oracle provides the REGEXP_SUBSTR function to perform substring
operations using regular expression matching.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-23

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

T591, UNIQUE constraints of
possibly null columns

Oracle permits a UNIQUE constraint on one or more nullable columns.
If the UNIQUE constraint is on a single column, then the semantics are
the same as the standard (the constraint permits any number of rows
that are null in the designated column). If the UNIQUE constraint is on
two or more columns, then the semantics are nonstandard. Oracle
permits any number of rows that are null in all the designated
columns. Unlike the standard, if a row is non-null in at least one of the
designated columns, then another row having the same values in the
non-null columns of the constraint is a constraint violation and not
permitted.

T611, Elementary OLAP
operations

Oracle fully supports this feature, except that DISTINCT is only
supported in conjunction with window partitioning but not with window
framing.

T612, Advanced OLAP
operations

Oracle supports the following elements of this feature:
PERCENT_RANK, CUME_DIST, WIDTH_BUCKET, hypothetical set
functions, PERCENTILE_CONT, PERCENTILE_DISC, and ROW_NUMBER.

Oracle does not support the following elements of this feature:

• window names
• EXCLUDE
• ROW_NUMBER without ORDER BY

T613, Sampling Oracle uses the keyword SAMPLE instead of the standard's keyword,
TABLESAMPLE. Oracle uses the keyword BLOCK instead of the
standard's keyword, SYSTEM. Oracle uses the absence of the keyword
BLOCK to indicate a Bernoulli sampling of rows, indicated in the
standard by the keyword BERNOULLI. Oracle does not support
sampling of derived tables or views that are not key-preserving.
Oracle does not permit sampling in a subquery of a DELETE, UPDATE
or MERGE statement.

T614, NTILE function Oracle fully supports this feature.

T615, LEAD and LAG functions Oracle fully supports this feature.

T616, Null treatment option for
LEAD and LAG functions

Oracle fully supports this feature.

T617, FIRST_VALUE and
LAST_VALUE functions

Oracle fully supports this feature.

T618, NTH_VALUE function Oracle fully supports this feature.

T621, Enhanced numeric
functions

Oracle fully supports this feature, except for the alternate spelling
CEILING of the CEIL function.

T622, Trigonometric functions Oracle fully supports this feature.

T623, General logarithm
function

Oracle fully supports this feature.

T625, LISTAGG Oracle fully supports this feature, except that the keyword DISTINCT
is not supported

T641, Multiple column
assignment

The standard syntax to assign to multiple columns is supported if the
assignment source is a subquery.

T652, SQL-dynamic
statements in SQL routines.

PL/SQL supports dynamic SQL.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-24

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

T654, SQL-dynamic
statements in external routines

Oracle supports dynamic SQL in embedded C, which may be used to
create an external routine.

T655, Cyclically dependent
routines

PL/SQL supports recursion.

T811, Basic SQL/JSON
constructor functions

Oracle fully supports this feature, except for the JSON_ARRAY
constructor by query.

T812, SQL/JSON:
JSON_OBJECTAGG

Oracle fully supports this feature.

T813, SQL/JSON:
JSON_ARRAYAGG with ORDER
BY

Oracle fully supports this feature.

T821, Basic SQL/JSON query
operators

Oracle fully supports this feature.

T822, SQL/JSON: IS JSON
WITH UNIQUE KEYS predicate

Oracle fully supports this feature.

T823, SQL/JSON: PASSING
clause

Oracle supports the PASSING clause in JSON_EXISTS.

T825, SQL/JSON: ON EMPTY
and ON ERROR clauses

Oracle fully supports this feature, except that:

• The ON ERROR clause for JSON_EXISTS does not support
UNKNOWN.

• JSON_TABLE does not support a column-level ON EMPTY clause.

T828, JSON_QUERY Oracle fully supports this feature.

T829, JSON_QUERY: array
wrapper options

Oracle fully supports this feature.

T832, SQL/JSON path
language: item method

Oracle fully supports the following item methods:

• abs
• ceiling
• double
• floor
Oracle provides the following comparable support:

• date and timestamp are comparable to the standard’s
datetime

Oracle extends this feature by supporting the following item methods:

• length
• lower
• number
• string
• upper

T833, SQL/JSON path
language: multiple subscripts

Oracle fully supports this feature, except that subscripts have to be
specified in strictly monotonically increasing order.

T834, SQL/JSON path
language: wildcard member
accessor

Oracle fully supports this feature.

Appendix C
Oracle Support for Optional Features of SQL/Foundation

C-25

Table C-2 (Cont.) Oracle Support for Optional Features of SQL/Foundation

Feature ID, Feature Support

T835, SQL/JSON path
language: filter expression

Oracle supports the filter expression as the last step of the SQL/
JSON path expression in JSON_EXISTS.

T839, Formatted cast of
datetimes to/from character
strings

Oracle supports this feature with a minor syntactic difference: Oracle
uses a comma instead of the keyword FORMAT.

Oracle Compliance with SQL/CLI
The Oracle ODBC driver conforms to SQL/CLI.

Oracle Compliance with SQL/PSM
Oracle PL/SQL provides functionality equivalent to SQL/PSM, with minor syntactic
differences, such as the spelling or arrangement of keywords.

Oracle Compliance with SQL/MED
Oracle does not comply with SQL/MED.

Oracle Compliance with SQL/OLB
Oracle SQLJ conforms to SQL/OLB:1999 and not yet to SQL/OLB:2016.

Oracle Compliance with SQL/JRT
Oracle fully supports stored routines and SQL types implemented in Java(TM). Oracle
provides equivalent support for the creation and maintenance of such types and
procedures. Oracle's capabilities are in general a superset of the functionality defined
by the standard.

Oracle Compliance with SQL/XML
The XML data type in the standard is XML. The Oracle equivalent data type is XMLType.
A feature of the standard is considered to be fully supported if the only difference
between Oracle and the standard is the spelling of the data type name.

Table C-3 describes Oracle's support for the features of SQL/XML.

Table C-3 Oracle Support for Features of SQL/XML

Feature ID, Feature Support

X010, XML type Oracle fully supports this feature.

X011, Arrays of XML types Oracle supports this feature using named array types

Appendix C
Oracle Compliance with SQL/CLI

C-26

Table C-3 (Cont.) Oracle Support for Features of SQL/XML

Feature ID, Feature Support

X012, Multisets of XML type The Oracle equivalent of a multiset of XML type is a nested
table with a single column of XML type.

X013, Distinct types of XML A distinct type can be emulated using an object type with a
single attribute.

X014, Attributes of XML type In Oracle, attributes of object types may be of type XMLType,
but the syntax for creating object types is nonstandard.

X015, Fields of XML type Oracle object types may be used instead of row types; Oracle
supports object types with attributes of XMLType.

X016, Persistent XML values Oracle fully supports this feature.

X020, XMLConcat Oracle fully supports this feature.

X025, XMLCast Oracle supports this feature, with the following restrictions:

• The source expression must be of XMLType and the target
data type may not be XMLType. (Since Oracle has only
one XML type, there is no need to cast from XML to XML.)

• Oracle does not support <XML passing mechanism>; the
behavior is the same as BY VALUE in the standard.

Oracle extends this feature with the ability to cast to type REF
XMLTYPE.

X031, XMLElement Oracle fully supports this feature.

X032, XMLForest Oracle fully supports this feature.

X034, XMLAgg Oracle fully supports this feature.

X035, XMLAgg: ORDER BY
option

Oracle fully supports this feature.

X036, XMLComment Oracle fully supports this feature.

X036, XMLPi Oracle fully supports this feature.

X038, XMLText The Oracle XMLCData function may be used to create a text
node.

X040, Basic table mapping Oracle table mappings are available through a Java interface
and through a package. Oracle table mappings have been
generalized to map queries and not just tables. To map only a
table: SELECT * FROM table_name. This provides support for
the following elements of this feature:

• X041, Basic table mapping: null absent
• X042, Basic table mapping: null as nil
• X043, Basic table mapping: table as forest
• X044, Basic table mapping: table as element
• X045, Basic table mapping: with target namespace
• X046, Basic table mapping: data mapping
• X047, Basic table mapping: metadata mapping
• X049, Basic table mapping: hex encoding
Oracle does not support the following element of this feature:

• X048, Basic table mapping: base64 encoding

X041, Basic table mapping:
null absent

See X040.

Appendix C
Oracle Compliance with SQL/XML

C-27

Table C-3 (Cont.) Oracle Support for Features of SQL/XML

Feature ID, Feature Support

X042, Basic table mapping:
null as nil

See X040.

X043, Basic table mapping:
table as forest

See X040.

X044, Basic table mapping:
table as element

See X040.

X045, Basic table mapping:
with target namespace

See X040.

X046, Basic table mapping:
data mapping

See X040.

X047, Basic table mapping:
metadata mapping

See X040.

X049, Basic table mapping:
hex encoding

See X040.

X060, XMLParse: Character
string input and CONTENT
option

Oracle does not support the {PRESERVE | STRIP} WHITESPACE
syntax. The behavior is always STRIP WHITESPACE.

X061, XMLParse: Character
string input and DOCUMENT
option

Oracle does not support the {PRESERVE | STRIP} WHITESPACE
syntax. The behavior is always STRIP WHITESPACE.

X069, XMLSERIALIZE:
INDENT

Oracle extends this feature with the ability to specify an indent
size.

X070, XMLSerialize:
Character string serialization
and CONTENT option

Oracle supports this feature, with this restriction:

• In the standard, the choice of DOCUMENT or CONTENT is
optional; in Oracle, you must specify one of these.

Oracle extends this feature as follows: the standard requires a
target data type; Oracle defaults to CLOB.

X071, XMLSerialize:
Character string serialization
and DOCUMENT option

Oracle fully supports this feature.

X072, XMLSerialize:
Character string serialization

Oracle fully supports this feature.

X073, XMLSerialize: BLOB
serialization and CONTENT
option

Oracle fully supports this feature.

X074, XMLSerialize: BLOB
serialization and DOCUMENT
option

Oracle fully supports this feature.

X075, XMLSerialize: BLOB
serialization

Oracle fully supports this feature.

X076, XMLSerialize:
VERSION option

Oracle fully supports this feature.

X077, XMLSerialize: explicit
ENCODING option

Oracle fully supports this feature.

Appendix C
Oracle Compliance with SQL/XML

C-28

Table C-3 (Cont.) Oracle Support for Features of SQL/XML

Feature ID, Feature Support

X080, Namespaces in XML
publishing

In the Oracle implementation of XMLElement, XMLAttributes
are used to define namespaces (XMLNamespaces is not
implemented). However, XMLAttributes is not supported for
XMLForest.

X086, XML namespace
declarations in XMLTable

Oracle fully supports this feature.

X090, XML document
predicate

In Oracle, you can test whether an XML value is a document by
using the ISFRAGMENT method.

X096, XMLExists Oracle fully supports this feature, with this exception: Oracle
only supports passing by value, so the keywords BY VALUE are
optional at the beginning of the PASSING clause, and not
supported on individual arguments.

X120, XML parameters in
SQL routines

Oracle fully supports this feature.

X121, XML parameters in
external routines

Oracle supports XML values passed to external routines using
a non-standard interface.

X141, IS VALID predicate:
data drive case

The XMLISVALID method is equivalent to the IS VALID
predicate, and supports the data-driven case.

X142, IS VALID predicate:
ACCORDING TO clause

The XMLISVALID method is equivalent to the IS VALID
predicate, and includes the equivalent of the ACCORDING TO
clause.

X143, IS VALID predicate:
ELEMENT clause

The XMLISVALID method is equivalent to the IS VALID
predicate, and includes the equivalent of the ELEMENT clause.

X144, IS VALID predicate:
schema location

The XMLISVALID method is equivalent to the IS VALID
predicate, and supports the specification of a schema location
for a registered XML Schema.

X145, IS VALID predicate
outside check constraints

The XMLISVALID method is equivalent to the IS VALID
predicate, and may be used outside check constraints.

X151, IS VALID predicate
with DOCUMENT option

The XMLISVALID method is equivalent to the IS VALID
predicate, and performs validation equivalent to the DOCUMENT
clause. (XMLISVALID does not support "content" validation.)

X156, IS VALID predicate:
optional NAMESPACE with
ELEMENT clause

The XMLISVALID method is equivalent to the IS VALID
predicate, and may be used to validate against an element in
any namespace.

X157, IS VALID predicate: NO
NAMESPACE with ELEMENT
clause

The XMLISVALID method is equivalent to the IS VALID
predicate, and may be used to validate against an element in
the "no name" namespace.

X160, Basic Information
Schema for registered XML
Schemas

The Oracle static data dictionary view ALL_XML_SCHEMAS
provides a list of the registered XML schemas that are
accessible to the current user. The
ALL_XML_SCHEMAS.SCHEMA_URL column corresponds to the
standard XML_SCHEMAS.XML_SCHEMA_LOCATION column. The
target namespace of the registered XML Schemas can be
learned by examining ALL_XML_SCHEMAS.SCHEMA. Oracle has
no equivalents for the other columns of the standard's
XML_SCHEMAS.

Appendix C
Oracle Compliance with SQL/XML

C-29

Table C-3 (Cont.) Oracle Support for Features of SQL/XML

Feature ID, Feature Support

X161, Advanced Information
Schema for registered XML
Schemas

Oracle does not have static data dictionary views
corresponding to XML_SCHEMA_NAMESPACES and
XML_SCHEMA_ELEMENTS in the standard. However, all the
information about registered XML Schemas may be learned by
examining the actual XML Schema, which is found in the
ALL_XML_SCHEMAS.SCHEMA column. This may also be
examined to learn whether a registered XML Schema is
nondeterministic, and which of its namespaces and elements
are nondeterministic.

X191, XML(DOCUMENT
(XMLSCHEMA)) type

Oracle does not support this syntax. However, a column of a
table can be constrained by a registered XML Schema, in
which case all values of the column will be of
XML(DOCUMENT(XMLSCHEMA)) type.

X200, XMLQuery Oracle fully supports the following elements of this feature:

• X201, XMLQuery: RETURNING CONTENT
• X203, XMLQuery: passing a context item

• X204, XMLQuery: initializing an XQuery variable

• X206, XMLQuery: NULL ON EMPTY option

Oracle only supports passing by value, so the keywords BY
VALUE are optional at the beginning of the PASSING clause,
and not supported on individual arguments.

X201, XMLQuery: RETURNING
CONTENT

See X200.

X203, XMLQuery: passing a
context item

See X200.

X204, XMLQuery: initializing
an XQuery variable

See X200.

X206, XMLQuery: NULL ON
EMPTY option

See X200.

X221, XML passing
mechanism BY VALUE

Oracle supports the BY VALUE clause in XMLQuery, XMLTable
and XMLExists. In these, BY VALUE is supported as optional
syntax at the beginning of an argument list, but not as a
modifier on an individual argument or column.

X232, XML(CONTENT(ANY))
type

Oracle does not support this syntax as a type modifier, but the
Oracle XMLType supports this data type for transient values.
Persistent values are of type XML(DOCUMENT(ANY)), which is a
subset of XML(CONTENT(ANY)).

X241, RETURNING CONTENT in
XML publishing

Oracle does not support this syntax. In Oracle, the behavior of
the publishing functions (XMLAgg, XMLComment, XMLConcat,
XMLElement, XMLForest, and XMLPi) is always RETURNING
CONTENT.

X251, Persistent XML values
of XML(DOCUMENT(UNTYPED))
type

Oracle fully supports this feature.

X252, Persistent values of
type XML(DOCUMENT(ANY))

Oracle fully supports this feature.

Appendix C
Oracle Compliance with SQL/XML

C-30

Table C-3 (Cont.) Oracle Support for Features of SQL/XML

Feature ID, Feature Support

X256, Persistent values of
XML(DOCUMENT(XMLSCHEMA))
type

Oracle fully supports this feature.

X260, XML type, ELEMENT
clause

Oracle does not support this syntax. However, a column of a
table may be constrained by a top-level element in a registered
XML Schema.

X263, XML type: NO
NAMESPACE with ELEMENT
clause

Oracle does not support this syntax. However, a column of a
table may be constrained by a top-level element in the "no
name" namespace of a registered XML Schema.

X264, XML type: schema
location

Oracle does not support this syntax. However, a column of a
table may be constrained by a registered XML Schema that is
identified by a schema location.

X271, XMLValidate: data
driven case

The SCHEMAVALIDATE method is equivalent to XMLValidate,
and supports the data-driven case.

X272, XMLValidate:
ACCORDING TO clause

The SCHEMAVALIDATE method is equivalent to XMLValidate,
and may be used to specify a particular registered XML
Schema.

X273, XMLValidate: ELEMENT
clause

The SCHEMAVALIDATE method is equivalent to XMLValidate,
and may be used to specify a particular element of a particular
registered XML Schema.

X274, XMLValidate: schema
location

The SCHEMAVALIDATE method is equivalent to XMLValidate,
and may be used to specify a particular registered XML
Schema by its schema location URL.

X281, XMLValidate with
DOCUMENT option

The SCHEMAVALIDATE method is equivalent to XMLValidate.
SCHEMAVALIDATE performs validation only of XML documents
(not content).

X286, XMLValidate: NO
NAMESPACE with ELEMENT
clause

The SCHEMAVALIDATE method is equivalent to XMLValidate,
and may be used to specify a particular element in the "no
name" namespace of a particular registered XML Schema.

X300, XMLTable Oracle does not support reverse axes in the column path
expressions. Aside from that restriction, Oracle fully supports
the following elements of this feature:

• X086, XML namespace declarations in XMLTable
• X302, XMLTable with ordinality column

• X303, XMLTable: column default option

• X304, XMLTable: passing a context item

• X305, XMLTable: initializing an XQuery variable

Oracle only supports passing by value, so the keywords BY
VALUE are optional at the beginning of the PASSING clause,
and not supported on individual arguments.

X302, XMLTable with
ordinality column

See X300.

X303, XMLTable: column
default option

See X300.

X304, XMLTable: passing a
context item

See X300.

Appendix C
Oracle Compliance with SQL/XML

C-31

Table C-3 (Cont.) Oracle Support for Features of SQL/XML

Feature ID, Feature Support

X305, XMLTable: initializing
an XQuery variable

See X300.

Oracle Compliance with FIPS 127-2
Oracle complied fully with last Federal Information Processing Standard (FIPS), which
was FIPS PUB 127-2. That standard is no longer published. However, for users whose
applications depend on information about the sizes of some database constructs that
were defined in FIPS 127-2, the details of our compliance are listed in Table C-4.

Table C-4 Sizing for Database Constructs

Database Constructs FIPS Oracle Database

Length of an identifier (in bytes) 18 128

Length of CHARACTER data type (in bytes) 240 2,000

Decimal precision of NUMERIC data type 15 38

Decimal precision of DECIMAL data type 15 38

Decimal precision of INTEGER data type 9 38

Decimal precision of SMALLINT data type 4 38

Binary precision of FLOAT data type 20 126

Binary precision of REAL data type 20 63

Binary precision of DOUBLE PRECISION data type 30 126

Columns in a table 100 1,000

Values in an INSERT statement 100 1,000

SET clauses in an UPDATE statement (Note 1) 20 1,000

Length of a row (Note2, Note 3) 2,000 2,000,000

Columns in a UNIQUE constraint 6 32

Length of a UNIQUE constraint (Note 2) 120 (Note 4)

Length of foreign key column list (Note 2) 120 (Note 4)

Columns in a GROUP BY clause 6 255 (Note 5)

Length of GROUP BY column list 120 (Note 5)

Sort specifications in ORDER BY clause 6 255 (Note 5)

Length of ORDER BY column list 120 (Note 5)

Columns in a referential integrity constraint 6 32

Tables referenced in a SQL statement 15 No limit

Cursors simultaneously open 10 (Note 6)

Items in a SELECT list 100 1,000

Appendix C
Oracle Compliance with FIPS 127-2

C-32

Note 1: The number of SET clauses in an UPDATE statement refers to the number items
separated by commas following the SET keyword.

Note 2: The FIPS PUB defines the length of a collection of columns to be the sum of: twice
the number of columns, the length of each character column in bytes, decimal precision plus
1 of each exact numeric column, binary precision divided by 4 plus 1 of each approximate
numeric column.

Note 3: The Oracle limit for the maximum row length is based on the maximum length of a
row containing a LONG value of length 2 gigabytes and 999 VARCHAR2 values, each of length
4000 bytes: 2(254) + 231 + (999(4000)).

Note 4: The Oracle limit for a UNIQUE key is half the size of an Oracle data block (specified by
the initialization parameter DB_BLOCK_SIZE) minus some overhead.

Note 5: Oracle places no limit on the number of columns in a GROUP BY clause or the number
of sort specifications in an ORDER BY clause. However, the sum of the sizes of all the
expressions in either a GROUP BY clause or an ORDER BY clause is limited to the size of an
Oracle data block (specified by the initialization parameter DB_BLOCK_SIZE) minus some
overhead.

Note 6: The Oracle limit for the number of cursors simultaneously opened is specified by the
initialization parameter OPEN_CURSORS. The maximum value of this parameter depends on the
memory available on your operating system and exceeds 100 in all cases.

Oracle Extensions to Standard SQL
Oracle supports numerous features that extend beyond standard SQL. If you are concerned
with the portability of your applications to other implementations of SQL, then use Oracle's
FIPS Flagger to help identify the use of Oracle extensions to Entry SQL-92 in your embedded
SQL programs. The FIPS Flagger is part of the Oracle precompilers and the SQL*Module
compiler. The FIPS Flagger can also be enabled in SQL*Plus by using ALTER SESSION SET
FLAGGER = ENTRY. While SQL-92 has been superseded by SQL:2016, there has been no
conformance testing authority for any version of SQL since SQL-92; hence, Entry SQL-92
offers you the most assurance of portability.

See Also:

Pro*COBOL Programmer's Guide and Pro*C/C++ Programmer's Guide for
information on how to use the FIPS Flagger

Oracle Compliance with Older Standards
This release of Oracle Database conforms to SQL:2016, the most recent edition of the SQL
standard when this guide was published, as itemized in preceding sections of this appendix.
Oracle does not formally claim that this release of the database conforms to SQL-92—and in
particular, to SQL-92 Entry Level—or to SQL:1999, because those standards have been
superseded by SQL:2016. Some, mostly minor, changes between editions of the SQL
standard might affect applications. The SQL standard, or a reference discussing that
standard, can be consulted to determine the details of any incompatibilities that have been
introduced. One important source is Annex E of SQL/Foundation:1999, SQL/
Foundation:2003, SQL/Foundation:2008, SQL/Foundation:2011, and SQL/Foundation:2016.

Appendix C
Oracle Extensions to Standard SQL

C-33

In some cases, this release of Oracle Database might continue to recognize constructs
from older editions of SQL. Such recognition is often allowed as a valid vendor
extension. It is the general policy of Oracle to keep incompatibilities between versions
of the database as few as possible. This policy extends to retention of older forms
when that is feasible. In any case, the differences between older SQL and SQL:2016
(as noted above) are relatively inconsequential.

Character Set Support
Oracle supports most national, international, and vendor-specific encoded character
set standards. A complete list of character sets supported by Oracle appears in Oracle
Database Globalization Support Guide.

Unicode is a universal encoded character set that lets you store information from any
language using a single character set. Unicode is required by modern standards such
as XML, Java, JavaScript, and LDAP. Unicode is compliant with ISO/IEC standard
10646. For information on ISO standards, visit the Web site of the International
Organization for Standardization:

http://www.iso.ch/

Oracle Database 21c complies with version 12.1 of the Unicode Standard. For up-to-
date information on the Unicode Standard, visit the Web site of the Unicode
Consortium:

http://www.unicode.org

Oracle supports the UTF-8 encoding scheme of the Unicode Standard through the
AL32UTF8 character set, the UTF-16BE encoding scheme through the AL16UTF16
character set, and the UTF-16LE encoding scheme through the AL16UTF16LE
character set. AL32UTF8 is valid as the client and database character set on ASCII-
based platforms. AL16UTF16 is valid as the national (NCHAR) character set on all
platforms. AL16UTF16LE is not valid as the client, database, or national character set.

Oracle implements two deprecated Unicode compatibility encoding forms: CESU-8
through the UTF8 character set and UTF-EBCDIC through the UTFE character set.
The UTF8 and UTFE character sets are not guaranteed to include updates to the
Unicode standard beyond version 3.0. UTF8 is valid as the client and database
character set on ASCII-based platforms and as the national (NCHAR) character set on
all platforms. UTFE is valid as the database character set on EBCDIC-based
platforms.

All mentioned Oracle character sets are supported in conversion functions.

Oracle recommends that databases on ASCII-based platforms are created with the
AL32UTF8 character set and the AL16UTF16 national (NCHAR) character set. Oracle
recommends that you avoid the use of the NCHAR data types and the associated
national character set as they are not supported by some RDBMS components, such
as Oracle Text and Oracle XDB.

See Also:

Oracle Database Globalization Support Guide for details on Oracle character
set support

Appendix C
Character Set Support

C-34

http://www.iso.ch/
http://www.unicode.org

D
Oracle Regular Expression Support

Oracle's implementation of regular expressions conforms with the IEEE Portable Operating
System Interface (POSIX) regular expression standard and to the Unicode Regular
Expression Guidelines of the Unicode Consortium.

This appendix contains the following sections:

• Multilingual Regular Expression Syntax

• Regular Expression Operator Multilingual Enhancements

• Perl-influenced Extensions in Oracle Regular Expressions

Multilingual Regular Expression Syntax
Table D-1 lists the full set of operators defined in the POSIX standard Extended Regular
Expression (ERE) syntax. Oracle follows the exact syntax and matching semantics for these
operators as defined in the POSIX standard for matching ASCII (English language) data. For
more complete descriptions of the operators, examples of their use, and Oracle multilingual
enhancements of the operators, refer to Oracle Database Development Guide. Notes
following the table provide more complete descriptions of the operators and their functions,
as well as Oracle multilingual enhancements of the operators. Table D-2 summarizes Oracle
support for and multilingual enhancement of the POSIX operators.

Table D-1 Regular Expression Operators and Metasymbols

Operator Description

\ The backslash character can have four different meanings depending on the
context. It can:

• Stand for itself
• Quote the next character
• Introduce an operator
• Do nothing

* Matches zero or more occurrences

+ Matches one or more occurrences

? Matches zero or one occurrence

| Alternation operator for specifying alternative matches

^ Matches the beginning of a string by default. In multiline mode, it matches the
beginning of any line anywhere within the source string.

$ Matches the end of a string by default. In multiline mode, it matches the end of
any line anywhere within the source string.

. Matches any character in the supported character set except NULL

D-1

Table D-1 (Cont.) Regular Expression Operators and Metasymbols

Operator Description

[] Bracket expression for specifying a matching list that should match any one of
the expressions represented in the list. A non-matching list expression begins
with a circumflex (^) and specifies a list that matches any character except for
the expressions represented in the list.

To specify a right bracket (]) in the bracket expression, place it first in the list
(after the initial circumflex (^), if any).

To specify a hyphen in the bracket expression, place it first in the list (after the
initial circumflex (^), if any), last in the list, or as an ending range point in a range
expression.

() Grouping expression, treated as a single subexpression

{m} Matches exactly m times

{m,} Matches at least m times

{m,n} Matches at least m times but no more than n times

\n The backreference expression (n is a digit between 1 and 9) matches the nth

subexpression enclosed between '(' and ')' preceding the \n

[..] Specifies one collation element, and can be a multicharacter element (for
example, [.ch.] in Spanish)

[: :] Specifies character classes (for example, [:alpha:]). It matches any character
within the character class.

[==] Specifies equivalence classes. For example, [=a=] matches all characters having
base letter 'a'.

Regular Expression Operator Multilingual Enhancements
When applied to multilingual data, Oracle's implementation of the POSIX operators
extends beyond the matching capabilities specified in the POSIX standard. Table D-2
shows the relationship of the operators in the context of the POSIX standard.

• The first column lists the supported operators.

• The second and third columns indicate whether the POSIX standard (Basic
Regular Expression—BRE and Extended Regular Expression—ERE, respectively)
defines the operator

• The fourth column indicates whether Oracle's implementation extends the
operator's semantics for handling multilingual data.

Oracle lets you enter multibyte characters directly, if you have a direct input method, or
you can use functions to compose the multibyte characters. You cannot use the
Unicode hexadecimal encoding value of the form '\xxxx'. Oracle evaluates the
characters based on the byte values used to encode the character, not the graphical
representation of the character. All accented characters are considered word
characters.

Appendix D
Regular Expression Operator Multilingual Enhancements

D-2

Table D-2 POSIX and Multilingual Operator Relationships

Operator POSIX BRE syntax POSIX ERE Syntax Multilingual
Enhancement

\ Yes Yes —

* Yes Yes —

+ -- Yes —

? — Yes —

| — Yes —

^ Yes Yes Yes

$ Yes Yes Yes

. Yes Yes Yes

[] Yes Yes Yes

() Yes Yes —

{m} Yes Yes —

{m,} Yes Yes —

{m,n} Yes Yes —

\n Yes Yes Yes

[..] Yes Yes Yes

[::] Yes Yes Yes

[==] Yes Yes Yes

Perl-influenced Extensions in Oracle Regular Expressions
Oracle Database regular expression functions and conditions accept a number of Perl-
influenced operators that are in common use, although not part of the POSIX standard.
Table D-3 lists those operators. For more complete descriptions with examples, refer to
Oracle Database Development Guide.

Table D-3 Perl-influenced Operators in Oracle Regular Expressions

Operator Description

\d A digit character.

\D A nondigit character.

\w A word character.

\W A nonword character.

\s A whitespace character.

\S A non-whitespace character.

\A Matches only at the beginning of a string, or before a newline
character at the end of a string.

\Z Matches only at the end of a string.

*? Matches the preceding pattern element 0 or more times (nongreedy).

Appendix D
Perl-influenced Extensions in Oracle Regular Expressions

D-3

Table D-3 (Cont.) Perl-influenced Operators in Oracle Regular Expressions

Operator Description

+? Matches the preceding pattern element 1 or more times (nongreedy).

?? Matches the preceding pattern element 0 or 1 time (nongreedy).

{n}? Matches the preceding pattern element exactly n times (nongreedy).

{n,}? Matches the preceding pattern element at least n times (nongreedy).

{n,m}? Matches the preceding pattern element at least n but not more than m
times (nongreedy).

Appendix D
Perl-influenced Extensions in Oracle Regular Expressions

D-4

E
Oracle SQL Reserved Words and Keywords

This appendix contains the following sections:

• Oracle SQL Reserved Words

• Oracle SQL Keywords

Oracle SQL Reserved Words
This section lists Oracle SQL reserved words. You cannot use Oracle SQL reserved words as
nonquoted identifiers. Quoted identifiers can be reserved words, although this is not
recommended.

Note:

In addition to the following reserved words, Oracle uses system-generated names
beginning with "SYS_" for implicitly generated schema objects and subobjects.
Oracle discourages you from using this prefix in the names you explicitly provide to
your schema objects and subobjects to avoid possible conflict in name resolution.

The V$RESERVED_WORDS data dictionary view provides additional information on each reserved
word, including whether it is always reserved or is reserved only for particular uses. Refer to
Oracle Database Reference for more information.

Words followed by an asterisk (*) are also ANSI reserved words.

ACCESS
ADD
ALL *
ALTER *
AND *
ANY *
AS *
ASC
AUDIT
BETWEEN *
BY *
CHAR *
CHECK *
CLUSTER
COLUMN *
COLUMN_VALUE (See Note 1 at the end of this list)
COMMENT
COMPRESS

E-1

CONNECT *
CREATE *
CURRENT *
DATE *
DECIMAL *
DEFAULT *
DELETE *
DESC
DISTINCT *
DROP *
ELSE *
EXCLUSIVE
EXISTS *
FILE
FLOAT *
FOR *
FROM *
GRANT *
GROUP *
HAVING *
IDENTIFIED
IMMEDIATE
IN *
INCREMENT
INDEX
INITIAL
INSERT *
INTEGER *
INTERSECT *
INTO *
IS *
LEVEL
LIKE *
LOCK
LONG
MAXEXTENTS
MINUS
MLSLABEL
MODE
MODIFY
NESTED_TABLE_ID (See Note 1 at the end of this list)
NOAUDIT
NOCOMPRESS
NOT *
NOWAIT
NULL *
NUMBER
OF *
OFFLINE

Appendix E
Oracle SQL Reserved Words

E-2

ON *
ONLINE
OPTION
OR *
ORDER *
PCTFREE
PRIOR
PUBLIC
RAW
RENAME
RESOURCE
REVOKE *
ROW *
ROWID (See Note 2 at the end of this list)
ROWNUM
ROWS *
SELECT *
SESSION
SET *
SHARE
SIZE
SMALLINT *
START *
SUCCESSFUL
SYNONYM
SYSDATE
TABLE *
THEN *
TO *
TRIGGER *
UID
UNION *
UNIQUE *
UPDATE *
USER *
VALIDATE
VALUES *
VARCHAR *
VARCHAR2
VIEW
WHENEVER *
WHERE *
WITH *

Note 1: This keyword is only reserved for use as an attribute name.

