
Hallgatói segédlet

OpenCV Mat alapok

Létrehozás, inicializálás

Mat osztály inicializálásra mutat példákat a következő kódrészlet:

int cols = 10; 

int rows = 10; 

int type = CV_8UC1; // one channel, 8bit 

int value = 5; 

 

cv::Mat name; //empty instanced Mat object 

cv::Mat name(rows,cols,type) 

cv::Mat name(rows,cols,type,cv::Scalar(value))

A legelső esetben egy üres Mat osztályt hoztunk létre. A második esetben már megadtuk

a méreteit és a típusát is, a harmadik esetében pedig konkrét értékekre be is állítjuk

az összes elemet.

Lehetőség van arra is, hogy a példányosítást követően változtatjuk meg a Mat méretét:

int cols = 50; 

int rows = 20; 

int type = CV_8UC3; //three channel, 8bit 

 

cv::Mat name; //empty instanced Mat object 

name.create(rows,cols,type);

Műveletek

Az összes érték beállítása:

int value = 10; 

cv::Mat name; //empty instanced Mat object 

name.setTo(value);

Adott Mat osztály sor és oszlop elérése (sorrendben):

cv::Mat M(7, 7, CV_8UC1); 

    //csak referenciakent tesszuk egyenlove a teljes matrixszal 

    cv::Mat M2 = M; 

    //adott sor es oszlop elerese ertekmasolas nelkul 

    cv::Mat row = M.row(3); 

    cv::Mat col = M.col(2); 

 

    //adott matrix, sor, es oszlop ertekmasolassal 

    cv::Mat M3 = M.clone(); 

    cv::Mat row2 = M.row(2).clone(); 

    cv::Mat col4 = M.row(4).clone();

A létrehozott Mat osztály paramétereinek elérése, kiíratása:



cv::Mat Image; 

 

std::cout << "Image Properties: " << std::endl 

        << "rows: " << Image.rows << std::endl 

        << "cols: " << Image.cols << std::endl 

        << "channels:" << Image.channels() << std::endl 

        << "type: " << Image.type() << std::endl; 

 

std::cout << Image;

A létrehozott Mat osztály elemeinek elérése:

cv::Mat M = cv::Mat::eye(10, 10, CV_8UC1); 

 

    for (int i = 0; i < M.rows; ++i) { 

        for (int j = 0; j < M.cols; ++j) { 

            std::cout << M.at<uchar>(i, j) << " "; 

        } 

        std::cout << std::endl; 

    }

Az at metódussal lehet elérni külön-külön a Mat osztály elemeit. Meg kell adni, hogy

milyen típusú elemek találhatóak meg az osztályban (cast), és ezt követően pedig a sor

és oszlop értékeket.

Mat objektum szátdarabolása és egyesítése:

cv::Mat input = cv::imread("image.jpg",1); 

cv::Mat splitted[3], output; 

cv::split(input, splitted); 

cv::merge(splitted,3,output);

Képekkel kapcsolatos műveletek

Kép beolvasása:

int megnyitas modja = 1; // -1: modositatlan ertekek, 0: fekete-fehér mód, 1:színes 

mód 

cv::Mat Image = cv::imread("kep_eleresi_utvonala",megnyitas_modja);

Kép kiírása:

std::vector<int> formatParameters_png,formatParameters_jpg; 

    formatParameters_png.push_back(cv::IMWRITE_PNG_COMPRESSION); 

    formatParameters_png.push_back(5); 

 

    formatParameters_jpg.push_back(cv::IMWRITE_JPEG_QUALITY); 

    formatParameters_jpg.push_back(90); 

 

    cv::imwrite("out.png", I, formatParameters_png); 

    cv::imwrite("out.jpg", I2, formatParameters_jpg);

Kiíráskor szükséges egy vector osztályban felsorolni a kimeneti formátum jellemzőit.



Színterek

RGB

Három szín alapján keveri ki a végső színt. A három alapszín inexekkel együtt: Kék

(0), Zöld(1), Piros(2)

HSV

Itt is három csatorna van, csak a jelentésük más:

HUE: színérték

SATURATION: mennyi a szürke aránya a színkomponensben

VALUE: világosságérték

Konverziók

cv::cvtColor(I, gray, cv::COLOR_RGB2GRAY); 

cv::cvtColor(I, hsv, cv::COLOR_RGB2HSV); 

cv::cvtColor(I, hsv, cv::COLOR_HSV2RGB);

Képjavító módszerek

Szűrők,eljárások

Életlenítő szűrők (box,gauss,median):

cv::Mat input,output; 

int value = 3; //always odd 

int sigma_value = 2 

cv::boxFilter(input, output, -1, cv::Size(value, value)); 

cv::GaussianBlur(input, output, cv::Size(value, value),sigma_value); 

cv::medianBlur(input, output, value);

A box átlagértéket, a gauss a görbe által meghatározott értéket, a medián középértéket

számol.

