
Hallgatói segédlet

Numpy alapok

Létrehozás, inicializálás

Numpy tömb inicializálásra mutat példákat a következő kódrészlet:

import numpy as np

cols = int(10)

rows = int(10)

value = int(5)

name = np.asarray((rows,cols),dtype=np.uint8) #numpy tömb létrehozása

name = np.full((rows,cols),value,dtype=np.uint8) #numpy tömb létrehozása kezdőértékkel

Műveletek

Numpy tömb adott elemeinek elérése:

import numpy as np

cols = int(10)

rows = int(10)

dim = int(3)

name = np.asarray((rows,cols),dtype=np.uint8) #numpy tömb létrehozása

name2= np.asarray((rows,cols,dim),dtype=np.uint8) #numpy színes tömb létrehozása

name.shape # a tömb méretének lekérdezése

name[0,0] #adott elem elerese

name[0,:] #adott sor eseten az osszes oszlopelem elerese

name[:,0] #adott oszlop eseten az osszes sorelem elerese

name[:,:] # az osszes elem elerese a tombben

name2[:,:,0] # az elso csatorna elerese színes kép esetében

Képekkel kapcsolatos műveletek

Kép beolvasása:

import cv2

open_mode = 1; // -1: modositatlan ertekek, 0: fekete-fehér mód, 1:színes mód

Image = cv2.imread("kep_eleresi_utvonala",open_mode);

Kép kiírása:

import cv2

formatParameters_png = list()

formatParameters_jpg = list()

formatParameters_png.insert(cv2.IMWRITE_PNG_COMPRESSION)

formatParameters_png.insert(5)

formatParameters_jpg.insert(cv2.IMWRITE_JPEG_QUALITY)

formatParameters_jpg.insert(90)

cv2.imwrite("out.png", I, formatParameters_png)

cv2.imwrite("out.jpg", I2, formatParameters_jpg)

Kiíráskor szükséges egy listában felsorolni a kimeneti formátum jellemzőit.

Színterek

RGB

Három szín alapján keveri ki a végső színt. A három alapszín inexekkel együtt: Kék

(0), Zöld(1), Piros(2)

HSV

Itt is három csatorna van, csak a jelentésük más:

HUE: színérték

SATURATION: mennyi a szürke aránya a színkomponensben

VALUE: világosságérték

Konverziók

cv2.cvtColor(I, gray, cv2.COLOR_RGB2GRAY);

cv2.cvtColor(I, hsv, cv2.COLOR_RGB2HSV);

cv2.cvtColor(I, hsv, cv2.COLOR_HSV2RGB);

Képjavító módszerek

Szűrők,eljárások

Életlenítő szűrők (box,gauss,median):

value = 3 #always odd

sigma_value = 2

output = cv2.boxFilter(input, -1, (value, value));

output = cv2.GaussianBlur(input, (value, value),sigma_value);

output = cv2.medianBlur(input, value);

A box átlagértéket, a gauss a görbe által meghatározott értéket, a medián középértéket

számol.

Hisztogram-kiegyenlítés:

cv2.equalizeHist(input, output);

Gyenge kontrasztú képek esetében alkalmazzuk.

Élesítés:

image = cv2.imread("test.jpg", 0);

blurred = cv2.GaussianBlur(image, (sizeofKernel, sizeofKernel), 1);

unsharped = cv2.addWeighted(image, 1.5, blurred, -0.5, 0,unsharped);

Itt a lényeg, hogy először tetszőleges szűrővel kiszámoljuk az eredeti kép homályosabb

verzióját, majd kivonjuk az eredeti képből, ezzel megkapjuk az élesebb változatot. Az

összegzés során a súlyok előjelei ellentétesek, és nagyon fontos, hogy az előjeles

összegük egyenlő legyen 1-gyel.

Küszöbölés

Sima globális küszöbölés:

thresh = cv2.threshold(Img, thresh_value, 255, cv2.THRESH_BINARY);

thresh = cv2.threshold(Img, thresh_value, 255, cv2.THRESH_BINARY_INV);

Globális küszöbölés algoritmussal (Otsu):

thresh = cv2.threshold(Img, 0,255,cv2.THRESH_BINARY | cv2.THRESH_OTSU);

Adaptív küszöbölés:

blockSize = 5;

thresh = cv2.adaptiveThreshold(Img, 255, cv2.ADAPTIVE_THRESH_MEAN_C,

cv2.THRESH_BINARY,blockSize,2);

Morfológia

Alapműveletek

Dilatáció, erózió:

Img = cv2.imread("morp_test.png", 0);

kernel = np.ones((5, 5), dtype=np.uint8);

dilated = cv2.dilate(Img, kernel);

eroded = cv2.erode(Img, kernel);

Nyitás:

Img = cv2.imread("morp_test_open.png", 0);

kernel = np.ones((3, 3), dtype=np.uint8);

eroded = cv2.erode(Img, kernel)

opened = cv2.dilate(eroded, kernel)

Zárás:

Img = cv2.imread("morp_test_closed.png", 0);

kernel = np.ones((7, 7), dtype=uint8);

dilated = cv2.dilate(Img, kernel);

closed = cv2.erode(dilated, kernel);

Struktúrális elem(kernel)

Deklarációk:

kernel = np.ones((7, 7), dtype=np.uint8); // sima 7x7es négyzet alakú

kernel = cv2.getStructuringElement(1, (sizeofKernel,sizeofKernel));

Lehet használni a beépített metódust is, az első paraméter megadja a struktúrális elem

típusát:

0: háromszög, cv2.MORPH_RECT

1: kereszt, cv2.MORPH_CROSS

2: ellipszis, cv2.MORPH_ELLIPSE

Összetettebb műveletek

Kontúr:

image = cv2.imread("test.jpg", 0);

kernel = cv2.getStructuringElement(1, (sizeofKernel,sizeofKernel));

dilated = cv2.dilate(image, kernel);

eroded = cv2.erode(image, kernel);

contures = dilated - eroded;

Tophat (csúcsok detektálása):

sizeofKernel = 10;

image = cv2.imread("test.jpg", 0);

kernel = cv2.getStructuringElement(1, (sizeofKernel, sizeofKernel));

eroded = cv2.erode(image, kernel);

opened = cv2.dilate(eroded, kernel);

tophat = image - opened;

Blackhat (völgyrészek detektálása):

image = cv2.imread("test.jpg", 0);

kernel = cv2.getStructuringElement(1, (sizeofKernel, sizeofKernel));

dilated = cv2.dilate(image, kernel);

closed = cv2.erode(dilated, kernel);

blackhat = closed - image;