Note 2: You cannot use the uppercase word ROWID, either quoted or nonquoted, as a column
name. However, you can use the uppercase word as a quoted identifier that is not a column

Appendix E
Oracle SQL Reserved Words

E-3

name, and you can use the word with one or more lowercase letters (for example,
"Rowid" or "rowid") as any quoted identifier, including a column name.

Oracle SQL Keywords
Oracle SQL keywords are not reserved. However, Oracle uses them internally in
specific ways. Therefore, if you use these words as names for objects and object
parts, then your SQL statements may be more difficult to read and may lead to
unpredictable results.

You can obtain a list of keywords by querying the V$RESERVED_WORDS data dictionary
view. All keywords in the view that are not listed as always reserved or reserved for a
specific use are Oracle SQL keywords. Refer to Oracle Database Reference for more
information.

Appendix E
Oracle SQL Keywords

E-4

F
Extended Examples

The body of the SQL Language Reference contains examples for almost every reference
topic. This appendix contains lengthy examples that are not appropriate in the context of a
single SQL statement. These examples are intended to provide uninterrupted the series of
steps that you would use to take advantage of particular Oracle functionality. They do not
replace the syntax diagrams and semantics found for each individual SQL statement in the
body of the reference. Use the cross-references provided to access additional information,
such as privileges required and restrictions, as well as syntax.

This appendix contains the following sections:

• Using Extensible Indexing

• Using XML in SQL Statements

Using Extensible Indexing
This section provides examples of the steps entailed in a simple but realistic extensible
indexing scenario.

Suppose you want to rank the salaries in the HR.employees table and then find those that
rank between 10 and 20. You could use the DENSE_RANK function, as follows:

SELECT last_name, salary FROM
 (SELECT last_name, DENSE_RANK() OVER
 (ORDER BY salary DESC) rank_val, salary FROM employees)
 WHERE rank_val BETWEEN 10 AND 20;

See Also:

DENSE_RANK

This nested query is somewhat complex, and it requires a full scan of the employees table as
well as a sort. An alternative would be to use extensible indexing to achieve the same goal.
The resulting query will be simpler. The query will require only an index scan and a table
access by rowid, and will therefore perform much more efficiently.

The first step is to create the implementation type position_im, including method headers for
index definition, maintenance, and creation. Most of the type body uses PL/SQL, which is
shown in italics.

The type must created with the AUTHID CURRENT_USER clause because of the EXECUTE
IMMEDIATE statement inside the function ODCIINDEXCREATE(). By default that function runs
with the definer rights. When the function is called in the subsequent creation of the domain
index, the invoker does not have the same rights.

F-1

See Also:

• CREATE TYPE and CREATE TYPE BODY

• Oracle Database Data Cartridge Developer's Guide for complete
information on the ODCI routines in this statement

CREATE OR REPLACE TYPE position_im AUTHID CURRENT_USER AS OBJECT
(
 curnum NUMBER,
 howmany NUMBER,
 lower_bound NUMBER,
 upper_bound NUMBER,
/* lower_bound and upper_bound are used for the
index-based functional implementation */
 STATIC FUNCTION ODCIGETINTERFACES(ifclist OUT SYS.ODCIOBJECTLIST) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXCREATE
 (ia SYS.ODCIINDEXINFO, parms VARCHAR2, env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXTRUNCATE (ia SYS.ODCIINDEXINFO,
 env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXDROP(ia SYS.ODCIINDEXINFO,
 env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXINSERT(ia SYS.ODCIINDEXINFO, rid ROWID,
 newval NUMBER, env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXDELETE(ia SYS.ODCIINDEXINFO, rid ROWID, oldval NUMBER,
 env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXUPDATE(ia SYS.ODCIINDEXINFO, rid ROWID, oldval NUMBER,
 newval NUMBER, env SYS.ODCIEnv) RETURN NUMBER,
 STATIC FUNCTION ODCIINDEXSTART(SCTX IN OUT position_im, ia SYS.ODCIINDEXINFO,
 op SYS.ODCIPREDINFO, qi SYS.ODCIQUERYINFO,
 strt NUMBER, stop NUMBER, lower_pos NUMBER,
 upper_pos NUMBER, env SYS.ODCIEnv) RETURN NUMBER,
 MEMBER FUNCTION ODCIINDEXFETCH(SELF IN OUT position_im, nrows NUMBER,
 rids OUT SYS.ODCIRIDLIST, env SYS.ODCIEnv)
 RETURN NUMBER,
 MEMBER FUNCTION ODCIINDEXCLOSE(env SYS.ODCIEnv) RETURN NUMBER
);
/

CREATE OR REPLACE TYPE BODY position_im
IS
 STATIC FUNCTION ODCIGETINTERFACES(ifclist OUT SYS.ODCIOBJECTLIST)
 RETURN NUMBER IS
 BEGIN
 ifclist := SYS.ODCIOBJECTLIST(SYS.ODCIOBJECT('SYS','ODCIINDEX2'));
 RETURN ODCICONST.SUCCESS;
 END ODCIGETINTERFACES;
 STATIC FUNCTION ODCIINDEXCREATE (ia SYS.ODCIINDEXINFO, parms VARCHAR2, env SYS.ODCIEnv) RETURN
 NUMBER
 IS
 stmt VARCHAR2(2000);
 BEGIN
/* Construct the SQL statement */
 stmt := 'Create Table ' || ia.INDEXSCHEMA || '.' || ia.INDEXNAME ||
 '_STORAGE_TAB' || '(col_val, base_rowid, constraint pk PRIMARY KEY ' ||
 '(col_val, base_rowid)) ORGANIZATION INDEX AS SELECT ' ||
 ia.INDEXCOLS(1).COLNAME || ', ROWID FROM ' ||
 ia.INDEXCOLS(1).TABLESCHEMA || '.' || ia.INDEXCOLS(1).TABLENAME;

Appendix F
Using Extensible Indexing

F-2

 EXECUTE IMMEDIATE stmt;
 RETURN ODCICONST.SUCCESS;
 END;
 STATIC FUNCTION ODCIINDEXDROP(ia SYS.ODCIINDEXINFO, env SYS.ODCIEnv) RETURN NUMBER IS
 stmt VARCHAR2(2000);
 BEGIN
/* Construct the SQL statement */
 stmt := 'DROP TABLE ' || ia.INDEXSCHEMA || '.' || ia.INDEXNAME ||
 '_STORAGE_TAB';
/* Execute the statement */
 EXECUTE IMMEDIATE stmt;
 RETURN ODCICONST.SUCCESS;
 END;
 STATIC FUNCTION ODCIINDEXTRUNCATE(ia SYS.ODCIINDEXINFO, env SYS.ODCIEnv) RETURN NUMBER IS
 stmt VARCHAR2(2000);
 BEGIN
/* Construct the SQL statement */
 stmt := 'TRUNCATE TABLE ' || ia.INDEXSCHEMA || '.' || ia.INDEXNAME || '_STORAGE_TAB';

 EXECUTE IMMEDIATE stmt;
 RETURN ODCICONST.SUCCESS;
 END;
 STATIC FUNCTION ODCIINDEXINSERT(ia SYS.ODCIINDEXINFO, rid ROWID,
 newval NUMBER, env SYS.ODCIEnv) RETURN NUMBER IS
 stmt VARCHAR2(2000);
 BEGIN
/* Construct the SQL statement */
 stmt := 'INSERT INTO ' || ia.INDEXSCHEMA || '.' || ia.INDEXNAME ||
 '_STORAGE_TAB VALUES (''' || newval || ''' , ''' || rid || ''')';
/* Execute the SQL statement */
 EXECUTE IMMEDIATE stmt;
 RETURN ODCICONST.SUCCESS;
 END;

 STATIC FUNCTION ODCIINDEXDELETE(ia SYS.ODCIINDEXINFO, rid ROWID, oldval NUMBER,
 env SYS.ODCIEnv)
 RETURN NUMBER IS
 stmt VARCHAR2(2000);
 BEGIN
/* Construct the SQL statement */
 stmt := 'DELETE FROM ' || ia.INDEXSCHEMA || '.' || ia.INDEXNAME ||
 '_STORAGE_TAB WHERE col_val = ''' || oldval || ''' AND base_rowid = ''' || rid || '''';
/* Execute the statement */
 EXECUTE IMMEDIATE stmt;
 RETURN ODCICONST.SUCCESS;
 END;
 STATIC FUNCTION ODCIINDEXUPDATE(ia SYS.ODCIINDEXINFO, rid ROWID, oldval NUMBER,
 newval NUMBER, env SYS.ODCIEnv) RETURN NUMBER IS
 stmt VARCHAR2(2000);
 BEGIN
/* Construct the SQL statement */
 stmt := 'UPDATE ' || ia.INDEXSCHEMA || '.' || ia.INDEXNAME ||
 '_STORAGE_TAB SET col_val = ''' || newval || ''' WHERE f2 = '''|| rid ||'''';
/* Execute the statement */
 EXECUTE IMMEDIATE stmt;
 RETURN ODCICONST.SUCCESS;
 END;
 STATIC FUNCTION ODCIINDEXSTART(SCTX IN OUT position_im, ia SYS.ODCIINDEXINFO,
 op SYS.ODCIPREDINFO, qi SYS.ODCIQUERYINFO,
 strt NUMBER, stop NUMBER, lower_pos NUMBER,
 upper_pos NUMBER, env SYS.ODCIEnv) RETURN NUMBER IS

Appendix F
Using Extensible Indexing

F-3

 rid VARCHAR2(5072);
 storage_tab_name VARCHAR2(65);
 lower_bound_stmt VARCHAR2(2000);
 upper_bound_stmt VARCHAR2(2000);
 range_query_stmt VARCHAR2(2000);
 lower_bound NUMBER;
 upper_bound NUMBER;
 cnum INTEGER;
 nrows INTEGER;

 BEGIN
/* Take care of some error cases.
 The only predicates in which position operator can appear are
 op() = 1 OR
 op() = 0 OR
 op() between 0 and 1
*/
 IF (((strt != 1) AND (strt != 0)) OR
 ((stop != 1) AND (stop != 0)) OR
 ((strt = 1) AND (stop = 0))) THEN
 RAISE_APPLICATION_ERROR(-20101,
 'incorrect predicate for position_between operator');
 END IF;
 IF (lower_pos > upper_pos) THEN
 RAISE_APPLICATION_ERROR(-20101, 'Upper Position must be greater than or
 equal to Lower Position');
 END IF;
 IF (lower_pos <= 0) THEN
 RAISE_APPLICATION_ERROR(-20101, 'Both Positions must be greater than zero');
 END IF;
 storage_tab_name := ia.INDEXSCHEMA || '.' || ia.INDEXNAME ||
 '_STORAGE_TAB';
 upper_bound_stmt := 'Select MIN(col_val) FROM (Select /*+ INDEX_DESC(' ||
 storage_tab_name || ') */ DISTINCT ' ||
 'col_val FROM ' || storage_tab_name || ' ORDER BY ' ||
 'col_val DESC) WHERE rownum <= ' || lower_pos;
 EXECUTE IMMEDIATE upper_bound_stmt INTO upper_bound;
 IF (lower_pos != upper_pos) THEN
 lower_bound_stmt := 'Select MIN(col_val) FROM (Select /*+ INDEX_DESC(' ||
 storage_tab_name || ') */ DISTINCT ' ||
 'col_val FROM ' || storage_tab_name ||
 ' WHERE col_val < ' || upper_bound || ' ORDER BY ' ||
 'col_val DESC) WHERE rownum <= ' ||
 (upper_pos - lower_pos);
 EXECUTE IMMEDIATE lower_bound_stmt INTO lower_bound;
 ELSE
 lower_bound := upper_bound;
 END IF;
 IF (lower_bound IS NULL) THEN
 lower_bound := upper_bound;
 END IF;
 range_query_stmt := 'Select base_rowid FROM ' || storage_tab_name ||
 ' WHERE col_val BETWEEN ' || lower_bound || ' AND ' ||
 upper_bound;
 cnum := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(cnum, range_query_stmt, DBMS_SQL.NATIVE);
/* set context as the cursor number */
 SCTX := position_im(cnum, 0, 0, 0);
/* return success */
 RETURN ODCICONST.SUCCESS;
 END;

Appendix F
Using Extensible Indexing

F-4

 MEMBER FUNCTION ODCIINDEXFETCH(SELF IN OUT position_im, nrows NUMBER,
 rids OUT SYS.ODCIRIDLIST, env SYS.ODCIEnv)
 RETURN NUMBER IS
 cnum INTEGER;
 rid_tab DBMS_SQL.Varchar2_table;
 rlist SYS.ODCIRIDLIST := SYS.ODCIRIDLIST();
 i INTEGER;
 d INTEGER;
 BEGIN
 cnum := SELF.curnum;
 IF self.howmany = 0 THEN
 dbms_sql.define_array(cnum, 1, rid_tab, nrows, 1);
 d := DBMS_SQL.EXECUTE(cnum);
 END IF;
 d := DBMS_SQL.FETCH_ROWS(cnum);
 IF d = nrows THEN
 rlist.extend(d);
 ELSE
 rlist.extend(d+1);
 END IF;
 DBMS_SQL.COLUMN_VALUE(cnum, 1, rid_tab);
 for i in 1..d loop
 rlist(i) := rid_tab(i+SELF.howmany);
 end loop;
 SELF.howmany := SELF.howmany + d;
 rids := rlist;
 RETURN ODCICONST.SUCCESS;
 END;
 MEMBER FUNCTION ODCIINDEXCLOSE(env SYS.ODCIEnv) RETURN NUMBER IS
 cnum INTEGER;
 BEGIN
 cnum := SELF.curnum;
 DBMS_SQL.CLOSE_CURSOR(cnum);
 RETURN ODCICONST.SUCCESS;
 END;
END;
/

The next step is to create the functional implementation function_for_position_between for
the operator that will be associated with the indextype. (The PL/SQL blocks are shown in
parentheses.)

This function is for use with an index-based function evaluation. Therefore, it takes an index
context and scan context as parameters.

See Also:

• Oracle Database Data Cartridge Developer's Guide for information on creating
index-based functional implementation

• CREATE FUNCTION and Oracle Database PL/SQL Language Reference

CREATE OR REPLACE FUNCTION function_for_position_between
 (col NUMBER, lower_pos NUMBER, upper_pos NUMBER,
 indexctx IN SYS.ODCIIndexCtx,
 scanctx IN OUT position_im,
 scanflg IN NUMBER)

Appendix F
Using Extensible Indexing

F-5

RETURN NUMBER AS
 rid ROWID;
 storage_tab_name VARCHAR2(65);
 lower_bound_stmt VARCHAR2(2000);
 upper_bound_stmt VARCHAR2(2000);
 col_val_stmt VARCHAR2(2000);
 lower_bound NUMBER;
 upper_bound NUMBER;
 column_value NUMBER;
BEGIN
 IF (indexctx.IndexInfo IS NOT NULL) THEN
 storage_tab_name := indexctx.IndexInfo.INDEXSCHEMA || '.' ||
 indexctx.IndexInfo.INDEXNAME || '_STORAGE_TAB';
 IF (scanctx IS NULL) THEN
/* This is the first call. Open a cursor for future calls.
 First, do some error checking
*/
 IF (lower_pos > upper_pos) THEN
 RAISE_APPLICATION_ERROR(-20101,
 'Upper Position must be greater than or equal to Lower Position');
 END IF;
 IF (lower_pos <= 0) THEN
 RAISE_APPLICATION_ERROR(-20101,
 'Both Positions must be greater than zero');
 END IF;
/* Obtain the upper and lower value bounds for the range we're interested in.
*/
 upper_bound_stmt := 'Select MIN(col_val) FROM (Select /*+ INDEX_DESC(' ||
 storage_tab_name || ') */ DISTINCT ' ||
 'col_val FROM ' || storage_tab_name || ' ORDER BY ' ||
 'col_val DESC) WHERE rownum <= ' || lower_pos;
 EXECUTE IMMEDIATE upper_bound_stmt INTO upper_bound;
 IF (lower_pos != upper_pos) THEN
 lower_bound_stmt := 'Select MIN(col_val) FROM (Select /*+ INDEX_DESC(' ||
 storage_tab_name || ') */ DISTINCT ' ||
 'col_val FROM ' || storage_tab_name ||
 ' WHERE col_val < ' || upper_bound || ' ORDER BY ' ||
 'col_val DESC) WHERE rownum <= ' ||
 (upper_pos - lower_pos);
 EXECUTE IMMEDIATE lower_bound_stmt INTO lower_bound;
 ELSE
 lower_bound := upper_bound;
 END IF;
 IF (lower_bound IS NULL) THEN
 lower_bound := upper_bound;
 END IF;
/* Store the lower and upper bounds for future function invocations for
 the positions.
*/
 scanctx := position_im(0, 0, lower_bound, upper_bound);
 END IF;
/* Fetch the column value corresponding to the rowid, and see if it falls
 within the determined range.
*/
 col_val_stmt := 'Select col_val FROM ' || storage_tab_name ||
 ' WHERE base_rowid = ''' || indexctx.Rid || '''';
 EXECUTE IMMEDIATE col_val_stmt INTO column_value;
 IF (column_value <= scanctx.upper_bound AND
 column_value >= scanctx.lower_bound AND
 scanflg = ODCICONST.RegularCall) THEN
 RETURN 1;

Appendix F
Using Extensible Indexing

F-6

 ELSE
 RETURN 0;
 END IF;
 ELSE
 RAISE_APPLICATION_ERROR(-20101, 'A column that has a domain index of' ||
 'Position indextype must be the first argument');
 END IF;
END;
/

Next, create the position_between operator, which uses the
function_for_position_between function. The operator takes an indexed NUMBER column as
the first argument, followed by a NUMBER lower and upper bound as the second and third
arguments.

See Also:

CREATE OPERATOR

CREATE OR REPLACE OPERATOR position_between
 BINDING (NUMBER, NUMBER, NUMBER) RETURN NUMBER
 WITH INDEX CONTEXT, SCAN CONTEXT position_im
 USING function_for_position_between;

In this CREATE OPERATOR statement, the WITH INDEX CONTEXT, SCAN CONTEXT position_im
clause is included so that the index context and scan context are passed in to the functional
evaluation, which is index based.

Now create the position_indextype indextype for the position_operator:

See Also:

CREATE INDEXTYPE

CREATE INDEXTYPE position_indextype
 FOR position_between(NUMBER, NUMBER, NUMBER)
 USING position_im;

The operator position_between uses an index-based functional implementation. Therefore, a
domain index must be defined on the referenced column so that the index information can be
passed into the functional evaluation. So the final step is to create the domain index
salary_index using the position_indextype indextype:

See Also:

CREATE INDEX

Appendix F
Using Extensible Indexing

F-7

CREATE INDEX salary_index ON employees(salary)
 INDEXTYPE IS position_indextype;

Now you can use the position_between operator function to rewrite the original query
as follows:

SELECT last_name, salary FROM employees
 WHERE position_between(salary, 10, 20)=1
 ORDER BY salary DESC, last_name;

LAST_NAME SALARY
------------------------- ----------
Tucker 10000
King 10000
Baer 10000
Bloom 10000
Fox 9600
Bernstein 9500
Sully 9500
Greene 9500
Hunold 9000
Faviet 9000
McEwen 9000
Hall 9000
Hutton 8800
Taylor 8600
Livingston 8400
Gietz 8300
Chen 8200
Fripp 8200
Weiss 8000
Olsen 8000
Smith 8000
Kaufling 7900

Using XML in SQL Statements
This section describes some of the ways you can use XMLType data in the database.

XMLType Tables

The sample schema oe contains a table warehouses, which contains an XMLType
column warehouse_spec. Suppose you want to create a separate table with the
warehouse_spec information. The following example creates a very simple XMLType
table with one CLOB column:

CREATE TABLE xwarehouses OF XMLTYPE
 XMLTYPE STORE AS CLOB;

You can insert into such a table using XMLType syntax, as shown in the next statement.
(The data inserted in this example corresponds to the data in the warehouse_spec
column of the sample table oe.warehouses where warehouse_id = 1.)

INSERT INTO xwarehouses VALUES
 (xmltype('<?xml version="1.0"?>
 <Warehouse>
 <WarehouseId>1</WarehouseId>
 <WarehouseName>Southlake, Texas</WarehouseName>

Appendix F
Using XML in SQL Statements

F-8

 <Building>Owned</Building>
 <Area>25000</Area>
 <Docks>2</Docks>
 <DockType>Rear load</DockType>
 <WaterAccess>true</WaterAccess>
 <RailAccess>N</RailAccess>
 <Parking>Street</Parking>
 <VClearance>10</VClearance>
 </Warehouse>'));

See Also:

Oracle XML DB Developer's Guide for information on XMLType and its member
methods

You can query this table with the following statement:

SELECT e.getClobVal() FROM xwarehouses e;

CLOB columns are subject to all of the restrictions on LOB columns. To avoid these
restrictions, create an XMLSchema-based table. The XMLSchema maps the XML elements
to their object-relational equivalents. The following example registers an XMLSchema locally.
The XMLSchema (xwarhouses.xsd) reflects the same structure as the xwarehouses table.
(XMLSchema declarations use PL/SQL and the DBMS_XMLSCHEMA package, so the example is
shown in italics.)

See Also:

Oracle XML DB Developer's Guide for information on creating XMLSchemas

begin
 dbms_xmlschema.registerSchema(
 'http://www.example.com/xwarehouses.xsd',
 '<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.com/xwarehouses.xsd"
 xmlns:who="http://www.example.com/xwarehouses.xsd"
 version="1.0">

 <simpleType name="RentalType">
 <restriction base="string">
 <enumeration value="Rented"/>
 <enumeration value="Owned"/>
 </restriction>
 </simpleType>

 <simpleType name="ParkingType">
 <restriction base="string">
 <enumeration value="Street"/>
 <enumeration value="Lot"/>
 </restriction>
 </simpleType>

 <element name = "Warehouse">

Appendix F
Using XML in SQL Statements

F-9

 <complexType>
 <sequence>
 <element name = "WarehouseId" type = "positiveInteger"/>
 <element name = "WarehouseName" type = "string"/>
 <element name = "Building" type = "who:RentalType"/>
 <element name = "Area" type = "positiveInteger"/>
 <element name = "Docks" type = "positiveInteger"/>
 <element name = "DockType" type = "string"/>
 <element name = "WaterAccess" type = "boolean"/>
 <element name = "RailAccess" type = "boolean"/>
 <element name = "Parking" type = "who:ParkingType"/>
 <element name = "VClearance" type = "positiveInteger"/>
 </sequence>
 </complexType>
 </element>
</schema>',
 TRUE, TRUE, FALSE, FALSE);
end;
/

Now you can create an XMLSchema-based table, as shown in the following example:

CREATE TABLE xwarehouses OF XMLTYPE
 XMLSCHEMA "http://www.example.com/xwarehouses.xsd"
 ELEMENT "Warehouse";

By default, Oracle stores this as an object-relational table. Therefore, you can insert
into it as shown in the example that follows. (The data inserted in this example
corresponds to the data in the warehouse_spec column of the sample table
oe.warehouses where warehouse_id = 1.)

INSERT INTO xwarehouses VALUES(xmltype.createxml('<?xml version="1.0"?>
 <who:Warehouse xmlns:who="http://www.example.com/xwarehouses.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/xwarehouses.xsd
 http://www.example.com/xwarehouses.xsd">
 <WarehouseId>1</WarehouseId>
 <WarehouseName>Southlake, Texas</WarehouseName>
 <Building>Owned</Building>
 <Area>25000</Area>
 <Docks>2</Docks>
 <DockType>Rear load</DockType>
 <WaterAccess>true</WaterAccess>
 <RailAccess>false</RailAccess>
 <Parking>Street</Parking>
 <VClearance>10</VClearance>
 </who:Warehouse>'));
...

You can define constraints on an XMLSchema-based table. To do so, you use the
XMLDATA pseudocolumn to refer to the appropriate attribute within the Warehouse XML
element:

ALTER TABLE xwarehouses ADD (PRIMARY KEY(XMLDATA."WarehouseId"));

Because the data in xwarehouses is stored object relationally, Oracle rewrites queries
to this XMLType table to go to the underlying storage when possible. Therefore the
following queries would use the index created by the primary key constraint in the
preceding example:

Appendix F
Using XML in SQL Statements

F-10

SELECT * FROM xwarehouses x
 WHERE EXISTSNODE(VALUE(x), '/Warehouse[WarehouseId="1"]',
 'xmlns:who="http://www.example.com/xwarehouses.xsd"') = 1;

SELECT * FROM xwarehouses x
 WHERE EXTRACTVALUE(VALUE(x), '/Warehouse/WarehouseId',
 'xmlns:who="http://www.example.com/xwarehouses.xsd"') = 1;

You can also explicitly create indexes on XMLSchema-based tables, which greatly enhance
the performance of subsequent queries. You can create object-relational views on XMLType
tables, and you can create XMLType views on object-relational tables.

See Also:

• XMLDATA Pseudocolumn for information on the XMLDATA pseudocolumn

• "Creating an XMLType View: Example"

• Creating an Index on an XMLType Table: Example

XMLType Columns

The sample table oe.warehouses was created with a warehouse_spec column of type
XMLType. The examples in this section create a shortened form of the oe.warehouses table,
using two different types of storage.

The first example creates a table with an XMLType table stored as a CLOB. This table does not
require an XMLSchema, so the content structure is not predetermined:

CREATE TABLE xwarehouses (
 warehouse_id NUMBER,
 warehouse_spec XMLTYPE)
 XMLTYPE warehouse_spec STORE AS CLOB
 (TABLESPACE example
 STORAGE (INITIAL 6144)
 CHUNK 4000
 NOCACHE LOGGING);

The following example creates a similar table, but stores the XMLType data in an object-
relational XMLType column whose structure is determined by the specified XMLSchema:

CREATE TABLE xwarehouses (
 warehouse_id NUMBER,
 warehouse_spec XMLTYPE)
 XMLTYPE warehouse_spec STORE AS OBJECT RELATIONAL
 XMLSCHEMA "http://www.example.com/xwarehouses.xsd"
 ELEMENT "Warehouse";

Appendix F
Using XML in SQL Statements

F-11

Index

Symbols
+ (plus sign) in Oracle Automatic Storage

Management filenames, 8-33

Numerics
20th century, 2-76
21st century, 2-76
3GL functions and procedures, calling, 14-1

A
ABORT LOGICAL STANDBY clause

of ALTER DATABASE, 10-93
ABS function, 7-23
ACCESSED GLOBALLY clause

of CREATE CONTEXT, 13-48
ACCOUNT LOCK clause

of ALTER USER. See CREATE USER,
12-207

of CREATE USER, 15-190
ACCOUNT UNLOCK clause

of ALTER USER. See CREATE USER,
12-207

of CREATE USER, 15-190
ACOS function, 7-24
ACTIVATE STANDBY DATABASE clause

of ALTER DATABASE, 10-88
AD and A.D. datetime format elements, 2-75
ADD clause

of ALTER DIMENSION, 10-110
of ALTER INDEXTYPE, 10-176
of ALTER TABLE, 12-31
of ALTER VIEW, 12-219

ADD DATAFILE clause
of ALTER TABLESPACE, 12-180

ADD LOGFILE clause
of ALTER DATABASE, 10-55

ADD LOGFILE GROUP clause
of ALTER DATABASE, 10-82

ADD LOGFILE INSTANCE clause
of ALTER DATABASE, 10-81

ADD LOGFILE MEMBER clause
of ALTER DATABASE, 10-55, 10-82

ADD LOGFILE THREAD clause
of ALTER DATABASE, 10-82

ADD MEASURES keywords, 19-39
ADD OVERFLOW clause

of ALTER TABLE, 12-31
ADD PARTITION clause

of ALTER TABLE, 12-31
ADD PRIMARY KEY clause

of ALTER MATERIALIZED VIEW LOG, 11-43
ADD ROWID clause

of ALTER MATERIALIZED VIEW, 11-43
ADD SUPPLEMENTAL LOG DATA clause

of ALTER DATABASE, 10-84
ADD SUPPLEMENTAL LOG GROUP clause

of ALTER TABLE, 12-90
ADD TEMPFILE clause

of ALTER TABLESPACE, 12-180
ADD VALUES clause

of ALTER TABLE ... MODIFY PARTITION,
12-128, 12-129

ADD_MONTHS function, 7-24
adding a constraint to a table, 12-119
ADMIN USER clause

of CREATE PLUGGABLE DATABASE, 14-81
ADMINISTER ANY SQL TUNING SET system

privilege, 18-42
ADMINISTER KEY MANAGEMENT statement,

10-5
ADMINISTER KEY MANAGEMENT system

privilege, 18-45
ADMINISTER SQL MANAGEMENT OBJECT

system privilege, 18-42
ADMINISTER SQL TUNING SET system

privilege, 18-42
advanced index compression

definition, 13-131
disabling, 13-131
enabling, 10-164
of index rebuild, 10-164

Advanced Row Compression, 15-77
ADVISE clause

of ALTER SESSION, 11-102
aggregate functions, 7-12
alias

for a column, 9-2

Index-1

alias (continued)
for an expressions in a view query, 15-199
specifying in queries and subqueries, 19-39

ALL clause
of SELECT, 19-64
of SET CONSTRAINTS, 19-137
of SET ROLE, 19-139

ALL operator, 6-4
ALL PRIVILEGES clause

of GRANT, 18-38
of REVOKE, 19-30

ALL PRIVILEGES shortcut
of AUDIT, 12-238

ALL shortcut
of AUDIT, 12-238

ALL_COL_COMMENTS data dictionary view,
12-261

ALL_INDEXTYPE_COMMENTS data dictionary
view, 12-261

ALL_MVIEW_COMMENTS data dictionary view,
12-261

ALL_OPERATOR_COMMENTS data dictionary
view, 12-261

ALL_ROWS hint, 2-92
ALL_TAB_COMMENTS data dictionary view,

12-261
all-column wildcard, 19-64
ALLOCATE EXTENT clause

of ALTER CLUSTER, 10-42, 10-43
of ALTER INDEX, 10-150
of ALTER MATERIALIZED VIEW, 11-23
of ALTER TABLE, 12-90

ALLOW CORRUPTION clause
of ALTER DATABASE ... RECOVER, 10-69

ALTER ANALYTIC VIEW statement, 10-34
ALTER ANY SQL PROFILE system privilege,

18-42
ALTER ATTRIBUTE DIMENSION statement,

10-36
ALTER AUDIT POLICY statement, 10-37
ALTER CLUSTER statement, 10-42
ALTER DATABASE LINK system privilege, 18-43
ALTER DATABASE statement, 10-47
ALTER DIMENSION statement, 10-108
ALTER DISKGROUP statement, 10-111
ALTER FLASHBACK ARCHIVE statement,

10-145
ALTER FUNCTION statement, 10-148
ALTER HIERARCHY statement, 10-149
ALTER INDEX statement, 10-150
ALTER INDEXTYPE statement, 10-175
ALTER INMEMORY JOIN GROUP statement,

10-177
ALTER JAVA CLASS statement, 10-179
ALTER JAVA SOURCE statement, 10-179

ALTER LIBRARY statement, 11-1
ALTER LOCKDOWN PROFILE statement, 11-2
ALTER MATERIALIZED VIEW LOG statement,

11-37
ALTER MATERIALIZED VIEW statement, 11-16
ALTER MATERIALIZED ZONEMAP statement,

11-46
ALTER object privilege

on a SQL translation profile, 18-57
ALTER OPERATOR statement, 11-50
ALTER OUTLINE statement, 11-53
ALTER PACKAGE statement, 11-54
ALTER PLUGGABLE DATABASE statement,

11-56
ALTER PROCEDURE statement, 11-85
ALTER PROFILE statement, 11-86
ALTER PUBLIC DATABASE LINK system

privilege, 18-43
ALTER RESOURCE COST statement, 11-90
ALTER ROLE statement, 11-92
ALTER ROLLBACK SEGMENT statement, 11-94
ALTER SEQUENCE statement, 11-97
ALTER SESSION statement, 11-100
ALTER SNAPSHOT

See ALTER MATERIALIZED VIEW
ALTER SNAPSHOT LOG

See ALTER MATERIALIZED VIEW LOG
ALTER SYSTEM statement, 12-3
ALTER TABLE statement, 12-31
ALTER TABLESPACE SET statement, 12-198
ALTER TABLESPACE statement, 12-180
ALTER TRIGGER statement, 12-201
ALTER TYPE statement, 12-203
ALTER USER statement, 12-204
ALTER VIEW statement, 12-218
alter_external_table clause

of ALTER TABLE, 12-58
altering storage

of PDBs, 11-68
AM and A.M. datetime format elements, 2-75
American National Standards Institute (ANSI),

1-1
data types, 2-34

conversion to Oracle data types, 2-34
standards, 1-1, C-1
supported data types, 2-1

analytic functions, 7-14
analytic views

adding measures in a query of, 19-39
altering, 10-34
creating, 13-6
dropping, 15-221
filtering facts in a query of, 19-39
granting system privileges for, 18-30
inline, 19-39