Hisztogram-kiegyenlítés:

cv::equalizeHist(input, output);

Gyenge kontrasztú képek esetében alkalmazzuk.

Élesítés:

cv::Mat image = cv::imread("kacsa.jpg", 0); 

cv::Mat blurred, unsharped; 

 

cv::GaussianBlur(image, blurred, cv::Size(sizeofKernel, sizeofKernel), 1); 

cv::addWeighted(image, 1.5, blurred, -0.5, 0,unsharped);

Itt a lényeg, hogy először tetszőleges szűrővel kiszámoljuk az eredeti kép homályosabb

verzióját, majd kivonjuk az eredeti képből, ezzel megkapjuk az élesebb változatot. Az



összegzés során a súlyok előjelei ellentétesek, és nagyon fontos, hogy az előjeles

összegük egyenlő legyen 1-gyel.

Küszöbölés

Sima globális küszöbölés:

cv::threshold(Img, thresh, thresh_value, 255, cv::THRESH_BINARY); 

cv::threshold(Img, thresh, thresh_value, 255, cv::THRESH_BINARY_INV);

Globális küszöbölés algoritmussal (Otsu):

cv::threshold(Img, thresh, 0,255,cv::THRESH_BINARY | cv::THRESH_OTSU);

Adaptív küszöbölés:

int blockSize = 5; 

cv::adaptiveThreshold(Img, thresh, 255, cv::ADAPTIVE_THRESH_MEAN_C, 

cv::THRESH_BINARY,blockSize,2);

Morfológia

Alapműveletek

Dilatáció, erózió:

cv::Mat Img = cv::imread("morp_test.png", 0); 

cv::Mat kernel = cv::Mat::ones(cv::Size(5, 5), CV_8UC1); 

cv::Mat dilated,eroded; 

 

cv::dilate(Img, dilated, kernel); 

cv::erode(Img, eroded, kernel);

Nyitás:

cv::Mat Img = cv::imread("morp_test_open.png", 0); 

cv::Mat kernel = cv::Mat::ones(cv::Size(3, 3), CV_8UC1); 

cv::Mat eroded,opened; 

 

cv::erode(Img, eroded, kernel); 

cv::dilate(eroded, opened, kernel);

Zárás:

cv::Mat Img = cv::imread("morp_test_closed.png", 0); 

cv::Mat kernel = cv::Mat::ones(cv::Size(7, 7), CV_8UC1); 

cv::Mat dilated, closed; 

 

cv::dilate(Img, dilated, kernel); 

cv::erode(dilated, closed, kernel);

Struktúrális elem(kernel)



Deklarációk:

cv::Mat kernel = cv::Mat::ones(cv::Size(7, 7), CV_8UC1); // sima 7x7es négyzet alakú 

cv::Mat kernel = cv::getStructuringElement(1, cv::Size(sizeofKernel,sizeofKernel));

Lehet használni a beépített metódust is, az első paraméter megadja a struktúrális elem

típusát:

0: háromszög, cv::MORPH_RECT

1: kereszt, cv::MORPH_CROSS

2: ellipszis, cv::MORPH_ELLIPSE

Összetettebb műveletek

Kontúr:

cv::Mat image = cv::imread("kacsa.jpg", 0); 

cv::Mat dilated, eroded, contures; 

cv::Mat kernel = cv::getStructuringElement(1, cv::Size(sizeofKernel,sizeofKernel)); 

 

cv::dilate(image, dilated, kernel); 

cv::erode(image, eroded, kernel); 

contures = dilated - eroded;

Tophat (csúcsok detektálása):

sizeofKernel = 10; 

cv::Mat image = cv::imread("kacsa.jpg", 0); 

cv::Mat eroded, opened,tophat; 

cv::Mat kernel = cv::getStructuringElement(1, cv::Size(sizeofKernel, sizeofKernel)); 

 

cv::erode(image, eroded, kernel); 

cv::dilate(eroded, opened, kernel); 

tophat = image - opened;

Blackhat (völgyrészek detektálása):

cv::Mat image = cv::imread("kacsa.jpg", 0); 

cv::Mat dilated,closed,tophat, blackhat; 

cv::Mat kernel = cv::getStructuringElement(1, cv::Size(sizeofKernel, sizeofKernel)); 

 

cv::dilate(image, dilated, kernel); 

cv::erode(dilated, closed, kernel); 

blackhat = closed - image;