Index

Index-2

analytic views (continued)
measure expressions, 5-4
retrieving data from, 19-39
transitory, 19-39

ANALYZE CLUSTER statement, 12-220
ANALYZE INDEX statement, 12-220
ANALYZE TABLE statement, 12-220
ANCILLARY TO clause

of CREATE OPERATOR, 14-62
AND condition, 6-9
AND DATAFILES clause

of DROP TABLESPACE, 18-8
ANSI

See American National Standards Institute (ANSI)
antijoins, 9-16
ANY operator, 6-4
ANY_VALUE function, 7-25
APPEND hint, 2-92
APPEND_VALUES hint, 2-93
application servers

allowing connection as user, 12-204
applications

allowing connection as user, 12-204
securing, 13-47
validating, 13-47

APPROX_COUNT function, 7-26
APPROX_COUNT_DISTINCT function, 7-27
APPROX_COUNT_DISTINCT_AGG function,

7-28
APPROX_COUNT_DISTINCT_DETAIL function,

7-29
APPROX_MEDIAN function, 7-32
APPROX_PERCENTILE function, 7-35
APPROX_PERCENTILE_AGG function, 7-38
APPROX_PERCENTILE_DETAIL function, 7-39
APPROX_RANK function, 7-43
APPROX_SUM function, 7-44
ARCHIVE LOG clause

of ALTER SYSTEM, 12-3
archive mode

specifying, 13-65
archived redo logs

location, 10-67
ARCHIVELOG clause

of ALTER DATABASE, 10-55
of CREATE CONTROLFILE, 13-55
of CREATE DATABASE, 13-65

arguments
of operators, 4-1

arithmetic
with DATE values, 2-23

arithmetic operators, 4-2
AS CLONE clause

of CREATE PLUGGABLE DATABASE, 14-92

AS source_char clause
of CREATE JAVA, 13-156

AS subquery clause
of CREATE MATERIALIZED VIEW, 14-5
of CREATE TABLE, 15-132
of CREATE VIEW, 15-203

ASC clause
of CREATE INDEX, 13-130

ASCII function, 7-44
ASCIISTR function, 7-45
ASIN function, 7-46
ASSOCIATE STATISTICS statement, 12-229
asterisk

all-column wildcard in queries, 19-64
asynchronous commit, 13-4
ATAN function, 7-47
ATAN2 function, 7-47
ATTRIBUTE clause

of ALTER DIMENSION, 10-110
of CREATE DIMENSION, 13-81, 13-82

attribute clustering, 15-122
attribute dimensions

altering, 10-36
creating, 13-15
dropping, 15-222
granting system privileges for, 18-30

attributes
adding to a dimension, 10-110
dropping from a dimension, 10-110
maximum number of in object type, 15-58
of dimensions, defining, 13-81
of disk groups, 10-111, 13-94

audit policies
comments on, 12-260
creating, 13-26
dropping, 15-223
modifying, 10-37

AUDIT statement, 12-233
for unified auditing, 12-250
locks, B-6

auditing
options

for SQL statements, 12-233
policies

value-based, 12-234
SQL statements, 12-235

by a proxy, 12-236
by a user, 12-236
on a directory, 12-236
on a schema, 12-236
stopping, 19-11

system privileges, 12-235
AUTHENTICATED BY clause

of CREATE DATABASE LINK, 13-75

Index

Index-3

AUTHENTICATED clause
of ALTER USER, 12-216

AUTHENTICATION REQUIRED clause
of ALTER USER, 12-215

AUTHID CURRENT_USER clause
of ALTER JAVA, 10-179
of CREATE JAVA, 13-156, 13-157

AUTHID DEFINER clause
of ALTER JAVA, 10-179
of CREATE JAVA, 13-156, 13-157

AUTOALLOCATE clause
of CREATE TABLESPACE, 15-152

AUTOEXTEND clause
of ALTER DATABASE, 10-55
of CREATE DATABASE, 13-59

automatic segment-space management, 15-166
automatic undo mode, 11-94, 13-57
AVG function, 7-48

B
BACKUP CONTROLFILE clause

of ALTER DATABASE, 10-58, 10-87
backups, 10-96
band joins, 9-13
basic table compression, 15-77
BC and B.C. datetime format elements, 2-75
BECOME USER system privilege, 18-52
BEGIN BACKUP clause

of ALTER DATABASE, 10-73
of ALTER TABLESPACE, 12-188

BEQUEATH clause
of CREATE VIEW, 15-202

BETWEEN condition, 6-34
BFILE

data type, 2-29
locators, 2-29

BFILENAME function, 7-49
BIN_TO_NUM function, 7-50
binary large objects

See BLOB
binary operators, 4-1
binary XML format, 15-17
binary XML storage, 15-17
bindings

adding to an operator, 11-50
dropping from an operator, 11-52

bit vectors
converting to numbers, 7-50

BIT_AND_AGG function, 7-53
BIT_OR_AGG function, 7-57
BIT_XOR_AGG function, 7-58
BITAND function, 7-52
BITMAP clause

of CREATE INDEX, 13-122

bitmap indexes, 13-122
creating join indexes, 13-114

BITMAP_OR_AGG function, 7-57
blank padding

specifying in format models, 2-77
suppressing, 2-77

BLOB data type, 2-30
BLOCKSIZE clause

of CREATE TABLESPACE, 15-162
bottom-N reporting, 7-117, 7-295, 7-328
buffer cache

flushing, 12-11
BUFFER_POOL parameter

of STORAGE clause, 8-59
BUILD DEFERRED clause

of CREATE MATERIALIZED VIEW, 14-5
BUILD IMMEDIATE clause

of CREATE MATERIALIZED VIEW, 14-5
BY ACCESS clause

of AUDIT, 12-241
BY SESSION clause

of AUDIT, 12-241
BYTE character semantics, 2-9, 2-12
BYTE length semantics, 12-107

C
CACHE clause

of ALTER MATERIALIZED VIEW, 11-29
of ALTER MATERIALIZED VIEW LOG, 11-43
of ALTER TABLE, 15-124
of CREATE CLUSTER, 13-43
of CREATE MATERIALIZED VIEW, 14-23
of CREATE MATERIALIZED VIEW LOG,

14-44
CACHE hint, 2-93
CACHE parameter

of ALTER SEQUENCE. See CREATE
SEQUENCE, 11-97

of CREATE SEQUENCE, 15-6
CACHE READS clause

of ALTER TABLE, 12-103
of CREATE TABLE, 15-125

cached cursors
execution plan for, 18-17

calculated measure expressions, 5-4, 5-16
call spec

See call specifications
call specifications,

in procedures, 14-99
CALL statement, 12-255
calls

limiting CPU time for, 14-106
limiting data blocks read, 14-107

CARDINALITY function, 7-59

Index

Index-4

Cartesian products, 9-14
CASCADE clause

of CREATE TABLE, 15-129
of DROP PROFILE, 17-15
of DROP USER, 18-15

CASCADE CONSTRAINTS clause
of DROP CLUSTER, 15-225
of DROP TABLE, 18-4
of DROP TABLESPACE, 18-8
of DROP VIEW, 18-17
of REVOKE, 19-30

CASE expressions, 5-20
searched, 5-20
simple, 5-20

CAST function, 7-59
CATSEARCH condition, 6-2
CATSEARCH operator, 4-1
CDBs,

creating, 13-73
modifying, 10-48

CEIL function, 7-64
chained rows

listing, 12-227
of clusters, 12-220

CHANGE CATEGORY clause
of ALTER OUTLINE, 11-54

CHANGE NOTIFICATION system privilege,
18-52

CHANGE_DUPKEY_ERROR_INDEX hint, 2-94
changing state

of a PDB, 11-72
of multiple PDBs, 11-76

CHAR character semantics, 2-9, 2-12
CHAR data type, 2-9

converting to VARCHAR2, 2-66
CHAR length semantics, 12-107
character functions

returning character values, 7-5
returning number values, 7-5

character large objects
See CLOB

character length semantics, 12-107
character literal

See text
character set

changing, 10-94
character set functions, 7-6
CHARACTER SET parameter

of CREATE CONTROLFILE, 13-56
of CREATE DATABASE, 13-63

character sets
database, specifying, 13-63
multibyte characters, 2-140
specifying for database, 13-63

character strings
comparison rules, 2-43
exact matching, 2-77
fixed-length, 2-9
national character set, 2-10
variable-length, 2-11, 2-17

CHARTOROWID function, 7-65
CHECK clause

of constraints, 8-3
of CREATE TABLE, 15-17

check constraints, 8-3
CHECK DATAFILES clause

of ALTER SYSTEM, 12-10
CHECKPOINT clause

of ALTER SYSTEM, 12-10
checkpoints

forcing, 12-10
CHECKSUM function, 7-66
CHR function, 7-66
CHUNK clause

of ALTER TABLE, 12-104
of CREATE TABLE, 15-95

CLEAR LOGFILE clause
of ALTER DATABASE, 10-55, 10-80

CLOB data type, 2-30
clone databases

mounting, 10-64
CLOSE DATABASE LINK clause

of ALTER SESSION, 11-102
CLUSTER clause

of ANALYZE, 12-220
of CREATE INDEX, 13-111
of CREATE TABLE, 15-91
of TRUNCATE, 19-144

CLUSTER hint, 2-94
CLUSTER_DETAILS function, 7-68
CLUSTER_DISTANCE function, 7-72
CLUSTER_ID function, 7-74
CLUSTER_PROBABILITY function, 7-77
CLUSTER_SET function, 7-79
CLUSTERING hint, 2-95
clusters

assigning tables to, 15-91
caching retrieved blocks, 13-43
cluster indexes, 13-111
collecting statistics on, 12-220
creating, 13-36
deallocating unused extents, 10-43
degree of parallelism

changing, 10-44, 10-45
when creating, 13-36

dropping tables, 15-225
extents, allocating, 10-42, 10-43
granting system privileges for, 18-30

Index

Index-5

clusters (continued)
hash, 13-42

single-table, 13-42
sorted, 13-40, 15-59

indexed, 13-41
key values

allocating space for, 13-41
modifying space for, 10-44

migrated and chained rows in, 12-220,
12-227

modifying, 10-42
physical attributes

changing, 10-43
specifying, 13-36

releasing unused space, 10-42
removing from the database, 15-224
SQL examples, 15-224
storage attributes

changing, 10-43
storage characteristics

changing, 10-42
tablespace in which created, 13-41
validating structure, 12-225

COALESCE clause
for partitions, 12-31
of ALTER INDEX, 10-167
of ALTER TABLE, 12-96, 12-99, 12-128
of ALTER TABLESPACE, 12-187

COALESCE function, 7-82
as a variety of CASE expression, 7-82

COALESCE SUBPARTITION clause
of ALTER TABLE, 12-128

COLLATE operator, 4-3
COLLATION function, 7-83
collation functions, 7-6
COLLECT function, 7-84
collection functions, 7-8
collection types

multilevel, 15-100
collection-typed values

converting to data types, 7-59
collections

inserting rows into, 18-62
modifying, 12-31
modifying retrieval method, 12-49
nested tables, 2-37
testing for empty, 6-13
treating as a table, 18-62, 19-39, 19-149
unnesting, 19-39

examples, 19-131
varrays, 2-37

column expressions, 5-22
column REF constraints, 8-3

of CREATE TABLE, 15-17

column values
unpivoting into rows, 19-76

COLUMN_VALUE pseudocolumn, 3-7
columns

adding, 12-31
aliases for, 9-2
altering storage, 12-102
associating statistics types with, 12-229
basing an index on, 13-111
comments on, 12-260
creating comments about, 12-259
defining, 15-17
disassociating statistics types from, 15-220
dropping from a table, 12-111
LOB

storage attributes, 12-31
maximum number of, 15-58
modifying existing, 12-105
parent-child relationships between, 13-81
properties, altering, 12-50, 12-102
qualifying names of, 9-2
REF

describing, 8-3
renaming, 12-31
restricting values for, 8-3
specifying

as primary key, 8-3
constraints on, 15-17
default values, 15-60

storage properties, 15-92
substitutable, identifying type, 7-375
virtual

adding to a table, 12-102
creating, 15-17
modifying, 12-102

COLUMNS clause
of ASSOCIATE STATISTICS, 12-229, 12-231
of DISASSOCIATE STATISTICS, 15-220

COMMENT clause
of COMMIT, 13-3

COMMENT statement, 12-259
comments, 2-84

adding to objects, 12-259
associating with a transaction, 13-5
dropping from objects, 12-259
in SQL statements, 2-84
on editions, 12-261
on indextypes, 12-261
on mining models, 12-261
on operators, 12-261
on schema objects, 2-85
on table columns, 12-260
on tables, 12-261
on unified audit policies, 12-260
removing from the data dictionary, 12-259

Index

Index-6

comments (continued)
specifying, 2-84
viewing, 12-261

commit
asynchronous, 13-4
automatic, 13-2

COMMIT IN PROCEDURE clause
of ALTER SESSION, 11-103

COMMIT statement, 13-1
COMMIT TO SWITCHOVER clause

of ALTER DATABASE, 10-91
comparison conditions, 6-4
comparison functions, 7-7
comparison semantics

of character strings, 2-43
COMPILE clause

of ALTER DIMENSION, 10-111
of ALTER JAVA SOURCE, 10-181
of ALTER MATERIALIZED VIEW, 11-35
of ALTER VIEW, 12-220
of CREATE JAVA, 13-158

COMPOSE function, 7-85
composite foreign keys, 8-3
composite partitioning

range-list, 12-31, 15-118
when creating a table, 15-46, 15-115

composite primary keys, 8-3
composite range partitions, 15-115
COMPOSITE_LIMIT parameter

of ALTER PROFILE, 11-87
of CREATE PROFILE, 14-107

compound conditions, 6-33
compound expressions, 5-19
COMPRESS clause

of ALTER INDEX ... REBUILD, 13-131
of CREATE TABLE, 15-87

compression
of index keys, 10-154
of tables, 15-77
of tablespaces, 15-77

CON_DBID_TO_ID function, 7-87
CON_GUID_TO_ID function, 7-87
CON_ID_TO_CON_NAME function, 7-88
CON_ID_TO_DBID function, 7-89
CON_ID_TO_GUID function, 7-89
CON_ID_TO_UID function, 7-90
CON_NAME_TO_ID function, 7-91
CON_UID_TO_ID function, 7-91
CONCAT function, 7-92
concatenation operator, 4-4
conditions

BETWEEN, 6-34
comparison, 6-4
compound, 6-33
EXISTS, 6-22, 6-35

conditions (continued)
floating-point, 6-8
group comparison, 6-7
IN, 6-35
in SQL syntax, 6-1
interval, 6-34
IS ANY, 6-10
IS JSON, 6-24
IS OF type, 6-38
IS PRESENT, 6-11
JSON_EQUAL, 6-26
JSON_EXISTS, 6-27
JSON_TEXTCONTAINS, 6-31
LIKE, 6-15
logical, 6-9
MEMBER, 6-14
membership, 6-14, 6-35
model, 6-10
multiset, 6-12
IS [NOT] EMPTY, 6-13
null, 6-21
pattern matching, 6-15
range, 6-34
REGEXP_LIKE, 6-19
SET, 6-12
simple comparison, 6-5
SQL For JSON, 6-23
SUBMULTISET, 6-14
UNDER_PATH, 6-23
XML, 6-22

CONNECT BY clause
of queries and subqueries, 19-39
of SELECT, 9-4, 19-39

CONNECT clause
of SELECT and subqueries, 19-50

CONNECT TO clause
of CREATE DATABASE LINK, 13-78

CONNECT_BY_ISCYCLE pseudocolumn, 3-1
CONNECT_BY_ISLEAF pseudocolumn, 3-2
CONNECT_BY_ROOT operator, 4-6
CONNECT_TIME parameter

of ALTER PROFILE, 11-87
of ALTER RESOURCE COST, 11-91

connection qualifier, 2-146
CONSIDER FRESH clause

of ALTER MATERIALIZED VIEW, 11-35
constant values

See literals
CONSTRAINT(S) session parameter, 11-109
constraints,

adding to a table, 12-119
altering, 12-50
check, 8-3
checking

at end of transaction, 8-3

Index

Index-7

constraints (continued)
checking (continued)
at start of transaction, 8-3
at the end of each DML statement, 8-3

column REF, 8-3
deferrable, 8-3, 19-136

enforcing, 11-109
defining, 8-3, 15-17

for a table, 15-17
on a column, 15-17

disabling, 15-17
after table creation, 12-160
cascading, 15-129
during table creation, 15-51

dropping, 12-50, 12-120, 18-8
enabling, 15-17, 15-128

after table creation, 12-160
during table creation, 15-51

foreign key, 8-3
modifying existing, 12-31
on views

dropping, 12-219, 18-17
partitioning referential, 12-119, 15-119
primary key, 8-3

attributes of index, 8-3
enabling, 15-128

referential integrity, 8-3
renaming, 12-119
restrictions, 8-8
setting state for a transaction, 19-136
storing rows in violation, 12-148
table REF, 8-3
unique

attributes of index, 8-3
enabling, 15-128

CONTAINER hint, 2-95
CONTAINS condition, 6-2
CONTAINS operator, 4-1
context namespaces

accessible to instance, 13-49
associating with package, 13-47
initializing using OCI, 13-48
initializing using the LDAP directory, 13-48
removing from the database, 16-1

contexts
creating namespaces for, 13-47
granting system privileges for, 18-30

control file clauses
of ALTER DATABASE, 10-58

control files
allowing reuse, 13-52, 13-62
backing up, 10-87
force logging mode, 13-55
re-creating, 13-50
standby, creating, 10-86

CONTROLFILE REUSE clause
of CREATE DATABASE, 13-62

conversion
functions, 7-7
rules, string to date, 2-80

CONVERT function, 7-93
COPY clause

of CREATE PLUGGABLE DATABASE, 14-94
CORR function, 7-95
CORR_K function, 7-98
CORR_S function, 7-98
correlated subqueries, 9-17
correlation functions

Kendall’s tau-b, 7-97
Pearson’s, 7-95
Spearman’s rho, 7-97

correlation names
in DELETE, 15-209
in SELECT, 19-39

COS function, 7-99
COSH function, 7-99
COUNT function, 7-100
COVAR_POP function, 7-102
COVAR_SAMP function, 7-104
CPU_PER_CALL parameter

of ALTER PROFILE, 11-87
of CREATE PROFILE, 14-106

CPU_PER_SESSION parameter
of ALTER PROFILE, 11-87
of ALTER RESOURCE COST, 11-91
of CREATE PROFILE, 14-106

CREATE ANALYTIC VIEW statement, 13-6
CREATE ANY SQL PROFILE system privilege,

18-42
CREATE ATTRIBUTE DIMENSION statement,

13-15
CREATE AUDIT POLICY statement, 13-26
CREATE CLUSTER statement, 13-36
CREATE CONTEXT statement, 13-47
CREATE CONTROLFILE statement, 13-50
CREATE DATABASE LINK statement, 13-75
CREATE DATABASE statement, 13-57
CREATE DATAFILE clause

of ALTER DATABASE, 10-53, 10-75
CREATE DIMENSION statement, 13-81
CREATE DIRECTORY statement, 13-87
CREATE DISKGROUP statement, 13-90
CREATE FLASHBACK ARCHIVE statement,

13-102
CREATE FUNCTION statement, 13-106
CREATE HIERARCHY statement, 13-108
CREATE INDEX statement, 13-111
CREATE INDEXTYPE statement, 13-150
CREATE INMEMORY JOIN GROUP statement,

13-154

Index

Index-8

CREATE JAVA statement, 13-156
CREATE LIBRARY statement, 14-1
CREATE LOCKDOWN PROFILE statement, 14-3
CREATE MATERIALIZED VIEW LOG statement,

14-38
CREATE MATERIALIZED VIEW statement, 14-5
CREATE MATERIALIZED ZONEMAP statement,

14-50
CREATE OPERATOR statement, 14-59
CREATE OUTLINE statement, 14-63
CREATE PACKAGE BODY statement, 14-68
CREATE PACKAGE statement, 14-67

locks, B-6
CREATE PFILE statement, 14-70
CREATE PLUGGABLE DATABASE statement,

14-72
CREATE PLUGGABLE DATABASE system

privilege, 18-48
CREATE PROCEDURE statement, 14-99

locks, B-6
CREATE PROFILE statement, 14-101
CREATE RESTORE POINT statement, 14-111
CREATE ROLE statement, 14-116
CREATE ROLLBACK SEGMENT statement,

14-120
CREATE SCHEMA statement, 14-123
CREATE SEQUENCE statement, 15-1
CREATE SPFILE statement, 15-8
CREATE STANDBY CONTROLFILE clause

of ALTER DATABASE, 10-58, 10-86
CREATE SYNONYM statement, 15-12
CREATE TABLE statement, 15-17
CREATE TABLESPACE SET statement, 15-174
CREATE TABLESPACE statement, 15-152
CREATE TRIGGER statement, 15-176
CREATE TYPE BODY statement, 15-180
CREATE TYPE statement, 15-178
CREATE USER statement, 15-182
CREATE VIEW statement, 15-192
cross joins, 19-78
CUBE clause

of SELECT statements, 19-84
CUBE_TABLE function, 7-105
cubes

extracting data, 7-105
CUME_DIST function, 7-107
cumulative distributions, 7-107
currency

group separators, 2-67
currency symbol

ISO, 2-67
local, 2-67
union, 2-68

CURRENT_DATE function, 7-109
CURRENT_SCHEMA session parameter, 11-109

CURRENT_TIMESTAMP function, 7-109
CURRENT_USER clause

of CREATE DATABASE LINK, 13-78
CURRVAL pseudocolumn, 3-3, 15-2
CURSOR expressions, 5-22
CURSOR_SHARING_EXACT hint, 2-96
cursors

cached, 18-17
CV function, 7-110
CYCLE parameter

of ALTER SEQUENCE. See CREATE
SEQUENCE, 11-97

of CREATE SEQUENCE, 15-5

D
data

aggregation
composite columns of GROUP BY,

19-85
concatenated grouping sets of GROUP

BY, 19-85
grouping sets, 19-85

analyzing a subset, 7-257
caching frequently used, 15-124
independence, 15-12
integrity checking on input, 2-14
locks on, B-2
pivoting, 19-75
retrieving, 9-1
specifying as temporary, 15-53
undo

preserving, 12-180, 15-152
unpivoting, 19-76

data cartridge functions, 7-23
data conversion, 2-47

between character data types, 2-49
implicit

disadvantages, 2-47
implicit versus explicit, 2-47
when performed implicitly, 2-47, 2-50
when specified explicitly, 2-50

data definition language
locks, B-6

data definition language (DDL), 10-2
statements, 10-2

and implicit commit, 10-2
causing recompilation, 10-2
PL/SQL support, 10-2

statements requiring exclusive access, 10-2
data dictionary

adding comments to, 12-259
locks, B-6

data files
bringing online, 10-47

Index

Index-9

data files (continued)
changing size of, 10-76
creating new, 10-75
defining for a tablespace, 15-154, 15-158
defining for the database, 13-60
designing media recovery, 10-66
dropping, 12-190, 18-8
enabling autoextend, 8-33
end online backup of, 10-76, 12-189
extending automatically, 8-33
online backup of, 12-188
online, updating information on, 12-10
putting online, 10-76
re-creating lost or damaged, 10-75
recover damaged, 10-66
recovering, 10-69
renaming, 10-74
resizing, 10-47
reusing, 8-33
size of, 8-33
specifying, 8-33

for a tablespace, 15-160
for database, 13-67

system generated, 10-75
taking offline, 10-47, 10-76
temporary

shrinking, 12-190
data manipulation language (DML), 10-3

allowing during indexing, 10-150
operations

during index creation, 13-134
during index rebuild, 12-155
restricting, 12-14

parallelizing, 15-17
retrieving rows affected by, 15-216, 18-72,

19-158
statements, 10-3

PL/SQL support, 10-3
data redaction

granting system privileges for, 18-30
data types, 2-1

"Any" types, 2-38
ANSI-supported, 2-1
BFILE, 2-29
BLOB, 2-30
built-in, 2-5
CHAR, 2-9
character, 2-8
CLOB, 2-30
comparison rules, 2-42
converting to collection-typed values, 7-59
converting to other data types, 7-59
DATE, 2-20
datetime, 2-19
interval, 2-19

data types (continued)
INTERVAL DAY TO SECOND, 2-23
INTERVAL YEAR TO MONTH, 2-23
JSON, 2-31
length semantics, 2-9, 2-12
LONG, 2-17
LONG RAW, 2-27
NCHAR, 2-10
NCLOB, 2-31
NUMBER, 2-13
numeric, 2-13
NVARCHAR2, 2-12
Oracle-supplied types, 2-38
RAW, 2-27
ROWID, 2-33
SDO_TOPO_GEOMETRY, 2-41
spatial types, 2-41
TIMESTAMP, 2-21
TIMESTAMP WITH LOCAL TIME ZONE,

2-22
TIMESTAMP WITH TIME ZONE, 2-21
UROWID, 2-34
user-defined, 2-36
VARCHAR, 2-12
VARCHAR2, 2-11
XML types, 2-39

database links, 9-20
altering, 10-106
closing, 11-102
creating, 2-145, 13-75
creating synonyms with, 15-12
current user, 13-78
granting system privileges for, 18-30
naming, 2-145
public, 13-77

dropping, 16-3
referring to, 2-146
removing from the database, 16-3
shared, 13-77
syntax, 2-145
updating passwords, 10-106
username and password, 2-146

database objects
dropping, 18-15
nonschema, 2-137
schema, 2-136

Database Smart Flash Cache, 8-52
database triggers

See triggers
databases

accounts
creating, 15-182

allowing changes to, 11-100
allowing generation of redo logs, 10-47
allowing reuse of control files, 13-62

Index

Index-10

databases (continued)
allowing unlimited resources to users, 14-106
archive mode, specifying, 13-65
beginning backup of, 10-73
blocks

specifying size, 15-162
cancel-based recovery

terminating, 10-70
changing characteristics, 13-50
changing global name, 10-96
changing name, 13-50, 13-53
character set, specifying, 13-63
committing to standby status, 10-91
connect strings, 2-146
controlling use, 10-100
create script for, 10-47
creating, 13-57
data files

modifying, 10-47
specifying, 13-67

default edition, setting, 10-94
designing media recovery, 10-66
dropping, 16-2
ending backup of, 10-73
erasing all data from, 13-57
flashing back, 18-20
granting system privileges for, 18-30
in FLASHBACK mode, 10-47
in FORCE LOGGING mode, 10-79, 13-55,

13-65
instances of, 13-63
limiting resources for users, 14-101
log files

modifying, 10-47
specifying, 13-64

managed recovery, 10-52
modifying, 10-47
mounting, 10-64, 13-57
moving a subset to a different database,

12-31
namespaces, 2-141
naming, 10-63, 11-65
national character set, specifying, 13-63
no-data-loss mode, 10-89
online

adding log files, 10-81
opening, 10-64, 13-57
prepare to re-create, 10-47
preventing changes to, 10-47
protection mode of, 10-89
quiesced state, 12-14
re-creating control file for, 13-50
read-only, 10-64
read/write, 10-64
reconstructing damaged, 10-66

databases (continued)
recovering, 10-47, 10-68
recovery

allowing corrupt blocks, 10-69
testing, 10-69
using a storage snapshot, 10-68
with backup control file, 10-47

remote
accessing, 9-20
authenticating users to, 13-75
connecting to, 13-78
inserting into, 18-62
service name of, 13-75
table locks on, 18-84

restoring earlier version of, 10-47, 12-180,
15-152

restricting users to read-only transactions,
10-47

resuming activity, 12-14
returning to a past time, 18-20
standby

adding log files, 10-81
suspending activity, 12-14
system user passwords, 13-62
temp files

modifying, 10-47
time zone

determining, 7-113
setting, valid values for, 10-99, 13-57

DATAFILE clause
of CREATE DATABASE, 13-67

DATAFILE clauses
of ALTER DATABASE, 10-53, 10-76

DATAFILE OFFLINE clause
of ALTER DATABASE, 10-47

DATAFILE ONLINE clause
of ALTER DATABASE, 10-47

DATAFILE RESIZE clause
of ALTER DATABASE, 10-47

DATAOBJ_TO_MAT_PARTITION function, 7-112
DATAOBJ_TO_PARTITION function, 7-112
DATE columns

converting to datetime columns, 12-106
DATE data type, 2-20

julian, 2-20
date format models, 2-69, 2-71

long, 2-71
punctuation in, 2-70
short, 2-72
text in, 2-70

date functions, 7-6
dates

arithmetic, 2-23
comparison rules, 2-42

Index

Index-11

datetime arithmetic, 2-23
boundary cases, 11-109
calculating daylight saving time, 2-25

datetime columns
creating from DATE columns, 12-106

datetime data types, 2-19
daylight saving time, 2-25

datetime expressions, 5-24
datetime field

extracting from a datetime or interval value,
7-125

datetime format elements, 2-70
and Globalization Support, 2-75
capitalization, 2-70
ISO standard, 2-75
RR, 2-76
suffixes, 2-77

datetime functions, 7-6
datetime literals, 2-58
DAY datetime format element, 2-75
daylight saving time, 2-25

boundary cases, 2-25
going into or coming out of effect, 2-25

DB2 data types, 2-34
restrictions on, 2-35

DBA_2PC_PENDING data dictionary view,
11-102

DBA_COL_COMMENTS data dictionary view,
12-261

DBA_INDEXTYPE_COMMENTS data dictionary
view, 12-261

DBA_MVIEW_COMMENTS data dictionary view,
12-261

DBA_OPERATOR_COMMENTS data dictionary
view, 12-261

DBA_ROLLBACK_SEGS data dictionary view,
17-18

DBA_TAB_COMMENTS data dictionary view,
12-261

DBMS_ROWID package
and extended rowids, 2-33

DBTIMEZONE function, 7-113
DDL

See data definition language (DDL)
DEALLOCATE UNUSED clause

of ALTER CLUSTER, 10-42, 10-43
of ALTER INDEX, 10-152
of ALTER TABLE, 12-90

debugging
granting system privileges for, 18-30

decimal characters
specifying, 2-67

DECODE function, 7-114
decoding functions, 7-11
DECOMPOSE function, 7-115

DEFAULT clause
of ALTER TABLE, 12-100
of CREATE TABLE, 15-17, 15-60

DEFAULT COST clause
of ASSOCIATE STATISTICS, 12-229, 12-231

default index, suppressing, 14-24
DEFAULT profile

assigning to users, 17-15
DEFAULT ROLE clause

of ALTER USER, 12-211
DEFAULT SELECTIVITY clause

of ASSOCIATE STATISTICS, 12-229, 12-231
default tablespace, 13-69
DEFAULT TABLESPACE clause

of ALTER DATABASE, 10-95
of ALTER PLUGGABLE DATABASE, 11-67
of ALTER USER, 12-210
of ALTER USER. See CREATE USER,

12-207
of CREATE USER, 15-187

default tablespaces
specifying for a user, 12-210

DEFAULT TEMPORARY TABLESPACE clause
of ALTER DATABASE, 10-95
of ALTER PLUGGABLE DATABASE, 11-67
of CREATE DATABASE, 13-59

DEFERRABLE clause
of constraints, 8-3

deferrable constraints, 19-136
DEFERRED clause

of SET CONSTRAINTS, 19-137
definer’s rights views, 15-202
DELETE statement, 15-209

error logging, 15-209
DELETE STATISTICS clause

of ANALYZE, 12-228
DENSE_RANK function, 7-117
DEPTH function, 7-118
DEREF function, 7-119
DESC clause

of CREATE INDEX, 13-130
dictionaries

granting system privileges for, 18-43
dimensional objects

extracting data, 7-105
dimensions

attributes
adding, 10-110
changing, 10-108
defining, 13-81
dropping, 10-110

compiling invalidated, 10-111
creating, 13-81
defining levels, 13-82
examples, 13-81

Index

Index-12

dimensions (continued)
extracting data, 7-105
granting system privileges for, 18-30
hierarchies

adding, 10-110
changing, 10-108
defining, 13-81
dropping, 10-110

levels
adding, 10-110
defining, 13-81
dropping, 10-110
parent-child hierarchy, 13-83

removing from the database, 16-4
direct-path INSERT, 2-92, 2-93, 18-62
directories

See directory objects
directory objects,

as aliases for operating system directories,
13-87

auditing, 12-240
creating, 13-87
granting system privileges for, 18-30
redefining, 13-88
removing from the database, 16-5

DISABLE ALL TRIGGERS clause
of ALTER TABLE, 12-162

DISABLE clause
of ALTER INDEX, 10-167
of CREATE TABLE, 15-17

DISABLE DISTRIBUTED RECOVERY clause
of ALTER SYSTEM, 12-10

DISABLE PARALLEL DML clause
of ALTER SESSION, 11-103

DISABLE QUERY REWRITE clause
of ALTER MATERIALIZED VIEW, 11-33
of CREATE MATERIALIZED VIEW, 14-32

DISABLE RESTRICTED SESSION clause
of ALTER SYSTEM, 12-17

DISABLE RESUMABLE clause
of ALTER SESSION, 11-105

DISABLE ROW MOVEMENT clause
of ALTER TABLE, 12-31
of CREATE TABLE, 15-17, 15-35

DISABLE STORAGE IN ROW clause
of ALTER TABLE, 12-104
of CREATE TABLE, 15-95

DISABLE TABLE LOCK clause
of ALTER TABLE, 12-161

DISABLE_PARALLEL_DML hint, 2-96
DISASSOCIATE STATISTICS statement, 15-220
DISCONNECT SESSION clause

of ALTER SYSTEM, 12-12
disk group files

changing permission settings, 10-137

disk group files (continued)
setting owner or user group, 10-137

disk groups
altering, 10-111
creating, 13-90

a tablespace in, 15-160
failure groups, 10-123, 13-93
files in, 8-33

dropping, 16-6
managing Oracle ADVM volumes, 10-134
rebalancing, 10-111
setting attributes, 10-111, 13-94
specifying files in, 8-33
specifying files in control files, 13-54

disks
bringing online, 10-126
QUORUM, 13-93
REGULAR, 13-93
replacing, 10-125
taking offline, 10-127

dispatcher processes
creating additional, 12-25
terminating, 12-25

DISTINCT clause
of SELECT, 19-63

distinct queries, 19-63
distributed queries, 9-20

restrictions on, 9-20
distribution

hints for, 2-125
DML

See data manipulation language (DML)
domain indexes, 13-111, 13-112, 13-150

and LONG columns, 12-106
associating statistics types with, 12-229
creating, prerequisites, 13-139
determining user-defined CPU and I/O costs,

18-17
disassociating statistics types from, 15-220,

16-12
example, F-1
invoking drop routines for, 18-1
local partitioned, 13-140
modifying, 10-164
parallelizing creation of, 13-140
rebuilding, 10-150
removing from the database, 16-12
system managed, 13-153

domain_index_clause
of CREATE INDEX, 13-117

DOWNGRADE clause
of ALTER DATABASE, 10-65

DROP ANALYTIC VIEW statement, 15-221
DROP ANY SQL PROFILE system privilege,

18-42

Index

Index-13

DROP ATTRIBUTE DIMENSION statement,
15-222

DROP AUDIT POLICY statement, 15-223
DROP clause

of ALTER DIMENSION, 10-110
of ALTER INDEXTYPE, 10-176

DROP CLUSTER statement, 15-224
DROP COLUMN clause

of ALTER TABLE, 12-111
DROP constraint clause

of ALTER VIEW, 12-219
DROP CONSTRAINT clause

of ALTER TABLE, 12-120
DROP CONTEXT statement, 16-1
DROP DATABASE LINK statement, 16-3
DROP DATABASE statement, 16-2
DROP DIMENSION statement, 16-4
DROP DIRECTORY statement, 16-5
DROP DISKGROUP statement, 16-6
DROP FLASHBACK ARCHIVE statement, 16-9
DROP FUNCTION statement, 16-10
DROP HIERARCHY statement, 16-11
DROP INDEX statement, 16-12
DROP INDEXTYPE statement, 16-14
DROP INMEMORY JOIN GROUP statement,

16-15
DROP JAVA statement, 16-16
DROP LIBRARY statement, 17-1
DROP LOCKDOWN PROFILE statement, 17-2
DROP LOGFILE clause

of ALTER DATABASE, 10-55, 10-83
DROP LOGFILE MEMBER clause

of ALTER DATABASE, 10-55, 10-83
DROP MATERIALIZED VIEW LOG statement,

17-5
DROP MATERIALIZED VIEW statement, 17-3
DROP MATERIALIZED ZONEMAP statement,

17-7
DROP OPERATOR statement, 17-8
DROP OUTLINE statement, 17-9
DROP PACKAGE BODY statement, 17-11
DROP PACKAGE statement, 17-10
DROP PARTITION clause

of ALTER INDEX, 10-150
of ALTER TABLE, 12-136

DROP PLUGGABLE DATABASE statement,
17-11

DROP PRIMARY constraint clause
of ALTER TABLE, 12-120

DROP PROCEDURE statement, 17-14
DROP PROFILE statement, 17-15
DROP RESTORE POINT statement, 17-16
DROP ROLE statement, 17-17
DROP ROLLBACK SEGMENT statement, 17-18
DROP SEQUENCE statement, 17-19

DROP SUPPLEMENTAL LOG DATA clause
of ALTER DATABASE, 10-85

DROP SUPPLEMENTAL LOG GROUP clause
of ALTER TABLE, 12-90

DROP SYNONYM statement, 17-20
DROP TABLE statement, 18-1
DROP TABLESPACE SET statement, 18-9
DROP TABLESPACE statement, 18-5
DROP TRIGGER statement, 18-10
DROP TYPE BODY statement, 18-13
DROP TYPE statement, 18-11
DROP UNIQUE constraint clause

of ALTER TABLE, 12-120
DROP USER statement, 18-14
DROP VALUES clause

of ALTER TABLE ... MODIFY PARTITION,
12-128, 12-129

DROP VIEW statement, 18-16
DUAL dummy table, 2-140, 9-19
DUMP function, 7-120
DY datetime format element, 2-75
DYNAMIC_SAMPLING hint, 2-97

E
editioning views, 15-196
editions

comments on, 12-261
creating, 13-99
dropping, 16-8
granting system privileges for, 18-30
setting default for a PDB, 11-67
setting default for database, 10-94
setting for a session, 11-106

embedded SQL, 10-4
precompiler support, 10-4

EMPTY_BLOB function, 7-122
EMPTY_CLOB function, 7-122
ENABLE ALL TRIGGERS clause

of ALTER TABLE, 12-161
ENABLE clause

of ALTER INDEX, 10-166
of ALTER TRIGGER, 12-202
of CREATE TABLE, 15-17

ENABLE DISTRIBUTED RECOVERY clause
of ALTER SYSTEM, 12-10

ENABLE NOVALIDATE constraint state, 8-3
ENABLE PARALLEL DML clause

of ALTER SESSION, 11-103
ENABLE QUERY REWRITE clause

of ALTER MATERIALIZED VIEW, 11-33
of CREATE MATERIALIZED VIEW, 14-32

ENABLE RESTRICTED SESSION clause
of ALTER SYSTEM, 12-17

Index

Index-14

ENABLE RESUMABLE clause
of ALTER SESSION, 11-105

ENABLE ROW MOVEMENT clause
of ALTER TABLE, 12-31
of CREATE TABLE, 15-17, 15-35

ENABLE STORAGE IN ROW clause
of ALTER TABLE, 12-104
of CREATE TABLE, 15-94

ENABLE TABLE LOCK clause
of ALTER TABLE, 12-161

ENABLE VALIDATE constraint state, 8-3
ENABLE_PARALLEL_DML hint, 2-98
encoding functions, 7-11
encryption, 15-63

of tablespaces, 8-52
encryption keys

generating, 12-18
managing, 10-5

END BACKUP clause
of ALTER DATABASE, 10-73
of ALTER DATABASE ... DATAFILE, 10-47
of ALTER TABLESPACE, 12-189

enterprise users
allowing connection as database users,

12-204
environment functions, 7-11
equality test, 6-4
equijoins, 9-13

defining for a dimension, 13-81
equivalency tests, 6-35
error logging

of DELETE operations, 15-209
of INSERT operations, 18-75
of MERGE operations, 19-1

ERROR_ON_OVERLAP_TIME session
parameter, 11-109

EXCEPTIONS INTO clause
of ALTER TABLE, 12-148

EXCHANGE PARTITION clause
of ALTER TABLE, 12-31, 12-72

EXCHANGE SUBPARTITION clause
of ALTER TABLE, 12-31, 12-72

exchanging partitions
restrictions on, 12-149

EXCLUDING NEW VALUES clause
of ALTER MATERIALIZED VIEW LOG, 11-44
of CREATE MATERIALIZED VIEW LOG,

14-47
EXCLUSIVE lock mode, 18-87
exclusive locks

row locks (TX), B-2
table locks (TM), B-3

EXECUTE object privilege
on a directory, 18-55

execution plans
determining, 18-17
dropping outlines for, 17-9
saving, 14-63

EXISTS condition, 6-22, 6-35
EXISTSNODE function, 7-123
EXP function, 7-124
EXPLAIN PLAN statement, 18-17
explicit data conversion, 2-47, 2-50
expressions

analytic view, 5-4, 5-16
CASE, 5-20
changing declared type of, 7-420
column, 5-22
comparing, 7-114
compound, 5-19
computing with the DUAL table, 9-19
CURSOR, 5-22
datetime, 5-24
in SQL syntax, 5-1
interval, 5-26
JSON Object Access Expressions, 5-27
lists of, 5-35
model, 5-30
object access, 5-32
placeholder, 5-32
scalar subqueries as, 5-33
simple, 5-3
type constructor, 5-33

extended rowids
base 64, 2-33
not directly available, 2-33

extensible indexing
example, F-1

EXTENT MANAGEMENT clause
of CREATE DATABASE, 13-60
of CREATE TABLESPACE, 15-152, 15-157

EXTENT MANAGEMENT DICTIONARY clause
of CREATE TABLESPACE, 15-166

EXTENT MANAGEMENT LOCAL clause
of CREATE DATABASE, 13-66

extents
allocating for partitions, 12-90
allocating for subpartitions, 12-90
allocating for tables, 12-90
restricting access by instances, 10-150
specifying maximum number for an object,

8-57
specifying number allocated upon object

creation, 8-56
specifying the first for an object, 8-55
specifying the percentage of size increase,

8-56
specifying the second for an object, 8-56

external functions, 13-106, 14-99

Index

Index-15

external LOBs, 2-28
external procedures, 14-99
external tables, 15-86

access drivers, 15-90
altering, 12-31
creating, 15-17
ORACLE_DATAPUMP access driver, 15-90
ORACLE_HDFS access driver, 15-90
ORACLE_HIVE access driver, 15-90
ORACLE_LOADER access driver, 15-90
restrictions on, 15-90

external users, 14-118, 15-186
EXTRACT (datetime) function, 7-125
EXTRACT (XML) function, 7-127
EXTRACTVALUE function, 7-128

F
FACT hint, 2-98
FAILED_LOGIN_ATTEMPTS parameter

of ALTER PROFILE, 11-87
of CREATE PROFILE, 14-108

failure groups
creating for a disk group, 10-123, 13-93

fast refresh, 14-38
FEATURE_DETAILS function, 7-132
FEATURE_ID function, 7-135
FEATURE_SET function, 7-137
FEATURE_VALUE function, 7-140
FETCH

row_limiting_clause, 19-39
files

specifying as a redo log file group, 8-33
specifying as data files, 8-33
specifying as temp files, 8-33

FILTER FACT keywords, 19-39
FIPS

compliance, C-32
flagging, 11-109

FIRST function, 7-143
FIRST_ROWS(n) hint, 2-98
FIRST_VALUE function, 7-145
FLAGGER session parameter, 11-109
flash cache, 8-52
FLASH_CACHE parameter

of STORAGE clause, 8-52
FLASHBACK ARCHIVE object privilege, 18-55
flashback data archives

creating, 13-102
dropping, 16-9
modifying, 10-145
privileges for, 18-30
specifying for a table, 12-93, 15-130

FLASHBACK DATABASE statement, 18-20

flashback queries, 19-39
pseudocolumns for, 3-6
using with inserts, 18-62, 19-149

FLASHBACK TABLE statement, 18-24
floating-point conditions, 6-8
floating-point numbers, 2-15

converting to, 7-383, 7-385
handling NaN, 7-233

FLOOR function, 7-147
FLUSH BUFFER_CACHE clause

of ALTER SYSTEM, 12-11
FLUSH GLOBAL CONTEXT clause

of ALTER SYSTEM, 12-11
FLUSH REDO clause

of ALTER SYSTEM, 12-12
FLUSH SHARED_POOL clause

of ALTER SYSTEM, 12-11
FM format model modifier, 2-77
FOR clause

of CREATE INDEXTYPE, 13-152
of EXPLAIN PLAN, 18-19, 18-24

FOR UPDATE clause
of SELECT, 19-39, 19-54

FORCE clause
of COMMIT, 13-5
of CREATE VIEW, 15-196
of DISASSOCIATE STATISTICS, 15-221
of DROP INDEX, 16-13
of DROP INDEXTYPE, 16-15
of DROP OPERATOR, 17-9
of DROP TYPE, 18-12
of REVOKE, 19-30
of ROLLBACK, 18-24, 19-37

force full database caching, 10-97
FORCE LOGGING clause

of ALTER DATABASE, 10-79
of ALTER TABLESPACE, 12-191
of CREATE CONTROLFILE, 13-55
of CREATE DATABASE, 13-65
of CREATE TABLESPACE, 15-163

FORCE PARALLEL DML clause
of ALTER SESSION, 11-103

foreign key constraints, 8-3
foreign tables

rowids of, 2-34
format models, 2-65

changing the return format, 2-79
date, 2-69

changing, 2-69
default format, 2-69
format elements, 2-70
maximum length, 2-69

modifiers, 2-77
number, 2-66
number, elements of, 2-67

Index

Index-16

format models (continued)
specifying, 2-78
XML, 2-81

formats
for dates and numbers. See format models,

2-65
of return values from the database, 2-65
of values stored in the database, 2-65

free lists
specifying for a table, partition, cluster, or

index, 8-58
specifying for LOBs, 15-96

FREELIST GROUPS parameter
of STORAGE clause, 8-58

FREELISTS parameter
of STORAGE clause, 8-58

FREEPOOLS parameter
of LOB storage, 15-96

FRESH_MV hint, 2-99
FROM clause

of CREATE PLUGGABLE DATABASE, 14-87
of queries, 9-14

FROM COLUMNS clause
of DISASSOCIATE STATISTICS, 15-221

FROM FUNCTIONS clause
of DISASSOCIATE STATISTICS, 15-221

FROM INDEXES clause
of DISASSOCIATE STATISTICS, 15-221

FROM INDEXTYPES clause
of DISASSOCIATE STATISTICS, 15-221

FROM PACKAGES clause
of DISASSOCIATE STATISTICS, 15-221

FROM TYPES clause
of DISASSOCIATE STATISTICS, 15-221

FROM_TZ function, 7-148
FULL hint, 2-99
full indexes, 13-111
full outer joins, 19-39
function expressions

built-in, 5-26
user-defined, 5-26

function-based indexes, 13-112
creating, 13-111
disabling, 10-150, 10-167
enabling, 10-150, 10-166
refreshing, 10-93

functions, 7-464
3GL,calling, 14-1
associating statistics types with, 12-229
avoiding run-time compilation, 10-148
built_in

as expressions, 5-26
calling, 12-255
changing the declaration of, 13-107
changing the definition of, 13-107

functions (continued)
defining an index on, 13-111
disassociating statistics types from, 15-220
executing, 12-255
external, 13-106, 14-99
inverse distribution, 7-262, 7-264
issuing COMMIT or ROLLBACK statements,

11-103
linear regression, 7-318
naming rules, 2-142
OLAP, 7-23
re-creating, 13-107, 13-157
recompiling invalid, 10-148
removing from the database, 16-10
statistics, assigning default cost, 12-231
statistics, defining default selectivity, 12-231
stored, 13-106
storing return value of, 12-255
synonyms for, 15-12
user-defined, 7-464

as expressions, 5-26
XML, 7-9

See also SQL functions
FUNCTIONS clause

of ASSOCIATE STATISTICS, 12-229, 12-231
of DISASSOCIATE STATISTICS, 15-220

FX format model modifier, 2-77

G
GATHER_OPTIMIZER_STATISTICS hint, 2-100
general comparison functions, 7-7
general recovery clause

of ALTER DATABASE, 10-51, 10-66
geoimaging, 2-41
global indexes

See indexes, globally partitioned
GLOBAL parameter

of CREATE SEQUENCE, 15-8
GLOBAL PARTITION BY HASH clause

of CREATE INDEX, 13-135
GLOBAL PARTITION BY RANGE clause

of CREATE INDEX, 13-118, 13-135
global sequences, 15-8
GLOBAL TEMPORARY clause

of CREATE TABLE, 15-53
global users, 14-118, 15-186
GLOBAL_TOPIC_ENABLED system parameter,

12-25
globally partitioned indexes, 13-111, 13-135
GRANT CONNECT THROUGH clause

of ALTER USER, 12-204, 12-207
GRANT statement

locks, B-6

Index

Index-17

GRAPHIC data type
DB2, 2-35
SQL/DS, 2-35

greater than or equal to tests, 6-4
greater than tests, 6-4
GREATEST function, 7-149
GROUP BY clause

CUBE extension, 19-84
identifying duplicate groupings, 7-150
of SELECT and subqueries, 19-39, 19-50
ROLLUP extension of, 19-84

group comparison conditions, 6-7
group separator

specifying, 2-67
GROUP_ID function, 7-150
GROUPING, 2-100
GROUPING function, 7-151
GROUPING Hint, 2-100
grouping sets, 19-85
GROUPING SETS clause

of SELECT and subqueries, 19-85
GROUPING_ID function, 7-152
groupings

filtering out duplicate, 7-150
GUARD ALL clause

of ALTER DATABASE, 10-99
GUARD clause

of ALTER DATABASE, 10-47
overriding, 11-100

GUARD NONE clause
of ALTER DATABASE, 10-100

GUARD STANDBY clause
of ALTER DATABASE, 10-99

H
hash clusters

creating, 13-42
range-partitioned, 13-43
single-table, creating, 13-42
specifying hash function for, 13-36

HASH hint, 2-101
HASH IS clause

of CREATE CLUSTER, 13-36
hash partitioning clause

of CREATE TABLE, 15-17, 15-51
hash partitions

adding, 12-31
coalescing, 12-128

HASHKEYS clause
of CREATE CLUSTER, 13-42

HAVING condition
of GROUP BY clause, 19-85

heap-organized tables
creating, 15-17

hexadecimal value
returning, 2-68

HEXTORAW function, 7-153
hierarchical functions, 7-8
hierarchical queries, 9-2, 19-39

child rows, 3-2, 9-4
illustrated, 3-3
leaf rows, 3-2
operators in, 4-5

CONNECT_BY_ROOT, 4-6
PRIOR, 4-5

ordering, 19-91
parent rows, 3-2, 9-4
pseudocolumns in, 3-1

CONNECT_BY_ISCYCLE, 3-1
CONNECT_BY_ISLEAF, 3-2
LEVEL, 3-2

retrieving root and node values, 7-362
hierarchical query clause

of SELECT and subqueries, 19-50
hierarchies

adding to a dimension, 10-110
altering, 10-149
creating, 13-108
dropping, 16-11
dropping from a dimension, 10-110
granting system privileges for, 18-30
of dimensions, defining, 13-81
retrieving data from, 19-39

HIERARCHY clause
of CREATE DIMENSION, 13-81, 13-82

hierarchy expressions
analytic view, 5-4

high water mark
of clusters, 10-42
of indexes, 10-150
of tables, 12-90, 12-223

hints, 9-2
ALL_ROWS, 2-92
APPEND, 2-92
APPEND_VALUES, 2-93
CACHE, 2-93
CLUSTER, 2-94
CLUSTERING, 2-95
CONTAINER, 2-95
CURSOR_SHARING_EXACT, 2-96
DISABLE_PARALLEL_DML, 2-96
DYNAMIC_SAMPLING, 2-97
ENABLE_PARALLEL_DML, 2-98
FACT, 2-98
FIRST_ROWS(n), 2-98
FRESH_MV, 2-99
FULL, 2-99
GATHER_OPTIMIZER_STATISTICS, 2-100
HASH, 2-101

Index

Index-18

hints (continued)
in SQL statements, 2-85
INDEX, 2-102
INDEX_ASC, 2-102
INDEX_COMBINE, 2-103
INDEX_DESC, 2-103
INDEX_FFS, 2-104
INDEX_JOIN, 2-104
INDEX_SS, 2-104
INDEX_SS_ASC, 2-105
INDEX_SS_DESC, 2-105
INMEMORY, 2-106
INMEMORY_PRUNING, 2-106
LEADING, 2-106
location syntax, 2-85
MERGE, 2-107
MODEL_MIN_ANALYSIS, 2-107
MONITOR, 2-108
NO_CLUSTERING, 2-109
NO_EXPAND, 2-109
NO_FACT, 2-110
NO_GATHER_OPTIMIZER_STATISTICS,

2-110
NO_INDEX, 2-110
NO_INDEX_FFS, 2-111
NO_INDEX_SS, 2-111
NO_INMEMORY, 2-112
NO_INMEMORY_PRUNING, 2-112
NO_MERGE, 2-112
NO_MONITOR, 2-113
NO_PARALLEL, 2-113
NO_PARALLEL_INDEX, 2-114
NO_PQ_CONCURRENT_UNION, 2-114
NO_PQ_SKEW, 2-115
NO_PUSH_PRED, 2-115
NO_PUSH_SUBQ, 2-115
NO_PX_JOIN_FILTER, 2-116
NO_QUERY_TRANSFORMATION, 2-116
NO_RESULT_CACHE, 2-116
NO_REWRITE, 2-116
NO_STAR_TRANSFORMATION, 2-117
NO_STATEMENT_QUEUING, 2-117
NO_UNNEST, 2-118
NO_USE_BAND, 2-118
NO_USE_CUBE, 2-118
NO_USE_HASH, 2-118
NO_USE_MERGE, 2-119
NO_USE_NL, 2-119
NO_XML_QUERY_REWRITE, 2-119
NO_XMLINDEX_REWRITE, 2-120
NO_ZONEMAP, 2-120
NOCACHE, 2-109
NOPARALLEL, 2-113
NOPARALLEL_INDEX, 2-114
NOREWRITE, 2-116

hints (continued)
OPT_PARAM, 2-121
ORDERED, 2-121
PARALLEL, 2-122
PARALLEL_INDEX, 2-124
passing to the optimizer, 19-149
PQ_CONCURRENT_UNION, 2-125
PQ_DISTRIBUTE, 2-125
PQ_FILTER, 2-128
PQ_SKEW, 2-128
PUSH_PRED, 2-128
PUSH_SUBQ, 2-129
PX_JOIN_FILTER, 2-129
QB_NAME, 2-129
REWRITE, 2-131
specifying a query block, 2-85
STAR_TRANSFORMATION, 2-131
STATEMENT_QUEUING, 2-132
syntax, 2-89
UNNEST, 2-133
USE_BAND, 2-133
USE_CONCAT, 2-133
USE_CUBE, 2-134
USE_HASH, 2-134
USE_MERGE, 2-134
USE_NL, 2-135
USE_NL_WITH_INDEX, 2-135

histograms
creating equiwidth, 7-438

Hybrid Columnar Compression, 15-77

I
IDENTIFIED BY clause

of ALTER ROLE. See CREATE ROLE, 11-92
of CREATE DATABASE LINK, 13-79

IDENTIFIED EXTERNALLY clause
of ALTER ROLE. See CREATE ROLE,

11-92, 14-118
of ALTER USER. See CREATE USER,

15-186
of CREATE ROLE, 14-118
of CREATE USER, 15-186

IDENTIFIED GLOBALLY clause
of ALTER ROLE. See CREATE ROLE, 11-92
of CREATE ROLE, 14-118
of CREATE USER, 15-186

identifier functions, 7-11
identity column, 15-61
IDLE_TIME parameter

of ALTER PROFILE, 11-87
IEEE754

floating-point arithmetic, 2-16
Oracle conformance with, 2-16

Index

Index-19

IGNORE_ROW_ON_DUPKEY_INDEX hint,
2-101

IMMEDIATE clause
of SET CONSTRAINTS, 19-137

implicit data conversion, 2-47, 2-50
IN conditions, 6-35
in-doubt transactions

forcing, 13-5
forcing commit of, 13-5
forcing rollback, 18-24, 19-37
rolling back, 19-36

INCLUDING CONTENTS clause
of DROP TABLESPACE, 18-7

INCLUDING DATAFILES clause
of ALTER DATABASE TEMPFILE DROP

clause, 10-78
INCLUDING NEW VALUES clause

of ALTER MATERIALIZED VIEW LOG, 11-44
of CREATE MATERIALIZED VIEW LOG,

14-47
INCLUDING TABLES clause

of DROP CLUSTER, 15-225
incomplete object types, 15-178

creating, 15-178
INCREMENT BY clause

of ALTER SEQUENCE. See CREATE
SEQUENCE, 11-98

INCREMENT BY parameter
of CREATE SEQUENCE, 15-5

incremental
and block change tracking, 10-96

INDEX clause
of ANALYZE, 12-223
of CREATE CLUSTER, 13-41

INDEX hint, 2-102
index keys

compression, 10-154
index partitions

creating subpartitions, 13-122
index subpartitions, 13-122
INDEX_ASC hint, 2-102
INDEX_COMBINE hint, 2-103
INDEX_DESC hint, 2-103
INDEX_FFS hint, 2-104
INDEX_JOIN hint, 2-104
INDEX_SS hint, 2-104
INDEX_SS_ASC hint, 2-105
INDEX_SS_DESC hint, 2-105
index-organized tables

bitmap indexes on, creating, 15-87
creating, 15-17
mapping tables, 12-155

creating, 15-87
moving, 12-131

merging contents of index blocks, 12-99

index-organized tables (continued)
modifying, 12-31, 12-98
moving, 12-155
overflow segments

specifying storage, 12-97, 15-114
partitioned, updating secondary indexes,

10-170
PCT_ACCESS_DIRECT statistics, 12-222
primary key indexes

coalescing, 12-96
rebuilding, 12-31
rowids of, 2-34
secondary indexes, updating, 10-169

indexed clusters
creating, 13-41

indexes, 10-150
advanced index compression of, 13-131
advanced index compression, enabling,

10-164
allocating new extents for, 10-150
application-specific, 13-150
ascending, 13-130
B-tree, 13-112
based on indextypes, 13-111
bitmap, 13-122
bitmap join, 13-111
changing attributes, 10-150
changing parallelism of, 10-150
collecting statistics on, 12-223
creating, 13-111
creating as usable or unusable, 13-142
creating on a cluster, 13-114
creating on a table, 13-114
deallocating unused space from, 10-150
descending, 13-130

and query rewrite, 13-130
as function-based indexes, 13-130

direct-path inserts, logging, 10-150
domain, 13-111, 13-112, 13-150
domain, example, F-1
dropping index partitions, 16-12
examples, 13-111
full, 13-111
full fast scans, 2-104
function-based, 13-112

creating, 13-111
global partitioned, creating, 13-118
globally partitioned, 13-111, 13-135

updating, 12-31
granting system privileges for, 18-30
invisible to the optimizer, 10-167, 13-133
join, bitmap, 13-111
local domain, 13-140
locally partitioned, 13-111
logging rebuild operations, 10-150

Index

Index-20

indexes (continued)
marking as USABLE or UNUSABLE, 10-167
merging block contents, 10-150
merging contents of index blocks, 10-167
merging contents of index partition blocks,

10-170
modifying attributes, 10-150
moving, 10-150
on clusters, 13-111
on composite-partitioned tables, 13-111
on composite-partitioned tables, creating,

13-121
on hash-partitioned tables, 13-111

creating, 13-121
on index-organized tables, 13-111
on list-partitioned tables

creating, 13-121
on nested table storage tables, 13-111
on partitioned tables, 13-111
on range-partitioned tables, 13-111
on range-partitioned tables, creating, 13-120
on scalar typed object attributes, 13-111
on table columns, 13-111
on XMLType tables, 13-144
online, 13-134
parallelizing creation of, 13-135
partial, 13-111
partitioned, 2-147, 13-112

user-defined, 13-135
partitioning, 13-135
partitions, 13-135

adding hash, 10-150
adding new, 10-150
changing default attributes, 10-150
changing physical attributes, 10-150
changing storage characteristics, 10-150
coalescing hash partitions, 10-150
deallocating unused space from, 10-150
dropping, 10-150
marking UNUSABLE, 10-150, 12-150
modifying the real characteristics, 10-150
preventing use of, 10-167
re-creating, 10-150
rebuilding, 10-150
rebuilding unusable, 12-150
removing, 10-150
renaming, 10-150
specifying tablespace for, 10-150,

10-164
splitting, 10-150

prefix compression of, 13-131
prefix compression, enabling, 10-164
preventing use of, 10-167
purging from the recycle bin, 19-20
re-creating, 10-150

indexes (continued)
rebuilding, 10-150
removing from the database, 16-12
renaming, 10-150, 10-167
reverse, 10-150, 10-163, 10-164, 13-133
specifying tablespace for, 10-150, 10-164
statistics on usage, 10-168
subpartitions

allocating extents for, 10-150
changing default attributes, 10-150
changing physical attributes, 10-150
changing storage characteristics, 10-150
deallocating unused space from, 10-150
marking UNUSABLE, 10-150
modifying, 10-150
moving, 10-150
preventing use of, 10-167
re-creating, 10-150
rebuilding, 10-150
renaming, 10-150
specifying tablespace for, 10-150,

10-164
tablespace containing, 13-131
unique, 13-122
unsorted, 13-133
used to enforce constraints, 12-120, 15-17
validating structure, 12-225

INDEXES clause
of ASSOCIATE STATISTICS, 12-229, 12-231
of DISASSOCIATE STATISTICS, 15-220

indexing property, 15-17
INDEXTYPE clause

of CREATE INDEX, 13-111, 13-117
indextypes

adding operators, 10-175
altering, 10-175
associating statistics types with, 12-229
changing implementation type, 10-175
comments on, 12-261
creating, 13-150
disassociating statistics types from, 15-220,

16-14
drop routines, invoking, 16-12
granting system privileges for, 18-30
indexes based on, 13-111
instances, 13-112
removing from the database, 16-14

INDEXTYPES clause
of ASSOCIATE STATISTICS, 12-229, 12-231
of DISASSOCIATE STATISTICS, 15-220

inequality test, 6-4
INHERIT PRIVILEGES object privilege

on a user, 18-58
INITCAP function, 7-153

Index

Index-21

INITIAL parameter
of STORAGE clause, 8-55

initialization parameters
changing session settings, 11-100
setting using ALTER SESSION, 11-109

INITIALIZED EXTERNALLY clause
of CREATE CONTEXT, 13-48

INITIALIZED GLOBALLY clause
of CREATE CONTEXT, 13-48

INITIALLY DEFERRED clause
of constraints, 8-3

INITIALLY IMMEDIATE clause
of constraints, 8-3

INITRANS parameter
of ALTER CLUSTER, 10-42
of ALTER INDEX, 10-150
of ALTER MATERIALIZED VIEW LOG, 11-39
of ALTER TABLE, 12-31
of CREATE INDEX. See CREATE TABLE,

13-130
of CREATE MATERIALIZED VIEW LOG. See

CREATE TABLE, 14-38
of CREATE MATERIALIZED VIEW. See

CREATE TABLE, 14-5
of CREATE TABLE, 8-50

inline analytic views, 19-39
inline constraints

of ALTER TABLE, 12-31
of CREATE TABLE, 15-17

inline views, 9-17
lateral, 19-67

INMEMORY hint, 2-106
INMEMORY_PRUNING hint, 2-106
inner joins, 9-14, 19-39
inner-N reporting, 7-328
INSERT

direct-path versus conventional, 18-62
INSERT clause

of MERGE, 19-3
INSERT statement, 18-62

append, 2-92, 2-93
error logging, 18-75

inserts
and simultaneous update, 19-1
conditional, 18-62
conventional, 18-62
direct-path, 18-62
multitable, 18-62

examples, 18-79
single-table, 18-62
using MERGE, 19-3

instance recovery
continue after interruption, 10-66

INSTANCE session parameter, 11-109

instances
making index extents available to, 10-150
setting parameters for, 12-21

INSTR function, 7-154
INSTR2 function, 7-154
INSTR4 function, 7-154
INSTRB function, 7-154
INSTRC function, 7-154
integers

generating unique, 15-1
in SQL syntax, 2-55
precision of, 2-56
syntax of, 2-55

integrity constraints
See constraints

internal LOBs, 2-28
International Organization for Standardization

(ISO), 1-1
standards, 1-1, C-1

INTERSECT set operator, 4-6
interval

arithmetic, 2-23
data types, 2-19
literals, 2-62

interval conditions, 6-34
INTERVAL DAY TO SECOND data type, 2-23
INTERVAL expressions, 5-26
interval partitioning, 12-124, 15-108

changing the interval, 12-124
INTERVAL YEAR TO MONTH data type, 2-23
INTO clause

of CALL, 12-255
of EXPLAIN PLAN, 18-19
of INSERT, 18-62

INVALIDATE GLOBAL INDEXES clause
of ALTER TABLE, 12-31

inverse distribution functions, 7-262, 7-264
invoker rights

altering for a Java class, 10-179
defining for a Java class, 13-156, 13-157

invoker’s rights views, 15-202
IS [NOT] EMPTY conditions, 6-13
IS ANY condition, 6-10
IS JSON condition, 6-24
IS OF type condition, 6-38
IS PRESENT condition, 6-11
ISO

See International Organization for Standardization
(ISO)

ITERATION_NUMBER function, 7-156

Index

Index-22

J
Java

class
creating, 13-156, 13-158
dropping, 16-16
resolving, 10-179, 13-158

Java source schema object
creating, 13-158

resource
creating, 13-156, 13-158
dropping, 16-16

schema object
name resolution of, 13-160

source
compiling, 10-179, 13-158
creating, 13-156
dropping, 16-16

job scheduler object privileges, 18-30
JOIN clause

of CREATE DIMENSION, 13-82
join groups

altering, 10-177
creating, 13-154
dropping, 16-15

JOIN KEY clause
of ALTER DIMENSION, 10-109
of CREATE DIMENSION, 13-81

join views
example, 15-207
making updatable, 15-204
modifying, 15-215, 18-68, 19-152

joins, 9-12
antijoins, 9-16
band, 9-13
conditions

defining, 9-13
cross, 19-78
equijoins, 9-13
full outer, 19-39
inner, 9-14, 19-39
left outer, 19-39
natural, 19-79
outer, 9-14

and data densification, 9-15
on grouped tables, 9-15
restrictions, 9-15

parallel, 2-125
right outer, 19-39
self, 9-14
semijoins, 9-16
without join conditions, 9-14

JSON data type, 2-31
JSON Object Access Expressions, 5-27
JSON Type Constructor function, 7-204

JSON_ARRAY function, 7-157
JSON_ARRAYAGG function, 7-160
JSON_DATAGUIDE function, 7-162
JSON_EQUAL condition, 6-26
JSON_EXISTS condition, 6-27
JSON_MERGEPATCH function, 7-164
JSON_OBJECT function, 7-165
JSON_OBJECTAGG function, 7-171
JSON_QUERY function, 7-173
JSON_SCALAR function, 7-179
JSON_SERIALIZE function, 7-180
JSON_TABLE function, 7-182
JSON_TEXTCONTAINS condition, 6-31
JSON_TRANSFORM function, 7-193
JSON_VALUE function, 7-197
Julian dates, 2-20

K
KEEP DATAFILES clause

of DROP PLUGGABLE DATABASE, 17-13
KEEP keyword

of FIRST function, 7-144
of LAST function, 7-144
with aggregate functions, 7-13

KEEP parameter
of CREATE SEQUENCE, 15-6

KEEP SEQUENCE object privilege
on a sequence, 18-57

key compression
See prefix compression

key management framework
granting system privileges for, 18-30
managing, 10-5

key-preserved tables, 15-204
keys, eliminating repetition, 10-150
keywords, 2-140

in object names, 2-140
optional, A-3
required, A-2

KILL SESSION clause
of ALTER SYSTEM, 12-13

KURTOSIS_POP function, 7-205
KURTOSIS_SAMP function, 7-205

L
LAG function, 7-206
large object functions, 7-8
large objects

See LOB data types
LAST function, 7-207
LAST_DAY function, 7-208
LAST_VALUE function, 7-209
lateral inline views, 19-67

Index

Index-23

LEAD function, 7-212
LEADING hint, 2-106
LEAST function, 7-213
left outer joins, 19-39
LENGTH function, 7-214
LENGTH2 function, 7-214
LENGTH4 function, 7-214
LENGTHB function, 7-214
LENGTHC function, 7-214
less than tests, 6-4
LEVEL clause

of ALTER DIMENSION, 10-109
of CREATE DIMENSION, 13-81, 13-82

level columns
specifying default values, 15-17

LEVEL pseudocolumn, 3-2, 19-39
levels

adding to a dimension, 10-110
dropping from a dimension, 10-110
of dimensions, defining, 13-81

libraries
creating, 14-1
granting system privileges for, 18-30
re-creating, 14-2
removing from the database, 17-1

library units
See Java schema objects

LIKE conditions, 6-15
linear regression functions, 7-318
LIST CHAINED ROWS clause

of ANALYZE, 12-227
list partitioning

adding default partition, 12-31
adding partitions, 12-31
adding values, 12-128, 12-129
creating a default partition, 15-17
creating partitions, 15-17
dropping values, 12-128, 12-129
merging default with nondefault partitions,

12-31
splitting default partition, 12-140

list subpartitions
adding, 12-31

LISTAGG function, 7-215
listeners

registering, 12-21
literals, 2-53

datetime, 2-58
interval, 2-62

LN function, 7-219
LNNVL function, 7-220
LOB columns

adding, 12-31
compressing, 15-97
creating from LONG columns, 2-17, 12-106

LOB columns (continued)
deduplication, 15-96
defining properties

for materialized views, 14-13
encrypting, 15-97
modifying, 12-105
modifying storage, 12-31
restricted in joins, 9-13
restrictions on, 2-28
storage characteristics of materialized views,

11-16
LOB data types, 2-28
LOB storage clause

for partitions, 12-31
of ALTER MATERIALIZED VIEW, 11-16,

11-21
of ALTER TABLE, 12-31, 12-53
of CREATE MATERIALIZED VIEW, 14-5,

14-13, 14-15
of CREATE TABLE, 15-17, 15-31

LOBs
attributes, initializing, 2-29
columns

difference from LONG and LONG RAW,
2-29

populating, 2-29
external, 2-28
internal, 2-28
locators, 2-28
logging attribute, 15-17
modifying physical attributes, 12-31
number of bytes manipulated in, 15-95
saving old versions, 15-95
saving values in a cache, 12-103, 15-125
specifying directories for, 13-87
storage

attributes, 15-17
characteristics, 8-48
in-line, 15-17

tablespace for
defining, 15-76

LOCAL clause
of CREATE INDEX, 13-111, 13-120

local users, 14-118, 15-185
locale independent, 2-71
locally managed tablespaces

altering, 12-185
storage attributes, 8-55

locally partitioned indexes, 13-111
LOCALTIMESTAMP function, 7-221
location transparency, 15-12
LOCK TABLE statement, 18-84
locking, overriding automatic, 18-84
locks, 18-84

data, B-2

Index

Index-24

locks (continued)
dictionary, B-6
row (TX), B-2
table (TM), B-3

See also table locks
log data

collection during update operations, 10-84
log file clauses

of ALTER DATABASE, 10-55
log files

adding, 10-47
dropping, 10-47
modifying, 10-47
registering, 10-90
renaming, 10-74
specifying for the database, 13-64

LOG function, 7-222
log groups

adding, 12-90
dropping, 12-90

LOGFILE clause
OF CREATE DATABASE, 13-64

LOGFILE GROUP clause
of CREATE CONTROLFILE, 13-50

logging
and redo log size, 8-44
specifying minimal, 8-44
supplemental

dropping, 10-85
supplemental, adding log groups, 12-31
supplemental, dropping log groups, 12-31

LOGGING clause,
of ALTER INDEX, 10-150
of ALTER MATERIALIZED VIEW, 11-29
of ALTER MATERIALIZED VIEW LOG, 11-37
of ALTER TABLE, 12-84
of ALTER TABLESPACE, 12-180
of CREATE MATERIALIZED VIEW, 14-5
of CREATE MATERIALIZED VIEW LOG,

14-43
of CREATE TABLE, 15-17
of CREATE TABLESPACE, 15-152

logical conditions, 6-9
logical standby database

aborting, 10-93
activating, 10-88
stopping, 10-93

LOGICAL_READS_PER_CALL parameter
of ALTER PROFILE, 11-87

LOGICAL_READS_PER_SESSION parameter
of ALTER PROFILE, 11-87
of ALTER RESOURCE COST, 11-91

LogMiner
granting system privileges for, 18-30
supplemental logging, 12-31, 15-17

LONG columns
and domain indexes, 12-106
converting to LOB, 2-17, 12-106
restrictions on, 2-17
to store text strings, 2-17
to store view definitions, 2-17
where referenced from, 2-17

LONG data type, 2-17
in triggers, 2-18

LONG RAW data type, 2-27
converting from CHAR data, 2-28

LONG VARGRAPHIC data type
DB2, 2-35
SQL/DS, 2-35

LOWER function, 7-222
LPAD function, 7-223
LTRIM function, 7-224

M
MAKE_REF function, 7-225
managed recovery

of database, 10-52
managed standby recovery

as background process, 10-71
create a logical standby from the physical

standby, 10-72
overriding delays, 10-71
returning control during, 10-72, 10-73
terminating existing, 10-72, 10-73

MANAGED STANDBY RECOVERY clause
of ALTER DATABASE, 10-70

MAPPING TABLE clause
of ALTER TABLE, 12-131, 12-155

mapping tables
of index-organized tables, 12-155, 15-87

modifying, 12-31
master databases, 14-5
master tables, 14-5
MATCH

row_pattern_clause, 19-39
MATCH_RECOGNIZE

of row_pattern_clause of SELECT, 19-54
row_pattern_clause, 19-39

MATCHES condition, 6-2
MATCHES operator, 4-1
materialized join views, 14-39
materialized view logs, 14-38

creating, 14-38
excluding new values from, 11-44
logging changes to, 11-37
object ID based, 11-43
parallelizing creation, 14-38
partition attributes, changing, 11-37
partitioned, 14-38

Index

Index-25

materialized view logs (continued)
physical attributes

changing, 11-37
specifying, 14-38

purging, 11-45, 14-47
refreshing, 11-45, 14-48
removing from the database, 17-5
required for fast refresh, 14-38
required for synchronous refresh, 14-38
rowid based, 11-44
saving new values in, 11-44
saving old values in, 14-47
staging logs, 14-38
storage attributes

specifying, 14-38
materialized views, 14-24

changing from rowid-based to primary-key-
based, 11-32

changing to primary-key-based, 11-43
complete refresh, 11-31, 14-26
compression of, 11-27, 14-22
constraints on, 8-3
creating, 14-5
creating comments about, 12-259
degree of parallelism, 11-16, 11-37

during creation, 14-5
enabling and disabling query rewrite, 14-32
examples, 14-5, 14-38
fast refresh, 11-30, 14-25, 14-26
for data warehousing, 14-5
for replication, 14-5
forced refresh, 11-31
granting system privileges for, 18-30
index characteristics

changing, 11-28
indexes that maintain, 14-24
join, 14-39
LOB storage attributes, 11-16
logging changes to, 11-29
master table, dropping, 17-5
object type, creating, 14-5
partitions, 11-16

compression of, 11-27, 14-22
physical attributes, 14-5

changing, 11-16, 11-46
primary key, 14-28

recording values in master table, 11-43
query rewrite

eligibility for, 8-3
enabling and disabling, 11-33

re-creating during refresh, 11-31
refresh, 10-93

after DML on master table, 11-31, 14-27
mode, changing, 11-16
on next COMMIT, 11-31, 14-26

materialized views (continued)
refresh (continued)
using trusted constraints, 14-30

refresh, time, changing, 11-16
refreshing, 10-93
removing from the database, 17-3
restricting scope of, 14-5
retrieving data from, 19-39
revalidating, 11-35
rowid, 14-5
rowid values

recording in master table, 11-43
saving blocks in a cache, 11-29
storage attributes, 14-5

changing, 11-16, 11-46
subquery, 14-5
suppressing creation of default index, 14-24
synonyms for, 15-12
when to populate, 14-5

MAX function, 7-226
MAXDATAFILES parameter

of CREATE CONTROLFILE, 13-55
of CREATE DATABASE, 13-63

MAXEXTENTS parameter
of STORAGE clause, 8-57

MAXINSTANCES parameter
of CREATE CONTROLFILE, 13-55
OF CREATE DATABASE, 13-63

MAXLOGFILES parameter
of CREATE CONTROLFILE, 13-54
of CREATE DATABASE, 13-65

MAXLOGHISTORY parameter
of CREATE CONTROLFILE, 13-55
of CREATE DATABASE, 13-65

MAXLOGMEMBERS parameter
of CREATE CONTROLFILE, 13-54
of CREATE DATABASE, 13-65

MAXSIZE clause
of ALTER DATABASE, 10-55

MAXTRANS parameter
of physical_attributes_clause, 8-51

MAXVALUE parameter
of ALTER SEQUENCE. See CREATE

SEQUENCE, 11-98
of CREATE SEQUENCE, 15-5

measure expressions
analytic view, 5-4

MEASURES
query_block, 19-39

media recovery
avoid on startup, 10-76
designing, 10-66
disabling, 10-73
from specified redo logs, 10-66
of data files, 10-66

Index

Index-26

media recovery (continued)
of database, 10-66
of standby database, 10-66
of tablespaces, 10-66
performing ongoing, 10-70
preparing for, 10-79
restrictions, 10-67
sustained standby recovery, 10-70

MEDIAN function, 7-227
median values, 7-264
MEMBER conditions, 6-14
membership conditions, 6-14, 6-35
MERGE ANY VIEW system privilege, 18-51
MERGE hint, 2-107
MERGE PARTITIONS clause

of ALTER TABLE, 12-31
MERGE statement, 19-1

deletes during, 19-1
error logging, 19-1
inserts during, 19-1
updates during, 19-1

MERGE VIEW object privilege on a view, 18-59
merge_insert_clause

of MERGE, 19-1
migrated rows

listing, 12-227
of clusters, 12-220

MIN function, 7-230
MINEXTENTS parameter

of STORAGE clause, 8-56
MINIMIZE RECORDS PER BLOCK clause

of ALTER TABLE, 12-92
MINIMUM EXTENT clause

of ALTER TABLESPACE, 12-186
of CREATE TABLESPACE, 15-161

mining models
auditing, 12-240
comments on, 12-261

MINUS set operator, 4-6
MINVALUE parameter

of ALTER SEQUENCE. See CREATE
SEQUENCE, 11-97

of CREATE SEQUENCE, 15-5
MOD function, 7-231
MODE clause

of LOCK TABLE, 18-84
MODEL clause

of SELECT, 19-39, 19-51
model conditions, 6-10

IS ANY, 6-10
IS PRESENT, 6-11

model expression, 5-30
model functions, 7-23
MODEL_MIN_ANALYSIS hint, 2-107

MODIFY clause
of ALTER TABLE, 12-105

MODIFY CONSTRAINT clause
of ALTER TABLE, 12-31, 12-50
of ALTER VIEW, 12-219

MODIFY DEFAULT ATTRIBUTES clause
of ALTER INDEX, 10-150, 10-155
of ALTER TABLE, 12-31

MODIFY LOB storage clause
of ALTER MATERIALIZED VIEW, 11-16,

11-22
of ALTER TABLE, 12-31

MODIFY NESTED TABLE clause
of ALTER TABLE, 12-31, 12-49

MODIFY PARTITION clause
of ALTER INDEX, 10-150
of ALTER MATERIALIZED VIEW, 11-28
of ALTER TABLE, 12-125

MODIFY scoped_table_ref_constraint clause
of ALTER MATERIALIZED VIEW, 11-16

MODIFY SUBPARTITION clause
of ALTER INDEX, 10-150

MODIFY VARRAY clause
of ALTER TABLE, 12-31, 12-56

MON datetime format element, 2-75
MONITOR hint, 2-108
MONITORING USAGE clause

of ALTER INDEX, 10-168
MONTH datetime format element, 2-75
MONTHS_BETWEEN function, 7-232
MOUNT clause

of ALTER DATABASE, 10-64
MOVE clause

of ALTER TABLE, 12-31, 12-78
of CREATE PLUGGABLE DATABASE, 14-94

MOVE ONLINE clause
of ALTER TABLE, 12-155

MOVE SUBPARTITION clause
of ALTER TABLE, 12-31

MTS
See shared server

multi-threaded server
See shared server

multilevel collections, 15-100
multiset conditions, 6-12
MULTISET EXCEPT operator, 4-7
MULTISET INTERSECT operator, 4-8
MULTISET keyword

of CAST function, 7-60
multiset operators, 4-7

MULTISET EXCEPT, 4-7
MULTISET INTERSECT, 4-8
MULTISET UNION, 4-9

MULTISET UNION operator, 4-9

Index

Index-27

multitable inserts, 18-62
conditional, 18-62
examples, 18-79
unconditional, 18-62

multitenant container databases
See CDBs

N
NAME clause

of SET TRANSACTION, 19-142
NAMED clause

of CREATE JAVA, 13-158
namespaces

and object naming rules, 2-140
database, 2-141
for nonschema objects, 2-141
for schema objects, 2-140

NANVL function, 7-233
national character set

changing, 10-94
multibyte character data, 2-31
variable-length strings, 2-12

NATIONAL CHARACTER SET parameter
of CREATE DATABASE, 13-63

natural joins, 19-79
NCHAR data type, 2-10
NCHR function, 7-234
NCLOB data type, 2-31
nested subqueries, 9-17
NESTED TABLE clause

of ALTER TABLE, 12-31, 12-51
of CREATE TABLE, 15-17, 15-30

nested tables, 2-37, 6-12, 7-267, 7-335
changing returned value, 12-31
combining, 4-7
compared with varrays, 2-46
comparison rules, 2-46
creating, 15-178
creating from existing columns, 7-84
defining as index-organized tables, 12-31
determining hierarchy, 6-14
dropping the body of, 18-13
dropping the specification of, 18-11
in materialized views, 14-13, 14-14
indexing columns of, 13-111
modifying, 12-31
modifying column properties, 12-51
multilevel, 15-100
partitioned nested table columns, 12-140
storage characteristics of, 12-31, 15-17

NEW_TIME function, 7-234
NEXT clause

of ALTER MATERIALIZED VIEW ...
REFRESH, 11-32

NEXT parameter
of STORAGE clause, 8-56

NEXT_DAY function, 7-235
NEXTVAL pseudocolumn, 3-3, 15-2
NLS_CHARSET_DECL_LEN function, 7-236
NLS_CHARSET_ID function, 7-236
NLS_CHARSET_NAME function, 7-237
NLS_COLLATION_ID function, 7-238
NLS_COLLATION_NAME function, 7-238
NLS_DATE_LANGUAGE initialization parameter,

2-75
NLS_INITCAP function, 7-240
NLS_LANGUAGE initialization parameter, 2-75
NLS_LOWER function, 7-241
NLS_TERRITORY initialization parameter, 2-75
NLS_UPPER function, 7-241
NLSSORT function, 7-242
NO FORCE LOGGING clause

of ALTER DATABASE, 10-79
of ALTER TABLESPACE, 12-191

NO_CLUSTERING hint, 2-109
NO_EXPAND hint, 2-109
NO_FACT hint, 2-110
NO_GATHER_OPTIMIZER_STATISTICS hint,

2-110
NO_INDEX hint, 2-110
NO_INDEX_FFS hint, 2-111
NO_INDEX_SS hint, 2-111
NO_INMEMORY hint, 2-112
NO_INMEMORY_PRUNING hint, 2-112
NO_MERGE hint, 2-112
NO_MONITOR hint, 2-113
NO_PARALLEL hint, 2-113
NO_PARALLEL_INDEX, 2-114
NO_PQ_CONCURRENT_UNION hint, 2-114
NO_PQ_SKEW hint, 2-115
NO_PUSH_PRED hint, 2-115
NO_PUSH_SUBQ hint, 2-115
NO_PX_JOIN_FILTER hint, 2-116
NO_QUERY_TRANSFORMATION hint, 2-116
NO_RESULT_CACHE hint, 2-116
NO_REWRITE hint, 2-116
NO_STAR_TRANSFORMATION hint, 2-117
NO_STATEMENT_QUEUING hint, 2-117
NO_UNNEST hint, 2-118
NO_USE_BAND hint, 2-118
NO_USE_CUBE hint, 2-118
NO_USE_HASH hint, 2-118
NO_USE_MERGE hint, 2-119
NO_USE_NL hint, 2-119
NO_XML_QUERY_REWRITE hint, 2-119
NO_XMLINDEX_REWRITE hint, 2-120
NO_ZONEMAP hint, 2-120
NOARCHIVELOG clause

of ALTER DATABASE, 10-55

Index

Index-28

NOARCHIVELOG clause (continued)
of CREATE CONTROLFILE, 13-55
OF CREATE DATABASE, 10-66, 13-65

NOAUDIT statement, 19-10
for unified auditing, 19-15
locks, B-6

NOCACHE clause
of ALTER MATERIALIZED VIEW, 11-29
of ALTER MATERIALIZED VIEW LOG, 11-43
of ALTER SEQUENCE. See CREATE

SEQUENCE, 11-98
of ALTER TABLE, 15-125
of CREATE CLUSTER, 13-43
of CREATE MATERIALIZED VIEW, 14-23
of CREATE MATERIALIZED VIEW LOG,

14-44
of CREATE SEQUENCE, 15-6

NOCACHE hint, 2-109
NOCOMPRESS clause

of ALTER INDEX ... REBUILD, 13-131
of CREATE TABLE, 15-87

NOCOPY clause
of CREATE PLUGGABLE DATABASE, 14-94

NOCYCLE parameter
of ALTER SEQUENCE. See CREATE

SEQUENCE, 11-97
of CREATE SEQUENCE, 15-6

NOFORCE clause
of CREATE JAVA, 13-158
of CREATE VIEW, 15-196

NOKEEP parameter
of CREATE SEQUENCE, 15-7

NOLOGGING mode
and force logging mode, 8-43
for nonpartitioned objects, 8-43
for partitioned objects, 8-43

NOMAXVALUE parameter
of ALTER SEQUENCE. See CREATE

SEQUENCE, 11-97
of CREATE SEQUENCE, 15-5

NOMINIMIZE RECORDS PER BLOCK clause
of ALTER TABLE, 12-92

NOMINVALUE parameter
of ALTER SEQUENCE. See CREATE

SEQUENCE, 11-97
of CREATE SEQUENCE, 15-5

NOMONITORING USAGE clause
of ALTER INDEX, 10-168

NONE clause
of SET ROLE, 19-139

nonempty subsets of, 7-267
nonequivalency tests, 6-35
nonschema objects

list of, 2-137
namespaces, 2-141

NOORDER parameter
of ALTER SEQUENCE. See CREATE

SEQUENCE, 11-98
of CREATE SEQUENCE, 15-6

NOPARALLEL clause
of CREATE INDEX, 8-47, 15-126

NOPARALLEL hint, 2-113
NOPARALLEL_INDEX hint, 2-114
NORELY clause

of constraints, 8-3
NORESETLOGS clause

of CREATE CONTROLFILE, 13-54
NOREVERSE parameter

of ALTER INDEX ... REBUILD, 10-163,
10-164

NOREWRITE hint, 2-116
NOROWDEPENDENCIES clause

of CREATE CLUSTER, 13-43
of CREATE TABLE, 15-127

NOSORT clause
of ALTER INDEX, 13-133

NOT condition, 6-9
NOT DEFERRABLE clause

of constraints, 8-3
NOT IDENTIFIED clause

of ALTER ROLE. See CREATE ROLE, 11-92
of CREATE ROLE, 14-118

NOT IN subqueries
converting to NOT EXISTS subqueries,

7-220
NOT NULL clause

of CREATE TABLE, 15-17
NOWAIT clause

of LOCK TABLE, 18-87
NTH_VALUE function, 7-245
NTILE function, 7-247
null, 2-82

difference from zero, 2-82
in conditions, 2-83

table of, 2-83
in functions, 7-2
with comparison conditions, 2-83

null conditions, 6-21
NULL-related functions, 7-11
NULLIF function, 7-248

as a form of CASE expression, 7-248
NUMBER data type, 2-13

converting to VARCHAR2, 2-66
precision, 2-13
scale, 2-13

number format models, 2-66
number functions, 7-4
numbers

comparison rules, 2-42
floating-point, 2-13, 2-15

Index

Index-29

numbers (continued)
in SQL syntax, 2-55
precision of, 2-57
spelling out, 2-77
syntax of, 2-56

numeric data type, 2-13
numeric functions, 7-4
numeric precedence, 2-17
NUMTODSINTERVAL function, 7-249
NUMTOYMINTERVAL function, 7-250
NVARCHAR2 data type, 2-12
NVL function, 7-251
NVL2 function, 7-252

O
object access expressions, 5-32
OBJECT IDENTIFIER clause

of CREATE TABLE, 15-17
object identifiers, 2-37

contained in REFs, 2-37
primary key, 15-17
specifying, 15-17
specifying an index on, 15-17
system-generated, 15-17

object instances
types of, 6-38

object privileges
granting, 14-116

multiple, 14-123
on specific columns, 18-30

on a database object
revoking, 19-24

revoking, 19-26
from a role, 19-24, 19-29
from a user, 19-24, 19-29
from PUBLIC, 19-29

object reference functions, 7-22
object tables

adding rows to, 18-62
as part of hierarchy, 15-17
creating, 15-17, 15-20
querying, 15-17
system-generated column name, 15-134,

15-136, 15-200, 15-201
updating to latest version, 12-31
upgrading, 12-31

object type columns
defining properties

for materialized views, 14-13, 14-14
in a type hierarchy, 15-17
membership in hierarchy, 12-31
modifying properties

for tables, 12-31, 12-51
substitutability, 12-31

object type materialized views
creating, 14-5

object types, 2-36
associating statistics types with, 12-229
attributes, 2-150

in a type hierarchy, 15-17
membership in hierarchy, 12-31
substitutability, 12-31

bodies
creating, 15-180
re-creating, 15-181

comparison rules, 2-46
MAP function, 2-46
ORDER function, 2-46

components of, 2-36
creating, 15-178
defining member methods of, 15-180
disassociating statistics types from, 15-220,

18-11
dropping the body of, 18-13
dropping the specification of, 18-11
granting system privileges for, 18-30
identifiers, 3-8
incomplete, 15-178
methods, 2-150
privileges on subtypes, 18-40
references to. See REFs, 2-37
statistics types, 12-229
values of, 3-8

object views, 15-192
base tables

adding rows, 18-62
creating, 15-200
defining, 15-192
querying, 15-192

OBJECT_ID pseudocolumn, 3-8, 15-134, 15-136,
15-200, 15-201

OBJECT_VALUE pseudocolumn, 3-8
objects

See object types or database objects
ODCIIndexInsert method

indextype support of, 10-175, 13-150
OF clause

of CREATE VIEW, 15-200
of CREATE OPERATOR, 14-60
OFFLINE clause

of ALTER TABLESPACE, 12-192
of CREATE TABLESPACE, 15-165

OFFSET
row_limiting_clause, 19-39

OIDINDEX clause
of CREATE TABLE, 15-17

OIDs
See object identifiers

OLAP functions, 7-23

Index

Index-30

ON clause
of CREATE OUTLINE, 14-66

ON COMMIT clause
of CREATE TABLE, 15-73

ON DEFAULT clause
of AUDIT, 12-240
of NOAUDIT, 19-10

ON DELETE CASCADE clause
of constraints, 8-3

ON DELETE SET NULL clause
of constraints, 8-3

ON DIRECTORY clause
of AUDIT, 12-240
of NOAUDIT, 19-10

ON MINING MODEL clause
of AUDIT, 12-240

ON object clause
of NOAUDIT, 19-10
of REVOKE, 19-24

ON PREBUILT TABLE clause
of CREATE MATERIALIZED VIEW, 14-19

online backup
of tablespaces, ending, 12-189

ONLINE clause
of ALTER TABLESPACE, 12-192
of CREATE INDEX, 13-134
of CREATE TABLESPACE, 15-165

online indexes, 13-134
rebuilding, 12-155

online redo logs
reinitializing, 10-80

OPEN clause
of ALTER DATABASE, 10-64

OPEN READ ONLY clause
of ALTER DATABASE, 10-47

OPEN READ WRITE clause
of ALTER DATABASE, 10-47

operands, 4-1
operating system files

dropping, 18-8
removing, 10-78

operators, 4-1
adding to indextypes, 10-176
altering, 11-50
arithmetic, 4-2
binary, 4-1
COLLATE, 4-3
comments on, 12-261
concatenation, 4-4
CONNECT_BY_ROOT, 4-6
dropping from indextypes, 10-176
granting system privileges for, 18-30
MULTISET EXCEPT, 4-7
MULTISET INTERSECT, 4-8
MULTISET UNION, 4-9

operators (continued)
precedence, 4-2
PRIOR, 4-5
set, 4-6
SHARD_CHUNK_ID, 4-10
specifying implementation of, 14-60
unary, 4-1
user-defined, 4-11

binding to a function, 11-50, 14-59
compiling, 11-50
creating, 14-59
dropping, 17-8
how bindings are implemented, 14-62
implementation type, 14-62

OPT_PARAM hint, 2-121
OPTIMAL parameter

of STORAGE clause, 8-59
OR condition, 6-10
OR REPLACE clause

of CREATE CONTEXT, 13-47
of CREATE DIRECTORY, 13-88
of CREATE FUNCTION, 13-107, 13-157
of CREATE LIBRARY, 14-2
of CREATE OUTLINE, 14-65
of CREATE PACKAGE, 14-68
of CREATE PACKAGE BODY, 14-70
of CREATE PROCEDURE, 14-100
of CREATE TRIGGER, 15-177
of CREATE TYPE, 15-180
of CREATE TYPE BODY, 15-181
of CREATE VIEW, 15-196

ORA_DST_AFFECTED function, 7-255
ORA_DST_CONVERT function, 7-255
ORA_DST_ERROR function, 7-256
ORA_HASH function, 7-257
ORA_INVOKING_USER function, 7-258
ORA_INVOKING_USERID function, 7-258
ORA_ROWSCN pseudocolumn, 3-9
Oracle ADVM volumes, 10-134
Oracle Automatic Storage Management

migrating nodes in a cluster, 12-15
Oracle Call Interface, 1-3
oracle machine learning for SQL functions, 7-9
Oracle reserved words, E-1
Oracle Text

built-in conditions, 6-2
CATSEARCH, 6-2
CONTAINS, 6-2
creating domain indexes, 13-139
MATCHES, 6-2
operators, 4-1

CATSEARCH, 4-1
CONTAINS, 4-1
MATCHES, 4-1
SCORE, 4-1

Index

Index-31

Oracle Tools
support of SQL, 1-3

ORDER BY clause
of queries, 9-12
of SELECT, 9-12, 19-39, 19-53

with ROWNUM, 3-12
ORDER clause

of ALTER SEQUENCE. See CREATE
SEQUENCE, 11-98

ORDER parameter
of CREATE SEQUENCE, 15-6

ORDER SIBLINGS BY clause
of SELECT, 19-91

ORDERED hint, 2-121
ordinal numbers

specifying, 2-77
spelling out, 2-77

ORGANIZATION EXTERNAL clause
of CREATE TABLE, 15-17, 15-86

ORGANIZATION HEAP clause
of CREATE TABLE, 15-85

ORGANIZATION INDEX clause
of CREATE TABLE, 15-85

out-of-line constraints
of CREATE TABLE, 15-17

outer joins, 9-14
restrictions, 9-15

outlines
assign to a different category, 11-54
assigning to a different category, 11-53,

11-54
copying, 14-65
creating, 14-63
creating on statements, 14-66
dropping from the database, 17-9
enabling and disabling dynamically, 14-64
for use by current session, 14-65
for use by PUBLIC, 14-65
granting system privileges for, 18-30
private, use by the optimizer, 11-109
rebuilding, 11-53, 11-54
recompiling, 11-54
renaming, 11-53, 11-54
replacing, 14-65
storing groups of, 14-65
use by the optimizer, 12-25
use to generate execution plans, 11-109
used to generate execution plans, 14-63

OVER clause
of analytic functions, 7-14

OVERFLOW clause
of ALTER INDEX, 10-157
of ALTER TABLE, 12-31
of CREATE TABLE, 15-88

P
P.M. datetime format element, 2-75
package bodies

creating, 14-68
re-creating, 14-70
removing from the database, 17-11

packaged procedures
dropping, 17-14

packages
associating statistics types with, 12-229
creating, 14-67
disassociating statistics types from, 15-220,

17-10
redefining, 14-68
removing from the database, 17-10
synonyms for, 15-12

PACKAGES clause
of ASSOCIATE STATISTICS, 12-229, 12-231
of DISASSOCIATE STATISTICS, 15-220

PARALLEL clause
of ALTER CLUSTER, 10-44, 10-45
of ALTER INDEX, 10-150
of ALTER MATERIALIZED VIEW, 11-16,

11-23
of ALTER MATERIALIZED VIEW LOG,

11-37, 11-40
of ALTER TABLE, 12-31
of CREATE CLUSTER, 13-36
of CREATE INDEX, 13-135
of CREATE MATERIALIZED VIEW, 14-5,

14-17
of CREATE MATERIALIZED VIEW LOG,

14-38, 14-42
of CREATE TABLE, 15-17, 15-51

parallel execution, 8-45
hints, 2-122
of DDL statements, 11-103
of DML statements, 11-103

PARALLEL hint, 2-122
PARALLEL_INDEX hint, 2-124
parameter files

creating, 14-70
from memory, 14-72

parameters
in syntax

optional, A-3
required, A-2

PARAMETERS clause
of CREATE INDEX, 13-140, 13-141

partial indexes, 13-111
PARTITION ... LOB storage clause

of ALTER TABLE, 12-31
PARTITION BY HASH clause

of CREATE TABLE, 15-17, 15-40

Index

Index-32

PARTITION BY LIST clause
of CREATE TABLE, 15-17, 15-41

PARTITION BY RANGE clause
of CREATE TABLE, 15-17, 15-40

PARTITION BY REFERENCE clause
of CREATE TABLE, 15-42, 15-119

PARTITION clause
of ANALYZE, 12-223
of CREATE INDEX, 13-136
of CREATE TABLE, 15-109
of DELETE, 15-213
of INSERT, 18-69
of LOCK TABLE, 18-84
of UPDATE, 19-153

partition-extended table names
in DML statements, 2-148
restrictions on, 2-147
syntax, 2-147

partitioned index-organized tables
secondary indexes, updating, 10-170

partitioned indexes, 2-147, 13-111, 13-112
local, creating, 13-120
user-defined, 13-135

partitioned tables, 2-147
partitioning

by hash, 15-17, 15-40
by list, 15-17, 15-41
by range, 15-17, 15-40
by reference, 15-42, 15-119
clauses

of ALTER INDEX, 10-155
of ALTER TABLE, 12-122

interval, 15-108
of materialized view logs, 11-37, 14-38
of materialized views, 11-16, 14-5, 14-9
range with interval partitions, 15-108
referential constraint, 12-119, 15-119
system, 15-120

partitions
adding, 12-122
adding rows to, 18-62
allocating extents for, 12-90
based on literal values, 15-17
composite

specifying, 15-115
converting into nonpartitioned tables, 12-31
deallocating unused space from, 12-90
dropping, 12-136
exchanging with tables, 12-72
extents

allocating for an index, 10-150
hash

adding, 12-31
coalescing, 12-31
specifying, 15-17

partitions (continued)
index, 13-135
inserting rows into, 18-69
list, adding, 12-31
LOB storage characteristics of, 12-31
locking, 18-84
logging attribute, 15-17
logging insert operations, 12-84
merging, 12-31
modifying, 12-122, 12-125
physical attributes

changing, 12-83
range

adding, 12-31
specifying, 15-17

removing rows from, 12-31, 15-213
renaming, 12-31
revising values in, 19-153
splitting, 12-140
storage characteristics, 8-48
tablespace for

defining, 15-76
PASSWORD EXPIRE clause

of ALTER USER. See CREATE USER,
12-207

of CREATE USER, 15-189
PASSWORD_GRACE_TIME parameter

of ALTER PROFILE, 11-87
of CREATE PROFILE, 14-108

PASSWORD_LIFE_TIME parameter
of ALTER PROFILE, 11-87
of CREATE PROFILE, 14-108

PASSWORD_LOCK_TIME parameter
of ALTER PROFILE, 11-87
of CREATE PROFILE, 14-108

PASSWORD_REUSE_MAX parameter
of ALTER PROFILE, 11-87
of CREATE PROFILE, 14-108

PASSWORD_REUSE_TIME parameter
of ALTER PROFILE, 11-87
of CREATE PROFILE, 14-108

PASSWORD_VERIFY_FUNCTION parameter
of ALTER PROFILE, 11-87
of CREATE PROFILE, 14-109

passwords
expiration of, 15-189
grace period, 14-101
guaranteeing complexity, 14-101
limiting use and reuse, 14-101
locking, 14-101
making unavailable, 14-101
parameters

of CREATE PROFILE, 14-103
special characters in, 15-185

PATH function, 7-259

Index

Index-33

PATH_VIEW, 6-22, 6-23
PATTERN

row_pattern_clause, 19-39
pattern-matching conditions, 6-15
PCT_ACCESS_DIRECT statistics

for index-organized tables, 12-222
PCTFREE parameter

of ALTER CLUSTER, 10-42
of ALTER INDEX, 10-150
of ALTER MATERIALIZED VIEW LOG, 11-39
of ALTER TABLE, 12-31
of CREATE MATERIALIZED VIEW LOG. See

CREATE TABLE., 14-38
of CREATE MATERIALIZED VIEW. See

CREATE TABLE., 14-5
of CREATE TABLE, 8-49

PCTINCREASE parameter
of STORAGE clause, 8-56

PCTTHRESHOLD parameter
of CREATE TABLE, 15-17

PCTUSED parameter
of ALTER CLUSTER, 10-42
of ALTER INDEX, 10-150
of ALTER MATERIALIZED VIEW LOG, 11-39
of ALTER TABLE, 12-31
of CREATE INDEX. See CREATE TABLE,

13-130
of CREATE MATERIALIZED VIEW LOG. See

CREATE TABLE., 14-38
of CREATE MATERIALIZED VIEW. See

CREATE TABLE., 14-5
of CREATE TABLE, 8-49

PCTVERSION parameter
of LOB storage, 15-95
of LOB storage clause, 12-117

PDBs, 14-72
administrative user, 14-81
backup, 11-72
changing

global name, 11-67
state, 11-72, 11-76
storage limits, 11-68

cloning, 14-86
creating

by cloning a source PDB, 14-86
using the seed database, 14-80

default edition, setting, 11-67
examples

creating, 14-72
dropping, 17-11
modifying, 11-56

generating file names, 14-82
granting system privileges for, 18-30
modifying data files, 11-67
modifying temporary files, 11-67

PDBs (continued)
plugging into a CDB, 14-92
recovery, 11-72
setting the time zone of, 11-67
storage limits, 14-81
unplugging, 11-65
XML file for plugging in, 14-92

PERCENT_RANK function, 7-260
PERCENTILE_CONT function, 7-262
PERCENTILE_DISC function, 7-264
PERMANENT clause

of ALTER TABLESPACE, 12-193
physical attributes clause

of ALTER CLUSTER, 10-43
of ALTER INDEX, 10-150
of ALTER MATERIALIZED VIEW LOG, 11-39
of ALTER TABLE, 12-83
of CREATE CLUSTER, 13-38
of CREATE MATERIALIZED VIEW, 14-11
of CREATE TABLE, 15-17, 15-36

physical standby database
activating, 10-88
converting to snapshot standby database,

10-93
pivot operations, 19-75

examples, 19-124
syntax, 19-46

placeholder expressions, 5-32
plan management

granting system privileges for, 18-30
plan stability, 14-63
PLAN_TABLE sample table, 18-17
pluggable databases

See PDBs
PM datetime format element, 2-75
POSIX regular expression standard, D-1
POWER function, 7-266
POWERMULTISET function, 7-267
POWERMULTISET_BY_CARDINALITY function,

7-268
PQ_CONCURRENT_UNION hint, 2-125
PQ_DISTRIBUTE hint, 2-125
PQ_FILTER hint, 2-128
PQ_SKEW hint, 2-128
precedence

of conditions, 6-3
of numbers, 2-17
of operators, 4-2

precision
number of digits of, 2-57
of NUMBER data type, 2-13

precompilers, 1-3
predefined roles, 18-30
PREDICTION function, 7-269
PREDICTION_BOUNDS function, 7-274

Index

Index-34

PREDICTION_COST function, 7-275
PREDICTION_DETAILS function, 7-279
PREDICTION_PROBABILITY function, 7-284
PREDICTION_SET function, 7-288
prefix compression, 15-87

definition, 13-131
disabling, 13-131
enabling, 10-164
of index rebuild, 10-164
of index-organized tables, 15-87

PREPARE TO SWITCHOVER clause
of ALTER DATABASE, 10-91

PRESENTNNV function, 7-291
PRESENTV function, 7-293
pretty-printing of XML output, 7-458
PREVIOUS function, 7-294
primary database

converting to physical standby database,
10-93

PRIMARY KEY clause
of constraints, 8-3
of CREATE TABLE, 15-17

primary key constraints, 8-3
enabling, 15-128
index on, 15-17

primary keys
generating values for, 15-1

PRIOR clause
of hierarchical queries, 9-2

PRIOR operator, 4-5
PRIVATE clause

of CREATE OUTLINE, 14-65
private outlines

use by the optimizer, 11-109
PRIVATE_SGA parameter

of ALTER PROFILE, 11-87
of ALTER RESOURCE COST, 11-91

privileges, 14-116
on subtypes of object types, 18-40
revoking from a grantee, 19-26

See also system privileges or object privileges
procedures

3GL,calling, 14-1
calling, 12-255
creating, 14-99
executing, 12-255
external, 14-99
granting system privileges for, 18-30
invalidating local objects dependent on,

17-14
issuing COMMIT or ROLLBACK statements,

11-103
naming rules, 2-142
re-creating, 14-100
recompiling, 11-85

procedures (continued)
removing from the database, 17-14
synonyms for, 15-12

PROFILE clause
of ALTER USER. See CREATE USER,

12-207
of CREATE USER, 15-189

profiles
adding resource limits, 11-86
assigning to a user, 15-189
changing resource limits, 11-86
creating, 14-101

examples, 14-101
deassigning from users, 17-15
dropping resource limits, 11-86
granting system privileges for, 18-30
modifying, examples, 11-88
removing from the database, 17-15

proxy clause
of ALTER USER, 12-204, 12-207

pseudocolumns, 3-1
COLUMN_VALUE, 3-7
CONNECT_BY_ISCYCLE, 3-1
CONNECT_BY_ISLEAF, 3-2
CURRVAL, 3-3
flashback queries, 3-6
in hierarchical queries, 3-1
LEVEL, 3-2
NEXTVAL, 3-3
OBJECT_ID, 3-8, 15-134, 15-136, 15-200,

15-201
OBJECT_VALUE, 3-8
ORA_ROWSCN, 3-9
ROWID, 3-10
ROWNUM, 3-11
version queries, 3-6
XMLDATA, 3-13

PUBLIC clause
of CREATE OUTLINE, 14-65
of CREATE SYNONYM, 15-13
of DROP DATABASE LINK, 16-3

public database links
dropping, 16-3

public synonyms, 15-13
dropping, 17-20

PURGE statement, 19-20
PUSH_PRED hint, 2-128
PUSH_SUBQ hint, 2-129
PX_JOIN_FILTER hint, 2-129

Q
QB_NAME hint, 2-129
queries, 9-1, 19-39

comments in, 9-2

Index

Index-35

queries (continued)
compound, 9-12
correlated

left correlation, 19-39
default locking of, B-4
defined, 9-1
distributed, 9-20
grouping returned rows on a value, 19-39
hierarchical, ordering, 19-91
hierarchical. See hierarchical queries, 9-2
hints in, 9-2
join, 9-12, 19-39
locking rows during, 19-39
multiple versions of rows, 19-39
of past data, 19-39
ordering returned rows, 19-39
outer joins in, 19-74
referencing multiple tables, 9-12
select lists of, 9-2
selecting all columns, 19-64
selecting from a random sample of rows,

19-39
sorting results, 9-12
syntax, 9-1
top-level, 9-1
top-N, 3-12, 19-39

query rewrite
and dimensions, 13-81
defined, 19-39

QUIESCE RESTRICTED clause
of ALTER SYSTEM, 12-14

QUOTA clause
of ALTER USER. See CREATE USER,

12-207
of CREATE USER, 15-188

R
range conditions, 6-34
range partitioning

converting to interval partitioning, 12-124
range partitions

adding, 12-31
creating, 15-17
values of, 15-17

RANK function, 7-295
RATIO_TO_REPORT function, 7-297
RAW data type, 2-27

converting from CHAR data, 2-28
RAWTOHEX function, 7-297
RAWTONHEX function, 7-298
READ ANY TABLE system privilege, 18-50
READ object privilege

on a materialized view, 18-55
on a table, 18-58

READ object privilege (continued)
on a view, 18-59

READ ONLY clause
of ALTER TABLESPACE, 12-193
of ALTER VIEW, 12-220

READ WRITE clause
of ALTER TABLESPACE, 12-193
of ALTER VIEW, 12-220

REBUILD clause
of ALTER INDEX, 10-150
of ALTER OUTLINE, 11-54

REBUILD PARTITION clause
of ALTER INDEX, 10-162

REBUILD SUBPARTITION clause
of ALTER INDEX, 10-162

REBUILD UNUSABLE LOCAL INDEXES clause
of ALTER TABLE, 12-150

RECOVER AUTOMATIC clause
of ALTER DATABASE, 10-67

RECOVER CANCEL clause
of ALTER DATABASE, 10-51, 10-70

RECOVER clause
of ALTER DATABASE, 10-66

RECOVER CONTINUE clause
of ALTER DATABASE, 10-51, 10-70

RECOVER DATABASE clause
of ALTER DATABASE, 10-51, 10-68

RECOVER DATAFILE clause
of ALTER DATABASE, 10-51, 10-69

RECOVER LOGFILE clause
of ALTER DATABASE, 10-51, 10-69

RECOVER MANAGED STANDBY DATABASE
clause

of ALTER DATABASE, 10-52
RECOVER TABLESPACE clause

of ALTER DATABASE, 10-51, 10-69
RECOVERABLE, 10-161, 15-85

See also LOGGING clause
recovery

discarding data, 10-64
distributed, enabling, 12-10
instance, continue after interruption, 10-66
media, designing, 10-66
media, performing ongoing, 10-70
of database, 10-51

recovery clauses
of ALTER DATABASE, 10-51

recursive subquery factoring, 19-60
recycle bin

purging objects from, 19-20
redo log files

specifying, 8-33
specifying for a control file, 13-51

redo logs, 10-64
adding, 10-47, 10-81

Index

Index-36

redo logs (continued)
applying to logical standby database, 10-92
archive location, 12-9
automatic archiving, 12-3
automatic name generation, 10-66, 10-67
clearing, 10-47
dropping, 10-47, 10-83
enabling and disabling thread, 10-47
manual archiving, 12-3

all, 12-9
by group number, 12-9
by SCN, 12-8
current, 12-8
next, 12-9
with sequence numbers, 12-8

members
adding to existing groups, 10-82
dropping, 10-83
renaming, 10-74

remove changes from, 10-64
reusing, 8-33
size of, 8-33
specifying, 8-33, 13-64

for media recovery, 10-69
specifying archive mode, 13-65
switching groups, 12-14

REF columns
rescoping, 11-16
specifying, 15-17
specifying from table or column, 15-17

REF constraints
defining scope, for materialized views, 11-25
of ALTER TABLE, 12-31

REF function, 7-299
reference partitioning, 15-119
reference-partitioned tables, 12-122

maintenance operations, 12-149
REFERENCES clause

of CREATE TABLE, 15-17
referential integrity constraints, 8-3
REFRESH clause

of ALTER MATERIALIZED VIEW, 11-16,
11-25

of CREATE MATERIALIZED VIEW, 14-10
REFRESH COMPLETE clause

of ALTER MATERIALIZED VIEW, 11-31
of CREATE MATERIALIZED VIEW, 14-5

REFRESH FAST clause
of ALTER MATERIALIZED VIEW, 11-30
of CREATE MATERIALIZED VIEW, 14-5

REFRESH FORCE clause
of ALTER MATERIALIZED VIEW, 11-31
of CREATE MATERIALIZED VIEW, 14-5

REFRESH ON COMMIT clause
of ALTER MATERIALIZED VIEW, 11-31

REFRESH ON COMMIT clause (continued)
of CREATE MATERIALIZED VIEW, 14-5

REFRESH ON DEMAND clause
of ALTER MATERIALIZED VIEW, 11-31
of CREATE MATERIALIZED VIEW, 14-5

REFs, 2-37, 8-3
as containers for object identifiers, 2-37
dangling, 12-225
updating, 12-225
validating, 12-225

REFTOHEX function, 7-300
REGEXP_COUNT function, 7-301
REGEXP_INSTR function, 7-306
REGEXP_LIKE condition, 6-19
REGEXP_REPLACE function, 7-309
REGEXP_SUBSTR function, 7-314
REGISTER clause

of ALTER SYSTEM, 12-21
REGISTER LOGFILE clause

of ALTER DATABASE, 10-90
REGR_AVGX function, 7-318
REGR_AVGY function, 7-318
REGR_COUNT function, 7-318
REGR_INTERCEPT function, 7-318
REGR_R2 function, 7-318
REGR_SLOPE function, 7-318
REGR_SXX function, 7-318
REGR_SXY function, 7-318
REGR_SYY function, 7-318
regular expressions

multilingual syntax, D-1
operators, multilingual enhancements, D-2
Oracle support of, D-1
Perl-influenced operators, D-3
subexpressions, 7-307, 7-315

relational tables
creating, 15-17, 15-19

RELY clause
of constraints, 8-3

REMAINDER function, 7-323
RENAME clause

of ALTER INDEX, 10-167
of ALTER OUTLINE, 11-54
of ALTER TABLE, 12-93
of ALTER TABLESPACE, 12-187
of ALTER TRIGGER, 12-203

RENAME CONSTRAINT clause
of ALTER TABLE, 12-119

RENAME DATAFILE clause
of ALTER TABLESPACE, 12-180

RENAME FILE clause
of ALTER DATABASE, 10-47, 10-74

RENAME GLOBAL_NAME clause
of ALTER DATABASE, 10-96
of ALTER PLUGGABLE DATABASE, 11-67

Index

Index-37

RENAME PARTITION clause
of ALTER INDEX, 10-150
of ALTER TABLE, 12-31

RENAME statement, 19-22
RENAME SUBPARTITION clause

of ALTER INDEX, 10-150
of ALTER TABLE, 12-31

REPLACE function, 7-324
replication

row-level dependency tracking, 13-43,
15-127

reserved words, 2-139, E-1
reset sequence of, 10-64
RESETLOGS parameter

of CREATE CONTROLFILE, 13-53
RESOLVE clause

of ALTER JAVA CLASS, 10-181
of CREATE JAVA, 13-158

RESOLVER clause
of CREATE JAVA, 13-160

Resource Manager, 12-14
resource parameters

of CREATE PROFILE, 14-102
RESOURCE_VIEW, 6-22, 6-23
response time

optimizing, 2-98
restore points

guaranteed, 14-114
preserved, 14-114
using

to flash back a table, 18-27
to flashback the database, 18-23

result cache, 15-125
RESULT_CACHE hint, 2-130
resumable space allocation, 11-105
RESUME clause

of ALTER SYSTEM, 12-14
RETENTION parameter

of LOB storage, 15-95
RETRY_ON_ROW_CHANGE hint, 2-130
RETURNING clause

of DELETE, 15-209
of INSERT, 18-65
of UPDATE, 19-151, 19-158

REUSE clause
of CREATE CONTROLFILE, 13-52
of file specifications, 8-33

REVERSE clause
of CREATE INDEX, 13-133

reverse indexes, 13-133
REVERSE parameter

of ALTER INDEX ... REBUILD, 10-163,
10-164

REVOKE CONNECT THROUGH clause
of ALTER USER, 12-204, 12-207

REVOKE statement, 19-24
locks, B-6

REWRITE hint, 2-131
right outer joins, 19-39
roles, 18-30

authorization
by a password, 14-118
by an external service, 14-118
by the database, 14-118
by the enterprise directory service,

14-118
changing, 11-92

creating, 14-116
disabling

for the current session, 19-138, 19-139
enabling

for the current session, 19-138, 19-139
granting, 18-30

system privileges for, 18-30
to a user, 18-35
to another role, 18-35
to PUBLIC, 18-35

identifying by password, 14-118
identifying externally, 14-118
identifying through enterprise directory

service, 14-118
identifying using a package, 14-118
removing from the database, 17-17
revoking, 19-24

from another role, 17-17, 19-28
from PUBLIC, 19-28
from users, 17-17, 19-28

ROLES clause
of CREATE PLUGGABLE DATABASE, 14-81

rollback segments
removing from the database, 17-18
specifying optimal size of, 8-59

rollback segments granting
system privileges for, 18-30

ROLLBACK statement, 19-36
rollback undo, 11-94, 13-57
ROLLUP clause

of SELECT statements, 19-84
ROUND (date) function, 7-325

format models, 7-463
ROUND (number) function, 7-326
routines

calling, 12-255
executing, 12-255

row constructor, 5-35
ROW EXCLUSIVE lock mode, 18-86
row limiting, 19-39
row locking, B-2
ROW SHARE lock mode, 18-86
row value constructor, 5-35

Index

Index-38

row values
pivoting into columns, 19-75

ROW_NUMBER function, 7-328
row-level dependency tracking, 13-43, 15-127
row-level locking, B-2
ROWDEPENDENCIES clause

of CREATE CLUSTER, 13-43
of CREATE TABLE, 15-127

ROWID data type, 2-33
ROWID pseudocolumn, 2-33, 2-34, 3-10
rowids, 2-33

description of, 2-33
extended

base 64, 2-33
not directly available, 2-33

nonphysical, 2-34
of foreign tables, 2-34
of index-organized tables, 2-34
uses for, 3-11

ROWIDTOCHAR function, 7-329
ROWIDTONCHAR function, 7-330
ROWNUM pseudocolumn, 3-11
rows

adding to a table, 18-62
allowing movement of between partitions,

15-35
inserting

into partitions, 18-69
into remote databases, 18-62
into subpartitions, 18-69

locking, B-2
locks on, B-2
movement between partitions, 15-17
removing

from a cluster, 19-143, 19-145
from a table, 19-143, 19-145
from partitions and subpartitions, 15-213
from tables and views, 15-209

selecting in hierarchical order, 9-2
specifying constraints on, 8-3
storing if in violation of constraints, 12-148

RPAD function, 7-331
RR datetime format element, 2-76
RTRIM function, 7-332
run-time compilation

avoiding, 11-85, 12-218

S
SAMPLE clause

of SELECT, 19-39
of SELECT and subqueries, 19-47

SAVEPOINT statement, 19-38
savepoints

erasing, 13-1

savepoints (continued)
rolling back to, 19-37
specifying, 19-38

scalar subqueries, 5-33
scale

greater than precision, 2-13
of NUMBER data type, 2-13

SCHEMA clause
of CREATE JAVA, 13-159

schema objects, 2-136
defining default buffer pool for, 8-59
dropping, 18-14
in other schemas, 2-145
list of, 2-136
name resolution, 2-144
namespaces, 2-140
naming

examples, 2-142
guidelines, 2-142
rules, 2-138

object types, 2-36
on remote databases, 2-145
partitioned indexes, 2-147
partitioned tables, 2-147
parts of, 2-137
protecting location, 15-12
protecting owner, 15-12
providing alternate names for, 15-12
reauthorizing, 10-2
recompiling, 10-2
referring to, 2-143, 11-109
remote, accessing, 13-75
validating structure, 12-225

schemas
changing for a session, 11-109
creating, 14-123
definition of, 2-136

scientific notation, 2-67
SCN_TO_TIMESTAMP function, 7-333
SCOPE FOR clause

of ALTER MATERIALIZED VIEW, 11-25
of CREATE MATERIALIZED VIEW, 14-5

SCORE operator, 4-1
SDO_GEOMETRY data type, 2-41
SDO_GEORASTER data type, 2-41
SDO_TOPO_GEOMETRY data type, 2-41
security

enforcing, 15-176
security clauses

of ALTER SYSTEM, 12-17
segment attributes clause

of CREATE TABLE, 15-35
SEGMENT MANAGEMENT clause

of CREATE TABLESPACE, 15-152

Index

Index-39

segments
space management

automatic, 15-152
manual, 15-152
using bitmaps, 15-152
using free lists, 15-152

table
compacting, 10-159, 11-29, 11-43, 12-93

select lists, 9-2
ordering, 9-12

SELECT object privilege
granting on a view, 18-38

SELECT statement, 9-1, 19-39
self joins, 9-14
semijoins, 9-16
sequences, 3-3, 15-1

accessing values of, 15-2
changing

the increment value, 11-97
creating, 15-1
creating without limit, 15-4
global, 15-8
granting system privileges for, 18-30
guarantee consecutive values, 15-6
how to use, 3-4
increment value, setting, 15-5
incrementing, 15-1
initial value, setting, 15-5
keeping values during transaction replay,

15-6
maximum value

eliminating, 11-98
setting, 15-5
setting or changing, 11-97

minimum value
eliminating, 11-98
setting, 15-5
setting or changing, 11-97

number of cached values, changing, 11-97
ordering values, 11-97
preallocating values, 15-6
recycling values, 11-97
removing from the database, 17-19
renaming, 19-22
restarting, 17-19

at a predefined limit, 15-4
values, 15-5

reusing, 15-1
session, 15-7
stopping at a predefined limit, 15-4
synonyms for, 15-12
where to use, 3-4

server parameter files
creating, 15-8

from memory, 15-11

server wallet
keys, 12-18

service name
of remote database, 13-75

session control statements, 10-4
PL/SQL support of, 10-4

session locks
releasing, 12-13

SESSION parameter
of CREATE SEQUENCE, 15-7

session parameters
changing settings, 11-109
INSTANCE, 11-109

session sequences, 15-7
SESSION_ROLES view, 19-138
sessions

calculating resource cost limits, 11-90
changing resource cost limits, 11-90
disconnecting, 12-12
granting system privileges for, 18-30
limiting CPU time, 11-91
limiting data block reads, 11-91
limiting inactive periods, 11-86
limiting private SGA space, 11-91
limiting resource costs, 11-90
limiting total elapsed time, 11-91
limiting total resources, 11-86
modifying characteristics of, 11-100
restricting, 12-14
restricting to privileged users, 12-17
switching to a different instance, 11-109
terminating, 12-13
terminating across instances, 12-13
time zone setting, 11-109

SESSIONS_PER_USER parameter
of ALTER PROFILE, 11-87

SESSIONTIMEZONE function, 7-334
SET clause

of ALTER SESSION, 11-100
of ALTER SYSTEM, 12-21

SET conditions, 6-12
SET CONSTRAINT(S) statement, 19-136
SET CONTAINER system privilege, 18-48
SET DANGLING TO NULL clause

of ANALYZE, 12-225
SET DATABASE clause

of CREATE CONTROLFILE, 13-53
SET ENCRYPTION KEY clause

of ALTER SYSTEM, 12-18
SET ENCRYPTION WALLET clause

of ALTER SYSTEM, 12-18
SET function, 7-335
set operators, 4-6

INTERSECT, 4-6
MINUS, 4-6

Index

Index-40

set operators (continued)
UNION, 4-6
UNION ALL, 4-6

SET ROLE statement, 19-138
SET STANDBY DATABASE clause

of ALTER DATABASE, 10-89
SET STATEMENT_ID clause

of EXPLAIN PLAN, 18-19
SET TIME_ZONE clause

of ALTER DATABASE, 10-61, 10-99
of ALTER PLUGGABLE DATABASE, 11-67
of ALTER SESSION, 11-109
of CREATE DATABASE, 13-60

SET TRANSACTION statement, 19-140
SET UNUSED clause

of ALTER TABLE, 12-111
SGA

See system global area (SGA)
SHARD_CHUNK_ID Operator, 4-10
SHARE ROW EXCLUSIVE lock mode, 18-86
SHARE UPDATE lock mode, 18-86
SHARED clause

of CREATE DATABASE LINK, 13-77
shared pool

flushing, 12-11
shared server,

processes
creating additional, 12-25
terminating, 12-25

system parameters, 12-25
short-circuit evaluation

DECODE function, 7-114
SHRINK SPACE clause

of ALTER INDEX, 10-159
of ALTER MATERIALIZED VIEW, 11-29
of ALTER MATERIALIZED VIEW LOG, 11-43
of ALTER TABLE, 12-93

SHUTDOWN clause
of ALTER SYSTEM, 12-20

siblings
ordering in a hierarchical query, 19-91

SIGN function, 7-335
simple comparison conditions, 6-5
simple expressions, 5-3
SIN function, 7-336
SINGLE TABLE clause

of CREATE CLUSTER, 13-42
single-row functions, 7-4
single-table insert, 18-62
SINH function, 7-337
SIZE clause

of ALTER CLUSTER, 10-44
of CREATE CLUSTER, 13-41
of file specifications, 8-33

SKEWNESS_POP function, 7-337

SKEWNESS_SAMP function, 7-338
SOME operator, 6-4
SOUNDEX function, 7-338
SOURCE_FILE_NAME_CONVERT clause

of CREATE PLUGGABLE DATABASE, 14-93
SP datetime format element suffix, 2-77
special characters

in passwords, 14-109
spelled numbers

specifying, 2-77
SPLIT PARTITION clause

of ALTER INDEX, 10-150
of ALTER TABLE, 12-140

SPTH datetime format element suffix, 2-77
SQL

See Structured Query Language (SQL)
SQL Developer, 1-3
SQL For JSON

conditions, 6-23
SQL Function

FEATURE_COMPARE, 7-129
Oracle Machine Learning for SQL, 7-129

SQL functions, 7-2, 7-464
ABS, 7-23
ACOS, 7-24
ADD_MONTHS, 7-24
aggregate functions, 7-12
analytic functions, 7-14
applied to LOB columns, 7-2
APPROX_COUNT, 7-26
APPROX_COUNT_DISTINCT, 7-27
APPROX_COUNT_DISTINCT_AGG, 7-28
APPROX_COUNT_DISTINCT_DETAIL, 7-29
APPROX_MEDIAN, 7-32
APPROX_PERCENTILE, 7-35
APPROX_PERCENTILE_AGG, 7-38
APPROX_PERCENTILE_DETAIL, 7-39
APPROX_RANK, 7-43
APPROX_SUM, 7-44
ASCII, 7-44
ASCIISTR, 7-45
ASIN, 7-46
ATAN, 7-47
ATAN2, 7-47
AVG, 7-48
BFILENAME, 7-49
BIN_TO_NUM, 7-50
BITAND, 7-52
CARDINALITY, 7-59
CAST, 7-59
CEIL, 7-64
character functions

returning character values, 7-5
returning number values, 7-5

character set functions, 7-6

Index

Index-41

SQL functions (continued)
CHARTOROWID, 7-65
CHR, 7-66
CLUSTER_DETAILS, 7-68
CLUSTER_DISTANCE, 7-72
CLUSTER_ID, 7-74
CLUSTER_PROBABILITY, 7-77
CLUSTER_SET, 7-79
COALESCE, 7-82
COLLATION, 7-83
collation functions, 7-6
COLLECT, 7-84
collection functions, 7-8
COMPOSE, 7-85
CON_DBID_TO_ID, 7-87
CON_GUID_TO_ID, 7-87
CON_ID_TO_CON_NAME, 7-88
CON_ID_TO_DBID, 7-89
CON_ID_TO_GUID, 7-89
CON_ID_TO_UID, 7-90
CON_NAME_TO_ID, 7-91
CON_UID_TO_ID, 7-91
CONCAT, 7-92
conversion functions, 7-7
CONVERT, 7-93
CORR, 7-95
CORR_K, 7-98
CORR_S, 7-98
COS, 7-99
COSH, 7-99
COUNT, 7-100
COVAR_POP, 7-102
COVAR_SAMP, 7-104
CUBE_TABLE, 7-105
CUME_DIST, 7-107
CURRRENT_DATE, 7-109
CURRRENT_TIMESTAMP, 7-109
CV, 7-110
data cartridge functions, 7-23
DATAOBJ_TO_MAT_PARTITION, 7-112
DATAOBJ_TO_PARTITION, 7-112
datetime functions, 7-6
DBTIMEZONE, 7-113
DECODE, 7-114
DECOMPOSE, 7-115
DENSE_RANK, 7-117
DEPTH, 7-118
DEREF, 7-119
DUMP, 7-120
EMPTY_BLOB, 7-122
EMPTY_CLOB, 7-122
encoding and decoding functions, 7-11
environment and identifier functions, 7-11
EXISTSNODE, 7-123
EXP, 7-124

SQL functions (continued)
EXTRACT (datetime), 7-125
EXTRACT (XML), 7-127
EXTRACTVALUE, 7-128
FEATURE_DETAILS, 7-132
FEATURE_ID, 7-135
FEATURE_SET, 7-137
FEATURE_VALUE, 7-140
FIRST, 7-143
FIRST_VALUE, 7-145
FLOOR, 7-147
FROM_TZ, 7-148
general comparison functions, 7-7
GREATEST, 7-149
GROUP_ID, 7-150
GROUPING, 7-151
GROUPING_ID, 7-152
HEXTORAW, 7-153
hierarchical functions, 7-8
INITCAP, 7-153
INSTR, 7-154
INSTR2, 7-154
INSTR4, 7-154
INSTRB, 7-154
INSTRC, 7-154
ITERATION_NUMBER, 7-156
JSON Type Constructor, 7-204
JSON_ARRAY, 7-157
JSON_ARRAYAGG, 7-160
JSON_DATAGUIDE, 7-162
JSON_MERGEPATCH, 7-164
JSON_OBJECT, 7-165
JSON_OBJECTAGG, 7-171
JSON_QUERY, 7-173
JSON_SCALAR, 7-179
JSON_SERIALIZE, 7-180
JSON_TABLE, 7-182
JSON_TRANSFORM, 7-193
JSON_VALUE, 7-197
LAG, 7-206
large object functions, 7-8
LAST, 7-207
LAST_DAY, 7-208
LAST_VALUE, 7-209
LEAD, 7-212
LEAST, 7-213
LENGTH, 7-214
LENGTH2, 7-214
LENGTH4, 7-214
LENGTHB, 7-214
LENGTHC, 7-214
linear regression, 7-318
LISTAGG, 7-215
LN, 7-219
LNNVL, 7-220

Index

Index-42

SQL functions (continued)
LOCALTIMESTAMP, 7-221
LOG, 7-222
LOWER, 7-222
LPAD, 7-223
LTRIM, 7-224
MAKE_REF, 7-225
MAX, 7-226
MEDIAN, 7-227
MIN, 7-230
MOD, 7-231
model functions, 7-23
MONTHS_BETWEEN, 7-232
NANVL, 7-233
NCHR, 7-234
NEW_TIME, 7-234
NEXT_DAY, 7-235
NLS_CHARSET_DECL_LEN, 7-236
NLS_CHARSET_ID, 7-236
NLS_CHARSET_NAME, 7-237
NLS_COLLATION_ID, 7-238
NLS_COLLATION_NAME, 7-238
NLS_INITCAP, 7-240
NLS_LOWER, 7-241
NLS_UPPER, 7-241
NLSSORT, 7-242
NTH_VALUE, 7-245
NTILE, 7-247
NULL-related functions, 7-11
NULLIF, 7-248
numeric functions, 7-4
NUMTODSINTERVAL, 7-249
NUMTOYMINTERVAL, 7-250
NVL, 7-251
NVL2, 7-252
object reference functiions, 7-22
OLAP functions, 7-23
ORA_DM_PARTITION_NAME, 7-253
ORA_DST_AFFECTED, 7-255
ORA_DST_CONVERT, 7-255
ORA_DST_ERROR, 7-256
ORA_HASH, 7-257
ORA_INVOKING_USER, 7-258
ORA_INVOKING_USERID, 7-258
oracle machine learning for SQL functions,

7-9
PATH, 7-259
PERCENT_RANK, 7-260
PERCENTILE_CONT, 7-262
PERCENTILE_DISC, 7-264
POWER, 7-266
POWERMULTISET, 7-267
POWERMULTISET_BY_CARDINALITY,

7-268
PREDICTION, 7-269

SQL functions (continued)
PREDICTION_BOUNDS, 7-274
PREDICTION_COST, 7-275
PREDICTION_DETAILS, 7-279
PREDICTION_PROBABILITY, 7-284
PREDICTION_SET, 7-288
PRESENTNNV, 7-291
PRESENTV, 7-293
PREVIOUS, 7-294
RANK, 7-295
RATIO_TO_REPORT, 7-297
RAWTOHEX, 7-297
RAWTONHEX, 7-298
REF, 7-299
REFTOHEX, 7-300
REGEXP_COUNT, 7-301
REGEXP_INSTR, 7-306
REGEXP_REPLACE, 7-309
REGEXP_SUBSTR, 7-314
REGR_AVGX, 7-318
REGR_AVGY, 7-318
REGR_COUNT, 7-318
REGR_INTERCEPT, 7-318
REGR_R2, 7-318
REGR_SLOPE, 7-318
REGR_SXX, 7-318
REGR_SXY, 7-318
REGR_SYY, 7-318
REMAINDER, 7-323
REPLACE, 7-324
ROUND (date), 7-325
ROUND (number), 7-326
ROW_NUMBER, 7-328
ROWIDTOCHAR, 7-329
ROWIDTONCHAR, 7-330
RPAD, 7-331
RTRIM, 7-332
SCN_TO_TIMESTAMP, 7-333
SESSIONTIMEZONE, 7-334
SET, 7-335
SIGN, 7-335
SIN, 7-336
single-row functions, 7-4
SINH, 7-337
SOUNDEX, 7-338
SQRT, 7-339
STANDARD_HASH, 7-340
STATS_BINOMIAL_TEST, 7-341
STATS_CROSSTAB, 7-342
STATS_F_TEST, 7-344
STATS_KS_TEST, 7-345
STATS_MODE, 7-346
STATS_MW_TEST, 7-347
STATS_ONE_WAY_ANOVA, 7-349
STATS_T_TEST_INDEP, 7-351, 7-352

Index

Index-43

SQL functions (continued)
STATS_T_TEST_INDEPU, 7-351, 7-352
STATS_T_TEST_ONE, 7-350, 7-352
STATS_T_TEST_PAIRED, 7-350, 7-352
STATS_WSR_TEST, 7-354
STDDEV, 7-355
STDDEV_POP, 7-356
STDDEV_SAMP, 7-357
SUBSTR, 7-359
SUBSTR2, 7-359
SUBSTR4, 7-359
SUBSTRB, 7-359
SUBSTRC, 7-359
SUM, 7-360
SYS_CONNECT_BY_PATH, 7-362
SYS_CONTEXT, 7-363
SYS_DBURIGEN, 7-371
SYS_EXTRACT_UTC, 7-372
SYS_GUID, 7-372
SYS_OP_ZONE_ID, 7-373
SYS_TYPEID, 7-375
SYS_XMLAGG, 7-376
SYS_XMLGEN, 7-377
SYSDATE, 7-378
SYSTIMESTAMP, 7-378
t-test, 7-350
TAN, 7-379
TANH, 7-380
TIMESTAMP_TO_SCN, 7-380
TO_APPROX_COUNT_DISTINCT, 7-381
TO_APPROX_PERCENTILE, 7-382
TO_BINARY_DOUBLE, 7-383
TO_BINARY_FLOAT, 7-385
TO_BLOB (bfile), 7-387
TO_BLOB (raw), 7-387
TO_CHAR (bfile|blob), 7-388
TO_CHAR (character), 7-388
TO_CHAR (datetime), 7-390
TO_CHAR (number), 7-395
TO_CLOB (bfile|blob), 7-398
TO_CLOB (character), 7-399
TO_DATE, 7-400
TO_DSINTERVAL, 7-402
TO_LOB, 7-404
TO_MULTI_BYTE, 7-405
TO_NCHAR (character), 7-405
TO_NCHAR (datetime), 7-406
TO_NCHAR (number), 7-407
TO_NCLOB, 7-408
TO_NUMBER, 7-409
TO_SINGLE_BYTE, 7-410
TO_TIMESTAMP, 7-411
TO_TIMESTAMP_TZ, 7-412
TO_UTC_TIMESTAMP_TZ, 7-414
TO_YMINTERVAL, 7-416

SQL functions (continued)
TRANSLATE, 7-417
TRANSLATE ... USING, 7-418
TREAT, 7-420
TRIM, 7-421
TRUNC (date), 7-422
TRUNC (number), 7-424
TZ_OFFSET, 7-425
UID, 7-426
UNISTR, 7-426
UPPER, 7-427
USER, 7-428
USERENV, 7-428
VALIDATE_CONVERSION, 7-430
VALUE, 7-432
VAR_POP, 7-433
VAR_SAMP, 7-435
VARIANCE, 7-436
VSIZE, 7-437
WIDTH_BUCKET, 7-438
XML functions, 7-9
XMLAGG, 7-439
XMLCAST, 7-441
XMLCDATA, 7-441
XMLCOLATTVAL, 7-442
XMLCOMMENT, 7-443
XMLCONCAT, 7-444
XMLDIFF, 7-445
XMLELEMENT, 7-446
XMLEXISTS, 7-449
XMLFOREST, 7-450
XMLISVALID, 7-451
XMLPARSE, 7-451
XMLPATCH, 7-452
XMLPI, 7-453
XMLQUERY, 7-454
XMLSEQUENCE, 7-456
XMLSERIALIZE, 7-457
XMLTABLE, 7-459
XMLTRANSFORM, 7-462

SQL statements
ALTER FLASHBACK ARCHIVE, 10-145
auditing

by access, 12-241
by session, 12-241
stopping, 19-11
successful, 12-241

CREATE FLASHBACK ARCHIVE, 13-102
DDL, 10-2
determining the execution plan for, 18-17
DML, 10-3
DROP FLASHBACK ARCHIVE, 16-9
organization of, 10-4
rolling back, 19-36
session control, 10-4

Index

Index-44

SQL statements (continued)
space allocation, resumable, 11-105
storage in the result cache, 15-125
suspending and completing, 11-105
system control, 10-4
tracking the occurrence in a session, 12-234
transaction control, 10-3
type of, 10-1
undoing, 19-36

SQL translation profiles
auditing, 12-240
granting object privileges for, 18-57, 18-58
granting system privileges for, 18-49

SQL*Loader inserts, logging, 10-150
SQL/DS data types, 2-34

restrictions on, 2-35
SQRT function, 7-339
staging log, 14-38
standalone procedures

dropping, 17-14
standard SQL, C-1

Oracle extensions to, C-33
STANDARD_HASH function, 7-340
standby database

synchronizing with primary database, 11-106
standby databases

activating, 10-88
and Data Guard, 10-93
committing to primary status, 10-91
controlling use, 10-99
converting to physical standby, 10-93
designing media recovery, 10-66
mounting, 10-64
recovering, 10-47

STAR_TRANSFORMATION hint, 2-131
START LOGICAL STANDBY APPLY clause

of ALTER DATABASE, 10-92
START WITH clause

of ALTER MATERIALIZED VIEW ...
REFRESH, 11-32

of queries and subqueries, 19-39
of SELECT and subqueries, 19-50

START WITH parameter
of CREATE SEQUENCE, 15-5

startup_clauses
of ALTER DATABASE, 10-51

STATEMENT_QUEUING hint, 2-132
statistics

collection during index rebuild, 10-150
deleting from the data dictionary, 12-228
forcing disassociation, 15-221
gathering for bulk loads, 2-100, 2-110
on index usage, 10-168
on scalar object attributes

collecting, 12-220

statistics (continued)
on schema objects

collecting, 12-220
deleting, 12-220

user-defined
dropping, 16-12, 16-14, 17-10, 18-1,

18-11
statistics types

associating
with columns, 12-229
with domain indexes, 12-229
with functions, 12-229
with indextypes, 12-229
with object types, 12-229
with packages, 12-229

disassociating
from columns, 15-220
from domain indexes, 15-220
from functions, 15-220
from indextypes, 15-220
from object types, 15-220
from packages, 15-220

STATS_BINOMIAL_TEST function, 7-341
STATS_CROSSTAB function, 7-342
STATS_F_TEST function, 7-344
STATS_KS_TEST function, 7-345
STATS_MODE function, 7-346
STATS_MW_TEST function, 7-347
STATS_ONE_WAY_ANOVA function, 7-349
STATS_T_TEST_INDEP function, 7-351, 7-352
STATS_T_TEST_INDEPU function, 7-351, 7-352
STATS_T_TEST_ONE function, 7-350, 7-352
STATS_T_TEST_PAIRED function, 7-350, 7-352
STATS_WSR_TEST function, 7-354
STDDEV function, 7-355
STDDEV_POP function, 7-356
STDDEV_SAMP function, 7-357
STOP LOGICAL STANDBY clause

of ALTER DATABASE, 10-93
STORAGE clause

of ALTER CLUSTER, 10-42
of ALTER INDEX, 10-150
of ALTER MATERIALIZED VIEW LOG, 11-39
of CREATE MATERIALIZED VIEW LOG. See

CREATE TABLE, 14-38
of CREATE TABLE, 8-48

storage parameters
resetting, 19-143, 19-145

Storage Snapshot Optimization, 10-68
STORE IN clause

of ALTER TABLE, 12-97, 15-114
stored functions, 13-106
string literals

See text literals.

Index

Index-45

strings, 2-54
converting to ASCII values, 7-45
converting to unicode, 7-85

See also text literals.
Structured Query Language (SQL),

description, 1-1
functions, 7-2
keywords, A-2
Oracle Tools support of, 1-3
parameters, A-2
standards, 1-1, C-1
statements

determining the cost of, 18-17
syntax, 10-4, A-1

structures
locking, B-6

subexpressions
of regular expressions, 7-307, 7-315

SUBMULTISET condition, 6-14
SUBPARTITION BY HASH clause

of CREATE TABLE, 15-17, 15-46
SUBPARTITION BY LIST clause

of CREATE TABLE, 15-118
SUBPARTITION clause

of ANALYZE, 12-223
of DELETE, 15-213
of INSERT, 18-69
of LOCK TABLE, 18-84
of UPDATE, 19-153

subpartition template
creating, 12-31
replacing, 12-31

subpartition-extended table names
in DML statements, 2-148
restrictions on, 2-147
syntax, 2-147

subpartitions
adding, 12-31
adding rows to, 18-62
allocating extents for, 12-90
coalescing, 12-128
converting into nonpartitioned tables, 12-31
creating, 15-46
creating a template for, 12-31, 15-17
deallocating unused space from, 12-90
exchanging with tables, 12-72
hash, 15-17
inserting rows into, 18-69
list, 15-118
list, adding, 12-31
locking, 18-84
logging insert operations, 12-84
moving to a different segment, 12-31
physical attributes

changing, 12-83

subpartitions (continued)
removing rows from, 12-31, 15-213
renaming, 12-31
revising values in, 19-153
specifying, 15-115
template, creating, 15-17
template, dropping, 12-31
template, replacing, 12-31

subqueries, 9-1, 9-17, 19-39, 19-40
containing subqueries, 9-17
correlated, 9-17
defined, 9-1
extended subquery unnesting, 9-19
inline views, 9-17
nested, 9-17
of past data, 19-39
scalar, 5-33
to insert table data, 15-132
unnesting, 9-18
using in place of expressions, 5-33

SUBSTR function, 7-359
SUBSTR2 function, 7-359
SUBSTR4 function, 7-359
SUBSTRB function, 7-359
SUBSTRC function, 7-359
subtotal values

deriving, 19-84
subtypes

dropping safely, 18-12
SUM function, 7-360
supplemental logging

identification key (full), 10-84
minimal, 10-84

SUSPEND clause
of ALTER SYSTEM, 12-14

sustained standby recovery mode, 10-70
SWITCH LOGFILE clause

of ALTER SYSTEM, 12-14
SYNC WITH PRIMARY

clause of ALTER SESSION, 11-106
synchronous refresh, 14-38
synonyms

changing the definition of, 17-20
creating, 15-12
granting system privileges for, 18-30
local, 15-12
private, dropping, 17-20
public, 15-13

dropping, 17-20
remote, 15-12
removing from the database, 17-20
renaming, 19-22, 19-23
synonyms for, 15-12

syntax diagrams, A-1
loops, A-4

Index

Index-46

syntax diagrams (continued)
multipart diagrams, A-4

SYS user
assigning password for, 13-62

SYS_CONNECT_BY_PATH function, 7-362
SYS_CONTEXT function, 7-363
SYS_DBURIGEN function, 7-371
SYS_EXTRACT_UTC function, 7-372
SYS_GUID function, 7-372
SYS_NC_ROWINFO$ column, 15-17, 15-192
SYS_OP_ZONE_ID function, 7-373
SYS_SESSION_ROLES namespace, 7-363
SYS_TYPEID function, 7-375
SYS_XMLAGG function, 7-376
SYS_XMLGEN function, 7-377
SYSAUX clause

of CREATE DATABASE, 13-68
SYSAUX tablespace

creating, 13-68
SYSDATE function, 7-378
system change numbers

obtaining, 3-9
system control statements, 10-4

PL/SQL support of, 10-4
system global area

flushing, 12-11
updating, 12-10

system parameters
GLOBAL_TOPIC_ENABLED, 12-25

system partitioning, 15-120
system privileges

ADMINISTER ANY SQL TUNING SET,
18-42

ADMINISTER KEY MANAGEMENT, 18-45
ADMINISTER SQL MANAGEMENT

OBJECT, 18-42
ADMINISTER SQL TUNING SET, 18-42
ALTER ANY SQL PROFILE, 18-42
ALTER DATABASE LINK, 18-43
ALTER PUBLIC DATABASE LINK, 18-43
BECOME USER, 18-52
CHANGE NOTIFICATION, 18-52
CREATE ANY SQL PROFILE, 18-42
CREATE PLUGGABLE DATABASE, 18-48
DROP ANY SQL PROFILE, 18-42
for job scheduler tasks, 18-30
for the Advisor framework, 18-42
granting, 14-116, 18-30

to a role, 18-35
to a user, 18-35
to PUBLIC, 18-35

list of, 12-235
MERGE ANY VIEW, 18-51
READ ANY TABLE, 18-50

system privileges (continued)
revoking, 19-24

from a role, 19-27
from a user, 19-27
from PUBLIC, 19-28

SET CONTAINER, 18-48
SYSTEM tablespace

locally managed, 13-66
SYSTEM user

assigning password for, 13-62
SYSTIMESTAMP function, 7-378

T
TABLE clause

of ANALYZE, 12-222
of INSERT, 18-62
of SELECT, 19-39
of TRUNCATE, 19-146
of UPDATE, 19-149

TABLE collection expression, 19-39
table compression, 11-27, 12-84, 14-22, 15-77

Advanced Row Compression, 15-77
basic, 15-77
during bulk load operations, 15-77
for archiving data, 15-77
Hybrid Columnar, 15-77

table locks,
and queries, 18-84
disabling, 12-161
duration of, 18-84
enabling, 12-161
EXCLUSIVE, 18-84, 18-87
modes of, 18-84
on partitions, 18-84
on remote database, 18-84
on subpartitions, 18-84
ROW EXCLUSIVE, 18-84, 18-86
ROW SHARE, 18-84, 18-86
SHARE, 18-84
SHARE ROW EXCLUSIVE, 18-86
SHARE UPDATE, 18-86

table partitions
compression of, 12-84, 15-77

table REF constraints, 8-3
of CREATE TABLE, 15-17

tables
adding a constraint to, 12-119
adding rows to, 18-62
aliases, 2-150

in DELETE, 15-209
allocating extents for, 12-90
assigning to a cluster, 15-91
changing degree of parallelism on, 12-31
changing existing values in, 19-149

Index

Index-47

tables (continued)
collecting statistics on, 12-222
comments on, 12-261
compression of, 12-84, 15-77
creating, 15-17

multiple, 14-123
creating comments about, 12-259
data stored outside database, 15-17
deallocating unused space from, 12-90
default physical attributes

changing, 12-83
degree of parallelism

specifying, 15-17
disassociating statistics types from, 18-1
dropping

along with cluster, 15-225
along with owner, 18-15
indexes of, 18-1
partitions of, 18-1

enabling tracking, 15-130
external, 15-86

creating, 15-17
restrictions on, 15-90

externally organized, 15-86
flashing back to an earlier version, 18-24
granting system privileges for, 18-30
heap organized, 15-85
index-organized, 15-85

overflow segment for, 15-88
space in index block, 15-87

inserting rows with a subquery, 15-132
inserting using the direct-path method, 18-62
joining in a query, 19-39
LOB storage of, 8-48
locking, 18-84
logging

insert operations, 12-84
table creation, 15-17

migrated and chained rows in, 12-227
moving, 12-78
moving to a new segment, 12-31
moving, index-organized, 12-155
nested

storage characteristics, 15-17
object

creating, 15-20
querying, 15-17

of XMLType, creating, 15-17
organization, defining, 15-85
parallel creation of, 15-17
parallelism

setting default degree, 15-17
partition attributes of, 12-31

tables (continued)
partitioning, 2-147, 15-17

allowing rows to move between
partitions, 12-31

default attributes of, 12-31
physical attributes

changing, 12-83
purging from the recycle bin, 19-20
read-only mode, 12-95
read/write mode, 12-95
reference-partitioned, 12-122, 12-149,

15-119
relational

creating, 15-19
remote, accessing, 13-75
removing from the database, 18-1
removing rows from, 15-209
renaming, 12-93, 19-22
restricting

records in a block, 12-92
retrieving data from, 19-39
saving blocks in a cache, 15-124
SQL examples, 15-17
storage attributes

defining, 15-17
storage characteristics

defining, 8-48
storage properties of, 15-17, 15-92
subpartition attributes of, 12-31
synonyms for, 15-12
tablespace for

defining, 15-17, 15-76
temporary

duration of data, 15-73
session-specific, 15-53
transaction specific, 15-53

unclustering, 15-224
updating through views, 15-203
validating structure, 12-225
XMLType, querying, 15-17

TABLESPACE clause
of ALTER INDEX ... REBUILD, 10-164
of CREATE CLUSTER, 13-41
of CREATE INDEX, 13-131
of CREATE MATERIALIZED VIEW, 14-21
of CREATE MATERIALIZED VIEW LOG,

14-43
of CREATE TABLE, 15-76

tablespaces
allocating space for users, 15-188
allowing write operations on, 12-193
automatic segment-space management,

15-166
backing up data files, 12-188

Index

Index-48

tablespaces (continued)
bigfile, 15-159

database default, 13-63
default temporary, 13-69
resizing, 12-187
undo, 13-57

bringing online, 12-192, 15-165
coalescing free extents, 12-187
converting

from permanent to temporary, 12-193
from temporary to permanent, 12-193

creating, 15-152
data files

adding, 12-180
renaming, 12-180

default, 10-95
specifying for a user, 12-210

default permanent, 13-69
default temporary, 10-95

learning name of, 10-95
designing media recovery, 10-66
dropping contents, 18-7
encrypting, 8-52
ending online backup, 12-189
extent size, 15-161
granting system privileges for, 18-30
in FLASHBACK mode, 12-180, 15-152
in FORCE LOGGING mode, 12-191, 15-163
locally managed, 8-55

altering, 12-185
logging attribute, 12-180, 15-152
managing extents of, 15-152
read only, 12-193
reconstructing lost or damaged, 10-66, 10-75
recovering, 10-66, 10-69
removing from the database, 18-5
renaming, 12-187
size of free extents in, 12-186
smallfile, 15-159

database default, 13-63
default temporary, 13-69
undo, 13-57

specifying
data files for, 15-160
for a table, 15-17
for a user, 15-187
for index rebuild, 12-156

taking offline, 12-192, 15-165
temp files

adding, 12-180
temporary

creating, 15-170
defining for the database, 13-59
shrinking, 12-187
specifying for a user, 12-210, 15-188

tablespaces (continued)
undo

altering, 12-185
creating, 13-57, 15-168
dropping, 18-6

TAN function, 7-379
TANH function, 7-380
TDE

See Transparent Data Encryption
temp files

bringing online, 10-77
defining for a tablespace, 15-154, 15-158
defining for the database, 13-60
disabling autoextend, 10-77
dropping, 10-77, 12-190
enabling autoextend, 8-33, 10-77
extending automatically, 8-33
renaming, 10-74
resizing, 10-77
reusing, 8-33
shrinking, 12-190
size of, 8-33
specifying, 8-33
taking offline, 10-77

TEMPFILE clause
of ALTER DATABASE, 10-53, 10-77

TEMPORARY clause
of ALTER TABLESPACE, 12-193
of CREATE TABLESPACE, 15-170

temporary tables
creating, 15-17, 15-53
session-specific, 15-53
transaction-specific, 15-53

TEMPORARY TABLESPACE clause
of ALTER USER, 12-210
of ALTER USER. See CREATE USER,

12-207
of CREATE USER, 15-188

temporary tablespace groups
reassigning for a user, 12-210
specifying for a user, 15-188

temporary tablespaces
creating, 15-170
default, 10-95
specifying extent management during

database creation, 13-60
specifying for a user, 12-210, 15-188

TEST clause
of ALTER DATABASE ... RECOVER, 10-69

testing for a set, 6-12
text, 2-54

date and number formats, 2-65
literals

in SQL syntax, 2-54

Index

Index-49

text (continued)
properties of CHAR and VARCHAR2 data

types, 2-55
syntax of, 2-54

text literals
conversion to database character set, 2-54

TH datetime format element suffix, 2-77
throughput

optimizing, 2-92
THSP datetime format element suffix, 2-77
TIME data type

DB2, 2-35
SQL/DS, 2-35

time format models
short, 2-68, 2-73

time zone
changing time zone data file, 7-255
converting data to particular, 5-24
determining for session, 7-334
formatting, 2-73
setting for the database, 13-57

TIME_ZONE session parameter, 11-109
timestamp

converting to local time zone, 5-24
TIMESTAMP data type, 2-21

DB2, 2-35
SQL/DS, 2-35

TIMESTAMP WITH LOCAL TIME ZONE data
type, 2-22

TIMESTAMP WITH TIME ZONE data type, 2-21
TIMESTAMP_TO_SCN function, 7-380
TO SAVEPOINT clause

of ROLLBACK, 19-37
TO_APPROX_COUNT_DISTINCT function,

7-381
TO_APPROX_PERCENTILE function, 7-382
TO_BINARY_DOUBLE function, 7-383
TO_BINARY_FLOAT function, 7-385
TO_BLOB (bfile) function, 7-387
TO_BLOB (raw) function, 7-387
TO_CHAR (bfile|blob) function, 7-388
TO_CHAR (character) function, 7-388
TO_CHAR (datetime) function, 7-390

format models, 2-69, 2-77
TO_CHAR (number) function, 7-395

format models, 2-66, 2-77
TO_CLOB (bfile|blob) function, 7-398
TO_CLOB (character) function, 7-399
TO_DATE function, 7-400

format models, 2-69, 2-76, 2-77
TO_DSINTERVAL function, 7-402
TO_LOB function, 7-404
TO_MULTI_BYTE function, 7-405
TO_NCHAR (character) function, 7-405
TO_NCHAR (datetime) function, 7-406

TO_NCHAR (number) function, 7-407
TO_NCLOB function, 7-408
TO_NUMBER function, 7-409

format models, 2-66
TO_SINGLE_BYTE function, 7-410
TO_TIMESTAMP function, 7-411
TO_TIMESTAMP_TZ function, 7-412
TO_UTC_TIMESTAMP_TZ function, 7-414
TO_YMINTERVAL function, 7-416
top-level SQL statements, 12-238
top-N reporting, 3-12, 7-117, 7-295, 7-328, 19-39
tracking

enabling for a table, 12-93, 15-130
transaction control statements, 10-3

PL/SQL support of, 10-3
transactions

allowing to complete, 12-12
assigning

rollback segment to, 19-140
automatically committing, 13-2
changes, making permanent, 13-1
commenting on, 13-3
distributed, forcing, 11-102
ending, 13-1
implicit commit of, 10-2–10-4
in-doubt

committing, 13-2
forcing, 13-5
resolving, 19-142

isolation level, 19-140
locks, releasing, 13-1
naming, 19-142
read-only, 19-140
read/write, 19-140
rolling back, 12-13, 19-36

to a savepoint, 19-37
savepoints for, 19-38

TRANSLATE ... USING function, 7-418
TRANSLATE function, 7-417
TRANSLATE SQL object privilege

on a user, 18-58
Transparent Data Encryption, 15-63

key management, 10-5
master key, 12-18

TREAT function, 7-420
triggers,

compiling, 12-201
creating, 15-176
database

altering, 12-201
dropping, 18-10, 18-15

disabling, 12-162, 12-201
enabling, 12-161, 12-201, 12-202, 15-176
granting system privileges for, 18-30

Index

Index-50

triggers (continued)
INSTEAD OF

dropping, 15-196
re-creating, 15-177
removing from the database, 18-10
renaming, 12-203

TRIM function, 7-421
TRUNC (date) function, 7-422

format models, 7-463
TRUNC (number) function, 7-424
TRUNCATE PARTITION clause

of ALTER TABLE, 12-31
TRUNCATE SUBPARTITION clause

of ALTER TABLE, 12-31
TRUNCATE_CLUSTER statement, 19-143
TRUNCATE_TABLE statement, 19-145
type constructor expressions, 5-33
types

See object types or data types
TYPES clause

of ASSOCIATE STATISTICS, 12-229, 12-231
of DISASSOCIATE STATISTICS, 15-220

TZ_OFFSET function, 7-425

U
UID function, 7-426
unary operators, 4-1
UNDER object privilege

on a view, 18-59
UNDER_PATH condition, 6-23
undo

rollback, 11-94, 13-57
system managed, 11-94, 13-57

UNDO tablespace clause
of CREATE DATABASE, 13-57
of CREATE TABLESPACE, 15-168

undo tablespaces
creating, 13-57, 15-168
dropping, 18-6
modifying, 12-185
preserving unexpired data, 12-180, 15-152

UNDO_RETENTION initialization parameter
setting with ALTER SYSTEM, 18-24

unified audit policies
comments on, 12-260
creating, 13-26
dropping, 15-223
modifying, 10-37

unified auditing
ALTER AUDIT POLICY statement, 10-37
AUDIT statement, 12-250
CREATE AUDIT POLICY statement, 13-26
DROP AUDIT POLICY statement, 15-223
NOAUDIT statement, 19-15

UNIFORM clause
of CREATE TABLESPACE, 15-152

UNION ALL set operator, 4-6
UNION set operator, 4-6
UNIQUE clause

of CREATE INDEX, 13-122
of CREATE TABLE, 15-17
of SELECT, 19-63

unique constraints
conditional, 13-146
enabling, 15-128
index on, 15-17

unique elements of, 7-335
unique indexes, 13-122
unique queries, 19-63
UNISTR function, 7-426
universal rowids

See urowids
UNNEST hint, 2-133
unnesting collections, 19-39

examples, 19-131
unnesting subqueries, 9-18
unpivot operations, 19-76

examples, 19-124
syntax, 19-47

UNQUIESCE clause
of ALTER SYSTEM, 12-14

UNRECOVERABLE, 10-161, 15-85
See also NOLOGGING clause

unsorted indexes, 13-133
UNUSABLE clause

of ALTER INDEX, 10-167
UNUSABLE LOCAL INDEXES clause

of ALTER MATERIALIZED VIEW, 11-28
of ALTER TABLE, 12-150

UPDATE BLOCK REFERENCES clause
of ALTER INDEX, 10-169, 10-170

UPDATE GLOBAL INDEXES clause
of ALTER TABLE, 12-31

update operations
collecting supplemental log data for, 10-84

UPDATE SET clause
of MERGE, 19-2

UPDATE statement, 19-149
updates

and simultaneous insert, 19-1
using MERGE, 19-1, 19-2

UPGRADE clause
of ALTER DATABASE, 10-65
of ALTER TABLE, 12-31

UPPER function, 7-427
URLs

generating, 7-371
UROWID data type, 2-34

Index

Index-51

urowids, 2-34
and foreign tables, 2-34
and index-organized tables, 2-34
description of, 2-34

USABLE clause
of ALTER INDEX, 10-167

USE object privilege
on a SQL translation profile, 18-57

USE_BAND hint, 2-133
USE_CONCAT hint, 2-133
USE_CUBE hint, 2-134
USE_HASH hint, 2-134
USE_MERGE hint, 2-134
USE_NL hint, 2-135
USE_NL_WITH_INDEX hint, 2-135
USE_PRIVATE_OUTLINES session parameter,

11-109
USE_STORED_OUTLINES session parameter,

11-109, 12-25
USER function, 7-428
user groups

adding or dropping a member, 10-136
adding to a disk group, 10-136
dropping from a disk group, 10-136

USER SYS clause
of CREATE DATABASE, 13-62

USER SYSTEM clause
of CREATE DATABASE, 13-62

USER_COL_COMMENTS data dictionary view,
12-261

USER_INDEXTYPE_COMMENTS data
dictionary view, 12-261

USER_MVIEW_COMMENTS data dictionary
view, 12-261

USER_OPERATOR_COMMENTS data
dictionary view, 12-261

USER_TAB_COMMENTS data dictionary view,
12-261

user-defined functions, 7-464
name precedence of, 7-466
naming conventions, 7-466

user-defined operators, 4-11
user-defined statistics

dropping, 16-12, 16-14, 17-10, 18-1, 18-11
user-defined types, 2-36
USERENV function, 7-428
USERENV namespace, 7-363
users

allocating space for, 15-188
and database links, 13-78
assigning

default roles, 12-211
profiles, 15-189

authenticating, 12-215
authenticating to a remote server, 13-75

users (continued)
changing authentication, 12-216
creating, 15-182
default tablespaces for, 12-210, 15-187
denying access to tables and views, 18-84
external, 14-118, 15-186
global, 14-118, 15-186
granting system privileges for, 18-30
local, 14-118, 15-185
locking accounts, 15-190
operating system

adding to a disk group, 10-136
dropping from a disk group, 10-137

password expiration of, 15-189
removing from the database, 18-14
SQL examples, 15-182
temporary tablespaces for, 12-210, 15-188

USING BFILE clause
of CREATE JAVA, 13-160

USING BLOB clause
of CREATE JAVA, 13-160

USING clause
of ALTER INDEXTYPE, 10-176
of ASSOCIATE STATISTICS, 12-229, 12-231
of CREATE DATABASE LINK, 13-75
of CREATE INDEXTYPE, 13-152
of CREATE PLUGGABLE DATABASE, 14-92

USING CLOB clause
of CREATE JAVA, 13-160

USING INDEX clause
of ALTER MATERIALIZED VIEW, 11-29
of ALTER TABLE, 12-80
of constraints, 8-3
of CREATE MATERIALIZED VIEW, 14-24
of CREATE TABLE, 15-17

USING NO INDEX clause
of CREATE MATERIALIZED VIEW, 14-24

USING ROLLBACK SEGMENT clause
of ALTER MATERIALIZED VIEW ...

REFRESH, 11-32
of CREATE MATERIALIZED VIEW, 14-29

UTC
extracting from a datetime value, 7-372

UTC offset
replacing with time zone region name, 2-61

UTLCHN.SQL script, 12-227
UTLEXPT1.SQL script, 12-148
UTLXPLAN.SQL script, 18-17

V
VALIDATE clause

of DROP TYPE, 18-12
VALIDATE REF UPDATE clause

of ANALYZE, 12-225

Index

Index-52

VALIDATE STRUCTURE clause
of ANALYZE, 12-225

VALIDATE_CONVERSION function, 7-430
validation

of clusters, 12-225
of database objects

offline, 12-226
of database objects, online, 12-226
of indexes, 12-225
of tables, 12-225

VALUE function, 7-432
VALUES clause

of CREATE INDEX, 13-136
of INSERT, 18-62

VALUES LESS THAN clause
of CREATE TABLE, 15-17

VAR_POP function, 7-433
VAR_SAMP function, 7-435
VARCHAR data type, 2-12
VARCHAR2 data type, 2-11

converting to NUMBER, 2-66
VARGRAPHIC data type

DB2, 2-35
SQL/DS, 2-35

VARIANCE function, 7-436
VARRAY clause

of ALTER TABLE, 12-53
VARRAY column properties

of ALTER TABLE, 12-31, 12-53
of CREATE MATERIALIZED VIEW, 14-15
of CREATE TABLE, 15-17, 15-30

varrays, 2-37
changing returned value, 12-31
compared with nested tables, 2-46
comparison rules, 2-46
creating, 15-178
dropping the body of, 18-13
dropping the specification of, 18-11
modifying column properties, 12-56
storage characteristics, 12-31, 15-17
storing out of line, 2-37

varying arrays
See varrays

version queries
pseudocolumns for, 3-6

view constraints, 8-3, 15-199
and materialized views, 8-3
dropping, 18-17
modifying, 12-219

views
base tables

adding rows, 18-62
changing

definition, 18-16
values in base tables, 19-149

views (continued)
creating

before base tables, 15-196
comments about, 12-259
multiple, 14-123

definer’s rights, 15-202
defining, 15-192
dropping constraints on, 12-219
editioning, 15-196
granting system privileges for, 18-30
invoker’s rights, 15-202
modifying constraints on, 12-219
object, creating, 15-200
re-creating, 15-196
recompiling, 12-218
remote, accessing, 13-75
removing

from the database, 18-16
rows from the base table of, 15-209

renaming, 19-22
retrieving data from, 19-39
subquery of, 15-203

restricting, 15-192
synonyms for, 15-12
updatable, 15-203
with joins

and key-preserved tables, 15-204
making updatable, 15-204

XMLType, 15-192
XMLType, creating, 15-208
XMLType, querying, 15-192

virtual columns
adding to a table, 12-102
creating, 15-17
modifying, 12-102

VSIZE function, 7-437

W
WHENEVER SUCCESSFUL clause

of AUDIT sql_statements, 12-241
WHERE clause

of DELETE, 15-215
of queries and subqueries, 19-39
of SELECT, 9-4
of UPDATE, 19-149

WIDTH_BUCKET function, 7-438
WITH ... AS clause

of SELECT, 19-39
WITH ADMIN OPTION clause

of GRANT, 18-36
WITH CHECK OPTION clause

of CREATE VIEW, 15-192, 15-195
of DELETE, 15-209
of INSERT, 18-62

Index

Index-53

WITH CHECK OPTION clause (continued)
of SELECT, 19-47
of UPDATE, 19-149

WITH clause
of SELECT, 19-59

WITH GRANT OPTION clause
of GRANT, 18-40

WITH HIERARCHY OPTION
of GRANT, 18-40

WITH INDEX CONTEXT clause
of CREATE OPERATOR, 14-62

WITH OBJECT ID clause
of CREATE MATERIALIZED VIEW LOG,

14-44
WITH PRIMARY KEY clause

of ALTER MATERIALIZED VIEW, 11-32
of CREATE MATERIALIZED VIEW ...

REFRESH, 14-28
of CREATE MATERIALIZED VIEW LOG,

14-44
WITH READ ONLY clause

of CREATE VIEW, 15-192, 15-195
of DELETE, 15-209
of INSERT, 18-62
of SELECT, 19-47
of UPDATE, 19-149

WITH ROWID clause
of column ref constraints, 8-3
of CREATE MATERIALIZED VIEW ...

REFRESH, 14-5
of CREATE MATERIALIZED VIEW LOG,

14-44
WITH SEQUENCE clause

of CREATE MATERIALIZED VIEW LOG,
14-44

WRITE clause
of COMMIT, 13-4

X
XML

conditions, 6-22
data

storage of, 15-17
database repository

SQL access to, 6-22, 6-23
documents

producing from XML fragments, 7-376
retrieving from the database, 7-371

XML (continued)
examples, F-8
format models, 2-81
fragments, 7-127
functions, 7-9

XMLAGG function, 7-439
XMLCAST function, 7-441
XMLCDATA function, 7-441
XMLCOLATTVAL function, 7-442
XMLCOMMENT function, 7-443
XMLCONCAT function, 7-444
XMLDATA pseudocolumn, 3-13
XMLDIFF function, 7-445
XMLELEMENT function, 7-446
XMLEXISTS function, 7-449
XMLFOREST function, 7-450
XMLGenFormatType object, 2-81
XMLIndex

creating, 13-141
modifying, 10-164

XMLISVALID function, 7-451
XMLPARSE function, 7-451
XMLPATCH function, 7-452
XMLPI function, 7-453
XMLQUERY function, 7-454
XMLSchemas

adding to a table, 15-17
single and multiple, 15-17

XMLSEQUENCE function, 7-456
XMLSERIALIZE function, 7-457
XMLTABLE function, 7-459
XMLTRANSFORM function, 7-462
XMLType columns

properties of, 12-31, 15-17
storage of, 15-17
storing in binary XML format, 15-17

XMLType storage clause
of CREATE TABLE, 15-17

XMLType tables
creating, 15-17, 15-144
creating index on, 13-144

XMLType views, 15-192
querying, 15-192

Z
zone maps

creating, 14-50
modifying, 11-46
removing from the database, 17-7

Index

Index-54

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database SQL Language Reference
	Changes in Oracle Database Release 21c
	New Features
	Deprecated Features
	Desupported Features

	1 Introduction to Oracle SQL
	History of SQL
	SQL Standards
	How SQL Works
	Common Language for All Relational Databases

	Using Enterprise Manager
	Lexical Conventions
	Tools Support

	2 Basic Elements of Oracle SQL
	Data Types
	Oracle Built-in Data Types
	Character Data Types
	CHAR Data Type
	NCHAR Data Type
	VARCHAR2 Data Type
	VARCHAR Data Type
	NVARCHAR2 Data Type

	Numeric Data Types
	NUMBER Data Type
	FLOAT Data Type
	Floating-Point Numbers
	BINARY_FLOAT
	BINARY_DOUBLE
	IEEE754 Conformance

	Numeric Precedence

	LONG Data Type
	Datetime and Interval Data Types
	DATE Data Type
	Using Julian Days

	TIMESTAMP Data Type
	TIMESTAMP WITH TIME ZONE Data Type
	TIMESTAMP WITH LOCAL TIME ZONE Data Type
	INTERVAL YEAR TO MONTH Data Type
	INTERVAL DAY TO SECOND Data Type
	Datetime/Interval Arithmetic
	Support for Daylight Saving Times
	Datetime and Interval Examples

	RAW and LONG RAW Data Types
	Large Object (LOB) Data Types
	BFILE Data Type
	BLOB Data Type
	CLOB Data Type
	NCLOB Data Type

	JSON Data Type
	Extended Data Types

	Rowid Data Types
	ROWID Data Type
	UROWID Data Type

	ANSI, DB2, and SQL/DS Data Types
	User-Defined Types
	Object Types
	REF Data Types
	Varrays
	Nested Tables

	Oracle-Supplied Types
	Any Types
	ANYTYPE
	ANYDATA
	ANYDATASET

	XML Types
	XMLType
	URI Data Types
	URIFactory Package

	Spatial Types
	SDO_GEOMETRY
	SDO_TOPO_GEOMETRY
	SDO_GEORASTER

	Data Type Comparison Rules
	Numeric Values
	Datetime Values
	Binary Values
	Character Values
	Object Values
	Varrays and Nested Tables
	Data Type Precedence
	Data Conversion
	Implicit and Explicit Data Conversion
	Implicit Data Conversion
	Implicit Data Conversion Examples
	Explicit Data Conversion

	Security Considerations for Data Conversion

	Literals
	Text Literals
	Numeric Literals
	Integer Literals
	NUMBER and Floating-Point Literals

	Datetime Literals
	Interval Literals
	INTERVAL YEAR TO MONTH
	INTERVAL DAY TO SECOND

	Format Models
	Number Format Models
	Number Format Elements

	Datetime Format Models
	Datetime Format Elements
	Uppercase Letters in Date Format Elements
	Punctuation and Character Literals in Datetime Format Models

	Datetime Format Elements and Globalization Support
	ISO Standard Date Format Elements
	The RR Datetime Format Element
	RR Datetime Format Examples

	Datetime Format Element Suffixes

	Format Model Modifiers
	Format Model Examples

	String-to-Date Conversion Rules
	XML Format Model

	Nulls
	Nulls in SQL Functions
	Nulls with Comparison Conditions
	Nulls in Conditions

	Comments
	Comments Within SQL Statements
	Comments on Schema and Nonschema Objects
	Hints
	Alphabetical Listing of Hints
	ALL_ROWS Hint
	APPEND Hint
	APPEND_VALUES Hint
	CACHE Hint
	CHANGE_DUPKEY_ERROR_INDEX Hint
	CLUSTER Hint
	CLUSTERING Hint
	CONTAINERS Hint
	CURSOR_SHARING_EXACT Hint
	DISABLE_PARALLEL_DML Hint
	DRIVING_SITE Hint
	DYNAMIC_SAMPLING Hint
	ENABLE_PARALLEL_DML Hint
	FACT Hint
	FIRST_ROWS Hint
	FRESH_MV Hint
	FULL Hint
	GATHER_OPTIMIZER_STATISTICS Hint
	GROUPING Hint
	HASH Hint
	IGNORE_ROW_ON_DUPKEY_INDEX Hint
	INDEX Hint
	INDEX_ASC Hint
	INDEX_COMBINE Hint
	INDEX_DESC Hint
	INDEX_FFS Hint
	INDEX_JOIN Hint
	INDEX_SS Hint
	INDEX_SS_ASC Hint
	INDEX_SS_DESC Hint
	INMEMORY Hint
	INMEMORY_PRUNING Hint
	LEADING Hint
	MERGE Hint
	MODEL_MIN_ANALYSIS Hint
	MONITOR Hint
	NATIVE_FULL_OUTER_JOIN Hint
	NOAPPEND Hint
	NOCACHE Hint
	NO_CLUSTERING Hint
	NO_EXPAND Hint
	NO_FACT Hint
	NO_GATHER_OPTIMIZER_STATISTICS Hint
	NO_INDEX Hint
	NO_INDEX_FFS Hint
	NO_INDEX_SS Hint
	NO_INMEMORY Hint
	NO_INMEMORY_PRUNING Hint
	NO_MERGE Hint
	NO_MONITOR Hint
	NO_NATIVE_FULL_OUTER_JOIN Hint
	NO_PARALLEL Hint
	NOPARALLEL Hint
	NO_PARALLEL_INDEX Hint
	NOPARALLEL_INDEX Hint
	NO_PQ_CONCURRENT_UNION Hint
	NO_PQ_SKEW Hint
	NO_PUSH_PRED Hint
	NO_PUSH_SUBQ Hint
	NO_PX_JOIN_FILTER Hint
	NO_QUERY_TRANSFORMATION Hint
	NO_RESULT_CACHE Hint
	NO_REWRITE Hint
	NOREWRITE Hint
	NO_STAR_TRANSFORMATION Hint
	NO_STATEMENT_QUEUING Hint
	NO_UNNEST Hint
	NO_USE_BAND Hint
	NO_USE_CUBE Hint
	NO_USE_HASH Hint
	NO_USE_MERGE Hint
	NO_USE_NL Hint
	NO_XML_QUERY_REWRITE Hint
	NO_XMLINDEX_REWRITE Hint
	NO_ZONEMAP Hint
	OPTIMIZER_FEATURES_ENABLE Hint
	OPT_PARAM Hint
	ORDERED Hint
	PARALLEL Hint
	PARALLEL_INDEX Hint
	PQ_CONCURRENT_UNION Hint
	PQ_DISTRIBUTE Hint
	PQ_FILTER Hint
	PQ_SKEW Hint
	PUSH_PRED Hint
	PUSH_SUBQ Hint
	PX_JOIN_FILTER Hint
	QB_NAME Hint
	RESULT_CACHE Hint
	RETRY_ON_ROW_CHANGE Hint
	REWRITE Hint
	STAR_TRANSFORMATION Hint
	STATEMENT_QUEUING Hint
	UNNEST Hint
	USE_BAND Hint
	USE_CONCAT Hint
	USE_CUBE Hint
	USE_HASH Hint
	USE_MERGE Hint
	USE_NL Hint
	USE_NL_WITH_INDEX Hint

	Database Objects
	Schema Objects
	Nonschema Objects

	Database Object Names and Qualifiers
	Database Object Naming Rules
	Schema Object Naming Examples
	Schema Object Naming Guidelines

	Syntax for Schema Objects and Parts in SQL Statements
	How Oracle Database Resolves Schema Object References
	References to Objects in Other Schemas
	References to Objects in Remote Databases
	Creating Database Links
	Database Link Names
	Username and Password
	Database Connect String

	References to Database Links

	References to Partitioned Tables and Indexes
	References to Object Type Attributes and Methods

	3 Pseudocolumns
	Hierarchical Query Pseudocolumns
	CONNECT_BY_ISCYCLE Pseudocolumn
	CONNECT_BY_ISLEAF Pseudocolumn
	LEVEL Pseudocolumn

	Sequence Pseudocolumns
	Where to Use Sequence Values
	How to Use Sequence Values

	Version Query Pseudocolumns
	COLUMN_VALUE Pseudocolumn
	OBJECT_ID Pseudocolumn
	OBJECT_VALUE Pseudocolumn
	ORA_ROWSCN Pseudocolumn
	ORA_SHARDSPACE_NAME Pseudocolumn
	ROWID Pseudocolumn
	ROWNUM Pseudocolumn
	XMLDATA Pseudocolumn

	4 Operators
	About SQL Operators
	Unary and Binary Operators
	Operator Precedence

	Arithmetic Operators
	COLLATE Operator
	Concatenation Operator
	Hierarchical Query Operators
	PRIOR
	CONNECT_BY_ROOT

	Set Operators
	Multiset Operators
	MULTISET EXCEPT
	MULTISET INTERSECT
	MULTISET UNION

	SHARD_CHUNK_ID Operator
	User-Defined Operators

	5 Expressions
	About SQL Expressions
	Simple Expressions
	Analytic View Expressions
	Examples of Analytic View Expressions

	Compound Expressions
	CASE Expressions
	Column Expressions
	CURSOR Expressions
	Datetime Expressions
	Function Expressions
	Interval Expressions
	JSON Object Access Expressions
	Model Expressions
	Object Access Expressions
	Placeholder Expressions
	Scalar Subquery Expressions
	Type Constructor Expressions
	Expression Lists

	6 Conditions
	About SQL Conditions
	Condition Precedence

	Comparison Conditions
	Simple Comparison Conditions
	Group Comparison Conditions

	Floating-Point Conditions
	Logical Conditions
	Model Conditions
	IS ANY Condition
	IS PRESENT Condition

	Multiset Conditions
	IS A SET Condition
	IS EMPTY Condition
	MEMBER Condition
	SUBMULTISET Condition

	Pattern-matching Conditions
	LIKE Condition
	REGEXP_LIKE Condition

	Null Conditions
	XML Conditions
	EQUALS_PATH Condition
	UNDER_PATH Condition

	SQL For JSON Conditions
	IS JSON Condition
	JSON_EQUAL Condition
	JSON_EXISTS Condition
	JSON_TEXTCONTAINS Condition

	Compound Conditions
	BETWEEN Condition
	EXISTS Condition
	IN Condition
	IS OF type Condition

	7 Functions
	About SQL Functions
	Single-Row Functions
	Numeric Functions
	Character Functions Returning Character Values
	Character Functions Returning Number Values
	Character Set Functions
	Collation Functions
	Datetime Functions
	General Comparison Functions
	Conversion Functions
	Large Object Functions
	Collection Functions
	Hierarchical Functions
	Oracle Machine Learning for SQL Functions
	XML Functions
	JSON Functions
	Encoding and Decoding Functions
	NULL-Related Functions
	Environment and Identifier Functions

	Aggregate Functions
	Analytic Functions
	Object Reference Functions
	Model Functions
	OLAP Functions
	Data Cartridge Functions
	ABS
	ACOS
	ADD_MONTHS
	ANY_VALUE
	APPROX_COUNT
	APPROX_COUNT_DISTINCT
	APPROX_COUNT_DISTINCT_AGG
	APPROX_COUNT_DISTINCT_DETAIL
	APPROX_MEDIAN
	APPROX_PERCENTILE
	APPROX_PERCENTILE_AGG
	APPROX_PERCENTILE_DETAIL
	APPROX_RANK
	APPROX_SUM
	ASCII
	ASCIISTR
	ASIN
	ATAN
	ATAN2
	AVG
	BFILENAME
	BIN_TO_NUM
	BITAND
	BIT_AND_AGG
	BITMAP_BIT_POSITION
	BITMAP_BUCKET_NUMBER
	BITMAP_CONSTRUCT_AGG
	BITMAP_COUNT
	BITMAP_OR_AGG
	BIT_OR_AGG
	BIT_XOR_AGG
	CARDINALITY
	CAST
	CEIL
	CHARTOROWID
	CHECKSUM
	CHR
	CLUSTER_DETAILS
	CLUSTER_DISTANCE
	CLUSTER_ID
	CLUSTER_PROBABILITY
	CLUSTER_SET
	COALESCE
	COLLATION
	COLLECT
	COMPOSE
	CON_DBID_TO_ID
	CON_GUID_TO_ID
	CON_ID_TO_CON_NAME
	CON_ID_TO_DBID
	CON_ID_TO_GUID
	CON_ID_TO_UID
	CON_NAME_TO_ID
	CON_UID_TO_ID
	CONCAT
	CONVERT
	CORR
	CORR_*
	CORR_S
	CORR_K

	COS
	COSH
	COUNT
	COVAR_POP
	COVAR_SAMP
	CUBE_TABLE
	CUME_DIST
	CURRENT_DATE
	CURRENT_TIMESTAMP
	CV
	DATAOBJ_TO_MAT_PARTITION
	DATAOBJ_TO_PARTITION
	DBTIMEZONE
	DECODE
	DECOMPOSE
	DENSE_RANK
	DEPTH
	DEREF
	DUMP
	EMPTY_BLOB, EMPTY_CLOB
	EXISTSNODE
	EXP
	EXTRACT (datetime)
	EXTRACT (XML)
	EXTRACTVALUE
	FEATURE_COMPARE
	FEATURE_DETAILS
	FEATURE_ID
	FEATURE_SET
	FEATURE_VALUE
	FIRST
	FIRST_VALUE
	FLOOR
	FROM_TZ
	GREATEST
	GROUP_ID
	GROUPING
	GROUPING_ID
	HEXTORAW
	INITCAP
	INSTR
	ITERATION_NUMBER
	JSON_ARRAY
	JSON_ARRAYAGG
	JSON_DATAGUIDE
	JSON_MERGEPATCH
	JSON_OBJECT
	JSON_OBJECTAGG
	JSON_QUERY
	JSON_SCALAR
	JSON_SERIALIZE
	JSON_TABLE
	JSON_TRANSFORM
	JSON_VALUE
	JSON Type Constructor
	KURTOSIS_POP
	KURTOSIS_SAMP
	LAG
	LAST
	LAST_DAY
	LAST_VALUE
	LEAD
	LEAST
	LENGTH
	LISTAGG
	LN
	LNNVL
	LOCALTIMESTAMP
	LOG
	LOWER
	LPAD
	LTRIM
	MAKE_REF
	MAX
	MEDIAN
	MIN
	MOD
	MONTHS_BETWEEN
	NANVL
	NCHR
	NEW_TIME
	NEXT_DAY
	NLS_CHARSET_DECL_LEN
	NLS_CHARSET_ID
	NLS_CHARSET_NAME
	NLS_COLLATION_ID
	NLS_COLLATION_NAME
	NLS_INITCAP
	NLS_LOWER
	NLS_UPPER
	NLSSORT
	NTH_VALUE
	NTILE
	NULLIF
	NUMTODSINTERVAL
	NUMTOYMINTERVAL
	NVL
	NVL2
	ORA_DM_PARTITION_NAME
	ORA_DST_AFFECTED
	ORA_DST_CONVERT
	ORA_DST_ERROR
	ORA_HASH
	ORA_INVOKING_USER
	ORA_INVOKING_USERID
	PATH
	PERCENT_RANK
	PERCENTILE_CONT
	PERCENTILE_DISC
	POWER
	POWERMULTISET
	POWERMULTISET_BY_CARDINALITY
	PREDICTION
	PREDICTION_BOUNDS
	PREDICTION_COST
	PREDICTION_DETAILS
	PREDICTION_PROBABILITY
	PREDICTION_SET
	PRESENTNNV
	PRESENTV
	PREVIOUS
	RANK
	RATIO_TO_REPORT
	RAWTOHEX
	RAWTONHEX
	REF
	REFTOHEX
	REGEXP_COUNT
	REGEXP_INSTR
	REGEXP_REPLACE
	REGEXP_SUBSTR
	REGR_ (Linear Regression) Functions
	REMAINDER
	REPLACE
	ROUND (date)
	ROUND (number)
	ROUND_TIES_TO_EVEN (number)
	ROW_NUMBER
	ROWIDTOCHAR
	ROWIDTONCHAR
	RPAD
	RTRIM
	SCN_TO_TIMESTAMP
	SESSIONTIMEZONE
	SET
	SIGN
	SIN
	SINH
	SKEWNESS_POP
	SKEWNESS_SAMP
	SOUNDEX
	SQRT
	STANDARD_HASH
	STATS_BINOMIAL_TEST
	STATS_CROSSTAB
	STATS_F_TEST
	STATS_KS_TEST
	STATS_MODE
	STATS_MW_TEST
	STATS_ONE_WAY_ANOVA
	STATS_T_TEST_*
	STATS_T_TEST_ONE
	STATS_T_TEST_PAIRED
	STATS_T_TEST_INDEP and STATS_T_TEST_INDEPU

	STATS_WSR_TEST
	STDDEV
	STDDEV_POP
	STDDEV_SAMP
	SUBSTR
	SUM
	SYS_CONNECT_BY_PATH
	SYS_CONTEXT
	SYS_DBURIGEN
	SYS_EXTRACT_UTC
	SYS_GUID
	SYS_OP_ZONE_ID
	SYS_TYPEID
	SYS_XMLAGG
	SYS_XMLGEN
	SYSDATE
	SYSTIMESTAMP
	TAN
	TANH
	TIMESTAMP_TO_SCN
	TO_APPROX_COUNT_DISTINCT
	TO_APPROX_PERCENTILE
	TO_BINARY_DOUBLE
	TO_BINARY_FLOAT
	TO_BLOB (bfile)
	TO_BLOB (raw)
	TO_CHAR (bfile|blob)
	TO_CHAR (character)
	TO_CHAR (datetime)
	TO_CHAR (number)
	TO_CLOB (bfile|blob)
	TO_CLOB (character)
	TO_DATE
	TO_DSINTERVAL
	TO_LOB
	TO_MULTI_BYTE
	TO_NCHAR (character)
	TO_NCHAR (datetime)
	TO_NCHAR (number)
	TO_NCLOB
	TO_NUMBER
	TO_SINGLE_BYTE
	TO_TIMESTAMP
	TO_TIMESTAMP_TZ
	TO_UTC_TIMESTAMP_TZ
	TO_YMINTERVAL
	TRANSLATE
	TRANSLATE ... USING
	TREAT
	TRIM
	TRUNC (date)
	TRUNC (number)
	TZ_OFFSET
	UID
	UNISTR
	UPPER
	USER
	USERENV
	VALIDATE_CONVERSION
	VALUE
	VAR_POP
	VAR_SAMP
	VARIANCE
	VSIZE
	WIDTH_BUCKET
	XMLAGG
	XMLCAST
	XMLCDATA
	XMLCOLATTVAL
	XMLCOMMENT
	XMLCONCAT
	XMLDIFF
	XMLELEMENT
	XMLEXISTS
	XMLFOREST
	XMLISVALID
	XMLPARSE
	XMLPATCH
	XMLPI
	XMLQUERY
	XMLSEQUENCE
	XMLSERIALIZE
	XMLTABLE
	XMLTRANSFORM
	ROUND and TRUNC Date Functions
	About User-Defined Functions
	Prerequisites
	Name Precedence
	Naming Conventions

	8 Common SQL DDL Clauses
	allocate_extent_clause
	constraint
	deallocate_unused_clause
	file_specification
	logging_clause
	parallel_clause
	physical_attributes_clause
	size_clause
	storage_clause

	9 SQL Queries and Subqueries
	About Queries and Subqueries
	Creating Simple Queries
	Hierarchical Queries
	Hierarchical Query Examples

	The Set Operators
	Sorting Query Results
	Joins
	Join Conditions
	Equijoins
	Band Joins
	Self Joins
	Cartesian Products
	Inner Joins
	Outer Joins
	Antijoins
	Semijoins

	Using Subqueries
	Unnesting of Nested Subqueries
	Selecting from the DUAL Table
	Distributed Queries

	10 SQL Statements: ADMINISTER KEY MANAGEMENT to ALTER JAVA
	Types of SQL Statements
	Data Definition Language (DDL) Statements
	Data Manipulation Language (DML) Statements
	Transaction Control Statements
	Session Control Statements
	System Control Statement
	Embedded SQL Statements

	How the SQL Statement Chapters are Organized
	ADMINISTER KEY MANAGEMENT
	ALTER ANALYTIC VIEW
	ALTER ATTRIBUTE DIMENSION
	ALTER AUDIT POLICY (Unified Auditing)
	ALTER CLUSTER
	ALTER DATABASE
	ALTER DATABASE DICTIONARY
	ALTER DATABASE LINK
	ALTER DIMENSION
	ALTER DISKGROUP
	ALTER FLASHBACK ARCHIVE
	ALTER FUNCTION
	ALTER HIERARCHY
	ALTER INDEX
	ALTER INDEXTYPE
	ALTER INMEMORY JOIN GROUP
	ALTER JAVA

	11 SQL Statements: ALTER LIBRARY to ALTER SESSION
	ALTER LIBRARY
	ALTER LOCKDOWN PROFILE
	ALTER MATERIALIZED VIEW
	ALTER MATERIALIZED VIEW LOG
	ALTER MATERIALIZED ZONEMAP
	ALTER OPERATOR
	ALTER OUTLINE
	ALTER PACKAGE
	ALTER PLUGGABLE DATABASE
	ALTER PMEM FILESTORE
	ALTER PROCEDURE
	ALTER PROFILE
	ALTER RESOURCE COST
	ALTER ROLE
	ALTER ROLLBACK SEGMENT
	ALTER SEQUENCE
	ALTER SESSION
	Initialization Parameters and ALTER SESSION
	Session Parameters and ALTER SESSION

	12 SQL Statements: ALTER SYNONYM to COMMENT
	ALTER SYNONYM
	ALTER SYSTEM
	ALTER TABLE
	ALTER TABLESPACE
	ALTER TABLESPACE SET
	ALTER TRIGGER
	ALTER TYPE
	ALTER USER
	ALTER VIEW
	ANALYZE
	ASSOCIATE STATISTICS
	AUDIT (Traditional Auditing)
	AUDIT (Unified Auditing)
	CALL
	COMMENT

	13 SQL Statements: COMMIT to CREATE JAVA
	COMMIT
	CREATE ANALYTIC VIEW
	CREATE ATTRIBUTE DIMENSION
	CREATE AUDIT POLICY (Unified Auditing)
	CREATE CLUSTER
	CREATE CONTEXT
	CREATE CONTROLFILE
	CREATE DATABASE
	CREATE DATABASE LINK
	CREATE DIMENSION
	CREATE DIRECTORY
	CREATE DISKGROUP
	CREATE EDITION
	CREATE FLASHBACK ARCHIVE
	CREATE FUNCTION
	CREATE HIERARCHY
	CREATE INDEX
	CREATE INDEXTYPE
	CREATE INMEMORY JOIN GROUP
	CREATE JAVA

	14 SQL Statements: CREATE LIBRARY to CREATE SCHEMA
	CREATE LIBRARY
	CREATE LOCKDOWN PROFILE
	CREATE MATERIALIZED VIEW
	CREATE MATERIALIZED VIEW LOG
	CREATE MATERIALIZED ZONEMAP
	CREATE OPERATOR
	CREATE OUTLINE
	CREATE PACKAGE
	CREATE PACKAGE BODY
	CREATE PFILE
	CREATE PLUGGABLE DATABASE
	CREATE PMEM FILESTORE
	CREATE PROCEDURE
	CREATE PROFILE
	CREATE RESTORE POINT
	CREATE ROLE
	CREATE ROLLBACK SEGMENT
	CREATE SCHEMA

	15 SQL Statements: CREATE SEQUENCE to DROP CLUSTER
	CREATE SEQUENCE
	CREATE SPFILE
	CREATE SYNONYM
	CREATE TABLE
	CREATE TABLESPACE
	CREATE TABLESPACE SET
	CREATE TRIGGER
	CREATE TYPE
	CREATE TYPE BODY
	CREATE USER
	CREATE VIEW
	DELETE
	DISASSOCIATE STATISTICS
	DROP ANALYTIC VIEW
	DROP ATTRIBUTE DIMENSION
	DROP AUDIT POLICY (Unified Auditing)
	DROP CLUSTER

	16 SQL Statements: DROP CONTEXT to DROP JAVA
	DROP CONTEXT
	DROP DATABASE
	DROP DATABASE LINK
	DROP DIMENSION
	DROP DIRECTORY
	DROP DISKGROUP
	DROP EDITION
	DROP FLASHBACK ARCHIVE
	DROP FUNCTION
	DROP HIERARCHY
	DROP INDEX
	DROP INDEXTYPE
	DROP INMEMORY JOIN GROUP
	DROP JAVA

	17 SQL Statements: DROP LIBRARY to DROP SYNONYM
	DROP LIBRARY
	DROP LOCKDOWN PROFILE
	DROP MATERIALIZED VIEW
	DROP MATERIALIZED VIEW LOG
	DROP MATERIALIZED ZONEMAP
	DROP OPERATOR
	DROP OUTLINE
	DROP PACKAGE
	DROP PLUGGABLE DATABASE
	DROP PMEM FILESTORE
	DROP PROCEDURE
	DROP PROFILE
	DROP RESTORE POINT
	DROP ROLE
	DROP ROLLBACK SEGMENT
	DROP SEQUENCE
	DROP SYNONYM

	18 SQL Statements: DROP TABLE to LOCK TABLE
	DROP TABLE
	DROP TABLESPACE
	DROP TABLESPACE SET
	DROP TRIGGER
	DROP TYPE
	DROP TYPE BODY
	DROP USER
	DROP VIEW
	EXPLAIN PLAN
	FLASHBACK DATABASE
	FLASHBACK TABLE
	GRANT
	INSERT
	LOCK TABLE

	19 SQL Statements: MERGE to UPDATE
	MERGE
	NOAUDIT (Traditional Auditing)
	NOAUDIT (Unified Auditing)
	PURGE
	RENAME
	REVOKE
	ROLLBACK
	SAVEPOINT
	SELECT
	SET CONSTRAINT[S]
	SET ROLE
	SET TRANSACTION
	TRUNCATE CLUSTER
	TRUNCATE TABLE
	UPDATE

	A How to Read Syntax Diagrams
	Graphic Syntax Diagrams
	Required Keywords and Parameters
	Optional Keywords and Parameters
	Syntax Loops
	Multipart Diagrams

	Backus-Naur Form Syntax

	B Automatic and Manual Locking Mechanisms During SQL Operations
	List of Nonblocking DDLs
	Automatic Locks in DML Operations
	Automatic Locks in DDL Operations
	Exclusive DDL Locks
	Share DDL Locks
	Breakable Parse Locks

	Manual Data Locking

	C Oracle and Standard SQL
	ANSI Standards
	ISO Standards
	Oracle Compliance to Core SQL
	Oracle Support for Optional Features of SQL/Foundation
	Oracle Compliance with SQL/CLI
	Oracle Compliance with SQL/PSM
	Oracle Compliance with SQL/MED
	Oracle Compliance with SQL/OLB
	Oracle Compliance with SQL/JRT
	Oracle Compliance with SQL/XML
	Oracle Compliance with FIPS 127-2
	Oracle Extensions to Standard SQL
	Oracle Compliance with Older Standards
	Character Set Support

	D Oracle Regular Expression Support
	Multilingual Regular Expression Syntax
	Regular Expression Operator Multilingual Enhancements
	Perl-influenced Extensions in Oracle Regular Expressions

	E Oracle SQL Reserved Words and Keywords
	Oracle SQL Reserved Words
	Oracle SQL Keywords

	F Extended Examples
	Using Extensible Indexing
	Using XML in SQL Statements

	Index

